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Aalto University             Abstract 

School of Economics    September 7, 2010  

Master’s Thesis                    

Matias Vitie 

 

SEASONAL CUSTOMER DEMAND AND HEDGING IN THE NORDIC 

ELECTRICITY MARKETS 
 

PURPOSE OF THE STUDY 

This thesis studies hedging seasonal customer demand in electricity retail business and the main 

objective is to estimate the cost of updating the long-term hedges with shorter-term hedges for 

different seasonal demand. This thesis also tests optimal time to update hedges by comparing the 

costs of updating the hedges at the beginning, end and in the middle of the time period when the 

contracts are available. 

 

DATA AND METHODOLOGY 

The data consist of Nord Pool daily closing price data from 2006 to 2009. Customer demand data 

is obtained from Fortum. The seasonality is modelled by a method developed by Borovkova and 

Geman (2006), which looks at the relationships between electricity forward prices. Seasonality is 

determined as the difference between monthly price and reference yearly average price. In this 

way the reference price does not contain seasonality. We further used the method Borovkova and 

Geman (2006b) developed for electricity forwards, and we use it to model the deviations of the 

price curve from flat de-seasoned curve, by using principal components. We then simulated 

possible future states of forward prices using them. 

 

We made some adjustments to the Borovkova and Geman’s methods, as we used Nord Pool data, 

which has different forwards available than other markets.   

 

We also constructed an electricity forward curve based on de-seasoned prices calculated with 

Borovkova and Geman’s (2006) method. The price curve and simulated cost of update can be 

combined to give a monthly electricity price for customer that includes both the latest market 

price information and the expected cost of updating the hedges later. 

 

RESULTS 

This thesis uses methods developed by Borovkova and Geman (2006 and 2006b) and finds 

support for using their methods in practice and also that it is possible to adjust them to work with 

Nord Pool data. The simulations gave reasonable results as, when comparing the costs of 

updating the long-term hedges, the demand with higher seasonality gets higher costs. 

 

For different update timing the average costs are on same level for early, middle and late update, 

however, the standard deviation of the update cost is higher the later the update is done, which is 

consistent with Samuelson’s effect of volatilities decreasing when time to maturity increases. 

 

KEYWORDS  

Commodity hedging, principal components analysis, seasonality, Borovkova and Geman 
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1. Introduction  

Cold winter days like the ones we experienced in the Nordic countries during winter 2009 to 

2010, combined with low capacity of supply can cause extreme spikes in electricity prices. One 

price spike can destroy the whole year’s profits or even cause bankruptcy if the electricity 

retailer leaves her position unhedged. Therefore it is important to understand the risk exposure 

and hedge against it. The subject is challenging and different kinds of problems in hedging have 

indeed caused bankruptcies for example in the recent energy crisis in US. 

 

Electricity price behavior is very difficult to predict and the volatilities in prices are extremely 

high. The price is determined as a function of supply and demand, which are both very inelastic. 

Smoothing consumption would be beneficial to the whole system, as less peak capacity would be 

required and also peak prices would be lover when current production capacity would better 

meet the demand. When the risk exposure for the electricity retailer, caused by the different 

demand of different customer types, is quantified and measured, it can be used for basis in 

pricing and thus smooth the consumption by incentives to drive consumption away from peak 

demand. 

1.1. Objective of the thesis 

The energy retailer uses forwards to hedge its sales. There are always two parties involved in 

each forward contract. The buyer of the forward has a long position and the seller has a short 

position. This means the buyer benefits if the underlying increases in value and the seller benefits 

when the underlying decreases in value. To help us understanding the context in the case of 

electricity forwards, we could think that the two parties of the contract make now a deal for a 

future time period, in which they fix the price of electricity exchanged in some future time 

period. In the future when we enter the delivery period, the buyer of the forward is then 

consuming the electricity and the seller of the forward is delivering it, however, the actual 

contracts do not involve any delivery of the physical asset, electricity. The actual contract works 

so that in the settlement of the contract it pays the difference between the agreed price and the 

realized market price. In this way the effect for the two parties of the contract is quite the same 
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had they actually also agreed to deliver the electricity as well. As electricity cannot be stored the 

underlying, electricity, is delivered with constant flow, which is typically measured on hourly 

level. If electricity price would increase, then the party being long would benefit. When signing a 

contract for delivering electricity to its customer, the electricity retailer enters automatically to a 

short position as she offers a fixed price to the customer and buys the electricity herself from the 

market. This position can be neutralized by buying electricity forward contracts and thus fix also 

the price electricity is bought with. 

 

In this study we do not look at speculative use of derivatives, instead the hedges are made on a so 

called energy neutral principle, meaning the total amount of energy is fully hedged. This means 

that hedging is done by buying a yearly forward for the average demand. We do this because the 

forwards in the Nordic electricity marketplace, Nord Pool, are made for constant demand. This 

leaves us with basis risk i.e. a risk that cannot be hedged away. For simplicity let us think again 

in the framework that the buyer of the forward consumes electricity and the seller produces it, 

although in reality no physical delivery of electricity takes place. Now, if we have for example a 

quarterly forward for quarter one for 10 MW, it means that we have agreed a fixed price in 

advance for a delivery of 10 MW for each hour in that quarter. The buyer of the contract cannot 

consume different amounts of electricity at different times. It is not possible to use for example 

15 MWh / hour in January and 5 MWh / hour in February and 10 MWh / hour in March. The 

buyer has to consume 10 MWh / hour in every hour and the seller produce the same amount 

constantly. The challenge is that it is seldom the case that we actually have a constant demand; 

normally the demand varies especially between summer and winter. 

 

The real challenge in long-term hedging is that in Nord Pool the long-term forwards are available 

only for calendar years, and forwards for delivery periods in calendar months and quarters 

become available only closer to the delivery period. As the demand is seasonal, buying the 

yearly forward leaves part of the exposure unhedged and part of the exposure overhedged. The 

hedge needs to be balanced closer to delivery of electricity by buying and selling quarterly and 

monthly forwards when they become available. For storable commodities this would not be a 

problem, as one could choose the time point when to consume, but for electricity the supply and 

demand are constantly in balance and the time of consumption plays an important role in 

hedging. 
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This thesis studies hedging seasonal customer demand in electricity retail business and the main 

objective is to answer the questions, what is the cost of updating the long-term hedges to shorter-

term hedges for different seasonal demand. The thesis also tests what is the optimal time to 

update hedges by comparing the costs of updating the hedges early, late and in the middle of the 

time period when the contracts are available. Figure 1 illustrates the point of the hedging updates 

needed. In the example the original hedge is a yearly forward for 2012 assuming constant 

demand. As yearly forwards are available for 5 years and quarterly forwards only for 2 to 3 years 

we can only use the yearly forwards when making long-term hedging. Later when the quarterly 

forwards become available, we can then update the difference compared to original hedge using 

the quarterly forwards. Finally we will also update the hedges from quarterly level to monthly 

level as monthly forwards become available. This is the end point of our interest, as in this study 

we are only looking at updating the hedges to monthly level; we are not focusing on the 

settlement phase of the contracts which is done using spot price.  

 

Figure 1 Idea behind the updates of hedges. The original hedge is made in year 2009 for 2012 and it is later 

updated with quarterly and monthly forwards as they become available. 
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1.2. Contribution to existing literature 

There is a lot of research in electricity markets on short-term hedging using futures, but less can 

be found on long-term hedging using forwards. In addition there are a number of studies about 

valuation of derivatives in electricity markets, but less on how they should be used in practice. 

Usually futures and forward prices of electricity are modelled based on expected spot price
1
. 

This approach is suitable for short term hedging, but the relationship between spot and forwards 

vanishes after a few weeks (Malo 2009) and for example in Nord Pool the correlation between 

spot and nearby futures was found to be in the range of 0.65 and -0.15 (Borovkova and Geman 

2006b). Thus using a different approach, that looks at the forward prices separately from spot 

prices, is used in this study to model the behaviour of forwards with longer maturity. 

 

This thesis uses an approach developed by Borovkova and Geman (2006) to model the 

commodity forward prices on a seasonal forward curve based on deterministic seasonal forward 

premium. Their approach is modified to our needs and used to tackle the issue of estimating the 

risk in seasonal demand for long-term contracts, given the agreed delivery to customers. 

Different hedging timing is also compared with simulation, to see which fits bests the risk 

management need of long term contracts. Simulation is also used to get risk estimates for the 

update costs, in this way we look at historical forward prices as only one snapshot, or in other 

words, one possibility of the outcome of forward prices. We assume that the prices will behave 

similarly as they did in the past, but with simulation we get a family of possible outcomes for the 

prices. In the simulation we repeat the price behaviour process many times. So instead of basing 

our calculations on only one history, we now get as many (simulated) “histories” as we wish. 

The fundamentals for simulations come still from the history, as all parameters in the models are 

calibrated based on historical values.    

 

The original Borovkova and Geman’s (2006) method was made for commodity markets, which 

have monthly forwards available for relative long time period. In Nord Pool we have less than 

needed monthly forwards available for the model to work in the way planned originally. Thus 

this thesis contributes in commodity derivatives literature not only by testing Borovkova and 

                                                 

1
 Look for example Bessembinder and Lemmon (2002), Lucia and Swchwartz (2002) and Malo (2009) 
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Geman’s (2006) model in practice, but also by looking what modifications are needed for it to 

work with Nord Pool data. In addition this thesis gives answer to the question when should the 

electricity retailer update her hedging portfolio on long term contracts as shorter maturity 

contracts become available, a question still remaining unanswered. 

1.3. Limitations of the study 

This thesis looks at using of electricity derivatives for purely hedging purposes, thus the point is 

not to look for optimal speculative use of derivatives. In addition, we focus only on electricity 

markets and as electricity markets differ a lot from other commodities markets, caution should be 

used when generalizing the methods or results to other markets.  

 

This thesis does not look at volumetric risk which arises from the mismatch of both prices and 

loads from their expected values. Those interested in volumetric risk in Nord Pool are advised to 

look at a previously study by Laitasalo (2004). In this study the scope is on long-term and we 

assume that the monthly demand is known and that the intra-monthly demand is constant for all 

customer types. Because of this assumption, we have no need to look at spot price behaviour, as 

we are already fully hedged, when we have bought the monthly forward. This thesis does not 

look either at the balancing of the derivatives contracts that takes place close to delivery and thus 

spot price behaviour is left out of the scope of this study. 

 

This work is not an econometrics study and it does not aim to develop a new econometric model. 

The goal is to model the electricity prices with enough accuracy but still keep the model 

understandable. The idea behind choosing the model is that it is better to be approximately 

correct than accurately wrong. Thus simplifying assumptions will be made. 

1.4. Structure of the study 

This thesis is divided to seven Chapters. Next Chapter describes the research problem in more 

details. As electricity markets differ a lot compared to other markets it is important to understand 

the properties of it, thus the third Chapter looks at the properties of the Nordic Electricity market, 

Nord Pool. The following chapter focuses on the theoretical background of the study discussing 

hedging in electricity markets.  
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In the fifth Chapter we describe the data received from Nord Pool and Fortum and also describe 

the methods used in the study. Next Chapter looks at the results while the last Chapter 

summarizes and concludes. 
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2. Research Problem 

This Chapter presents the research problem. There are two research questions in this study which 

relates to long-term hedging of electricity retailers contract portfolio. The questions consider the 

risk in different customer demand and when to update hedges. 

2.1. How do different customer demands affect the cost of hedging 

updates? 

The first research question relates to the risk in seasonal customer demand and the differences in 

the demand of different customer types. The first question is  

 

How do different customer demands affect the cost of hedging updates?  

 

In this study we estimate the expected cost of updating the hedges as well as quantify the risk in 

the costs for customers having different demands. When one customer or customer group, like 

for example direct electricity heater, uses a lot of electricity in the peak load, some other 

customer, like for example a Google’s server farm, can have quite the opposite demand profile 

and actually reduce the risk. Customers using direct electricity heating need electricity the most, 

when temperature is lowest. Low temperature drives the total demand up, which usually also 

means the prices are on high level. Thus direct electricity heaters are expected to have a high risk 

contribution. On the other hand Google’s servers need electricity for cooling and their demand is 

highest on summer time when the outside temperature is highest making their risk contribution 

low. 

 

By answering the first question we can estimate the costs of updating the hedges from long-term 

to shorter-term, for different customer types, based on the seasonality in their demand. This cost 

is then used for pricing long-term contracts for different customers. 
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2.2. When should the hedges be updated? 

Second question relates to the point in time when the yearly forward is updated with quarterly 

forwards and the quarterly forwards is updated with monthly ones. Samuelson’s effect 

(Samuelson 1965) claims that volatility in prices increases when the exercision comes closer. 

This study tries to find out if this phenomenon also affects Nordic Power markets and if it has 

any influence on the optimal time point when to update the hedges.  

 

The optimal time point for updating the long-term forwards with shorter maturity forwards is 

studied by comparing early, middle and late update. Early update would mean the yearly hedge 

is updated soon after the shorter maturity products are available. Late update means the update is 

delayed to close to delivery period. Middle update is in between them. The second question is  

 

What is the optimal time point to make the adjustments in long-term hedges?  

 

By answering to the second question, we get a guideline for timing the updates of hedges. 
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3. Nordic electricity markets overview 

This Chapter discusses the nature of electricity. Lack of storability, price spikes, seasonality and 

mean-reversion are explained. We also look at the properties of the Nordic power market Nord 

Pool and the Chapter ends by discussing the efficiency of the Nordic power markets. 

3.1. Nature of electricity 

Electricity is a special kind of commodity, because unlike other commodities it is practically 

impossible to store electricity. In fact, it has to be produced and consumed at the same time. Thus 

it is not possible to transport electricity in traditional way, but instead it is transferred in real time 

using power systems. This limits arbitrage opportunities in electricity financial markets. 

3.1.1. Characteristics of electricity prices 

Electricity markets have three well know properties, which makes them different from other 

markets. Electricity price face extreme spikes, they have seasonal behaviour and are mean-

reverted. (Malo 2009) 

 

Price spikes are caused by the fact that storing electricity is not possible, at least in economical 

sense.  Unlike with other commodities, inventories of electricity can not be used to smooth the 

gaps between supply and demand, which could lead in extremely high prices as can be seen in 

Figure 2 for Nord Pool spot price. For example in the end of 2002 we experienced a huge price 

spike upwards when supply could not meet the demand. 
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Figure 2 Electricity spot price in Nord Pool. Source for data: Nord pool. 

  

The prices have also seasonal behaviour, meaning they follow the calendar. This is true 

especially in countries which have varying temperatures around the year. In Nord Pool 

temperature affects the demand and water reservoirs the supply. They both have a yearly cycle 

which drives the prices. There is also intra-day “seasonality” in the spot price as the demand is 

highest on the working hours and lowest at nights, however, this is out of the scope of this study 

as we focus on long-term effects and do not look closer to intra-day or intra-month prices. 

 

It is also commonly known fact
2
 that electricity prices are mean-reverted meaning the prices can 

have high volatilities but they have a tendency to drift towards their long-term mean value. On 

short term the spikes are usually caused by some disturbance in supply and after the disturbance 

is over, or an alternative solution is found, the prices revert. If prices would stay for a high level 

for a long time it would attract new investments which would eventually drive prices back down 

when the supply would increase. Thus high price spikes can occur and last for a time but the 

changes are not permanent. On the other hand if prices would be on low level for long time 

investments opportunities would be weak and as demand has a rising trend the prices would 

eventually revert towards its long-term mean value. 

                                                 

2
 Look for example Borovkova and Geman (2006) and Malo (2009) 
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These properties can be found both in spot and forward prices, however, as noted among others 

by Borovkova and Geman (2006b) the forward prices do not experience extreme price spikes. 

They experience smaller spikes and have the other two properties as well. 

3.2. Nord Pool 

Nord Pool is a voluntary marketplace for the wholesale electricity used in the Nordic countries 

(Finland, Sweden, Norway and Denmark). The physical markets in Nord Pool account for 70 % 

of the value of power used in these countries. It was established in 1993, two years after the 

Norwegian parliament deregulated power markets in Norway. Sweden joined in 1996, Finland in 

1998 and Denmark in 1999-2000, making Nord Pool nowadays the largest and most liquid 

marketplace for physical and financial power contracts in Europe (Nord Pool 2010). 

 

Nord Pool has divided power trading to two marketplaces: Nord Pool ASA and Nord Pool AS. 

Nord Pool ASA is the largest marketplace in the world for financial power contracts while Nord 

Pool AS handles contracts for physical delivery (Nord Pool 2010). The electricity price in Nordic 

countries is set in Nord Pool AS day ahead for the following day for each hour of delivery. It is 

the equilibrium price when supply curve equals demand. Supply curve gives the combined 

production of the producers for a given price of electricity while demand is the combined 

demand of the users of electricity. 

 

There is one market or system (spot) price for all electricity traded, regardless of how it is 

produced.  Electricity is a homogenous commodity and it can not be said ex post how it was 

produced, because the electricity gets mixed in the transmission grid. The spot price in the 

wholesale market is determined by the marginal cost of the most expensive production form. The 

Figure 3 below illustrates the different marginal cost for production types which represents the 

supply curve. A small change in production or demand could cause huge changes in prices 

especially if we are close to capacity limits. The Figure also illustrates the effect of increase in 

demand. The supply curve is illustrated in blue colour and the demand in red colour. In this 

example a small increase in demand results in huge increase in price. 
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Figure 3 Schematic of marginal costs for different power plant types (Liski 2006) 

3.2.1. Forwards and futures contracts in Nord Pool  

As mentioned previously, electricity retailer can use forwards and futures to hedge her position. 

This study looks at the products traded on Nord Pool ASA, where the members can trade 

derivatives contracts. Nord Pool ASA is the counter party of all the contracts thus effectively 

eliminating the counterparty risk. The offered contracts include: (Nord Pool 2010) 

 

- daily futures 

- weekly futures 

- monthly forwards 

- quarterly forwards 

- yearly forwards  

- contracts for difference 

 

There is some overlapping in the contracts as for example quarterly contracts are offered for the 

next 8 to 11 quarters (until the end of the third year from current point in time), thus one can 

make a yearly hedge for the next year using either quarterly of yearly forwards, as shown in 

Figure 4. However, this overlapping ends with higher maturities and one using long-term 
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hedging has to use yearly contracts as shorter maturity contracts comes available only closer to 

maturity.  

 

Figure 4 Forward contracts offered in Nord Pool. The shorter maturity forwards are available for shorter 

period of time. (Nord Pool 2008) 

 

In Nord Pool the daily and weekly products are called futures and longer products are called 

forwards. The difference between futures and forwards traded at Nord Pool is in the settlement of 

the contracts. While futures are settled daily and cash is exchanged, forwards are settled only at 

the maturity of the contracts. Figure 5 and Figure 6 illustrate the difference. The difference is 

before the delivery starts, which is shown on the left part of the figures inside the red circles. As 

can be seen from the Figure 5 of futures settlement, futures use mark-to-market settlement, 

which means the changes in the futures prices are settled daily and at the beginning of the day 

the value of the futures contract for both parts is zero. Thus the value can change from zero 

during the day but it is balanced at the day end. For forwards (Figure 6) there is no daily 

settlement, but instead there is pending settlement and the changes in prices are cumulated and 

paid at the final settlement.  
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Figure 5 Mark-to-market settlement of futures contract in Nord Pool. (Nord Pool 2008) 

 

Figure 6 Pending settlement of forward contracts in Nord Pool. (Nord Pool 2008) 
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3.2.2. Contracts for difference 

In the case when transmission capacity is not high enough to transfer electricity between distant 

producers and consumers the system is divided to smaller areas Finland being one of them. Other 

areas are Norway 1 – 4, Denmark east & west, Kontek and Sweden. If the transmission capacity 

is reached between two or more areas, the areas get separate prices. The contracts for difference 

(CfD) are derivatives that can be used to cover for the difference between area price and system 

price, which is based on aggregate supply and aggregate demand of the whole area. 

 

It is relatively common not to have a same price for the whole Nord Pool area as for example in 

2004 it existed only for 25.3 % of the time (Kalatie 2006). However, when considering a 

particular area like Finland the system price and area price are quite often the same. For example 

in 2001 when there existed deviations between some area and system price on half the hours in 

the year, the area price of Finland deviated from system price for 6 % of the time (Kalatie 2006). 

 

The area price can deviate both up and downwards from system price depending on the 

transmission constraints. The Figure 7 shows the current transmission state between Finland and 

other countries for a particular point in time. In practice electricity is constantly imported from 

Russia and Estonia while the direction of power flow between Finland and Sweden and Finland 

and Norway may vary. When some of the transmission limits is reached then the price becomes 

different for these two areas. In these cases the area which exports electricity will have lower 

price than the area importing it. 

 

In this thesis we do not look at the CfDs as they have different maturities and as they are a 

different part of risk. Also their liquidity is poorer than for system price contracts. However, one 

should keep in mind this additional risk component when making hedging decisions, especially if 

the hedging need is on an area that often reaches its transmission capacity. 
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Figure 7 The momentary transmission state in Finland. In this current state, Finland imports from Russia 

and Estonia and exports to Sweden and Norway.  (Fingrid 2010) 

3.3. Market efficiency in Nord Pool 

The efficiency of power markets has recently been quite often discussed in the media. For 

example the current Minister of Trade and Industry of the Finnish government Mr. Mauri 

Pekkarinen said in spring 2010 that electricity markets lack transparency. He is also worried 

about large price spikes in electricity prices and suggests that the state owned companies could 

work together as a market participant to improve the efficiency of the market (Anon. 2010). In 

addition to many political statements of market efficiency, also some actual research is done on 

market efficiency, which mainly concludes that the wholesale market is working fairly well, 

while some inefficiency is found in retail markets, as observed from the studies listed below. 
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Liski (2006) has studied the competition in electricity markets and he says it is too early to make 

conclusions about market power, because of the systematic research is just beginning. He studied 

the market power from five perspectives: (1) the spot markets, (2) the financial markets, (3) 

transmission limitations, (4) hydro power and (5) retail markets. When closer looking to the 

financial markets he says that oligopolistic markets use financial markets both to strategic goals 

and risk sharing purposes. He defines competition in two forms them being price and quantity 

competition. With pure quantity competition he means that in equilibrium the supply does not 

depend on price while in price competition the relationship is price sensitive.  If competition in 

spot market is pure price competition then financial markets can limit competition, however, if 

competition is focused on quantity then it increases competition. The electricity market is supply 

market, which does not resemble price or quantity competition. Thus Liski states further research 

is needed to solve in which way the competition works in Nord Pool. (Liski 2006) 

 

Mannila and Korpinen compared the hedging methods in Nordic market and in UK. They 

constitute that principles are the same but the methods are different. They conclude that although 

the markets are very different by nature both marketplaces offer good and adequate hedging 

methods. Thus from hedging perspective the markets are efficient. (Mannila & Korpinen 2000) 

 

Malo (2003) studied the efficiency in the Nordic Power markets using many different statistical 

methods and he finds support for efficiency in the markets as he concludes that the futures prices 

can be certainty equivalents of future spot prices. 

 

Kara (2005) made a study on market efficiency in Nord Pool which has often been cited. He sees 

that on overall markets are functioning well, however, he criticizes the efficiency in retail 

markets as the consumer price follows the system price with approximately four months lag and 

because only a few have changed their power provider. He also points that on national level large 

players have very high market share and he expect the market to consolidate even further in the 

future. Similar results were obtained in Purasjoki’s study (2006) which was based mainly on 

Kara’s findings. Purasjoki found the derivatives market to be functioning normally but he claims 

that the retail market suffers from oligopolistic nature of competition in the market.  
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Also Hjalmarsson’s (2000) study finds support for Nord Pool to be working efficiently as his 

study based on an extension on Bresnahan-Lau model could not reject the hypothesis of perfect 

market. Unlike Kara (2005), Hjalmarsson (2000) sees that there is low ownership concentration 

in generation in the Nordic power market and he expects that to be the reason behind the non-

rejection of efficiency hypothesis. 

 

Kristiansen (2007) found inefficiencies in pricing of newly launched monthly forwards in Nord 

Pool. The deviation in the average prices of synthetic and real forwards on a seasonal level was 

in the range of -0.18 % and 0.44 % and on a yearly level in the range of 0.01 % to 0.14 % 

varying between year, interest rate and settlement type. As the deviation was such that in 5 of 6 

cases the synthetic contracts were more expensive than real contracts this could imply there are 

some, although small, cost in making a longer term synthetic contract from shorter term 

contracts, as the shorter term contracts, given the distribution of consumption, allows to make a 

more accurate hedge and thus there would be incentive to buy them at a higher price. However, 

Kristiansen argues that this mismatch in prices is just probably due to immaturity of the market. 

 

When looking at the literature on electricity derivatives one should keep in mind that electricity 

markets are different by nature and caution needs to be used when generalizing results obtained 

from one market to other markets. In addition, one needs to be careful at how the metrics are 

defined. For example Longstaff and Wang (2004) studied the electricity markets in 

Pennsylvania, New Jersey and Maryland and found a positive risk premia in the forward prices. 

However, Botterud et al (2002) found contradicting results and evidence on negative risk 

premium in their study on electricity futures markets on Nord Pool. The difference is explained 

by the way they define risk premia, as actually they both found the forward price to be above the 

spot price
3
. This result could be seen as an inefficiency of the markets, and it could be explained 

by risk aversion and different hedging needs of the market participants. By reducing the risk 

caused by spot price behaviour it is in many cases justified to pay a risk premia. For example 

Longstaff and Wang (2004) conclude that prices are determined rationally by risk-averse 

economice agents. 

 

                                                 

3
 In addition also Hanson (2007) and Torró (2008) found this in Nord Pool prices. 
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Malo (2009) studied the relationship between spot and futures prices in Nord Pool and he found 

empirical evidence that supports the efficiency of electricity futures market, because hedging 

with futures lead to significant risk reduction when using dynamic optimization. Thus, from 

electricity retailers’ point of view, the electricity derivatives markets can be efficiently used for 

hedging. 
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4. Theorethical background 

This Chapter starts with a discussion of the reasons for corporations to hedge. As storability in 

commodity hedging has a fundamental effect on hedging practices it is covered next. After that 

we focus on hedging in electricity markets. Then we a look at the theory of modelling electricity 

forwards. Finally we explain the theory behind principal components analysis, which is used in 

modelling the electricity forwards. 

4.1. Reasons to hedge 

Hedging originates from the word hedge and hedging could be seen to stand for building a fence 

for protection and in finance terms it is an investment, which is aimed to reduce or eliminate the 

risk of some other investment. One of the earliest noted uses of hedging dates back to the ancient 

times of Greeks, when Aristotle told a story about Thales, who had made forecast and predicted 

good olive harvest for next fall. He then made an agreement with olive-press owners, for a fee, to 

get future usage rights to the presses when harvesting period was over (Aristotle, cited in Great 

Books of Western World, 1990). So, already thousands of years ago it was possible to hedge 

exposure to changing production costs. Since then, a lot of development in organized futures 

exchanges has happened, but the main idea has remained the same; futures are used for 

neutralizing risk. 

 

When closer looking at reasons for hedging, Smith & Stulz (1985) considers three main motives: 

(1) taxes, (2) cost of financial distress and (3) managerial risk aversion. Tax laws can in some 

cases favour the use of derivatives through lower taxes. For leveraged firms the probability of 

financial distress can be quite high. The transaction costs, direct and indirect, of bankruptcy 

reduce the firm’s total value and as hedging reduces the probability of incurring these costs, it 

can be reasonable to use. Managerial risk aversion was the third reason Smith & Stulz found 

behind hedging. As managers utility is naturally a concave function of firm’s value as shown in 

Figure 8 and as hedging reduces the variance of firm’s end period value, this would lead to 

managers favouring high hedge ratios, unless compensation mechanism would transform the 

utility to a more convex shape. 
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Figure 8 Manager's expected utility as a function of firm's end period value. 

 

Graham and Rogers (2002) looked deeper into the taxing reasons and they found no evidence 

that firms would hedge because of tax convexity, but instead their results show that firms can 

hedge to increase debt capacity, or because of financial distress and firm size. They also find that 

the delta of CEO stock and option holdings is positively related to hedging, however, they find 

no significant association between option holdings and hedging. Stulz (2003) continues 

discussing the reasons for hedging and he states hedging being a strategic decision. He says, that 

first the company needs to define an objective function, which is generally to maximize 

shareholder wealth. Hedging decisions are then made based on that. 

 

Hedging in commodity markets can be done also on speculative reasons, in which management 

changes the hedge ratio according to their view of the future commodity prices. Brown et al. 

(2006) studied 44 companies in gold mine industry, focusing on selective hedging and market 

timing and found that gold producers do in fact practice selective hedging, but they found no 

evidence on shareholders of those companies to get any substantial gains from that practice. 

Their research supports the view that managers’ market views influence firms’ financial 

decisions in a boarder view. They point out that even the managers’ in the gold producing 

companies rarely have information that can be used in gaining from speculative positions on 
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commodity derivatives. Furthermore, if an electricity retailer would have information about 

production that other market participants do not have, she needs to disclose this inside 

information and temporarily suspend trading activity until the information is disclosed. However, 

it is still possible to undertake speculative hedging based on information that is available to all 

market participants. 

 

In the case of electricity retailing the reason for hedging can be seen to be risk sharing and 

strategic reasons, like for example investing in own production (Liski 2006). The approach in 

this study is on the risk sharing needs as this thesis looks at hedging from a perspective of the 

retailer, without taking any stand on its own production. The retail business in the case of this 

study is separated from production. 

 

Whatever the original reason for hedging in the company, the hedging strategy is set by company 

management and in the case of this thesis, the main reason for hedging is managerial risk 

aversion and the hedge is made to match the short position of electricity contracts, which has 

emerged due to offering a fixed price for customers. The hedging strategy for the case company 

(electricity retailer) in this thesis is to make energy neutral hedges meaning the total amount of 

energy is always fully hedged. Speculation is not allowed. 

4.2. The effect of storability in hedging of commodities   

Inventories and storage play an important role in commodity derivatives. For example Yang and 

Awokuse (2003) have studied how the asset storability affects the hedging performance in 

commodity futures markets. Based on error correction model and using a bivariate GARCH 

framework, they found empirical evidence that hedging effectiveness is strong for storable but 

weak for non-storable agricultural commodities. They point out that although the hedging 

performance is poor, the economic merit of the market can be justified by the price discovery 

function of the commodity derivatives markets for non-storable commodities, which is already 

pointed out by Black (1976) as being the big benefit of the futures markets to the society. This is 

also an important aspect of electricity markets, as the derivatives markets help to estimate the 

future price of electricity and thus to plan the production in advance. This price discovery was in 

fact one of the reasons to create the electricity markets in the first place. 



 31 

 

For storable commodities like gold and oil the forward price can be though as to be a function of 

convenience yield, storage cost and spot price. Thus the forward price can be calculated using 

the basic equation (Stulz 2003): 
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where, F is the forward price, S is the spot price at time t, r is the interest rate, v is the yearly 

storage cost, γ is the convenience yield, i is the holding period in years and d is the continuously 

compounded cash payout ratio, which can be seen as dividend.  

 

As already mentioned in previous Chapter, electricity does not have convenience yield and thus a 

different approach is needed. Therefore, Geman (2005) suggests that we should not use the mind 

set used in other commodities and ad cost of carry to expected spot price, but instead we should 

think in terms of 

 

premiumRisk   priceSpot  Expected  price Forward     (4.2) 

 

However, later Borovkova and Geman (2006 and 2006b) introduced a new model being able to 

better capture the cost of carry relationship, by taking into account the seasonality in forward 

curves. They also give a method of to look at how the forward prices deviate from their expected 

prices after removing the seasonal effects in the prices, which is also used. They model forward 

curve based on average forward price and convenience yield according to equation 
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Where tF


 is the average forward price, s is seasonal component, γ is convenience yield, t is time 

and T is the delivery period of the forward contract. The average forward price is the geometric 

average and it is calculated by equation 
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where N is the number of contracts used in the calculation. For monthly contracts it should be a 

multiple of 12 to make a full year or years. The usage of the model is described in more detail in 

Chapter 5 and it is used in this study to capture the seasonality in the prices. 

 

As noted among others by Geman (2005) the lack of storage makes dynamic hedging, based on 

the Black-Scholes assumption of continuous trading in the underlying, impossible to conduct. On 

the other hand, water plants can control their output with some limits, by controlling the water 

flow and practically they have a limited possibility to store electricity in the dams. Thus there is a 

limited possibility to conduct dynamic hedging using hydro power. However, as arbitrage based 

models for dynamic hedging for stocks or other commodities are based on assumptions that the 

arbitrageur can hold the underlying asset until the expiration of the contract, it is clear that these 

models can not be applied as such. Thus a new approach is needed. 

4.3. Hedging in electricity markets 

Hedging in electricity markets differ from hedging in other commodity markets mainly because 

electricity can not be stored
4
. There are also other aspects in hedging in electricity markets which 

are covered next, some of which can be found on other markets as well. Seasonality makes the 

prices dependent on calendar month, while the poor link between spot and forward prices makes 

modelling forward prices challenging. In addition, electricity markets have volumetric risk, 

which can cause huge losses if hedging is done poorly.  

4.3.1. Seasonality due to weather conditions 

As noted already by Black (1976) there exists seasonality in agricultural spot prices while some 

other commodities like gold behave totally different. Seasonality can also be found in electricity 

prices, especially in markets driven by changing weather conditions. Lucia and Schwartz (2002) 

studied the seasonal effects in the Nordic power markets and found that seasonality is very 

                                                 

4
 For more about lack of storage please look at Chapter 3. 
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important in explaining the shape of futures prices in Nord Pool. If seasonality is ignored, it is 

likely to lead to residual autocorrelation of the order of the seasonality and thus it should be 

taken into account in modeling financial data (Brooks 2008). Borovkova and Geman (2006) 

expands the study of seasonality to forward curves and with a different approach of using the 

actual forward prices as the reference, instead of spot prices, gives a model for forward price 

curve, which is applied also in this thesis.  

4.3.2. The link between spot and forward prices is weak 

Hedging in forward markets based on spot price distributions has been studied for example by 

Bessembinder and Lemmon (2002). They discuss hedging positions based on equilibrium model, 

which is usable close to delivery of the electricity. They look at hedging against the movements 

in spot prices, while this thesis looks at hedging the movements against forwards prices. As 

discussed in Chapter 3 it is commonly known that the spot price, futures price and forward prices 

of electricity behave differently. Even huge price spikes are relatively common in spot prices, 

while not experienced in futures or forwards.  

 

It has been noted that the link between spot and futures holds for a few weeks but not for long 

time periods (Malo 2009)
5
. Thus, as the long-term forwards are not related to spot prices, a 

different approach is needed. Therefore, as this thesis looks at long-term hedging with a time 

scale of moths to years, the Borovkova’s and Geman’s approach is justified, as the model reveals 

the seasonal effect and is not dependent on spot price movements, which is also the case in our 

hedging needs. The aim in the long-term hedge under consideration in this thesis is to protect 

against movements in forward prices and not against spot prices. The protection against spot 

prices is a different part of risk management. 

4.3.3. Short term dynamic hedging in electricity markets 

Byström (2003) studied the short term dynamic hedging in Nord Pool and he concludes that 

when transaction and clearing cost are taken to account the unconditional “buy and hold” OLS 

hedge is preferred over time varying moving average and GARCH hedge ratios, although some 

                                                 

5
 Also Borovkova and Geman (2006 b) noted that the link between forwards and spot is weak. For example in their 

study with Nord Pool data the correlation on spot and nearby futures was in the range of 0.65 and -0.15. 
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gains could be achieved prior to taking these costs into account. Besides, the constant OLS hedge 

ratio resulted in lower portfolio variance. He also made hedges with longer term maturity futures 

against spot prices and he noticed
6
 that hedging performance with futures of higher than a few 

weeks maturity deteriorates compared to shorter maturity futures. 

4.3.4. Volumetric risk - deviations of price and demand from their expected 

values 

As mentioned previously, electricity can not be stored and it is a flow commodity where the time 

and amount of consumption are important (under transmission restrictions also the location of 

consumption matters). As both the amount of consumption and price are uncertain, there is risk 

related to them. A combination of price and quantity risk called the volumetric risk plays an 

important role in electricity markets. Volumetric risk is defined by Laitasalo (2004) as the 

product of the deviation of volume and price from their expected values. The situation in the 

Nordic countries is worst in cold winter days with demand and prices being on high level. If both 

are above expected, the losses for too low hedge can be dramatic.  

 

Laitasalo (2004) studied volumetric risk in Nord Pool and found out that the loss distribution is 

highly skewed, cold days having significant risks while warmer days having low.  Support to 

Laitasalo’s findings is reported by Kettunen et al (2009) who say that spot price and loads are 

correlated and the correlation is strongest on high loads. Based on simulations, Laitasalo (2004) 

suggested the use of heating degree day
7
 (HDD) swaps and options to hedge the exposure. The 

approach is also supported by Geman’s (2005) findings that heating degree days closely track the 

amount of heat used by consumers. During the conduction of Laitasalo’s study weather 

derivatives were just launched in Europe and only most standardized derivatives having some 

liquidity. Now the liquidity is quite good in US and on the Chicago Mercantile Exchange (CME) 

one can trade HDD options for months and seasons referenced by temperature in different 

locations. However, the liquidity is still a problem for using them in the Nordic countries. 

                                                 

6
 The results of the long term futures hedge is not presented in Byström (2003), he just presents the conclusion. 

7
 Heating degree day (HDD) is used in weather derivatives. It is calculated by subtracting the mean daily 

temperature from the reference temperature.  If the number is negative it is set to zero. For example, if the reference 

temperature is 15°C and the average temperature for that day is 5°C, then the HDD for that day is 15 – 5 = 10. 
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Kettunen et al (2009) are also concerned about the volumetric risk and they approach the 

optimization problem with a multistage stochastic optimization, in which they integrate the 

correlation between spot and forwards and look at forward premiums and risk preferences of the 

electricity retailer. They build a scenario tree and use simulation to optimize the portfolio of 

retail contracts. Their focus is on 6 week horizon with weekly and monthly level contracts while 

this study has long-term focus from months to many years. Their approach could be used also 

with longer-term contracts and thus be implemented in this study. However, they use spot price 

as the underlying and their approach is quite complex including many different variables. This 

thesis has a more practical approach and the method should be usable in everyday pricing of 

electricity contracts. Moreover in this thesis we are not looking at volumetric risk but instead we 

assume the demand is deterministic and thus we focus on modelling electricity prices. Therefore, 

Borovkova and Geman’s (2006) method is favoured over Kettunen et al’s. 

4.4. Modelling electricity prices 

Modelling electricity price is done to forecast future behaviour of them. With the help of models 

one can simulate the future price movements and make action decisions based on that. 

Simulation is widely used practice in calculating risk measures and suits well the needs of this 

study as it helps to quantify the risks.  

4.4.1. Modelling spot prices 

Majority of the research in electricity price modelling is focused on spot prices, which have high 

volatilities. Capturing the properties of spot prices is an extremely difficult task. There are many 

different approaches and for example Geman (2005) used mean-reversion component combined 

by jump component, which gives the possibilities for high price movements. However, the mean 

reversion in their model is very powerful in high spikes and will most likely make this spikes 

short lived, which is not optimal in modelling risk exposure to heavy frost weathers or plant 

outages, which could easily last for more than a few days. This issue can be tackled for example 

with Villaplana’s (2003) two-factor jump diffusion model, which allows the probability of jump 

that occur to be non-constant. This approach could be used if the hedging would be made against 
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spot price movements, but as mentioned above the focus of this thesis is on long-term hedging 

involving forwards and the hedging against spot prices is left out of the study. 

4.4.2. Modelling forward prices and their volatility 

There are some previous research done to model the forward prices based on underlying spot 

prices
8
, however, as the link between spot and long term forward prices is weak and as we are 

not interested in the spot prices, we are looking of modelling the forward prices based on the 

information we have in forward prices. We also want to model how the forward prices move 

together. 

 

Generalized autoregressive conditional heteroskedasticity (GARCH) model is often used in 

modelling volatilities. For example Longstaff and Wang (2004) have used GARCH(1,1) model 

in electricity markets to estimate volatilities. They are looking at day-ahead forward markets 

while our interest is on year-ahead level. Our goal was to get a model designed for long-term 

electricity forwards and modify it to fit our perhaps different data. Using models developed on 

short term electricity forwards would need a lot more modification and thus increase the 

possibility of making errors. Therefore we did not look at models developed on short-term 

electricity forwards any further. 

 

Fleten and Lemming (2003) developed a model for forward curves that is based both on market 

data and bottom-up models. They look at bid-ask spreads and combine that information with 

forecasts generated by bottom up models. The bottom up model tries to forecast future spot 

price, while we are interested in future forward prices. A more suitable approach for our needs 

was found from Borovkova and Geman’s (2006) model, which is appealing for the needs of this 

thesis as it looks at the relationships between electricity forward prices and the effect of the 

calendar expiry month. They model seasonality directly from historical forward prices and they 

replace the spot price of the model by a more robust quantity of average forward price. This suits 

well for our need as we are interested on the forward price behaviour on long term. In addition 

Borovkova and Geman (2006b) developed a method for electricity forwards to model the 

                                                 

8
 Look for example Lucia and Schwartz (2002) 
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deviations of the price curve from average seasonal pattern by using principal components
9
, 

which was of particular interest in our study as we are interested in the risk in seasonal demand.  

 

Koekebakker and Olmar (2005) constructs continuous smoothed forward curve for the Nord Pool 

electricity markets from daily futures and forward contracts. Their model was made in similar 

setting as Heat-Jarrow-Morton bond pricing model (Heat et al. 1992). Both Koekebakker and 

Olmar (2005) and Borovkova and Geman (2006b) apply principal component analysis (PCA) to 

reveal volatility structure, however, the difference is in that Koekebakker and Olmar use it on 

futures returns while Borovkova and Geman use it on actual futures prices. Also Clewlow and 

Strickland (2000, p. 143-149) have used PCA on futures returns. They model seasonality in 

forwards based on volatility in spot prices, which does not suit our needs as the relationship 

between long term electricity forwards and spot prices is not holding well
10

. Furthermore, 

Borovkova and Geman’s model is explained in a clear way, while Koekkebakker and Ollmar 

leave practically all the variables in their equations unexplained. In addition in Borovkova and 

Geman’s (2006b) model the first three principal components of de-seasoned forward curves can 

be visually interpreted as the level, slope and curvature which help to interpret the results and 

check if some fundamental errors have occurred when applying the model. 

 

Audet et al (2004) model electricity forward dynamics based on market price data. They model 

the whole price curve including also the forward and spot price relationship by using a 

parameterized model. When using their model, they noted that forwards’ correlation with the 

spot price decreases with time to maturity. Thus, for our needs this gives support for looking at 

the long-term forwards separately from spot prices. Spot and forward price relationship is needed 

for example when hedging the production of electricity. However, looking at the whole curve 

makes the model quite complicated. A model looking only at the end part of the forward curve is 

more suitable for our needs as we are not looking at the short-term forwards or spot prices at all. 

 

                                                 

9
 If you are unfamiliar with principal components please check Chapter 4.5. for how they work 

10
 See for example (Borovkova and Geman 2006b) and (Malo 2009). 
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4.4.3. Simulating future prices 

Simulation is widely used method for calculating the risk exposure using different risk measures. 

It is can be used to simulate future states of the underlying. Simulation also helps to cover for the 

Samuelson effect found in electricity forward prices. Samuelson (1965) found that volatility 

drops when maturity increases. This can be covered in the Borovkova and Geman’s model as the 

future price volatilities are based on convenience yield volatilities which depends on time to 

maturity. In this thesis we simulate mean reverting Ornstein-Uhlenbeck process to get a family 

of future forward prices and we use a simulation tool that is modified for our needs from a 

simulation tool, which was originally written by Smith (2010) and developed to work with 

Borovkova and Geman’s model. 

 

Instead of using simulation we could just look at the historical values of the prices and base our 

calculation on them. However, historical values are only one possibility for what could have 

happened. Using them as such would be similar as to driving a car by looking at the rear-view 

mirror. Simulation is also based on historical values, but these values are used to calibrate the 

simulation parameters. Simulation gives possible scenarios where the prices could be in the 

future if they behave in similar way they did in the past. Thus we could say that when we use 

simulation we expect the future to behave in similar way than past, while when using historical 

values we expect the future to be identical to the past 

4.5. Principal components analysis (PCA) 

In this section we go through how principal components analysis (PCA) works. It can be used to 

focus on the most relevant information in the data. Large number of data series can be 

compressed into smaller amount of series of principal components. It is especially useful when 

we have high correlation in the data, as then we can model the dependencies in the data with 

fever factors. We do it by replacing the original data with principal components. If we would use 

all the principal components, we could always shift between the data and principal components 

without losing any information. Basically, doing principal components analysis can be 

understood as an axes transformation of data, as the axes are transformed along eigenvectors. 

The key in using principal components is, however, that the principal components explain the 

variation in the data in decreasing order; the first component explaining most of the variation. 
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Thus we can take only a few first principal components to explain majority of the data. It 

becomes a lot easier to model a few principal components than modelling all the data series and 

their correlations. To get an understanding about what happens in PCA, first we need to cover 

some statistical and matrix calculation concepts. 

4.5.1. Statistical analysis behind PCA 

The PCA uses the basic statistics tools from mean to covariance. 

4.5.1.1. Mean 

Mean is the simplest statistical measure and it is the arithmetic average of the data. It can be 

calculated with the equation below: 
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X  is the mean, Xi is data point, and n is the number of data points. 

4.5.1.2. Standard deviation 

Standard deviation measures how far away the data points are from its mean value. It can be 

calculated with the equation below: 
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note, that the denominator is “n-1” and not “n” because we have a sample instead of whole 

population. 

4.5.1.3. Variance 

Variance is the standard deviation squared and can be calculated with equation below. 
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4.5.1.4. Covariance 

The most relevant statistical tool for the PCA is covariance which measures how much two 

variables change together. Covariance can be calculated with equation below: 
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Note, that covariance between X and X is same as variance of X. As covariance is calculated 

between two series of data, we can construct a matrix containing all the possible covariances. 

4.5.2. Matrix calculus behind PCA 

Matrix calculus needed in PCA involves eigenvectors and eigenvalues. In general when we 

multiply vectors with matrixes both the direction and the length can change. However, when we 

multiply the matrix with its eigenvector the direction of the vector does not change but the length 

of the vector do change. 

4.5.2.1. Eigenvector and eigenvalue 

So for a matrix A the eigenvector v is defined by the equation below 

 vAv        (4.9) 

where λ is a scalar (plain number). This scalar is called the eigenvalue of the eigenvector. v is an 

eigenvector of A if it satisfies the equation above for some scalar λ. An example illustrates the 

point. Let’s have a matrix  
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    (4.10) 

The solution for this characteristic polynomial are: 

6
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2

1
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
 

These are the eigenvalues of A. 
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The eigenvector corresponding to 1  can be obtained from equation (4.9) above, 

with substituting 1  

Then we would get 



























2

1

2

1
1

2-       2

2       5-

v

v

v

v
     (4.11) 

0
1-       2

2       4-

2

1


















v

v
 

This has a solution 

12 2vv   

Thus we have an eigenvector 
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1
1v  

And if we scale the length of the vector to be 1, we will get a unit eigenvector. To do this we 

divide the vector with its length. The length of the vector is 

521 22

1 l      (4.12) 

Thus we can calculate the unit eigenvector: 



















5
2

5
1

1v  

The second eigenvector can be obtained similarly by substituting 6 , then we would get 













1

2
2v  

and again similarly as for v1 we get the unit eigenvector 
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After we have now explained how principal components work, we will in next Chapter describe 

Borovkova and Gemans’ methods in more details, as well as show what modifications we made 
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to the model. We will also describe in more details how we use principal component analysis in 

this study. 
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5. Methodology and data  

The research questions of hedging cost and timing are answered by a case study of data from 

Fortum and Nord Pool. The electricity price data is obtained from Nord Pool and data containing 

customer demands is obtained from Fortum. 

 

The update cost of hedges is studied by simulating forward price combinations and then 

calculating the cost for the adjustments with different seasonal demand. The cost is calculated by 

comparing the amount of money needed for updating the hedges to the amount of money needed 

for buying the original hedge. The timing of hedging is also studied by changing the point when 

the hedge is updated. The comparison is done between early, middle and late update. 

5.1. Data sources 

The real market data from Nord Pool consists of daily end prices in yearly, quarterly and 

monthly forwards from years 2006 to 2009. The quoted periods thus include 2006 to 2014 as the 

most far away yearly forward is available for delivery in five years in the future. The start date 

was chosen to be 2006 as the first quarter products were quoted for quarter 1 in 2006. Customer 

demand data is obtained from Fortum and it contains the intra-year monthly distribution of user 

group demand. The actual results of cost of different Fortum’s customers are not shown in this 

thesis for obvious reasons, but instead the analysis is done using a few artificial customers’ user 

demand data as they illustrate the point in a similar way. 

5.2. Seasonal premium in electricity forward prices 

Borovkova and Geman (2006) developed a method for estimating the seasonal premium in 

electricity forward prices. We call the premium as seasonal components. This means that prices 

are driven by seasonal effects such as weather and the goal of Borovkova and Geman’s (2006) 

method is to capture the seasonal premiums. The seasonal components are calculated compared 

to a geometric average of monthly forward prices. The average forward price should be 

calculated over a period of 12 months to cover the seasonal component. In this way we have an 

underlying time period that is not seasonal as a comparison point. Removing seasonality out of 

the date makes it easier to analyse it and we can for example find trends in the data that we could 
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not find if seasonality was left in the data. As there are only forwards available for next 6 months 

in Nord Pool the calculation needs some modification. Luckily Borovkova and Geman (2006) 

also developed a method for these situations and they show it in the appendix of their article 

(2006). This method was used also in this thesis. 

 

First we need to estimate the difference between all the possible combinations of monthly prices. 

We do this for the entire data set. For those months that are missing we will use nearest quarterly 

price as the reference. We get a following matrix of the estimates.      
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Next we will sum up the columns of the above matrix. The sums are denoted by Σi where the i 

refers to the column.  

 

     )12()1(...)3()1()2()1(1 ssssss     (5.1) 

 

Then we use the restriction that seasonal components sum up to zero 

 





12

1

0)(
M

Ms       (5.2) 

 

and we can calculate the monthly components. 
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Thus we get 

12
)1( 1s       (5.4) 

 

And similarly for s(2) we get
11
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and thus we get 
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

      (5.6) 

 

This process is repeated for the rest of the seasonal components to get all the 12 monthly 

components. 

 

An alternative approach that was also tested was to calculate seasonal components for shift from 

yearly forward to quarter and then from quarter to month. The logic behind it is that quarterly 

parameters are more robust than monthly as they are available for 8 to 11 consecutive quarters as 

the volatility is lowest for forwards with more distant maturity. With quarterly forwards we can 

get maturities further away in the future than with monthly forwards. The further away in the 

future the maturity is the better the price reflects the pure seasonal component as the short-term 

effects have less influence on them. On the other hand the liquidity of forwards with distant 

maturity is lower than for closer maturity. As the goal was to get as reliable estimations of 

seasonal components as possible we used different data selections to determine them and the one 

with lowest standard deviation was chosen. We used prices for the first and last quoted year as 

well as quarters that are 2 to 5, 3 to 6, 4 to 7 and 5 to 8 quarters till maturity. The closest quarter 

                                                 

11
 Please note, that If you compare these equations to the equations Borovkova and Geman (2006) there are some 

differences in the signs inside the equations, as they had made some typing errors. The equations are corrected to 

this thesis. 
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was left out of the study as it can be biased by spot price behaviour. We calculated average 

quarter components and their standard deviations for each of the choice of data. The standard 

deviation was highest for 2 to 5 quarters to maturity and lowest for the last traded quarters. Thus 

we used the most distant quarters available to determine the quarterly components. In accordance 

to Borovkova and Geman’s (2006) model we constructed a synthetic yearly forward which price 

is the day geometric average price of the four quarter prices. The average price is calculated with 

the equation  
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
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
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1

),(ln
1
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Where T is the delivery quarter. 

 

Now we have the average price and we can calculate the seasonal quarter components for the 

given days data. Seasonal component is then calculated with equation 

 

)(ln)(ln)( tFtFts QQ



      (5.8) 

 

and the weight, which means the weighting factor for re-seasoning the yearly forward curve, is 

simply 

 

Qts

Q ew
)(

       (5.9) 

 

In this alternative approach the monthly components is calculated for the three consecutive 

months leaving out the first month so that it forms a quarter of a year (January to March, April to 

June, July to September or October to December). This is compared against available quarter 

data and the components can be added to the quarter component calculated previously. This 

procedure is repeated for the whole data to cover the seasonal premia parameters. Leaving out 

the first month is justified by the fact that it can be biased of the spot market data especially in 

times close to the end of the month i.e. times close to the beginning of the exercision period of 

that forward. 



 47 

 

The seasonal components calculated with these different approaches are shown in Chapter 6.1. 

For this thesis we chose to use the seasonal components calculated with the method in the 

appendix of Borovkova and Geman (2006) because the components calculated this way gave 

most sensible relationship between the components. 

5.3. Smoothing the data 

Borovkova and Geman’s (2006) model was written for commodities and especially commodities 

having delivery periods with constant time to maturity. As electricity forwards have maturities 

tied to calendar months and quarters, we smoothed the data to have constant maturities. By doing 

this we can apply the Borovkova and Geman’s (2006) method to our data. We used the 

observation date for smoothing and assumed linear dependency of two closest de-seasoned 

forwards. An example illustrates the point. Let’s assume the observation date is June 9 2006. 

Then we can calculate the de-seasoned monthly forwards for months 1 to 5 in the future. So the 

forward for time period of July 9 to August 9 would then be 

 

2006August 2006July 9   9 F
31

9
  F

31

931



AugusttoJulyF    (5.10) 

 

where F is forward price. The same is done for the other months and quarters as well. As a result 

we have we managed to get rid of spikes between changing of contracts and have a smooth de-

seasoned forward curve, but on the set back we have one month and one quarter less for data 

analysis. This loss of data is not a major problem as forwards with high maturity has poorer 

liquidity and they are not used that much in practice anyway. So for the data analysis we got then 

data for the next five months and next seven quarters. 

5.4. Constructing the forward curve 

The traded electricity forwards include monthly prices for only next six months. When looking 

further in the future we have only quarterly or yearly prices available. By using the seasonality 

calculated with Borovkova and Geman’s (2006) method, the information in the quarterly and 

yearly prices can be used to estimate the forward prices on monthly interval. In this approach, the 
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forward price curve is constructed using the seasonal components and is based on the actual 

forward prices. As a result we get a forward curve on monthly level, which is not directly 

available in the market. 

 

The forward curve is constructed on monthly level using quarterly and yearly forwards. The idea 

is to use seasonal premiums / seasonal components to de-season the forward curve and then by 

assuming liner trend in de-seasoned prices we can calculate missing monthly values on de-

seasonal prices. After having a complete de-seasoned curve on monthly level the seasonal 

components are added back to get a whole forward curve for up to 5 years. An example 

illustrates how it can be done. 

 

First we will de-season all the quoted prices. We do it by dividing the quoted price with the 

seasonal weight of that price. For example if we have a price for Q3 in 2011 that is 42.6 € / 

MWh. Then we get the de-seasoned price by dividing the price with the seasonal weight 
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    (5.11) 

 

Where P is the de-seasoned price, F is the forward price and s is the seasonal component. This 

process is then repeated for all the quoted monthly and quarterly prices.  

 

After de-seasoning all the prices we set directly the de-seasoned six quoted monthly prices for 

the first six months. Then for the following months we assign the de-seasoned quoted quarterly 

forward to the middle of the forward. Thus for February we assign the de-seasoned price of Q1, 

for May Q2, for August Q3 and for November Q4. Then for the missing values we assume a 

linear trend. So for example de-seasoned price for January is 

 

FebNovJan PPP
3
2

3
1       (5.12) 

 

This is repeated for all the contracts that are quoted in quarterly level. Next we continue on 

yearly level.  
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On yearly level the first step is to estiamte the price for the year after the yearly quotations end. 

We do it by assuming a linear trend for the last year. So the price for the year after the last traded 

year is assumed to be 
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Then for yearly prices we also assume a liner trend inside the years. We assign the quoted yearly 

price for middle of the year, so that we assign the (de-seasoned) yearly price for June. The prices 

for other months are a weighted average of the two closest yearly prices. So for example the 

price for March 2014 is 

 

201412
9

201312
3

2014 PPPMarch      (5.14) 

 

As a result we have a de-seasoned forward curve on monthly level up to 5 years. Then we add 

the seasonal components back by multiplying the de-seasoned price with the seasonal weight 

 

)(Months

MonthMonth ePF       (5.15) 

 

 And as a final result we get a forward curve that contains only monthly prices. 

5.5. Comparing different timing of updating the hedges 

In real life the needed amount to hedge changes constantly as the amount of electricity sold 

changes and the hedges are updated according to these changes daily. However, as the loads and 

contracts with customers are assumed to be constant for the whole period there is no need to for 

dynamic hedging with further updating the contracts after they are updated to shorter maturity 

forwards. In addition as the case company is not allowed to take speculative positions in the 

derivatives markets and as they should always have an energy neutral hedge, meaning they have 

fully hedged the demand on yearly level, we do not look at dynamic hedging in this study. The 
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point of interest is the time point when the hedge is updated and the updating is done only once 

from year to quarter and from quarter to month for each customer as we are after the update as 

fully hedged as possible. 

 

The update timing that is compared includes early update, late update and updating in the 

middle. Early update means the portfolio is updated as soon as possible after the shorter maturity 

forwards become available. Late update means the long-term hedges are updated with shorter 

term hedges close to delivery period. Finally, middle is in between of early and late timing. The 

update time is tested with simulated data to cover for the most optimal time point.  

5.6. Principal component analysis 

Originally we used the convenience yield approach of Borovkova and Geman (2006) first paper 

to model the volatility, but the convenience yield volatility matrix did not have an inverse matrix 

as there was high correlation between the price series. Therefore we had to abandon that 

approach. As mentioned earlier, Borovkova and Geman wrote a second article that is focused 

solely on electricity forwards (Borovkova and Geman 2006b). They state that principal 

components analysis is particularly well suited for analysing the deviation of de-seasoned 

forward curve from its flat shape. After taking out the seasonal component principal component 

analysis can be applied. The idea in using them is to transform the data to a few axes which 

makes it easier to analyse. Instead of 12 data series
12

 we can now look at fewer ones. These fever 

series are able to explain majority of the data as well as the correlations between the original 

series. 

 

Principal components transform the date to different axes according to the eigenvector loadings. 

When the eigenvector loadings are calculated with some mathematical software we can construct 

the original data from the principal components and the principal components from the data. An 

example is used to illustrate the point. Let’s say we wish to calculate the first principal 

component, and then we get 

 

                                                 

12
 The 12 data series consists of 5 monthly and 7 quaterly data series. 
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Q7loading Q7 1M2loading M2 1 M1loading M1 11 F *  PC    F * PC F * PC PC    (5.16) 

 

where PC is principal component, PCloading is the corresponding eigenvector loading connecting 

the forward prices to a particular principal components and F is forward price. When knowing 

the principal components we can get the price back by doing the previous process backwards we 

get 

 

12loading 12M12loading 2M1 1loading M1 1M1 PC *  PC    PC * PC PC* PCF   (5.17) 

 

where PCloading is the corresponding eigenvector loading connecting the principal components to 

a particular forward price. 

 

Borovkova and Geman (2006b) see the three first principal components as representatives of 

level, slope and curvature. When comparing the average forward price and the first principal 

component we can indeed see strong connection between them as illustrated in Figure 9. As the 

first principal component captures the average price, it can be used in modelling the first state 

variable in Borovkova and Geman’s model, other principal components explaining the rest of the 

volatility. In this way we can model the movement of the principal components. As a rule of 

thumb we should use principal components up to an eigenvalue of 1. As Borovkova and Geman 

(2006b) used three first components we also used the first three principal components although 

the third one has an eigenvalue of less than 1. The rest 9 explain only little of the data and these 

components were summed to a level factor explaining the difference between the historical data 

series and the one constructed from principal components. These level components are shown in 

Chapter 6. 
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Scaled values of average price and PC 1
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Figure 9 First principal component and average forward price scaled to have maximum value of 1. 

 

The original Borovkova and Geman’s (2006) approach modelled convenience yield as mean 

reverting process with a mean of zero. We developed this further using Borovkova and Geman’s 

(2006b) second paper to more realistically capture the relationship between the prices. We 

applied principal components to convenience yield modelling and used two sources of 

uncertainty to model it, one for each principal component. The three first principal components 

can be seen as level, slope and curvature. In accordance to Borovkova and Geman’s method we 

can model the principal components as mean reverting process.  

 

5.7. Simulating future states of forward prices 

To simulate future forward prices we first need to simulate the movements of principal 

components, which is done with Matlab. We will then later transform the simulated principal 

components to forward prices. We did the simulating by using a code written by Smith (2010) 

who is a PhD student under the supervision of Geman, who is the co-author of the two 
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Borovkova and Geman papers. Smith wrote his code to be applied especially to commodities 

markets. Smith (2010) wrote a simple code to model Ornstein Uhlenbeck process, which is a 

basic mean reverting process. The code is given in Appendix. It models the mean reverting 

process S given in equation 

 

tdWdtSds   )(      (5.19) 

 

where s is the variable, δ is the speed of mean reversion, μ is the long run mean, σ is the 

volatility and Wt is Brownian motion, so that )0(~ dtNdWt . By using discrete time steps we 

get the equation for simulation 

 

tttt dWtSSS    )( 11     (5.20) 

 

To be able to calculate the cost of updating the hedges we simulated the three first principal 

components using 100 repetitions. In this way we got 100 series of 4 year data of principal 

components. Next we transformed these series back to forward price series using the eigenvector 

loadings. Then we added the seasonal components back and got daily price data on 4 year time 

periods. As we had 100 simulations containing 4 years of data we used 400 possible states of the 

forward prices in the update points. As it takes time to update a whole portfolio of forwards we 

used five day average price around the starting date of each month to update the hedges. In this 

way we got the seasonality to match calendar seasonality
13

.  

 

Next step is to calculate the money flow for updating the original hedge. An example will 

illustrate the point. Let’s say we have a forward price for year 2015 that is 45.00 €. The customer 

demand on monthly level in MWh is given in Table 1 below. The total demand is thus 1105 

MWh. 

                                                 

13
 Pleas recall that we smoothed the forward curves to get rid of the change in contracts. Now we want to get back to 

actual contracts. When we are close to the end of month then we are also close to having the actual contract in the 

smoothed data. We could alternatively do the smoothing in opposite direction to get contracts matching calendar  

months, but then we would lose again the information of one month and one quarter. 
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Table 1 Example customer demand in MWh for each month. 

  Demand  (Unit) 

Jan 110 MWh 

Feb 100 MWh 

Mar 105 MWh 

Apr 80 MWh 

May 70 MWh 

Jun 70 MWh 

Jul 80 MWh 

Aug 90 MWh 

Sep 95 MWh 

Oct 100 MWh 

Nov 100 MWh 

Dec 105 MWh 

Total 1105 MWh 

 

So for making an energy neutral hedge, meaning the demand is hedged on yearly level for the 

average demand we have an initial money flow in the hedge of  

 

€ 49725   45.00 MWh  1105
MWh

€      (5.21) 

 

Then we will use the 400 simulated forward price combinations to calculate the update cost. 

Again an example illustrates the point.  

 

Let’s take one simulated case. We would have the forward prices simulated shown in Table 2. 

We are now interested in the spreads between months inside one quarter and the spreads between 

the quarters. Please note that only the prices inside one quarter are taken from same simulated 

state of prices. By this we mean that using the simulated data the prices for Jan, Feb and Mar are 

taken 3 months before prices for Apr, May and Jun. The reason for this is that the actual update 

also incurs with same interval. We do not have the prices simultaneously available for all the 

months. Next we will calculate how much energy we need in each quarter and compare it the 

how much energy we have bought with the original hedge for each quarter. In this example it is 

done in Table 3. For example, quarter one we have bought with the yearly hedge 272 MWh 
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when we actually need 315 MWh. Thus we are short of 43 MWh in quarter 1. On the other hand 

we have bought too much energy for quarter 2 and we need to sell 55 MWh in quarter 2. 
14

 

Table 2 Example of simulated forward prices. 

Time period Jan Feb Mar Apr May Jun Jul Aug 

Price 57,53 € 56,87 € 53,84 € 40,39 € 39,40 € 39,45 € 40,40 € 42,23 € 

Time period Sep Oct Nov Dec Q1 Q2 Q3 Q4 

Price 43,60 € 42,48 € 45,86 € 48,14 € 54,15 € 45,71 € 44,97 € 52,54 € 

 

Table 3 Example of energy needed compared to what is bought in the original contract. 

Quarter Need [MWh] Bought originally [MWh] Difference [MWh] 

Q1 315 272 43 

Q2 220 275 -55 

Q3 265 279 -14 

Q4 305 279 26 

 

When we next multiply the difference between bought MWh and needed MWh with the 

simulated electricity prices we get the money flow of the update of the hedge. In this case we get 

 

€550

52.54MWh2644.97MWh14

45.7155MWh-  54.15 43MWh 

MWh
€

MWh
€

MWh
€

MWh
€


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

    (5.22) 

 

Thus we would have to pay 550 € for updating the yearly contract to quarterly contracts so that 

we would be fully hedged. This equals to 1.11 % of the cost of original hedge. Next we would 

calculate the cost of updating the quarters to months in a similar way and as a result we would 

get a cost for the total update from year to month. In this example it would be 62 € as shown in  

 

Table 4. The total cost would be 612 € or 1.23 % compared to original money flow for making 

the hedge. 

 

                                                 

14
 Note that the amount of electricity bought for each quarter is not equal as the numbers of days in quarters are not 

equal. We have more days in quarter 4 than quarter 1 and thus we have more MWh in quarter 4 than quarter 1. 

Please recall that the original hedge is done using a forward with constant demand. 
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Table 4 example of update costs from quarter to month. Positive numbers in Money flow means you have to 

buy a forward for that month and negative numbers means you have to sell a forward for that month.  

 Month Need [MWh] Bought [MWh] Difference [MWh] Price [€] Money flow [€] 

Jan 110 109 1 57,53 € 83 € 

Feb 100 98 2 56,87 € 111 € 

Mar 105 108 -3 53,84 € -183 € 

Apr 80 73 7 40,39 € 302 € 

May 70 75 -5 39,40 € -195 € 

Jun 70 73 -3 39,45 € -100 € 

Jul 80 89 -9 40,40 € -375 € 

Aug 90 89 1 42,23 € 30 € 

Sep 95 86 9 43,60 € 374 € 

Oct 100 103 -3 42,48 € -122 € 

Nov 100 99 1 45,86 € 27 € 

Dec 105 103 2 48,14 € 110 € 

Total 1105 1105   62 € 

 

 

This same procedure is repeated 400 times to get a simulated distribution of the update costs. In 

this case we would get that the average update cost would be 1.01 % with a standard deviation of 

0.22 %. This can then be used to price the risk for example by giving a price of cost + margin 

one standard deviation. This total margin would then be added to the forward price curve that is 

calculated previously in Section 5.4. For example it can be added evenly on all the months. As a 

result we have a customer specific forward price for year 2015. The same process is repeated for 

other years as well with a difference that for those years when we have quarterly forwards 

available we would use the cost of updating from quarters to months instead of years to months. 

In addition for the next 6 months we would use directly the quoted monthly prices as they are 

already available in the market. As a final result we will get a customer specific forward price 

that includes the cost of update plus a risk component of the update cost. 

 

5.8. Comparing simulated cost to historical costs 

To validate the simulated costs we compared to simulated update cost to update costs calculated 

from historical prices. We used the data set of 2006 to 2009 for the historical cost as well. We 

calculated the money flow in historical update and compared it to the money flow of the yearly 

hedge as we did with the simulated cases. We used the five customer demands shown in Table 5 
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for the comparison The costs are roughly on the same level for both cases, while the simulated 

cost is a bit lower. Results are shown in Chapter 6.7. 

 

Table 6 Customer monthly demands (=loads) used in comparing the simulated and historical update costs. 

We compared 5 customers with different seasonal demands. Note that the Totally flat demand is not constant 

in MWh, because there are different amount of hours in each month. 

 Demand for different customers on Monthly level that were used in this study 

 Month 
Counter cyclical 
demand [MWh] 

Totally flat 
demand 
[MWh] 

Close to flat 
demand [MWh] 

Cyclical demand 
[MWh] 

Cyclical 
demand 2 
[MWh] 

Jan 80 744 105 370 220 

Feb 70 672 100 380 210 

Mar 80 743 100 300 230 

Apr 80 720 90 200 150 

May 70 744 95 170 117 

Jun 130 720 90 160 86 

Jul 120 744 90 130 73 

Aug 130 744 95 180 84 

Sep 95 720 95 250 115 

Oct 90 745 100 300 166 

Nov 80 720 100 310 205 

Dec 70 744 105 350 232 

 

For further validating our model we also compared the spreads in historical prices and simulated 

prices. We calculated the average spreads for them both and in addition compared the spreads 

calculated from seasonal components that are behind the simulation. Results are shown in details 

in Chapter 6.7. 
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6. Analysis and results 

In this Chapter we will show the results of modelling with Borovkova and Geman’s methods. 

The seasonal factors or components represent the expected premium that particular month or 

quarter has compared to average price. We simulated how the different time point of updating 

the long-term hedges to shorter-term hedges influences the cost. We notice that the result of 

increasing volatility in costs with time to maturity decreasing is indeed in line with Samuelson’s 

effect. When comparing the cost for different customer demand the simulation gives reasonable 

results as the costs are higher for customers who have more seasonal demand. 

6.1. Seasonal components for months and quarters 

The seasonal components used in Borovkova and Geman’s model represent weight factors for 

each quarter and season. They were calculated with Nord Pool closing price data from 2006 to 

2009. The monthly components calculated with the method in appendix of Borokova and Geman 

(2006) are shown in Table 7. Even though the standard deviation is high, the results seem to be 

reasonable e as the changes in the components follow the changes in average temperature 

differences of the months. This can be seen from Figure 10 which plots the long-term average 

temperatures for Stockholm and inversion of seasonal components. To ease the comparison they 

are both scaled to have a maximum of 1 and minimum of zero. The Stockholm temperatures 

were chosen because Stockholm lies fairly in the middle of the Nord Pool area. We can see that 

the series follow each other, but there are some gaps in April and December, in which the 

inverted seasonal component is higher than expected by the temperature, thus the actual seasonal 

component in these months is lower than expected solely by the Stockholm average temperature. 

In August the difference is other way around as the seasonal component is higher than expected 

by average temperature. The point of this comparison was not to explain the seasonal 

components purely by the temperature in Stockholm, it was more to just illustrate that the main 

driver behind the seasonal behaviour in electricity prices is the temperature. There are many 

other things also affecting the seasonal components, like the expected rain falls in Norway. 
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Table 7 Monthly components (premium) in Nord Pool calculated with Borovkova and Geman’s (2006) 

method. The components are in logarithmic form and thus also the weight factor is presented, which can be 

used directly to the prices. 

Month 
Seasonal 
component 

Standard 
deviation Median 

Weight 
factor 

Jan 0,146 0,089 0,119 1,157 

Feb 0,134 0,089 0,107 1,143 

Mar 0,084 0,104 0,067 1,087 

Apr -0,024 0,104 -0,008 0,976 

May -0,070 0,109 -0,070 0,932 

Jun -0,087 0,118 -0,072 0,916 

Jul -0,147 0,129 -0,115 0,863 

Aug -0,102 0,110 -0,073 0,903 

Sep -0,074 0,107 -0,051 0,929 

Oct 0,005 0,115 0,024 1,005 

Nov 0,054 0,075 0,049 1,056 

Dec 0,082 0,067 0,071 1,085 
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Figure 10 Scaled average temperatures in Stockholm and scaled inverted seasonal components. Temperature 

data is provided by Foreca (MSN Weather, 2010). 

 

Table 8 shows the seasonal quarterly components and their standard deviation while Table 9 

shows the monthly components and their standard deviations calculated from the alternative 
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approach described in Chapter 5. As can be seen from the results the standard deviation is 

relatively high especially for monthly components. 

 

Table 8 Quarterly seasonal components in Nord Pool calculated with Borokova and Geman’s (2006) model. 

Calculated using quarters to 
maturity in 

Calendar quarters and the corresponding components 

Q1 Q2 Q3 Q4 

Q2 to Q5 Component 0,118 -0,058 -0,094 0,034 

  Standard deviation 0,061 0,04 0,067 0,051 

        

Q3 to Q6 Component 0,109 -0,062 -0,086 0,039 

  Standard deviation 0,032 0,033 0,031 0,032 

        

Q4 to Q7 Component 0,111 -0,065 -0,091 0,046 

  Standard deviation 0,025 0,019 0,029 0,022 

        

Q5 to Q8 Component 0,111 -0,065 -0,094 0,048 

  Standard deviation 0,029 0,019 0,028 0,017 

        

Last 4 Q Component 0,111 -0,067 -0,094 0,05 

  Standard deviation 0,024 0,019 0,025 0,024 

 

Table 9 Monthly seasonal components in Nord Pool calculated for shift from quarterly forwards to monthly 

forwards. 

Month 
Seasonal 
component 

Standard 
deviation 

January 0,025 0,013 

February 0,033 0,009 

March -0,055 0,018 

April 0,036 0,027 

May -0,018 0,014 

June -0,018 0,021 

July -0,105 0,056 

August 0,017 0,010 

September 0,091 0,057 

October -0,085 0,070 

November 0,026 0,018 

December 0,060 0,062 

 

When the results in Tables 5 and 6 are combined one can make monthly components for shift 

from yearly forwards to monthly forwards via quarterly forwards. These are simply sum of 

monthly and quarterly components and the results are shown in Table 10. The results seem to be 

otherwise reasonable, but the component for September is higher than for October. This is 

probably due to the nature of the data which has some uncertainty as the standard deviations are 



 61 

high. For this reason we decided not to use the alternative approach and instead we used 

quarterly components calculated with Borovkova and Geman’s (2006) original method and 

monthly components using the method in the appendix of Borovkova and Geman (2006). 

 

Table 10 Monthly components in Nord Pool calculated for shift from yearly to quarterly and then to monthly 

forwards.  

Month 
Seasonal 
component Weight 

January 0,136 1,146 

February 0,145 1,155 

March 0,057 1,058 

April -0,030 0,970 

May -0,084 0,919 

June -0,084 0,919 

July -0,199 0,820 

August -0,077 0,926 

September -0,003 0,997 

October -0,034 0,966 

November 0,076 1,079 

December 0,111 1,117 

 

6.2. Average forward price 

In Borovkova and Geman’s (2006) model the average forward price is the first state variable and 

it is calculated over a year or multiple years of time. As in Nord Pool there are only monthly 

forwards available for next 6 months we used the 3 consecutive months starting from the first 

month of the next quarter. If next quarter starts in next month then we will take the following 

quarter as a starting point. For the following three quarters we used quarterly forwards and thus 

we have a forward price for a year constructed from 3 months and 3 quarters. The year starts 

from 2 to 4 months from the quoting date of the data. By this choice we can omit the closest 

month and quarter as they most volatile and highly influenced by current state of power system 

balance. 

 

The Figure 11 illustrates the calculated average forward price. There is a huge fall in the price in 

April – May in 2006 when the price fell by approximately 15 € in a few days. Also in August 

there is a deep short lived spike upwards in the price. The average of the price for the whole 

period was 45.3 € and standard deviation 8.9 €. As mentioned in Chapter 5 and illustrated in 
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Figure 9 the principal component follows closely the average price and can be used as a 

representative of it. 

Average forward price for one year ahead starting in 2 to 4 months
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Figure 11 Average forward price for next year. The year starts in 2 to 4 months. 

6.3. Principal components of forward curve 

Principal components were calculated from de-seasoned forward curves and it was done with 

EViews. Results are shown in Table 11 to Table 13. As we can see the first principal components 

explains 84 % of the volatility while three first components combined explain 99 % of it. As a 

rule of thumb one should use the principal components that have an eigenvalue of 1. We decided 

to include also the principal component 3 as it is also used in the Borovkova and Gemans 

(2006b) paper. 
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Table 11 Eigenvalues of principal components. 

    Cumulative Cumulative 

Number Value    Difference Proportion Value Proportion 

1 10,02 8,22 0,84 10,02 0,84 

2 1,80 1,71 0,15 11,82 0,99 

3 0,09 0,06 0,01 11,91 0,99 

4 0,03 0,01 0,00 11,94 0,99 

5 0,02 0,01 0,00 11,96 1,00 

6 0,01 0,01 0,00 11,97 1,00 

7 0,01 0,00 0,00 11,98 1,00 

8 0,01 0,00 0,00 11,99 1,00 

9 0,00 0,00 0,00 12,00 1,00 

10 0,00 0,00 0,00 12,00 1,00 

11 0,00 0,00 0,00 12,00 1,00 

12 0,00 ---     0,00 12,00 1,00 

 

Table 12 Eigenvector loadings of principal components. PC 1 to PC 12 refers to principal components 1 to 12. 

M1 means forward that starts in one month and lasts for, M2 starts in 2 months etc. Similarly Q5 means a 

forward whose delivery period is after 5 quarters and the delivery period is one quarter. 

 

Variable PC 1   PC 2   PC 3   PC 4   PC 5   PC 6   PC 7   PC 8   PC 9   PC 10   PC 11   PC 12   

M1 0,26 -0,39 0,59 -0,02 0,14 -0,38 0,16 0,38 -0,17 0,24 0,06 0,11 

M2 0,28 -0,34 0,31 0,14 -0,04 -0,01 0,05 -0,54 0,46 -0,42 -0,10 0,01 

M3 0,29 -0,28 -0,02 0,22 -0,14 0,37 -0,50 -0,23 -0,42 0,22 0,17 0,27 

M4 0,30 -0,21 -0,27 0,06 0,00 0,35 -0,09 0,65 0,44 -0,16 -0,04 0,15 

M5 0,31 -0,15 -0,43 -0,18 0,25 0,06 0,59 -0,27 0,03 0,34 0,18 0,19 

Q1 0,30 -0,22 -0,14 -0,04 0,02 0,08 -0,02 0,02 -0,19 0,05 -0,18 -0,87 

Q2 0,31 0,00 -0,28 -0,42 -0,08 -0,39 -0,12 0,02 -0,36 -0,50 -0,21 0,23 

Q3 0,30 0,21 -0,08 -0,10 -0,55 -0,39 -0,20 -0,03 0,35 0,29 0,38 -0,11 

Q4 0,28 0,32 -0,03 0,56 -0,28 -0,07 0,28 0,03 -0,12 0,12 -0,54 0,13 

Q5 0,28 0,35 -0,05 0,44 0,49 -0,16 -0,06 0,04 -0,09 -0,29 0,48 -0,11 

Q6 0,27 0,36 0,16 -0,29 0,47 0,05 -0,38 -0,12 0,24 0,32 -0,38 0,06 

Q7 0,27 0,39 0,41 -0,33 -0,23 0,51 0,30 0,05 -0,16 -0,19 0,19 -0,04 
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Table 13 Ordinary correlations of principal components. M1 means forward that starts in one month and 

lasts for, M2 starts in 2 months etc. Similarly Q5 means a forward whose delivery period is after 5 quarters 

and the delivery period is one quarter. 

  M1 M2 M3 M4 M5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

M1 1,00            

M2 0,99 1,00           

M3 0,96 0,98 1,00          

M4 0,92 0,96 0,99 1,00         

M5 0,89 0,93 0,96 0,99 1,00        

Q1 0,94 0,97 0,99 0,99 0,99 1,00       

Q2 0,81 0,86 0,91 0,95 0,97 0,95 1,00      

Q3 0,65 0,71 0,78 0,83 0,87 0,82 0,95 1,00     

Q4 0,53 0,60 0,68 0,74 0,79 0,73 0,89 0,98 1,00    

Q5 0,49 0,56 0,65 0,71 0,77 0,70 0,87 0,96 0,99 1,00   

Q6 0,49 0,56 0,63 0,70 0,75 0,69 0,86 0,96 0,98 0,99 1,00  

Q7 0,46 0,52 0,59 0,65 0,70 0,64 0,83 0,95 0,97 0,97 0,99 1,00 

 

The level components calculated from principal components 4 to 12 to the forward prices are 

summarized to a level component given in Table 14.  

 

Table 14 The level representing the last 9 principal components. M1 means forward that starts in one month 

and lasts for, M2 starts in 2 months etc. Similarly Q5 means a forward whose delivery period is after 5 

quarters and the delivery period is one quarter. 

Forward Level 

M1 -0,01 

M2 0,01 

M3 -0,02 

M4 -0,05 

M5 -0,08 

Q1 0,03 

Q2 0,13 

Q3 0,14 

Q4 -0,03 

Q5 -0,11 

Q6 -0,02 

Q7 0,01 
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6.4. Descriptive statistics for series derived from principal 

components and real prices 

We calculated descriptive statistics from the logarithmic price series covering the next 5 months prices and 

next 7 quarters prices. We looked for mean, variance, kurtosis and skewness and the results for series 

constructed from principal components and the real series are shown  

Table 15. The statistics are quite close to each other and thus the principal components seem to 

be able to capture the properties of the data well. In addition also the series suggests that 

volatility decreases with time to maturity with is consistent with the Samuelson’s effect. 

 

Table 15 Descriptive statistics for forward curves constructed from principal components compared to real 

price data. M1 means forward that starts in one month and lasts for, M2 starts in 2 months etc. Similarly Q5 

means a forward whose delivery period is after 5 quarters and the delivery period is one quarter. Prices are 

natural logarithms of actual prices according to Borovkova and Geman’s (2006) model. 

Real prices             

  M1 M2 M3 M4 M5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Mean 3,68 3,71 3,74 3,76 3,78 3,77 3,79 3,80 3,80 3,80 3,79 3,79 

Sample Variance 0,10 0,10 0,10 0,09 0,08 0,08 0,05 0,03 0,03 0,04 0,03 0,02 

Kurtosis 
-

0,67 
-

0,72 
-

0,74 
-

0,65 
-

0,61 
-

0,67 
-

0,73 
-

0,67 
-

0,57 
-

0,16 
-

0,32 
-

0,63 

Skewness 
-

0,13 0,00 0,10 0,14 0,22 0,25 0,18 0,06 
-

0,03 
-

0,04 0,21 0,34 

             

Reconstructed real prices from principal components       

  M1 M2 M3 M4 M5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Mean 3,69 3,73 3,73 3,72 3,70 3,79 3,79 3,80 3,80 3,80 3,79 3,80 

Sample Variance 0,08 0,08 0,07 0,06 0,05 0,06 0,05 0,03 0,03 0,03 0,03 0,02 

Kurtosis 
-

0,86 
-

0,91 
-

0,96 
-

1,02 
-

1,07 
-

1,00 
-

1,03 
-

0,64 
-

0,46 
-

0,48 
-

0,22 0,08 

Skewness 0,15 0,18 0,16 0,12 0,07 0,16 0,15 0,24 0,19 0,16 0,26 0,35 

 

6.5. Cost between different update timing 

We calculated the update costs and standard deviations for different update timing. We compared 

early, middle and late update and for typical customer shown in Table 16. Based on the 

simulation we observe that middle update cost is on average highest, but one should keep in 

mind that the early prices are illiquid and buying them on large amount is not possible. When 
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taking into account the standard deviation we see that the average costs are close to each other as 

they are all inside the lowest standard deviation. So no reliable estimations can be about the cost 

level between the update timing. However, it is clear that the standard deviation of the update 

costs increases when the delivery period comes closer. 

 

Table 16 Comparing update cost with different timing for typical customer. Cost is relative to the money flow 

of buying the original yearly forward. 

  Cost St_dev 

Cost of early update relative to original hedge 1,59 % 0,24 % 

Cost of middle update relative to original hedge 1,61 % 0,28 % 

Cost of late update relative to original hedge 1,61 % 0,50 % 

 

6.6. Relative cost of update the hedges for different demands 

The pricing tool was tested with different demands and the relative cost between different 

demands is sensible. For example a counter cyclical demand like Google server farm would 

actually get discount for their electricity price relative to the real forward prices. As an example 

we have illustrated some demands and their update costs in Table 17. We see that the demands 

having high seasonality are more expensive to hedge as the updating cost is higher. 

 

Table 17 Example of simulated update costs for different demands. Demands are same as in Table 18. 

  

Counter 
cyclical 
demand 
[MWh] 

Totally flat 
demand 
[MWh] 

Close to flat 
demand [MWh] 

Cyclical 
demand 
[MWh] 

Cyclical 
demand 2 
[MWh] 

Update cost [%] -1,34 % 0,00 % 0,41 % 2,45 % 2,97 % 

Standard deviation [%] 0,43 % 0,00 % 0,13 % 0,77 % 0,88 % 

Total premium [%] -0,91 % 0,00 % 0,53 % 3,22 % 3,84 % 

 

6.7. Comparing simulated costs to historical costs 

We compared the historical and simulated costs of updating the hedges to check if the simulated 

results are reasonable. The results are shown in Table 19. We also calculated the update cots on 

year to quarter and quarter to month for comparison. These are shown in Table 20 and Table 21. 

From Table 19 we see that the costs are close to each other but the simulated costs are a bit lower 

than the historical costs. When looking closer we see that the simulated cases give slightly higher 
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cost than historical cost on year to quarter update (Table 20), while the simulated costs of update 

are lower than historical costs on quarter to month level (Table 21). Standard deviations are close 

to the same in all cases.  

 

Table 19 Comparing simulated and historical update costs for the hedges. The update cots are calculated for 

five different customer demands and they are calculated from updating the hedges from yearly level to 

monthly level. 

Simulated Counter cyclical Totally flat Close to flat Cyclical Cyclical 2 

Update cost -1,34 % 0,00 % 0,41 % 2,45 % 2,95 % 

Standard deviation 0,43 % 0,00 % 0,13 % 0,77 % 0,93 % 

            

Historical Counter cyclical Totally flat Close to flat Cyclical Cyclical 2 

Update cost -1,42 % 0,00 % 0,46 % 2,76 % 3,13 % 

Standard deviation 0,41 % 0,00 % 0,13 % 0,79 % 0,95 % 

 

Table 20 Comparing simulated and historical update costs for the hedges. The update cots are calculated for 

five different customer demands and they are calculated from updating the hedges from yearly level to 

quaterly level. 

Simulated Counter cyclical Totally flat Close to flat Cyclical Cyclical 2 

Update cost -1,10 % 0,00 % 0,39 % 2,34 % 2,70 % 

Standard deviation 0,37 % 0,00 % 0,13 % 0,76 % 0,93 % 

            

Historical Counter cyclical Totally flat Close to flat Cyclical Cyclical 2 

Update cost -1,09 % 0,00 % 0,39 % 2,33 % 2,68 % 

Standard deviation 0,39 % 0,00 % 0,13 % 0,76 % 0,93 % 

 

Table 21 Comparing simulated and historical update costs for the hedges. The update cots are calculated for 

five different customer demands and they are calculated from updating the hedges from quarterly level to 

monthly level. 

Simulated Counter cyclical Totally flat Close to flat Cyclical Cyclical 2 

Update cost -0,24 % 0,00 % 0,02 % 0,12 % 0,27 % 

Standard deviation 0,14 % 0,00 % 0,03 % 0,13 % 0,17 % 

            

Historical Counter cyclical Totally flat Close to flat Cyclical Cyclical 2 

Update cost -0,33 % 0,00 % 0,08 % 0,43 % 0,45 % 

Standard deviation 0,14 % 0,00 % 0,05 % 0,22 % 0,22 % 

 

When deeper looking into the differences, we also compared the spreads between the monthly 

and quarterly prices, by comparing the prices relative to the cheapest month and quarter. We 

compared the monthly prices inside one quarter and quarterly prices inside one year. For 

example we compared the spreads between January and March and February and March. We 
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calculated these spreads also from the seasonal components. The results are shown in Table 22 

and Table 23. We see that spreads calculated from the monthly components of Borovkova and 

Gemans method are lower than historical spreads. Interestingly, the alternative way
15

 to calculate 

seasonal components gives closer spreads to historical values. However, as the historical spreads 

as well as the alternative way of calculating the components have some illogical behaviour, we 

chose to go with the seasonal components calculated from Borovkova and Geman’s method. By 

illogical behaviour we mean that the alternative approach to calculate the seasonal components 

gives October lower price than for September, while the historical spreads give May higher price 

than June. The seasonal monthly components calculated with Borovkova and Geman’s approach 

are a bit lower but they are in reasonable relationship towards each other. When comparing the 

simulated costs and the spreads we can see that the lower cost comes from the seasonal 

components, because when we look at quarterly level both the spreads and the simulated and 

historical costs are all close to each other, regardless the way they are calculated. However, on 

the monthly level both the seasonal components and the simulated costs are lower than historical 

ones. The question then is should we rely on the seasonal components or historical spreads? We 

suggest relying on the simulated values as they are logically more plausible as explained above. 

 

Table 22 Spreads between monthly prices in historical prices and simulated prices. For comparison we also 

show the spreads in seasonal components. The spreads are calculated inside one quarter. 

Spreads [€] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Historical 3,86 4,27 0,00 1,59 -0,27 0,00 0,00 4,21 6,97 0,00 4,25 6,89 

Simulated 1,40 1,70 0,00 1,00 0,12 0,00 0,00 2,14 3,89 0,00 2,78 4,70 

Seasonal Bor & Gem 3,14 2,53 0,00 2,68 0,71 0,00 0,00 1,80 2,95 0,00 2,29 3,60 

Alternative seasonal 3,93 4,37 0,00 2,31 0,01 0,00 0,00 4,79 7,96 0,00 5,08 6,78 

 

Table 23 spreads between quarterly prices in historical prices and simulated prices. For comparison we also 

show the spreads in seasonal components. 

Spreads [€] Q1 Q2 Q3 Q4 

Historical 9,71 1,29 0,00 5,89 

Simulated 9,08 1,12 0,00 6,27 

Seasonal Bor & Gem 9,34 1,15 0,00 6,38 

 

In addition, by using the seasonal components calculated with Borovkova and Geman’s method, 

we follow the original approach of Borovkova and Geman (2006) as close as possible. If one 

                                                 

15
 For more about the alternative way please look at chapter 5.2. 
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would like to replicate the historical costs, then the alternative approach to calculate the monthly 

seasonal components could be used. But as the idea was to model plausible future scenarios and 

not to mirror the past to the future, we chose to go with the seasonal components from 

Borovkova and Geman’s (2006) method.  

 

If we look back at Chapter 6.1. we see that the standard deviation in the monthly seasonal 

components is clearly higher than for quarterly components. There is thus more uncertainty on 

monthly level than quarterly level, which is reasonable as the monthly prices are closer to 

delivery and thus more influenced by spot prices. For our model this also means that the model is 

more reliable on quarterly level than on monthly level. Luckily, as the update cost is mainly 

determined by the update from year to quarter, it is more important to get the update cost on year 

to quarter level than on quarter to month level to be correct. And when we look at the different 

ways of calculating the update cost on year to quarter, we see that they all give similar results. 

This is relaxing and we can conclude that the model is roughly accurate, but when using it one 

should keep in mind that historical update costs on monthly level have been higher than what the 

simulated costs suggest.  

 



 70 

7. Summary and conclusions 

Electricity retailer enters automatically to a short position when she sells electricity to her 

customer for a fixed price. If the electricity is sold for near future, the retailer can use forward 

with varying maturities to hedge her short position. However, in Nord Pool, the long-term 

forwards are available only for calendar years and forwards for delivery periods in calendar 

months and quarters become available only closer to delivery period. As the demand is seasonal, 

buying the yearly forward leaves part of the exposure unhedged and part of the exposure 

overhedged. The hedge needs to be balanced closer to delivery of electricity with quarterly and 

monthly forwards when they become available. This thesis studied the cost of these updates as 

well as compared different timing of making the updates. The analysis was done by simulating 

possible future states of the forward prices and then calculating the cost of updating the hedges 

based on them. 

 

We started our analysis by modelling seasonality in forward prices with a method developed by 

Borovkova and Geman (2006). The idea was to look at the relationships between electricity 

forward prices inside a time period that constructs a whole year. In this way the reference price 

does not contain seasonality. We further used the method Borovkova and Geman (2006b) 

published in their second paper to model the deviations of the price curve from flat de-seasoned 

curve using principal components analysis. By using principal components we were able to 

reduce the amount of data needed to model the forward prices, still being able to capture the 

dependencies between different prices. We modelled the movements of principal components 

and simulated future states of forward prices using these principal components. After simulating 

100 future states we collected 400 different points of updating the hedges for each contract and 

then we calculated the update cost and standard deviation for the costs.  

 

By using simulated prices we could calculate the update cost of the long-term hedges to shorter-

term hedges for different customers. The costs were compared with actual Fortum customer data 

as well as with artificial user data and they all give logical results. The cost for customer who has 

highly seasonal demand is higher than the cost for user with relatively flat demand. It also gives 

negative update cost for user who has counter cyclical demand. As the results are reasonable, this 



 71 

study gives support to using Borovkova and Geman’s method for modelling seasonality and 

electricity price behaviour. However, when comparing the simulated costs to historical costs we 

observe that simulated costs are lower on monthly level than historical ones. This difference is 

due to the seasonal components / premia, calculated with Borovkova and Geman’s (2006) 

method and using different method to calculate them could be used to get simulated costs close 

to historical ones. However, as the spreads between the monthly prices calculated with 

Borovkova and Geman’s (2006) method, gives the most plausible relationship between the prices 

of different months, we suggest using them. 

 

From the simulations we can conclude that the average cost of update is close to each other when 

comparing different timing of updating the hedges. However, the standard deviation of the 

update cost increases clearly when the updating is delayed. This is consistent with the 

Samuelson’s effect that the volatility drops with time to maturity. Thus we suggest that the 

updates should be done quite early, that is when the liquidity in the market is high enough, as 

then we can reduce the risk of increased volatility in the update costs. 

 

The de-seasoned curve calculated with Borovkova and Geman’s (2006) method works also well 

for constructing a marked to market forward curve. When the prices are de-seasoned we can look 

at the trend inside the price curve and after adding seasonality back to the curve we get a forward 

curve that is based on latest market price information and contains the seasonal information of 

historical forward curves.   

 

Further research could be done by expanding the analysis to contracts for difference. It could be 

studied if some kind of seasonality is found in them as well. In addition research in the area of 

improving the simulation is needed. The speed of simulation is currently not optimized and also 

the simulation could be improved further. One could also try to model shorter maturity forwards 

with similar methods. However, as the behaviour of electricity spot markets are quite different 

from its forward markets and as shorter maturity forwards are influenced by spot markets the 

model needs probably some modification. In addition also very long-term term structure which 

takes place inside decades and which is caused by among others shifts in the average temperature 

could be modelled when more data becomes available. 
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An interesting topic for further research would be to compare seasonality in different power 

markets and look if the drivers for it are the same. Temperature clearly affects the electricity 

price in the Nordic markets but in areas with relative stable temperature other factors could still 

cause prices to behave in seasonal way.  
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Appendix 

Matlab code that was used in simulation. The codes are based on codes written by Smith (2010) 

and modified to the needs for this thesis. 

 

function [output] = use(); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This is the user interface for testing the model 

% It is created by Matias Vitie and 
% It uses functions written by Willian Smith 
% Created March 23 2010 and latest modification made on May 7 2010 
% It writes to excel 10 simulated series of principal components 1, 2 and 3 

% The output is used for testing of the code and it is 0 until the code is 

% finished (then it gives an output on 1) 

  
%First we will read the input data directly from file 
input_data_pc1 =xlsread('Filename', 'Sheet1'); 
input_data_pc2 =xlsread('Filename', 'Sheet2'); 
input_data_pc3 =xlsread('Filename', 'Sheet3’); 
output = 0; 
%Then we will estimate the parameters from the original input data 
[mu_pc1,sigma_pc1,lambda_pc1]=CalibrateOrnsteinUhlenbeckRegress(input_data_pc

1,1/251,4); 
[mu_pc2,sigma_pc2,lambda_pc2]=CalibrateOrnsteinUhlenbeckRegress(input_data_pc

2,1/251,4); 
[mu_pc3,sigma_pc3,lambda_pc3]=CalibrateOrnsteinUhlenbeckRegress(input_data_pc

3,1/251,4); 
% next we will simulate 10 sets of data 
[s1_pc1, s1_pc2, s1_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s2_pc1, s2_pc2, s2_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s3_pc1, s3_pc2, s3_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s4_pc1, s4_pc2, s4_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s5_pc1, s5_pc2, s5_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s6_pc1, s6_pc2, s6_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s7_pc1, s7_pc2, s7_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
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[s8_pc1, s8_pc2, s8_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s9_pc1, s9_pc2, s9_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
[s10_pc1, s10_pc2, s10_pc3]  = 

SimulateOrnsteinUhlenbeckRough(mu_pc1,mu_pc1,sigma_pc1,lambda_pc1,mu_pc2,mu_p

c2,sigma_pc2,lambda_pc2,mu_pc3,mu_pc3,sigma_pc3,lambda_pc3,1/251,4); 
% % Now we will write the output to an excel file 
xlswrite('Filename output', s1_pc1,'Sheet1','A2:A1005'); 
xlswrite('Filename output', s1_pc2,'Sheet1','B2:B1005'); 
xlswrite('Filename output', s1_pc3,'Sheet1','C2:C1005'); 
xlswrite('Filename output', s2_pc1,'Sheet1','D2:D1005'); 
xlswrite('Filename output', s2_pc2,'Sheet1','E2:E1005'); 
xlswrite('Filename output', s2_pc3,'Sheet1','F2:F1005'); 
xlswrite('Filename output', s3_pc1,'Sheet1','G2:G1005'); 
xlswrite('Filename output', s3_pc2,'Sheet1','H2:H1005'); 
xlswrite('Filename output', s3_pc3,'Sheet1','I2:I1005'); 
xlswrite('Filename output', s4_pc1,'Sheet1','J2:J1005'); 
xlswrite('Filename output', s4_pc2,'Sheet1','K2:K1005'); 
xlswrite('Filename output', s4_pc3,'Sheet1','L2:L1005'); 
xlswrite('Filename output', s5_pc1,'Sheet1','M2:M1005'); 
xlswrite('Filename output', s5_pc2,'Sheet1','N2:N1005'); 
xlswrite('Filename output', s5_pc3,'Sheet1','O2:O1005'); 
xlswrite('Filename output', s6_pc1,'Sheet1','P2:P1005'); 
xlswrite('Filename output', s6_pc2,'Sheet1','Q2:Q1005'); 
xlswrite('Filename output', s6_pc3,'Sheet1','R2:R1005'); 
xlswrite('Filename output', s7_pc1,'Sheet1','S2:S1005'); 
xlswrite('Filename output', s7_pc2,'Sheet1','T2:T1005'); 
xlswrite('Filename output', s7_pc3,'Sheet1','U2:U1005'); 
xlswrite('Filename output', s8_pc1,'Sheet1','V2:V1005'); 
xlswrite('Filename output', s8_pc2,'Sheet1','W2:W1005'); 
xlswrite('Filename output', s8_pc3,'Sheet1','X2:X1005'); 
xlswrite('Filename output', s9_pc1,'Sheet1','Y2:Y1005'); 
xlswrite('Filename output', s9_pc2,'Sheet1','Z2:Z1005'); 
xlswrite('Filename output', s9_pc3,'Sheet1','AA2:AA1005'); 
xlswrite('Filename output', s10_pc1,'Sheet1','AB2:AB1005'); 
xlswrite('Filename output', s10_pc2,'Sheet1','AC2:AC1005'); 
xlswrite('Filename output', s10_pc3,'Sheet1','AD2:AD1005'); 
 

output = 1; 
end 
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function [ PC1, PC2, PC3 ] = SimulateOrnsteinUhlenbeckRough( PC10, mu, sigma, 

lambda, dPC20, muPC2, sigmaPC2, lambdaPC2, dPC30, muPC3, sigmaPC3, lambdaPC3, 

deltat, t, PC20, PC30 )  
%% Approximate Ornstein-Uhlenbeck Generator. A more accurate version is 

preferred  
%% and available : SimulateOrnsteinUhlenbeck.  
%% License  
% Copyright 2010, William Smith, CommodityModels.com . All rights reserved.  
%  
% Redistribution and use in source and binary forms, with or without 

modification, are  
% permitted provided that the following conditions are met:  
% 
% 1. Redistributions of source code must retain the above copyright notice, 

this list of  
% conditions and the following disclaimer.  
% 
% 2. Redistributions in binary form must reproduce the above copyright 

notice, this list  
% of conditions and the following disclaimer in the documentation and/or 

other materials  
% provided with the distribution.  
%  
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER, WILLIAM SMITH ``AS IS'' 

AND ANY EXPRESS 
% OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF  
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 

EVENT SHALL  
% THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL,  
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 

TO, PROCUREMENT 
% OF SUBSTITUTE GOODS ORSERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

INTERRUPTION) 
% HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

LIABILITY,  
% OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE OF THIS 
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This Code has 

been modified by Matias Vitie on May 6 2010. 

 

% Initializing the data series 
periods = floor(t / deltat);  
S = zeros(periods, 1); 

PC2 = zeros(periods, 1); 

PC3 = zeros(periods, 1); 

dPC2 = zeros(periods, 1); 

dPC3 = zeros(periods, 1); 

S(1) = S0; 

PC2(1) = PC20; 

PC3(1) = PC30; 

% Brownian motion 
dWt = sqrt(deltat) * randn(periods,1); 
dW2t = sqrt(deltat) * randn(periods,1); 
dW3t = sqrt(deltat) * randn(periods,1); 
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    for t=2:1:periods  

        dSt = lambda*(mu-S(t-1))*deltat + sigma*dWt(t); 

        S(t) = S(t-1)+dSt; 

        dPC2t = lambdaPC2*(muPC2-PC2(t-1))*deltat + sigmaPC2*dW2t(t); 

        PC2(t) = PC2(t-1)+dPC2t; 

        dPC3t = lambdaPC3*(muPC3-PC3(t-1))*deltat + sigmaPC3*dW3t(t); 

        PC3(t) = PC3(t-1)+dPC3t; 

    end 

  
% OPTIM Note :  
% Precalculating all dWt's rather than one-per loop makes this function  
% approx 50% faster. Useful for Monte-Carlo simulations.  
% OPTIM Note : I tried calculating an array of dSt's and only doing a 

cumsum() at 
% the end, but it doesn't speedup any more. 
end 
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function [ mu, sigma, lambda ] = CalibrateOrnsteinUhlenbeckRegress(S, deltat, 

bigt) 
% Calibrate an OU process by a simple discrete time regression. 
% Does not properly take the reversion into account, meaning this will  
% become inaccurate for large deltat.  
% 
% Use CalibrateOrnsteinUhlenbeckLeastSquares if deltat is small.  
%  
%% License  
% Copyright 2010, William Smith, CommodityModels.com . All rights reserved. 
%  
% Redistribution and use in source and binary forms, with or without 

modification, are  
% permitted provided that the following conditions are met: 
%  
% 1. Redistributions of source code must retain the above copyright notice, 

this list of 
% conditions and the following disclaimer. 
% 
% 2. Redistributions in binary form must reproduce the above copyright 

notice, this list  
% of conditions and the following disclaimer in the documentation and/or 

other materials 
% provided with the distribution.  
%  
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER, WILLIAM SMITH ``AS IS'' 

AND ANY EXPRESS 
% OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF  
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 

EVENT SHALL 
% THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, 
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 

TO, PROCUREMENT 
% OF SUBSTITUTE GOODS ORSERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

INTERRUPTION) 
% HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

LIABILITY,  
% OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE OF THIS 
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
% Regressions prefer row vectors to column vectors, so rearrange if  
% necessary.  
if (size(S,2) > size(S,1)) S = S'; 
end 
% Regress S(t)-S(t-1) against S(t-1).  
[ k,dummy,resid ] = regress(S(2:end)-S(1:end-1),[ ones(size(S(1:end-1))) 

S(1:end-1) ] ); 
a = k(1); 
b = k(2);  
lambda = -b/deltat; 
mu = a/lambda/deltat;  
sigma = std(resid) / sqrt(deltat); 
end 

 


