
9HSTFMG*aeadha+ 

ISBN: 978-952-60-4038-7 (pdf) 
ISBN: 978-952-60-4037-0 
ISSN-L: 1799-4934 
ISSN: 1799-4942 (pdf) 
ISSN: 1799-4934 
 
Aalto University 
Aalto University School of Economics 
Information Systems Science 
aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 13

/2
011 

Open Source Software research has 
established that OSS technology (tools and 
practices) holds potential. Based on a 
systematic literature review and a research 
engagement, this dissertation describes how 
organizations leverage OSS practices to 
produce software. It provides a narrative of 
how the term OSS travels from the writings 
of enthusiasts to the daily practices of 
organizations. The findings underline the 
importance of local renegotiation of the 
term OSS. This renegotiation provokes 
structural changes in 1) the organizations 
that adopt OSS technology, but also in 2) the 
industries these companies operate in. The 
main contribution of this doctoral 
dissertation is to promote the idea that OSS 
in organizations should be researched in a 
sensitivized manner. This requires moving 
away from too simplistic institutional 
contexts. Another contribution is to reduce 
uncertainty about the adoption of OSS 
technology and to help build a capacity to 
accept, search for, motivate and reward 
contribution. 

Juho Lindm
an 

N
ot A

ccidental R
evolutionaries: E

ssays on O
pen Source Softw

are Production and O
rganizational C

hange 
A

alto
 U

n
ive

rsity 

Information Systems Science 

Not Accidental 
Revolutionaries: 
Essays on Open 
Source Software 
Production and 
Organizational 
Change 

Juho Lindman 

DOCTORAL 
DISSERTATIONS 



Aalto University publication series 
DOCTORAL DISSERTATIONS 13/2011 

Not Accidental Revolutionaries: 
Essays on Open Source Software 
Production and Organizational Change 

Juho Lindman 

Aalto University 
School of Economics 
Department of Information and Service Economy 
Information Systems Science 



Aalto University publication series 
DOCTORAL DISSERTATIONS 13/2011 
 
© Juho Lindman 
 
ISBN 978-952-60-4038-7  (pdf) 
ISBN 978-952-60-4037-0  (printed) 
ISSN-L 1799-4934 
ISSN 1799-4942 (pdf) 
ISSN 1799-4934 (printed) 
 
Aalto Print 
Helsinki 2011 
 
Publication orders (printed book): 
juho.lindman(at)aalto.fi 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Juho Lindman 
Name of the doctoral dissertation 
Not Accidental Revolutionaries: Essays on Open Source Software and Organizational Change 
Publisher Aalto University School of Economics 
Unit Department of Information and Service Economy 
Series Aalto University publication series DOCTORAL DISSERTATIONS 0/2011 
Field of research Information Systems Science 

Abstract 
Open Source Software research has established that OSS technology (tools and practices) 
holds untapped potential. Based on a systematic literature review and a research engagement 
over a three-year period of data gathering, my dissertation describes how organizations 
leverage OSS practices to produce software. Leveraging OSS can be divided into two 
processes: 1) inbounding (moving public assets inside a company) and 2) outbounding 
(publishing) OSS. I outline the structural consequences these changes in software production 
entail and provoke. My research question is: What is the relation between local renegotiation 
of the term OSS and the organizational change provoked by OSS technology? 

 
I chose a qualitative approach to examine the case companies, informed by 
OSS research and institutional theory. The bulk of the data emerges from the industrial 

ITEA-COSI project, which focused on software commodification. I aim to provide a narrative 
of how the term OSS travels from the writings of enthusiasts to the daily work practices of 
software producing organizations. The findings underline the importance of local 
renegotiation of the term OSS. This renegotiation provokes structural changes in 1) the 
organizations that adopt OSS technology, but more widely also in 2) the industries these 
companies operate in. 

 
The main contribution of this research thesis, reported in four essays, is directed at two 

audiences: first, at academics, to promote the idea that OSS in organizations should be 
researched in a sensitivized manner. This requires moving away from too simplistic 
institutional contexts and ”the OSS business model”. Second, it is directed at practitioners, to 
reduce uncertainty about the adoption of OSS technology and to help build a capacity to 
accept, search for, motivate and reward contribution. 

Keywords Open Source, Inner Source, Outbound OSS, Inbound OSS, Organizing Vision 
ISBN (printed) 978-952-60-4037-0  ISBN (pdf) 978-952-60-4038-7 
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 
Pages 140 Location of publisher Helsinki Location of printing Helsinki Year 2011 



Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä(t) 
Juho Lindman 
Väitöskirjan nimi 
Esseitä avoimen lähdekoodin tuottamisesta organisaatioissa 
Julkaisija Aalto-yliopiston kauppakorkeakoulu 
Yksikkö Tieto- ja palvelutalouden laitos 
Sarja Aalto-yliopiston julkaisusarja VÄITÖSKIRJAT 0/2011 
Tutkimusala Tietojärjestelmätiede 

Tiivistelmä 
Organisaatiot eivät ole pystyneet hyödyntämään kansainvälisessä tutkimuskirjallisuudessa 
tunnistettua avoimen lähdekoodin potentiaalia. Tässä väitöskirjassa on kuvattu avoimen 
lähdekoodin hyödyntämistapoja organisaatioissa kolmivuotisen seurantatutkimukseen ja 
systemaattiseen kansainväliseen kirjallisuuskatsaukseen perustuen. Väitöskirja kuvaa 
ohjelmistotuotannon muutoksen ennakkoehtoja ja organisatorisia seurauksia. Tarkka 
tutkimuskysymys on: Mikä on avoimen lähdekoodin termin merkitystä koskevien paikallisten 
tulkintojen ja avoimen lähdekoodin teknologian aiheuttaman organisatorisen muutoksen 
välinen suhde? 

 
Tutkimuksessa on käytetty laadullista tutkimusotetta ja sen viitekehyksenä toimivat 

avoimen lähdekoodin tutkimus ja institutionaalinen teoria. Suurin osa datasta on kerätty 
ITEA-COSI -tutkimusprojektista, joka keskittyi ohjelmistokommodifikaatioon. Tutkimuksen 
tarkoituksena on luoda kuvaus siitä, miten avoin lähdekoodi kulkeutuu ohjelmistogurujen 
kirjoituksista ohjelmistoja tuottavien organisaatioiden jokapäiväisiin käytäntöihin. Työn 
tulokset korostavat paikallisten neuvotteluiden merkitystä. Neuvottelut koskien termin 
”avoin lähdekoodi” merkitystä aiheuttavat erilaisia muutoksia ohjelmistotuotantoon 1) niissä 
organisaatioissa, jotka hyödyntävät avointa lähdekoodia, mutta laajemmin 2) niillä 
toimialoilla, joilla nämä yritykset toimivat. 

 
Neljässä tutkimusesseessä raportoidut tulokset on suunnattu kahdelle eri yleisölle. 

Ensinnäkin tutkijoille, jotta avointa lähdekoodia tutkittaisiin paikallisten tulkintojen 
merkitys huomioiden. Tämä vaatii sensitiivisyyttä organisaatioiden erityispiirteille. On 
varottava liiallista yksinkertaistamista ja ”voittavan avoimen lähdekoodin 
liiketoimintamallin” etsimistä. Toiseksi tulokset on suunnattu asiantuntijoille vähentämään 
avoimeen lähdekoodin liiketoimintakäyttöön liittyvää epävarmuutta. Tulokset kannustavat 
asiantuntijoita etsimään, hyväksymään, motivoimaan ja palkitsemaan kontribuutioita. 

Avainsanat Avoin lähdekoodi, rajoitettu lähdekoodi, avoimen lähdekoodin julkaiseminen, 
avoimen lähdekoodin rajoittaminen, organisoiva tulevaisuuskuva 

ISBN (painettu) 978-952-60-4037-0 ISBN (pdf) 978-952-60-4038-7 
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942 
Sivumäärä 140 Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2011 



Acknowledgements 

 
This dissertation was made possible mostly by bad coffee and some cheap 
beer. Not only did they make me work harder, but also offered excuses for 
the exchanges that have given shape to this dissertation. Any venture of this 
kind  would  never  have  been  finished  without  the  help  of  so  many  
individuals along the way. The number of people who have contributed to 
the joint effort is too large to do them justice, and any attempt to do so will 
ultimately remain futile. That said, the following persons have especially 
pushed me along the way. My apologies to those who had to be omitted to 
prevent this section from growing longer than all the other sections.  

First  of  all,  I  would  like  to  thank  my  supervisor,  Professor  Matti  Rossi,  
who has patiently given me the advice and support needed to get this study 
wrapped up. Matti never made any remarks about my going to yet another 
policy meeting, geek conference or street campaign. I will miss our 
discussions on contemporary politics. Thank you, Matti.  

Professors Juhani Warsta from the University of Oulu and Pär Ågerfalk 
from the University of Uppsala were kind enough to act as external 
evaluators of my dissertation. Their critical comments and suggestions have 
improved the quality of the manuscript significantly. I would additionally 
like to thank Pär Ågerfalk for agreeing to act as my opponent. 

I have been privileged to co-author articles on OSS with many talented 
individuals: Risto Rajala, Juha-Pekka Juutilainen, Topi Uitto, Anna Paajanen, 
Pentti Marttiin and Mikko Riepula. I also want to mention Virpi Tuunainen, 
who has had an instrumental role in providing resources.  

This dissertation work was conducted in a European context. Not only 
have I benefited from doctoral consortiums held in different countries of 
Europe (ECIS2008, CEMS-NITIM2008, AIM2008, OSS2009, 
UKAIS2010), but a European research project, ITEA-COSI, is the origin of 
most of my data. Special thanks to the Norwegian co-authors in NTNU: 
Thomas Østerlie, Øyvind Hauge and Sven Ziemer.   

This dissertation would probably still remain unwritten without the warm 
welcome of the London School of Economics and Political Science ISIG-



2 
 

group, where I finished vital parts of this thesis in early 2010.  
From the Helsinki School of Economics (not Aalto ECON), I would like 

to thank some of my fellow travellers: Miira Juntumaa, Jenni Peuranto,  
Sami Relander, Johanna Bragge, Petri Hallikainen and everyone else in ISS. I 
am also grateful to several philosophers: Markus Neuvonen, Otto Bruun, 
Jenni Sahramaa, Sampsa Hario, Reima Launonen, Pasi Hario, Aura 
Kostiainen, Jouni Westling, Jukka Pajarinen, Konsta Nikkanen, Heikki 
Hyppänen, Tero Heikkinen, Alexander Volkov and others. Special thanks to 
Roni Saari for so much help with my English.  

Certain individuals have kept me in contact with not-so-virtual struggles 
and fighting the power: Jenni Uljas, Dan Koivulaakso, Riikka Taavetti, 
Jorma Pikkarainen, Jussi Saramo, Veli-Matti Kuntonen, Jenni Korkeaoja, 
Johanna Rojola, Laura Tuominen, Jukka Peltokoski and Ritva Pitkänen. In 
addition, warm thanks to the good people of Electronic Frontier Finland, 
especially Ville Oksanen, Tapani Tarvainen and Jukka Huhta.  

For funding, my thanks go to TEKES, GEBSI-doctoral school, GRAMIS 
doctoral school, Kauppakorkeakoulun tukisäätiö, Liikesivistysrahasto and 
my current employer, CKIR. 

Most important of all, I want to thank my family who make all this 
worthwhile: Riitta Ahos, Jan Lindman and Oskar Lindman. And finally 
Virpi, with love. 
 

 
 
 
 
 
 
 
 
 
 
 



3 
 

CONTENTS 

 
PART 1: OVERVIEW OF THE DISSERTATION. . . . . . . . . . . . .  6 
 
1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

 1.1 THEORETICAL POSITIONING OF THE STUDY. . . . . . . . 9
 1.1.1  Main  concepts  of  the  chosen  theoretical  perspectives  .  .  .   9
 1.1.2 Open Source Software Research  . . . . . . . . . . . . . . . . . . . . . . . 12 

 1.1.3 Organizational adoption and software production change . .  17
 1.2 RESEARCH OBJECTIVES AND DELIMITATIONS . . . . . 22
 1.3 OUTLINE OF THE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

 1.3.1 Research design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
 1.3.2 Relationships of the included articles . . . . . . . . . . . . . . . . . . .  25

   
2. METHODOLOGY AND SCOPE. . . . . . . . . . . . . . . . . . . . . . . . . .  27

 2.1 METHODOLOGIES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 2.2 DATA AND ANALYSIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

 
3. REVIEW OF RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

 3.1 ESSAY 1: CAUSES OF INBOUND OSS. . . . . . . . . . . . . . . . . 31
 3.1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

 3.1.2 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
3.2  ESSAY 2: CONSEQUENCES OF INBOUND OSS . . . . . .  33

  3.2.1 Research objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
 3.2.2 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

3.3  ESSAY 3: CAUSES OF OUTBOUND OSS. . . . . . . . . . . . . .  36 
 3.3.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
 3.3.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
 3.4  ESSAY 4: CONSEQUENCES OF OUTBOUND OSS . . . .  38
 3.4.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
 3.4.2 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
 
 



4 
 

4. DISCUSSION AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . 40

 4.1 DISCUSSION OF THE MAIN FINDINGS  . . . . . . . . . . . . .  40 
 4.1.1 Inbound OSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

 4.1.2 Outbound OSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
 4.2 CONTRIBUTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

 4.2.1 Theoretical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
 4.2.2 Managerial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 4.3 LIMITATIONS AND FURTHER RESEARCH  . . . . . . . . . .  46 

 
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   48 
 
APPENDIX I: SYSTEMATIC LITERATURE REVIEW . . . . . . . . . . . 62 
APPENDIX II: PRIMARY DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
APPENDIX III: OUTLINE OF THE THEMATIC INTERVIEWS . .64 
 
PART 2: ORIGINAL RESEARCH PAPERS . . . . . . . . . . . . . . . . . . . 67  
 
 
 
LIST OF FIGURES 

 
Figure 1. The structure of the original papers . . . . . . . . . . . . . . . . . . . . . . 26 
Figure 2. Introducing a software marketplace . . . . . . . . . . . . . . . . . . . . . . 35  
 
LIST OF TABLES 
 
Table 1. Prominent OSS research themes . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 2. Theoretical background of the dissertation  . . . . . . . . . . . . . . . . 19  
Table 3. Methodologies used in the original articles . . . . . . . . . . . . . . . . . 25  
Table 4.  Renegotiated OSS term and related changes.  .  .  .  .  .  .  .  .  .  .  .  .  33  
Table 5. Redefinitions of OSS technology (tools and processes)  . . . . . .  35  
Table 6. OSS enacted changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
 



5 
 

LIST OF ORIGINAL PAPERS 

 
Paper I: Lindman, J. (Unpublished). “From buzz-word 
to work: Open Source Software”. Submitted to an 
international journal. Earlier version of the paper has been 
published in the proceedings of UKAIS. Lindman, J. (2010). 
The Term Open Source Software Renegotiated. UKAIS, 
Oxford, UK, 23-24.3.2010. 

 
Paper II: Lindman, J., Rossi, M. and Marttiin, P. (2010). 
“Open Source Technology Changes Intra-Organizational 
Systems  Development  –  A  Tale  of  Two  Companies”.  
Proceedings of the European Conference of Information 
Systems, Pretoria, South Africa 7-9.6.2010. 

 
Paper III: Lindman, J., Juutilainen, J-P. and Rossi, M. 
(2009). Beyond the business model: Incentives for 
organizations to publish software source code. In Boldyreff, 
C., Crowston, K., Lundell, B. and Wasserman, A. (Eds.): 
Open Source Ecosystems: Diverse Communities Interacting, 
5th IFIP WG 2.13 International Conference on Open Source 
Systems,  OSS  2009,  Skövde,  Sweden,  June  3-6, 2009, 
Proceedings.  IFIP 299 Springer, ISBN 978-3-642-02031-5. 

 
Paper IV: Lindman, J. and Rajala, R. (Unpublished). 
“Lessons on the FLOSS business learned from the Open 
Source Software Pioneers”. Submitted to an international 
journal. Earlier version of the paper has been published in the 
proceedings of ICSOB2010. Lindman, J., Rajala, R. and Rossi, 
M. FLOSS-induced Changes in the Software Business: 
Insights from the pioneers. ICSOB, Jyväskylä, Finland, 
21-23.6.2010. 

 



6 
 

PART I: OVERVIEW OF THE DISSERTATION 
 

The first part of the dissertation leads into the theme of Open Source 
Software (OSS) in organizations and gives an overview of how the 
dissertation work was conducted. In the first chapter I position the study in 
the fields of OSS research and institutional theory, then outline my focus on 
the main objectives related to leveraging OSS in organizational contexts and 
finally discuss the limitations of the study. In the second chapter, I discuss 
philosophical perspectives concerning my choice of methodologies, outline 
my fieldwork and set the scope of my study. Chapter three describes the 
findings and contribution of the different papers. Chapter four summarizes 
the results and discusses their implications and further avenues for research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

1. INTRODUCTION 
 
 

As one of the most often referred to icons of the digital age, the network 
society and the new digital commons, OSS (Open Source Software) is 
inherently present in current public discourse, policy discussion and research 
(Castells  and  Himanen,  2002;  Zizek,  2009),  often  without  a  clear  
understanding of the actual software development practices and the 
hierarchical constraints imposed on the paid part of the development work 
in organizations. A plethora of anecdotal evidence suggests a 
conceptualization of Open Source either as a revolutionary paradigm shift 
(Raymond, 1999), or as nothing new. Both of these polar opposites fail to 
provide a basis for building explanations of what happens in a software 
production organization when it engages in OSS technology (tools and 
practices) and what are the consequences this creates. 

In  1999,  a  group  of  Open  Source  enthusiasts,  including  Eric  Raymond  
(1999) and Bruce Perens (1999), wanted to make Free Software business 
credible. To this end, Raymond published the book The Cathedral & the 
Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary. The 
tactic of enrolling the twin audiences of enthusiast OSS developers and 
business managers proved successful (Fitzgerald, 2006). The drawback of 
the tactic was that the term OSS, in a commercial setting, remained elusive 
and fluid (Hauge et al., 2008; Von Krogh and Von Hippel, 2006).   

As I was struggling with choosing an exact topic for my dissertation, one 
of my early respondents (the CEO of a very small start-up Open Source 
Software company) recounted in his autobiographical account about how 
his company had evolved: “Originally Linux was only a tool for us as starting 
software entrepreneurs. But later, when we got more interested about the entire philosophy, 
we joined the Free Software movement. We were reading Eric Raymond's Cathedral and 
Bazaar in 1999 and started thinking how we could build our business model and 
business case on that book.” This  quote  sent  me  thinking  of  how  an  ICT  
innovation travels from a book to something that restructures the software 



8 
 

production practices of a company, and ultimately, the structure of a whole 
industry. 

No matter how welcome, the proclaimed Open Source Software 
revolution never came to be. Instead, we observe a steady growth in the 
industrial use of OSS (Fitzgerald, 2006) and OSS-like practices for software 
production (Linden et al., 2009; Santos, 2008). Companies that struggle to 
make their software assets public obviously cannot gain their revenue from 
software  license  sales  (Sharma  et  al.,  2002;  Osterwalder  et  al.,  2005).  
However, mixing open and proprietary product strategies offers potential to 
many companies (Fosfuri et al., 2008). In addition to OSS use, companies 
have also changed their internal software production based on the lessons of 
the OSS world (Wesselius, 2008; Gurbani et al., 2010).  

During 2005-2008, I participated in a joint industry-academia research 
project on the topic of software commodification (ITEA-COSI, 2008). As 
the project reached the empirical stage, I was observing, to my growing 
unease, quite a clear gap between the scientific term OSS, the actual local 
diffusion of OSS technology and the changes it provoked in organizations. 

In my dissertation, I decided to investigate the complex interplay between 
local negotiation of the fluid term OSS and the consequent structural 
changes in selected companies. The focus of this dissertation is on 
organizational change related to the adoption of OSS technology (tools and 
practices) and on arrangements mediated by employment, or other, 
contracts. My focus is not on individual developers. 

The main contribution of this research is an attempt to clear common 
misconceptions related to OSS especially in organizational settings. I review 
the popularized writing about OSS as a specific kind of critical research 
(Lyytinen, 1992), that is, research driven by a social motive and orientated 
towards certain policy changes. The term OSS is often used as a buzz-word, 
which means that it has several meanings. This kind of rhetorical room for 
manoeuvring, or even inconsistency, in a term (Astley and Zammumoto, 
1992, p. 451) helps provide common reference points for those who want 
to actually change the software production practices of their organizations. 
However, there are two potential problems related to this fluidity of the 



9 
 

term: 1) as well as help, it may hinder organizational efforts to benefit from 
OSS tools or practices, or 2) more academically, the use of words which 
have an unclear area of application or reference phenomena is not 
scientifically accurate.  

My aim is not to try to provide the “best” business model or licensing 
model or hybrid model for leveraging OSS. More modestly, my intention is 
to point out that the situation in an organization is too complicated to be 
solved with one software production model. There are several different 
ways in which research on OSS technology can help organizations, but this 
research needs to be based on empirical investigation and has to value the 
nuances of change. 

 

1.1 THEORETICAL POSITIONING OF THE STUDY 
 

The  aim  of  my  thesis  is  to  describe  the  changes  that  occur  when  
organizations adopt Open Source Software technology in their software 
development. There are two alternative processes of adopting this 
technology: inbound and outbound OSS. Furthermore, I am interested in 
how these changes relate to the local renegotiation concerning the term 
OSS. 

The issue can and has been approached from several different theoretical 
directions. Combining previous multidisciplinary literature concerning OSS 
with a particular stream of institutional theory, this study investigates how 
the term is carried, how it enters organizations, how the local processes of 
negotiation occur and what are the structural changes not only in an 
individual company but also in a wider organizational field.  

 

1.1.1 Main concepts of the chosen theoretical perspectives 
 

The term Open Source Software was coined by Raymond (1999) and Perens 
(1999), but draws on a long stream of discussions, going back to the 
question of the nature of software as a commercial product, and including, 



10 
 

but not limited to, terms like packaged software (Xu and Brinkkemper, 
2007), free software (Stallman, 2002; Williams, 2002), FLOSS (Ghosh et al., 
2002), commercialization of software and the break towards commons-
based peer production of digital goods (Benkler, 2006; Ostrom, 1991).  The 
term  was  contested  from  the  beginning,  as  it  was  criticized  by  both  Free  
Software  enthusiasts  (Stallman,  2002;  Stallman,  2009)  and  incumbent  
software companies (Szczepanska, 2005). 

The  main  theoretical  term  is  Open  Source  Software  (OSS).  Literature  
recognizes that OSS is "not a precise term" (e.g. Gacek and Arief, 2004). I 
use it as an umbrella term to refer both to the licensing method and the 
software artefact (including the source code). I try to use the term OSS 
technology when I want to emphasize the links between tools and practices 
in software production in Raymond’s (1999) writings and in popular OSS 
projects on the internet. OSS practices are here understood as practices that 
emulate how development takes place in an OSS community (technical 
infrastructure enabling communication, reward structures, supporting work 
and knowledge transfer). OSS practices often include the use of email (and 
the archives thus available) as the primary communication tool, the 
availability of the code from a source code repository, web presence (e.g. 
Sourceforge), use of CVS (Concurrent Versioning System), and some kind 
of issue tracker. Thus I follow the OSI (Open Source Initiative) definition 
where “Open Source is a development method for software that harnesses the power of 
distributed peer review and transparency of process” (http://www.opensource.org). I 
want to re-emphasize that my definition thereby includes more than just the 
license of the software (for a thorough discussion of licensing, see Välimäki, 
2005). 

I focus on the software artefact, its source code and the processes that 
bring it about. This, in turn, has a direct effect on how companies and 
industries are formed.  For example: the open sourced code of the Linux 
(operating system) kernel has a direct impact not only on the practices of 
the organization contributing source code to the joint effort, but also on its 
distribution and inclusion in software packages, and  ultimately on the end 
user and any program running on the end user’s computer. 



11 
 

OSS has its historical roots in the Free Software social movement, which 
utilizes non-commercial and even anti-commercial principles of collective 
action and distributed work practices (O’Leary et al., 2002; Williams, 2002; 
Benussi,  2005).  Free  software  also  has  several  meanings  (Stallman,  2002).  
This is because the English word “free” can have the meaning of zero-cost, 
whereas what the proponents are more often referring to is free as in 
“freedom of speech”. The term FLOSS covers all Free/Libre/Open Source 
Software, but I opt to use OSS since my main interest is in commercial 
actors, who normally use the term OSS. All in all, for the purposes of this 
study, any one of these definitions would be suitable.  

The on-going discussion about the benefits of software commercialization 
and the hacker subculture dates back to the beginning of the micro-
computer age and IBM’s decision to unbundle hardware and software (for a 
thorough historical account, see e.g. Weber, 2004). Voluntary cooperation-
based collective action systems in many cases involve some form of public 
or semipublic good (Heckathorn, 1996). Public goods offer the participants 
in a network collective benefits that are 1) non-excludable, in that they are 
available to all network partners, and 2) jointly supplied, in that partners’ 
uses of the goods are non-competing (Udéhn, 1993). In OSS development 
communities, Open Source Software plays the role of a public good and 
underlies collective action towards voluntary cooperation, interaction and 
goal setting of heterogeneous developer incentives.  

The software business can be divided into a primary and a secondary 
software industry. The primary software industry refers to commercial 
companies that develop, maintain and publish their software (BMBF, 2000; 
Rajala, 2009; Xu and Brinkkemper, 2007), while the secondary software 
industry means companies that include software as part of their offering 
(BMBF, 2000). These boundaries are far from exact, but here serve to limit 
the scope of this study. An additional problem comes from the fact that 
software companies, for example in Finland, are categorized under ICT 
companies. Rönkkö et al. (2007) approximate that in 2006 Finland had 
about 1000 software product companies, while Rajala (2009) estimates their 
number in 2009 to be 1355. The software business has been moving 



12 
 

towards  a  service  dominant  logic  (Vargo  and  Lush,  2004)  and  open  
innovation (Von Hippel and Von Krogh, 2003; Henkel, 2009). Strategic 
software innovations serve as barriers of entry to competitors and are 
valuable assets for the company (Chesbrough, 2003). This kind of 
proprietary innovation development leans on keeping the technological 
progress secret (Meyer, 2003), as opposed to a more open innovation 
environment, where to remain competitive means leaning on using external 
resources.   

Concepts used to describe OSS inspired practices within one organization 
include Corporate Source (Dinkelacker et al., 2002) and Inner Source 
(Linden  et  al.,  2009;  Lindman  et  al.,  2009).  Open  Source  can  also  be  
considered  as  a  sourcing  strategy.  Opensourcing  may  be  defined  as  a  
governance model where software development tasks are opensourced to an 
unknown workforce, including approaches like liberation and 
commercialization (Ågerfalk and Fitzgerald, 2008). Liberation means 
releasing a previously proprietary software asset under an OSS license, 
whereas commercialization is a sequence where a company evolves around 
an existing open source product, such as the MYSQL database (but see also 
Fosfuri et al., 2008). Another way to characterize the heterogeneity of 
leveraging OSS in organizations is to divide the processes into inbound and 
outbound OSS (Fink, 2003). The idea behind these concepts is that OSS can 
be used as inbound, which means moving assets (software, contribution, 
software code etc) from the public domain into the organization. 
Outbounding, on the other hand, means moving assets from an 
organization into the public domain, for example by publishing the source 
code on the internet. These two processes form the core of the structure of 
this work. 

 

1.1.2 Open Source Software Research  
 

Several recent and comprehensive literature reviews on OSS show wide 
proliferation of the term, not only in Software Engineering and Information 



13 
 

Systems Science (Hauge et al., 2010b), but also in many related fields such as 
Psychology, Law and others (e.g. Gacek and Arief , 2004; Von Krogh and 
Von Hippel, 2006).  

Hauge et al. (2010b) conducted a systematic literature review on the 
different types of OSS adoption in organization. The review was built on an 
extended a classification of OSS adoption proposed by Ziemer, Hauge, 
Østerlie and myself (2008). The results of the literature review (Hauge et al., 
2010b) indicate the heterogeneity of the ways in which companies approach 
OSS, and shows a lack of context in the research on OSS adoption as well 
as highlights the lack of empirical research on OSS adoption in 
organizations. Only 59 papers of a total sample of 1540 journal papers on 
software engineering and information systems (about 4%) matching the 
keyword “Open Source” actually discussed OSS adoption in an 
organizational context. 

Another notable systematic literature review was conducted on conference 
proceedings papers published at an international conference on Open 
Source Systems (Stol and Babar, 2009). Although the quality of the reviewed 
conference papers is naturally no match for the published journal articles, 
the analysis shows a similar heterogeneity and development trajectory of the 
field as did the review by Hauge et al. (2010b). The authors note that only 
18 out of 219 (or 8.2%) of the published conference proceedings on OSS 
were empirical studies in an organizational context.  

These  two  recent  literature  reviews  imply  a  need  for  more  empirical  
research on the interplay of OSS and organizations. Instead of replicating 
the  reviews,  I  reviewed  a  list  of  21  information  systems  journals  (see  
APPENDIX 1). The list of publications considered was a combination of 
the OSS journals listed by Hauge et al. (2010b) under “OSS, Information 
Systems and Management” and the top AIS journals proposed by Rainer 
and Miller (2005). 

In the first phase I searched these journals for the term “Open Source” 
from the articles’  full-text  versions.  A total  of  1337 published articles  were 
found. In the second phase I browsed through the titles and abstracts of 
these articles to determine whether the article’s research concerned primarily 



14 
 

with Open Source or whether Open Source was mentioned for some other 
reason. If this was not obvious from the abstract, I read the entire article. 
This gave me 230 published articles that focused on OSS. In the third phase, 
I reviewed these articles to determine if the focus of the article was on 
empirical research in an organizational (commercial) context. The result of 
this  exercise was along the lines proposed by Hauge et  al.  (2010b):  only 54 
of the 1337 “Open Source” articles (4%) discussed OSS in an organizational 
context. 

I do not claim that my analysis covers the entire body of knowledge on 
OSS in Information Systems Science, but even this limited sample shows 
that there is less research interest in organizations and more research 
emphasis on community-driven development and on the LAMP-stack 
(Linux, Apache, Mozilla, Perl/Python) (Østerlie and Jaccheri, 2007). Thus, 
based on these literature reviews and numerous calls to investigate OSS in 
an organizational context (Fitzgerald, 2006; Santos, 2008), I conclude that 
there is a research gap. This dissertation aims to address that gap. 

OSS research can be characterized in several ways. Von Krogh and Von 
Hippel (2006) offer one such characterization by dividing the research into 
three groups: 1) motivations for contributions, 2) governance, organization 
and the innovation process and 3) competitive dynamics. Building on their 
work and on my literature review on OSS in organizations, I propose the 
following characterization of prominent OSS research themes from the 
chosen organizational perspective (TABLE1).  

 
 
 
 
 
 
 
 
 
 



15 
 

 
 

Prominent OSS research themes 
Research 
theme 

Developer 
motivation 

Structure of 
community 

Knowledge 
transfer 
model 

Company - 
community 
relationship 

OSS licensing 
and business 
models 

Topical 
research 
question 

How to 
motivate 
OSS 
developers 
(often 
working 
without 
compensa-
tion)? 

How are 
communities 
structured, 
e.g. in terms 
of contribu-
tion and 
communica-
tion? 

How is 
knowledge 
transferred 
despite 
organization
al borders? 

How should 
companies 
build their 
relationship 
toward OSS 
communities 
and 
developers? 

How should 
companies 
structure their 
revenue models 
and license 
their products? 

Key 
concept 

Developer Community Open 
innovation 

Community 
management 

Business  
model 

Reference 
discipline 

Psychology, 
Economics 

Sociology 
(esp. network 
theory and 
SNA) 

Economics, 
Policy 
studies 

Management 
and 
Information 
Systems 
Science 

Management, 
Law 

Example 
studies 

Lerner & 
Tirole 
(2002); Hars 
and Ou 
(2002); 

Mustonen 
(2003); 
Hertel et al. 
(2003); 
Ke and 
Ping (2010) 

Koch and 
Schneider 
(2002); 
Lin (2004); 
Shah (2006); 

Crowston 
and Howison, 
(2006);  
Bach and 
Carroll (2010) 

Kogut and 
Metiu 
(2001); Von 
Hippel and 
Von Krogh 

(2003); 
Lanzara and 
Morner 
(2005) 

 West, (2003); 
Dahlander 
and 
Magnusson 
(2005, 2008); 

Shaikt and 
Cornford, 
(2010);  
Mehra et al. 
(2010) 

Hecker (1999); 
Välimäki 
(2005); 
Osterwalder et 
al (2005); 

Fitzgerald 
(2006);  Rajala 
et al. (2006); 
Casadesus-
Masanell and 
Ghemawat 
(2006); 
Bonaccorsi et 
al. (2006); Nagy 
et al. (2010) 

 
TABLE 1: Prominent OSS research themes 



16 
 

Different research streams have focused on the economic and 
psychological incentives of the developers (Hars and Ou, 2002; Ke and 
Ping, 2010), structures of the communities (Crowston and Howison, 2006), 
more open knowledge transfer (Von Hippel and Von Krogh, 2003), 
orchestrating of the company-community relationship (Dahlander and 
Magnusson, 2008) and OSS licensing and business models (Bonaccorsi et 
al., 2006).  

Several organizational opportunities constrain organizational OSS 
implementation. Due to these constraints OSS is leveraged using either 
“generic OSS business models” (Hecker, 1999; Osterwalder et al., 2005; 
Fitzgerald, 2006; Rajala et al., 2006), different hybrid models (Sharma, 2002) 
or management strategies (Shaikt and Cornford, 2010; West, 2003). 
Competition may also occur at the level of platforms (Economides and 
Katsamas, 2006) or standards (Bonaccorsi et al., 2006), or companies may 
use  opensourcing  as  opposed  to  outsourcing  as  a  means  to  create  
sustainable relations in a business ecosystem by means of co-opetition 
(Ågerfalk and Fitzgerald, 2008). 

Literature finds several different ways to engage in OSS (Hauge et al., 
2010a) in addition to its use (Ven, 2008). These include, but are not limited 
to, using OSS CASE tools in the organization (Toth, 2006), integrating OSS 
into software systems (Li et al., 2009), participating in OSS development 
(Dueñas et al., 2007) or providing the company’s product as OSS (Santos, 
2008; Frost, 2007). 

Despite the growing literature, uncertainty about what it actually means to 
adopt OSS still prevents organizations from fully engaging in OSS and 
creates unrealistic expectations about it (Lacotte, 2004; Goode, 2005). OSS 
practices  have  various  merits  and  possess  radical  potential  to  alter  the  
software industry landscape (Fitzgerald, 2006; Hauge et al., 2008; Dahlander 
and Magnusson, 2008).  

Prominent research combines different levels of analyses by focusing on 
the level of both the individual and the organization or a community of 
developers and even the entire economy. My interest remains on changes in 



17 
 

software production at the level of organizations and organizational fields as 
elaborated in detail in the next section. 

 

1.1.3 Organizational adoption and software production change 
 

The four combined conceptual lenses chosen for this study are: the 
organizing vision (Swanson and Ramiller, 1997), entrepreneurial 
institutionalism (Garud et al., 2007; Greenwood and Hinings, 1996), sense-
making (Weick et al., 2005) and OSS business literature (e.g. Raymond, 
1999; Fitzgerald, 2006; Rajala et al., 2006). Two theoretical underpinnings 
which bring together these four streams of literature are institutionalism 
(Scott, 1995) and social constructionism (Berger and Luckmann, 1966) 
especially in the form developed by the social construction of technology 
(Bijker et al., 1987). 

The backdrop of this dissertation is institutional theory, although I only 
use bits and pieces of it in the individual articles of the dissertation. 
Institutional theory is far from a monolithic tradition: different authors have 
developed it for different purposes (for a more thorough discussion about 
”old”  and  “new”  institutionalism,  see  Powell  and  Dimaggio,  1991;  
Greenwood and Hinings, 1996). I use the following definition of institutions 
as “multifaceted, durable social structures, made up of symbolic elements, social activities 
and material resources” (Scott, 1995, 49). Institutional structures, such as 
reward and communication structures, are set in motion by regulative, 
normative and cultural elements or pillars (Scott, 1995).  Organizations that 
ponder any ICT innovation adoption rely on different carriers to develop an 
internal collective conceptual understanding (i.e. meetings, presentations, 
workshops, trainings shops and expositions). There is a need to understand 
how cultural cognitive elements (Scott, 1995) travel or are carried. Scott 
(2003)  divides  these  carriers  into  four  categories:  symbolic  systems,  
relational systems, routines and artefacts.  

Besides institutional theory, social constructionism is the other tradition 
this dissertation draws on. Social constructionism is a (sociological) theory 



18 
 

about knowledge in a society (Berger and Luckmann, 1966), which claims 
that (social) interactions maintain and create knowledge and that institutions 
have a role to play in this. The social construction of technology (SCOT) is 
a development of social constructionism (Bijker et al., 1987; Wynne, 1988; 
Woolgar, 1985). Linking back to social constructionism, the rhetorical 
fluidity of the term OSS is the starting point of my argument. If we want to 
understand how the term OSS changes organizational practice, we need to 
track down the history of the term.  

It should also be noted that there are tensions between these two 
traditions, which are mainly beyond the scope of this dissertation. For now, 
it is enough to note that Scott (1995, p. 51), for example, notes that “choice is 
informed and constrained by the ways in which knowledge is constructed”. Rather than 
trying to resolve all the conflicting issues in this dissertation, I take these 
tensions as a healthy sign of the vitality of the traditions. My research thus 
draws both on institutional theory and social constructionism. 

The theoretical framework combines different streams of literature to 
address the research gap on OSS and organizations. The various 
components of my research framework are summarized in the table below 
(TABLE 2).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 



19 
 

Theoretical background of the dissertation 
 

Streams of 
literature 

Organizing 
vision  

 

Entrepreneurial 
institutionalism 

 

(Collective) 
Sense-
making 

OSS business 

Seminal 

works 

Swanson and 

Ramiller (1997) 

Garud et al. 

(2007); 
Greenwood and 
Hinings (1996) 

Weick et al. 

(2005);  
Weick (1995) 

Raymond 

(1999);  
Hecker (1999); 
Fitzgerald 
(2006); Rajala 
et al. (2006)  

Focus Content of 
community 
discourse related 
to OSS driving 
change 

Organizational 
change  

Collective 
efforts to 
understand 
local OSS 
adoption 

Legitimization 
of 
organizational 
OSS adoption 

Relation to 
institution-
alism  
(Scott, 1995) 

Builds on 
institutional 
theory focusing 
on changes in 
community 

discourse. 

Builds on  
institutional 
theory which is 
critiqued for 
focusing too 

much on inertia. 
Instead, focuses 
more on 
organizational 
change. 

Focuses on 
the cultural/ 
cognitive 
pillar of 
institutional 

theory. 

Previously 
more focus on 
individual 
developers and 
community-led 

development. 
 

Relation to 
social 
construc-
tionism 
(Berger and 
Luckmann, 
1966; Bijker et 
al. 1987) 

Relies on and 
develops the 
ideas of social 
constructionism 
in the 
community 
discourse 
concept. 

Focuses on the 
actors and their 
strategic (also 
linguistic) use of 
resources to 
change 
organizations. 

Sense-making 
focuses more 
on (shared) 
situational 
negotiations 
in 
organizational 
setting.  

Underemphasis 
on research 
embracing 
social 
construction. 

 
 
No technology or the understanding of it is fixed when it enters an 

organizational field (Rosenberg 1994; Scott, 1995) or an organization. The 

TABLE 2: Theoretical background of the dissertation 



20 
 

vagueness of the exact nature of (ICT) innovation provides its potential 
adopters flexibility and seemingly common reference points (Astley and 
Zammumoto, 1992, 451). Even incoherence may help innovations grow 
(Eccless and Nohria, 1992). Over time, certain shared terms start to form a 
“legitimated vocabulary” concerning the new ICT innovation (Meyer and 
Rowan, 1977). Innovations arise in the context of a given institutional field 
(DiMaggio and Powell, 1983), and information about the benefits of a 
technology travels from one organization to another. Adoption is also 
linked to the career paths of the managers and developers responsible for 
the adoption decision – and the implementation that follows (Mathiassen, 
1998). 

Swanson and Ramiller’s (1997) concept of the organizing vision provides a 
link between understanding organizational change and interactions over the 
(local) meaning of the currently adopted ICT innovation. The organizing 
vision describes how organizational diffusion and legitimization take place, 
focusing on the shared community discourse as the development engine. 
Past examples of these kinds of organizational visions include once buzz-
wordish innovations such as CASE tools, client-server and the intranet 
(Swanson and Ramiller, 1997). More precisely, the organizing vision stands 
for  “a focal community idea for the application of information technology in 
organizations”. It can be divided into three different aspects 1) interpretation, 
2) legitimation and 3) mobilization. (Swanson and Ramiller, 1997.) The 
organizing vision can be understood as a conceptual understanding of how a 
rhetorical buzz-word such as OSS is negotiated in an organizational field 
and what structural changes it brings about.  

The organizing vision is developed within, or at least building on, the 
tradition of institutional theory (Swanson and Ramiller, 1997) to take into 
account the driving role of community discourse, which also relies on a 
social constructionist understanding of the ICT innovation – in our case, 
OSS.  

Traditionally institutionalism has focused on continuity (Powell and 
DiMaggio, 1991; Garud et al., 2007, 960) rather than on incremental or 
radical organizational change (Greenwood and Hinings, 1996). 



21 
 

Entrepreneurial institutionalism focuses on change and on creating 
platforms of change (Garud et al., 2007). Thus, entrepreneurial 
institutionalism accompanies the organizing vision concept in explaining 
organizational change.  

The assumption here is that the actions of organizations reflect the socially 
constructed understanding of those who make these decisions and act on 
them (Weick et al., 2005; Weick, 1995). This sense-making requires plausible 
images (e.g. Greenwood and Hinings, 1993; Oliver, 1991) which are created 
and maintained in a collective discursive manner, thereby linking the 
cultural-cognitive pillar of institutionalism (Scott, 1995) to the social 
construction of situated negotiations. Situational sense-making can 
accompany the organizing vision (Swanson and Ramiller, 1997), which 
focuses more on the negotiation (of the term OSS) in an organizational 
field. 

This more nuanced effort in organizational studies on OSS has often been 
directed towards community-driven development (e.g. Hemetsberger and 
Reinhardt, 2009; Cornford et al., 2010) or towards coordinating a collective 
agency (Lanzara and Morner, 2005). OSS in organizational software 
production, in turn, focused early on generic business models (Hecker, 
1999; Rajala et al, 2006) and only later called for more nuanced theoretical 
development (Fitzgerald, 2006).  To summarize my argument: treating OSS 
as an organizing vision, theoretically rooted in in Scott’s institutionalism and 
in social constructionism, and accompanied by organizational 
entrepreneurship and sense-making provide theoretical tools to explain 
organizational OSS adoption – and its consequences. The term OSS is 
renegotiated when it enters an organization. This renegotiation provokes 
structural changes in 1) the organizations that adopt OSS technology, but 
more widely also in 2) the industries that these companies operate in.  

 
 

 



22 
 

1.2 RESEARCH OBJECTIVES AND DELIMITATIONS 
 

The main objective of this study is to help organizations leverage OSS 
technology. Prior to discussing this, I clarify the path of the term OSS from 
proponent writings to the daily work practices of an organization, the 
related local negotiation concerning the reorganization of software 
production, and the changes in organizations or organizational fields this 
provokes.  

These  outcomes  are  pursued  by  means  of  a  systematic  enquiry  that  ties  
together  the  term  OSS  and  organizational  change.  Based  on  fieldwork,  I  
then provide a longitudinal analysis of change concerning several 
organizations and their practices as they were adopting OSS technology.   

I am interested in leveraging the organizational change caused by OSS in 
software production. Explicitly, the research question of this thesis can be 
formulated as: What is the relation between local renegotiation of the term OSS and 
the organizational change provoked by OSS technology (tools and practices)? This 
question can be broken down and reformulated into the following four 
smaller research questions: 

1. How is the term OSS renegotiated in relation to organizational change?” (Paper I) 
2. How can implementing OSS technology be leveraged to change development practices 

and what are the institutional effects of these changes?  (Paper II) 
3. What are the pursued benefits [of releasing the software to the open domain]? 

(Paper III) 
4. How do the open source software pioneers perceive the FLOSS-driven changes in 

their business? (Paper IV) 
The first two questions focus on the processes of inbound OSS and the 

latter two on outbound OSS. Question 3 focuses on business incentives and 
question 4 takes a more managerial perspective and summarizes some of the 
work in the other papers. The questions are formulated in more detail in the 
original articles. 

Answering the research question is instrumental in understanding how 
OSS can be leveraged in commercial contexts often characterized by 
planning, control, hierarchy and paid development work. There is a clear 



23 
 

tension between the actual characteristics of development work in 
organizations and the common understanding of OSS originally promoted 
by Raymond (1999) and Perens (1999). 

I attempt to make several contributions. The main goal is to show why the 
hierarchical organizational settings and paid work change the assumptions 
derived from the writings of OSS enthusiasts. This will provide a basis for 
researchers and practitioners alike to better understand the actual 
phenomenon, and also its limits. Learning from the OSS practices of the 
pioneers helps understand the benefits that OSS can offer and determine 
what strategies are useful in harnessing the potential of OSS. Their 
experience can also benefit everyone interested in software production 
change. 

I hope to demonstrate how the structural changes following OSS adoption 
are linked to the renegotiation of the term OSS. This will help to build ways 
to manage, or at least limit, the risks of the renegotiation processes. Some 
failures in communication may also be avoided. OSS is not a silver bullet 
that will solve all the acute problems related to software production, but it 
can help in questioning some of the prevailing ideas about organizational 
software production – for example, those related to the downsides of 
certain proprietary strategies which aim to black box software development.  

I leave OSS licensing outside the scope of this study (for a thorough legal 
review, see Välimäki, 2005), since I am mainly interested in the production 
practices related to OSS. Some of the considerations in comparing different 
licensing schemes require legal expertise far beyond the more topical areas 
of this study.  

 

1.3 OUTLINE OF THE STUDY 
 

The main fieldwork phase of this dissertation took place in the course of the 
ITEA-COSI project, which ran during 2005-2008. Some further 
dissemination efforts took place after the project had already ended. The 
year 2009 was dedicated to finishing the research work and the early part of 



24 
 

2010 to writing this dissertation.  The bulk of my data emerges from project 
interviews as described below. 

 

1.3.1 Research design 
 

The chosen aim favours a qualitative approach. Various streams of the 
literature are summarized based on their contribution to the different papers 
of this dissertation including the methodologies used, as indicated in the 
table below (TABLE 3).   

Most of my data were obtained as part of the ITEA-COSI research project 
and consist of transcribed qualitative interview data. In the articles I have 
used an interpretative case study approach, a comparative case study 
approach, as well as narrative analysis. The respondents were selected on a 
per paper basis depending on the specific research question.  

The respondents’ identities are concealed in all the original papers, but 
some of the papers do include the names of the partner companies, by 
agreement, whereas some others do not . I have not included the names of 
the companies in this introduction to protect the anonymity of those 
companies that did not want their names to be disclosed. It should be noted 
that  some  of  the  cases  have  been  analysed  previously;  for  example,  
Wesselius (2008) studied inner source software development from the 
perspective  of  building  an  internal  market,  and  Ågerfalk  et  al.  (2008)  
analysed the DVTk open source project from the viewpoint of 
psychological contract theory and opensourcing. 

 
 
 
 
 
 
 
 



25 
 

Essay Theoretical 
background 

Methodology 

Paper I:  From buzz-word to work: 
Open Source Software 

Organizing vision; 
Collective sense-
making 

Comparative 
interpretative case 
study (3 companies) 

Paper II:  Open Source Technology 
Changes Intra-Organizational Systems 
Development – A Tale of Two 
Companies 

Organizing vision,; 
Entrepreneurial 
institutionalism 

Explorative 
interpretative case 
study, respondents 
from different 
organizational groups 
(2 companies) 

Paper III:  Beyond the business model: 
Incentives for Organizations to Publish 
Software Source Code 

OSS business Interpretative case 
studies                    
(3 companies) 

Paper IV:  Lessons on the FLOSS 
business learned from the Open Source 
Software Pioneers 

Collective sense- 
making;  
OSS business 

Narrative analysis, 
managerial interviews 
(5 companies) 

 

 
In addition to the above methodologies, I have used secondary sources 

such as corporate annual reports, articles in professional journals and the 
trade press, technical user data, and numerous interactions concerning OSS 
implementation and related subjects on different occasions over the three-
year research project. 

 

1.3.2 Relationships of the included articles 
 

The first two articles of the dissertation, papers I and II, emphasize 
Inbound OSS, that is, software production internal to the company. In the 
two latter articles, papers III and IV, I outline Outbound OSS, which refers 
to leveraging OSS published outside organizations. Papers I and III focus 
more on the reasons for organizational transformation, and papers II and 
IV on the consequences in companies and organizational fields. 

Paper I discusses the different definitions that OSS may have when 
leveraged inside a company. Paper II describes the consequences of these 

TABLE 3: Methodologies used in the original articles 



26 
 

different definitions as organizations institutionalize OSS tools and 
practices. Paper III focuses on the different motivations of organizations for 
publishing their source code assets. Finally, Paper IV describes the 
consequences of these publishing decisions. The structure of the papers is 
illustrated below (FIGURE 1). 

 
            LEVERAGING OSS     CONSEQUENCES 
 
 
INBOUND  
OSS 
 
 
 
 
OUTBOUND  
OSS 
 
 
 
FIGURE 1: The structure of the original papers 

 
This figure illustrates how the papers relate to each other in the thesis, 

building on the separation of inbound and outbound OSS. The arrows in 
Figure 1 show the structural consequences of OSS adoption to the 
organizations and the wider organizational field in a commercial context. 

 
 
 
 
 

Paper II: Open Source 
Technology Changes 
Intra-Organizational 
Systems Development – 
A Tale of Two 
Companies 

Paper III: Beyond the 
business model: Incentives 
for Organizations to Publish 
Software Source Code 
 
 

Paper I: From buzz-word to 
work: Open Source Software 

Paper IV: Lessons on the 
FLOSS business learned 
from the Open Source 
Software Pioneers 



27 
 

2. METHODOLOGY AND SCOPE 
 

The focus of the enquiry is on the travel of the term OSS from the writings 
of  enthusiasts  into  industrial  usage  and  the  resulting  changes  in  the  
organizations and industries. The following section gives an overview of the 
data collecting and analysis methods, the ontological and epistemological 
views that inform my research, and a discussion of the reliability and validity 
of the studies described in the articles.  

 

2.1 METHODOLOGIES 
 

My work does not follow one epistemological and ontological trajectory, as 
is often assumed to be the case between the research approaches of the 
individual papers included in one dissertation work. This “waterfall model” 
of first choosing the ontology, then the epistemology and then finally 
conducting the research, I would claim, is actually quite rare in the course of 
any empirical fieldwork related to a doctoral dissertation. I posit that certain 
assumptions may or may not guide the data gathering and analysis, and 
when the results are written up it is the outlet and the audience of each 
individual research paper that determine the rhetoric (Czarniawska, 1998) 
needed for publication on a per paper basis. The two main traditions from 
which I draw on are institutional theory (Scott, 1995) and social 
constructionism (Bijker et al., 1987), as explained in the previous chapter. 
Moreover, the main theoretical concepts of the organizing vision (Swanson 
and Ramiller, 1997), entrepreneurial institutionalism (Garud et al., 2007) and 
sense-making  (Weick  et  al.,  2005)  in  relation  to  previous  OSS  business  
research are a recurring theme in the individual articles. 

My position is that of a pluralist (Mingers, 2004), that is, accepting and 
celebrating a wide variety of paradigms and research approaches on the 
same  topic  (Mingers,  2001)  –  in  this  case,  OSS  technology  in  an  
organizational context. I do not consider this multidisciplinarity of 
methodology to be a flaw, if the object of study stays (even roughly) the 



28 
 

same during the course of the empirical work (Becker and Niehaves, 2007; 
Lee et al., 2003). Instead, the different methodologies complement each 
other and corroborate the findings per paper.  

My approach to research is generally qualitative and, considering the cases, 
explicitly interpretative in all of the original papers (Klein and Myers, 1999; 
Walsham, 1995). I am interested in building theories of processes rather 
than variance based models (Pentland, 1999; Markus and Robey, 1988). If 
we assume that research between interpretative and positivistic case studies 
forms a continuum, then paper III does contain reasoning and the 
accompanying rhetoric, often associated with a positivist case study research 
(Yin, 1989).  The paper is based on a model of a clear and identifiable causal 
linkage between the motivations of the software companies’ managers and 
the publication of source code. The idea is to identify the different variables 
that affect this publication decision by means of an explorative, in-depth 
case study.   

The case studies in papers I and II are more interpretative, focusing more 
on local renegotiation over the term OSS and the following structural 
change, with also a comparative element between the various cases. Paper 
IV takes the more autobiographical perspective of a software entrepreneur 
and focuses on the narratives (Rhodes and Brown, 2005) used by different 
managers to explain the interplay of the change in their organizations and 
the wider business environment.  

To summarize, all of the articles take the managerial and commercial 
perspective of an individual company on OSS technology and focus on OSS 
related change. 

 

2.2 DATA AND ANALYSIS 
 

All of the included original papers examine how commercial companies 
build strategies to benefit from OSS technology. Thus the focus is on 
individual organizations as cases, but the articles also emphasize that 
changes in organizations also drive changes in industries (Pentland, 1999; 



29 
 

Markus  and  Robey,  1988).  As  noted,  the  cases  were  selected  among  the  
partner companies of the industrial-academic research project ITEA-COSI 
(2008).  

I worked together with the internal partners of the research project in 
gathering the data. The context of the ITEA-COSI project enhanced 
collaboration for a better understanding of the challenges of software 
commodification. One of my co-authors was actually working for the global 
concept owner of the (source code portal) service unit described in several 
of  the  papers.  Still,  we  could  hardly  be  counted  as  insiders  of  the  
organization, as it was made explicitly clear that our engagement was purely 
that of researchers. Potentially the researcher role might have changed the 
perceived roles of the participants in the interviewing situation (Essers, 
2009) or the recounted plotline of events (Lanzara, 1991). However, it is 
unlikely that this had any unwanted influence on the research process. 

A  common  methodological  objection  to  many  qualitative  studies  is  to  
discount the interview responses as only “the opinion of one person” or to 
reflect only “the opinions of a few”. While there are several problems 
associated with this type of objection, the most obvious is that the objection 
implicitly assumes that the response might somehow be false. I am the first 
to admit that responses and respondents can indeed be biased or wrong, yet 
it is normally unrealistic to believe that the respondent is lying or inventing 
the entire story just for the researcher (Czarniawska, 1998). 

To gather the primary data, I interviewed people from the different case 
organizations several times: there were two different sets of interviews. The 
appendices  of  this  dissertation  include  a  list  of  interviews  and  the  
organizational roles of the respondents (APPENDIX II) and the research 
protocol of the thematic interviews (APPENDIX III). All interviews were 
tape-recorded and the transcriptions sent back to the respondents for 
comments. 

A wide variety of secondary data accumulated over the three-year span of 
the research project were used to corroborate the findings and to make sure 
I  had  understood  the  context  of  the  study  in  the  same  way  as  the  
respondents. Secondary data included corporate documentation, informal 



30 
 

discussions, trade press articles and the deliverables of the project as sources 
to get a clearer picture on how events unfolded. 

I applied different methods of analysis on the gathered primary data. The 
approach was chosen on a per paper basis guided by the addressed research 
question. The various methods are described briefly in the following chapter 
and in more detail in the original papers. The primary data wielded the 
results presented in the following chapter. In addition to the summary of 
the results, there is also discussion about their implications for theory and 
practice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



31 
 

3. REVIEW OF RESULTS 
 

My dissertation includes four original research articles. The papers aim to 
provide a rich description of the change caused by OSS to answer the 
research question: What is the relation between local renegotiation of the term OSS 
and the organizational change provoked by OSS technology (tools and practices)? This 
question can be divided into four subsections: 1) How  is  the  term  OSS  
renegotiated in relation to organizational change? 2) How can implementing OSS 
technology be leveraged to change development practices and what are the institutional 
effects of these changes? 3) What are the benefits pursued [of releasing the software to the 
open domain]? and 4) How do the open source software pioneers perceive the FLOSS-
driven changes in their business?   

Papers  I  and  II  outline  the  processes  of  leveraging  OSS  inside  
organizations and their consequences, while papers III and IV discuss the 
leveraging processes that rely on the publication of software code. 

The  first  paper  discusses  the  different  meanings  of  OSS  and  the  
renegotiation taking place when OSS is adopted. The second paper 
investigates the link between the term OSS and the subsequent 
organizational change, focusing especially on structures of reward and 
communication.  The third paper aims to move beyond the business model 
to understanding the heterogeneous incentives that companies have for the 
publication of software code.  The fourth paper focuses on the experiences 
of software entrepreneurs and the consequences of the publication 
decisions.  

In what follows, I review the research goals, questions and implementation 
of each of the individual essays. I then move the focus to the contribution 
of the different original papers. 

 

3.1 PAPER I: CAUSES OF INBOUND OSS 
 

Lindman, J. (Unpublished). “From buzz-word to work: Open 
Source Software”. Submitted to an international journal. 



32 
 

3.1.1 Research objectives 
 

Paper I focuses on research subquestion 1 of this thesis: How is the term OSS 
renegotiated in relation to organizational change? The aim is to answer the question 
by focusing on two aspects: 1) How is the term OSS renegotiated when it enters an 
organizational field? and 2) How does the organization adopt OSS technology (tools and 
practices)? The chosen context is inbound OSS.  

More explicitly, this is an investigation into local renegotiation over the 
meaning of the term OSS in three case companies. The renegotiation is 
claimed to be necessary in order to create a shared understanding of the 
adopted (ICT) innovation: that is, an organizing vision (Swanson and 
Ramiller, 1997). The paper analyses local renegotiation by examining how 
the  term  OSS  is  interpreted,  legitimated  and  mobilized  in  the  case  
companies.  

 

3.1.2 Contribution 
 

The article argues that there is both a theoretical and practical link between 
the renegotiation of the OSS term and structural change in the organization. 
One way to understand the intertwined change process is through the 
concept of the organizing vision. The paper also provides some non-
anecdotal recipes for how organizations can benefit from OSS in their 
software production and operations.  

The contribution of this paper is to urge researchers to be more specific in 
promoting OSS, by describing the nuances of the changes related to OSS 
adoption, but also by calling attention to the application of the term OSS as 
a rhetorical device to sell organizational transformation.  

The main contribution is summarized below, showing the different 
renegotiated terms and the related organizational changes (TABLE 4).  

 
 

 



33 
 

 
 
 
I hesitate to promote, or to criticize, the leveraging of OSS technology in 

general terms. There is a clear need to first engage an individual organization 
to find out and analyse the history of OSS in its particular organizational 
context in order to identify the pro’s and con’s of OSS adoption. Previous 
examples of leveraged OSS technology offer valuable lessons in this. 

The findings indicate that future research on organizational OSS may 
benefit from a more critical review of the processes occurring under the 
term  OSS,  especially  when  the  aim  is  to  provide  an  account  of  how  to  
embrace OSS to transform the software production of commercial 
organizations. 

 

3.2  PAPER II: CONSEQUENCES OF INBOUND OSS 
 

Lindman, J., Rossi, M. and Marttiin, P. (2010). “Open Source 
Technology Changes Intra-Organizational Systems 
Development – A Tale of Two Companies”. Proceedings of 

Case  OSS term 
 renegotiated 

 Interpretation  Legitimation  Mobilization 

Case 1  Inner 
 source 

 Changes internal  
 software   
 development 

 More distributed  
 and collaborative  
 development 

 Business units gain  
 more control 

Case 2   iSource  
 
    

 Hosting and joint  
 practices inspired by 
 OSS  

 Increased visibility of 
 the software assets  
 internally 

 Some developers  
 and projects require 
 OSS tool based on  
 its merits 

Case 3  De-facto  
 standard 

 Company provides a 
 standard for a field
  

 Company needs to   
 adopt OSS anyway.  
 Drawing on external  
 resources is cheaper. 

 More open and  
 autonomous  
 development reduces  
 fears of  partiality. 

Case 4  OSS  
 entrepreneur- 
 ship 

 Company providing  
 public source code  
 and services on top 
 of the software
  

 OSS has business 
 benefits related to  
 price, resources and  
 competition. 

 Groups of founders  
 and customers agree  
 on certain OSS merits. 

 

TABLE 4: Renegotiated OSS term and the related changes 



34 
 

the European Conference of Information Systems, Pretoria, 
South Africa. 

 

3.2.1 Research objectives 
 
The aim of paper II is to understand the institutional changes needed in 

and emerging from the process of changing software practices. The paper 
builds a conceptualization based on entrepreneurial institutionalism (Garud 
et al., 2007) and examines the changing relations between different 
organizational groups in the change process. The addressed research 
subquestion 2 is twofold: How  can  implementing  OSS  technology  be  leveraged  to  
change development practices, and what are the institutional effects of these changes?  The 
goal is to identify the links between 1) the emerging, yet embedded 
technology, and 2) the underlying institutional reward and communication 
structures.  

Focusing on inbound OSS, the paper approaches the question by 
investigating two aspects, the first of which was also discussed in the first 
article: 1) How does the organization adopt OSS technology (tools and practices)? and 
2) What are the resulting structural changes in organizations and organizational fields? 

The empirical part of the paper is based on an analysis of the software 
production of two companies by means of interpretative in-depth and 
longitudinal case studies.  

3.2.2 Contribution 
 

The conclusion of the paper is that the adoption of OSS technology 
changes the organizational reward and communication structures and 
generates a wide institutional change, which represents a far more 
fundamental rearrangement of software production than previously 
assumed. The main contribution is to link the term to the structural changes 
that  have  occurred  and  show  what  these  changes  are  like.  Below  is  a  
summary of the results concerning the changes in reward and 



35 
 

communication structures, comparing OSS technology in the classical OSS 
literature and renegotiated OSS technology in organizations (TABLE 5). 

 
TABLE 5: Redefinitions of OSS technology (tools and processes) 

 

Furthermore, respondents offered an explanation for the situation. They 
were inclined to explain the change as the introduction of a software 
marketplace, which institutes new rewards and a more accurate information 
and communication structure inside a company (as depicted  in FIGURE 2). 

 

 

 

 

 

 

 
 

FIGURE 2: Introducing a software marketplace 

 
The change can be seen as instituting a replacement of bureaucratic 

software organizations with markets inside companies. Implementation of 
OSS technology in the two case companies followed the neoliberal idea that 

 Classical OSS technology Renegotiated OSS technology 

Reward structure Mostly voluntary in task 
assignment, peer recognition, 
sometimes sponsored 
development. 

Designated projects, 
contributions based on 
(employment) contracts and 
task assignments, 
development costs divided 
based on negotiation between 
actors.  

Communication 
structure 

Open discussion email-lists, 
open message boards, web-
presence of projects, open 

documentation, open training 
materials. 

Intranet, visibility to selected 
partners who share the 
development costs. 

 

 

Central group 

Business unit 

MARKET 

Central group 

Business unit 



36 
 

markets will a priori bring about efficiency. This view seems to resonate well 
with the bottom-up pull of OSS practices, which empowers developers but 
also benefits the business units competing with each other for resources. 

The main contribution of the paper is to show the potential structural 
consequences of implementing OSS in software production. It also urges to 
focus more empirical work on the actual changes in work practices 
concerning software production in large hierarchical organizations.  

 

3.3  PAPER III: CAUSES OF OUTBOUND OSS 
 

Lindman, J., Juutilainen, J-P. and Rossi, M. (2009). Beyond 
the business model: Incentives for organizations to publish 
software source code. In: Boldyreff, C., Crowston, K., 
Lundell, B. and Wasserman, A. I. (eds.). Open Source 
Ecosystems: Diverse Communities Interacting, 5th IFIP WG 
2.13 International Conference on Open Source Systems, OSS 
2009, Skövde, Sweden, June 3-6, 2009, Proceedings.  IFIP 
299 Springer, ISBN 978-3-642-02031-5. 

 

3.3.1 Research objectives 
 

This article takes a managerial viewpoint on the process of outbounding 
OSS. More specifically, the focus is on the different motivations for 
companies to publish their software source code. The paper contributes to 
the aspects dealt with in paper 1, but this time in an outbound context: 1) 
How is the term OSS renegotiated when it enters an organizational field? and 2) How 
does the organization adopt OSS technology (tools and practices)? To gain empirical 
insight from the company perspective on releasing software to the open 
domain, the paper aims at answering research subquestion 3 of this thesis: 
What are the benefits pursued [of releasing software to the open domain]? In examining 
on the “pursued benefits”, the focus here is on the legitimation and 
rationale of adopting OSS. 



37 
 

The chosen research methodology is qualitative and interpretative. The 
objective is to clarify the decision-making situation regarding OSS adoption 
by identifying and elaborating the variables that need to be taken into 
account. Three explorative, descriptive case studies were conducted, based 
on interview data, to gain an in-depth understanding of the various 
incentives involved. 

 

3.3.2 Contribution 
 

The main contribution of the paper is to show that concentrating on the 
conventional wisdom related to generic business models and revenue 
streams leaves opportunities unused. The different benefits pursued by the 
case companies included the chance to steer an OSS community, obtain 
development resources, gain cost-savings, improve the quality of the 
software, increase the trustworthiness of the software and promote 
standardization in large organizational contexts. All of these incentives are 
poorly explained if the focus is overly on small (start-up) software 
companies that build their main revenue source on service and consultancy. 

A further contribution is to highlight some of the challenges that 
publishing source code entails. The main concern of the case companies was 
that the released software was beneficial mainly to quite a niche market 
where the possibility of end user contributions is quite low. Another 
concern was that, this being the case, it does seem hard to build a 
sustainable OSS community. 

 

3.4  PAPER IV: CONSEQUENCES OF OUTBOUND OSS 
 

Lindman, J. and Rajala, R. (Unpublished). “Lessons on the 
FLOSS business learned from the Open Source Software 
Pioneers”. Submitted to an international journal. 



38 
 

3.4.1 Research objectives 
 

The main idea of paper IV is to tap into existing managerial experience by 
taking an entrepreneurial viewpoint on the topic. The contribution of the 
paper is to answer research subquestion 4: How do the open source software 
pioneers perceive the FLOSS-driven changes in their business? More specifically, the 
paper examines the same aspects as discussed in paper II, but now in an 
outbound context: 1) How does the organization adopt OSS technology (tools and 
practices)? and 2) What are the resulting structural changes in organizations and 
organizational fields?  

The paper focuses on the perceived consequences of OSS adoption both 
to the individual organization and the wider organizational field. The 
software pioneers here refer to software enterpreneurs. Their viewpoint on 
the changes taking place in their business environment is instrumental in 
mapping out the consequences of OSS.  Building a theory based on service 
dominant logic (Vargo and Lush, 2004) and open innovation (Chesborough, 
2003), I adapt Ramiller and Pentland’s (2009) approach to explaining change 
in organizations. The chosen method is qualitative analysis, using the 
narratives of software entrepreneurs (similar to Bartis and Mitev, 2008). I 
am especially interested in the actions taken by different actors as they seek 
to achieve particular outcomes and attain certain goals, by certain means, 
and within specific settings. 

 

3.4.2 Contribution 
 

The  findings  indicate  that  the  effects  of  FLOSS  go  far  beyond  the  
companies’ offerings, impacting, for example, the innovation process, user 
involvement, resources and revenue models (TABLE 6). To capture the 
potential and to benefit from external resources in their innovation activity, 
managers should focus on taking advantage of user contribution already in 
the early phases of their innovation processes. 
 



39 
 

TABLE 6: OSS enacted changes  
 
 
Some  enthusiasts  of  OSS  favour  the  view  of  source  code  release  and  

engaged entrepreneurial activity as opposites. This misunderstanding may 
hinder an understanding of the relation between the entrepreneurial reality 
and source code disclosure. It also clouds how the actions of entrepreneurs, 
linked with the OSS paradigm, drive changes in the business environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Focus Dimensions Impact 
Goals 
 
 
Means 
 
 
Actions 
 
 
Outcomes 

User involvement 
 
 
External resources 
 
 
Innovation process 
 
 
Revenue models 

FLOSS activity emphasizes user 
involvement in software development 
and delivery. 
FLOSS activity emphasizes access to 
external capabilities rather than internal 
resource ownership. 
FLOSS-based software development 
urges software innovators to open up 
their innovation process. 
FLOSS-based public goods change the 
revenue models of companies taking part 
in OSS development. 

 



40 
 

4. DISCUSSION AND CONCLUSIONS 
 

This dissertation sought to answer the primary research question What is the 
relation between local renegotiation of the term OSS and the organizational change 
provoked by OSS technology (tools and practices)? In addition, there were four 
subquestions, as listed in chapter 1.2.  

 In what follows, my findings are discussed in relation to these questions. 
First I will give an overview of the findings, then move on to the 
contribution of this thesis, and finally outline some avenues for future 
research. 

 

4.1 DISCUSSION OF THE MAIN FINDINGS 
 

The main contribution of this thesis are my findings related to 1) the need 
to move research away from oversimplistic or individualistic myths, 2) the 
need  for  more  sensitivity  in  research,  3)  the  links  between  OSS,  a  service  
dominant logic and open innovation, and 4) the requirement to build 
organizations that support external input. Addressing these issues will help 
leverage OSS in an organization. 

Reality check. The findings imply that researchers and practitioners 
should move away from overly simplistic myths concerning OSS in 
organizations. Researchers who accept the motivations of Raymond (1999) 
and  Perens  (1999)  for  making  OSS  business  credible  are  at  a  risk  of  
misunderstanding more organized software production. Overemphasis on 
community-driven development or the individual developer perspective 
prevents an understanding of the full extent of the change enacted by OSS 
in organizations. For example, if developer motivations in a corporate 
environment are explained without taking into account that most developers 
are paid to develop the assigned software, there is a risk that one of the 
main drivers for development will be overlooked. 

What is even more risky is that the researcher may assume that developers 
are always “scratching their itches” or living in a mythical hippy-style 



41 
 

community of love – without bothering, for example, to review even 
developers’ mailing lists to find that, despite the community spirit, 
disagreements and even personal turf battles are often going on. Omitting 
such aspects would effectively paralyse research on OSS. 

Sensitivity. Another major finding is that researchers should become 
more sensitive about the nuances of paid development work and hierarchies 
in software production. Organizations that rely on paid software 
development work may need to change their communication and reward 
structures to benefit from a more open development style. Researchers who 
focus too much on openness and too little on the organizational setting may 
fail to provide relevant research. On the other hand, too much emphasis on 
the production side, leaving the more open practices without due note, may 
lead to an underestimation of the true potential of OSS. 

There is no one way to adopt OSS practices (Raymond, 1999; Hecker, 
1999;  Himanen  and  Castells,  2001;  Hauge  et  al.,  2008).  Researchers  
promising  to  deliver  “one  size  fits  all”  fail  to  account  for  the  local  
renegotiation processes of the term OSS. 

Open innovation and the service dominant logic. The findings 
discussed especially in paper IV show how entrepreneurial activity and OSS 
are tied together to drive changes towards a service dominant logic (Vargo 
and Lush, 2004) and open innovation (Vujovic and Ulhoi, 2008), not only 
inside actual OSS-producing companies, but also in the wider primary and 
secondary software sectors. Some OSS proponents tend to see engaged 
entrepreneurial activity and OSS as somewhat opposed to each other. This 
hinders an understanding of the relationships between the publication of 
software code and the entrepreneurial reality. In more general terms, 
however, this transition towards a service dominant logic is not the main 
topic of this dissertation. 

New organizations. The findings further indicate that the term OSS 
undergoes changes when it enters an organization, but the organization 
changes as well. Such “renewed” organizations are needed to gain and 
incorporate new software assets (inbound OSS) or external contribution 
(outbound OSS). 



42 
 

Acquiring outside contribution requires that the company relinquishes 
some of the control over its software development (Shaikt et al., 2010).  
Careful cost-benefit analyses can help to make the risks of major source 
code disclosure more visible. On the other hand, as the process of adoption 
includes negotiations over the exact meaning of the term, it remains unclear 
whether all the benefits and challenges can made visible at the planning 
stage. However, it is certain that without an informed discussion about the 
consequences of OSS adoption, organizations are likely to make hasty 
decisions that can result in underestimating their opportunities. 

 

4.1.1 Inbound OSS  
 
The original papers I and II of this thesis focus on inbound OSS. My main 

result is to point out the link between the term OSS and the structural 
transformation of the organization. This link provides a more nuanced 
understanding of both the renegotiation of the term and the consequent 
change taking place in the organization.  

The evolution of the term can be illustrated using three aspects of OSS 
adoption: 1) interpretation, 2) legitimation and 3) mobilization. The 
associated structural changes are related to the organization's 
communication and reward structures.  

To summarize, inbounding OSS is not just a simple process of moving 
technology or transferring OSS practices, but instead, entails renegotiation 
processes that challenge the organization’s current practices related to 
software  production.  Internally,  it  seems  to  cause  a  paradigm  shift  
(Fitzgerald, 2006) in how software production is organized. However, this 
shift will not come about without an engagement with the organizational 
context where the renegotiation of the term is to take place. 

 
 
 



43 
 

4.1.2 Outbound OSS 
 

The focus in the original papers III and IV is on outbound OSS. Their main 
result is to show that the structural characteristics of software production 
also shape the software landscape in large organizations.  Many 
organizations would like to combine the agility of small start-ups with the 
resources of a large company. OSS is sometimes seen to offer several of 
these benefits.  

There is also a clear call not to set OSS and entrepreneurial activity as 
opposites, but as a new entanglement which drives the software business 
towards more open innovation and a service dominant logic. Thus, to 
understand outbound OSS, we need to analyse the reasons and legitimation 
of the actual code release and the structural changes in software production, 
but also the wider the consequences both in the primary and secondary 
software industries. While packaged software will likely retain its large share 
in the software market, there is also a growing bulk of software released and 
available for use under an OSS license. This OSS stack is likely to be used 
both as a platform for collective action as well as to reduce the costs of 
product and service development for different organizations.  

 

4.2 CONTRIBUTION 
 
This thesis makes three principal contributions. First, it systematizes the 

use of the terms OSS, inbound OSS and outbound OSS in the context of 
organizations leveraging Open Source Software. Second, it shows how these 
terms travel from the writings of enthusiasts to the practices of software 
production and undergo change in the process. Third, it reveals the scope of 
the resulting changes in individual companies and in a wider organizational 
context. These changes are mainly related to an organization’s 
communication and reward structures and move towards a service dominant 
logic and open innovation in a wider context.  Overall, the thesis provides 



44 
 

organizations with conceptual tools to build on if they are interested in 
leveraging OSS. 

 

4.2.1 Theoretical contribution 
 
In addition to providing clarity on OSS in an organizational context, the 

main theoretical contribution of this work is to link OSS research with the 
emerging research streams of entrepreneurial institutionalism, open 
innovation and the service dominant logic.  Furthermore, it seeks to move 
the focus of research onwards from OSS business models (as revenue 
models) (Fitzgerald, 2006; Rajala, 2006). 

Entrepreneurial institutionalism (Garud et al., 2007) addresses the 
embedded agency problem that has long haunted the institutional literature. 
OSS as an organizing vision contributes to this literature by providing an 
example of a linkage between a particular concept and structural 
transformation.  

The open innovation literature (Chesbrough, 2003; Von Hippel and Von 
Krogh, 2003) frequently presents OSS as an icon of how distributed 
development processes can work. However, open innovation often fails to 
address the content of the innovation, implicitly assuming that numerous 
different innovations can be developed in a similar fashion to OSS. This 
thesis calls for more clarity by pointing out that OSS in the organizational 
context requires more engaged research and may thus be a poor example for 
researchers aiming to provide an understanding of an open innovation in 
progress.  

The service dominant logic (Vargo and Lush, 2004; Rajala, 2009) is directly 
tied to the changing industry dynamic in many industries. This relates to the 
question of exactly what part the (software) product plays in the total 
offering of a company. This is becoming blurred in several industries. In the 
case of software, the notion of packaged software is being questioned. OSS 
can well serve as one example which is moving this dynamic further.  



45 
 

Engaged Scandinavian research on Information Systems (Mathiassen and 
Nielsen, 2008) has had surprisingly little to say about Open Source Software. 
Although this is true for IS research in general, it raises questions especially 
since so much of the actual code contribution to the OSS stack originates 
from Scandinavia. This research stream calls for more Scandinavian efforts, 
particularly given the strong tradition of engaged, critical and 
organizationally orientated research in the Nordic countries. Notable 
exceptions to this rule are Ågerfalk and Fitzgerald (2008), Hauge (et al., 
2010b), and Dahlander and Magnusson (2008). 

 

4.2.2 Managerial contribution 
 
My main contribution to the management literature is to engage in the 

discussion about what it means to leverage OSS in the commercial and 
organizational contexts. Practitioners have struggled for years with the 
issues described in this thesis. For them, I want to provide real-world 
examples accompanied by more theoretical work to help them to build their 
software production organizations and implement changes as they see fit. 
There is always a certain amount of local renegotiation over the term, so 
changing to OSS is far from a disruptive change. 

Additionally,  I  hope  to  show  that  not  all  research  is  focused  on  
community-driven development or individual developers. How to build 
relations between OSS communities and companies is and will remain 
important. What we need to understand is that OSS often requires a 
structural transformation within the organization producing the software. 
New institutional arrangements, even new organizational forms, may be 
required to harness the potential of new ways of producing software. These 
new arrangements are, however, always mediated by the already existing 
institutional arrangements. Opening up the production to a network of 
collaborators makes it necessary to build new capacities and systems of 
reward and communication. Organizations require changes, but in many 
cases these changes are probably incremental.  



46 
 

OSS is mainstream, but as all technologies, it has its limitations. Knowing 
these limitations as well as its strengths will help to build more sustainable 
models of software production.  

 

4.3 LIMITATIONS AND FURTHER RESEARCH 
 

This research has several limitations. Consisting mainly of explorative work 
rather than testing of hypotheses, my research efforts are more process-
oriented than variance-based. As the idea is to provide a highly nuanced 
understanding of how companies use OSS in their software production, this 
qualitative research approach is of necessity quite limited in its number of 
companies, cases and interviews. This should, however, serve as a call for 
more quantitative research on the changing dynamics of the primary and 
secondary software industries.  

Moreover, there is a risk of inbuilt bias in focusing mostly on 
entrepreneurs and developers although it is widely acknowledged that these 
respondents have a great influence in decision-making processes concerning 
organizational changes. One future avenue for research is to find more 
respondents from different levels of the corporate hierarchy to challenge 
these findings. 

I do not feel confident about generalizing the results widely across 
different organizational fields. This is because the main aim of the 
dissertation was to provide a nuanced understanding and warn against 
overly simple models of understanding OSS. 

More research is also needed on the relation between communities and 
organizations. However, this research cannot start from simplistic 
assumptions concerning communities or companies; for example, the 
members of a community are often, at the same time, paid developers for 
companies, which blurs the boundaries and distinctions.  

I have not touched upon the issues of control and power (e.g, Bartis and 
Mitev, 2008) in an organizational setting in any detail. However, there is a 
clear need for a more critical evaluation of these issues both in a voluntary 



47 
 

and a hierarchical context related to software production, especially to 
virtualization and the increasing shift towards entrepreneurial common to all 
knowledge  intensive  production.  There  is  also  a  lot  more  research  to  be  
done concerning the exact consequences of large-scale OSS adoption as well 
as the changes, for example, in the management of software production and 
maintenance processes related to OSS practices.  

OSS  can  also  be  studied  to  understand  how  the  nature  of  work  is  
becoming more distributed, virtual and based on collectively governed 
goods, even commons. The tension between service-based software 
companies, small entrepreneurial start-ups and collectively managed 
software commons offers a wide variety of interesting research questions – 
not to mention the OSS potential in the public sector, or in developing 
countries.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



48 
 

REFERENCES  

 
Allen, R. (1983). Collective invention. Journal of Economic Behavior and 

Organization, 4, 1-24. 
 
Astley, G. and Zammuto, R. (1992). Organization Science, Managers, and 

Language Games. Organisation Science, 3, 4,  443-460. 
 
Bach, P. and Carroll, J. (2010). Characterising the Dynamics of Open User 

Experience Design: The Cases of Firefox and OpenOffice.org. Journal of 
the Association for Information Systems, 11, 12, 902-925. 

 
Bartis,  E.  and  Mitev,  N.  (2008).  A  multiple  narrative  approach  to  

information systems failure: a successful system that failed. European 
Journal of Information Systems 17, 112-124. 

 
Becker, J. and Niehaves, B. (2007). Epistemological perspectives on IS 

Research: a framework for analysing and systematizing epistemological 
assumptions. Information Systems Journal, 24, 4, 663-688. 

 
Benkler, Y. (2006). The wealth of networks: How social production 

transforms markets and freedom. Yale University Press, New Haven. 
 
Benussi, L. (2005). Analyzing the Technological History of the Open 

Source Phenomenon. Stories from the Software Evolution. 
http://opensource.mit.edu/papers/benussi.pdf [retrieved 15.3.2009] 

 
Berger,  P.  and  Luckmannn,  T.  (1966).  The  Social  Construction  of  

Knowledge: A Treatise in the Sociology of Knowledge. Anchor Books, 
Doubleday, New York. 

 
BMBF (2000). Analyse und Evaluation der Softwareentwicklung in 

Deutschland. The Federal Ministry of Education and Research, Germany. 



49 
 

 
Bijker,  W.,  Hughes,  T.  and Pinch,  T.  (1987).   The Social  Construction of 

Technological Systems: New Directions in the Sociology and History of 
Technology. MIT Press, Cambridge MA. 

 
Bonaccorsi,  A.,  Giannangeli  S.  and  Rossi,  C.  (2006).  Entry  Strategies  

Under Competing Standards: Hybrid Business Models in the Open Source 
Software Industry. Management Science, 52, 7, 1085-1098. 

 
Casadesus-Masanell,  R.  and  Ghemawat,  P.  (2006).  Dynamic  Mixed  

Duopoly: A Model Motivated by Linux vs. Windows. Management Science, 
52, 7, 1072-1084. 

 
Chesbrough, H. (2003). Open Innovation: How Companies Actually Do 

It. Harvard Business Review, 81, 7, 12-14. 
 
Crowston, K. and Howison, J. (2006). Hierarchy and centralization in free 

and open source software team communications. Knowledge, Technology 
and Policy, 18, 65-85. 

 
Czarniawska, B. (1998). A Narrative Approach to Organization Studies. 

Qualitative Research Methods Series. Sage, Thousand Oaks CA. 
 
Cornford, T., Shaikh, M. and Ciborra, C. (2010). Hierarchy, Laboratory 

and Collective: Unveiling Linux as Innovation, Machination and 
Constitution. Journal of the Association for Information Systems, 11, 12, 
809-837. 

 
Dahlander, L. and Magnusson, M. (2005). Relationships between open 

source software companies and communities: Observations from Nordic 
firms. Research Policy, 34, 481-493. 

 



50 
 

Dahlander, L. and Magnusson, M. (2008). How do Firms Make Use of 
Open Source Communities? Long Range Planning, 41, 629-649. 

 
DiMaggio,  P.  J.  and   Powell  W.  W.  (1983).  The  Iron  Cage  Revisited:  

Institutional Isomorphism and Collective Rationality in Organizational 
Fields. American Sociological Review 48, 147-160. 

 
DiMaggio, P. J. and Powell, W. W. (1991). Introduction. In: Powell W. W. 

and DiMaggio P. J. (eds.). The New Institutionalism in Organizational 
Analysis, 1–38. University of Chicago Press, Chicago. 

 
Dinkelacker, J., Garg, P., Miller, R. and Nelson, D. (2002). Progressive 

Open Source. In the Proceedings of ICSE 2002, 19-25.5., 174-184. 
 
Dueñas, J., Parada, H., Cuadrado, F., Santillán, M. and Ruiz, J. (2007). 

Apache and Eclipse: Comparing Open Source Project Incubators. IEEE 
Software, 24, 6, 90-98. 

 
Eccles, R. and Nohria, N. (1992). Beyond the Hype: Rediscovering the 

Essence of Management. Harvard Business School Press, Boston. 
 
Essers, C. (2009). Reflections on the Narrative Approach: Dilemmas of 

Power, Emotions and Social Location While Constructing Life-Stories. 
Organization, 16, 2, 163–181. 

 
Fink, M. (2002). The business and economics of Linux and open source. 

Prentice Hall, New Jersey. 
 
Fitzgerald, B. (2006). The Transformation of Open Source Software. MIS 

Quarterly, 30, 3, 587-598.  
 



51 
 

Fosfuri, A., Giarratana, M. and Luzzi, A. (2008). The Penguin Has 
Entered the Building: The Commercialization of Open Source Software 
Products. Organization Science, 19, 2, 292-305. 

 
Frost,  R.  (2007).  Jazz  and  the  Eclipse  Way  of  Collaboration.  IEEE  

Software, 24, 6, 114-117. 
 
Gacek, C. and Arief, B. (2004). The Many Meanings of Open Source. 

IEEE Software, 21, 1, 34-40. 
 
Garud,  R.,  Hardy,  C.  and  Maguire,  S.  (2007).  Organization  Studies  28,  

957-969. 
 
Ghosh, R., R. Glott, R., Krieger, B. and Robles, B. (2002). FLOSS Final 

Report  –  Part  4:  Survey  of  developers.   University  of  Maastricht,  The  
Netherlands. www.Infonomics.nl/FLOSS/report. 

 
Goode, S. (2005). Something for nothing: management rejection of open 

source software in Australia’s top firms. Information and Management, 42, 
5, 669-681. 

 
Greenwood, R. and Hinings, C. (1993). Understanding Strategic Change: 

the Contribution of Archetypes. Academy of Management Journal, 36, 5, 
1052-1081. 

 
Greenwood, R. and Hinings, C. (1996). Understanding Radical 

Organizational Change: Bringing together the Old and the New 
Institutionalism. The Academy of Management Review, 21,4, 1022-1054. 

 
Gurbani V., Garvert, A. and Hersleb, J. (2010). Managing a Corporate 

Open Source Asset. Communications of the ACM, 53, 2, 155-159. 
 



52 
 

Hars,  A.  and  Ou,  S.  (2002).  Working  for  free?  Motivations  for  
participating in open-source projects. International Journal of Electronic 
Commerce, 6, 3, 25-39. 

 
Hauge, Ø., Cruzes, D., Conradi, R., Velle, K. and Skarpenes, T. (2010a). 

Risks and Risk Mitigation in Open Source Software Adoption: Bridging the 
Gap between Literature and Practice, Proceedings of OSS2010, Notre 
Dame, IN, USA. 

 
Hauge, Ø., Ayala, C. and Conradi, R. (2010). Adoption of Open Source 

Software in Software-Intensive Industry – A Systematic Literature Review. 
Information and Software Technology, Information and Software 
Technology 52, 11, 1133-1154. 

 
Hauge, Ø., Sørensen, C-F. and Conradi, R. (2008). Adoption of Open 

Source in the Software Industry. Proceedings of the OSS 2008, Limerick, 
Ireland. 

 
Heckathorn, D. (1996). The Dynamics and Dilemmas of Collective 

Action. American Sociological Review, 61, 2, 250-277. 
 
Hecker, F. (1999). Setting Up Shop: The Business of Open-Source 

Software. IEEE Software, 16, 1, 45–51, January-February. 
 
Hemetsberger, A. and Reinhardt, C. (2009). Collective Development in 

Open-Source Communities: An Activity Theoretical Perspective on 
Successful Online Collaboration. Organization Studies, 30, 9, 987-1008. 

 
Henkel, J. (2009). Champions of revealing – The role of open source 

developers in commercial firms. Industrial and Corporate Change, 18,3, 
435–471. 

 



53 
 

Hertel G., Niedner, S. and  Herrmann, S. (2003). Motivation of software 
developers in Open Source projects: An Internet-based survey of 
contributors to the Linux kernel. Research Policy, 32, 7, 1159-1177. 

 
Himanen, P. and Castells, M. (2002). The Information Society and the 

Welfare State. Oxford University Press, Oxford. 
 
ITEA-COSI. (2008). http://www.itea-cosi.org. 
 
Klein,  H.  and  Myers,  M.  (1999).  A  set  of  Principles  for  Conducting  and  

Evaluating  Interpretative  Field  Studies  in  Information  Systems.  MIS  
Quarterly, 23, 1, 67-94. 

 
Kogut, B and Metiu, A. (2001). Open source software development and 

distributed innovation. Oxford Review of Economic Policy 17, 2, 284-264. 
 
Koch, S. and Schneider, G. (2002). Effort, co-operation in an open source 

software project: Gnome. Information Systems Journal, 12, 27-42. 
 
Lacotte, J.-P. (2004). ITEA Report on Open Source Software. Technical 

report, ITEA - Information Technology for European Advancement. 
 
Lanzara, G.F. (1991). Shifting stories: Learning from a reflective 

experiment in a design process. In: Schon, D. A. (ed). The reflective turn: 
Case studies on practice and in practice. Teachers College Press, New York. 

 
Lanzara, G.F. and Morner, M. (2005). ‘Artifacts rule! How organizing 

happens in opens source software projects’. In: Czarniawska, B. and Hernes, 
T. (eds). Actor-Network Theory and Organizing, Copenhagen Business 
School Press, Copenhagen. 

 
Lerner, J. and Tirole, J. (2002). Some Simple Economics of Open Source. 

Journal of Industrial Economics, 50, 2, 197-234, June. 



54 
 

 
Lee, A. and Baskerville, R. (2003). Generalizing generalizability in 

information systems research. Information Systems Research, 14, 3, 
221-243. 

 
Lin, Y. (2004). Hacking Practices and Software Development: A Social 

Worlds Analysis of ICT Innovation and the Role of Open Source Software 
(Unpublished doctoral thesis). 

 
Linden, F., Lundell, B. and Marttiin, P. (2009). Commodification of 

Industrial Software – A Case for Open Source. IEEE Software, July-August. 
 
Lindman, J., Juutilainen, J-P. and Rossi, M. (2009). Beyond the business 

model: Incentives for organizations to publish software source code. In: 
Cornelia Boldyreff, Kevin Crowston, Björn Lundell, Anthony I. Wasserman 
(eds.). Open Source Ecosystems: Diverse Communities Interacting, 5th 
IFIP WG 2.13 International Conference on Open Source Systems, OSS 
2009, Skövde, Sweden, June 3-6, 2009, Proceedings.  IFIP 299 Springer, 
ISBN 978-3-642-02031-5. 

 
Lyytinen, K. (1992). Information systems and critical theory. In: Alvesson, 

M. and Willmott, H. (eds.). Critical management studies, 159–180. Sage, 
London. 

 
Markus, L. and Robey, D. (1988). Information technology and 

organizational change: causal structure in theory and research. Management 
Science, 34, 5, 583-598. 

 
Mathiassen, L. and Nielsen, P. A. (2008). Engaged Scholarship in IS 

Research – The Scandinavian Case. Scandinavian Journal of Information 
Systems, 20, 2, 3-20. 

 



55 
 

Mehra, A., Dewan, R. and Freimer, M. (2010). Firms as Incubators of 
Open-Source Software. Information Systems Research, Articles in Advance, 
1-20. 

 
Meyer,  J.  W.  and  Rowan,  B.  (1977).  Institutionalized  Organizations:  

Formal Structure as Myth and Ceremony. American Journal of Sociology, 
83, 2, 440- 463. 

 
Meyer, P. (2003). Episodes of collective invention. Working paper 368, US 

Department of Labor, Bureau of Labor Statistics, Washington, DC. 
 
Mingers, J. (2001). Combining IS Research Methods: Towards a Pluralist 

Methodology. Information Systems Research, 12, 3, 240-259. 
 
Mingers, J. (2004). Real-izing Information Systems: Critical Realism as an 

Underpinning Philosophy for Information Systems. Information and 
Organization, 14, 2, 87-103. 

 
Mustonen, M. (2003). Copyleft: The economics of Linux and other open 

source software. Discussion paper 493, Department of Economics, 
University of Helsinki, Helsinki, Finland. 

 
Nagy, D., Yassin, A. and Bhattacherjee A. (2010). Organizational 

Adoption of Open Source Software: Barriers and Remedies. 
Communications of the ACM, 53, 3, 148-151. 

 
Oliver, C. (1991). Strategic Responses to Institutional Processes. Academy 

of Management Review, 16, 1, 145-179. 
 
O’Leary, M., Orlikowski, W. and Yates, J. (2002). Distributed work over 

the centuries: trust and control in the Hudson’s Bay Company 1670–1826. 
In:  Hinds  P.,  and  Kiesler,  S.  (eds.).  Distributed  Work.  MIT  Press,  
Cambridge, MA. 



56 
 

 
Osterwalder, A., Pigneur, Y. and Tucci, C.L. (2005). Clarifying business 

models: Origins, present, and future of the concept. Communications of the 
Association for Information Systems, 16, 1-25. 

 
Østerlie, T. and Jaccheri, L. A. (2007). Critical Review of Software 

Engineering Research on Open Source Software Development. Proceedings 
of the 2nd AIS SIGSAND European Symposium on Systems Analysis and 
Design, Gdansk, Poland, 5.6. 2007. 

 
Ostrom, E. (1990). Governing the commons: The evolution of institutions 

for collective action. Cambridge University Press, New York. 
 
Powell, W. W. and DiMaggio, P. J. (1991). The New Institutionalism in 

Organizational Analysis. University of Chicago Press, Chicago. 
 
Pentland, B. (1999). Building process theory with narrative: from 

description to explanation. Academy of Management Review, 24, 4, 
711-724. 

 
Perens, B. (1999). The Open Source Definition. In: Dibona, C. and 

Ockman,  S.  (eds.).  Open  Sources:  Voices  from  the  Open  Source  
Revolution. O’Reilly Media, Sebastopol, CA. 

 
Phillips, N. and Hardy, C. (1997). Managing multiple identities: Discourse, 

legitimacy  and  resources  in  the  UK  refugee  system.  Organization,  4,  2,  
159-186. 

 
Rainer, K. and Miller, M. (2005). Examining Differences Across Journal 

Rankings. Communications of the ACM, 48, 2, 91-94. 
 
Rajala, R., Nissilä, J. and Westerlund, M. (2006). Determinants of Open 

Source  Software  Revenue  Model  Choices.  Proceedings  of  the  14th  



57 
 

European Conference on Information Systems (ECIS 2006), 12 - 14 June, 
Göteborg, Sweden. 

 
Rajala, R. (2009). Determinants of Business Model Performance in 

Software Firms. Doctoral Thesis. Helsinki School of Economics A-357. 
 
Ramiller, N. and Pentland, B. (2009). Management Implications in 

Information Systems Research: The Untold Story. Journal of the 
Association for Information Systems, 10, 6, 474-494. 

 
Raymond, E. (1999). The Cathedral & The Bazaar – Musings On Linux 

And Open Source By An Accidental Revolutionary. O’Reilly Associates, 
Sebastopol, CA. 

 
Rhodes, C. and Brown, A. D. (2005). Writing Responsibly: Narrative 

Fiction and Organization Studies. Organization, 12, 4, 467-491. 
 
Rosenberg, N. (1994). Exploring the Black Box. Technology, Economics, 

and History. Cambridge University Press, Cambridge. 
 
Rönkkö, M., Eloranta, E., Mustaniemi, H., Mutanen, O-P. and Kontio, J. 

(2007). Finnish Software Product Business: Summary Results of National 
Software Industry Survey 2007. http://www.swbusiness.fi 

 
Santos, C. (2008).  Understanding Partnerships between Corporations and 

the  Open  Source  Community:  A  Research  Gap.  IEEE  Software,  25,  6,  
96-97. 

 
Scott, R. (1995). Institutions and Organizations. Sage, Newbury Park, CA. 
 
Scott. R. (2003). Institutional carriers: reviewing modes of transporting 

ideas over time and space and considering their consequences. Industrial 
and Corporate Change, 12, 4, 879-894. 



58 
 

 
Shah, S. (2006). Motivation, Governance, and the Viability of Hybrid 

Forms in Open Source Software Development. Management Science, 52, 7, 
1000-1014. 

 
Shaikt, M. and Cornford, T. (2010). ‘Letting go of Control’ to Embrace 

Open Source: Implications for Company and Community. Proceedings of 
HICSS2010, January 5-8, 2010, Kauai, Hawaii. 

 
Sharma, S., Sugumaran, V. and Rajagopalan, B. (2002). A framework for 

creating hybrid-open source software communities. Information Systems 
Journal 12, 1, 7-25. 

 
Stallman, R. (2002). Free software, free society: Selected essays of Richard 

M. Stallman. Free Software Foundation, Boston, MA. 
 
Stallman, R. (2009). Why “Open Source” Misses the Point of Free 

Software. Communications of the ACM, 52, 6,  31-33. 
 
Stol, K. and Babar, M. (2009). Reporting empirical research in open source 

software: the state of practice. In: Boldyreff, C., Crowston, K., Lundell, B. 
and  Wasserman,  A.  (eds.).  Proceedings  of  the  5th Conference on Open 
Source Ecosystems: Diverse Communities Interacting, June 3rd-6th, Skövde, 
Sweden, IFIP Advances in Information and Communication Technology, 
vol 299/2009, Springer 2009, 156-169. 

 
Swanson, B and Ramiller, N. (1997). The Organizing Vision in 

Information Systems Innovation. Organization Science, 8, 5, 458-474. 
 
Toth, K. (2006). Experiences with Open Source Software Engineering 

Tools, IEEE Software, 23, 6, 44-52. 
 



59 
 

Udéhn, L. (1993). Twenty-Five Years with the Logic of Collective Action. 
Acta Sociologica, 36, 239-261. 

 
Walsham,  G. (1995). Interpretative case studies in IS research: nature and 

method. European Journal of Information Systems, 4, 74-81. 
 
Weber, S. (2004). The Success of Open Source. Harvard University Press, 

Harvard, MA. 
 
Weick, K. (1995). Sensemaking in Organizations, Sage Publications, 

California. 
 
Weick, K., Sutcliffe, M. and Obstfeld, D. (2005). Organizing and the 

Process of Sensemaking. Organization Science, 16, 4, 409-421. 
 
Ke, W. and Zhang, P. (2010). The Effects of Extrinsic Motivations and 

Satisfaction in Open Source Software Development. Journal of the 
Association for Information Systems, 11, 12, 784-808. 

 
Wesselius, J. (2008). The Bazaar inside the Cathedral: Business Models for 

Internal Markets. IEEE Software, 25, 3, 60-66. 
 
West, J. (2003). How open is open enough? Melding proprietary and open 

source platform strategies. Research Policy, 32, 7, 1259-1285. 
 
Williams, S. (2002). Free as in Freedom: Richard Stallman’s Crusade for 

Free Software. O´Reilly, Sebastopol, CA. 
 
Woolgar,  S.  (1985).  Why  Not  a  Sociology  of  Machines?  The  Case  of  

Sociology and Artificial Intelligence. Sociology, 19, 557-572. 
 



60 
 

Wynne, B. (1988). Unruly Technology: Practical Rules, Impractical 
Discourses and Public Understanding, Social Studies of Science, 18, 147-
167. 

 
Vargo, S. L. and Lush, R. F. (2004). Evolving a services dominant logic. 

Journal of Marketing, 68, 1-17. 
 
Ven, K., Verelst, J. and Mannaert, H. (2008). Should You Adopt Open 

Source Software? IEEE Software, 25. 3, 54-59. 
 
Von Hippel, E. and Von Krogh, G. (2003). Open Source Software and the 

'Private-Collective' Innovation Model: Issues for Organization Science. 
Organization Science, 14, 2, March-April. 

 
Von Krogh, G. and Von Hippel, E. (2006). The Promise of Research on 

Open Source Software. Management Science, 52, 7, 975-983. 
 
Vujovic, S. and and Ulhoi, J P. (2008). Online innovation: the case of open 

source software development. European Journal of Innovation 
Management, 11, 1, 142-156. 

 
Välimäki, M. (2005). The Rise of Open Source Licensing. A Challenge to 

the Use of Intellectual Property in the Software Industry. Helsinki 
University of Technology, Helsinki, Finland. 

 
Xu,  L.  and  Brinkkemper,  R.  (2007).  Concepts  of  product  software.  

European Journal of Information Systems, 16, 531-541.  
 
Ziemer, S., Hauge, Ø., Østerlie, T. and Lindman, J. (2008). Undertanding 

Open Source in an Industrial Context. In: Dipanda, A., Chbeir, R. and 
Yetongnon, K. (eds.). Proceedings of the 4th IEEE International 
Conference on Signal-Image Technology&Internet-Based Systems 



61 
 

(SITIS2008), November 30th-December 3rd, Bali, Indonesia. IEEE 
Computer Society, 2008, 539-546. 

 
Žižek, S. (2009). First as Tragedy, Then as Farce. Verso, London. 
 
Ågerfalk, P. and Fitzgerald, B. (2008). Outsourcing to an Unknown 

Workforce: Exploring Opensourcing as a Global Sourcing Strategy. MIS 
Quarterly, 32, 2, 385-409. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



62 
 

APPENDIX I: SYSTEMATIC LITERATURE REVIEW  

 

 
 

 
 
 

 
 
 

 
 
 

Publication Database All OSS Org 

Information Systems Journal Wiley Interscience 42 14 3 

Journal of Database Management Proquest 9 7 2 

Journal of Industrial Economics Wiley Interscience 4 2 0 

Knowledge Technology and Policy Springerlink 32 13 2 

Long Range Planning Sciencedirect 32 4 2 

Management Science Proquest 13 13 1 

MIS Quarterly Proquest 4 3 2 

MIS Quarterly Executive Misque.org 1 1 0 

MIT Sloan Management Review Proquest 7 3 3 

Organization Science Proquest 2 2 2 

Research Policy Sciencedirect 75 36 7 

Communications of the ACM ACM digital library 355 43 14 

Informations Systems Research Informs 41 10 3 

Journal of Management IS Mesharpe 4 2 0 

Harvard Business Review hbr.org 14 2 0 

Decision Sciences Wiley Interscience 11 0 0 

Decision Support Systems Sciencedirect 84 6 1 

ACM Tr. on Information Systems ACM digital library 20 2 0 

IEEE Tr. on Software Engineering IEEE Explore 164 9 2 

IEEE Software IEEE Explore 385 51 8 

Information & Management Sciencedirect 38 7 2 

 



63 
 

APPENDIX II: PRIMARY DATA 

 

 
 
 
 

 
 
 
 

Paper Case No. of 
interviews 

Position in the company 

Paper I, Paper II Case 1: Inner Source 2 Development Manager 

Paper I, Paper II Case 1: Inner Source 2 Program Manager, Medical 
Imaging Platform 

Paper I, Paper II Case 1: Inner Source 1 Business Architect 

Paper I, Paper II Case 2: Isource 2 Global concept Owner 

Paper I, Paper II  Case 2: Isource 2 Service Manager, CMS in Business 
Infrastructure 

Paper I, Paper II Case 2: Isource 1 Senior R&D engineer 

Paper I, Paper III Case 3: DVTk 2 Interoperability Program Manager 

Paper I, Paper III Case 3: DVTk 2 Project Leader 

Paper I, Paper III Case 3: DVTk 1 Developer, Test Specifications 

Paper I, Paper IV Case 4: Dulo 1 CEO 

Paper I, Paper IV Case 4: Dulo 1 Marketing manager 
Paper I, Paper IV Case 4: Dulo 1 Developer 

Paper IV Case:5 Tripod 1 CEO 

Paper IV Case:5 Tripod 1 Marketing manager 

Paper IV Case:5 Tripod 1 Developer 

Paper IV Case:6 Yoga 1 CEO 

Paper IV Case7: OurDB 1 CEO 

Paper IV Case7: OurDB 1 CTO 

Paper IV Case8: Nemesis 1 CEO 

Paper IV Case8: Nemesis 1 CTO 

Paper III Case9: ESI 1 Developer 

Paper III Case10: Nokia 1 Senior Software Specialist (OSS) 

 



64 
 

APPENDIX III: OUTLINE OF THE THEMATIC INTERVIEWS 

 
Interview questions 
 

1. Offering 
What is the target market of the software? 
What kind of software do you offer? 
What kinds of services are offered to complement the software?  
For what does the customer pay? What does he/she buy? 
What type of licensing is used (GPL, LGPL, etc.)? 
Are there different offerings for different customer groups/segments?  
What is the distribution method of the product? 
How the end-users get the product? 
How do you view OSS components? Benefits? Drawbacks? 
How do you adapt to different versions of your product? 
 
2. Resources 
What  are  the  key  internal  resources  and  capabilities  possessed  by  the  

company? 
What resources are needed in the innovation and product development 

activity? 
What resources are needed in the commercialization activity? 
What kinds of resources are obtained from the OSS community? 
How would you characterize opportunities involved with these resources? 
How would you characterize threats involved with these resources? 
 
3. Relationships 

How do you perceive the OSS community? 
How does OSS community effect your decision-making (technological or 

business)? 
Who are your key partners in the OSS community? Why? 
What  kinds  of  relationships  exist  with  the  members  in  the  OSS  

community? 



65 
 

Who are the key commercial actors in your business network? 
What activities do your key partners in the OSS community and in the 

business network perform? 
How do you communicate with the OSS community? 
How do you stimulate Community involvement? 
How have you leveraged community (or plan to leverage community)?  
 
 
4. Revenue Model  
What are the main sources of revenue?  
Who pays to you (from whom do you get the revenues)?  
How (on what basis) is the product priced? 
When do you get paid?  
What does it cost to use OSS components? 
 
5. Other questions or comments emerged during the interview 
 
 
 
 

 
 
 
 
 
 



PART II: ORIGINAL RESEARCH PAPERS 

 
Paper I: Lindman, J. (Unpublished). “From buzz-word 
to work: Open Source Software”. Submitted to an 
international journal.  
 
Earlier version of the paper has been published in the 
proceedings of UKAIS. Lindman, J. (2010). The Term Open 

Source Software Renegotiated. 23-24.3.2010. UKAIS, Oxford, 
UK. 

 



From buzz-word to work: 
Open Source Software 
Juho Lindman 
Information Systems Science, Aalto University School of 
Economics, Finland. 
juho.lindman@hse.fi 

Abstract. Implementing Open Source Software (OSS) technology (tools and 
practices) entails potential for a radical organisational transformation of 
software production. In order to reap the benefits, companies engage in 
adoption processes including re-negotiation over the local meaning of the 
term OSS, followed by organisational structural transformation. We claim that 
these processes (1. the renegotiation of the term OSS, and 2. organisational 
change) are intertwined. Renegotiation of the term is needed in order to 
create a collective cognitive view of what it means to leverage OSS locally. 
Furthermore, this shared understanding is a stepping stone for the 
legitimation of and the mobilization to change the current situation, i.e. to 
adopt OSS technology and the related changes. Based on a literature review 
of OSS in organisations, we investigate four company cases to outline what 
kind of renegotiation of the term occurred when companies embraced OSS 
technology and what were the organisational consequences. Our findings 
indicate that future research on organizational OSS may benefit from a more 
critical review of the processes occurring under the term OSS, especially 
when aiming to provide an account on how to embrace OSS to transform the 
software production of commercial organizations. 
 
Key words: Open Source Software, Inner Source, Organising vision. 



1 Introduction 
This paper reports a case study of four cases on how the term Open Source 
Software (OSS from now on) is renegotiated in relation to an organisation's 
changing software production. Traditionally OSS includes either a software 
licensing method or development process characterized by the publication of 
the source code under an OSI-approved software license. We use OSS as an 
umbrella term to characterize a practice of opening up organisation’s 
software production and drawing on the development practices iconised by 
successful OSS projects over the internet (Linux, Apache etc.). Corporate 
source (Dinkelacker et al., 2003) or Inner source (Linden et al., 2009) are 
concepts used to describe OSS inspired practices limited inside one 
organisation. 

Research literature does agree on some of the merits of OSS practices and 
their potential to radically alter the software industry landscape (Fitzgerald, 
2006; Hauge et al. 2008;Dahlander and Magnusson, 2008). However, 
research efforts have an overemphasis on community driven development and 
the LAMP-stack (Linux, Apache, Mozilla, Perl/Python) (Osterlie&Jaccheri, 
2007). Less research effort has been directed towards OSS in organisations 
and especially related to organisational changes such as “inbounding OSS” 
(Fink, 2003;Wesselius, 2008).  

This paper reports part of the results of a three-year research project using 
a case study of four cases focusing on understanding the organisational 
dynamic of OSS technology (both tools and practices) entering an 
organisation. We seek to answer the question: “How is the term OSS 
renegotiated in relation to organisational change?” 

Answering this research question is important, because currently some 
examples of the adoption of OSS in software production are based on 
simplistic assumptions of what the local adoption of OSS means. These 
assumptions may misguide companies to base their decisions on partial 
calculations and to expect too high "return of investment" from changing 
their current software production practice. On the other hand, assumptions 
that appear too naive may also cause companies to underestimate their 
potential to benefit from OSS practices and thus opt-out some winning 
competition strategies. 

The remainder of this paper is structured as follows: The next section 
reviews the literature on OSS in an organisational context and especially 
related on how now ICT innovations are carried in organisations and change 
their structure. The third section provides background information about the 
research methodology and chosen case study protocol. The fourth section 
analyses the cases in detail. The fifth and final part discusses conclusions, 
limitations and implications. 

2 OSS in Organisations 
The original coiners of the term Open Source Software focused on the 
individual developer or entrepreneur “scratching an itch” (Raymond, 1999; 



Perens, 1998). Later OSS theorist, coming from a wide variety of fields have 
used OSS as an icon for a network society (Castels, 2005), political economy 
(Weber, 2004), as an example of commons-based peer production solving 
some of the inefficiencies of creating a marketplace (Benkler, 2006), as an 
example of a cellular form of post-capitalist new order (Bauwens, 2005) or as 
the new networked digital commons (Zizek, 2009). To summarize, originally 
OSS researchers were interested on individuals and drew on their own 
experiences on producing software and later the focus shifted to the (more 
overtly political) level of societies, sometimes without theoretical or practical 
experience of software production (and notably from outside the Information 
Systems community). I am interested in what is happening in the mediating 
layer, that of an organisation. 

Any technology and understanding of its applicability is unstable when it 
enters the organisational field (Rosenberg 1994) or an organisation. The 
vagueness of the exact nature of innovation provides its potential adopters 
flexibility and seemingly common reference points (Astley&Zammumoto, 
1992, 451). Even incoherence helps innovations grow, be redefined and to 
benefit from organisational experiments (Eccless and Nohria, 1992). Over 
time, certain shared specialized terms and phrases start to form a “legitimated 
vocabulary” concerning the new ICT innovation (Meyer and Rowan, 1977). 

Definitions of OSS in the public press have been directed at the twin 
audiences of commercial companies (Raymond, 2001;Scacchi, 2007) and of 
OSS enthusiasts. It is not surprising that literature finds that “OSS is not a 
precise term” (Gacek&Arief, 2004, 35). This probably holds true also for the  
wider organisational field (Scott, 1995) as the innovations arise in the context 
of an institutional field (DiMaggio&Powell, 1983). Information about the 
benefits of a certain technology travels from one organisation into another. 
Adoption is also linked to the career paths of the managers and developers 
responsible for adoption decision - and implementation that follows 
(Mathiassen, 1998). 

There are several organisational opportunities that constrain OSS 
implementation. Due to these constrains, companies leverage OSS by 
implementing one of several “generic OSS business models” (Hecker, 
1999;Osterwalder et al., 2005) or using different hybrid models (Sharma, 
2002) or management strategies (Shaikt and Cornford, 2010). When 
organisations ponder adoption they rely on different carriers to develop 
conceptual understanding (for example meetings, presentations, workshops, 
trainings shops and expositions). In this paper, the focus is on how cultural 
cognitive elements (Scott, 1995) travel or are carried. Scott (2003) divides 
these carriers into four categories: symbolic systems, relational systems, 
routines and artefacts.   

Traditionally institutionalism has focused on continuity (Garud, et al, 
2007, 960), rather than incremental or radical organisational change 
(Greenwood and Hinings, 1996). In understanding change, one way to create 
explanations is to link macro states to the individual actors and then to how 
their behaviour creates new macro states at a later time (Hedstrom and 
Swedberg, 1998). One such link between micro-mechanisms that link macro-
states is sensemaking (Weick, 2005). Similarly, Swanson&Ramillers’ (1997) 



concept of organising vision provides a link between understanding 
organisational change and interactions over the (local) meaning of the 
currently adopted ICT innovation. Organizing vision describes how 
organisational diffusion and legitimisation takes place, focusing on the shared 
community discourse as the development engine of change. Past examples of 
these kind of organizational visions include once buzz-wordish innovations 
such as CASE-tools, client-server and intranet (Swanson&Ramiller, 1997). I 
am interested in this diffusion process and choose to view OSS as an 
organizing vision. My focus is on understanding the link between local 
renegotiation and changes that occur in organisations. 

The fluidity of the OSS term is the starting point of the argument in this 
paper. The concept of organizing vision stands for a “…a focal community 
idea for the application of information technology in organizations” 
(Swanson and Ramiller, 1997). An organising vision can be divided into 
three different aspects, forming the core of my analyses, 1) interpretation, 2) 
legitimation and 3) mobilization (Swanson and Ramiller, 1997). 

3 Methodology and Cases 
The focus of this paper is on human interaction in an organisational context 
(Alvesson and Karreman, 2000), which led to use a qualitative approach and 
to adopt the protocol of interpretative case studies (Klein and Myers, 1999; 
Walsham, 1995). The actual field research was conducted as part of a 
European research project (ITEA-COSI) spanning the range of over three 
years (2005-2008). The main topic of the research project was the 
commodification of software, especially in embedded environments. All the 
case companies were observing some of the benefits of OSS, but were unsure 
on how to adopt the practices in their own software production. As the project 
progressed, the researchers became concerned of the fact that the 
organisations participating to the project seemed to have quite varied 
viewpoints on OSS and especially on how they managed their changing 
organisation. Three out of four cases were chosen from among the project 
partners. It should be noted that cases one and three were from the same 
company, but from totally different units. The fourth case was chosen from 
one of the previous research projects, where the author had already 
established cooperation. Short descriptions of the case companies are listed in 
below (Table 1). Longer versions of the companies are described in the 
analyses. 
 
 
 

 Short description 
Case 1: Inner 
Source 

Implementing distributed 
collaborative software development 
practices internally 

Case 2: Isource Implementing more open project 
hosting and OSS practices internally 



Case 3: Dvtk Controlling the development of an 
OSS tool 

Case 4: Dulo 
(Pseudonyme) 

Releasing OSS for collaborative 
development 

 
Table1: Short case descriptions 
 

The bulk of the data emerged from semi-structured thematic interviews, 
which were complemented by formal and informal industry-academia project 
meetings and joint work on the project deliverables. I gathered information 
on the history of the cases, the organisational changes occurring over time 
and current challenges. The topic of the thematic interviews was the change 
in software production and OSS practices especially  in relation to the current 
organisational opportunities and business models. The interview protocol 
collected first the basic information about the respondents and the history of 
the described cases. Business model change was the second topic under 
investigation. I posed questions about the resources, networks, offering and 
the revenue models of the organisations. Finally, time was left for discussion 
on the emerged topics. 

The data is partly longitudinal, i.e. interviews occurred at different phases 
of the project and I interviewed some of the respondents several times over 
the duration of the project to see whether the description of the process 
changed over time. I interviewed three people from four organisations and 
repeated the interviews for two people in three organisations. The interviews 
were about one hour long.  In total, we thus had 18 interviews and over 22 
hours of recordings (see Table 2). The interviews were conducted informed 
about the possible biases caused by both the interview situational roles 
(Essers, 2009) and the fact that most of the interviews described the past and 
thus also recreated the events (Lanzara, 1991). The main threat was that the 
author would be regarded as an insider, which might cause issues about the 
findings. The author’s role as a university researcher was made clear to the 
respondents to address this threat. Respondents agreed that the project 
findings would be made public. 

In order to make the data more polyphonic I interviewed respondents from 
different organisational positions. For each case, one respondent was selected 
from an internal software service unit, one from an internal business unit and 
one from a developer/user perspective. The respondents per case, number of 
interviews and respondent positions in the companies are listed below (Table 
2). 

 
 

Case Number of 
interviews 

Position in the company 

Case 1: Inner 
Source 

2 Development Manager 

Case 1: Inner 
Source 

2 Program Manager, Medical 
Imaging Platform 

Case 1: Inner 
Source 

1 Business Architect 



Case 2: 
Isource 

2 Global concept Owner 

Case 2: 
Isource 

2 Service Manager, CMS in 
Business Infrastructure 

Case 2: 
Isource 

1 Senior R&D engineer 

Case 3: Dvtk 2 Interoperability Program 
Manager 

Case 3: Dvtk 2 Project Leader 
Case 3: Dvtk 1 Developer, Test Specifications
Case 4: Dulo 1 CEO 
Case 4: Dulo 1 Marketing manager 
Case 4: Dulo 1 Developer 

 
Table 2: Descriptions of the respondents (total 18) 

 
In addition to the thematic interviews, I used secondary data accumulated 

over the three year span of the research project including corporate 
documentation, informal discussions, trade press articles and the deliverables 
of the project as sources to get a clearer picture on how the events unfolded. 

4 Analyses and Findings 
The transcribed interviews were emailed back to the respondents for 
comments. All the respondents corroborated that they had been quoted 
correctly. The interviews also served as data sources for the published project 
deliverables, so there was an on-going discussion about the meaning of the 
results, which also informed the analyses in this paper. 

In the analyses I focused on how the respondents talked about the term 
OSS, about the three aspects of organizational vision and organisational 
change: interpretation, legitimation and mobilisation (Swanson and Ramiller, 
1997).  

I tabled these aspects and found that there seem to exist several different 
meanings for the application of the term OSS. Thus I focused the analyses on 
three different aspects and derived three questions to guide the analyses i.e. to 
understand better the relation between how the negotiation of the term is 
intertwined to the organisational change below (Table 3).  
 
 
 

Aspects Analyses Questions 
Interpretation Focus on how case 

respondents made 
sense of the 
situation 

What is OSS 
technology in the 
organisation? 



Legitimation Focus on the 
accepted reasoning  
for OSS use in the 
organisation 

What are the reasons 
used in explaining 
why organisation 
adopted OSS 
technology? 

Mobilisation Focus on groups that 
are promoting and 
gaining the benefits 

What are the benefits 
of OSS technology to 
different actors? 

 
Table 3: Research approach. Aspects following Ramiller and Swanson(1997) 
 

The focus of the analyses was directed on the shared community discourse 
about the organising vision (i.e. OSS) and how the organisation changes 
during the negotiation. Interpretation was approached by analysing how 
respondents made sense about the situation. Legitimation was related to the 
reasoning behind the “generally accepted” notions related to OSS. 
Mobilisation was linked to what groups were promoting change and their 
perceived benefits. It was unsurprising that it was often difficult to separate 
these three aspects when respondents talked about the subject.  
 

4.1 Case 1: Implementing Distributed 
Collaborative Software Development Practices 
Internally 

The case units’ company is currently employing approximately 31,000 
people and offering a portfolio of technical medical equipment systems and 
the related software. The customer base consists of medical professionals and 
patients. The company's products have a large installed base and 
interoperability requirements make changes to existing software expensive. 
The case describes changes from a centralised software group into a more 
distributed development setting while promoting visibility of the software 
assets. 

Interpretation. In the earlier setting, software components were 
developed in a central software group and then integrated into products in 
different business units. Different business units had unaligned roadmaps, 
which made it difficult to forecast the necessary workload for the central 
software group and thus forced business units to wait for the excess capacity 
of the central group to provide them the, often hurried, software assets. [...] 
previously we were always waiting for platform groups to do things for us. 
[...] If you wanted something done, you would queue up with all the other 
groups who would need something from the platform. And depending on how 
our demands were appreciated by the platform group, it would be in the next 
release or it would never get into release. –Manager 

To solve this issue, business units started to contribute to developing the 
software assets and to build up their own expertise and then contribute to the 
shared portfolio. The change was described as moving to an Inner source way 



of working. “Internally we have a supply chain, where software components, 
in an Inner Source fashion, are being supplied to system groups”. –Manager  

Legitimation. “[...]say you have multiple groups with the past of 
developing the software on their own island. Now, we suddenly say that we 
have to work together [...] It is an idea that needs some selling. It is not 
automatically done. It is not happening in one go. You can talk about it, we 
need to do this, we need to work for Inner Source.” –Manager. OSS 
technology (tools and practices) was seen a way to make this change more 
legitimate to the managers and developers. “In our [case] community is not 
Open Source but much more Inner Source. I mean, what our model is used 
internally within [our company]?” –Program Manager.  

Already from the beginning, OSS changed meaning, becoming Inner 
Source, which meant the term was renegotiated to fit the organisational needs 
of the company. “On a number of aspects we have a quite formal 
relationship. We have steering groups, we make agreements, we make project 
plans, we give commitments to project plans.” –Program manager. The 
application of the OSS term variant was now one of a wider visibility of 
source code between the central group and the business units, but also new 
division of labour and costs between the units. Work was divided according 
to the idea that the central group would be responsible for the platform and 
business units for the developed add-ons, customised and configured the 
software. The development cost were divided according to contracts between 
central unit and business units. “Yeah, it’s an agreement per year, upfront 
principles. We agree for next upcoming budget year and then on monthly 
basis we get our investment money”. –Program manager, Central group. 

Mobilisation. The change was managed in a rather top-down fashion and 
the benefits were captured in many cases in business units rather than the 
central unit.“[The community way of working] is most beneficial in business 
units where there are a lot of different groups who can contribute or use the 
contribution. It is a way of improving the components which can be used by 
others, or we think that others can contribute.” –Business architect. The 
benefits of a more distributed setting would result in know-how being closer 
to the business units and thus for the business units to have more say in how 
the software was developed.  

At the time of the interviews, the company was building a new system to 
allocate the development and maintenance costs between units in a more 
“just” way. The previous method of “component tax” was not considered 
adequate and the company was building an internal software marketplace to 
share the assets in a better way. This might also serve organisational needs to 
determine the cost of the different software assets, should they be, for 
example, later outsourced. 

It is not difficult to track down how the term OSS changed as it became 
work practice in an organisation – and how this renegotiation also changed 
the organisation. The Raymond’s ideals of meritocratic contribution and 
voluntary task assignment morphed into contracts between business units, 
budget negotiations and steering group meetings. We don’t really have a 
community as such. Of course we have a community in a sense that a lot of 



people working…but it is not an active [OSS] community in a way that you 
probably mean it. –Manager. 

4.2 Case 2: Implementing more Open Project 
Hosting and OSS Practices Internally 

The case 2 company is a mobile communications company employing about 
60000 people. It's customer base consists mostly of operators. The company 
focuses on the production and maintenance of telecommunication network 
equipment. The iSource source code portal was created in 2003. The portal 
enables the use of OSS practices and tools within the case organisation. It 
includes version control tools (Subversion, CVS), issue tracker, mailing lists 
(Mailman), forums, and file management.  

Interpretation. Originally iSource was a response to the growing need to 
address the issues related to hosting and the reuse-support of software assets. 
“But it’s very difficult to find source code that you really can reuse. And if 
you take it somewhere, will it really work? If you do it by yourself you know 
how it works. [...] there must be really clear interfaces that you can trust.” - 
Senior R&D engineer iSource portal was intended to (1) build on the 
familiarity the developers already had with OSS tools and practices,  (2) 
streamline and standardize a transparent set of tools and software 
development practices, (3) enhance collaboration across units made possible 
by the wider visibility of the source code. ”Everything that we are putting 
into iSource is ours. It can be used inside the company freely, but nobody else 
can use it.” –Service Manager 

Currently, iSource’s active projects are counted in the hundreds and active 
users in the thousands. The projects attract global participation. Business 
units value the version control, quick set-up and the possibility to support 
agile projects. There are several ways to use the portal. Common examples of 
use include (1) a transparent version control tool, (2) an internal reuse 
marketplace for software asset showcasing, and (3) a set of tools supporting 
collaborative software development practices.  

Legitimation. When examining after the fact how the events had 
unfolded, it is clear that iSource was meant to test the benefits of open source 
inside one large organisation. We are using these version control tools from 
[OSS world] and also other tools [...] but when it comes to the software that 
we are selling then it is Inner Source. The most important thing is to share 
the information what we have implemented inside our company. It is then 
easy to see if someone has already implemented a feature and it would also 
be easy to take these features into other projects.” –Service Manager. The 
interpretation of the tool was based on it enabling access to certain good sides 
of OSS, namely reuse and collaboration. It was legitimated as a proven light-
weight portal with certain benefits to those projects and developers who were 
willing to use it. [...] but the end customer is not really interested in how we 
deliver the product, so they are not interested if we are using some Open 
Source, iSource or whatever, they just want to have good quality product. - 
Senior R&D engineer.  



Also price and familiarity were mentioned as reasons to favour an OSS 
inspired solution. OSS it is of course cheaper for us to use (CVS and 
Subversion). Engineers that are coming in are quite familiar with OSS tools 
since they have used them in universities or in OSS projects.” - Senior R&D 
engineer  

Mobilisation. The mobilisation was also based on voluntarism, but an 
internal service unit was created to give iSource institutional credibility and 
to promote it internally. This unit has a steering group, budget and it serves a 
key user network consisting of iSoure users all around the case company. The 
business units fund the service unit based on the use of the iSource portal. At 
the time of the interviews, SLAs (Service Level Agreements) were negotiated 
with the business units and iSource.  

The organization was a light-weight environment compared to some of the 
more rigid development tools in use at the company. Business units have the 
autonomy to select whether to use iSource or other internal or external 
services for their projects. This resulted in a service being driven bottom-up 
from business units and by individual developers. “We need to have some 
named persons behind this service who have the money to pay for the service 
internally. This has been difficult for a global service, because the interest is 
coming bottom up. There is no top management layer making decisions to use 
to the tool.” –Global Concept Owner 

If the answer to the question of what is OSS is determined based on solely 
on the software license, then iSource is not OSS. However, it is clearly 
inspired by OSS technology. Technical infrastructure that supports the 
development process is an almost exact copy of the development process 
used in OSS communities on the internet. Instead of OSS, the respondents 
tended to talk about inner source and so we see a development similar to the 
first case. Under negotiation the term morphed from a published source code 
and community driven open collaboration into internal collaboration based on 
development and maintenance costs divided between business units, with 
some added visibility of the source code. I think that our community is only a 
set of projects. –Global Concept Owner. At the same time, a new software 
production organisation reflecting certain open source practices inside 
organization was formed. But, as one respondent noted, unlike in Raymond’s 
Cathedral and Bazaar “Ultimately, we are paid by work hours” - Senior R&D 
engineer 

4.3 Case 3: Controlling the Development of an 
OSS Tool 

 
The Case 3 company (as noted in Case 1) employs approximately 31,000 

people. The customer base consists of medical professionals and patients. The 
company is developing a DICOM (Digital Imaging and Communications in 
Medicine) validation toolkit named Dvtk. The DICOM standard makes 
interaction between different medical hardware and software possible and the 
validation toolkit is used to test the compliance. A rather autonomous 



business unit of about 2.5 people was dedicated to the development of the 
testing tool. 

Interpretation. DVTk software was originally launched and developed in 
2000 and was originally a proprietary software package developed by two 
different companies as proprietary software. However, the proprietary license 
failed, due to fears of partiality. The problem was addressed by publishing the 
source code of DVTk under an LGPL-license as OSS. The term OSS offered 
interpretation for the publication of the software and a starting point for a 
collaboration activity, which aimed to gather outside contribution to the 
development of the testing tool. I think the most important benefit 
[community brings] is that users use the application and provide feedback 
about bugs they find. - Project Leader 

Legitimation. OSS provided legitimation by showing how the logic of 
collaboration works in some cases outside a company. The company was 
moving in a similar direction although it had encountered problems in 
attracting outside contribution. Currently the most decision making is still 
done on…on non-Open Source of way of working. –Project Leader  

The user community could be divided into two groups: those who were 
the company’s customers or using the testing tool and those who were not. 
The feature requests of the first group seemed to have a priority. 
[Development] is driven by the requests of new functionality from our user 
community. If there is someone who really is expecting, or is a need for 
certain solution, then at that moment we built new alpha release.” –Project 
Leader Currently most of the communication with the users happened via the 
projects web-site, which was also maintained by the same business unit. “The 
website is where the community comes together. They can ask questions on 
the forum, they can download the software, they can download [software]. If 
they find a problem they submit problem reports. –Software engineer   

Mobilisation. The organization was mobilised with a promise that if 
certain steps were taken, the project would gain outside contribution and thus 
better quality and lowered development costs. These steps included 
organizational issues like moving and creating development discussion 
channels to the voluntary developers and creating incentives for outsiders to 
participate. It should be noted that this process was still ongoing and 
currently almost all development work took place in the original companies 
that had established the network. We don’t have anyone else outside these 
companies that is constantly working on (our product] –software engineer 

The business unit had a steering group, which decided on the strategic 
issues off-line. ”We have within the project a steering committee in which the 
main contributors come together. In the steering committee it is decided, 
what we put related to functionalities in the next beta release.” -Project 
Leader The funding for the unit came from the different business units, who 
were benefiting in sales from the offered testing suite. 

The publication of the source code led to several changes in how the 
software production was organised. The change was a change of role from a 
provider to a joint-developer participating in the community providing the 
software. The company aimed to ultimately shift most of the development 
and maintenance to an active user community. The developer community is 



mainly driven by the original initiators and contributors who serve as 
gatekeepers. 

The term OSS was used to describe software production which changed, 
during the negotiation, from OSS as a voluntary based open joint 
collaboration to the direction of a project with a clear management rationale 
and developed mainly by company employees. The source code is published, 
though it is mainly provided, hosted and controlled by company employees. 
 

4.4 Case 4: Starting Own Start-Up Company Based 
on OSS Development and Consulting 

 
Dulo (pseudonym) is a small Finnish FLOSS firm that specializes in 

developing knowledge management and collaborative learning software, 
related training, and consultancy. Founded in 1998, company has its 
headquarters in Helsinki. The company employed three at the time of the 
interviews, but has grown since. Dulo’s revenue model is based largely on 
service contracts with public organizations. These contracts cover software 
updates, new feature development, support, and training.  

Interpretation. The main software product of the company is licensed 
under OSI-approved license and thus the founders did not hesitate to 
proclaim Dulo as a 100% OSS company. What about the motivation? The 
founders thought “starting a company would be a good way to earn some 
money as enterpreneurs. We started early by providing training (for example 
Microsoft Office) to schools.” –CEO. Originally the company was engaged in 
hobbyist web design and selling of educational services to schools. 

The original choice to base company’s revenue model on OSS and focus 
on public sector schools happened almost without elaborate planning. “We 
had been using Linux internally and the server solutions we offered were  
based on Linux. Our LAN-services included some of our own technology. We 
got interested about learning environments and to offer more services to 
schools and thus got into that business.” –Marketing manager. It should be 
noted that although the source code is published, most of the expertise 
remains in Dulo, whose developers also make most of the development 
decisions.  

Legitimation. There are several different justifications for the choice of 
the licensing scheme and thus the revenue model. “We decided to make our 
own [OSS] product. Originally Linux was only a tool for us as starting 
software entrepeneurs. But later, when we got more interested about then 
entire philosophy, we enrolled to the free software movement. We were 
reading Eric Raymonds Cathedral and Bazaar in 1999 [about OSS] and 
started thinking how we could build our business model on top of that.” –
CEO The respondent clearly identifies the link between Raymond’s book and 
how they built their business.  

“We considered if we could  release it as OSS. But even in the beginning 
we saw that we could not compete with the big players who were also moving 
into eLearning.” –CEO. The big competitors, increasing development cost 



and gaining credibility in the marketplace all pushed towards drawing on a 
larger pool of external resources. Respondents agreed that they probably lost 
some licensing fees because of the license decision, but “license fees form a 
very small part of the actual price of the product or the total cost of 
ownership.” –Marketing Manager. 

Mobilisation. In the case of a small start-up company, it is easier to make 
dramatic changes in the business model, especially if the software product is 
new. There is a less established user-base and hierarchies than in more 
established companies. The number of people who need to accept the changes 
is quite small and consists of enterpreneurs, other founders and of course of 
customers paying for the software product. “More ideological reason is that 
we have gotten into this Open Source spirit. As a software developer, you 
cannot close out ideological views, although business comes first. We would 
not have gotten involved and continued building our business on OSS, if we 
would not have believed in it!” –CEO. Another group whose reasons and 
benefits related to OSS were discussed were the software company’s 
customers. Not all of our customers share the OSS spirit. Some just think: 
Hahaa, we are getting this for free! But well, that is not the point actually. 
Someone still of course has to make the effort to make the free software. The 
point is not to make everything free. –Marketing Manager 

The case shows an example of how Raymonds (1999) ideas of OSS travel 
and are carried over to the company’s software production. But even in the 
case of a small start-up company we can identify some renegotiation over the 
term and clear link between the term and how the software production 
organisation is changed. There is a clear idea that the company controls the 
development, draws on external resources, and ultimately manages the 
expertice to develop the software. When we compare how this small 
company views OSS as opposed to some of the other cases, we can clearly 
see that they have a common origin, but their application is very different. 

5 Discussion 
The four empirical cases show how the term OSS is carried to 

organisations. When entering an organisation, there is local renegotiation 
over the term. We claim that this renegotiation is linked to the resulting 
changes in the case organisations.  When the OSS term is carried into 
software production organisations practice, we can see the resulting 
organisational changes as indicated in the table below (Table 4).  

 
Case OSS term 

renegotiated 
Organisational changes 

Case 1: 
Inner 
Source 

Inner source Distributed software 
maintenance in the business 
units and increased co-
development 

Case 2: 
Isource 

iSource Source code portal, internal 
service unit, OSS technology 
used internally 



Case 3: 
Dvtk 

De-facto 
standard 

Separate business unit 
developing and maintaining the 
test software 

Case 4: 
Dulo 

OSS 
entrepreneurshi
p 

New software company, OSS 
published software product, 
Network relying on outside 
contribution and competitive 
edge based on the know-how. 

 
Table 4: The link between renegotiation and organisational change 

 
Furthermore, we claim that the engine of this change is a collective 

cognitive view, an organising vision. In order to explain what happens in 
organisations, our analyses used the three aspects of organising vision: 
interpretation, legitimisation and mobilisation. The case findings are 
summarised in the table below per case basis (Table 5).  

 
Case OSS 

term 
renegotia
ted 

Interpretation Legitimation Mobilisation 

Case 1: 
Inner 
Source 

Inner 
source 

Changing 
internal 
software 
development 

More distributed 
and collaborative 
development 

Business units 
gain more 
control 

Case 2: 
Isource 

iSource Hosting and 
joint practices 
inspired by 
OSS  

Increased 
visibility of the 
software assets 
internally 

Some 
developers and 
projects require 
the tool based 
on its merits 

Case 3: 
Dvtk 

De-facto 
standard 

Company 
providing a 
standard to a 
field  

Company needs 
to do it anyway. 
Drawing on 
external 
resources makes 
it cheaper. 

More open and 
autonomous 
development 
reduces fears of 
partiality. 

Case 4: 
Dulo 

OSS 
entrepren
eurship 

Company 
providing 
public source 
code and 
services on top 
of the software
  

OSS has 
business benefits 
related to price, 
resources and 
competition. 

Groups of 
founders and 
customers 
agree on some 
of the merits. 

 
Table 5: Cases summarised 

For an academic audience, the results indicate that the renegotiated term 
and organisational change are intertwined, especially if we start from the end 
results and track the path of the term. Analysis of the cases shows how OSS 
has several local meanings in organisational software production and that the 
process of the adoption of OSS can follow different paths. In other words, the 



word is fluid. This fluidity is probably for a reason: it is easier to negotiate on 
the meaning of an ICT innovation, if its meaning is a bit vague.  

However, analytical scientific work benefits from taking a more critical 
approach towards the term 'OSS technology' when enacted in a certain 
organization and how it directly relates to the changing software production. 
OSS should not be defined in simplistic terms in academic discussion.  

To practitioners the paper shows empirically that organisations can 
approach OSS technology in different ways. One of the key issues seems to 
be that the success of the diffusion of technology is related to the 
renegotiation of the term itself. Thus we hesitate to promote, or criticize, the 
leveraging of OSS technology in general terms, without first engaging the 
organisation to find out what OSS technology could actually mean to an 
organisation. The examples of leveraged OSS technology offer valuable 
lessons. 

This paper has several important limitations. The analysis part is limited to 
the process of renegotiation of the term OSS and describes the organisational 
transformation quite briefly. This is in part because showing in detail how the 
organisational change unfolds is, by necessity, quite difficult, especially if we 
are following how one buzz-wordish ICT innovation carried into use in huge 
multinational environments characterised by hierarchical constrains, paid 
development work and constant flux. There still remains work to do in 
describing what the structural changes are in detail, and how the software 
production practices and company revenue streams actually change with 
more open development. 

Another avenue for future research would be to focus more on contractual 
arrangements in loose hierarchies and organisations. This is because, 
ultimately, the IS community’s socio-technical and Scandinavian engaged 
perspective (Mathiassen and Nielsen, 2008) is lacking in many OSS related 
discussions and thus our field is not heard when it should be. OSS 
discussions are often driven by personal software development experience on 
one hand and macro-level (societal) understanding of the phenomenon on the 
other. Heated (political) discussions about the benefits and drawbacks of OSS 
for a given society do not drive the discussion forward as well as careful 
analyses of the changed software practices in commercial organisations, 
especially if these generalised personal experiences or sometimes anecdotal 
macro-level explanations are accepted at face value to define OSS to be 
somehow opposed to more closed development practices. 

Acknowledgments 
Acknowledgements omitted for reviewing purposes. 

6 References 
 



Alvesson, M., and Karreman, D., “Varieties of discourse: On the study 
of organizations through discourse analysis,” Human Relations, 
53, 2000, pp. 1125-1149. 

Astley,G., and Zammuto, R., “Organization Science, Managers, and 
Language Games,”Organisation Science, (3:4), 1992,  443-460. 

Bauwens, M., The Political Economy of Peer Production. 
http://www.ctheory.net/articles.aspx?id=499, 2005. 

Benkler, Y., The Wealth of Networks, Yale University Press, 2007. 
Castells, M., The Rise of the Network Society, (2nd ed.),  Blackwell, 

2010. 
Dahlander, L., and Magnusson, M., “How do Firms Make Use of Open 

Source Communities?,” Long Range Planning (41), 2008, pp. 
629-649. 

DiMaggio, P., and  Powell W., “The Iron Cage Revisited: Institutional 
Isomorphism and Collective Rationality in Organizational 
Fields,” American Sociological Review 48, 1983, pp. 147-160. 

Dinkelacker, J., Garg, P., Miller, R., Nelson, D., Progressive Open 
Source. In the Proceedings of ICSE 2002, 19-25.5.2002, pp. 
174-184. 

Eccles, R.G. and N.Nohria, Beyond the Hype: Rediscovering the 
Essence of Management, Harvard Business School Press, 
Boston, 1992. 

Essers, C., “Reflections on the Narrative Approach: Dilemmas of 
Power, Emotions and Social Location While Constructing Life-
Stories,” Organization, 16:2,  2009, pp. 163–181. 

Fink, M., The Business and Economics of Linux and Open Source. 
Prentice Hall, New Jersey, 2003. 

Fitzgerald, B., ”The Transformation of Open Source Software,” MIS 
Quarterly, 30:3, 2006, pp. 587-598.  

Gacek, C., and Arief, B., “The Many Meanings of Open Source,” IEEE 
Software, 21:1, 2004,  pp. 34-40. 

Garud, R., Hardy, C., and Maguire, S., Organization Studies 28, 2007, 
pp. 957-969. 

Greenwood, R., and Hinings, C., “Understanding Radical 
Organizational Change: Bringing together the Old and the New 
Institutionalism,” The Academy of Management Review, (21:4), 
Oct., 1996, pp. 1022-1054. 

Hauge, Ø ., Sørensen, C.-F. , and Conradi, R., “Adoption of Open 
Source in the Software Industry,” In Eds. Russo, B.,  Damiani, 
E.,  Hissam, S.A., Lundell, B., and Succi, G. Open Source 
Development Communities and Quality Working Group 2.3 on 
Open Source Software, volume 275 of IFIP International 
Federation for Information Processing, Springer, 2008, pp. 211-
222. 



Hecker, F., “Setting Up Shop: The Business of Open-Source 
Software,” IEEE Software, (16:1), 1999. pp. 45–51. 

Hedstrom, P., and Swedberg, R., “Social mechanisms: An introductory 
essay,” In P. Hedstrom, R. Swedberg (Eds), Cambridge 
University Press, Cambridge, 1998, pp. 1 - 31. 

Klein, H. K. and Myers, M., “A Set of Principles of conducting and 
Evaluating Interpretative Field Studies in Information 
Systems”, MIS Quarterly, 23:1, 1999, pp. 67-94. 

Lanzara, G. “Shifting stories: Learning from a reflective experiment in 
a design process” In: SCHON, D. A. (Ed), The reflective turn: 
Case studies on practice and in practice. Teachers College 
Press, New York, 2001.  

Linden, F., Lundell, B., and Marttiin, P., ”Commodification of 
Industrial Software – a case for Open Source,” IEEE Software, 
July/August, 2009. 

Mathiassen, L., “Reflective systems development,” Scandinavian 
Journal of Information Systems, (10:1+2), 1998, pp. 67-118. 

Mathiassen, L., and Nielsen, P. A., “Engaged scholarship in is 
research—the Scandinavian case,” Scandinavian Journal of 
Information Systems, (20:2), 2008. pp. 3-20. 

Meyer, J. W., and Rowan, B., “Institutionalized Organizations: Formal 
Structure as Myth and Ceremony,” American Journal of 
Sociology, 83(2), 1977, pp. 440- 463. 

Østerlie, T., and Jaccheri, L., A., “Critical Review of Software 
Engineering Research on Open Source Software 
Development,” In Proceeding of the 2nd AIS SIGSAND 
European Symposium on Systems Analysis and Design, 
Gdansk, Poland, 5.6. 2007.. 

Osterwalder A.,  Pigneur, Y., and Tucci C., “Clarifying business 
models: Origins, present, and future of the concept,” 
Communications of the Association for Information Systems, 
16, 2005, pp. 1-25. 

Raymond, E., The Cathedral & The Bazar - Musings On Linux And 
Open Source By An Accidental Revolutionary, O’Reilly 
Associates, Sebastopol, CA, 1999. 

Rosenberg, N. Exploring the Black Box. Technology, Economics, and 
History. Cambridge University Press, Cambridge, 1994.  

Perens, B., “The Open Source Definition,” in Open Sources: Voices 
from the Open Source Revolution (Eds. Dibona, C., and 
Ockman, S,), O’Reilly Media, Sebastopol, CA, 1999. 

Scacchi, W., “Free/Open Source Software Development: Recent 
Research Results and Methods,” in Zelkowitz, M. V. Advances 
in Computers, Academic Press. vol. 69, 2007, pp. 243-269. 



Scott, W.R., Institutions and Organizations, Sage, Newbury Park, CA, 
1995. 

Shaikt, M., and Cornford, T., “’Letting go of Control’ to Embrace 
Open Source: Implications for Company and Community,” in 
the proceedings of HICSS2010, January 5-8, 2010, Kauai, 
Hawaii. 

Sharma, S., Sugumaran, V. and Rajagopalan, B., “A framework for 
creating hybrid-open source software communities,” 
Information Systems Journal, 12:1, 2002, pp. 7-25. 

Swanson, B., and Ramiller, N., “The Organizing Vision in Information 
Systems Innovation,” Organization Science, 8:5, 1997, pp. 458-
474. 

Walsham, G., “The emergence of interpretivism in IS research,” 
Information Systems Research, 6(4), 1995, pp. 376–394. 

Weber, S., The Success of Open Source, Harvard University Press, 
Cambridge, MA, 2004. 

Weick, K., Sutcliffe, M., and Obstfeld, D.,“Organizing and the Process 
of Sensemaking,” Organization Science, (16:4), 2005,  pp. 409-
421. 

Wesselius, J., “The Bazaar inside the cathedral; Business models for 
Internal Markets,” IEEE Software, 25 (3), 2008, pp. 60-66. 

Žižek, S., First as Tragedy Then as Farce. Verso, London, 2009. 



 

 
Paper II: Lindman, J., Rossi, M. and Marttiin, P. (2010). 
“Open Source Technology Changes Intra-Organisational 
Systems  Development  –  A  Tale  of  Two  Companies”.  
Proceedings of the European Conference of Information 
Systems, Pretoria, South Africa, 7-9.6.2010. 
 



OPEN SOURCE TECHNOLOGY CHANGES INTRA-
ORGANIZATIONAL SYSTEMS DEVELOPMENT – A TALE OF 

TWO COMPANIES 

Lindman, Juho, Helsinki School of Economics, Runeberginkatu 22-24, 00101 Helsinki, 
Finland, juho.lindman@hse.fi 

Rossi, Matti, Helsinki School of Economics, Runeberginkatu 22-24, 00101 Helsinki, Finland, 
matti.rossi@hse.fi 

Marttiin, Pentti, Nokia Siemens Networks, Linnoituskatu 6, 02600 Espoo, Finland 
pentti.marttii@nsn.com  

 

Abstract 

This paper explores how two organizations have changed their software development practices by 
implementing Open Source technology. Our aim is to understand the institutional changes needed in 
and emerging from this process. The paper develops a conceptualization building on the insights of 
entrepreneurial institutionalism and concentrating on the changing relationships of organizational 
groups in the areas of reward and communication. We identify the links between the 1) emerging yet 
embedded technology and 2) the underlying institutional reward and communication structures. In 
terms of contribution, we propose to move the Open Source 2.0 research agenda forward by 
concentrating empirical work on the nuances of institutional change that open source brings forward 
in large hierarchical organisations. 

Keywords: Open Source, Entrepreneurial Institutionalism, Organizational Change. 

 



1 INTRODUCTION 

In this paper we study the institutional transformation created by the implementation of Open Source 
Software (OSS) technology (practices and tools) within traditional development organizations. By 
OSS technology we don't mean the license of the development software, but the common 
infrastructural tools used in OSS communities. The tools include concurrent versioning systems, issue 
trackers, email-driven and archived communication, and web presence, which all support software 
development practices similar to OSS in creative commons, but in our cases within a single 
organization.  

The authors were involved in a research project on software production structure change in two large 
international organizations. During the project we observed that previous research on how open source 
technology is institutionalized failed to account for the process we were part of. OSS literature often 
assumes a “bazaar” of development in a virtual organization characterized by loose control, openness 
and community orientation. However, inside a big organization, where contributions came from 
employees or subcontractors the phenomenon appeared to be quite different. The companies 
introduced OSS practises and fostered the creation of communities, because it helps to create quality 
products. This was believed to be caused by looser structure, more open documentation, feedback 
from the user community and the introduction of agile practises. These development arguments were 
corroborated by business arguments of partial outsourcing to the developer community, cost savings 
from using common (sometimes external OSS) platforms and the possibility of creating industry 
standards through wide availability of the finished products. 

 The identified phenomenon is important because open source technologies are, 1) adopted in large 
organizations based on only partial understanding of the nature of the institutional change they enable, 
drive, or even necessitate, and 2) are not adopted in organizations because their consequences are seen 
to include unnecessary or unknown risks. We believe that building a conceptualisation based on 
extensive field work will enable better evaluation of these technologies and their contextual 
appropriateness.  

Therefore our research questions are:  

 How can implementing OSS technology be leveraged to change development practises?  

 What are the institutional effects of these changes? 

To answer these questions, we analyse two implementations of OSS technology within large 
corporations. Our goal is to build a conceptualisation of what happens in a hierarchical systems 
development organization when OSS technology is adopted1. Informed by the institutional theory on 
enrolling group interests, we seek to identify the inertia caused by old institutional forces and the 
changes in reward structure and the developer and manager mindset needed to realize the benefits of 
more open development. Furthermore, we try to identify the incentives needed to institutionalize the 
new practises.  

This paper is organised as follows. In the second section we review relevant literature on OSS 
technology. In the third section we develop a conceptualisation informed by institutional theory and 

                                            
1 One of the main reasons for companies to adopt OSS technology is their interest in improving software reuse 
and re-development. At the same time companies are adopting distributed and virtual teamwork practises and 
changing their software development processes from waterfall to iterative, thus adopting agile practises (about 
traditional, agile and open source practises in Barnett, 2004). These two changes favour the adoption of OSS 
tools, but failed to address the challenge of reuse.  
 



especially entrepreneurial institutionalism to explain the transformation. The fourth chapter is about 
the research approach used. Case findings then demonstrate the links between the embedded 
technology and the communication and reward structures. In the final section we conclude how OSS 
technology is leveraged in the case companies' systems development and what the accompanying 
institutional changes are. 

 

2 REVIEW OF LITERATURE 

OSS is used more and more as an integral part of all kinds of products (Scacchi, 2007). The use of 
Open Source Software -inspired (OSS) development processes is gaining foothold in large commercial 
organizations. OSS is traditionally defined as software licensed under an OSI certified software license 
(Raymond, 1999; Välimäki, 2005). OSS practices are practices that emulate how development takes 
place in an OSS community (technical infrastructure enabling communication, reward structures, 
supporting work and knowledge transfer). OSS practices often include the use of email (and the 
archives thus available) as the primary communication tool , availability of the code from a source 
code repository, web presence (for example Sourceforge), use of CVS (Concurrent Versioning 
System), and some kind of issue tracker. 

OSS has gained industrial credibility as a development style based on distributed and global practices. 
OSS development is often characterized by a modular software architecture, distributed global 
development teams, meritocracy, voluntarism, often elaborate decision making mechanisms, and the 
technical and legal openness of the code which enables code inspection, bug reporting, and 
maintenance (Fitzgerald, 2006; Fink, 2003). In the first phase of OSS commercialisation companies 
were interested in ways to directly benefit from the revenue stream created by OSS. Now, in the 
second phase commercial actors are reviewing ways to leverage OSS products and practices in 
hierarchical organisations (Fitzgerald, 2006). The main difference between traditional (closed source) 
and OSS development is that latter can sustain communities as the source code is available. The 
source code might belong to its developer or the community in a way that prevents traditional software 
license sales (Dahlander&Magnusson, 2005). However, the availability of the source code outside the 
organisation  is  not  a  prerequisite  on  implementing  practices  similar  to  OSS  inside  a  company  (for  
example, Fitzgerald, 2006). 

Organizations are struggling to balance the possibilities of using OSS to the challenges of maintaining 
OSS systems. The use of information goods created based on voluntarism and not controlled by the 
providers poses fundamental questions about the sustainability of the solutions. OSS has been 
successfully implemented in different organizations (Hauge, 2008; Lundell, 2006; Ghosh, 2002). 
Research on OSS has contributed on boosting OSS business viability by providing “generic business 
models” (Hecker, 1999) or even “the OSS business model” (Raymond, 1999). While benefiting the 
understanding of the phenomenon, these research efforts were directed to the heterogeneous OSS 
research audience consisting of academics, enthusiasts and business people (Ziemer et al., 2008).  

Inner source (Linden et al., 2009; Lindman, 2008) and corporate source (Dinkelacker, and Garg, 2003) 
are words used to describe OSS practices limited inside companies. Often the implementation of OSS 
starts with these tools, but as “tools are not only tools” their productive application might require 
fundamental changes in software development (Sharma, 2002). Inside a large organization (Wesselius, 
2008) or in a business-to-business setting (Fink, 2003) the fundamental differences between OSS and 
traditional software are smaller than inside small software companies. The license and corporate 
policies and processes define how software is acquired, procured, installed, used, maintained and 
discarded. Furthermore, company guidelines, contracts and/or licenses also define how software is 
developed, remuneration acquired and benefits divided (Välimäki, 2005). 

 



3 CONCEPTUAL FRAMEWORK 

3.1 Institutional theory 

Institutional theory views institutions as “multifaceted, durable social structures, made up of symbolic 
elements, social activities, and material resources” (Scott, 2001, p. 49). Institutional structures, such 
as reward and communication structures, are set in motion by regulative, normative and cultural 
elements or pillars (Scott, 2001). Institutional theory (Powell&Dimaggio, 1991) has been 
accommodated to explain change (Greenwood&Hinings, 1996), even though it has been criticized for 
not mainly focusing on “convergence” (similarity) (Buckho, 1994).  

Institutional theory underlines organizations “relationship” between its normative context and the 
groups' (stakeholders) varying interests inside the organisation. Functionally different groups in 
organisations are not neutral towards each other, but instead the groups' technical boundaries are 
reinforced cognitively (Greenwood&Hinings, 1996). Usually groups inside organisations compete for 
the allocation of resources and aim to transform the division to their benefit. Institutional theory has 
used the concept of translation to demonstrate the link between meaning and power (Czarniawska, 
1996). Translation supposes that different actors are enrolled in order to make changes. Enrolling 
actors is based on a premise that practices are negotiated locally and become institutionalized as their 
meanings become shared in organization and across wider organizational fields (Zilber, 2006, 283). 

Our approach suggest that while normally the actors and proponents of organizational change truly 
subscribe to OSS inspired values for the better, “the OSS spirit”, they are also renegotiating the exact 
meaning of OSS to fit the organisational context (Ziemer et al., 2008). Thus OSS is not a “mere 
buzzword”, but a justification to an organizational change, an organizing vision (Swanson&Ramiller, 
1997). The exact meaning of adapted OSS is renegotiated and implies changes in the allocation of 
resources and the division of work between units. 

3.2 Entrepreneurial institutionalism 

Research in institutionalism which focuses on individual and shared agency is called entrepreneurial 
institutionalism. It is a response to the call for institutional theory to focus more on agency and 
organizational change (Garud et al., 2007). Work on institutions has traditionally focused on 
continuity (Garud, et al, 2007, p. 960). In contrast, work on entrepreneurship has focused on change. 
Inside institutional theory, this contrast of structure and agency has been identified as the paradox of 
embedded agency (Seo& Creed, 2002, 226; DiMaggio&Powell, 1991). One solution to this paradox is 
to view structures as platforms for change rather than constraints (Garud& Karnoe, 2003).  

Any new technology is a change in status quo with winners and losers. The process of understanding 
different interest of the different groups to enrol becomes essential to understanding how institutions 
evolve. The meaning of organizational visions (Swanson&Ramiller, 1997) is renegotiated within 
boundaries of a certain language community and draw on local discursive resources.  

OSS technology is an organizational tool that stresses local issues regarding software production in the 
context of a certain organization. OSS also provides ways of addressing these issues. It can be seen as 
a metaphor used in an organisation making sense of its changing business environment to be able to 
operate in it (Weick, 1995). OSS often offers a promise of a more agile development approach, more 
contribution, more open discussion and less hierarchy in software development. In short, it poses 
certain justification, reasoning and enrolment opportunities to a decision-maker faced with difficult 
decisions concerning reorganization or introducing a new organizational innovation (Van de Ven, 
1993).  

We draw on the institutional entrepreneurship lens to identify how the meaning of OSS technology 
changed during implementation and how our two organizations evolved when OSS technology was 



institutionalised. We aim to provide insight on the process on OSS technology institutionalisation and 
the accompanying underlying changes. In order to explain the institutionalisation of OSS technology 
we focus on two structures in the companies: the reward structure and the communication structure. 
We do not claim that these are separate entities, but interwoven sides of the same structure.  

We chose the different organizational groups to highlight their different interest and incentives in the 
process. The different selected groups (stakeholders) whose interest need to enrolled are 1) the 
technology provider unit (the central group), 2) the technology user unit (business unit), and 3) the 
developer/users. 

 

4 RESEARCH APPROACH 

The nature of our research problem, human behaviour and interaction, led us to use a qualitative 
research approach (Seaman 1999; Klein and Myers 1999). We chose a case study approach (Wynn 
2001), and adopted the principles of interpretive case studies (Klein and Myers 1999). The two cases 
were  selected  among  the  partner  companies  of  the  ITEA-COSI  project.  ITEA-COSI  was  a  joint  
academic and industrial project focused on software commodification. 

As the main data collection method, we applied semi-structured thematic interviews. We interviewed 
3 persons per case organisation in two occasions over a 2-year period. We stopped interviewing after 
the 10th interview. The first half of the interviews was gathered in 2006 and the second round of 
interviews was conducted in 2008. Each interview lasted about one hour and focused on the different 
elements of OSS implementation inside the companies. 

The interviewed people represented three different organizational groups, one person from the service 
provider group, one from the service user group and additionally one from developer/user group. We 
chose managerial respondents from the business and central groups to gain an understanding of the 
management rationale for introducing OSS technology. The developers were included to bring in the 
user viewpoint, although we speculated that the user viewpoint would not yield contrasting accounts 
concerning the reward and communication structures.  

One of the researchers works in one of the case companies and is able to reflect on the organizational 
context. We also used secondary data obtained in the course of the industry research project such as 
project descriptions, manuals, portal usage data, documentation and visits to the sites to familiarize 
ourselves with the setting. 

We analysed the interviews by first recounting the organizational history and change as described by 
the respondents. We circulated the transcribed interviews back to the respondents, so they could 
correct themselves should they have been misinterpreted.  

The systematic analyses were based on recurring themes and pattern matching of themes between 
different interviews and categorizing the data according to the themes (Strauss and Corbin 1990). We 
focused on the themes of how the respondents talked about 1) instituting new technology, 2) changes 
in the communication media and the reward structures between units and individuals, and 3) changes 
on the different ways the respondents described their group involvement. The authors extracted all the 
instances where the respondents talked about our themes and report the findings in this paper. 

We  classified  the  findings  into  three  areas:  1)  how  OSS  technology  is  renegotiated  to  fit  the  
organizational context and how OSS infrastructural tools are used inside companies, 2) how the 
respondents saw the change between business units and central unit, and 3) how the respondents 
described the reward and communication structures as both a platform and driver of change. 



5 ANALYSIS OF THE CASES 

5.1 Philips Inner Source 

The offering of Philips Medical Systems (PMS) consists of a wide variety of medical systems, for 
example X-ray technology, ultrasound, magnetic resonance and information management. The factory 
preinstalled software is customised and configured, but not sold separately. PMS normally maintains 
the software for 10 years, which often leads to a large installed base and makes large changes very 
complicated. PMS is maintaining and developing a large software base including a set of software 
components reused in all business units.  

Historically components were developed in a central software group (Wesselius, 2008). In this 
configuration it was difficult to manage the different development activities and unaligned roadmaps. 
Lack of required domain knowledge in the central group made asset reuse difficult.  

To solve these two issues, the business units started to contribute to developing new software assets. 
This would enable the business unit with the best domain knowledge to develop the software and then 
contribute it to a shared portfolio. Business units would not have to wait for the central group to 
develop the (often rushed and high priority) asset. OSS technology (tools and practices) was 
introduced in PMS to legitimate the change.  

The division of work was based on the idea that the central group was responsible for the common 
platform and business units developed add-ons, customised and configured the software. Components 
are distributed via intranet, email, ftp and CD. Business units choose the components for use, 
customization and configuration. Different groups offer services to each other (for example support 
and maintenance) based on agreements between internal customers. Developed software was also 
made available to other business units. One of the main benefits of a common platform is that it would 
avoid duplicate work and promote the reuse of software. Co-development activities with business units 
and central group were favoured in order to benefit from organizational learning.  

There were also certain risks involved mainly dealing with the distributed setting. The central group 
would become more dependent on not only one business unit schedule, but several at the same time. 
The overall quality would be more difficult to control, if business units would only make stand-alone 
add-ons. Business unit incentives were also un-aligned as it seems that there is no guarantee that units 
would actually contribute back and not only use the outcome. This applies also to the maintenance of 
the software asset and balancing the maintenance between business units. The scenario where one 
business unit is putting a lot of resources and effort on development and maintenance, but all the 
business units would use the outcome was considered problematic.  

The communication was aimed to be developed as explicit as possible and share information with all 
the interested parties. Co-development activities required informal discussions between developers, 
but broader issues were decided in formal settings such as steering groups and operational teams. 
There were also formal architect meetings and monthly platform group meeting all interested parties 
could participate in. Information was also posted on the intranet and PMS mailing-lists. A back-
channel of communication were so called marketers, who were selected per business unit to promote 
inner source and gathered in case of problems. Development work is somewhat controlled by steering 
groups and operational meetings, but mainly development is driven by business groups which need 
some new functionality. 

Philips is building a new system to divide the development costs. The old model was based on 
centralised component development and component-tax where the central group did not have profit 
targets. The central group performed maintenance of the components. Component tax was evaluated 
based on component development and maintenance activities and on an agreed upon roadmap on a 
yearly basis. Based on the relative amount of component usage and the size of the unit’s external sales, 



the estimated costs are then distributed over the business units. Users of old component versions paid 
more for  maintenance to stimulate  use of  the most  recent  versions and to reduce the total  burden of  
maintaining many old versions.  

When moving to an inner source approach, old component-tax model does not work properly since it 
does not promote making contributions to the shared component base. A business unit that contributes 
a reusable component has to make an extra effort to make the component reusable. Business units 
have profit targets and investing resources to make components reusable is conflicting with these 
targets. It wasn’t clear which group was expected to perform maintenance for the contributed 
component or allocate the maintenance resources. If the contributing business unit has to do the 
maintenance, this will again add costs to the unit. However, making the central component group 
responsible for maintenance would require this group to build competences for maintaining software 
components developed by other groups. The central group would be enlarged and take away the 
domain experts from the business units. 

 

5.2 Nokia iSource 

Nokia is the world leader in mobile communications. It is a publicly held company with listings in five 
major exchanges and in 2004 (prior to the merger of its Network unit with Siemens to form Nokia 
Siemens  Networks  or  NSN)  it's  net  sales  totalled  EUR  29.2  billion.  iSource  is  a  corporation  wide  
source code portal that enables agile, fast cycle, multi-site software development (Lindman, 2008).  

iSource originates from the free version of SourceForge that has been later upgraded to GForge. The 
web portal integrates a set of tools for use by projects including version control tools (Subversion, 
CVS),  issue  tracker,  mailing  lists  (Mailman),  forums,  and  file  management.  Today  both  Nokia  and  
NSN have their own corporation wide instances of iSource. Altogether, active users are counted in 
thousands and scaled by 5 when including passive users.  

The main idea behind iSource was to provide a portal enabling visibility of software and the source 
code inside the company. The goals were to increase individual engineers’ awareness of software 
developed inside the company, and to boost innovation by avoiding the problem of re-implementing 
the wheel. The Inner Source concept was launched to tackle the challenges of supporting reuse and 
further cultivation of software assets.  

A corporation wide iSource -service was established 2003 by the Nokia IT department to support 
infrastructure  and  to  promote  the  portal  tool.  Service  level  agreement  was  made  between  the  IT  
department and the business units. IT department takes care of the iSource application (including 
hardware and software, server installations, backups, maintenance etc.) based on the agreed service 
level agreement with business units. The service costs are shared to business units based on the 
amount of active users. The user base has been increasing with the help of bottom-up information 
sharing and leaving passive users out of service costs. Application development, that is, integration of 
new components, tool upgrades, and other customizations, has been release based, and it has lately 
turned to follow agile practises (Vilkki, 2009). The budget for application development is renegotiated 
yearly.  

iSource support has been organized based on ITIL model (OGC, 2002a; OGC, 2002b). The iSource 
service provides basic self-training material or buys training courses from third parties. Overall 
learning to use iSource relies heavily on the inner community support and nominated persons (key 
users) that are experts and serve as a first point of contact for users. A steering group decides on the 
development contents. Members of the steering group are core developers from different business 
groups. Development is release-based and a project is established for a new release.  

 



The Inner Source process was not in the scope of the service provider and thus such a corporation 
wide process never existed. The tool was first adopted by leading edge research projects and later by 
platform projects of the business units. The major drivers have been version control (namely 
Subversion) and a quick set-up for working with collaborator companies. Also, it is popular among 
agile projects that tend to select lightweight tools suitable for their purposes. Decisions to use iSource 
may be made on bottom-up per project basis, and this has been common among research projects. 
However, adoption in platform projects with legacy tool infrastructure has required a management 
decision. 

iSource case is tool driven corporate wide approach for business units and platform programs 
Although iSource is now adopted company wide Inner Source practises are scattered each platform 
program following its own approach. Each unit and program can decide whether and how they use it. 
There  are  at  least  three  ways  of  using  iSource.  It  can  be  used  1)  as  an  inner  source  server,  where  
business units can put their project assets and outputs available, so everybody in the company has 
access to them, 2) as a version control (CVS or Subversion) tool 3) as a set of tools for collaboration 
and setting up collaborative projects.  

 

6 DISCUSSION 

6.1 The meaning of OSS technology is re-negotiated locally 

On examining the cases in our study, it seems that OSS technology has become institutionalized in 
both organizations. New tools have gained acceptance and provided inspiration and familiarity to the 
developers. Both case companies use OSS tools and processes as a way to promote software projects 
inside the organization.  

At the same time, the meaning of OSS tools seems to have changed to enroll the different 
stakeholders. In retrospect we can see a process of renegotiating the meaning of OSS to suit the 
organizational context. The adopted practices do not resemble OSS as understood by the "classical 
OSS movement": being based on voluntarism, peer-recognition and public discussion. Instead, 
institutionalized OSS technology supports designated projects based on work contracts. Costs are 
made  visible  and  their  sharing  between  units  is  based  on  agreement  between  units.  The  results  are  
summarized in table 1. 

 
 Classical OSS technology Renegotiated OSS technology 
Reward structure Mostly voluntary in task 

assignment, peer-recognition, 
sometimes sponsored development. 

Designated projects, contributions 
based on (employment) contracts 
and task-assignment, development 
costs divided based on negotiation 
between actors.  

Communication structure Open discussion email-lists, open 
message boards, web-presence of 
projects, open documentation, open 
training materials. 

Intranet, visibility to selected 
partners who share the 
development costs. 
 

Table1: Redefinition of OSS technology (tools and processes) 

Promotion of OSS technologies was a way of “selling” the organizational innovation to the affected 
parties by aligning the change process to fit the agendas, serve interests and translate the interests of 



three key groups: business units, the central unit and developers. As a result, the organizational 
changes needed for new software development process seem to have been accomplished successfully 
in these organizations. 

 

6.2 Changes in practices 

Both  case  companies  use  OSS  tools  and  processes  as  a  way  to  promote  software  projects  inside  
organization. It seems that respondents were inclined to explain the change as an introduction of a 
software marketplace (instituting new rewards and more accurate information and communication 
structure) inside company as (depicted  in Figure 1). The idea of using components from other parts of 
the organization seemed to be easier to accept for developers, when it was done through the 
introduction of the open culture that is associated with OSS development by the developers.    

 

 

 

 

 

 

 

 

 

 

Figure 1: Change in organizations 

Both organizational changes can be viewed as instituting replacement of bureaucratic software 
organizations with markets inside companies. Implementation of OSS technology in these two 
companies follows the neoliberal idea in which markets will a priori create efficiency. This view 
seems to resonate well with the bottom-up pull of OSS practices, which empowers developers, but 
also benefits the business units competing for resources with each other. 

Concerning the reward structure and organization of production, Philips Medical Systems changed its 
component tax into a system of rewarding co-operation between the business units and central group. 
There was a call to change resource allocation. Business targets were set according to the new 
organizational form.  There was also a shift from one central software group into more competitive 
development setting and thus a need to change the organizational remuneration processes accordingly. 
At Nokia the implementing of the iSource service can be identified as the institutionalization of OSS 
development inside the organization with the consequence of restricting access to the source code to 
within the company.  

The reward structure in Philips followed an externalized service provision logic, whereas NSN's 
iSource moved towards a centralized iSource service. When launched, Nokia iSource was seen as a 
tool to support small projects in addition to heavy-weight software solutions for software project and 
configuration management. In PMS, one of the goals was to decentralize software production by 
giving the business units more responsibility in the process. Philips had previously had problems with 
component tax: it did not incentivize the central units and business units correctly. It can be argued 
that the use of OSS as a leverage to introduce the change helped to institutionalize it. NSN's problems 

Central group 

Business unit  

MARKET 

Central group 

Business unit 



were related to the reuse of software assets. These previous lessons helped to introduce new 
organizing vision of software development through OSS technology (Table 2.) 

The communication structures of the case companies changed towards greater openness inside the 
companies. Philips decentralized the communication structure. Nokia's iSource enabled community 
building in the source code portal and increased visibility across internal organizational boundaries 
(Table 2.) 

 
Changes in practices Philips: Inner source NSN: iSource 
Reward structure Service provisioning externalized 

Component tax introduced 
Funding of maintenance 

Service provisioning centralized 
Problems of reuse in the past 

Communication structure Development decentralized Community enabled development 
Innovation across internal 
organizational boundaries 
 

Table 2: Institutional forces in the cases 

These moves result in more competition about the resources between business units. Success in 
competition can give rewards to the business unit and thus incentivize a more efficient behavior. If 
managed poorly, the downside might be more siloed production resulting from increased competition. 
In our case we could not find clear evidence to support this proposition: instead the new development 
platforms and OSS practices increased communication channels across organizational units and 
among individual workers inside the organization. This can be seen as fulfilling one of the stated goals 
of OSS: increasing the sharing of information inside the organization. 

6.3 Conclusion 

We conclude that 1) the adoption of OSS technology changed the reward and communication 
structures implementing a wide institutional change and that 2) this implementation represents a far 
more fundamental rearrangement of software production than was previously thought.  

Our cases do not primarily concern technical changes, but deep organizational ones, in which the 
embedded technology plays a leading role by reinforcing the new institutional arrangements. Our 
contribution is to show how institutional theory can be used to understand the changes in reward and 
communication structure and the existence of different groups and the enrolment of interests. Both of 
our cases serve as good examples of how the balance of power inside an organisation is changed by 
creating "a market" inside a big international organisation and how this change may facilitate 
increased visibility, communication and contribution. It can be argued that the new institutional 
arrangement would not have been possible without the simultaneous introduction of OSS and the 
market. Thus the institutional forces outside the company both forced the change (market orientation) 
and made the new organizational arrangement possible (wide acceptance of OSS among the 
developers). 

There are two main limitations to this study. The two cases serve as descriptions of successful 
implementations rather than universal models of implementing OSS technology. These two companies 
are very big players that have the capacity to do intra-firm software development, and thus instigate an 
institutional change in their respective industries or organizational fields. Both companies have 
adapted OSS technology processes by limiting the openness of the source code. These actions call for 
questions about the side effects of the limitations that fall outside of the scope of this study. More 
research is called for to understand heterogeneous OSS practices in different organizations - and the 
underlying changes they impose on organizations. 



 

ACKNOWLEDGMENTS 

The authors would like to extend their thanks to the ITEA-COSI project. 

REFERENCES  

Barnett L, (2004). Applying Open Source Processes In Corporate Development Organisations, 
Forrester Research. (http://www.forrester.com/rb/Research/ applying_open_source_processes 
_in_corporate_development/ q/id/34466/t/2) 

Buckho, A.A. (1994). Barriers to strategic transformation. In Shrivastava, P., Huff, A,, and Dutton, J. 
(Eds.) Advances in strategic management,  (10), 81-106. Greenwitch, CT: JAI Press. 

Czarniawska, B. and G. Seron. (1996). Translating Organizational Change. NewYork, De Gruyter 
Hecker, F. (1999). Setting Up Shop: The Business of Open-Source Software. IEEE Software 16 (1), 

45-51. 
Dahlander, L. and Magnusson, M. (2005). Relationships between open source software companies and 

communities: Observations from Nordic firms. Research Policy. 34, 481-493. 
DiMAggio, P and Powell, W. (1991). Introduction. In Powel, W. and Dimaggio (Eds.) The new 

institutionalism in organizational analysis. 1-38. Chicago, University of Chicago Press. 
Dinkelacker, J., Garg, P., Miller, R. and Nelson, D. Progressive open source. In Proceedings of ICSE 

2002, 177-184. 
Fink, M. (2003). The Business and Economics of Linux and Open Source. Prentice Hall PTR. 
Fitzgerald, B. (2006). The Transformation of Open Source Software. MIS Quarterly, 30 (3), 587-598. 
Garud, R., Hardy, C., and Maguire, S. (2007). Organization Studies 28, 957-969. 
Garud, R., and P. Karnøe, (2003) Bricolage vs. breakthrough: Distributed and embedded agency in 

technology entrepreneurship. Research Policy 32, 277–300. 
Ghosh, R. A. (2002). Free/Libre and Open Source Software: Survey and Study. FLOSS Final Report. 

Available at http://www.flossproject.org/report/index.htm 
Greenwood R., and Hinings, C.R. (1996). Understanding radical organizational change: bringing 

together the old and the new institutionalism. Academy of Management Review. 21 (4), 1022-
1054. 

Hauge, O., Sørensen, C-F., Conradi, R. (2008). Adoption of Open Source in the Software Industry. 
Proceedings of the 4th International Conference on Open Source Systems. 7-10 September 
2008, Milan, Italy. 211-221 

Klein, H. K. and Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating Interpretive 
Field Studies in Information Systems, MIS Quarterly, 23 (1), 67-94. 

Lindman, J., Rossi, M., and Marttiin, P. (2008). Applying Open Source Development Practices Inside 
a Company. 4th International Conference on Open Source Systems. 7-10 September 2008, 
Milan, Italy. 

Linden, F., Lundell,B., Marttiin, P. (2009). Commodification of Industrial Software - a Case for Open 
Source. IEEE Software, July/August, 2009. 



Lundell, B., Lings B., and Lindqvist E. (2006). Perceptions and Uptake of Open Source in Swedish 
Organisations. In Proceedings of the 2nd International Conference on Open Source Systems. 
June 8-10, Como, Italy. 

Powell, W.W., and DiMaggio P.J. (Eds.) (1991). The new institutionalism in organisational analysis. 
University of Chicago Press, Chicago. 

Raymond, E.S. (1999). The Cathedral and The Bazaar – Musings on Linux and Open Source by 
Accidential Revolutionary. O'Reilly&Associates, Sebastopol, CA. 

Seo, M.G., Creed, W.E.D. (2002). Institutional contradictions, praxis and institutional change: A 
dialectical perspective. Academy of Management Review. 27, 222-247. 

Seaman, C. B. (1999). Qualitative Methods in Empirical Studies of Software Engineering. IEEE 
Transactions on Software Engineering 25 (4), 557-572. 

Scacchi, W. (2007). Free/Open Source Software Development: Recent Research Results and Methods. 
In Zelkowitz, M. V. Eds., Advances in Computers, 69,  243–269. Academic Press. 

Scott, W.R. (2001). Institutions and Organizations, 2nd ed.. CA, Thousand Oaks. 
Sharma, S., Sugumaran, V. and Rajagopalan, B. (2002). A framework for creating hybrid-open source 

software communities. Information Systems Journal 12 (1), 7-25. 
Strauss, A. and Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory Procedures and 

Techniques. Newbury Park, CA, Sage. 
Swanson, B., and Ramiller, N. (1997). The Organizing Vision in Information Systems Innovation. 

Organization Science, 8 (5), 458-474. 
Office of Government Commerce. (2002a ). ITIL –Planning to Implement Service Management – CD 

v2.0. The Stationary Office. Norwich, UK.  
Office of Government Commerce (2002b). ITIL –Service Delivery – CD v2.0 & Service Support167– 

CD v2.1. The Stationary Office. Norwich,UK. 
Van de Ven, A.H. (1993). Managing the Process of Organizational Innovation in Huber, G.P. and 

Glick, W.H. (Eds.). Organizational Change and Redesign: Ideas and Insights for Improving 
Performance. Oxford University Press, New York. 

Weick, K. (1995). Sensemaking in Organizations, Sage Publications. 
Wesselius, J. (2008). The Bazaar inside the Cathedral: Business Models for Internal Markets. IEEE 

Software, 25 (3), 60-66. 
Wynn, E. (2001) Möbius Transitions in the Dilemma of Legitimacy in E. M. Trauth (Ed.), Qualitative 

Research in IS: Issues and Trends, 20-44. Idea Group Publishing, Hershey, PA. 
Vilkki, K. “Impacts of Agile Transformation”, Flexi Newsletter 1/2009, pp.5-6. http://www.flexi-

itea2.org. 
Välimäki,M. (2005). The Rise of Open Source Licensing. A Challenge to the Use of Intellectual 

Property in the Software Industry. Helsinki University of Technology, Helsinki, Finland. 
Yin, R.K. (1994). Case Study Research, Design and Methods. 2nd ed. Sage Publications, Newbury 

Park. 
Ziemer, S., Hauge Ø., Østerlie T., and Lindman J. (2008). Understanding open source in an industrial 

context. Proceedings of SITIS 2008, Bali, Indonesia. 
Zilber, T.B. (2007). Stories and the discursive dynamics of institutional entrepreneurship: The case of 

Israeli high-tech after the Bubble. Organization Studies. 28 (7), 1035–1054. 



 

 
Paper III: Lindman, J., Juutilainen, J-P. and Rossi, M. 
(2009). Beyond the business model: Incentives for 
organizations to publish software source code. In: Boldyreff, 
C., Crowston, K., Lundell, B. and Wasserman, A. I. (eds.). 
Open Source Ecosystems: Diverse Communities Interacting, 
5th IFIP WG 2.13 International Conference on Open Source 
Systems, OSS 2009, Skövde, Sweden, June 3-6, 2009, 
Proceedings. IFIP 299 Springer, ISBN 978-3-642-02031-5. 
 
Reprinted with permission by the publisher.  
 



 

Beyond the business model: Incentives for 
organizations to publish software source 

code 
 

Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1 
1   Helsinki School of Economics, Information Systems Science, PO Box 

1210, 00101 Helsinki, Finland. {}@hse.fi,  
Web page: http://www.hse.fi 

2   Accenture, P.O. Box 1109, 00101 Helsinki, Finland 
j.juutilainen@accenture.com, 

Web page: http://www.accenture.com 

Abstract. The software stack opened under Open Source Software (OSS) 
licenses is growing rapidly. Commercial actors have released considerable 
amounts of previously proprietary source code. These actions beg the question 
why companies choose a strategy based on giving away software assets? 
Research on outbound OSS approach has tried to answer this question with the 
concept of the “OSS business model”. When studying the reasons for code 
release, we have observed that the business model concept is too generic to 
capture the many incentives organizations have. Conversely, in this paper we 
investigate empirically what the companies’ incentives are by means of an 
exploratory case study of three organizations in different stages of their code 
release. Our results indicate that the companies aim to promote 
standardization, obtain development resources, gain cost savings, improve the 
quality of software, increase the trustworthiness of software, or steer OSS 
communities. We conclude that future research on outbound OSS could 
benefit from focusing on the heterogeneous incentives for code release rather 
than on revenue models. 

1 Introduction 

Traditionally OSS is seen as being developed in a distributed setting by a loosely-
knit community of heterogeneous developers who contribute to a software project 
without always being employed or paid by an institution [10]. The development 
model has resulted in reliable, high quality software products that have a short 
development cycle and decreased development costs. Many voluntarily started OSS 
products have outperformed commercial software with similar functionalities. 
Successful examples include Apache web server, MySQL database, and Linux 
operating system. Interest towards the OSS phenomenon has grown among 
companies wanting to replicate these OSS success stories [6]. To this end, 
organizations have leveraged OSS in their operations, boosted their offering [20], 
and built their business on new business and revenue models [9]. On the supply side, 



2 Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1 
 
fundamental changes have occurred in the development process, reward 
mechanisms, distribution of development work, and revenue models that govern how 
profit is gained [6]. On the demand side, the buy or build alternatives that are 
traditionally available to organizations have been supplemented with OSS [6]. 

In addition to using OSS, some companies have released products under OSS 
licenses or even initiated completely new OSS projects [5]. We have chosen to focus 
our research effort on understanding this process, coined outbound OSS. Earlier 
literature on outbound OSS has focused on the revenue stream of the OSS business 
[19, 9, 12, 17]. While we agree on the importance of a viable company sustaining a 
guaranteed revenue stream, the heavy emphasis of the earlier literature on the 
revenue model might have caused some of the other incentives of the organizations’ 
OSS release to be overlooked.  

In this paper, we take the viewpoint of the manager making sense of the changing 
software  landscape  rather  than  the  viewpoint  of  the  OSS  enthusiast.  The  aim  is  to  
gain empirical insight from the company perspective on releasing software to the 
open domain and thus our research question is: What are the benefits pursued? 

2 Background  

There has been a paradigm shift concerning software: companies no longer  
necessarily consider software products as a source of competitive advantage or as the 
main source of revenue. Conversely, their actions seem to imply that by releasing the 
source code they gain more than by keeping it secret. Matt Asay, Novell’s director of 
OSS strategy claims that 99.99 % of the products in the world’s economy are 
commoditized [7]. This means that most of the products do not contain anything 
unequaled. According to Perens, 90% of the software in any business is not 
differentiating [1, 18]. In most software products, only a small part (5-10%) is 
differentiating and the remainder is common to the domain. Ultimately every 
offering that a company delivers to its customers gets commoditized over time [5]. 
This means that customers are not willing to pay as much for the commodity 
components and therefore companies should concentrate on creating new and higher 
value for them [5]. Developing commodity components in-house is not feasible, 
because they do not provide any additional value. More value is created, if 
companies concentrate on developing differentiating components and acquire 
commodity components through subcontracting, by using commercial-off-the-shelf 
products (COTS), or by utilizing OSS. 
 

 



Beyond the business model: Incentives for organizations to publish software source 
code

3

 
 

 

 

 

 

 

 

Fig. 1. Commoditization of software (Source: http://www.itea-cosi.org) 

Outbound OSS approach refers to taking software that is currently sold under a 
proprietary license and moving it under an OSS license [5]. The opposite process is 
called inbound OSS, where a company utilizes previously available OSS code and 
practices inside their own organization [5]. Outbound OSS approach can be 
characterized as the license-centered approach where a company initiates an OSS 
project by either releasing the source code of an existing solution to a community as 
OSS, or initiating an OSS community to develop a new software product [2]. The 
released source code will then be the basis for the future development of software. 
West and O’Mahony would call this outbound OSS approach a spinout project 
because software is first developed internally and later on released to the public 
under an OSS license [21]. IBM’s Eclipse project is one successful example of the 
outbound OSS approach. After spending more than 40 million dollars on the 
development of Eclipse, IBM released its source code. By utilizing the outbound 
OSS approach, there were expectations that IBM could gain development help from 
other companies, lower the development costs, gain credibility, and gain a better 
position to compete on the market [23]. Another, not so successful example of source 
code release would be the Mozilla Netscape browser, where developers needed years 
of work to make the previously proprietary code feasible after it was published [18]. 

The outbound OSS approach offers several means through which a company can 
improve its position on the market. Companies often offer complementary services 
on top of free software and thus revenue is generated from the sales of the services. 



4 Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1 
 
A company can pursue cost-reductions and better time-to-market by working 
collaboratively with the community [5]. The outbound OSS approach can help to 
reduce development costs if the company succeeds in attracting OSS developers to 
participate in the development [2, 3]. If the collaboration succeeds, the company can 
get development resources and be able to improve the product. OSS communities are 
well-known for having low tolerance for poor contributions, which helps to 
guarantee good quality [5]. In addition, through frequent releases and with the help 
of a large community, bugs can be found and fixed quickly [19]. Earlier literature 
implies that security and reliability can be increased through an OSS-based 
development because OSS products get tested with the help of a global user 
community [11]. Finally, by getting involved in OSS projects companies can 
incorporate OSS ideas into commercial software, spot talented programmers for 
hiring purposes, and also attract programmers who want to work in an intellectually 
challenging environment [13]. 

Outbound OSS approach can also aim for a larger user base and increased 
feedback. By releasing software as OSS, it is possible to attract new users because 
the software is free of charge. If there is a commercial counterpart with similar 
functionality, many users will likely choose the OSS product because it is free.  
Company can thus gain market share from its competitors and even be able to boost 
the sales of some related products or services [22]. Thus, the outbound OSS 
approach can be a powerful method especially if the company has strong competitors 
[14]. It is also a useful approach in an industry that is dominated by a monopoly [16]. 
The same reasoning applies to a situation where a company has lagged behind its 
competitors [5]. Source code release can speed up the diffusion of the product since 
there are no costs involved in obtaining OSS [2]. Thus, the outbound OSS approach 
lets companies that could never challenge their competitors on their own, challenge 
them with the help of an OSS community [15]. The outbound OSS approach can in 
particular help small companies with limited resources if they succeed in attracting 
voluntary developers to help in the software development [3]. The releasing 
company may gain better competitive position with the help of an active 
development community. Releasing a low cost alternative also puts pressure on the 
competitors to lower their prices [2]. Taking part in OSS projects might also arouse 
interest in the general public and improve corporate image [3]. 

The outbound OSS approach can help in diffusing new technologies. Approach 
can be useful if a company has a core infrastructure technology that is an enabler to 
other products and solutions in the company’s portfolio [5]. OSS could then be used 
as a method to make the company’s technology pervasive, or adopted as a standard. 
OSS development is a useful way to promote standardization [22]. Compatibility is a 
challenge  on  the  software  and  hardware  markets  where  there  are  a  vast  number  of  
different manufacturers and products. Therefore large companies like IBM want to 
become active participants in the OSS development and to shape it  in their  interest  
[22]. On the other hand, by embracing and supporting OSS projects companies can 
pre-empt the development of a standard around a technology owned by a powerful 
rival [13]. Finally, OSS has an effect of encouraging collaboration and it can be used 



Beyond the business model: Incentives for organizations to publish software source 
code

5

 
as a way to work with partners and competitors on very large projects, sometimes 
even involving customer at earlier stages of development [5].  

Much of the potential success of outbound OSS will depend on the efforts of 
people who are willing to work for free [9]. That is why companies need to attract 
software specialists who are willing to participate in OSS development. However, 
many voluntary software developers will not participate if they are not treated fairly 
and provided with freedoms and other intangible “payments” [9]. Thus, in order to 
succeed in the outbound OSS approach, companies may have to invest considerable 
amounts of time and money [4]. 

3 Methodology 

Our aim is to show the different benefits companies pursue with the use of  an 
outbound OSS approach. Our selected approach is qualitative and interpretative as 
we aim to clarify the relevant variables and to understand how companies make 
decisions about pursuing benefits with outbound OSS [8]. We used three exploratory 
descriptive case studies and interviews of the company respondents.  To be able to 
formulate a comprehensive view of the outbound OSS approach, in-depth data 
collection and analysis was needed. In terms of systematic data collection, a series of 
formal face-to-face semi-structured interviews was conducted. Since the aim was to 
lay emphasis on the depth, nuance, complexity, and comprehensiveness of the data, 
interviewing was considered to be the most appropriate method for data collection. 
Interviews were designed in a way that if a later researcher follows similar 
procedures when conducting the case study, they should arrive at the same findings 
[24]. 

The interviews were conducted as a part of the ITEA-COSI-project. Our selected 
partners were Philips Medical Systems, Nokia Networks, and European Software 
Institute (ESI). The selected cases can be seen as typical instances of the 
phenomenon under study. Five interviews were conducted: three at Philips and one 
at Nokia and one at ESI. The interviewees were selected so that it would be possible 
to form a holistic view of the utilization of outbound OSS approach in the case 
companies. It was desirable that each interviewee would have a comprehensive view 
of business, close relations to the OSS community, and a broad understanding of 
how the OSS approach has impacted on the company. Open questions were chosen 
to make sure that the answers would be constrained as little as possible. The 
questions were sent to the interviewees in advance so that they were able to get 
acquainted with them before the interview. Before and during the actual interview, 
the interviewees had the possibility to ask for clarifications concerning the questions. 
During the interview, some of the questions were explained more precisely to 
guarantee that all the interviewees would understand them in the same way. Some 
follow-up questions were also posed and clarifications given when necessary. The 
interviews were conducted in an iterative manner, so it was accepted that responses 



6 Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1 
 
to certain questions could stimulate new awareness and interest in particular issues, 
which could then require additional questions to be posed to the interviewee. The 
estimated time of the interviews was one hour. 

The data analysis occurred in three phases. First, the data gathered through the 
interviews was transcribed. The transcription was conducted by word-for-word basis 
to guarantee the accuracy of the answers and to avoid misinterpretations. After  
transcription, all the transcribed interviews were sent to the interviewees so that they 
were able to read them through and clarify their answers if needed. Only one 
interviewee clarified some answers. Following this, in a second phase the data was 
elaborated. The objective was to find relevant information from each case and to 
develop a rich understanding on the incentives of companies’ outbound OSS 
approach. Finally, in the third phase the results were analyzed and the incentives of 
the outbound OSS outlined 

4 Cases 

4.1 Philips Medical Systems – DVTk 

Philips Medical Systems (PMS) manufactures products for the health care industry. 
Its product portfolio covers for example medical imaging, ultrasound, health care IT, 
defibrillation, and monitoring modalities. Philips Medical Systems and its partner 
company created in 2000 a validation application for the medical communication 
protocol DICOM (Digital Image Communication in Medicine). The application was 
called DVTk (Dicom Validation Toolkit) and it was distributed within Philips and 
was also freely downloadable from the Philips Internet pages. After several years of 
co-development, Philips Medical Systems and its partner company decided to release 
the DVTk as OSS in June 2005. DVTk is licensed under the LGPL, the source code 
is available at the SourceForge website and the software is freely available for 
download. 

The DVTk tool itself is free so it does not generate any direct revenues. The long 
term goal of PMS is that with the help of a user community the quality of DVTk is 
improved and this will eventually reduce the service and support costs of the tool. 
The main reason for releasing the source code of the DVTk was to create an 
independent leading tool for the DICOM validation and service tools. Since the 
application was earlier closed, the results of validation with DICOM were not always 
trusted by other organizations. By releasing the application as OSS and by providing 
the opportunity to review and contribute to the code, trustworthiness of the 
application was expected to increase. Users could trust the software more because 
they were able to see that there are no hidden features and see how the product is 
implemented. In addition, there was an aim to rationalize the software development 
by releasing the source code of DVTk. Prior to releasing as OSS the distributed 
development between different sites and between different organizations impacted 



Beyond the business model: Incentives for organizations to publish software source 
code

7

 
the efficiency of the work. The development of the application was running on 
different isolated source control environments to prevent different developer 
companies from accessing each other’s contributions. 

Another reason for opening the code was the intention to create a larger and more 
active community that could use DVTk, report on bugs, and also help in the 
development. DVTk application was frequently downloaded even before the code 
was  released,  but  often  the  feedback  was  not  very  useful.  By  releasing  software  as  
OSS, there was expectation in PMS to have more feedback from the users. In 
addition, it was expected that PMS could involve more companies in the 
development of DVTk and this way to reduce development costs. 

4.2 Nokia Networks – Benchmark 

Nokia Networks is one of the leading telecom equipment providers in the world. It 
merged in 2007 to form Nokia Siemens Networks. The data was gathered before the 
merger, so we use the name Nokia Networks when referring to this company. Nokia 
Networks provides network infrastructure, communications and networks service 
platforms, as well as professional services to operators and service providers. These 
solutions include both software and hardware. Nokia Networks uses and integrates 
OSS products (e.g. Linux) into their products, but software that is ultimately offered 
to the market is not OSS. Nokia Networks does not currently directly contribute 
much to OSS projects, but would benefit from some influence on the direction of the 
development. There have been efforts at Nokia Networks to influence OSS 
communities by participating in the creation of specifications like OSDL Carrier 
Grade Linux (CGL) requirements specifications, but the results have not had the 
desired effect. Our case was aimed to create a benchmarking tool for the selected 
OSS projects. Earlier Nokia created Network Database Benchmark which is used for 
measuring the Home Location Register (HLR) type of performance of databases. In 
our case Nokia Networks was preparing Control Plane Benchmark. 

Nokia Networks’ goal is that Control Plane Benchmark would highlight possible 
deficiencies in OSS projects and cause developers to steer projects in the direction 
Nokia Networks would like them to go. Nokia Networks perceives OSS 
communities and components as a future-proof solution because commercial 
companies are getting smaller all the time and their long-term existence is uncertain. 
The respondent considers OSS communities as a more sustainable option sometimes 
for software development than commercial companies. 

Nokia Networks does not have much official interaction with OSS communities. 
The communities are often suspicious of big companies and are not especially 
interested in the products that Nokia Networks provides. Thus communication with 
OSS communities is mainly through individuals who work in Nokia Networks and 
are also part of an OSS community. However, these people are not representing 
Nokia Networks when they are involved in the communities. Nokia Networks has 
some projects and initiatives to form a closer relationship with OSS communities, for 



8 Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1 
 
example, a portal to manage its OSS projects and to promote Nokia Networks’ 
involvement in OSS projects. Nokia hosts, contributes to, and sponsors multiple OSS 
projects. Nokia is, for instance, a strategic developer in the Eclipse Foundation. 
Nokia Networks is also one of the 20 companies that support Open Source 
Development Lab (OSDL). With the other members in OSDL, Nokia has developed 
a kind of future roadmap for Linux distributors. Nokia Networks’ aim is to create 
vision and guidance to enhance Linux and to meet the needs of both the data center 
and carrier grade market segments. 

4.3 European Software Institute – V-Manage 

European Software Institute (ESI) was launched as an initiative of the European 
Commission, with the support of the Basque Government and European companies 
working in the field of information technology. ESI's main activity is based on 
helping the software industry to produce software of a higher quality, on time, and at 
a lower cost. ESI offers consultancy and training services as well as technological 
support. One of the services that ESI offers to organizations is consultancy for 
implementing a software product line. The purpose of this consultancy service is to 
achieve a high level of reuse in all products. ESI provides organizations a disciplined 
methodology and a suite of tools, called V-Manage, for developing software for 
embedded systems. Now ESI is planning to utilize the outbound OSS approach and 
to release the source code of V-Manage. V-Manage helps organizations to develop 
software especially for software product lines and it is mainly offered to small and 
medium sized companies.  

ESI’s service consists of a software called V-Manage and a consultancy service. 
At the moment, the main source of revenue for ESI is the consultancy service 
consisting of training, support, and maintenance. Currently, V-Manage is proprietary 
software licensed to the customers of the consultancy service, but ESI is 
investigating whether they should license it with an OSS license. In the future the 
revenues will be generated through the sales of consultancy services. There is an 
expectation in ESI that opening the code would increase other companies’ interest 
towards the application and eventually increase revenues through the sales of 
consultancy services. However, it is not expected that obtaining development 
resources from external parties would result in lower costs. Instead, extra 
development resources are seen as a way to boost the popularity of V-Manage. 

ESI has the aim of providing extension points to V-Manage so that external 
developers can extend the tool by means of plug-ins. This enables customers and 
possibly a development community to customize the application according to their 
own needs and add new features. ESI is planning to release the source code of the 
extension points and plug-ins and keep the platform proprietary. This way ESI could 
retain core parts of the V-Manage as closed. The source code of plug-ins would be 
released under a license that assures that all the modifications and derivative works 
are distributed and made available under the same license. Initially ESI  is planning 
to use LGPL. By means of this new approach, ESI aims to get software development 



Beyond the business model: Incentives for organizations to publish software source 
code

9

 
resources from external partners who are willing to develop the application through 
extension points. The releasing of the source code could result in an active 
development community. However, the amount of potential development help is still 
rather uncertain because the application is very specific so it is not likely to attract a 
large number of developers. Because of the special nature of the tool, it is expected 
that developers will more likely be companies than individuals. 

5 Incentives for openness  

Probably the best known classification of different OSS revenue models is the one 
presented by Hecker [9]. Hecker’s revenue models concentrate mainly on the cash 
flow between the company and its customers. However, our empirical findings 
demonstrate that companies also have incentives other than revenue for utilizing the 
outbound OSS approach. Actually, the only case in our data which can be 
categorized according to Hecker’s classification is ESI’s V-Manage. ESI’s approach 
is consistent with Hecker’s support seller model where revenues are generated from 
selling associated services. By means of the outbound OSS approach, ESI aims to 
increase the popularity of V-Manage and to boost its revenues through the sales of 
consultancy services. However, the source code of V-Manage is currently not opened 
and likely will not be opened at all. 

It was evident that the case companies perceive the commercial potential of the 
outbound OSS approach. Companies have various incentives for releasing the source 
code of their software. These different objectives also have influence on how 
outbound OSS is applied in practice. Outbound OSS approach is considered to be 
suitable for companies whose main business is not the software itself. This implies 
that a company does not necessarily risk its business by releasing the source code. 
Instead, revenues are generated for example through the sales of different services. 
Below are the different incentives categorized in a table format (Table1). 

Table 1. Incentives per case company. 

PMS Nokia Networks ESI 
 Steer OSS community Steer OSS community 
Obtain development resources  Obtain development resources 
Gain cost-savings   
Improve the quality of SW  Improve the quality of SW 
Increase trustworthiness of SW   
Promote standardization   

 
ESI’s strategy seems to be that by opening parts of V-Manage companies may 

become more interested in the tool because they are able to customize it to their own 
needs and ultimately ESI would generate revenue by consultancy services. Instead, 



10 Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1 
 
the objectives of neither Nokia Networks nor Philips Medical Systems are directly 
related to generating revenues through OSS. PMS’ goal is to rationalize the software 
development, create a de-facto standard, and to try to form an active development 
community. Through the outbound OSS approach, PMS aimed to gain external 
development resources and improve DVTk. The PMS respondent also maintained 
that OSS can increase the trustworthiness of DVTk because everyone is able to see 
how it is implemented. Nokia Networks’ objectives notably differ from the goals of 
PMS and ESI. Nokia Networks tries neither to generate revenues nor gain 
development resources through the outbound OSS approach. Nokia Networks is 
developing benchmarking tool to be used by OSS communities. This tool is then 
released  as  OSS.  The  aim  of  Nokia  Networks  is  it  could  then  leverage  the  OSS  
communities through these tools.  

It seems that the case companies have very different objectives when they chose 
the outbound OSS approach. It seems that ESI is the only company having a revenue 
incentive to release the source code. However, it is evident that financial reasons 
play a role also with Philips Medical Systems and Nokia Networks. In PMS it is 
considered that the DVTk project may have an indirect impact on total revenues of 
PMS. PMS’s goal is that by improving the DVTk the service and support costs will 
decrease. Nokia Networks aims to gain cost savings if they succeed in steering OSS 
communities because the company will get software products that are implemented 
according to Nokia Networks’ needs. 

6 Conclusions and implications 

The objective of this paper was to investigate incentives for commercial 
companies to release software source code. Revenue models were not the primary 
concern for any of the case companies. The role of revenue models was considered, 
but the decisions were not incentivized by direct revenue streams.  

Although commercial actors are coming into terms with releasing source code 
they need to tackle practical concerns. One of the main problems was that 
companies’ OSS products are specialized to niche markets that fail to attract a large 
population of developers. Another challenge is that companies were willing to utilize  
OSS resources, but they do not always have plans to compensate for the acquired 
benefits. The outbound OSS approach also highlights some challenges that a 
company can confront after the source code is released. Based on our analysis, it 
seems that these challenges are mainly related to collaboration with OSS 
communities and maintenance of the code base. Voluntary OSS developers will only 
participate in software development if they find the project interesting. Thus, gaining 
contributions from the OSS community is not certain. If the software is very 
specialized and does not interest the general public, the company might confront 
difficulties in attracting developers. The company also has to be aware that the 
community’s objectives and timetable in software development will most likely 
differ from the company’s own goals. In order to succeed, the company should create 



Beyond the business model: Incentives for organizations to publish software source 
code

11

 
a strategy on how it is going to attract developers, motivate them to participate, and 
steer them so that the company’s objectives will be reached.  

It should also be noted that the cases in the paper are at very different stages of 
their OSS activities, and as such are unlikely to give direct applicable solutions to 
other companies. They do serve as empirical account of what the incentives for 
commercial companies are, and hopefully help to refocus research beyond revenue 
models to the multitude of different company incentives. 

Acknowledgements 

The authors thank the ITEA-COSI project. 

References 

[1] ITEA-COSI-project. http://www.itea-cosi.org/ [Accessed 14.11.2008] 
 
[2] M. AlMarzoug,  L. Zheng, ,G. Rong, and V. Grover. Open Source: Concepts, 
Benefits, and Challenges. Communications of the Association for Information 
Systems, 16:37, pp.756-784, 2005. 
 
[3] A. Bonaccorsi, and C. Rossi. Comparing Motivations of Individual Programmers 
and Firms to Take Part in the Open Source Movement: From Community to 
Business. Knowledge, technology and policy. 18:4, pp.40-64, 2006. 
 
[4] L. Dahlander, and M. Magnusson. Relationships between open source software 
companies and communities: Observations from Nordic firms. Research Policy, 
34:4, pp. 481-493, 2005. 
 
[5] M. Fink. Business and Economics of Linux and Open Source. Prentice Hall, New 
Jersey, 2002. 

 
[6] N. Fitzgerald. The Transformation of Open Source Software. MIS Quarterly, 30, 
3, pp. 587-598, 2006. 
 
[7] G. Goth. Open Source Business Models: Ready for Prime Time. IEEE Software, 
November/December, pp.98-100, 2005. 
 
[8] D.E. Gray. Doing Research in The Real World. Sage Publications, California, 
2004. 
 



12 Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1 
 
[9] F. Hecker, Setting Up Shop: The Business of Open-Source Software. IEEE 
Software, 16, 1, pp. 45-51, 1999. 
 
[10] G. Hertel, S. Niedner, and S. Herrmann. Motivation of software developers in 
Open Source projects: an Internet-based survey of contributors to the Linux kernel. 
Research Policy 32, 7, pp.1159-1177, 2003. 
 
[11] S. Krishnamurthy. A managerial overview of open source software. Business 
Horizons, 46, 5, pp.47-56, 2003. 
 
[12] de P.B., Laat. Copyright or copyleft? An analysis of property regimes for 
software development. Research Policy, 34, pp.1511-1532, 2005. 
 
[13] J. Lerner, and J. Tirole. The Open Source movement: key research questions. 
European Economic Review, 45, 4-6, pp. 819-826, 2001. 
 
[14] J. Lerner, and J. Tirole. Some Simple Economics of Open Source. Journal of 
Industial Economics, 50, 2, pp. 197-234, 2002. 
 
[15] M.L.Markus, B. Manville, and C.E: Agres. What Makes a Virtual Organisation 
Work –Lessons From the Open Source World? Sloan Management Review, 42,1, 
pp.13-26, 2000. 
 
[16] S.C. O’Mahony, Dissertation: The emergence of a new commercial actor: 
community managed software project, 2002. 
http://opensource.mit.edu/papers/omahony.pdf [Accessed 14.11.2008] 
 
[17] A. Osterwalder, Y. Pigneur, and C. Tucci. Clarifying business models: Origins, 
present, and future of the concept. Communications of the Association for 
Information Systems, 16, pp. 1-25, 2005. 
 
[18] B. Perens, The emerging economic paradigm of Open Source. First Monday 10 
(special issue 2: Open source), 2005. 
 
[19] E.S. Raymond, The Cathedral and the Bazaar, 2000. 
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ 
[Accessed 14.11.2008] 
 
[20] R. Rajala, J. Nissilä, and M. Westerlund. Revenue Models in the Open Source 
Software Business. In Handbook of research on open source software – 
Technological, Economic, and Social Perspectives, K. St.Amant, and B. Still (Eds.), 
New York, Hershey, 2007, pp. 541-554. 
 



Beyond the business model: Incentives for organizations to publish software source 
code

13

 
[21] J. West, and S. O’Mahony. Contrasting Community Building in Sponsored and 
Community Founded Open Source Projects. Proceedings of the 38th Annual Hawai’i 
International Conference on System Sciences, Waikoloa, Hawaii, 196c-196c, 2005. 
 
[22] T. Wichmann. Firms’ Open Source Activities: Motivations and Policy 
Implications. Free/Libre Open Source Software: Survey and Study, FLOSS Final 
Report, Berlecon Research GmbH, 2002.  
http://www.berlecon.de/studien/downloads/200207FLOSS_Activities.pdf [Accessed 
14.11.2008] 
 
[23] D. Woods, and G. Guliani. Open Source for the Enterprise: Managing risks, 
reaping rewards, O’Reilly Media, 2005. 
 
[24] R. K. Yin. Case Study Research: Design and Methods, 2nd edition, Sage 
Publications, California, 1994. 
 

Mentioned OSS projects 

DVTk http://www.dvtk.org/ 
 
Network Database Benchmark http://hoslab.cs.helsinki.fi/homepages/ndbbenchmark/ 

 
 



 

 
Paper IV: Lindman, J. and Rajala, R. (Unpublished). 
“Lessons on the FLOSS business learned from the Open 
Source Software Pioneers”. Submitted to an international 
journal. 
 
Earlier version of the paper has been published in the 
proceedings of ICSOB2010. Lindman, J., Rajala, R. and Rossi, 
M. FLOSS-induced Changes in the Software Business: 
Insights from the pioneers. ICSOB, Jyväskylä, Finland, 21- 
23.6.2010. 



Lessons on the FLOSS business 
learned from the Open Source 

Software Pioneers 

Abstract  
In addition to opening the software innovation processes, the Free/Libre 
Open Source Software (FLOSS) activity has affected the entire software 
business. It has induced the business models of software firms to be 
increasingly grounded on user-centric and service-oriented offerings. 
However, the literature has not paid sufficient attention to how 
entrepreneurs in small software firms perceive the FLOSS induced changes 
in their businesses. This study investigates software entrepreneurs’ 
perceptions of these issues. The findings were grouped into four categories: 
changes in the innovation process, user involvement, the use of resources 
and revenue models in software firms.  
 
Keywords: Open source software; entrepreneurship; open innovation; service-
dominant logic; narrative methodology 

Introduction 
The Free/Libre Open Source Software (FLOSS) phenomenon has 

received increasing attention among information systems (IS) researchers as 
an important aspect of the information economy and an essential 
consideration for all software companies (Fitzgerald 2006). FLOSS has two 
distinct features. Firstly, it is connected with licenses that provide existing 
and future users with the right to use, inspect, modify, and distribute 
modified and unmodified software to others (Raymond, 1999; Von Krogh & 
Von Hippel, 2006). Secondly, it has created a new practice of collaborative 
innovation in numerous FLOSS communities (Kogut & Metiu, 2001; 
Dahlander & Magnusson, 2008). Years of development in these 
communities has resulted in high quality mainstream applications, such as 
the Linux operating system and the Apache Web Server (Raymond, 1999; 
Mockus et al., 2002).  

In the early inquiries into the fielfd of FLOSS, researchers focused their 
attention mainly on illustrating how companies could organize their 
businesses around new revenue models (e.g., Raymond, 1999; Hecker, 
2000). The research focus then shifted to an analysis of how established 
companies could leverage FLOSS (Dahlander & Magnusson, 2005; 
Dahlander & Magnusson, 2008; Scacchi, 2007) and how research should 
reorient toward these FLOSS-induced changes in the software industry 
(Fitzgerald, 2006; Von Krogh & Von Hippel, 2006; Xu and Brinkkemper, 
2007). In summary, prior research has suggested that user participation in 
software development changes value creation and value capture throughout 
the entire software industry. Hence, the FLOSS activity represents an 
important phenomenon that deserves further investigation.  

Previous empirical research into the impact made by FLOSS among 
small and medium-sized enterprises (SME) in the software business is rather 
exiguous. Studies on entrepreneurship (e.g., Hannan and Freeman 1984; 
Baum and Oliver 1992) have illustrated that conducting business in a 
turbulent environment is especially challenging for a SMEs, due to their the 
liability of smallness, newness and resource scarcity. These characteristics 
constrain their innovation activity. In addition, SME’s lack the resources 
necessary to master business operations on a large scale.  

FLOSS includes interesting opportunities for many entrepreneurs in 
regard to the benefits of accessing resources in the innovation communities. 



However, little is known about the changes FLOSS activity induces in 
software businesses and the actions the FLOSS entrepreneurs have taken to 
meet these changes. This study aims to fill this void in the literature by 
improving the understanding of the entrepreneurial FLOSS practices 
characterized by moves towards open innovation. 

We scope our investigation to the primary software industry and focus on 
companies that actively take part in open source software development. 
Taking an entrepreneurial viewpoint, we pose the following research 
question: How do open source software pioneers perceive the FLOSS-driven 
changes in their businesses? We address this question empirically through a 
qualitative inquiry. Based on an analysis of narratives emerging from 
interviews of software entrepreneurs and senior managers at software firms, 
we group our findings into four categories that describe the changes 
identified from the decision-making perspective and manifest the firm-level 
responses to these changes. 

This paper firstly discusses the research background and the 
underpinnings of open and free software development and their effects on 
software innovations. We use these concepts in our investigation of the 
effects of FLOSS on small and medium-sized software firms that engage in 
open source software development. We then present the research setting, 
narrative methodology, empirical cases and their analysis. Finally, we 
discuss the findings and conclude the paper with suggestions for further 
research on the topic.  

Background for research 
The “FLOSS phenomenon” describes a new paradigm for the management 
of innovation in the software industry. Using this approach, firms work with 
external partners to commercialize their internal innovations and obtain a 
source of external innovations that can be commercialized. Currently, 
FLOSS has established positions in several market segments, ranging from 
operating systems, middleware, and end-user products, such as media 
players, office suites, and games (Von Krogh & Spaeth, 2007). Innovation 
processes have traditionally been seen as an intra-organizational activity 
based on the development, manufacturing, and subsequent marketing of an 
innovation. However, the innovative activities associated with software 
development are becoming increasingly blurred and interconnected with 
extra-organizational actors and processes. 

Most research on the domain has focused on successful FLOSS projects 
(Radtke et al., 2009) and open source (OS) development approaches, rather 
than responding to the growing interest in FLOSS among companies 
(Osterlie & Jaccheri, 2007). Prior research on making the use of FLOSS 
commercial has primarily focused on pointing out that managers must take 
care when adopting FLOSS (see Ven et al., 2008; Fitzgerald, 2009). Doing 
so for the wrong reasons can harm the organization, whereas not adopting 
FLOSS might leave considerable opportunities unused (Ven et al., 2008). 

While the development of FLOSS is becoming increasingly popular, 
recent analyses have shown that it has incorporated and accelerated 
subversive changes throughout the software industry (Vitari & Ravarini, 
2009; Elpern, 2009) and has had an extensive impact on the economy and 
society (Von Krogh & Spaeth, 2007). 

The emergence of open innovation 

The benefits of open innovation are widely accepted in the software 
development community (e.g., Von Hippel & Von Krogh, 2003; Henkel, 
2008). In its broadest sense, software innovation refers to research and 
development (R&D) activities that involve intellectual capital, physical 



products, and processes in software production (Vujovic & Ulhoi, 2008). 
Chesbrough (2003) observed that strategic innovations have typically been 
regarded as a company’s most valuable competitive assets, which also 
serves as a barrier to entry by competitors. This kind of proprietary 
innovation development and competition is characteristic of closed 
innovation processes, where technological progress has generally been kept 
secret to earn expected profits (Meyer, 2003). Conversely, in the open 
innovation environment, a company’s ability to remain competitive 
increasingly relies on utilizing accessible resources in the continuous 
development of new and superior products and services in a business 
environment characterized by growing instability. To this end, companies 
utilize knowledge to improve their products, services, and processes. This 
enables them to remain competitive and continue being innovative (Vujovic 
& Ulhoi, 2008). The innovation capacity within the FLOSS community 
relies, in many respects, on openness and teamwork, as well as on 
decentralized linkages and knowledge flows.  

FLOSS has its historical roots in the Free Software social movement, 
which utilizes non-commercial and anti-commercial principles of collective 
action, as well as distributed work practices (O’Leary et al., 2002; Williams, 
2002; Benussi, 2005). The principles of the open innovation model can be 
traced back to the end of the 19th century, when open innovation in the 
United Kingdom (UK) iron industry (Allen, 1983) and the United States 
(US) steel industry (Meyer, 2003) overcame the previous domination of 
proprietary innovations. The term open source software was originally 
coined to make the potential development and licensing method more 
credible to corporate actors (Raymond, 1999). This strategy turned out to be 
successful (Fitzgerald, 2006).  

The emergence of FLOSS facilitates access to resources and the use of 
capabilities as the source of competitive advantage among software vendors. 
Service-dominant logic (Vargo & Lush, 2004) describes a significant 
transition in business in terms of the use of resources. It considers resources 
in the development and delivery of offerings as operand resources (those in 
which an operation, or act, is performed) and operant resources (those that 
act on other resources).  

FLOSS development depends, to a great extent, on resources that are 
external to a firm. That is, the operand resources include, for example, the 
physical resources required to make services available to customers, while 
the operant resources, such as the requisite skills, knowledge, and 
capabilities, represent the intangible resources of the parties engaged in the 
collaboration. In FLOSS businesses, resources are accessed through 
collaborative relationships between two or more parties, or, as suggested by 
Dahlander and Magnusson (2005), in a company-community relationship. In 
these relationships, resources are accessed and exchanged through activities 
embodying all of the tasks required to develop and implement the software 
and its related services. 

Effects of open innovation on software offerings 

Along with the mushrooming of FLOSS, open innovation activity 
(Chesbrough, 2003) has surfaced as a powerful value creation engine; 
however, it will not enable firms to capture value without a viable business 
model (reference withheld for blind review). Fitzgerald (2006) argues that 
the emergent forms of FLOSS have a strong commercial orientation in 
product development, delivery, and support processes labeling these forms 
as OSS 2.0. Di Bona et al. (1999) and Kogut and Metiu (2001) have 
investigated the use of FLOSS and its implementation in organizations. In 
addition, Henkel (2008) illustrated that despite fears to the contrary, 
corporate participation in open source software development did not lead to 
the harmful sharing of information. 



In many cases, voluntary cooperation-based collective action systems 
involve some form of public or semipublic good (Heckathorn, 1996; Monge 
et al., 1998). According to the definitions by Olson (1965) and Udéhn 
(1993), public goods offer participants in networks collective benefits that 
are (a) non-excludable, in that they are available to all network partners, and 
(b) jointly supplied, in that partners’ uses of the goods are non-competing. 
In FLOSS development communities, open source software plays the role of 
a public good and underlies collective action towards voluntary cooperation, 
interaction, and the combination of the participants’ interests. 

There is an ongoing discussion regarding the principles that software 
companies should adopt when leveraging FLOSS (Dahlander & Magnusson, 
2005). Some of these authors have viewed FLOSS as a social phenomenon 
based on a gift culture (Raymond, 1999). Others debunk the implied one-
way relationship by observing that giving a gift always includes and enacts a 
social relationship between the actors (Ljungberg, 2000). The nature of the 
relationship is crucial when assessing the motivations of commercial and 
non-commercial actors and the viability of a given business (Dahlander & 
Magnusson, 2005). 

FLOSS products are sometimes competitive with proprietary software, 
but the research reviewed herein has not endorsed the view that FLOSS 
should always be viewed as complementary. On the one hand, FLOSS is not 
automatically mimicking proprietary functionality (i.e., in operating systems 
such as MS-Windows and Linux). Such mimicking situations may often 
lead to incremental (Teece et al., 1997), as opposed to disruptive, 
innovations (Tushman & Anderson, 1986). On the other hand, economic 
incentives do not favor developing proprietary software that mimics 
previously available FLOSS functionality. 

Methodology 

Research design 

This paper focuses on a new and emerging topic, focusing on how 
entrepreneurs in small software firms perceive the FLOSS induced changes 
in their businesses, in which the research conducted to date is meager. 
Therefore, the present study relies on multiple sources of evidence and 
benefits from the prior development of theoretical propositions. A narrative 
approach is considered a feasible research strategy in this study, as it is well 
suited to investigate a phenomenon within its real-life context. Narratives 
permit researchers to tap into the richness of the phenomenon by producing 
ideographic representations of participants’ experiences (White, 1981). 
Analyzing these experiences opens a window into organizational reality 
(Ford & Ford, 1995). This is the case in the present study, which aims to 
provide answers to the research question “How do software entrepreneurs 
perceive the FLOSS–driven changes in their business?"  

We aim to derive an answer to this question through an inductive analysis 
of entrepreneurs’ perceptions. To clear the epistemological status of the 
narratives, we focus on the perceptions of the software entrepreneurs and 
acknowledge that these perceptions are partially constructed after the fact 
and for the researchers (Lanzara, 1991). However, these are not reasons to 
overlook the experience of the respondents, as their narratives are crafted in 
legitimate logic (Czarniawska, 1998).  

Narratives enable communication with a researcher (Coffey & Atkinson, 
1996). The language selected by the individuals reflects how they see the 
world, reclaim their identity, and experience their environment. White 
(1981) argued that narratives are of illustrating a person’s viable beliefs. 
From this information, values can be transmitted. Moreover, they reveal 



issues for analysis upon which researchers then aim to articulate the 
situation at a level different from that expressed in the author’s narrative.  

The narrative approach coaches the members of a certain organization to 
frame their understanding of social reality and their place in it in a 
discursive manner (Phillips & Hardy, 1997). The resultant narratives are 
specific and coherent, representing their creative descriptions of the world 
(Rhodes & Brown, 2005). In addition, they are anchored in locally available 
discursive resources and enable organizations to be treated as socially 
constructed phenomena (Berger & Luckmann, 1966) that are sustained by 
social, political, and symbolic processes (Pfeffer, 1981).  

Unlike other forms of qualitative data analyses, the narrative analysis 
focuses on narratives in their entirety. Here, the aim is to search through 
large units of coded signals to determine the underlying structure and 
content (Rice & Ezzy, 1999). The narrative approach uses stories loaded 
with meaning as a tool to explain a phenomenon (Burr, 1995). These 
narratives are not just “objective” reflections of reality, as they also shape 
the events they describe (Czarniawska, 1998). They create social order and 
imbue stories with values (Burr, 1995). There is an assumption that by 
analyzing how stories are told and what they say and do not say, we can 
discover the hidden meaning behind the world they describe (Burr, 1995).  

There are several noteworthy examples recommending how to use the 
narrative approach to study phenomena. These examples are very similar to 
the one applied in this study (e.g., McDaniel, 2004; Szczepanska et al., 
2005; Brown & Jones, 1998; Alvarez & Urla, 2002). In this study, the 
narratives of the actors are used to explain companies’ actions, as they 
reflect the social worlds of the decision makers. Business decisions are 
based on how these agents make sense of the situations; in other words, how 
they interpret their circumstances and act (Weick et al., 2005). This sense 
making requires rationalization based on plausible images created during the 
process (Weick et al., 2005). The identity of the organizational actors 
formulates the interpretation and enactment of narratives, whereas the 
categories of sense making are derived from the organizational context 
(Weick et al., 2005).  

A common methodological objection to the narrative approach is to 
discount the responses as only “the opinion of one person” or to reflect only 
the “opinions of the few.” While there are several problems associated with 
this type of objection, the most obvious is that the objection implicitly 
assumes that the described narrative might somehow be false. We are the 
first to admit that narratives can indeed be biased or wrong, yet it is 
normally unrealistic to believe that the respondent is lying or inventing the 
entire story just for the researcher (Czarniawska, 1998)  

To summarize our theoretical stance, following Bartis and Mitev (2008), 
we combine constructionism with narrative methodology to examine how 
the socially constructed meaning of FLOSS is related to the entrepreneurial 
viewpoint on the changes in the software firms’ business environment.  

Empirical inquiry 

We selected five FLOSS software companies (see Appendix 1) to 
determine how their managers perceived and described the ongoing changes 
in their environment. The selection criteria included whether the companies 
used FLOSS components and products as part of their product and service 
offerings. The method used for data collection included semi-structured 
interviews in person and an extensive set of secondary data on the case 
companies. The respondents were senior managers within these companies. 
The informants were responsible for the company’s strategic decisions. 
Given the research questions, senior managers were seen as viable sources 
of information. We supposed that their ability to make sense of the 
competitive environment was guiding the company’s decision-making 



process, and that their narratives reflected the changes apparent in the 
software business. 

We conducted interviews with each of the respondents from the selected 
firms over a 5-year period (2004-2008). The number of interviews with each 
respondent ranged from one to four. To gain a rich understanding about the 
organizations in their contexts, we interviewed the entire staff then 
employed by Tripod (3 persons), Yoga (1 person) and Tulip (5 persons). 
Conversely, OurDB and Nemesis were larger companies, so we limited our 
discussions to those with the CEOs and CTOs of those companies. The 
average duration of the interviews was 2 hours, with durations ranging from 
1.5 to 3 hours. Thirteen in-depth interviews were considered sufficient to 
obtain enough material for the analysis, since the interviews touched upon 
similar themes in separate companies.  

Following Essers (2009) and Visweswaran (1996), the interview situation 
was designed to take into account the roles of the actors. The function of the 
interviews was to provide a voice to the respondents and thus tap the 
richness of their experience. The interviewers knew all of the respondents 
previously, which enabled the interview atmosphere to be comfortable and 
relaxed. Notably, it was unlikely that this familiarity would have any 
negative effects on the quality of the interviews. The sessions took place in a 
quiet environment and were tape-recorded. Prior to the interview, the 
respondents were informed that the researchers were interviewing people 
who have experience in both open source and software businesses, and that 
the interviews would gather their views on the software business 
environment and FLOSS.  

All interviews had a similar structure and included demographic 
questions. Moreover, questions consisted of the respondents’ definition of 
FLOSS software and FLOSS communities, the competitive environment, 
the company’s offerings, business benefits, industry entry, publicity, and the 
“heroes” and “villains” of FLOSS. The final part of the interviews centered 
on the future possibilities offered by FLOSS. In addition, some time was 
reserved to allow for further clarification. 

Questions were posed in a non-leading way to ensure that the narratives 
would be recorded as they occurred to accurately reflect the voice of the 
respondents. The interviewers aimed to make the interview situation as 
informal as possible. Tape-recording was necessary to ensure that the 
nuances of the respondents’ narratives were captured, although it probably 
introduced some unnecessary formality into the interview environment. 

Analysis of interviews 

For investigator triangulation purposes, the transcribed interviews were 
analyzed by two researchers. This analysis was conducted to gain a 
comprehension of the content of the narratives and to structure it into 
particular dimensions. After identifying the dimensions, two independent 
researchers coded the interview data accordingly. In the first phase of the 
analysis, the researchers grouped the narratives into three different areas: 1) 
narratives about the history of FLOSS, 2) narratives that describe how 
FLOSS is defined, and 3) narratives that describe changes in business 
patterns. We noted when the respondents were discussing the issues and 
tracked the relationships between these groups. It soon became apparent that 
the third group included the greatest number of observations, so we 
analyzed it in more detail, after which the focus of the present paper began 
to emerge.  

Drawing on the definition of narrative by Pentland (1999), Ramiller and 
Pentland (2009) defined a narrative as:  

“A story involves actors undertaking actions intended to accomplish 
certain goals by certain means, within specific settings, leading to 
particular outcomes.”  



In our analysis, we adopt the approach noted by Ramiller and Pentland 
(2009) and focus on the actions, goals, means, and outcomes of FLOSS 
pioneers and their effects on the software business. That is, in the narratives 
obtained from the selected FLOSS practitioners, we were particularly 
interested in the actions taken by the actors in their accomplishment of 
certain goals, by certain means, and within specific settings, as they seek to 
achieve particular outcomes. 

In the second part of the analysis, we coded our transcribed interviews 
following the approach advanced by Ramiller and Pentland (2009) and 
grouped them into four primary categories: actions, goals, means, and 
outcomes. To improve the transparency of the analysis and the validity of 
the findings, we entered into a process of reflecting the findings between 
two independent researchers. This process became especially helpful when 
the researchers had divergent views regarding the group to which a certain 
part of the narratives belonged. These differences were ultimately resolved 
in all instances that caused disagreement.  

 
Table 1: The focus of the narratives and the identified dimensions 
Focus Dimension 
Goals User involvement 
Means External resources 
Actions Innovation process 
Outcomes Revenue models 

 
In addition to the analysis, we identified the organizational impacts of the 

FLOSS–driven changes in the business of companies taking part in open 
source software development. We were especially interested in the 
organizational responses these changes evoked. The focus of the analysis 
and the dimensions identified are listed in Table 1; they are explained in 
detail in the following section. We tracked the measures being taken by the 
entrepreneurs to address these issues. The identified dimensions of the 
impacts of FLOSS on the business of the case companies include changes in 
the innovation process, user involvement, external resources, and revenue 
models. 

Feedback of the respondents 

To improve the validity of the results, the interviews were transcribed 
and lodged into an interview protocol and sent to the respondents for their 
comments. The respondents were explicitly asked for their comments and 
input on the protocol. By doing this, the authors ensured that they had not 
misinterpreted the respondents and that the respondents agreed that the 
research had been conducted according to high standards. All respondents 
sent comments and agreed that they had been quoted correctly. The 
respondents also reflected on the results.  

The respondent from Yoga stressed that as a platform, open source 
enables finding niches in the markets. This is because the necessary 
investments in this case were lower compared to other solutions thanks to 
the available FLOSS platform. The respondent wanted to underscore that it 
is not necessary for a start-up software company to conquer an already 
saturated market. One respondent from OurDB (pseudonym) stated that he 
would have stressed some things differently, but that there was nothing 
ultimately incorrect in the way he had been quoted, or the way in which the 
research was conducted. Moreover, the respondent from Yoga stated that he 
did agree with most of the findings, although he had not thought about the 
issues in their analyzed contexts. The respondent in Tripod accepted the 
interpretation and did not see anything wrong with the conclusions, although 
he admitted that some of his opinions had changed since the interview. 



Tulip respondents sent comments related to the clarification of the units 
role, but did not protest the findings. 

Discussion 
Drawing upon the narratives conducted in the discussions with the 

management of our case companies, we identified fundamental changes in 
their business in regard to the software development processes, user 
involvement, and the use of external resources. Finally, we identified the 
shifts in revenue models as firm-level responses to these changes. 

The narratives the respondents’ provided to describe their businesses 
included a mixture of scientific theories and tried-and-true business 
practices. Nevertheless, they clearly illustrated how the respondents view 
their business environment and upon which framework they base their 
decision-making strategies. The narratives of the senior managers were 
autobiographical, emotionally loaded, and even ideological, to some extent, 
as one might expected from committed software entrepreneurs, especially 
since their business model choices were linked to their ideological ones.  

“In addition to the business rationale behind our decisions, there are of 
course the ideological reasons. …we wouldn’t be doing this; we wouldn’t 
have started our own company if we wouldn’t have believed in FLOSS. We 
believed in it, and still believe, because it has wonderful merits.” (CEO, 
Tripod) 

FLOSS induces user involvement in software development 

The theme that FLOSS offered increased customer involvement and was 
raised in several stories offered by the software industry pioneers. 
Integrating customer feedback and requirements to the software was seen as 
one of the main opportunities and challenges. The respondents confirmed 
that FLOSS development was organized differently from proprietary 
development and thus is able to respond faster to customer needs.  

The interviewees agreed that FLOSS enables and invites user 
participation in software development. There were differences in the 
numbers of possible contributions among the different software product 
categories, but users played a clear role as a contributor to the software 
project, product, and service. 

“We would never have gained 5 million users to our database product 
without acting according to the principles of the open source software 
community. Since we first released our software under an open license, we 
have gathered feedback … development ideas, problem descriptions and 
solutions … and responded to all possible initiatives from the user 
community to develop the product with the skillful individuals using the 
product.” (CEO, OurDB) 

“At OurDB we love users who never pay us money. They are our 
evangelists. No marketing could do for us what a passionate user does when 
he tells his friends and colleagues about the software. Our success is based 
on having millions of evangelists around the world. Of course, they also 
help us develop the product and fix bugs.” (CEO, OurDB) 

Yoga’s manager referred to “classical OS development” and stated that 
he had contributed to several FLOSS projects, according to his personal 
needs and preferences. This is because ready-made software did not include 
the necessary functionality.  

“The main idea of FLOSS is working together to create tools everyone 
wants to use individually.” (Entrepreneur, Yoga) 

“We develop and use FLOSS, but in fact you might also call this a 
consortium approach that uses FLOSS for supporting our activities.” 
(Project manager, Tulip) 



The managers of Nemesis continued: 
“Our solutions are made for the customers, not for ourselves. We want to 

build a working solution, but we want the customers to sit down with us, so 
we can do it on the users’ terms. --- We believe that it is not enough for us to 
provide open source software. In our opinion, customer should also have 
open access to the actual work process. --- Not only through external 
communication, but also in internal collaboration. We want to get the 
customers’ messages heard.” (CEO, Nemesis) 

Our respondents assumed that customers had the necessary capability and 
willingness for the elicitation of their requirements, and that this information 
should guide the development of software products. In this vein, customer 
expectations determined which solutions would become commercially 
viable. The significant role played by such expectations was taken for 
granted; the respondents assured us that customer expectations drive actual 
customer behavior and their identification is thus salient to software 
vendors. Customer requirements were categorized differently by the various 
interviewees. For example, some talked about technological requirements 
for certain functionalities, while others discussed business requirements, 
such as the maintenance, security, training, and adaptability of the software. 
In some other application domains, the global reach, high level of 
penetration, and the possibility of developing the product according to tastes 
were seen as guarantees that the company could answer customer 
requirements better. 

Open source development relies on external resources 

Due to the search and use of external resources and capabilities, the 
borders between networked companies and their environments are becoming 
blurred. One of the main advantages of FLOSS is the external contribution 
made by users and developers. Harnessing this innovation potential would 
allow the production of software and services that would be more tailored to 
users’ needs.  

The interviewees were like-minded in that external competencies are 
becoming increasingly important in terms of competition. According to the 
respondent from OurDB, external resources are of key importance to the 
company’s success: 

“The vast community of [our OurDB product] users and developers is 
what drives our business.” (CEO, OurDB) 

“We have five million server installations in use worldwide. Around them 
there are small ‘software ecosystems.’ There are books and articles written, 
lectures held, courses taught, and applications developed around our 
products. This community of volunteers is our most important asset. Yet, it is 
difficult to define.” (CEO, OurDB) 

With a large user group, you can attain a higher product quality, as a 
larger number of people use the software in different situations and provide 
feedback. It also limits your development costs, as you will receive some of 
the software from others. Sometimes greatest ides come from outside -ideas 
that you never had though of. In this vein, users can widen your view 
(Project manager, Tulip)  

Moreover, a respondent from Tripod described the context in which 
resources are publicly available, but then stated that the capability to make 
use of these resources to capture value potential is essential. In this way, 
even though the original developers share the code in the FLOSS 
community, clients gladly rely on their knowledge in applying the code in 
the development of applications, consultancy, training, and maintenance of 
the software.  

To conclude, the ability to utilize external resources and capabilities is 
recognized as one of the key factors in remaining competitive in the 
software business. As public goods, FLOSS-based platforms, components, 



and applications shift the focus from the development of proprietary 
innovations to the use of the goods and knowledge that is publicly available. 

OS-based software development urges opening the innovation 
process 

The openness of innovation activity is a key theme in commercial FLOSS 
development. This is evident in the respondents’ accounts of companies' 
innovation processes. The responses from our study depict a fundamental 
difference between open and closed innovation paradigms. 

 “It is possible to create this kind of a joint project only if you let people 
see that their response has some effect on the software. --- 

There was a lot to do with our software before it was ready, but we 
opened in a very early stage. We were able to give plausible promise and 
thus received a lot of valuable feedback. This resulted in a quite different 
end product.” (Respondent from Tripod)  

Hence, the quality of innovation outputs is an essential reason to engage 
in open innovation. The open innovation form embodies working together 
with numerous partners and various members of the FLOSS community. In 
such an innovation model, the feedback loops are short, while the software 
results from continuous improvement.  

Our narratives underscore that through FLOSS activity, firms open their 
innovation processes to benefit from the knowledge and the innovation 
capacity of diverse OSS communities. In this way, they aim at the inclusion 
of several developers and users to benefit from their innovation capacity for 
shorter lead-times, shorter times to market, and ultimately, better product 
quality. 

FLOSS-based public goods change the revenue models 

A vital consideration in FLOSS activity is how it changes the means of 
value capture in software businesses. During the interviews, our respondents 
tended to discuss services, rather than products. This can be attributed, to 
some extent, to the fact that the companies provide services, not products. 
Yet, it is also apparent that the interviewees saw the future of the software 
business as being in services, rather than in commoditized products.  

The respondents agree that proprietary software cannot compete 
successfully for long in the same market as a complementary FLOSS 
product. There are several reasons for this. The most obvious reason seemed 
to come through in a statement by the CEO of OurDB: 

“---the business will have a fierce price war, where profits disappear. --- 
Our narrators verbosely discuss their revenue strategies in the FLOSS 

business. They have experimented both with the ones that are directly 
product or service-related and those that indirectly benefit from the large 
user base. 

“In the beginning we did not focus on profits at all. Instead, we focused 
on boosting the use of the software. --- The vast community of users and 
developers is what drives our business. Then we sell our offerings to firms – 
those who need to scale and cannot afford to fail. The enterprise offering 
consists of certified binaries, updates and upgrades, automated DBA 
services, 7x24 error resolution, etc.  

-Enterprise software buyers are tired of complex pricing models (per 
core, per CPU, per power unit, per user, per whatever the vendor feels like 
that day)—models that are still in use by the incumbents. -You pay by 
service level and the number of servers. No nonsense, no special math.” 
(CEO, OurDB) 



“-Basically our revenue streams are very broad and far-fetched. So, any 
reduction of problems in our service reduces cost and is actually an 
increase in our profit” (Project manager, Tulip) 

The narratives regarding the pricing principles of FLOSS revealed that 
the sales prices of the software were not very interesting to the informants; 
this result was not anticipated. However, the narratives underscored the total 
cost of ownership, including all transaction costs and lock-in costs. The 
potential, or even analytical, difference in the purchase price was not seen as 
being crucial; instead, the informants agreed that it was only a small part of 
the total cost of ownership, and thus, the delivery price was not a key factor 
in selecting software. However, the respondent from Yoga claimed that the 
strength of FLOSS is that, in many cases, it is the most cost-efficient 
solution.  

“Some proprietary software companies communicate – and in some 
cases quite correctly – that the total cost of ownership is less for proprietary 
products. In some cases it is, but in some others, the price favors, very 
clearly, open source software.” (Entrepreneur, Yoga). 

One of the strengths the incumbent companies have and will apply is that 
of switching costs. Once a company buys something from one supplier, it 
becomes more costly to purchase that item from some other vendor the next 
time. Incumbent companies often try to lock out entrants, even by giving 
away some of their software to undermine rival companies. Our Tripod 
interviewee described this process relative to his own open source software 
company:  

“We tried to create our own market with FLOSS and [by] selling service. 
Our competitors responded by starting to give away their software.” (CEO, 
Tripod). 

Networking effects seem to play an important role in the FLOSS revenue 
models, as it is possible to evade a lock-in to one company, as long as there 
are several FLOSS vendors operating on the same platform. Assume that a 
software product is evolving, there are several developers that sell 
customization and one company that coordinates the project. If a company 
does not purchase from the coordinator, but instead purchases from some of 
its rival suppliers, then, according to our respondent from Tripod, “how can 
he be sure that he can use the customized features in the future versions?”  

 However, some of the respondents pointed out that all proprietary 
software products will not disappear, since FLOSS products require special 
circumstances – at least a number of interested users and motivated 
developers to form a community. 

“Open source will erode the great margins of the widely used software 
packages and will force the providers of those packages into [the] service 
business.” (CEO, OurDB). 

Our informants are united in that when software is distributed freely, the 
traditional revenue sources are waned, and firms are compelled to develop 
novel revenue models that may be based on services and only indirectly 
bound to the distribution of software licenses.  

Conclusions 
Along with the emergence of the open forms of innovation, there is a 

growing amount of software that is available for free. In addition, 
enthusiastic developers participate in numerous FLOSS projects on a 
voluntary basis. Therefore, it is apparent that FLOSS communities represent 
a means by which firms can increase the total amount of resources they can 
draw upon in their innovation processes. FLOSS development also paves 
the way for new and virtual methods of collaboration between software 
vendors and users. One of our informants provided us with a statement 
about the way FLOSS activity has changed the software industry: 



“I think the architecture of participation that is embedded in the open 
source philosophy is a superior innovation method. And it is not limited to 
software. Look at Wikipedia. Software developers were the first ones to 
adopt it. The simple fact that everything you create is open for scrutiny by 
anyone else is a strong incentive to produce good stuff from the beginning. 
And the meritocracy of open source leads to faster innovation and thereby 
better innovations. It is a Darwinian system where over time, the best 
solutions will emerge.” (CEO, OurDB) 

The narratives indicate that through participation in FLOSS development, 
firms reframe system boundaries, and complement their traditional means of 
software development with new techniques for activating and involving 
external resources. Successful FLOSS companies are active in creating and 
making use of innovations developed beyond their organizational 
boundaries. The distributed nature of such innovation places additional 
demands on firms that aim to benefit commercially. This calls for the 
development of novel revenue models. 

Our findings concur with the recent study on FLOSS development 
conducted by Vujovic and Ulhoi (2008) and a study on its impact on 
software business by Fitzgerald (2009). While we agree with Fitzgerald 
(2006) on the nature of software business transformation, we identify four 
changes that occur in the software business. These changes are summarized 
in Table 2.  

 
Table 2: Identified FLOSS-induced changes in the business of companies 

engaged in open source software development 
Focus Dimensions Impact 
Goals User 

involvement 
FLOSS activity emphasizes user 
involvement in software development 
and delivery. 

Means External 
resources 

FLOSS activity emphasizes access to 
external capabilities, rather than internal 
resource ownership. 

Actions Innovation 
process 

FLOSS-based software development 
urges software innovators to open up 
their innovation processes. 

Outcomes Revenue 
models 

FLOSS-based public goods change the 
revenue models of firms taking part in 
OSS development. 

 
Table 2 summarizes the findings concerning the impact of FLOSS on the 

business of companies that take an active part in open source software 
development. Four dimensions emerge from the analysis: 1) the impact of 
FLOSS on the innovation process of the firms; 2) user involvement; 3) the 
use of external resources in software firms’ operations; and 4) the revenue 
model as part of the firms’ business models.  

The findings justify the following proposition in regard to the effects of 
FLOSS within companies’ software development practices: 

Proposition 1: FLOSS-based software development urges software 
innovators to open up their innovation processes in a way that calls 
attention to user involvement in software development and delivery. In 
doing so, FLOSS activity emphasizes access to external capabilities, rather 
than internal resource ownership. 

In addition, the findings give rise to the following proposition regarding 
the effects of FLOSS development on the business of firms that participate 
in open source software development: 

Proposition 2: FLOSS-based public goods change the focus of 
competition in the software business from product-centric to service-centric 
operations. 

The second proposition means that FLOSS has an impact on the primary 
software industry as a whole, as it wanes the traditional sources of revenue, 



and compels firms to develop new revenue models primarily based on 
service. Grounded on these empirical observations, this work has some 
important theoretical and practical implications.  

Theoretical implications 

Some proponents of FLOSS favor viewing source code disclosure and 
engaged entrepreneurial activity as somewhat opposed to each other. This 
view may hinder the understanding on the relationships between the 
publication and free availability of the software code and the entrepreneurial 
reality. Furthermore, it clouds how the entrepreneurial experience linked 
with the FLOSS development paradigm drives changes in the innovation 
environment of software firms. Therefore, the FLOSS phenomenon, as it is 
captured in this study, calls for the investigation of the behavior of 
individuals making the decisions to engage in the FLOSS activity at both the 
firm and industry levels. FLOSS companies have opened up their innovation 
processes and built their software using open components and products. 

In particular, the findings imply that it is important to understand the 
effects of FLOSS on individual companies on the entire software industry, 
not only on single development projects and individual participants’ motives 
and behaviors. Our work underscores the need to investigate software 
business management from an entrepreneurial perspective. In this vein, the 
present study contributes to the theoretical discussion on open innovation by 
extending its prevailing socio-technical perspective.  

Managerial implications 

This study highlights the ways FLOSS affects the business of firms that 
choose to participate in FLOSS development. Our findings indicate that 
these effects go far beyond the firms’ offerings. These include the effects on 
the innovation process, user involvement, resources, and revenue models. 
Therefore, to capture the potential and benefit from the external resources in 
their innovation activity, managers should focus the users of their software 
already at the early phases of their innovation processes to benefit from 
users’ contributions. Moreover, user involvement may foster commitment to 
the company’s offerings. Other software firms can also benefit from readily 
available FLOSS components. 

 Our findings also illustrate that the business models of companies who 
do not endorse FLOSS will face changes. If some companies provide their 
software as “public goods”, the managers of all firms providing competing 
offerings must rethink their revenue models. Congruent with existing studies 
on FLOSS business models, our findings underscore that the new revenue 
models are increasingly grounded on services. These FLOSS-induced 
changes can affect all firms in the software industry and are not limited to 
companies engaged in FLOSS activity. 

Limitations and avenues for future research 

We limited the scope of this study to the primary software industry and 
chose to view the business environment from a managerial perspective. As a 
result, there is an obvious bias slanted towards favoring FLOSS from the 
managers. We do, however, believe that our analyses of the FLOSS changes 
would have be significantly poorer had we erased the perspective of a 
FLOSS entrepreneur when conducting our investigation on the FLOSS–
induced changes in the software industry.  

For scholars interested in FLOSS and the software industry, the findings 
provide several avenues for further research. For example, there is a need to 



investigate the constraints of FLOSS in different business models or hybrid 
models based on both closed software processes and FLOSS. In addition, 
the present study calls for more empirical research on software development 
practices, user requirements, and the methods employed to add value to 
users. 

We claim that there is also a need to explore the actual changes further in 
both individual companies and the software industry as a whole. More 
specifically, our explorative study calls for more research on the changes 
that the FLOSS activity induces in the operating environment of all software 
companies, not only those that are active FLOSS pioneers or their 
competitors. In addition, there is a need for further investigation into the 
changes that FLOSS brings to the secondary software sector. 
 
References  
 
ALLEN, R C (1983) Collective invention. Journal of Economic Behavior and 

Organization, 4,1-24. 
ALVAREZ, R and URLA , J (2002) Tell Me a Good Story: Using Narrative 

Analysis to Examine Information Requirements Interviews During an ERP 
Implementation. The DATA BASE for Advances n Information Systems, 33 (1), 
38-52. 

BARNEY, J (1991) “Firm resources and sustained competitive advantage,” Journal 
of Management, 17, 1, 99-120. 

BARTIS, E and MITEV, N (2008) A multiple narrative approach to information 
systems failure: a successful system that failed. European Journal of Information 
Systems 17, 112-124. 

BAUM, J A C and OLIVER, C (1992) Institutional embeddedness and the dynamics 
of organizational populations. American Sociological Review 57, 4, 540-559.  

BENUSSI, L (2005) Analyzing the technological History of the Open Source 
Phenomenon. Stories from the Software Evolution 
http://opensource.mit.edu/papers/benussi.pdf [retrieved 15.3.2009]  

BERGER, P and LUCKMANN, T (1966) The Social Construction of Knowledge: A 
Treatise in the Sociology of Knowledge. Anchor Books, Doubleday, New York. 

LJUNBERG, J (2000) Open source movements as a model for organizing. European 
Journal of Information Systems, 9, 208-216. 

BROWN, A and JONES, M (1998) Doomed to Failure: Narratives of Inevitability 
and Conspiracy in a Failed IS Project. Organization Science, 35:1, pp. 73-88. 

BURR, V (1995) An introduction to Social Constructionism. Routledge, London. 
CHESBROUGH, H (2003) Open Innovation: How Companies Actually Do It?. 

Harvard Business Review, 81::7, 12-14. 
COFFEY, A and ATKINSON, P (1996) Making Sense of Qualitative Data Analysis: 

Complementary Strategies. Sage, Thousand Oaks, CA. 
CZARNIAWSKA, B (1998) A Narrative Approach to Organization Studies. 

Qualitative Research Methods Series, 43. Sage, Thousand Oaks, CA.  
DAHLANDER, L and MAGNUSSON, M (2008) How do Firms Make Use of Open 

Source Communities?. Long Range Planning 41, 629-649.  
DAHLANDER, L and MAGNUSSON, M (2005) Relationship between open source 

software companies and communities: Observations from Nordic firms. Research 
Policy, 34, 481-493. 

DI BONA, C OCKMAN, S and STONE, M (eds.) (1999) Open Sources: Voices 
from the Open Source Revolution. O'Reilly & Associates, Sebastopol, CA. 

EISENHARDT, K and MARTIN, J (2000) “Dynamic capabilities: what are they?” 
Strategic Management Journal, 21, 1105-1121. 

ELPERN, J (2009) “A Framework for Understanding the Open Source Revolution. 
International Journal of Open Source Software & Processes, 1, 3, pp. 1-16. 

ESSERS, C (2009) “Reflections on the Narrative Approach: Dilemmas of Power, 
Emotions and Social Location While Constructing Life-Stories,” Organization, 
16:2, 163–181.  

FITZGERALD, B (2006) “The Transformation of Open Source Software,” MIS 
Quarterly, 30:4, 587-598. 

FITZGERALD, B (2009) “Open Source Software Adoption: Anatomy of Success 
and Failure. International Journal of Open Source Software & Processes, 1, 1, 
pp. 1-23. 



FORD, J D and FORD, L W (1995) “The role of conversations in producing 
intentional change in organizations,” The Academy of Management Review, 20, 
541-70. 

HANNAN, M T and FREEMAN, J (1984). Structural Inertia and Organizational 
Change. American Sociological Review, 49, 2., 149-164. 

HECKATHORN, D (1996) “The Dynamics and Dilemmas of Collective Action,” 
American Sociological Review, 61(2), 250-277. 

HECKER, F (2000) “Setting up shop: the business of open-source software,” 
Available at: http://www.hecker.org/writings/setting-up-shop [retrieved 
15.3.2009] 

HENKEL, J(2008) "Champions of revealing—the role of open source developers in 
commercial firms," Industrial and Corporate Change, 18:3, 435–471.  

KOGUT, B and METIU, A (2001) "Open-source software development and 
distributed innovation" Oxford Review of Economic Policy, 17:2, 248–264. 

LANZARA, G F (1991) "Shifting stories: Learning from a reflective experiment in a 
design process" In: SCHON, D. A. (Ed), The reflective turn: Case studies on 
practice and in practice. Teachers College Press, New York. 

MCDANIEL, T R (2004) “A software-based knowledge management system using 
narrative texts,” Doctoral dissertation, University of Central Florida, Orlando, FL. 

MEYER, P (2003) "Episodes of collective invention," working paper 368, US 
Department of Labor, Bureau of Labor Statistics, Washington, DC.  

MOCKUS, A Fielding R, and Herbsleb J (2002) “Two case studies of open source 
software development: Apache and Mozilla,” ACM Transactions on Software 
Engineering and Methodology, 11:3, 309-346. 

MONGE, P R FULK, J KALMAN, M E and FLANAGIN A J (1998) “Production of 
Collective Action in Alliance-Based Interorganizational Communication and 
Information Systems,” Organization Science, 9:3, 411-433. 

O’LEARY, M ORLIKOWSKI, WJ and YATES, J (2002) “Distributed work over 
the centuries: trust and control in the Hudson’s Bay Company 1670–1826,” In: 
Hinds P., and Kiesler, S. (Eds.), Distributed Work. MIT Press, Cambridge, MA. 

OLSON, M (1965) “The Logic of Collective Action,” Harvard University Press, 
Cambridge, MA. 

OSTERLIE, T and JACCHERI, L (2007) “A Critical Review of Software 
Engineering Research on Open Source Software Development,” In the 
Proceedings of the 2nd AIS European Symposium on Systems Analysis and 
Design, Gdansk, Poland, June 5, 2007. 

PENTLAND, B T (1999) “Building process theory with narrative: From description 
to explanation,” Academy of Management Review, 24:4, 711-724. 

PFEFFER, J (1981) “Power in Organizations.” Pitman, Marshfield, MA. 
PHILLIPS, N and HARDY, C (1997) “Managing multiple identities: Discourse, 

legitimacy and resources in the UK refugee system,” Organization, 4:2, 159–186. 
RADTKE, N JANSSEN, M and COLLOFELLO, J (2009) “What Makes Free/Libre 

Open Source Software (FLOSS) Projects Successful? An Agent-Based Model of 
FLOSS Projects”, International Journal of Open Source Software & Processes, 
1:2, 1-13 

RAMILLER, N and PENTLAND, B (2009) "Management Implications in 
Information Systems Research: The Untold Story," Journal of the Association for 
Information Systems, 10:6, Article 2, 474-494.  

RAYMOND, E S (1999) “The Cathedral and the Bazaar, Musings on Linux and 
Open Source by an Accidental Revolutionary,” O’Reilly & Associates, Inc., 
Sebastopol, CA. 

RHODES, C and BROWN, A D (2005) “Writing Responsibly: Narrative Fiction and 
Organization Studies,” Organization, 12:4, 467-491. 

RICE, L and EZZY, D (1999) “Qualitative Research Methods: A Health Focus,” 
Masako Ono-Kihara Japan.  

SCACCHI, W (2007) “Free/Open Source Software Development: Recent Research 
Results and Methods,” in Zelkowitz, M. V. Advances in Computers, vol. 69, pp. 
243-269. Academic Press. 

SHAPIRO, C and VARIAN, H (1999) “Information rules: A Strategical Guide to the 
Network Economy,” Harvard Business School Press, Boston, Massachusetts. 

SZCZEPANSKA A M, BERGQUIST, M and LJUNBERG, J (2005) “High Noon at 
OS Corral: Duels and Shoot Outs in Open Source Discourse,” in: J. Feller, B. 
Fitzgerald., S. A. Hissam, and K. R. Lakhani. eds. Perspectives on Free and Open 
Source Software. MIT Press, Cambridge, MA. 

TEECE, D J PISANO, G and SHUEN, A (1997) “Dynamic Capabilities and 
Strategic Management,” Strategic Management Journal, 18, 7, 509-533. 



TUSHMAN, M L and ANDERSON, P (1986) “Technological Discontinuities and 
Organizational Environments.” Administrative Science Quarterly 31, 439-465.  

UDÉHN, L (1993) “Twenty-Five Years with the Logic of Collective Action,” Acta 
Sociologica, 36, 239-261. 

VAN DER LINDEN, F LUNDELL, B and MARTTIIN, P (2009) "Commodification 
of Industrial Software: A Case for Open Source," IEEE Software 26:4, 77-83. 

VARGO, S L and Lush, R F (2004) “Evolving a services dominant logic,” Journal of 
Marketing, 68, 1-17. 

VEN, K VERELST J and MANNAERT, H (2008) “Should You Adopt Open Source 
Software?” IEEE Software. May/June 2008, 54-59. 

VISWESWARAN, K (1996) “Fictions of Feminist Ethnography,” Oxford University 
Press, Delhi. 

VITARI C and RAVARINI A (2009) A Longitudinal Analysis of Trajectory 
Changes in the Software Industry: The Case of the Content Management 
Application Segment. European Journal of Information Systems, 18, 249-263. 

VON HIPPEL, E and VON KROGH, G (2003) “Open Source Software and the 
“Private-Collective,” Innovation Model: Issues for Organization Science,” 
Organization Science, 14:2, March–April 2003.  

VON KROGH, G and SPAETH, S (2007) “The open source software phenomenon: 
Characteristics that promote research,” The Journal of Strategic Information 
Systems 16:3, September 2007, 236-253. 

VON KROGH, G VON HIPPEL, E (2006) “The Promise of Research on Open 
Source Software,” Management Science, 52:7, 975-983. 

VUJOVIC, S and ULHØI, J P (2008) “Online innovation: the case of open source 
software development,” European Journal of Innovation Management, 11:1, 142-
156. 

WEICK, K SUTCLIFFE, K M and, OBSTFELD, D (2005) “Organizing and the 
Process of Sensemaking,” Organization Science, 16:4. 409-421, Jul/Aug 2005. 

WHITE H (1981) “The value of narrativity in the representation of reality.” in On 
Narrative (Mitchell W.J.T. ed.), The University of Chicago Press, Chicago, 1-24. 

WILLIAMS, S (2002) “Free as in Freedom: Richard Stallmans Crusade for Free 
Software,” O´Reilly, Sebastopol, CA. 

XU, L and BRINKKEMPER, S (2007). Concepts of product software. European 
Journal of Information Systems, 16, 531-541. 



Appendix 1: Cases 
 
Case 1: Tripod (pseudonym) is a small Finnish FLOSS company that 

specializes in developing collaborative learning and knowledge 
management software, related training, and consultancy. Its revenue model 
is largely based on service contracts with public organizations. These 
contracts cover software updates, new feature development, support, and 
training. The company was founded in 1996 and has its headquarters in 
Helsinki, Finland. The company had three employees at the time of the first 
interview in 2005. In the beginning of 2010, the company employed seven 
people. 

Case 2: OurDB (pseudonym) is a large Finland-based international firm 
that specializes in relational database management systems and related 
services. Development of the company’s main product began in 1995. The 
company’s revenue model is based on dual licensing, which means it 
provides both FLOSS and proprietary versions of its software. Software 
development is managed by the company’s staff, but it depends upon the 
innovation capacity of a worldwide community comprised of millions of 
users and thousands of co-developers. 

Case 3: Yoga (pseudonym) is a small Finnish entrepreneurial firm that 
focuses on consultation and FLOSS development. The firm specializes in 
combining relational databases and e-mail management tools. It is based in 
Helsinki, Finland. At the time of the interview, the company employed only 
the founder, who is an expert in e-mail management software and FLOSS 
project management. Its revenue model is based on selling software 
development services and consultancy. 

Case 4: Nemesis (pseudonym) is a small Finnish company that 
specializes in FLOSS-based Web services, especially content management 
systems, related services, and online support. The company was founded in 
2001. Its revenue model is based on selling per-hour coding work. The 
software development is managed by both the company’s own staff and an 
active developer community. 

Case 5: Tulip (pseudonym) is a small unit belonging to a branch of a 
large multinational corporation. It produces FLOSS software systems for the 
interoperability testing of the company’s main product lines. The parent 
company is based in the Netherlands and consist of three persons. The main 
source of their funding comes from the parent company and a partner 
company, as both are expecting gains from supporting their main product 
and reducing interoperability problems. Unit launched its main product as 
an OSS to gain credibility as an independent and neutral test tool, but also to 
attract outside contributions to the development of the software. Currently, 
the founding companies are responsible for almost all of the development. 

 



9HSTFMG*aeadha+ 

ISBN: 978-952-60-4038-7 (pdf) 
ISBN: 978-952-60-4037-0 
ISSN-L: 1799-4934 
ISSN: 1799-4942 (pdf) 
ISSN: 1799-4934 
 
Aalto University 
Aalto University School of Economics 
Information Systems Science 
aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 13

/2
011 

Open Source Software research has 
established that OSS technology (tools and 
practices) holds potential. Based on a 
systematic literature review and a research 
engagement, this dissertation describes how 
organizations leverage OSS practices to 
produce software. It provides a narrative of 
how the term OSS travels from the writings 
of enthusiasts to the daily practices of 
organizations. The findings underline the 
importance of local renegotiation of the 
term OSS. This renegotiation provokes 
structural changes in 1) the organizations 
that adopt OSS technology, but also in 2) the 
industries these companies operate in. The 
main contribution of this doctoral 
dissertation is to promote the idea that OSS 
in organizations should be researched in a 
sensitivized manner. This requires moving 
away from too simplistic institutional 
contexts. Another contribution is to reduce 
uncertainty about the adoption of OSS 
technology and to help build a capacity to 
accept, search for, motivate and reward 
contribution. 

Juho Lindm
an 

N
ot A

ccidental R
evolutionaries: E

ssays on O
pen Source Softw

are Production and O
rganizational C

hange 
A

alto
 U

n
ive

rsity 

Information Systems Science 

Not Accidental 
Revolutionaries: 
Essays on Open 
Source Software 
Production and 
Organizational 
Change 

Juho Lindman 

DOCTORAL 
DISSERTATIONS 



 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     4
     1105
     313
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     4
     1105
     313
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     4
     1105
     313
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     4
     1105
     313
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     4
     1105
     313
    
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base





