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Abstract: Stochastic optimization is an effective tool for analyzing decision prob-
lems under uncertainty. In stochastic optimization a decision problem is
formulated as an optimization problem, where the objective is to find an
optimal decision, while considering all the possible scenarios for the un-
certain factors and dependencies between the decision variables through
time. In stochastic optimization the decision problem is solved numeri-
cally and there are only minor limitations for decision criteria, constraints
and distributions of random factors that can be used in the formulations.
This thesis consists of an introductory section and four articles. The in-
troduction summarizes the contents and findings of the four articles and
provides an introduction to the main issues in stochastic optimization:
formulation of the decision problem as a stochastic program, econometric
modeling of the stochastic factors and discretization of the problem for
numerical solution. The first two articles are related to Asset-Liability
Management (ALM) problem of a Finnish pension company. Article 1 de-
velops a stochastic model for assets and liabilities of a pension company.
The model is used for producing long term forecasts for asset returns as
well as company’s liabilities and cash-flows. The model is utilized in Arti-
cle 2, where a stochastic optimization model for ALM of a Finnish pension
company is developed. The model is used as a decision support tool for
finding long-term dynamic investment decisions in an uncertain environ-
ment, where the aim is to cover the uncertain future liabilities with dy-
namic investment strategies. The last two Articles address the problem of
discretization of stochastic programs for numerical solution. New scenario
generation techniques based on deterministic and randomized integration
quadratures, more precisely Quasi Monte Carlo methods, are developed
and applied to financial portfolio optimization problems. Conditions that
guarantee the convergence of the objectives and solutions of the discretized
problems to the original one are derived for both, Quasi-Monte Carlo and
Randomized Quasi-Monte Carlo methods.
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1 Introduction

Most decision making problems are influenced by factors that are uncertain at the time of the
decision. This is especially true for dynamic decision problems, where the uncertainty is related
to future realizations of certain key variables. Typical examples include long term strategic in-
vestment decisions in banks, pension insurance companies and foundations, where the uncertain
investment returns play a crucial role in portfolio allocation decisions. There are at least four
related approaches for solving discrete-time dynamic decision problems under uncertainty, namely
stochastic optimization, stochastic dynamic programming, stochastic optimal control and decision
rules, and each of the approaches is effective in certain domains.

Decision rules are, possibly state dependent, functions for calculating the values of decision
variables at each time period. The decision function may depend on certain key economic variables,
which are known to influence the (optimal) decisions. Decision rules are quite easy to implement
and they are intuitive for most managers. The most widely used decision rules in portfolio allocation
applications are fixed-mix strategies, where the investment portfolio is always rebalanced to fixed
proportions; see (Fleten et al. 2002). There have been attempts to optimize decision rules, but
they usually lead to non-convex optimization problems, which are very hard to solve (Høyland
1998, Fleten et al. 2002, Kouwenberg 2001). The solutions obtained with decision rules are usually
sub-optimal for two reasons: one, global optimality in non-convex optimization problems is difficult
to assure and two, the decision rules usually cover only a subset of possible solutions to a decision
problem.

In stochastic dynamic programming the problem is to find optimal decisions at discrete points in
time. The actions taken in some state at a given time stage are influenced by realizations of random
variables. The typical approach to solving dynamic programming problems is to form a backward
recursion resulting in an optimal decision associated with each state at each time stage; see e.g.
(Bertsekas 2000). The need to enumerate all decisions as well as outcomes of random variables
limits this approach to decision problems in which the state space can be kept manageable, i.e.
at most 3 or 4 driving variables. Dynamic programming based control remains tied to decision
problems satisfying the Markovian property, where the decisions and outcomes depend only on the
current state of the world, and not on the history of past states preceding the current one.

Discrete-time stochastic optimal control, (SC) is a general modeling framework, where the
problem is to find optimal state dependent control rules for the SC problem. The method also
applies to problems, where the decisions and states are Markovian and the state space is low
dimensional, i.e. at most 3–4 driving variables. Moreover, it is difficult to incorporate complex
constraints often inherent in practical applications to the SC models. These shortcomings limit
the applicability of stochastic dynamic programming and stochastic control models considerably in
large real life optimization applications under uncertainty.

Stochastic optimization or stochastic programming (SP), provides the most general modeling
framework for decision problems under uncertainty. SP formulations are not tied to Markovian
assumptions and the method can easily handle high dimensional state spaces. Real life features,
such as transaction costs, risk aversion, taxes, asset allocation bounds, legal restrictions and other
complex considerations, are easily addressed with stochastic optimization. In SP a decision prob-
lem is formulated as an optimization problem, where the objective is to find an optimal decision
for the problem, while considering all the possible scenarios for the uncertain factors and depen-
dencies between the decision variables through time. The generality of the approach is based on
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numerical computations and the use of modern optimization techniques, and there are only minor
limitations for decision criteria, constraints and distributions of random factors that can be used
in the formulations. SP formulations can lead to very large scale optimization problems, which
require efficient solution algorithms due to possibly enormous number of decision variables in real
life multiperiod problems. For a general introduction to SP the reader is referred to the official
stochastic programming web-site: www.stoprog.org.

During the last decade the number of stochastic optimization applications to complex real life
decision problems has grown dramatically, mainly due to fast development of computers’ calcu-
lation capacity and modern optimization techniques, and the experience has demonstrated that
the quality of the decisions in complex situations can be improved with stochastic programming
(Ziemba and Mulvey 1998). Stochastic optimization models have been successfully adapted to
applications in energy (Wang and Fang 2002), financial planning (Mulvey and Vladimirou 1992,
Cariño and Ziemba 1998, Cariño et al. 1998, Ziemba and Mulvey 1998, Høyland 1998, Kouwenberg
2001), telecommunications (Sen et al. 1994) and supply chain management (Santoso et al. 2003),
to mention a few.

Consider a multiperiod decision making problem, where a decision maker has to choose a vector
xt (e.g. portfolio allocation) for every time period t = 0, . . . , T . The decisions are affected by the
realizations of a discrete time stochastic process {ξt}T

t=0 (e.g. investment returns), which are not
completely known at the time of the decision. At time t the decision maker knows the realizations
{ξ0, . . . , ξt} and the probability measure P for the stochastic process {ξt}T

t=0. The decision xt

at time t depends on the realizations {ξ0, . . . , ξt}, and on the expectations of the future values
{ξt+1, . . . , ξT } of the stochastic process.

Many decision problems can be written as a following stochastic optimization problem.

maximize EP
T∑

t=0

ut[ξ0, . . . , ξt, xt(ξ0, . . . , ξt)] (1)

subject to

At(ξ0, . . . , ξt)xt(ξ0, . . . , ξt)+Bt(ξ0, . . . , ξt)xt−1(ξ0, . . . , ξt−1)
= bt(ξ0, . . . , ξt) P -a.s. ∀t = 0, . . . , T. (2)

Where EP denotes expectation under the probability measure P , ut[ξ1, . . . , ξt, xt] measures the
utility from choosing xt at time t in state {ξ0, . . . , ξt}. Note that functions ut can take a value −∞,
which makes it possible to include many types of constraints for xt in the formulation. Equation (2),
where At and Bt are linear operators dependent on the realizations {ξ0, . . . , ξt} and bt is a vector,
describes dependencies between consecutive time periods (e.g. development of wealth or budget
from one period to another). Decision variables {xt}T

t=0 are functions, which give as a solution to
the problem, the optimal decision for every time period t in state (ξ0, . . . , ξT ).

The solution of the decision problem by stochastic optimization can be divided into four phases:

1. Model formulation, which requires the selection of essential decision variables, constraints and
stochastic components for the problem, and choosing an appropriate objective function;

2. Description of stochastic components, which requires the definition of an appropriate stochas-
tic process and estimation of the model parameters;

3. Discretization of the problem for numerical solution;
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4. Solution of the discretized problem with appropriate optimization algorithms.

This introduction covers phases 1–3 by providing an overview of the general modeling procedure
for stochastic optimization employed in this thesis. Phases 1–3 are the most important parts in
formulation and implementation of stochastic optimization problems. Once a decision problem is
formulated as a stochastic programming problem, a stochastic process for the random factors has
to be specified. This involves the selection of an appropriate stochastic model and estimation of the
model parameters. In practice, the stochastic factors are usually described as continuous random
variables. This results in infinite dimensional optimization problems, which are usually impossible
to solve. In stochastic optimization the continuous probability distributions have to be discretized
for numerical solution of the problem. The discretized distributions are usually described in a
form of a scenario tree with finite number of realizations for the random variables. This results in
finite dimensional, usually very large optimization problem, which can be solved with numerical
optimization techniques.

The rest of this introduction is organized as follows. Section 2 discusses the modeling of stochas-
tic components, in general and summarizes Article 1 related to modeling assets and liabilities of
a Finnish pension insurance company. An Asset Liability Management (ALM) application for a
Finnish pension insurance company, developed in Article 2, is described in Section 3. Section 4
provides an overview of the discretization (scenario generation) techniques suggested in the litera-
ture and summarizes the findings of Articles 3–4, where deterministic and randomized integration
quadratures are applied to scenario generation for stochastic optimization problems.

2 Modeling stochastic factors

Many discrete-time stochastic processes {ξt}T
t=1 can be written as

ξt = Gt(ξt−1, . . . , ξt−k, εt, . . . , εt−l),

where {εt}T
t=1 are independent random variables. The econometric literature offers a wide variety of

discrete-time stochastic processes for describing the evolution of stochastic factors. These processes
can be linear or non-linear and the choice for an appropriate stochastic model depends heavily on
the considered application and its time horizon. In financial applications we are usually interested
in describing the return distributions of certain asset classes e.g. stocks, bonds, through time.
Linear time series models can be written as

ξt = d +
k∑

i=1

Aiξt−i +
l∑

j=1

Bjεt−j + εt, εt ∼ N(0,Σ), (3)

where ξt, εt ∈ R
n denote the vector of n dependent variables e.g. asset returns and error terms,

respectively, d ∈ R
n is the vector of drift terms, Ai, Bj ∈ R

n×n, i = 1, . . . , k, j = 1, . . . , l, are
estimated coefficient matrices for lagged dependent variables and error terms, respectively and
Σ ∈ R

n×n is the covariance matrix of error terms. Usually, in empirical work {εt}T
t=1 are assumed to

be independent normally distributed random variables. The discrete time version of the most widely
used stochastic model for asset prices in financial literature, (multivariate) geometric brownian
motion, is obtained from (3) by setting l = 0, k = 1, A1 = I (identity matrix), and can be written
as

ξt − ξt−1 = ∆ξt = d + εt, εt ∼ N(0, Σ),
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where ξ denotes logarithmic asset prices. Many popular time series models used in modeling long
term asset returns are obtained by a suitable parametrization of (3). Equation (3) presents a Vector
Autoregressive Moving Average (VARMA) model, see e.g. Lütkepohl (1991) and by setting l = 0
we obtain a Vector Autoregression (VAR) model (Sims 1980), which has been widely used in long
term analysis of asset returns (Campbell et al. 1997, Campbell and Shiller 1987, 1988). Vector
Equilibrium Correction (VEqC) model (Engle and Granger 1987, Johansen 1995) is also a special
case of (3), since any VEqC model can always be written as a VAR model.

Although many of the models commonly used in empirical finance are linear, the nature of
short term financial data suggests that non-linear models are more appropriate for forecasting and
describing asset returns and volatility.

It is well known, that short term (daily - monthly) asset returns are fat tailed, skewed and
heteroskedastic, see e.g. Campbell et al. (1997). Therefore, short term evolution of asset returns
are usually described with non-linear models. The following provides a short description of widely
utilized non-linear models in financial econometrics literature. Autoregressive Conditional Het-
eroskedasticity (ARCH) (Engle 1982) and Generalized ARCH (GARCH) (Bollerslev 1986) models
are designed to capture the serial correlation in variance of observed asset returns. The original
formulations considered univariate (n = 1) ARCH(q) and GARCH(p,q) models, which are written
as

ARCH: σ2
t = ω +

∑q
i=1 αiε

2
t−i,

GARCH: σ2
t = ω +

∑p
j=1 βjσ

2
t−j +

∑q
i=1 αiε

2
t−i,

where σ2
t is the variance of ξt at time t, ω, αi and βj are non-negative parameters and p and q are

the number of lagged variances and squared error terms, respectively. The presented ARCH and
GARCH models have multivariate counterparts, see e.g. (Engle and Kroner 1995, Engle 2002),
which can be used to model time dependent variances and covariances of asset returns e.g. in (3)
by allowing the covariance matrix to be time dependent (Σt) .

Fat tails and asymmetrices in financial data can be taken into account by replacing the (uni-)
multivariate normal distribution in (3) with another, more fat tailed (t-distribution) or skewed prob-
ability distribution, like skew-normal or skew-t-distribution (Azzalini and Capitanio 1999, 2003).
Another way of modeling asymmetric time series are so called regime-switching models (Franses
and Dijk 2000). The basic idea of regime-switching models is that the stochastic process is time-
invariant conditional on the regime prevailing at time t. Regime-switching models characterize a
non-linear stochastic process as piecewise linear by restricting the model to be linear in each regime.
The number of regimes is limited, they may depend on endogenous or exogenous variables and the
models differ in their assumptions concerning the stochastic process generating the regime (Franses
and Dijk 2000).

Although non-linear models describe short term financial data more accurately than linear
models they also have some drawbacks. Parameter estimation and their interpretation in non-
linear models is usually much more difficult than in linear models. The problems with fat tails and
heteroscedasticity are much less pronounced in long term (quarterly, yearly) asset returns, which
favor linear time series models in long term forecasting models.

This short overview already shows that there is a variety of models for describing the evolution
of given stochastic factors. The selection of an appropriate model is always strongly dependent on
the application and unfortunately, often a non-trivial task.
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Article 1 analyzes a problem related to modeling assets and liabilities of a Finnish pension
insurance company. Pension companies manage enormous investment funds and their strategic
investment allocations and bonus strategies are usually updated on a yearly basis. These decisions
are linked with the companies’ liabilities which extend far into the future. On one hand, this link
comes from the companies’ goal of meeting the liabilities, and on the other, from the legislation
that aims at regulating the solvency risks of the company. The main goal of the pension insurance
companies is to invest policyholders’ pension insurance premiums safely and profitably in order
to meet their future liabilities. The duration of the liabilities is usually very long (over 20 years),
which calls for realistic simulation models for long-term scenarios of investment returns and liability
flows. Such models form the basis for pension insurance companies’ asset and liability management
(ALM). Typically, these models have a macroeconomic flavor in that they try to describe the
development of larger investment classes like short and long term bonds and broad equity indices
along with wage indices and inflation. Many existing stochastic models for pension companies
have been based on the well known Wilkie’s stochastic investment model; see e.g. Wilkie (1986,
1995), Yakoubov et al. (1999) and Ranne (1998). The drawback of these models is their cascade
structure, which allows the modeling of one-way causalities only. VAR and their generalizations,
VEqC models are linear time series models, which do not have this limitation. These models have
become widely utilized tools in applied econometrics during the last two decades, see e.g. Campbell
and Shiller (1987, 1988) and Campbell et al. (1997).

In Article 1 VAR and especially VEqC models are developed for modeling long term asset
returns and liabilities of a Finnish pension insurance company. The considered stochastic factors
describe the development of larger investment classes, namely, cash, bonds, equities, property and
loans to policyholders as well as liabilities, cash flows and some technical quantities that have
an important role in the Finnish statutory earnings-related pension scheme. All the stochastic
variables in the model are expressed in terms of seven economic factors, namely short-term interest
rate, bond yield, stock price -, dividend -, property price -, rental - and wage index. The separate
treatment of prices and dividends enables the modeling of such terms as dividend yield (dividend-
price ratio) that has been shown to have predictive power in describing future changes of dividends
(Campbell and Shiller 1988).

Article 1 emphasizes a general model building procedure that combines statistical information
with user-specified characteristics. The developed model incorporates statistical information with
expert views and it has been successfully implemented in a case where the available data is scarce
and subject to changing economic conditions. The expert views are given in the form of drift
parameters (for such quantities as interest rates, equity and property prices), and certain long-
run equilibrium relations (e.g. average levels of interest rate spread and dividend yield). This is
especially important in situations where the available data displays characteristics that are believed
to change in the future (e.g. declining interest rates in EU-area during the 90’s). Indeed, according
to Hendry and Doornik (1997), deterministic factors like drift parameters and equilibrium values
matter most for predictive failure of economic time series. The model is evaluated against rival VAR
and VEqC models in out-of-sample forecasting tests and long-term simulation experiments. The
results support the importance of incorporating expert information and co-integration relations in
long-term forecasting models.
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3 A stochastic programming model for asset liability management
of a Finnish pension insurance company

Stochastic programming has proven to be an efficient tool in designing good strategies in wealth-
and asset liability management in practice. This is due to its ability to cope with the dynamics
and complex constraint structures usually inherent in such problems. Successful applications of
stochastic programming to asset liability management have been reported in Nielsen and Zenios
(1996), Cariño and Ziemba (1998), Cariño et al. (1998), Høyland (1998), Consigli and Dempster
(1998), Kouwenberg (2001), and Geyer et al. (2002).

Article 2 describes a stochastic programming model and its computer implementation for asset
liability management of a Finnish pension insurance company. Finnish pension insurance companies
are responsible for huge investment funds and, like most pension companies in Europe, they are
facing major challenges with a large number of retiring employees in the near future. The Finnish
statutory earnings-related pension scheme is based on the so called defined benefit rule, where
the pension insurance companies guarantee pension payments which are tied to the development
of the policyholder’s salaries. Because the system is statutory, many of its characteristics are
common to all the companies. For example, the contribution rates and the technical reserves are
calculated according to common formulas confirmed by the Ministry of Social Affairs and Health.
The technical interest rate for the reserves is also common to all the companies and its value for
each year is confirmed by the Ministry.

The pension insurance companies are, however, able to choose their own investment policy.
Since, the Finnish pension system is statutory the companies are frequently obliged to report their
solvency ratios, the ratio between solvency capital and solvency border, to the Ministry of Social
Affairs and Health. The solvency capital is approximately the difference between the company’s
investment capital and the discounted expected value of future liabilities. A fundamental concept in
the system is the solvency border, whose value depends on the investment portfolio of the company
and is calculated according to the formulas given in a government degree. The starting point of the
system is that the probability of ruin in one year at the solvency border, i.e. when solvency capital
equals solvency border, should be approximately 2.5%, and therefore the value of the border is
required to be dependent on the investment portfolio. In short, the riskier the company’s investment
portfolio the higher the value of solvency border. Depending on the investment returns and solvency
position, the company can give bonuses to its customers. These bonuses are paid as reductions of
the contributions, and they are the most important element in the competition between the Finnish
pension insurance companies.

To cope with the increasing pension expenditures, caused by the retirement of the large age
groups, the pension insurance companies need to manage their massive wealth reserves efficiently
and finding good investment strategies is essential for the success of the companies. Finding such
strategies is however a very complicated task, since companies must simultaneously take into ac-
count the nature of its future liabilities as well as its solvency position and bonus strategies.

Article 2 develops a decision support tool, stochastic optimization model, to address these issues
in long-term asset-liability management framework. The developed model describes a long-term
dynamic investment problem where the aim is to cover the uncertain future liabilities with dynamic
investment strategies in an uncertain environment. The assets are considered at the level of the
larger investment classes of cash, bonds, stocks, property and loans to policyholders. In addition
to investment decisions, the model looks for good bonus payment strategies and it takes explicitly
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into account various portfolio and transaction restrictions as well as legal restrictions coming from
the complex Finnish pension system. The legal restrictions form a unique part of the model not
present in earlier applications of stochastic programming.

Particular attention is given to the description of uncertain factors in the model which include
investment returns, cash-flows, and the so called technical reserves used in the definition of the
statutory restrictions. This is important since the output of a stochastic optimization model de-
pends usually heavily on the underlying stochastic model. The evolution of the stochastic factors is
described with a VEqC model developed in Article 1. The model is implemented and tested against
static fixed-mix and dynamic portfolio insurance strategies (Perold and Sharpe 1988, Black and
Jones 1988). Fixed-mix strategies are simple decision rules that always rebalance the investment
portfolio to fixed proportions. In dynamic portfolio insurance strategies the investment proportions
depend on the company’s solvency so that more wealth is allocated to risky assets, stocks, when
the company’s solvency level is high and the stock market exposure is reduced as the company
approaches insolvency.

These decision strategies cannot be considered as fully realistic models for the behavior of a
real pension insurance company. However, they are currently used for various simulation pur-
poses in practice, which motivates their use as benchmarks. In out-of-sample tests, the strategies
based on the developed stochastic optimization model clearly outperform both the fixed-mix and
portfolio insurance strategies. Similar results have been obtained for the more sophisticated but
computation-intensive benchmarks in Høyland (1998), Kouwenberg (2001) and Fleten et al. (2002).

4 Scenario generation for stochastic programs

In practice, the problem dependent stochastic factors are usually described as continuous random
variables, like in Section 2. This results in infinite dimensional optimization problems, which are
generally impossible to solve. In stochastic optimization the random factors are usually described in
a form of a scenario tree with finite number of realizations for the random variables. The resulting
finite dimensional optimization problem can be solved with numerical optimization techniques; see
e.g. King (1996). The properties of the discrete approximation P ν , where ν is the number of
scenarios, of the true probability measure P have a strong impact on the optimal solution obtained
with the discretization. In general, the aim is to generate approximations P ν of P , so that the
discretized problem approximates the true optimization problem as well as possible.

The simplest and perhaps the most widely studied and used scenario generation method in
stochastic programming applications is Monte Carlo (random) sampling, see Cariño and Ziemba
(1998), Cariño et al. (1998), Kouwenberg (2001), Shapiro (2000) . In Monte Carlo (MC) sampling
the discrete probability measures P ν are generated as a random sample from P . It is clear that
a random sample can lead to a bad approximation of P , which in turn, may lead to an equally
bad approximation of the optimization problem. The optimal values and solutions obtained with
a specific discretization are often highly dependent on the sample. There have been attempts
to improve the accuracy of crude Monte Carlo sampling by using ideas from importance sampling
technique; see Infanger (1992) and Dempster and Thompson (1999). An idea originally proposed by
Cariño et al. (1998) and refined by Høyland and Wallace (2001) is to use moment matching, where
P ν is constructed so that it has the first few moments of the original distribution; see also Høyland
et al. (2003). In barycentric approximation, one constructs P ν so that, under some convexity
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properties of the objective function, the optimum value of the discretized problem provides an
upper/lower bound for the true optimum value; see Frauendorfer (1992). Pflug (2001) proposed
to construct discrete measures P ν so that they are as close as possible to P in the sense of the so
called Wasserstein-distance.

Given that, the expectation in (1) usually involves the computation of multidimensional integrals
it is surprising that modern numerical integration methods have not been extensively applied to
scenario generation. In Articles 3 and 4 modern integration quadratures, more precisely Quasi
Monte Carlo (QMC) methods, see e.g. Niederreiter (1992), are applied to discretization of one-
stage stochastic programs. QMC methods can be seen as a deterministic counterpart to MC. They
are designed to give weakly convergent discrete measures that approximate a given probability
measure as well as possible. Moreover, they are just as easy to use as crude Monte Carlo and they
are very fast compared to methods like barycentric approximation, moment matching or that in
Pflug (2001).

Article 3 derives conditions that guarantee the epi-convergence of the objectives of the dis-
cretized problems to the original one. Epi-convergence (see e.g. Rockafellar and Wets (1998)) of
the objectives is a minimal property that should be satisfied by any approximation scheme for
optimization problems in order to get asymptotic convergence of the optimal values and solutions.

Epi-convergence of stochastic programs with respect to perturbations in the probability measure
has been studied, for example, by Birge and Wets (1986), Robinson and Wets (1987), Dupačová
and Wets (1988), Kall et al. (1988), Lucchetti and Wets (1993), Artstein and Wets (1994), Zervos
(1999), Schultz (2000) and Vogel and Lachout (2003). In these studies, weak convergence of the
approximating measures P ν to the original measure P has been found an important property. The
epi-convergence result of Article 3 is closely related to the ones in the above references but it is
easier to apply to discretizations and it does not require the feasible set to be independent of the
probability measure. In Article 3, epi-convergence of three different models of portfolio management
is proved and their behavior is studied numerically. Besides MC, the developed discretizations are
the only existing ones with guaranteed epi-convergence for these problem classes. In the test
problems, integration quadratures seem to result in faster convergence of optimal values than MC.

A disadvantage of deterministic QMC methods is that, the computation of accurate error es-
timates, which are usually deemed important in real life applications, is very difficult. L’Ecuyer
and Lemieux (2002) review several QMC constructions and their randomizations that have been
proposed to provide unbiased estimators and for error estimation. Randomized Quasi Monte Carlo
(RQMC) methods can be regarded as variance reduction techniques with respect to MC, as well as
some better known techniques, like importance sampling and antithetic variates; see e.g. (Bratley
et al. 1987). RQMC methods can be used just like MC in estimating confidence intervals and vari-
ances for sample approximations in numerical integration, where RQMC often result in significant
variance reduction with respect to MC; see (Lemieux and L’Ecuyer 2000).

Article 4 studies the use of RQMC methods and other variance reduction techniques in sample
approximations of stochastic programs. It is shown in Article 4, that the epi-convergence result
derived in Article 3 for QMC, also applies to discretizations generated with RQMC methods.
Variance reduction techniques, like antithetic variates, importance - and latin hypercube sampling
have been used in stochastic optimization e.g. in Kouwenberg (2001), Infanger (1992), Higle (1998)
and Linderoth et al. (2002). The results of these studies have shown that variance reduction
techniques improve the accuracy of the sample approximations over MC. However, RQMC methods
have not been previously applied to stochastic optimization. These methods can be viewed as an
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alternative to MC in computing so called statistical bounds, as in Shapiro (2003). In five different
numerical test problems of portfolio management, the lower bounds for the optimal values obtained
with RQMC are consistently much tighter than those obtained with MC. Moreover, RQMC methods
significantly reduces the sample variance of the optimal values compared to MC and antithetic
variates, thus providing an efficient sampling method for stochastic optimization.
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Abstract

This paper develops a stochastic model for assets and liabilities of a Finnish pension in-
surance company. The assets and liabilities are expressed in terms of seven economic factors
from Finland and the EU-area. The development of these factors is modeled with a Vector
Equilibrium Correction model, that incorporates statistical information with expert views in
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1 Introduction

Pension companies manage enormous investment funds. Their main goal is to invest policyholders’
pension premiums safely and profitably in order to meet their liabilities in the future. The duration
of the liabilities is usually very long (over 20 years), which calls for realistic models for long-
term scenarios of investment returns and liability flows. Such models form the basis for pension
companies’ asset and liability management (ALM). Typically, these models have a macroeconomic
flavor in that they try to describe the development of larger investment classes like interest rates
and broad equity indices along with wage indices and inflation.

To a large extent, the existing models for pension companies have been based on the well
known Wilkie’s stochastic investment model; see e.g. Wilkie (1986, 1995), Yakoubov et al. (1999)
and Ranne (1998). The drawback of these models is their cascade structure, which allows the
modeling of one-way causalities only. Vector autoregression (VAR) and their generalizations, vector
equilibrium correction (VEqC) models, do not have this limitation; see for example Sims (1980),
Engle and Granger (1987), Johansen (1995) and Clements and Hendry (1999). VAR-models for
asset liability management have been used for example in Dert (1998), Wright (1998) and Harris
(1999), but to our knowledge, only Boender et al. (1998) have proposed using a VEqC model for
these purposes.

This paper develops a model for assets and liabilities of a Finnish pension insurance company.
The stochastic variables in the model are expressed in terms of seven economic factors whose
development is modeled with a linear time series model in VEqC form. The model incorporates
statistical information with expert views and it has been successfully implemented in a case where
the available data is scarce and subject to changing economic conditions. The expert views are given
in the form of drift parameters (for such quantities as interest rates, equity and property prices),
and certain long-run equilibrium relations (e.g. average levels of interest rate spread and dividend
yield). This is especially important in situations where the available data displays characteristics
that are believed to change in the future (e.g. declining interest rates in EU-area during the 90’s).
Indeed, according to Hendry and Doornik (1997), deterministic factors like drift parameters and
equilibrium values matter most for predictive failure.

We will consider assets in the level of larger investment classes, namely, cash, bonds, equities,
property and loans to policyholders. We treat the cash-flow and the change-in-value components
of total asset returns separately. This is essential in the presence of significant transaction costs.
Also, this enables the modeling of such terms as dividend yield (dividend-price ratio) that has been
shown to have predictive power in describing future changes of dividends; see Campbell and Shiller
(1988). On the liability side, we model the cash-flows of a pension insurance company and some
technical quantities that have an important role in the Finnish statutory earnings-related pension
scheme. In general, these terms depend on the development of salaries of the pensioners as well as
population dynamics. These two factors are assumed independent, so that their development can
be modeled separately. In this paper, we concentrate on modeling salaries and their co-movement
with asset returns.

All the stochastic parameters in our model will be expressed in terms of the following seven
factors: short-term interest rate, bond yield, stock price index, dividend yield, property price index,
rental yield and wage index. These (or more precisely, simple transformations of them) will, in turn,
be modeled by a structured VEqC model that allows for simple economic interpretations. The data
for estimation is taken from Finland and the EU-area that are of greatest interest to Finnish pension
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insurance companies.
The rest of this paper is organized as follows. In the next section, we describe the asset

classes and liabilities and show how their development can be described with the above seven
factors. In Section 3, we describe the data and study its stationarity properties. We start the
development of our time series model in Section 4, where we build a VAR model for differences.
The purpose there is to show how to specify the average drift in the model and to demonstrate the
importance of correct specifications through simulations. In Section 5, we augment the VAR model
with equilibrium correction terms thus obtaining our complete model in VEqC form. Section 6
compares the forecast performance of the developed VEqC-model with three rival models in out-
of-estimation-sample forecast experiment. In Section 7, we examine by simulation the statistical
properties of the long-term asset returns produced by the model and calculate the company’s long-
term cash-flows and reserves. In Section 8 the developed model is used in an ALM framework.
We compare different dynamic portfolio allocation strategies and evaluate the company’s long-term
solvency and bankruptcy risks. Concluding remarks are presented in Section 9.

2 Assets and liabilities in terms of economic time series

Finnish pension insurance companies update their investment and bonus strategies on a yearly
basis. These decisions are linked with the company’s liabilities which extend far into the future.
On one hand, this link comes from the company’s goal of meeting the liabilities, and on the other,
from the legislation that aims at regulating the solvency risks of the company. This section describes
the main investment classes, the liabilities, and other quantities that are of interest in the strategic
financial planning of a Finnish pension insurance company. Our aim is to express all these quantities
in terms of seven economic factors that will then be modeled with a time series model.

2.1 Assets

Pension insurance companies’ assets can be divided into five main investment classes: cash, long-
term bonds, stocks, property and loans. Our goal is to model the return per wealth invested in
each asset class. The total returns on the assets are split between cash income and change in value
components, which, in general, require separate treatment due to transaction costs etc.

Cash: Pension companies keep a proportion of their assets in cash (short-term deposits) to ensure
a reasonable level of liquid financial resources. Because of the short term nature of these invest-
ments, the change in value can be ignored and the whole return can be modeled as cash income.
The return on cash investments can be well approximated by the 3-month Euribor.

Bonds: Currently, about one half of the Finnish pension insurance companies’ wealth is invested
in long-term bonds. The primary source of income on bond investments are the coupon payments,
which is cash income. Usually, newly issued bonds sell at par, which implies that coupon payments
equal the current yield. We approximate the cash flow component of the whole bond portfolio by
the bond yield which is denoted by brt.

According to (Campbell et al., 1997, page 408) the price of a bond can be approximated by

lnBt ≈ D[k + (1 − ρ)c − ln(1 + brt)], (1)
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where D and c are the duration and coupon payments, respectively, of the portfolio, and k and ρ
are constants. When the bond is selling at par, ρ = 1/(1 + brt) ≈ 1; see (Campbell et al., 1997,
page 407). If we assume in addition that the bond portfolio is updated so that its duration is fairly
constant (which is not far from reality in Finnish pension insurance companies),

lnBt − lnBt−1 ≈ −D ln
1 + brt

1 + brt−1
.

Based on this, we approximate the value change of the bond portfolio by

Bt

Bt−1
≈

(
1 + brt−1

1 + brt

)D

.

The duration will be set equal to the duration of the bond portfolio of a company being modeled.
We will use the yield on German government benchmark bond, whose duration is close to D. In
our calculations we will use D ≈ 5 years.

Stocks: The riskiest but historically the most profitable long-term investment class is stocks. In
stocks, the majority of the total return comes from the change in value and the dividend payments
constitute the cash income component. We will model the change in value component with a stock
price index and the cash income with the corresponding dividend yield.

Finnish pension insurance companies invest in stocks mainly in Finland and the rest of the
European Union (EU) area. The development of the value of the company’s stock portfolio is mod-
eled with a “fixed mix” stock price index S which gives the value of a portfolio that is sequentially
rebalanced to have a fraction θF of stock investments in Finland and θE in the EU area. The
quarterly change in the fixed mix index is

St

St−1
= θF SF

t

SF
t−1

+ θE SE
t

SE
t−1

where SF and SE are stock indices in Finland and EU, respectively. For SE , we use the Datastream
Europe market index, and for SF the Helsinki Stock Exchange (HEX) portfolio price index.

The annual dividend yield corresponding to the fixed mix stock portfolio is calculated as a
weighted average of dividends from Finland and EU as

Y S
t = θF Y F

t + θEY E
t .

The Finnish dividend yield Y F is based on the HEX portfolio price index and the European yield
Y E is based on the Datastream Europe market index. We assume that θF = θE = 1

2 , which has
the interpretation that a company’s stock portfolio is split evenly between Finland and the rest of
the EU.

Property: As an investment class, property resembles stocks in many ways. The return on
property investments consists of potentially large price fluctuations and fairly stable cash income.
Therefore, the return components on property investments are modeled similarly to stocks: the
change in value component is modeled with a property price index and the cash income is modeled
with a rental yield. The main difference from stocks is that the cash income component forms the
majority of the total gross return on property investments.
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Finnish pension insurance companies invest in property mainly domestically. Although the
companies mostly invest in commercial property, we will use the Finnish residential property price
index to model the price fluctuations of all property investments, This is because the commercial
property market is rather illiquid and the property prices are hard to estimate accurately.

The cash income component will be modeled as the difference between the residential rental
yield Y P

t and the maintenance costs. The rental yield gives the rent paid per wealth invested and
the maintenance costs are assumed to be a constant 3% of the property value. The property price
index Pt (� /m2) and the corresponding rental index Rt (� /m2) are available from Statistics
Finland. The rental yield is given by

Y P
t =

Rt

Pt
. (2)

Loans: The Finnish pension insurance companies invest part of their funds by giving loans to
policyholders. In the past, these formed a great majority of all investments, but currently they
account for about 10 %. There are two kinds of loans, premium loans and investment loans. The
premium loans are an arrangement where a customer can borrow back part of the paid premium
according to fixed rules. For the investment loans, the terms are agreed freely between the company
and the borrower. In the model, the two kinds of loans are combined to form one investment class.
The change in value component for loans is zero. The cash income component will be approximated
by a moving average of bond yield. This is based on the fact that the interest on newly given loans
is usually set equal to current bond yield.

2.2 Liabilities

The Finnish pension insurance companies are responsible for managing the statutory earnings-
related pension scheme. Because the system is statutory, many of its characteristics are common to
all the companies. For example, the amount of the pension is determined by fixed defined-benefit
rules independent on the company where the person is insured. Also the contribution rates and
the technical reserves are calculated according to common formulas confirmed by the Ministry of
Social Affairs and Health. The technical interest rate for the reserves is also common to all the
companies and its value for each year is confirmed by the Ministry.

Pension insurance companies are, however, able to choose their own investment policies. De-
pending on the investment returns, companies can give bonuses to their customers. These bonuses
are paid as reductions of the contributions, and they are the most important element in the com-
petition between the companies. The planning of the investment strategy is therefore essential for
the success of an individual company. For this, the company must take into account the nature of
its liabilities as well as its solvency position.

Reserves: The Finnish statutory earnings-related pension scheme is partly funded. Only part
of the total amounts of old age, disability and unemployment pensions are funded, and the part
time and survivors’ pensions are not funded at all. As a whole, about 25% of the total pension
expenditure is paid by the funded part. The rest is financed as a pay-as-you-go system.

In the model, the average amounts of the funded pensions are calculated by age and sex. The
technical reserves before increases at the end of the year (see below) are

L =
∑

x,s
V(s, x) E(s, x) a(s, x),
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where summation is by sex s and age x, V(s,x) is the number of pensioners or active workers,
E(s,x) is the yearly average of the funded pension and a(s,x) is the actuarial present value (APV)
function depending on mortality and a discount rate of 3%. The definition of the APV function
is different for the old age, disability and unemployment pensions and it is given in the actuarial
basis confirmed by the Ministry of Social Affairs and Health.

Because the funded pension is based on the salaries of the insured persons, the reserves in the
model are dependent on the development of the wage index. The reserves are also dependent on
the technical interest rate in a way explained below. Otherwise, the reserves in the model are
deterministic.

Besides the old age, disability and unemployment pension reserves, the model contains some
other special reserves:

— an equalization reserve for buffering the yearly surplus/deficit of the insurance business
— a clearing reserve for the pay-as-you-go part of the pension expenditure
— a bonus reserve for the bonuses paid to customers as reductions of pension contributions.

Technical interest rate: Besides the discount rate of 3% used for calculating the actuarial
present value functions, there is a higher rate, the technical interest rate whose value varies yearly.
The amount of the reserves is increased at the end of each year corresponding to the difference
between the technical interest rate and the 3% discount rate. This means that the technical
interest rate determines the actual total interest rate for the reserves, and the 3% discount rate is
its minimum value.

The technical interest rate (rtech) is calculated by a formula dependent on the average solvency
level of all the pension companies and funds. In the model, this formula cannot be used because
the solvency level is one of the company’s decision variables. Besides, the model contains only the
company’s own solvency and not its level in the whole TEL pension scheme. For these reasons,
an approximation is used based on the investment variables, since these are correlated with the
general solvency level of the system. The formula used in the model is

rtech
t = max{3% , γ0 + γ1 brt + γ2(lnSt − lnSt) + γ3(lnPt − lnPt)},

where brt denotes the bond yield, lnSt the logarithm of the stock price index and lnPt the logarithm
of the property price index at time t. The lnSt and lnPt are the expected values of the variables
lnSt and lnPt for year t calculated using average growth rates, defined in section 4. The formula was
found using a separate, more detailed simulation model where the actual formula for the technical
interest rate could be calculated. The approximation formula was fitted to the results of this model.
The estimated parameters γi, i = 0, . . . , 3 are all positive suggesting, that the technical interest
rate follows the long term bond yield and increases when the stock and property prices are above
their expected values. The technical interest rate plays a crucial part in the model because, to a
great extent, it determines the correlations between the investment variables and the reserves.

Cash flows: Besides the investment yields, money flows in the company as paid contributions
and out as pension expenditure. The pension expenditure is calculated depending on the number
of pensioners and the average funded pensions. The contributions depend on the total salaries
of the insured persons. The contribution rates, which vary by age and sex, are confirmed by the
Ministry of Social Affairs and Health. The combined cash flow depends on the development of the
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wage index. The Finnish wage index from Statistics Finland is used to represent the average wage
development.

Solvency capital: The solvency capital is the amount by which the total assets of the company
exceed the sum of its reserves. It functions as a buffer against the variation of the investment
results. Because the reserves of a pension insurance company must always be fully covered by
its assets, a non-positive solvency capital means a bankruptcy. Therefore, the development of the
solvency capital is an important factor in policy evaluations.

The legislation prescribes various minimum and target levels for the solvency capital of a pension
insurance company. The basic quantity is the solvency border, which depends on the structure of
the company’s investment portfolio. The lower border of the target zone is twice the amount of
the solvency border. The position of the solvency capital relative to these levels is an indicator of
the solvency risk of the company.

3 Time series data

3.1 Historical data

As described above, the assets and liabilities of a Finnish pension insurance company can be
approximately expressed in terms of the following seven economic factors

1. Three month Euribor sr;

2. Five year German government bond br;

3. Fixed mix stock index S;

4. Fixed mix dividend yield Y S ;

5. Property price index P ;

6. Rental yield Y P ;

7. Wage index W .

Our data set consists of quarterly observations of these factors between 1991/1 - 2001/4. We
have chosen such a short period because of the capital movement liberalization in the EU area
during 1990, which resulted in significant changes in economic conditions. The data prior to 1991
corresponds to a more regulated economy.

Three month Euribor has been quoted only since the beginning of 1999. We extend this series
backwards by using the German 3 month interest rate which is available from Datastream. Rental
index Rt, used in (2) is reported only once a year. Therefore linear interpolation for lnRt is used
to fill in the gaps in the time series. For the wage index we use a seasonally adjusted series in the
model. We thus obtain an approximation of the full set of quarterly data for all the seven factors
between 1991/1 - 2001/4. We take this as a description of the statistical parameters in our asset
and liability model; see Figure 1.
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Figure 1: Historical time series.

3.2 Data transformations

The variations in dividend yield are roughly inversely proportional to the variations in the stock
price index; see Figure 1. This is due to the fact that the dividend yield is, by definition, the
dividend obtained per wealth invested in stocks where the latter follows the stock price index.
Such multiplicative effects are not well modeled by the linear time series models that we are about
to build. We will thus transform the dividend yield into the dividend index

Dt = StY
S
t .

Similarly, instead of modeling the rental yield directly, we model the rental index

Rt = PtY
P
t .

We perform one more transformation, which is to take natural logarithms of all the seven time
series, short-term interest rate, bond rate, stock price- , stock dividend-, property price-, property
rental- and wage indices. This guarantees that the model never predicts negative indices or interest
rates. The logarithmic time series are displayed in Figure 2.

3.3 Unit root tests

Before building an econometric model for the time series, we have to study their stationarity
properties. We perform five unit root tests on x and its first difference. The tests are the augmented
Dickey-Fuller test (ADF)(Dickey and Fuller, 1981), PT and DF-GLS tests by Elliot et al. (1996)
and QT and DF-GLSu tests, suggested by Elliot (1999). In the ADF test the lag length has been
selected according to Schwarz information criterion with a maximum of five lags. The selected lag
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Figure 2: Transformed time series.

length is subsequently applied in the other reported tests. The PT and DF-GLS tests are known to
have improved power and better small sample properties compared to the ADF test (Elliot et al.,
1996). The QT and DF-GLSu tests differ from the PT and DF-GLS tests in the way the initial
observation is treated in the derivation of the test statistics. In the QT and DF-GLSu tests the
initial observation is drawn from its unconditional distribution whereas in the PT and DF-GLS tests
it is set to zero; see Elliot (1999). The results of the unit root tests were robust against different lag
length selection methods, such as Akaike information criterion and General to simple, where the
strategy is to select the highest significant lagged difference length e.g. in the ADF regression, less
than or equal to some initial value. The value of z(t) in Table 1 indicates the deterministic terms
included in the unit root regressions. When z(t) = 1 a constant is included and with z(t) = (1, t)
a constant and a trend are included.

The results of the unit root test are displayed in Table 1. They clearly indicate that ln sr, ln br, lnS
and lnD need to be differenced once in order to achieve stationarity. This confirms the findings of
Hall et al. (1992), Sherris et al. (1999), Kanioura (2001) and Montoro (2001) regarding the interest
rates. With lnP and lnR the evidence is not so clear. The non-stationarity of these series cannot
be rejected at 5% significance level, except according to QT statistic the lnR is found to be trend
stationary. The analysis of ∆ lnP and ∆ lnR cannot reliably reject the non-stationarity of the
first differences either, which is not surprising considering the data used. The assumption, that the
first difference of the logarithmic price index is stationary seems reasonable on economic grounds.
Also, using quarterly data from 1970/1 to 1997/4, Barot and Takala (1998) concluded that ∆ lnP
is stationary. The problem with property data are the long cycles that follow closely the general
economic conditions in Finland. During the deep recession of the 1990’s nominal property prices
fell almost 40% by 1993. As a consequence of strong economic boom the property prices started
to recover a few years later. These large long term fluctuations have caused the observed problems
in unit root testing. We follow Barot and Takala (1998) and treat lnP as a difference stationary
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process. Accordingly, lnR is treated similarly. All the unit root tests suggest that the logarithmic
wage index is trend stationary. However, since all the other time series are treated as difference
stationary we adopt the same strategy for lnW . This assumption is supported by QT , DF-GLSu
and ADF tests, Table 1. Moreover, Clements and Hendry (2001) argues that difference station-
ary models are considerably more adaptive forecasting tools compared to trend stationary models,
when deterministic shifts occur during the forecast period.

Table 1: Unit root test statistics. ***, **, * indicate the rejection of the unit root null
at 1%, 5%, 10% significance level.

Time Number Detrending,
series of lags z(t) = PT DF-GLS QT DF-GLSu ADF
ln sr 1 (1) 11.07 -0.34 10.92 -1.35 -1.43
ln br 1 (1) 10.48 -0.62 9.55 -1.67 -1.68
lnS 0 (1,t) 9 -1.69 5 -1.75 -1.62
lnD 0 (1,t) 20.85 -1.38 8.82 -2.32 -3
lnP 1 (1,t) 6.74∗ -2.08 3.51 -2.66 -3.22∗

lnR 1 (1,t) 5.88∗ -2.32 2.60∗∗ -2.7 -3.30∗

lnW 1 (1,t) 2.47∗∗∗ -3.81∗∗∗ 1.31∗∗∗ -3.88∗∗∗ -3.5∗

∆ln sr 0 (1) 1.25∗∗∗ -3.88∗∗∗ 2.06∗∗∗ -3.82∗∗∗ -3.97∗∗∗

∆ ln br 0 (1) 0.69∗∗∗ -5.18∗∗∗ 1.27∗∗∗ -5.39∗∗∗ -5.37∗∗∗

∆lnS 0 (1) 0.70∗∗∗ -4.94∗∗∗ 1.34∗∗∗ -5.85∗∗∗ -6.22∗∗∗

∆lnD 1 (1) 0.44∗∗∗ -6.04∗∗∗ 0.86∗∗∗ -6.05∗∗∗ -5.67∗∗∗

∆lnP 0 (1) 7.1 -1.2 5.48∗ -2.78∗ -2.44
∆ ln R 0 (1) 6.07 -1.25 5.33∗ -2.5∗ -2.42
∆ lnW 3 (1) 4.95 -1.37 1.69∗∗∗ -2.92∗∗ -5.2∗∗∗

4 A VAR-model with specified drift

Denote the vector of logarithmic variables by

xt =




ln srt

ln brt

lnSt

lnDt

lnPt

lnRt

lnWt




.

Based on the above observations, we assume that ∆xt is stationary. Our first attempt consists of
building the VAR model

∆dxt =
k∑

i=1

Ai∆dxt−i + εt, εt ∼ N(0, Σ), (3)
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where Ai ∈ R
7×7, Σ ∈ R

7×7 and ∆d denotes the shifted difference operator

∆dxt := ∆xt − d

with d ∈ R
7; see also (Clements and Hendry, 1998, page 160). This format is convenient in that

the parameter vector d determines the average drift in simulations. Indeed, if ∆dxt is stationary,
(3) gives

E[∆dxt] =

(
k∑

i=1

Ai

)
E[∆dxt],

so if (3) is free of unit roots, E[∆dxt] = 0, or

E[∆xt] = d. (4)

The above format is particularly natural for modeling indices.

Example 1 If xt is the scalar process lnSt, and Ai = 0, (3) becomes

∆ lnSt = d + εt, εt ∼ N(0, σ),

which is a discrete-time version of the geometric Brownian motion model of stock price; see for
example Hull (2000).

Moreover, according to Hendry and Clements (2001) modeling differences instead of levels gives
protection against structural breaks in data generating process. VAR-models for differences of
logarithms of economic time series have been built for example by Eitrheim et al. (1999) for the
Central Bank of Norway.

Looking only at our (far from ideal) data, might suggest that there is a strong negative drift in
the interest rates. However, we believe that E[∆srt] = E[∆brt] = 0 in the long run, so we choose
dsr = dbr = 0 rather than estimating these parameters from the data. On the other hand, the
dividend yield satisfies

∆ lnY S
t = ∆ lnDt − ∆lnSt = ∆d lnDt − ∆d lnSt + dD − dS ,

so if ∆d lnDt and ∆d lnSt follow (3), and if (3) is stationary, we have

E[∆ lnY S
t ] = dD − dS .

Since there is no reason to believe that the dividend yield would have a consistent drift, one way
or the other, we require dD = dS . Similar reasoning for the rental yield suggests dR = dP . It seems
thus reasonable to assume that d has the form

d =




0
0
dS

dS

dP

dP

dW




. (5)
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Simply estimating d from the data would not result in a vector of the form (5). This is a clear case
where, “expert” information seems more reliable than statistical information.

The choice of the values of the remaining drift parameters dS , dP and dW is not quite as clear.
Bewley (2000) and Landon-Lane (2000) have presented methods to restrict d when estimating
the parameters of (3). In our case, one could make the restriction that d has to be of the form
(5) and then the remaining parameters could be estimated from the data. In practice, however,
pension insurance companies’ managers often have their own estimates for the average drifts for
the future development of various time series. Such estimates are rarely based on statistical data
alone. We take dS , dP and dW as user-specified parameters. This not only provides a convenient
way of incorporating expert views into the model, but it also simplifies the estimation process
considerably; see below.

Our experiments below use

d =




0
0

0.0114
0.0114
0.007
0.007
0.009




.

The value of dS corresponds to 4.6% average of yearly log-return1. It was argued in Barot and
Takala (1998), that in the long run, there is no excess return in residential property prices over
inflation rate. However, we believe that property investments will gain some real return over
inflation and set the yearly growth rate of lnP to 2.8%, which is 0.8% over the inflation target of
the European Central Bank. Finally, the yearly growth rate of lnW is set to 3.6%, which is 1.6%
over the inflation target.

4.1 Estimation

Having specified the drift parameter d, it remains to choose the lag length k and the matrices Ai

and Ω in model (3). We use PcFiml 9.0 for computing test statistics and parameter estimates; see
Doornik and Hendry (1997). We start by selecting the appropriate lag length k in our VAR-model.
Table 2 presents the lag length reduction test results starting from k = 4. Since, the sequential
F-tests cannot reject the reductions to k = 1 and since the Schwarz (SC) and Hannan-Quinn (HQ)
information criteria in Table 3 have minimum values at k = 1, we select k = 1.

Table 2: Lag length reduction tests

System reduction
from k = to k = Test statistic p-value

2 1 F(49,126) = 1.342 0.0982
3 2 F(49, 90) = 0.8912 0.6663
4 3 F(49, 55) = 1.0998 0.3645

1In our model, the usual return St/St−1 is log-normally distributed with mean exp(dS + 1
2
σ2

S), where σS is the
stock price volatility (Hull, 2000). Our choise of dS gives roughly 7% average yearly return when σS = 20%.
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Table 3: Information criteria values

k = np log-likelihood SC HQ
1 49 1167.7489 -48.865 -50.115
2 98 1214.5735 -46.779 -49.28
3 147 1258.4598 -44.56 -48.31
4 196 1334.5532 -43.805 -48.805

Note: np = number of estimated parameters

We then estimate A1 and Σ with the method of maximum likelihood (ML), starting with an
unrestricted model and carry out an iterative procedure, where one insignificant parameter per
iteration is removed and ML estimates for the remaining parameters are recomputed until all in-
significant coefficients at 5% significance level have been removed. For a comparison and discussion
of different model selection criteria; see Brüggemann and Lütkepohl (2000) and Lütkepohl (1991).
The resulting estimates of A1, their standard errors SE(A1), residual correlation matrix C and
residual standard deviations σ are

A1 = 10−1




3.665 4.887 0 0 0 0 0
0 0 0 0 7.392 0 0
0 0 0 0 0 0 0
0 0 -2.832 0 9.122 0 0
0 0 0.571 0 6.999 0 0
0 -0.162 0 0 0 8.538 0
0 0 0 0 0 -0.825 8.424




SE(A1) = 10−1




1.269 1.428 0 0 0 0 0
0 0 0 0 3.234 0 0
0 0 0 0 0 0 0
0 0 0.842 0 2.811 0 0
0 0 0.273 0 0.868 0 0
0 0.080 0 0 0 0.619 0
0 0 0 0 0 0.246 0.521




C =




1
0.0761 1
-0.0157 -0.0201 1
-0.1976 -0.3084 0.4780 1
-0.0341 -0.0683 0.3192 -0.0275 1
0.1519 0.1084 -0.1433 -0.0111 0.0300 1
-0.1108 -0.2356 0.0680 0.4057 -0.0222 -0.2113 1




σ = 10−2
[

7.5639 7.6128 11.1010 7.7848 1.9880 0.4381 0.1869
]

The likelihood ratio test of over-identifying restrictions χ2(38) = 37.26[0.503], clearly accepts
the made reductions. Table 4 reports the equation residual test results, where the numbers are
the p-values of the test statistics. The reported tests are the F -test for 4th-order residual auto-
correlation, χ2 normality test, F -test for autocorrelated squared residuals and F -test for residual
heteroscedasticity respectively, see Doornik and Hendry (1997). The results reveal some autocor-
relation problems in ∆ ln sr,∆lnS and ∆ lnD, which is quite typical for financial time series data.
The autocorrelation problems were persistent even in models with longer lag lengths, suggesting
that VARMA models, (see e.g. Lütkepohl and Poskitt (1996), Lütkepohl and Claessen (1997))
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could be more appropriate for the given data set. The residual normality assumption is rejected for
∆ lnR due to one negative outlier. The residual distribution of ∆ lnW has fatter tails compared to
normal distribution, which would imply larger variance for the wage index forecasts than observed
with normally distributed errors. This in turn would mean that the reserves would exhibit little
larger fluctuations. However, we believe that this will not considerably affect the efficient asset
allocation decisions obtained for the ALM problem in Section 8.

Table 4: Equation residual diagnostics

Equation AR 1-4 F Norm χ2 ARCH 1-4 F HET F
∆ ln sr 0.0069 0.5134 0.7492 0.0984
∆ ln br 0.2533 0.6668 0.7999 0.9590
∆ lnS 0.0150 0.2902 0.9625 0.7573
∆ lnD 0.0393 0.2335 0.8165 0.9430
∆ ln P 0.0630 0.3898 0.1250 0.1043
∆ lnR 0.0727 0.0000 0.5932 0.5895
∆ lnW 0.1273 0.0042 0.7088 0.6960

4.2 Simulation experiment

To test the long term behavior of the model we performed 250 twenty-year simulations with the
estimated model (DVARmod) started from

x0 = ln




3.35
4.42
279.6
843.7
118.0
839.8
140.6




, x−1 = ln




4.16
4.33
242.9
776.0
117.7
831.3
139.1




,

which was the situation in the beginning of 2002. For comparison we performed equivalent simu-
lations with a model (DVARsys) where all the regressors are retained and the drift parameters are
estimated without restrictions. The outcomes of the simulations for the DVARmod and DVARsys

models are displayed in Figures 3 and 4, respectively. The outcomes of the DVARsys simulations
highlights the importance of correctly specifying the form of the drift vector, see Figure 4. The short
term interest rate is rapidly declining throughout the simulation period due to estimated negative
drift. Also, the log interest rate spread, log dividend and rental yields are trending due to differences
in the estimated drifts of the underlying time series. The average drifts of the DVARmod were what
we desired, but in some respects the model behaves strangely: in many scenarios the logarithmic
short rate, log interest rate spread, log dividend and rental yields have deviated unrealistically from
their usual values; see Figure 3.

Despite the fact that the drift parameters for interest rates were set to zero in DVARmod, the
short term interest rate is generally declining throughout the simulation period. This shows how
strongly the future distributions depend on the initial values of the variables in a VAR model.
This phenomenon could be avoided by changing the initial values, so that the simulation starts
from some neutral conditions, as suggested by Lee and Wilkie (2000), but then the relevant market
information essential to the present investment decisions is lost.

13



-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20

(a) ln sr.

-3

-2

-1

 0

 1

 2

 3

 4

 0  5  10  15  20

(b) ln br − ln sr.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20

(c) ln D − ln S.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  5  10  15  20

(d) ln R − ln P .

Figure 3: DVARmod simulations.
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Figure 4: DVARsys simulations.

The problems even after specifying the drift vector result from the fact that the above models
only look at the differences ∆xt and completely ignores the actual values of xt, which is what we
are really interested in. As demonstrated by the simulations, the average values for xt are largely
determined by the initial values x0 and x−1, which may be poor estimates of the future. This leads
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us to consider VEqC-models, which avoid these shortcomings.

5 A VEqC-model with specified drift and cointegration relations

A vector equilibrium correction model is obtained form the VAR-model for differences by adding
an “equilibrium correction term” to the right-hand side of the equations. In the case of our drift-
specified VAR-model we get the model

∆dxt =
k∑

i=1

Ai∆dxt−i + α(β′xt−1 − µ) + εt, εt ∼ N(0, Σ), (6)

where β ∈ R
7×l, µ ∈ R

l and α ∈ R
7×l. The additional term takes into account the long-term

behavior of xt around statistical equilibria described by the linear equations β′x = µ. It is assumed
that, in the long run,

E[β′xt] = µ, (7)

and that if xt deviates from the equilibria (due to shocks in economic conditions) it will tend to move
back towards them. The matrix α determines the speed of adjustment towards the equilibria. In this
sense, VEqC-models incorporate long-run equilibrium relationships (often derived from economic
theory) with short-run dynamic characteristics deduced from historical data. VEqC-models for
logarithms of economic time series have been built for example by Eitrheim et al. (1999) for the
Central Bank of Norway and by Anderson et al. (2000) for the Federal Reserve Bank of St.Louis.
The results of Eitrheim et al. (1999) indicate that the inclusion of equilibrium-correction feedbacks
may improve the forecast accuracy of VAR-models for differences, especially in the long-run.

The equilibrium correction term is particularly convenient when modeling interest rates.

Example 2 If xt is the scalar process ln rt, d = 0 and Ai = 0, the model becomes

∆ ln rt = α(ln rt−1 − µ) + εt, εt ∼ N(0, σ).

With α < 0, this is a discrete-time version of the mean-reverting interest rate model of Black and
Karasinski (1991). With α = −1, we obtain the memoryless model

ln rt = µ + εt, εt ∼ N(0, σ).

Besides mean reversion effects for interest rates, the equilibrium correction term is useful also
in controlling long-term averages of the interest rate spread and the yields, which behaved unreal-
istically in the simple VAR-model of the previous section. We follow the two-step methodology of
Engle and Granger (1987) by first specifying the equilibrium relations, and then estimating A, α
and Σ from the data. By (4) and (7), the matrix β must satisfy the consistency condition

β′d = β′E[∆xt] = E[β′∆xt] = E[∆(β′xt)] = 0. (8)

Based on our experiences with the VAR-model, we propose the following four equilibrium rela-
tions.
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1. ln srt = µmr. Similarly to mean reverting interest rate models, this suggests that, in the long
run, the short rate drifts towards certain equilibrium level. Although, the unit root tests
in Section 4 indicated ln sr to be non-stationary (due to the changing economic conditions
during the 1990’s), many studies have concluded that interest rates are mean reverting and
stationary in the long run; see for example Wu and Zhang (1996) and Fama and Bliss (1987).

2. ln brt − ln srt = µsp. This relation means that the “geometric interest rate spread” brt
srt

has a
long term equilibrium value. Various studies have concluded that the difference br−sr of the
long and short term interest rates is stationary; see for example Campbell and Shiller (1987),
Bradley and Lumpkin (1992) and Hall et al. (1992). Campbell et al. (1997) found also the
logarithmic transformation ln(1+ br)− ln(1+ sr) of the interest rate spread to be stationary.
To our knowledge, only (Kanioura, 2001, page 5) has studied the geometric spread. She found
it to be stationary in the United States.

3. lnDt − lnSt = µdy. Writing this as lnY S
t = µdy, we see that it corresponds to the existence

of an equilibrium value for the dividend yield. This is supported by the findings of Campbell
and Shiller (1988), Campbell et al. (1997) and Wilkie (1986).

4. lnRt − lnPt = µry. Similarly to dividend yield, this can be written as lnY P
t = µry which

corresponds to a stationary rental yield.

These choices correspond to

β =




1 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1
0 0 0 0




. (9)

This satisfies (8) with any d of the form (5). In fact, any d satisfying (8) for this choice of β has
to be of the form (5). Similarly to the drift vector d, we take the equilibrium values µ in the
cointegration relations as user-specified parameters.

The historical values of βxt are displayed in Figure 5. In our time frame 1991/1 – 2001/4, these
series do not pass the stationarity tests on conventional significance levels. However, we believe
that these series will be stationary in the long run.

In our experiments, we use the β in (9) and

µ =




ln 3.7
ln 1.2
ln 2.5
ln 7.0


 .

This corresponds to long term equilibrium values of 3.7%, 1.2%, 2.5% and 7% for short rate,
geometric interest rate spread, dividend yield and rental yield, respectively.
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Figure 5: Historical values of the cointegration vectors. The horizontal lines mark the expected
equilibrium levels µ.

5.1 Estimation

Having specified the drift parameter d and the cointegration relations, we find the maximum like-
lihood estimates of the remaining parameters A, α and Σ, using the iterative model reduction
procedure like in section 4.1. This results in the following values.

A1 = 10−1




3.672 3.467 0 0 0 0 0
0 2.855 0 0 0 0 0
0 0 0 0 0 0 -59.11
0 0 -2.425 0 0 0 0
0 0 0.629 0 3.617 0 0
0 -0.209 0 0 -0.663 8.533 0
0 0 0 0 0 -0.638 8.712




SE(A1) = 10−1




1.222 1.466 0 0 0 0 0
0 1.469 0 0 0 0 0
0 0 0 0 0 0 26.50
0 0 0.836 0 0 0 0
0 0 0.231 0 1.065 0 0
0 0.082 0 0 0.222 0.682 0
0 0 0 0 0 0.246 0.589
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α = 10−1




0 0.964 0 0
-1.061 -1.499 0 0
0 0 0 0
0 0 -1.449 0
-0.238 0 0 0.637
0 0.080 0 0
0 0 -0.024 0




SE(α) = 10−1




0 0.415 0 0
0.414 0.781 0 0
0 0 0 0
0 0 0.352 0
0.067 0 0 0.160
0 0.032 0 0
0 0 0.011 0




C =




1
0.1308 1
-0.0606 0.1332 1
-0.2764 -0.1978 0.5302 1
0.0092 0.0184 0.354 -0.0796 1
0.0911 0.1526 -0.1329 -0.0675 -0.0102 1
-0.174 -0.1929 0.0641 0.3586 0.0113 -0.2396 1




σ = 10−2
[

7.3288 7.4645 10.804 7.8889 1.6589 0.4085 0.1826
]

Some remarks on α:

� The first cointegration vector has a significant negative coefficient in bond rate equation.
This can be interpreted as a reaction to interest rate expectations: when the short rate is
above its long term average µsr, it is expected to decline in the long run, which causes a
drop in the bond rate. Similarly, short rate being below its average, pushes the bond rate
up. The first cointegration vector appears also in the property price equation with a negative
sign. This implies that low interest rates increases property prices and vice versa. This may
result from the fact that low interest rates decrease the loan servicing costs, which encourages
people/companies to invest in properties.

� The geometric interest rate spread enters the short rate equation with a positive sign (which
is in line with the expectations hypothesis; see e.g. Campbell et al. (1997)), and the bond
rate equation with a negative sign (which in turn contradicts the expectations hypothesis).
If the spread is above its average value µsp, these terms push the interest rates closer to each
other, and if it is below µsp, they push the short rate down and the bond rate up. This is in
line with the findings of Campbell (1995) and (Campbell et al., 1997, Section 10.2.2).

� The third cointegration vector, the log dividend yield, appears in the dividend index equation
with a negative sign, so large values of the dividend yield cause a decrease in the dividend
index, and vice versa. This effect is similar to findings in Campbell and Shiller (1988). It
causes the dividend index to follow the movements in the stock price index, keeping the
dividend yield in a reasonable range.
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� The log rental yield enters the property price equation with a positive sign, with the inter-
pretation that large values of the rental yield anticipates an increase in property prices, and
vice versa.

Table 5 reports the equation residual test results for the VEqC-model. Again, the numbers
denote the p-values of the different test statistics. The results are similar to those obtained with
the VAR-model in Section 4. The tests reveal some autocorrelation problems in ∆ ln sr,∆lnS and
∆ lnD and again the normality assumption is rejected in the residuals of ∆ lnR and ∆ lnW due
to few outliers.

Table 5: VEqC-model equation residual diagnostics

Equation AR 1-4 F Norm χ2 ARCH 4 F HET F
∆ ln sr 0.0029 0.3471 0.9232 0.8173
∆ ln br 0.1698 0.8191 0.9030 0.9862
∆ lnS 0.0070 0.2516 0.8918 0.8439
∆ lnD 0.0037 0.3504 0.6661 0.8877
∆ lnP 0.0551 0.2290 0.6195 0.8498
∆ lnR 0.1725 0.0004 0.5072 0.9563
∆ lnW 0.0530 0.0028 0.5326 0.9123

5.2 Simulation experiment

We computed 250 twenty-year simulations with the above VEqC-model (VEqCmod) started from
the same initial values as in Section 4.2. The equilibrium correction terms effectively control the
interest rates and the yields that were problematic in the DVAR models; see Figure 6. The mean
reversion apparent in Figure 6 is caused by the inclusion of the equilibrium correction terms, which
considerably reduce the variance of the interest rates as well as the dividend and rental yields.

6 Forecast tests

We test and compare the performance of our VEqCmod model with three rival models in an out-
of-estimation-sample forecast experiment. The forecast test period covers seven new quarterly
observations from 2002/1 to 2003/3. Although the short test period does not allow us to draw
significant conclusions concerning the forecast performance of different models, the test gives us
an indication how the developed VEqCmod model would have performed in volatile financial mar-
kets during 2002–2003. For comparison, we report the results of the forecast tests for DVARmod,
DVARsys and VEqCsys models. VEqCsys denotes an unrestricted vector equilibrium correction sys-
tem where the drifts and the equilibrium values for the equilibrium correction relations of Section 5
are estimated from historical data without restrictions.

We compare the four models’ forecast accuracy by performing tests for structural stability (see
Lütkepohl (1991)) during the forecast period T + 1, . . . , T + h, where T denotes the forecast origin
and h = 7 is the length of the forecast horizon. We calculate a test statistic of the form

λh =
h∑

i=1

u′
T+iΣ

−1uT+i ∼ χ2(Nh), (10)
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Figure 6: VEqCmod simulations.

where uT+i can be interpreted as the 1-step ahead forecast errors as we move through the forecast
period, Σ is the residual covariance matrix as in (3) and N = 7 is the dimension of the model. The
null hypothesis for the test is that the process generating (∆xT+1, . . . ,∆xT+h) is the same as that
which generated (∆x1, . . . ,∆xT ) and the hypothesis is rejected if the forecasts differ too much from
the actually observed values, see e.g. Lütkepohl (1991). The values of the approximate χ2 and an
F variant test statistics, where the unknown quantities in (10) are replaced by estimated values
(see e.g. Lütkepohl (1991) or Clements and Hendry (1998)) together with the p-values of the tests
are reported in Table 6.

Table 6: Forecast test statistics

Model χ2 p-value F p-value
DVARsys 46.11 0.59 0.94 0.58
DVARmod 54.94 0.26 1.12 0.35
VEqCsys 94.39 0.00 1.93 0.03
VEqCmod 47.47 0.54 0.97 0.55

The null hypothesis of structural stability is rejected only for VEqCsys at the 1% and 5% significance
levels according to χ2 and F statistics, respectively, and VEqCmod and DVARsys seems to produce
the smallest forecast errors during the test period. Figure 7 displays 1- to 7-step ahead forecasts
with their approximate 95% confidence intervals and the actually observed values of xt during the
forecast period for all the four models. The main reason for the forecast failure of VEqCsys is
apparent from Figure 7(c), where the actually observed value for ln sr and lnS are clearly outside
their forecast confidence intervals. For the other three models there are no striking differences in the
forecast performance, although the confidence intervals for the VAR-models (Figures 7(a) – 7(b))
are wider than for the VEqC-models (Figures 7(c) – 7(d)). These findings together with the results
of the long term simulation experiments of Sections 4.2 and 5.2 give support to our approach of

20



specifying the drifts and equilibrium values for the equilibrium relations. It is also worth noting
that the VEqC-models contain more economic insight than the pure DVAR models and especially
the parameters of the VEqCmod model are easy to interpret. In the next Section we will use the
developed VEqCmod-model in long term return and liability simulation.
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Figure 7: 1- to 7-step ahead forecasts with 95% confidence intervals and observed values of xt for
the four models.

7 Long-term return and liability simulations

We will first study the behavior of total returns of the considered asset classes. This will be done by
performing 1000 twenty-year simulations with the above model started from the initial values given
in Section 4.2, and computing the corresponding yearly total returns for each asset class. The total
return of an asset is defined as the sum of the change-in-value and the cash income components.
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Using the approximations of Section 2.1, we get the following expressions for the total returns

Cash:
√

srtsrt−1,

Bonds:
(

1 + brt−1

1 + brt

)D

+
1
2
(brt−1 + brt),

Stocks:
St

St−1
+

1
2

(
Dt−1

St−1
+

Dt

St

)
,

Property:
Pt

Pt−1
+

1
2

(
Rt−1

Pt−1
+

Rt

Pt

)
− 0.03,

Loans:
1
2
(brt−1 + brt).

Figure 8 displays the development of the means and standard deviations of the yearly total
returns for cash, bonds, stocks, property and loans, based on 1000 twenty-year simulations. During
the first few years, the average returns go through large changes, after which they converge to their
equilibrium values. The variations in the average returns towards the end of the simulation horizon
are simply effects of the finite sample size.
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Figure 8: Simulated total returns and their volatilities for Cash (�), Bonds (•), Stocks (×), Property
(�) and Loans (✳) with VEqC(mod)

The initial conditions for the simulation affect the returns and correlation structures consider-
ably in the first few years as the model starts from a disequilibrium. The correlations between the
total returns of the asset classes at the end of years 1 and 20 are shown in Figure 9. Even the signs
of some correlation coefficients change between years 1 and 20. Once the model converges back to
an equilibrium the yearly correlation structure becomes stable.

The reserves and cash-flows can be computed based on the values of the time series according to
the rules outlined in Section 2.2. The results of 1000 20-year simulations are displayed in Figure 10.
The reserves grow consistently over time but the variation in the projected cash flows at the horizon
are substantial. The decreasing trend in cash flows after a few years results from the retirement of
the large age groups.
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Cash Bonds Stocks Property Loans
Cash 1
Bonds -0.530 1
Stocks 0.014 -0.153 1

Property -0.123 -0.007 0.553 1
Loans 0.530 -0.999 0.153 0.007 1

(a) Year 1.

Cash Bonds Stocks Property Loans
Cash 1
Bonds 0.240 1
Stocks -0.060 -0.133 1

Property -0.340 -0.113 0.515 1
Loans 0.763 0.229 0.036 -0.218 1

(b) Year 20.

Figure 9: Simulated total return correlations.
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Figure 10: Simulated Reserves and Cash flows.

8 Evaluation of dynamic portfolio allocation strategies

Given a stochastic model for the asset returns and the liabilities, we would like to compute the
distribution of a company’s solvency in the future. This is a nontrivial task since the future solvency
depends on the values of the reserves and cash flows as well as the investment strategies that the
company employs now and in all the possible states of the world in the future. Moreover, the Finnish
legislation imposes complicated regulations that the companies’ must take into consideration in their
strategic asset allocation, see Hilli et al. (2003). We evaluate the company’s long term solvency
by considering two widely studied decision rules for dynamic portfolio allocation, namely fixed-mix
and portfolio insurance strategies; see e.g. Perold and Sharpe (1988), Cesari and Cremonini (2003).

In fixed-mix strategy the portfolio is always rebalanced to a given (fixed) asset distribution
(mix). So a fixed-mix strategy is given by a vector of numbers giving the fixed percentages that
the asset allocations should satisfy now and in the future. In the present setting this is a vector of
five numbers giving the portfolio weights for cash, bonds, stocks, property and loans.

The proportion of loans in the investment portfolio each year is kept fixed at 0.145% of the
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reserves, which corresponds to 11.5% weight in the initial asset portfolio. This means that the
proportion of loans in the portfolio decreases if the total value of the investments increases faster
than the value of the reserves and vice versa. We will examine by simulation the performance
of different asset mixes obtained by different combinations of the following weights applied to the
remaining portfolio.

Cash: wC ∈ {0, 0.01, . . . , 0.03}, ;
Stocks: wS ∈ {0, 0.025, . . . , 0.5}, ;

Property: wP ∈ {0.1, 0.15, . . . , 0.4}, ;
Bonds: wB = 1 − wC − wS − wP .

The upper bounds for stocks and property are statutory restrictions and the bond investments are
chosen so that the total weights in the remaining portfolio sum up to 100%.

The used portfolio insurance (PI) strategy is based on the constant proportion portfolio insur-
ance framework of Perold and Sharpe (1988) and Black and Jones (1988). The portfolio weights
for cash and property are varied according to the same rules as in the fixed-mix case. The rest of
the wealth is allocated between the more liquid assets, bonds and stocks. The proportion of stocks
in the portfolio at time t is given by,

wS,t =

{
min

{
(1 − wC − wP )min{ρ(Wt−Lt

Wt
) , 1} , 0.5

}
if Wt − Lt ≥ 0,

0 if Wt − Lt < 0,

where ρ is a risk tolerance parameter indicating how the proportion invested in stocks increases with
the company’s solvency ratio, (Wt − Lt)/Wt, where Wt and Lt denote the values of the company’s
assets and reserves in the beginning of year t, respectively. The percentage invested in stocks is
a constant multiple of the company’s solvency ratio, which was close to 22% initially, with higher
values of ρ resulting in higher stock market allocations and again at most 50% of the total wealth
can be invested in stocks. When the company’s wealth Wt is less than the value of its reserves Lt

(floor) the stock market allocation is set to zero and the remaining wealth is invested in bonds.
In general, PI strategies are fairly realistic decision rules for pension insurance companies because
they allocate more wealth to risky assets, stocks, when the companies’ solvency ratios improve and
reduce the stock market exposure as the companies approach insolvency.

For each fixed-mix portfolio combination and for PI strategies with varying risk tolerances,
ρ ∈ {1, 1.5, . . . , 20}, we perform 1000 simulations with a 20-year time horizon. Figure 11 displays
the average solvency capital/reserves ratio in 20 years versus the insolvency probability for each
fixed-mix portfolio and PI strategy based on the sample of 1000 scenarios. Insolvency means that
the solvency capital has become negative at least once during the 20-years. The best PI strategies
clearly dominate the best performing fixed-mix strategies at all reasonable risk levels.

The lower boundaries of the clouds of points can be interpreted as the efficient frontiers of the
fixed-mix and PI strategies, which are displayed in Figure 12. For insolvency probabilities between
0–5% the efficient PI strategies improve the average solvency capital-reserves ratios from 15 to 35%
compared to fixed-mix portfolios, and the performance gap between the two methods decreases as
the bankruptcy risk increases.

The compositions of efficient fixed-mix portfolios and initial portfolio weights for efficient PI
strategies are displayed in Figure 13 for varying insolvency probabilities. All the efficient fixed-mix
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Figure 11: Average solvency capital/reserves at the horizon against insolvency probability for
different fixed-mix (◆) and PI (◦) strategies.
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Figure 12: Efficient frontier of fixed-mix (◆) and PI (◦) strategies.

and initial PI portfolios have at least 35% of the wealth invested in property and in some portfolios
a small fraction of money invested in cash. Due to PI strategies’ ability to react dynamically to
changing solvency situations, the initial stock market allocation in PI portfolios can be kept much
higher compared to fixed-mix portfolios with similar insolvency probabilities.
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Figure 13: Efficient portfolios’ weights for Cash (�), Bonds (•), Stocks (×) and Property (�).

9 Conclusions

This paper proposed a stochastic model for future development of the main stochastic factors that
are of interest in asset liability management of a Finnish pension insurance company. Some of the
most critical parameters in the model, namely the drift rates and certain long-term equilibrium
values, are taken as user-specified instead of relying completely on statistical information. This is
essential when the available data displays drifts or other characteristics that are believed to change
in the future. The cointegration relations allow the modeling of causalities derived from economic
theories and/or statistical studies.

The presented model should, of course, not be taken as the only possible model of reality.
We would like to emphasize more the general model building procedure that combines statistical
information with user-specified characteristics. In the proposed approach many variations are
possible. For example, the model for bond investments returns is only a crude approximation of
reality and it could probably be made more accurate by more careful analysis. Also, in modeling
property investments, one could try to replace the residential property price index by something
that better describes the value of the property investments of a Finnish pension insurance company.
Finally, instead of modeling nominal values of the time series, one could incorporate inflation to
the model and model the real values of the time series2. An alternative possibility for modeling
the relation between inflation and interest rates would be to use the fact that inflation is strongly
related to logarithmic changes in the wage index which is already in our model. However, our model
does not show any direct relation between the interest rates and the wage index. This is probably
due to the fact that the three month Euribor series was extended backwards by using data from
Germany while the wage index is that of Finland.

The decision rules for dynamic asset allocation considered in Section 8 give a fairly good ap-
proximation of the company’s expected future solvency and bankruptcy risks, but are not of course
the best way of designing investment strategies for a pension insurance company. In Hilli et al.
(2003) we describe an optimization model that better takes into account the freedom to update the
portfolio in the future as well as all the relevant constraints that the Finnish legislation imposes.
In this approach, known as stochastic programming, one tries to find the best initial portfolio given

2The authors are grateful to Professor David F. Hendry for suggesting this.
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the objectives of the company, various portfolio (and other) constraints and the stochastic model
for the uncertain factors.
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Abstract

This paper describes a stochastic programming model that was developed for asset liability
management of a Finnish pension insurance company. In many respects the model resembles
those presented in the literature, but it has some unique features stemming from the statutory
restrictions for Finnish pension insurance companies. Particular attention is paid to modeling
the stochastic factors, implementation and to numerical testing. Out-of-sample tests clearly
favor the strategies suggested by our model over static fixed-mix and dynamic portfolio insurance
strategies.

1 Introduction

Stochastic programming has proven to be an efficient tool in designing effective strategies in wealth-
and asset liability management in practice. This is due to its ability to cope with the dynamics
and complex constraint structures usually inherent in such problems. In principle, stochastic pro-
gramming is not tied to any particular form of objective function or model of the stochastic factors
as long as the distribution of the stochastic factors is independent of the decision variables in the
model. Successful applications of stochastic programming to asset liability management have been
reported at least in Nielsen and Zenios (1996), Cariño et al. (1998), Cariño and Ziemba (1998),
Høyland (1998), Consigli and Dempster (1998), Kouwenberg (2001), and Geyer et al. (2003). See
also the excellent volumes by Ziemba and Mulvey (1998) and Zenios and Ziemba (2004) and the
references therein. For a general introduction to stochastic programming see the (COSP) stochastic
programming site: www.stoprog.org.
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This paper describes a stochastic programming model and its computer implementation for
asset liability management of a Finnish pension insurance company. Finnish pension companies
manage large investment funds and, like most pension companies in Europe, they are facing a
large number of retiring policyholders at around 2010–2020. Our model addresses a long term
dynamic investment problem where the aim is to cover the uncertain future liabilities with dynamic
investment strategies. The assets are considered as the aggregate investment classes of cash, bonds,
stocks, property and loans to policyholders. In addition to investment decisions, our model looks
for optimal bonus payments and it takes explicitly into account various portfolio and transaction
restrictions as well as some legal restrictions coming from the complex pension system in Finland
which is based on the defined benefit rule. The legal restrictions form a unique part of the model
not present in earlier applications of stochastic programming.

We pay particular attention to describing the uncertain factors in the model which include
investment returns, cash-flows, and the technical reserves used in the definition of the statutory
restrictions. This is important since the output of a stochastic programming model depends usually
heavily on the underlying model for the stochastic factors. Our approach consists of first building
a time series model, which is then discretized into scenario trees appropriate for numerical solution
of the optimization model. This is convenient for the user who only needs to come up with an
appropriate econometric description of the stochastic factors. The discretization is fully automated
and hidden from the user.

The model was implemented and tested against static fixed-mix and dynamic portfolio insurance
strategies. Fixed-mix strategies are simple decision rules that always rebalance the investment
portfolio to maintain fixed asset proportions. The used portfolio insurance strategies are based on
the constant proportion portfolio insurance framework of Perold and Sharpe (1988) and Black and
Jones (1988), where the proportion of risky assets is kept as a constant multiple of the difference
between the portfolio value and a protective floor. If the portfolio value hits or falls below the floor
all the funds are invested in riskless assets.

These decision strategies are not the most realistic models for the behavior of a real pension
insurance company. However, they are often used for various simulation purposes in practice, which
motivates their use as benchmarks. Other, more sophisticated but computation-intensive, choices
of benchmarks have been used in Høyland (1998), Kouwenberg (2001); see also Fleten et al. (2002).
We used the out-of-sample testing procedure recommended e.g. by Dardis and Mueller (2001) of
Tillinghast-Towers Perrin. In the tests, the strategies based on our stochastic programming model
clearly outperform both the fixed-mix and portfolio insurance strategies. Similar results have been
obtained for the more sophisticated benchmarks in Høyland (1998), Kouwenberg (2001), Fleten
et al. (2002).

The rest of the paper is organized as follows. A mathematical model of the ALM problem
is presented in Section 2. A model for the underlying stochastic factors and its discretizations
(scenario trees) are described in Section 3. Section 4 outlines a computer implementation of our
model and reports the results of numerical tests including an extensive out-of-sample simulation.

2 The optimization model

Our model is a multistage stochastic program where a sequence of decisions (asset allocations etc.)
is interlaced with a sequence of observations of random variables (asset returns etc.). At each stage,
decisions are made based on the information revealed up to that point, so the decision variables at a
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stage are functions of the random variables observed up to that stage. This kind of interdependent
dynamics of information and decisions is typical in sequential decision making under uncertainty,
which is what ALM and many other wealth management problems are; see for example Ziemba
and Mulvey (1998) or Föllmer and Schied (2002).

The decision stages are indexed by t = 0, 1, . . . , T , where t = 0 denotes the present time, and
the set of assets is indexed by j ∈ J , with

J = {cash, bonds, stocks, property, loans to policyholders}.

The decision variables characterize the asset management strategy as well as the company’s solvency
situation and the bonus strategy. Uncertainties result from random future investment returns as well
as from random cash flows and technical reserves described below. There are several constraints
stemming from the regulations of the Finnish pension system. The objective is to optimize the
development of the company’s solvency situation as described by the Ministry of Social Affairs and
Health as well as the amount of bonuses paid to policyholders.

We will first describe the asset management model, followed by the model of statutory restric-
tions and finally the objective. Decision variables are random variables for all t except for t = 0.
For parameters, randomness is indicated explicitly.

2.1 Asset management

Asset management constitutes a central part of the model. The following formulation is fairly
standard in asset management applications of stochastic programming.

Inventory constraints describe the dynamics of holdings in each asset class:

h0,j = h0
j + p0,j − s0,j

ht,j = Rt,jht−1,j + pt,j − st,j t = 1, . . . , T − 1, j ∈ J,

where

h0
j = initial holdings in asset j,

Rt,j = return on asset j over period [t − 1, t] (random)

are parameters, and

pt,j = (nonnegative) purchases of asset j at time t,
st,j = (nonnegative) sales of asset j at time t,
ht,j = holdings in asset j in period [t, t + 1]

are decision variables. As usual, we do not allow portfolio rebalancing at the horizon, which is
why the index t goes only up to T − 1 in the inventory constraints. The company does not have
control over the loans since, according to the Finnish law the policyholders have the right to borrow
money from the company against their paid pension premiums. The amount invested in loans is
thus determined by the policyholders. Holdings in loans are stochastic and we will assume them to
be proportional to the technical reserves; see Section 2.2.1 below.
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Budget constraints guarantee that the total expenses do not exceed revenues:∑
j∈J

(1 + cp
j )p0,j + H−1 ≤

∑
j∈J

(1 − cs
j)s0,j + F0,

∑
j∈J

(1 + cp
j )pt,j + τtHt−1 ≤

∑
j∈J

(1 − cs
j)st,j +

∑
j∈J

Dt,jht−1,j + Ft t = 1, . . . , T − 1,

where

cp
j = transaction cost for buying asset j,

cs
j = transaction cost for selling asset j,

τt = length of period [t − 1, t] in years,
H−1 = transfers to the bonus reserve a year before stage t = 0,
Dt,j = dividend paid on asset j over period [t − 1, t] (random),

Ft = cash flows in period [t − 1, t] (random)

are parameters and

Ht, t = 0, . . . , T − 1 = transfers to the bonus reserve per year during period [t, t + 1]

are decision variables. The net cash flow Ft is the difference between pension contributions and
expenditures during period [t− 1, t]. The company can pay a proportion of its accumulated wealth
as bonuses to its policyholders. These bonuses are paid as reductions of the pension contributions.
The amount of the total bonuses is determined at the end of each year, and the sum is transferred
to the bonus reserve. The whole bonus reserve is then paid out during the following year. For
periods longer than one year, we assume that Ht is kept constant throughout the period, hence
τtHt−1 gives the value of bonuses paid to policyholders during period [t − 1, t].

Portfolio constraints give bounds for the allowed range of portfolio weights:

ljwt ≤ ht,j ≤ ujwt t = 0, . . . , T − 1, j ∈ J,

where
wt =

∑
j∈J

ht,j = total wealth at time t = 0, . . . , T − 1,

and

lj = lower bound for the proportion of wt in asset j,
uj = upper bound for the proportion of wt in asset j

are parameters whose values are given in Table 1.
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Table 1: Lower and upper bounds for investment proportions

j lj uj

Cash 0.01 1
Bonds 0 1
Stocks 0 0.5

Property 0 0.4

The upper bounds for stocks and property are statutory restrictions. The lower bound for cash
investments is set to guarantee sufficient liquidity.

The total wealth wt at stage t = 0, . . . , T − 1 is computed after portfolio rebalancing. At the
horizon, there is no rebalancing so

wT =
∑
j∈J

(RT,j + DT,j)hT−1,j + FT − τT HT−1.

Transaction constraints bound the sales and purchases to a given fraction of wt:

pt,j ≤ τtb
p
jwt t = 0, . . . , T − 1, j ∈ J,

st,j ≤ τtb
s
jwt t = 0, . . . , T − 1, j ∈ J,

where

bp
j = upper bound for purchases of asset j per year as a fraction of total wealth,

bs
j = upper bound for sales of asset j per year as a fraction of total wealth

are parameters. The values of bp
j and bs

j are displayed in Table 2. The tight rebalancing restrictions
for property are set because of illiquidity of the Finnish property markets. For other asset classes
the yearly rebalancing is restricted to be at most 20% of the total wealth. These restrictions model
the policies of the company as well as the requirement that the size of transactions should be kept
at levels that do not affect market prices.

Table 2: Upper bounds for transactions

j bp
j bs

j

Cash 0.2 0.2
Bonds 0.2 0.2
Stocks 0.2 0.2

Property 0.01 0.01

2.2 Statutory restrictions

The statutory restrictions for Finnish pension insurance companies are quite strict, and they form
a unique part of our stochastic programming model. Besides imposing constraints on the decision
variables, these rules form the basis for defining the objective function in our model.
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2.2.1 Solvency capital

The Finnish pension insurance companies are obliged to comply with several restrictions described
in the legislation, government decrees or regulations given by the Ministry of Social Affairs and
Health. A fundamental restriction is that the assets of a company must always cover its technical
reserves Lt, which corresponds to the present value of future pension expenditure discounted with
the so called “technical interest rate”. A detailed description for determining the value of Lt is
given in Koivu et al. (2003). The assets include, besides the total amount of investments wt, a
transitory item of the net amount of other debts and credits in the balance sheet. This relatively
small amount is calculated approximately as a fixed proportion cG of the technical reserves. The
difference

Ct = wt + cGLt − Lt = wt − (1 − cG)Lt

of assets and the technical reserves is called the solvency capital. If at any time, Ct becomes
negative, the company is declared bankrupt.

2.2.2 Solvency limits

Besides bankruptcy, (Ct ≤ 0), there are several target levels that have been set to characterize
the pension insurance companies’ solvency situation. These levels form an early warning system,
so that the company and the supervising authorities can take action before a bankruptcy actually
happens. A fundamental concept in the system is the solvency border B̃t, defined in (1) below.
If the solvency capital Ct falls below this limit the financial position is considered to be at risk,
and the company is required to present to the authorities a plan for recovering a safe position. In
addition, the company is not allowed to give any bonuses to its policyholders.

The target zone for the ratio Ct/B̃t is [2, 4]. In this zone, the financial position of a company
is considered to be quite good. There is still discussion about how strictly the upper limit should
be observed (in practice, no company has yet exceeded the upper limit). Therefore, we will ignore
the upper limit in the model.

The concept of the solvency border corresponds to the solvency requirements in the European
Union (EU) insurance directives. There is, however, an essential difference in the calculation
method. The Finnish solvency border is based on the investment portfolio of a company. The
fluctuation of the solvency capital is mainly caused by the investment market, and therefore the
risk of going bankrupt is strongly dependent of the company’s investment risk. The starting point
of the Finnish system is that the probability of ruin in one year at the solvency border should
be approximately 2.5%, and therefore the value of the border is required to be dependent on the
investment portfolio. In contrast, the EU directives take no account of the company’s investments.
It is widely regarded that the EU regulations are insufficient, and a project is now established to
renew the EU solvency requirements. The solvency border B̃t is

B̃t =


a

∑
j∈J

mjht,j + b

√ ∑
j,k∈J

σj,kht,jht,k


 (Lt + Ht)

wt
, (1)
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where a = −0.972/100, b = 1.782/100, and the parameters

m =




0.18
0.66
6.20
3.70
0.72


 , σ =




0.93 0.01 3.08 1.05 −0.02
0.01 11.47 12.80 −3.62 11.19
3.08 12.80 460.51 91.50 9.67
1.05 −3.62 91.50 176.55 −1.31
−0.02 11.19 9.67 −1.31 11.18




give the means and covariances for the asset classes (in the order: cash, bonds, stocks, property,
loans to policyholders), according to the government decree, of one-year rate of returns over the
technical interest rate. For asset classes like stocks, the parameter σj,j is substantially larger that
for safer classes like bonds. In reality, the values of m and σ are not fixed for eternity, but are
updated by the Ministry of Social Affairs and Health on an irregular basis. The current values
were set in 1999. We keep the values m and σ fixed in our optimization model partly because of
the infrequent updating and also because any uncertainty in these parameters would be hard to
model. Note that B̃t is a nonconvex function of the variables in the model.

2.2.3 Upper bound for bonuses

Finnish pension insurance companies compete with each other by paying out bonuses to their
policyholders. To attract new customers companies would like to keep the amount of bonuses very
high, but because the pension system is statutory, the government has aimed to restrict the amount
of bonuses so that a sufficient proportion of the assets is preserved in the system to guarantee future
pensions. Therefore, the Ministry of Social Affairs and Health imposes a formula for the maximum
amount of each year’s bonus transfers. The maximum depends on the solvency capital Ct and the
solvency border B̃t of the company according to the formula

H̃max
t = φ(Ct/B̃t) (Ct − B̃t)

where φ(z) is a piecewise linear function which has the minimum value of 0 when z ≤ 1 and the
maximum value of 0.04 when z ≥ 4. It follows that Hmax

t is also a nonconvex function of the
variables in the model.

2.2.4 Convex approximations

In the optimization model, the nonconvex solvency border is replaced by

Bt = a
∑
j∈J

mjht,j + b

√ ∑
j,k∈J

σj,kht,jht,k,

which is convex in the variables. We have Bt ≥ B̃t since (Lt + Ht)/wt ≤ 1 unless the company is
bankrupt. Replacing B̃t by Bt in the model, makes the constraints in the model more restrictive,
so we will stay on the safe side, except when the company is bankrupt. In the case of bankruptcy,
the solvency border is underestimated by a factor of (Lt + Ht)/wt.

We will also replace the nonconvex function H̃max
t by a convex approximation, namely,

Hmax
t = 0.03 max{Ct − Bt, 0}.

This is based on the fact that the historical average of φ(z) has been close to 0.03.
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2.3 Objective function

There are many possibilities for measuring the performance of a company by an objective function.
Natural candidates would be expected utility of wealth or solvency capital under various utility
functions. Here, we will describe a utility function that takes explicitly into account the unique
features of the Finnish pension system.

As described in Section 2.2.2, the Ministry of Social Affairs and Health measures pension in-
surance companies’ solvency situation by the ratio Ct/B̃t of the solvency capital and the solvency
border. The Ministry defines four zones according to which companies’ solvency situation is clas-
sified:

Ct/B̃t ∈ [2,∞) : target

Ct/B̃t ∈ [1, 2) : below target

Ct/B̃t ∈ [0, 1) : crisis

Ct/B̃t ∈ (−∞, 0) : bankrupt.

We replace B̃t throughout by its convex approximation Bt given above, and we define three shortfall
variables:

SFt,1 ≥ 2Bt − Ct t = 1, . . . , T − 1,

SFt,2 ≥ Bt − Ct + Ht/0.03 t = 1, . . . , T − 1,

SFt,3 ≥ −Ct t = 1, . . . , T,

each of which gives the amount by which a zone is missed. These will be penalized in the objective
function. The inequality for SFt,2 incorporates the constraint

Ht ≤ Hmax
t

for bonus transfers. The penalty for SFt,2 will be chosen large enough to guarantee that, at the
optimum, the upper bound is satisfied.

For t = 0, . . . , T − 1, the state of the company will be evaluated by the utility function

u(Ct, Bt,Ht, Lt) = Ct/Lt −
3∑

z=1

γzSFt,z/Lt + ub(Ht/Lt),

where γz are positive parameters and ub is a nondecreasing concave function that will be specified
according to the preferences of the company. However, the choice of ub has to be made in accordance
with the penalty parameter γ2 in order to guarantee that the upper bound for Ht is not violated
at the optimum. At stage T , the utility is measured by

uT (CT , LT ) = CT /LT − γ3SFT,3/LT .

The overall objective function in our model is the discounted expected utility

EP

{
T−1∑
t=1

dtu(Ct, Bt,Ht, Lt) + dT uT (CT , LT )

}
,

where dt is the discount factor for stage t. The problem is to maximize this expression over all the
decision variables and subject to all the constraints described above.
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2.4 Problem summary

Deterministic parameters:

h0
j = initial holdings in asset j,

cp
j = transaction cost for buying asset j,

cs
j = transaction cost for selling asset j,

lj = lower bound for wealth in asset j as a fraction of total wealth,
uj = upper bound for wealth in asset j as a fraction of total wealth,
bp
j = upper bound for purchases of asset j per year as a fraction of total wealth,

bs
j = upper bound for sales of asset j per year as a fraction of total wealth,

cG = the amount of transitory items as a fraction of the technical reserves,
a = the (negative) weight for the return component in the solvency border,
b = the weight for the standard deviation component in the solvency border,

mj = mean yearly return of asset j according to the government decree,
σj,k = covariance of one-year returns according to the government decree,

τt = length of period [t − 1, t] in years,
γz = penalty parameters in the objective function,

Stochastic parameters:

Rt,j = return on asset j over period [t − 1, t],
Dt,j = dividend paid on asset j over period [t − 1, t],

Ft = cash flows from period [t − 1, t],
Lt = technical reserves at time t,

Decision variables:

ht,j = holdings in asset j from period t to t + 1,
pt,j = purchases of asset j at time t,
st,j = sales of asset j at time t,
wt = total wealth at time t,
Ht = transfers to bonus reserve at time t,
Ct = solvency capital at time t,
Bt = solvency border at time t,

SFt,z = shortfall from zone z at time t.

9



The stochastic programming model is

maximize EP
{∑T−1

t=1 dtu(Ct, Bt,Ht, Lt) + dT uT (CT , LT )
}

h0,j = h0
j + p0,j − s0,j ,

ht,j = Rt,jht−1,j + pt,j − st,j ,

pt,j , st,j ≥ 0,∑
j∈J

(1 + cp
j )p0,j + H−1 ≤

∑
j∈J

(1 − cs
j)s0,j + F0,

∑
j∈J

(1 + cp
j )pt,j + τtHt−1 ≤

∑
j∈J

(1 − cs
j)st,j +

∑
j∈J

Dt,jht−1,j + Ft,

wt =
∑
j∈J

ht,j ,

ljwt ≤ ht,j ≤ ujwt,

pt,j ≤ τtb
p
jwt,

st,j ≤ τtb
s
jwt,

Ct = wt − (1 − cG)Lt,

Bt ≥ a
∑
j∈J

mjht,j + b

√ ∑
j,k∈J

σj,kht,jht,k,

SFt,1 ≥ 2Bt − Ct,

SFt,2 ≥ Bt − Ct + 100Ht/3,

SFt,3 ≥ −Ct,

for all t = 1, . . . , T − 1, j ∈ J,

wT =
∑
j∈J

(RT,j + DT,j)hT−1,j + FT − τT HT−1.

CT = wT − (1 − cG)LT ,

SFT,3 ≥ −CT ,

(h, p, s, w,H,C, B, SF ) ∈ N
where P is the probability distribution of the random parameters, EP denotes the expectation
operator, and the constraints are required to hold almost surely with respect to P . The symbol N
stands for the subspace of nonanticipative decision rules, so the decision variables of a given stage
are not allowed to depend on random variables whose values are observed only in later stages. The
model is a convex program that is nonlinear both in the objective and the constraints. There are
19 decision variables in each stage t = 0, . . . , T − 1 (recall that for loans to policyholders, ht,j , pt,j

and st,j are determined by Lt) and 3 in the last stage.

3 Scenario tree generation

The probability distribution P of the random parameters is an important input to the model, and
the solution will depend on it in an essential way. We assume that the random parameters follow
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the stochastic model developed in Koivu et al. (2003). Numerical solution of the optimization
problem is then done through discretization of the continuous distribution as in Pennanen and
Koivu (2002). This results in a description of the stochastic elements in the form of a scenario
tree. The stochastic model for assets and liabilities is briefly described in Section 3.1 and Section
3.2 outlines the discretization methods that produce the scenario trees.

3.1 Modeling the stochastic factors

The formulas for calculating Rt,j and Dt,j for each asset class are displayed in Table 3, where sr, br,
S, Div, P and Rent denote the short term interest rate, long term bond yield, stock price index,
dividend index, property price index and rental index, respectively, and τt denotes the length of
the time period in years. The parameter DM denotes the average duration of the company’s bond
portfolio.

Table 3: Return and dividend formulas

Asset class Rt,j Dt,j

Cash ((1 + srt)(1 + srt−1))
τt
2 1

Bonds
(

1+brt−1

1+brt

)DM 1
2(brt−1 + brt)τt

Stocks St
St−1

1
2(Divt−1

St−1
+ Divt

St
)τt

Property Pt
Pt−1

(
1
2(Rentt−1

Pt−1
+ Rentt

Pt
) − 0.03

)
τt

Loans 1 1
2(brt−1 + brt)τt

The return for cash investments is approximated by the geometric average of the short term interest
rate during the holding period. The formula for bond returns is based on a duration approximation
as in Koivu et al. (2003); see also (Campbell et al., 1997, Chapter 10). The parameter DM equals
five years. The dividends for stock and property investments present the average dividend and
rental yield, respectively, during the holding period. For property investments the maintenance
costs, which are assumed to be a constant 3% of the property value, are deducted from the rental
yield. Similarly to bonds, the cash income for loans is approximated by an average of bond yield.
This is based on the fact that the interest on newly given loans is usually set equal to the current
bond yield. The return for loans is equal to one because these instruments are not traded in the
market.

The Finnish earnings-related pension scheme follows the defined benefit principle, where the
pension insurance company guarantees the pension payments which are tied to the development
of the policyholder’s salaries. It follows that, the technical reserves L and cash flows F depend
on policyholder’s wages and population dynamics. These are assumed independent, so that their
development can be modeled separately. The values of L and F depend also on the technical
interest rate, which determines the total growth rate for the reserves. In the model, the technical
interest rate is calculated based on recent asset returns and it is an important part of the model
because, to a great extent, it determines the correlations between the investment variables and the
reserves. The development of wages is described by the general Finnish wage index W . For a more
detailed description of the development of L and F , see Koivu et al. (2003).

11



The stochastic variables in the model can thus be approximately expressed in terms of the seven
economic factors, sr, br, S, Div, P , Rent and W . The quarterly development of

xt =




ln srt

ln brt

lnSt

lnDivt

lnPt

lnRentt
lnWt




will be described with a Vector Equilibrium Correction (VEqC) model, popularized by Engle and
Granger (1987) and Johansen (1995). During the last decade VEqC models have been widely
used in modeling and forecasting economic and financial time series, see e.g. Campbell and Shiller
(1987), Anderson et al. (2000), Clements and Hendry (1998) and Clements and Hendry (1999). We
consider a VEqC model

∆δxt =
k∑

i=1

Ai∆δxt−i + α(β′xt−1 − µ) + εt, (2)

where Ai ∈ R
7×7, β ∈ R

7×l, µ ∈ R
l, α ∈ R

7×l, ∆δ denotes the shifted difference operator

∆δxt := ∆xt − δ

with δ ∈ R
7, and εt are independent normally distributed random variables with zero mean and

variance matrix Σ ∈ R
7×7. When the model is stationary the parameter vector δ determines the

average drift for the time series. The term α(β′xt−1 −µ) takes into account the long-term behavior
of xt around statistical equilibria described by the linear equations β′x = µ. It is assumed that, in
the long run,

E[β′xt] = µ,

and that if xt deviates from the equilibria it will tend to move back to them. The matrix α
determines the speed of adjustment toward the equilibria. In a sense, VEqC-models incorporate
long-run equilibrium relationships (often derived from economic theory) with short-run dynamic
characteristics deduced from historical data.

We take δ and µ as user specified parameters. This enables the incorporation of expert infor-
mation in specifying the expected growth rates for xt as well as long term equilibrium values for
such quantities as mean reversion levels, interest rate spread and dividend yield. In particular, this
gives control over mean returns which have been shown (in the context of the Markowitz model) to
have a big impact on the optimal portfolio choice, see Chopra and Ziemba (1993). The appropriate
lag-length k is determined and the remaining parameters are estimated from quarterly data from
Finland and the EU-area. The estimated parameter values used in the numerical tests of Section 4
are given in the Appendix. For a more detailed description of the model; see Koivu et al. (2003).

3.2 Discretization

In our optimization model, we are interested in the conditional distributions of xt+h, given xt,
typically for h ≥ 4. This can be calculated conveniently as follows. After specifying the model (2),
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we write it as a Vector Auto-Regressive (VAR) model in levels

xt = (I + A1 + Γ)xt−1 +
k∑

i=2

(Ai − Ai−1)xt−i − Akxt−k−1 + c + εt,

where Γ = αβ′ and c = −αµ + (I − ∑k
i=1 Ai)δ. This, in turn, can be written in the companion

form
x̄t = Āx̄t−1 + c̄ + ε̄t,

where

x̄t =




xt

xt−1
...

xt−k


 , Ā =




I + A1 + Γ A2 − A1 · · · Ak − Ak−1 −Ak

I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


 ,

c̄ =




c
0
...
0


 , ε̄t =




εt

0
...
0


 .

It follows that

x̄t+h = Āhx̄t +
h∑

i=1

Āh−ic̄ + eh, (3)

where eh =
∑h

i=1 Āh−iε̄i. The random term eh is normally distributed with zero mean, and from
the independence of ε̄i it follows that eh has the variance matrix

Σ̄h =
h∑

i=1

Āh−i




Σ · · · 0
...

. . .
...

0 · · · 0


 (ĀT )h−i.

A convenient feature of (3) is that the dimension of the random term never exceed 7(k + 1) even
if h is increased. In the model of Koivu et al. (2003), k = 1, so the dimension will be at most 14.

We discretize the model (3) using integration quadratures as described in Pennanen and Koivu
(2002). This results in scenario trees that converge weakly to the original process as the number
of branches is increased. This technique is just as easy to implement as the better known method
of conditional sampling. Indeed, a scenario tree with a given period structure (τ1, . . . , τT ) and
branching structure (ν1, . . . , νT ) can be generated as follows. For each t = 0, . . . , T , denote by Nt

the set of nodes in the scenario tree at stage t. The set N0 consists only of the root node which
is labeled by 0. The rest of the nodes will be labeled by positive integers in the order they are
generated. The number ht = 4τt gives the length of period [t − 1, t] in quarters.
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Set m := 0, x̄m := the current state of the world, and N0 := {m}.
for t := 1 to T

Nt := ∅
for n ∈ Nt−1

Draw a random sample of νt points {ei
ht
}νt

i=1 from N(0, Σ̄ht)
for i := 1 to νt

m := m + 1
x̄m =

∑h
i=1 Āh−ic̄ + Āhx̄n + ei

htNt := Nt ∪ {m}
end

end
end

The random samples required above are easily generated by computing the spectral decompo-
sition

Σ̄h =
7(k+1)∑

i=1

λi
hui

h(ui
h)T ,

where λi
h are the eigenvalues of Σ̄ht in decreasing order and ui

h are the corresponding eigenvectors.
If Σ̄ht has rank dt,

Σ̄h = ChCT
h ,

where Ch = [
√

λ1
hu1

h, . . . ,
√

λdt
h udt

h ], and the desired sample is obtained as

ei
ht

:= ChF−1
dt

(ui
ht

),

where {ui
ht
}νt

i=1 is a random sample from Udt , the dt-dimensional uniform distribution on [0, 1]dt and
Fdt is the distribution function of the dt-dimensional standard normal distribution. An advantage
of computing the spectral decomposition (instead of the Cholesky decomposition as e.g. in Høyland
et al. (2003)) is that when Σ̄ht is singular, dt gives the true dimension of the random term. For
example, when h = 1, dt = 7.

The random samples {ui
ht
}νt

i=1 above can be viewed as discrete approximations of Udt . As in
Pennanen and Koivu (2002), we will replace these random samples by low discrepancy point-sets
that have been designed to give good approximations of Udt . In the numerical tests in the next
section we will use point-sets from the Sobol sequence; see for example Jäckel (2002). This produces
a scenario tree with the same branching structure as the above conditional sampling procedure but
a potentially better approximation of the original stochastic process, because the low discrepancy
points are constructed to be more evenly distributed over Udt than typical random points. The
computation times with Sobol sequences is roughly equal to that with Monte Carlo. See Pennanen
and Koivu (2002) for a numerical study of such scenario trees.

4 Numerical results

4.1 Implementation

Figure 1 sketches the structure of the overall optimization system. The scenario generator (written
in the C programming language) takes as inputs the period and branching structures of the scenario
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tree and the time series model for the stochastic factors and generates the scenario tree for the assets
and liabilities. The tree can be visually and otherwise inspected e.g. in spreadsheet programs until
the outcomes are satisfactory. The scenario tree is then written into a text file in AMPL format
described in Fourer et al. (2002). The optimization model written in AMPL modeling language and
the data from the scenario generator are processed in AMPL and fed to MOSEK MOSEK which
is an interior-point solver for convex (nonlinear) programs. The solution details and statistics
produced by AMPL/MOSEK can again be visualized e.g. in spreadsheet programs. The system
can be used under most Unix and Windows platforms.

INPUT OUTPUT

Multiperiod
stochastic

optimization model

Econometric
model

- Assets

- Wage index

Liability model

- Cash flows

- Technical
reserves

Scenario generator

- Statistics

- Graphics

Solver
- AMPL

- Mosek

Solution

- Optimal strategy

- Statistics

- Graphics

Data

- Market data

- Expert
information

Data

- Initial values

- Population
forecasts

COMPUTER SYSTEM

Figure 1: Stochastic optimization system

4.2 Computational experiments

We chose the beginning of year 2002 as the first stage t = 0 in our experiments. The initial values
for the time series model and the model parameters

h0 = (1563, 622, 5573, 3914, 2158)

and H−1 = 151.341 (million euros) were chosen accordingly. As an example, we generated a scenario
tree with period structure (1, 3, 6) years and branching structure (25, 10, 10) (2500 scenarios). This
takes less than a second on Intel Pentium 4, 2.33GHz, with 1Gb of SDRam. Figure 2 plots the
values of some important parameters on the scenario tree. We solved the corresponding stochastic
programming model for five sets of shortfall penalty coefficients given in Table 4.
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Table 4: Shortfall penalty coefficients in the example

γ1 γ2 γ3

SP 1 1 10 10
SP 2 0.5 10 10
SP 3 1 1 1
SP 4 0.1 10 10
SP 5 0 0 0
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Figure 2: Scenario tree of the example.
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These (somewhat arbitrarily chosen) values correspond to different attitudes towards the attainment
of the various target zones described in Subsection 2.3. In all cases we used the piecewise linear
utility function

ub(·) = 1.5γ2 min{·, 0.01}
for bonuses. The solution of the corresponding optimization models takes less than 10 seconds
each. Figure 3 displays the optimal portfolio weights in stage t = 0 for the five sets of parameter
choices. The first column gives the actual portfolio of the company in the beginning of year 2002.
One can also examine the development of the optimized decision variables along the scenario tree.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial SP1 SP2 SP3 SP4 SP5

property
stocks
bonds
cash
loans

Figure 3: Initial portfolio h0 and the optimal portfolios corresponding to the parameter values in
Table 4.

Figures 4(a) and 4(b) plot the optimized Ct/Lt and Ht/Lt ratios, respectively, for SP1 of Table 4.
The solvency capital Ct is always nonnegative (no bankruptcy) in every scenario while the bonus
transfer/liability ratio Ht/Lt is equal to 0.01 in almost every scenario.

To gain some insight on the effect of the the shortfall penalties associated with the target zones,
we solved the optimization model SP1 for varying levels of initial wealth w0. This was done by
rescaling the initial portfolio so that the relative portfolio weights remained unchanged. The model
was resolved and the optimized first stage portfolio recorded. The resulting portfolios are graphed
in Figure 5(a) as a function of the ratio w0/L0. For comparison, we did the same for SP5, where
there is no penalty for the shortfalls; see Figure 5(b). The original wealth-liability ratio at the
beginning of year 2002 was w0/L0 = 1.238.

Compared to SP5, the optimal portfolios for SP1 have considerably more wealth allocated to the
short interest rate and bonds when w0/L0 ≤ 1.5. This is natural since putting more wealth to the
“safer” instruments reduces the solvency border and also the shortfalls. When w0/L0 approaches
2, the portfolios begin to look alike. This is caused by the fact that for high levels of initial wealth
the probability of a shortfall is reduced and the effect of penalties becomes negligible. The most
interesting phenomenon is that when the company approaches bankruptcy (w0/L0 < 1), it moves
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(a) Ct/Lt. (b) Ht/Lt.

Figure 4: Optimized solvency capital and bonus ratios along the scenario tree for SP1.
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Figure 5: The optimal first stage portfolio as a function of w0/L0 (The legend of Figure 3 applies).

wealth from short interest rate to bonds and stocks, even though this results in higher solvency
border and higher shortfall penalties for the first two zones. This is probably due to the fact
that the company is anticipating the solvency situation in later periods and trying to make safe
portfolio allocations by ignoring to some extent the recommendations embodied in the definition
of the solvency border.

4.3 Convergence of discretizations

Being forced to approximate the continuous distribution of the uncertain parameters by finite
distributions, it is natural to ask how the corresponding optimization problems depend on the
number of scenarios. A simple test is to study the behavior of the optimal values as the number of
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scenarios is increased. We will do the test for SP1 of Table 4 using the Sobol sequence as described
in Section 3.2. For simplicity, we only considered fully symmetric scenario trees where each node
has an equal number of branches, i.e. branching structure is (k, k, k) for k = 1, 2, 3 . . .. The solid
line in Figure 6 plots the objective value as a function of the size of the scenario tree. For low

 4000
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 5400

 0  5  10  15  20  25  30  35  40  45  50

Branches per node

Sobol
MC

Figure 6: Convergence of the optimal value

values of k, the optimal value goes through large variations, but as k is increased the optimal value
seems to stabilize. In fact, it stabilizes close to 4504 which is what we obtained with the branching
structure (25, 10, 10) in the above example. Convergence of discretizations of multistage stochastic
programs has been studied for example by Olsen (1976) and Casey and Sen (2003), but at present,
there do not exist analytical results that would explain the convergence of the optimal values in
the present case.

For comparison, we did the same test using Monte Carlo sampling in generating the scenario
trees. This resulted in the dotted line in Figure 6. The optimal values obtained with Monte Carlo
seem to converge too but not nearly as fast as the optimal values obtained with the Sobol sequence.

4.4 Out-of-sample test

We implemented an out-of-sample testing procedure to evaluate the performance of our stochastic
programming model. Optimized strategies corresponding to the five sets of shortfall penalty coeffi-
cients in Table 4 were compared with a variety of static fixed-mix and dynamic portfolio insurance
(PI) strategies meeting the statutory restrictions of Table 1. The fixed-mix portfolio weights were
chosen according to a grid in order to evenly cover the region of feasible portfolios.

In the PI strategies the portfolio weights for cash πc and property πp are varied according to
the same rules as in the fixed-mix case. The rest of the wealth is divided between bonds and stocks
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and the proportion of stocks in the portfolio at time t is given by,

πs,t =

{
min

{
(1 − πc − πp)min{ρCt

wt
, 1} , 0.5

}
if Ct ≥ 0,

0 if Ct < 0,

where ρ is a risk tolerance parameter indicating how the proportion invested in stocks increases
with the company’s solvency ratio, Ct/wt. The percentage invested in stocks is a constant multiple
of the company’s solvency ratio, which was close to 22% initially, with higher values of ρ resulting in
higher stock market allocations. When the company’s solvency capital is negative the stock market
allocation is set to zero and the remaining wealth is invested in bonds. In general, PI strategies are
suitable decision rules for pension insurance companies because they allocate more wealth to risky
assets, stocks, when the companies’ solvency ratios improve and reduce the stock market exposure
as the companies approach insolvency.

As pointed out in the introduction, fixed-mix and PI strategies should not be considered as fully
realistic decision rules. Rather, we view them as the first benchmarks that any practical decision
support system should be able to outperform. Note however, that with these decision strategies,
there is no guarantee that the transaction constraints will be satisfied. To simplify the comparison
of different strategies, bonus transfers Ht were set to zero in each model. In addition, transaction
costs were ignored in the case of fixed-mix and PI strategies to simplify computations. Note that
this causes a bias in favor of the fixed-mix and PI strategies. The scenario trees used in optimization
had the same structure as in the example of Section 4.1, that is, period structure (1, 3, 6) years and
branching structure (25, 10, 10).

In the test, we evaluated the performance of each strategy over 325 randomly simulated scenarios
of the stochastic parameters over 20 years. Portfolio rebalancing was made every year, i.e. fixed-mix
portfolios are rebalanced to fixed proportions, PI portfolios are rebalanced and stochastic program-
ming problems were solved with a new scenario tree, based on the current values of the stochastic
parameters along the simulated scenario. We considered PI strategies with ρ ∈ {0.5, 1, . . . , 20}.
The following describes the testing procedure. As outlined in Section 3, the stochastic factors in
each year can be expressed in terms of a 14-dimensional vector. Below, x̄s,y denotes the value of
this vector in year y along a randomly generated scenario s.

for s := 1 to 325
Set x̄s,0 = x̄0 (the current state of the world).
for y := 0 to 19

Generate a scenario tree rooted at x̄s,y.
Solve the corresponding optimization problems and rebalance all the portfolios.
Randomly sample x̄s,y+1 from the time series model and calculate
the resulting portfolios and cash-flows at time y + 1.

end
end

Figure 7 plots the performance of all the fixed-mix and PI strategies and the 5 stochastic
programming strategies with respect to the average solvency capital at the end of the simulation
period versus the bankruptcy probability during the period. Considering the main risk of the
company, bankruptcy, and average solvency capital, the stochastic programming strategies clearly
dominate both the fixed-mix and PI strategies, even though the probability of bankruptcy was
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Figure 7: CT /LT vs. bankruptcy probability for fixed-mix (+), PI (�) and stochastic programming
(•) strategies.

not explicitly minimized. It is also worth noting that the best PI strategies outperform the best
fixed-mix strategies at all reasonable risk levels. The riskiest stochastic programming strategy, SP5
of Table 4, went bankrupt in 25 simulations out of the 325 and the safest, SP1, in only one.

We will compare SP1 more closely with the best performing PI strategy circled in Figure 7,
having the same bankruptcy probability as SP1. In the selected PI strategy πc = 0.04, πp = 0.15
and ρ = 1. The development of the solvency capital-reserves ratio for both strategies is described in
Figure 8. The three lines represent the development of the sample average and the 95% confidence
interval computed from the 325 scenarios. A higher mean and upwards skewed distribution indicates
that the stochastic programming model can hedge against risks without losing profitability. Figure 9
shows the distribution of the solvency capital-solvency border ratio Ct/Bt at the beginning of the
second year. Due to the aim for high investment returns, the stochastic programming strategy
avoids unnecessarily high levels of Ct/Bt, and consequently, it hits the lower border of the target
zones frequently.

Figure 10 displays the development of the distribution of Ct/Bt in the 325 scenarios over the
four zones defined in Subsection 2.3. If we compare the two strategies according to the target
zones, the PI strategy seems to perform better than SP1. However, in the long run the stochastic
programming strategy produces superior returns compared to the PI strategy, without increasing
the company’s bankruptcy risk.
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Figure 8: Ct/Lt averages and 95% confidence intervals.
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Figure 9: Distribution of C2/B2 at the beginning of the second period
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Figure 10: Development of the distribution of Ct/Bt over the different zones
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Appendix

The parameters for the time series model described in Subsection 3.1 were estimated using full
information maximum likelihood and are as follows. The number of lags k = 1,

δ =




0
0

0.0114
0.0114
0.007
0.007
0.009




, µ = ln




3.7
1.2
2.5
7.0


 ,

A1 = 10−1




3.672 3.467 0 0 0 0 0
0 2.855 0 0 0 0 0
0 0 0 0 0 0 −59.11
0 0 −2.425 0 0 0 0
0 0 0.629 0 3.617 0 0
0 −0.209 0 0 −0.663 8.533 0
0 0 0 0 0 −0.638 8.712




,

α = 10−1




0 0.964 0 0
−1.061 −1.499 0 0

0 0 0 0
0 0 −1.449 0

−0.238 0 0 0.637
0 0.080 0 0
0 0 −0.024 0




, β =




1 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1
0 0 0 0




,

Σ = 10−4




53.7113 7.155 −4.7954 −15.978 0.1119 0.2726
0.13079 55.719 10.741 −11.647 0.2278 0.4652
−0.0606 0.1332 116.73 45.187 6.3447 −0.5866
−0.2764 −0.1978 0.5302 62.235 −1.0418 −0.2177
0.0092 0.0184 0.354 −0.0796 2.7519 −0.0069
0.09107 0.1526 −0.1329 −0.0675 −0.0102 0.1668
−0.174 −0.1929 0.0641 0.3586 0.0113 −0.2396




.

The initial values for the time series at the beginning of year 2002 were

x0 = ln




3.35
4.42
279.6
843.7
118.0
839.8
140.6




, x−1 = ln




4.16
4.33
242.9
776.0
117.7
831.3
139.1




.
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Abstract

The simplest and the best-known method for numerical approximation of high-dimensional
integrals is the Monte Carlo method (MC), i.e. random sampling. MC has also become the
most popular method for constructing numerically solvable approximations of stochastic pro-
grams. However, certain modern integration quadratures are often superior to crude MC in
high-dimensional integration, so it seems natural to use them also in discretization of stochastic
programs. This paper derives conditions that guarantee the epi-convergence of the resulting
objectives to the original one. Our epi-convergence result is closely related to some of the ex-
isting ones but it is easier to apply to discretizations and it allows the feasible set to depend on
the probability measure. As examples, we prove epi-convergence of quadrature-based discretiza-
tions of three different models of portfolio management and study their behavior numerically.
Besides MC, our discretizations are the only existing ones with guaranteed epi-convergence for
these problem classes. In our tests, modern quadratures seem to result in faster convergence of
optimal values than MC.

1 Introduction

Let X and Ξ be complete separable metric spaces, and Σ the Borel σ-algebra on Ξ. Let P be
a probability measure on (Ξ, Σ), and f an extended real-valued function on X × Ξ, such that
f(x, ·) measurable for every x ∈ X. This paper studies numerical solution through discretization
of stochastic programs (optimization problems) of the form

minimize
x∈X

EP f(x) :=
∫

Ξ
f(x, ξ)P (dξ), (SP )

where the integral is interpreted as +∞ when f(x, ·) /∈ L1(Ξ, Σ, P ). Here the decision variable x
is not a function of ξ, so (SP ) represents a static (one-stage) stochastic program. By allowing f
to take on the value +∞ we can incorporate constraints into the objective, which makes (SP ) a

∗The work of this author was partially supported by The Finnish Foundation for Economic Education under grant
number 21599
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very general model for static decision making problems under uncertainty. Unlike most studies of
stochastic programs, we do not assume the feasible set

domEP f(x) = {x ∈ X | f(x, ·) ∈ L1(Ξ,Σ, P )}

to be known a priori. This is essential e.g. in stochastic programs without relatively complete
recourse and in certain financial applications, where the determination of the feasible set is part of
the problem rather than its statement; see Subsection 4.3.

In solving problems of the above form, a common approach is to replace P by a finitely supported
measure of the form

P ν =
ν∑

i=1

pν
i δξν

i
,

where δξν
i

denotes the unit mass located at ξν
i . This results in the problem

minimize
x∈X

EP ν
f(x) :=

ν∑
i=1

pν
i f(x, ξν

i ), (SP ν)

which, for moderate values of ν, is usually easier to solve than (SP ). Several approaches for
constructing the measures P ν have been considered in the literature. In general, the aim is to
choose P ν so that (SP ν) is a good approximation of (SP ) and that the number ν of support
points of P ν is small enough to allow for numerical solution of (SP ν). Note that, since f is
extended real-valued and since the containment domEP f ⊂ X may be strict, it may happen that
domEP ν

f �= domEP f .
The simplest and perhaps the most popular choice in applications is to use empirical measures

of the form P ν =
∑ν

i=1
1
ν δξν

i
, where {ξν

i }ν
i=1 is a random sample from P . Such random approx-

imations of stochastic programs are known to be consistent as the sample size increases; see for
example Artstein and Wets (1995) for asymptotic analysis under very mild conditions and Shapiro
(2000) for more special results in the case where f is real-valued and the feasible set is known a
priori (domEP f = X). However, a random sample can lead to a bad approximation of P , which
in turn, may lead to an equally bad approximation of the optimization problem. There have been
attempts to improve the accuracy of crude Monte Carlo sampling by using ideas from importance
sampling technique; see Infanger (1992) and Dempster and Thompson (1999). Høyland and Wallace
(2001) use moment matching where P ν is constructed so that it has the first few moments of the
original distribution; see also Høyland et al. (2003). In barycentric approximation, one constructs
P ν so that, under certain convexity properties of the function f(·, ·), the optimum value of (SP ν)
provides an upper/lower bound to that of (SP ); see Frauendorfer (1992). Pflug (2001) proposed
to construct discrete measures P ν so that they are as close as possible to P in the sense of the so
called Wasserstein-distance

This paper studies the use of modern integration quadratures in constructing the discretizations
(SP ν). Such quadratures have the attractive feature that they have been designed to give discrete
measures that approximate a given measure as well as possible. Moreover, they are just as easy to
use as crude Monte Carlo and they are fast compared to methods like barycentric approximation,
moment matching or that in Pflug (2001). We study the corresponding discretizations both analyt-
ically and numerically. The use of integration quadratures in solving stochastic programs have been
considered in Deák (1988), Lepp (1990) and in Pennanen and Koivu (2002), but in Deák (1988),

2



integration quadratures were not considered as feasible methods for constructing approximations
(SP ν), and in Pennanen and Koivu (2002) no convergence analysis were given.

Since we are dealing with minimization problems, a natural framework for analyzing approxi-
mations is epi-convergence; see Attouch (1984) or Rockafellar and Wets (1998) for introduction to
epi-convergence. Epi-convergence of the objectives is a minimal property that should be satisfied
by any approximation scheme for optimization problems in order to get asymptotic convergence of
optimal values and solutions. Epi-convergence of stochastic programs with respect to perturbations
in the probability measure has been studied, for example, by Birge and Wets (1986), Robinson and
Wets (1987), Dupačová and Wets (1988), Kall et al. (1988), Lucchetti and Wets (1993), Artstein
and Wets (1994), Zervos (1999), Schultz (2000) and Vogel and Lachout (2003). In these studies,
weak convergence of the approximating measures P ν to the original measure P has been found an
important property. In numerical integration, weak convergence corresponds to consistency which
is a minimal requirement for any integration quadrature. We derive an epi-convergence result which
is closely related to the ones in the above references but it is easier to apply to discretizations and
it does not require the feasible set to be independent of the measure. As examples, we discretize
three different models of portfolio optimization with integration quadratures and we verify the
epi-convergence of the resulting approximations. The earlier epi-convergence results do not seem
applicable in these instances. In particular, in the third example, the feasible set depends on the
measure in an essential way.

When using empirical measures instead of integration quadratures in approximating our ex-
ample problems, one gets almost sure epi-convergence from the general result of Artstein and
Wets (1995). In numerical tests, integration quadratures seem to result in faster convergence than
empirical measures thus allowing for smaller values of ν and cheaper computations. A rigorous
quantitative analysis of such phenomena would require an epigraphical analysis along the lines
of Attouch and Wets (1991). Unfortunately, quantitative results for approximations of optimiza-
tion problems often rely on strong convexity properties which are missing from many important
problems in practice, and in particular, in two of our test problems. Some quantitative results for
approximations of stochastic programs can be found in Römisch and Schultz (1993), Shapiro (1994),
Rachev and Römisch (2002). Our focus here is rather on deriving as weak conditions as possible
that will allow us to deduce asymptotic epi-convergence of discretizations of as general models as
possible. Even such asymptotic epi-convergence results for discretizations of stochastic programs
are nontrivial, which can be seen from the lack of them for most discretization methods besides
empirical approximations. This paper presents a simple deterministic approximation scheme with
a theoretical justification for a rather general class of practically interesting problems.

The rest of this paper is organized as follows. Section 2 gives a brief review of modern integration
quadratures and their use in generation of weakly convergent probability measures. In Section 3,
we derive an epi-convergence result for EP ν

f . In Section 4 we combine results from Sections 2
and 3 to construct epi-convergent discretizations of some particular problems, and we study the
stability of the corresponding optimal values numerically.

2 Constructing weakly convergent probability measures

Based on the importance of weak convergence in studying epi-convergence of stochastic programs,
it is natural to try to choose the measures P ν in (SP ν) so that they converge weakly to P as ν ↗∞.
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Weak convergence, denoted by P ν → P , means that

EP ν
ϕ → EP ϕ, (1)

for all bounded and continuous functions ϕ; see Billingsley (1999). The literature of numerical inte-
gration contains many methods for generating such sequences. These methods often perform much
better in numerical integration than crude Monte Carlo. For very low-dimensional integrals, Gaus-
sian quadratures are usually most effective, but in higher dimensions, low discrepancy sequences
and point sets (quasi Monte Carlo methods) often give better results. Both classes of methods are
briefly reviewed below.

2.1 Low-dimensional spaces: Gaussian quadratures

Gaussian quadratures are usually very efficient in one-dimensional integration Press et al. (1992).
For different choices of integration limits a and b and a weight (density) function w, they yield
approximations ∫ b

a
ϕ(η)w(η)dη ≈

ν∑
i=1

wν
i ϕ(ην

i ), (2)

where the quadrature points ην
i and weights wν

i are chosen so that the quadrature has an optimal
order of accuracy: a ν point Gaussian quadrature is exact for all polynomials of degree 2ν − 1 or
less. Given a, b and w, the values of ηi and wi can be computed numerically. For certain choices
of a, b and w, the computation of the quadrature points and weights is particularly easy.

For a = −∞, b = ∞, w(η) = exp(−η2), (2) is known as Gauss-Hermite quadrature. See Press
et al. (1992) for a C-routine for computing the points ην

i and the weights wν
i of the Gauss-Hermite

quadrature. Gauss-Hermite quadrature can be used to approximate the expectation under the
normal distribution P as

EP ϕ =
∫ ∞

−∞
1√
2π

e−
ξ2

2 ϕ(ξ)dξ =
∫ ∞

−∞
1√
π

e−η2
ϕ(

√
2η)dη ≈

ν∑
i=1

1√
π

wν
i ϕ(

√
2ην

i ).

It turns out that wν
i > 0 and

∑ν
i=1

wi√
π

= 1, the latter following from the fact that the quadrature
is exact for constant functions. Thus,

P ν :=
ν∑

i=1

wν
i√
π

δ√2ην
i

defines a probability measure which satisfies EP ν
ϕ = EP ϕ for all polynomials ϕ of order 2ν − 1 or

less. (In particular, P ν matches the first 2ν − 1 moments of the normal distribution; compare with
Høyland et al. (2003)). The Weierstrass approximation theorem then implies that the measures P ν

converge weakly to P as ν ↗∞.
Gaussian quadratures do not directly extend to higher dimensions. The generation of integration

quadratures of optimal order in arbitrary dimension is an open problem Press et al. (1992). If a
random variable can be expressed as ξ = G(ζ), where G is almost everywhere continuous, and
ζ = (ζ1, . . . , ζd) for independent random variables ζi with densities wi, we can approximate the
distribution of each ζi with a Gaussian quadrature to get discrete measures Qν

i , and then construct
the measure

P ν = (Qν
1 , . . . , Q

ν
d)G

−1; (3)
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see Theorem 1 below. Such approximations work well in dimensions 1, 2 or 3, but in higher dimen-
sions they suffer from the “curse of dimensionality”: if one approximates each Qi with an k-point
quadrature, a 10-dimensional approximation of the above form would have k10 quadrature points.
Fortunately, there are better integration quadratures for high-dimensional spaces.

2.2 Higher dimensions: low discrepancy point sets and the method of inversion

In the scalar case, it is typical to approximate the uniform distribution on [0, 1] and to transform
each point with the inverse of the distribution function of the desired distribution. This is known
as the method of inversion. The same idea works whenever P = QG−1, where Q is the multivariate
uniform distribution and G is Q-a.s. continuous, in other words, whenever

ξ = G(u),

where u is uniformly distributed in the unit cube [0, 1]d, and G : [0, 1]d → Ξ is almost everywhere
continuous. This is based on the following very useful result from Billingsley (1999) where U is any
metric space with Borel algebra B.

Theorem 1 (Billingsley) Let G : (U,B) → (Ξ, Σ) be a measurable function and Q a probability
distribution on (U,B). Then QG−1(A) := Q(G−1A) defines a probability measure on (Ξ,Σ), and if
G is Q-a.s. continuous, then

Qν → Q =⇒ QνG−1 → QG−1.

Given a Q-a.s. continuous G and a discrete approximation Qν =
∑ν

i=1 pν
i δuν

i
of Q, Theorem 1

says that the discrete measures

P ν := QνG−1 =
ν∑

i=1

pν
i δG(uν

i )

converge weakly to P = QG−1 whenever Qν → Q. It is natural to try to choose discrete ap-
proximations Qν which are as close as possible to the uniform distribution Q. Modern methods
of numerical integration do exactly this; see the books of Niederreiter (1992) and Sloan and Joe
(1994). Much of this theory has evolved around the following notion of distance from Q.

Definition 2 The star-discrepancy of a point set {u1, . . . , uν} ⊂ [0, 1]d is defined as

D∗(u1, . . . , uν) = sup
C∈C0

|Qν(C) − Q(C)|, (4)

where

Qν =
ν∑

i=1

1
ν

δui ,

and C0 is the set of rectangles C ⊂ [0, 1]d with 0 ∈ C.

The following is a direct consequence of Corollary 11 in Lucchetti et al. (1994).
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Proposition 3 For each ν, let {uν
1 , . . . , u

ν
ν} be point sets in the unit cube. The measures

Qν =
ν∑

i=1

1
ν

δuν
i

converge weakly to the uniform distribution if and only if D∗(uν
1 , . . . , u

ν
ν) → 0.

Thus, if we can find point sets whose star-discrepancy approaches zero as ν ↗∞, we obtain
weakly convergent discrete approximations of the uniform distribution. If P = QG−1, we can then
use the method of inversion to get weakly convergent discretizations of P . In the literature of
numerical integration, many methods have been proposed that are aimed at producing point sets
that have as low star-discrepancy as possible. It is thus natural to employ them in the construction
of discrete measures P ν and the corresponding approximations (SP ν). This is what the present
paper is about.

This approach to discretization of stochastic programs is close in spirit to the method proposed
in Pflug (2001), where the aim is to find discrete measures P ν that are as close as possible to P
in the sense of the so called Wasserstein-distance. In general, the problem of finding a discrete
measure that minimizes a distance from a given measure can be very hard. Fortunately, in the case
of star-discrepancy, many efficient methods are already available.

Example 4 (low discrepancy sequences) Low discrepancy sequences are infinite sequences whose
first ν points have low discrepancy for all ν. Examples are

1. Faure sequence (Faure, 1982). A FORTRAN 77-routine for Faure sequence has been imple-
mented by Fox (1986) as ACM Algorithm 647.

2. Sobol sequence (Sobol’, 1967). A C-routine for Sobol sequence is available in GSL (Gnu
Scientific Library, www.gnu.org/software/gsl/gsl.html).

3. Niederreiter sequence (Bratley et al., 1992). This is also available in GSL.

These satisfy

D∗(u1, . . . , uν) ≤ C
(log ν)d

ν
∀ν, (5)

for a constant C independent of ν. These examples fall in the general class of (t, s)-sequences;
see (Niederreiter, 1992, Chapter 4). Figure 1 displays the first 15 and 127 points for Faure and
Sobol sequences in the 2-dimensional unit cube.

In direct numerical integration, infinite low discrepancy sequences are useful in that after evalu-
ating a ν-point quadrature, one can continue to compute the next (ν + 1)-point quadrature simply
by evaluating the function at one new point. In stochastic programming this advantage is lost since,
in general, the solution x and thus the integrand f(x, ·) changes every time a new point (scenario)
is added to the problem. This raises the question whether it is possible to obtain more accurate
quadratures if it is not required that ν points of a (ν + 1)-point quadrature are the points of the
ν-point quadrature. This is indeed possible.

Example 5 (low discrepancy point sets) A set of points {u1, . . . , uν} in the unit cube is called
a low discrepancy point set if it has low discrepancy. Examples are
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(a) Faure (b) Sobol (c) Hammersley (d) Lattice

Figure 1: Discretizations of the uniform distribution by 15 and 127 points

1. Hammersley point sets (Hammersley, 1960). Hammersley point sets can be obtained quite
easily from the Halton sequence (Halton, 1960) that has been implemented in Fox (1986).

2. (t,m, s)-nets are a general class of low discrepancy point sets that are described in detail in
(Niederreiter, 1992, Chapter 4).

These satisfy

D∗(u1, . . . , uν) ≤ C
(log ν)d−1

ν
, (6)

for a constant C independent of ν. Figure 1 displays 15 and 127 Hammersley points in a 2-
dimensional unit cube.

There is another class of quadratures designed to take advantage of additional regularity prop-
erties of integrands.

Example 6 (lattice rules) Lattice rules are a general family of methods for generating point
sets with low discrepancy; see for example (Niederreiter, 1992, Chapter 5), Sloan and Joe (1994)
and L’Ecuyer and Lemieux (2000). For each d and ν there exist lattice rules that give point sets
satisfying (5); see (Niederreiter, 1992, page 115). This is not as good as (6), but for certain classes
of functions much tighter error bounds can be derived.

Figure 1 displays lattices of 15 and 127 points produced by the so called Korobov lattice rule (Ko-
robov, 1959). Parameters required by the method were provided by Pierre L’Ecuyer and Christiane
Lemieux (personal communication).

It can be shown that if Qν =
∑ν

i=1
1
ν δuν

i
, then

∣∣EQν
ϕ − EQϕ

∣∣ ≤ V (ϕ)D∗(uν
1 , . . . , u

ν
ν),
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where V (ϕ) is the variation of ϕ in the sense of Hardy and Krause; see (Niederreiter, 1992, Sec-
tion 2.2). In direct integration, the above methods achieve the asymptotic convergence rate of ν−1,
whereas for pure Monte Carlo methods the rate is ν− 1

2 ; more precisely, in Monte Carlo integration,
the standard deviation of the integration error is σ(ϕ)ν− 1

2 , where σ(ϕ) is the standard deviation
of ϕ. In Monte Carlo, the error bound is independent of the dimension of the space, whereas
the bounds in the above examples may depend on the dimension so that the actual error bound
achieved in practice is much greater than σ(ϕ)ν− 1

2 . In numerical tests, however, low discrepancy
point sets and sequences are often much more efficient than pure Monte Carlo; see for example
Sloan and Joe (1994). In the tests of Section 4, one can see a similar effect in discretizations of
stochastic programs.

3 Epi-convergence of the objectives

Given efficient procedures for constructing finitely supported measures P ν that converge weakly to
P , our next step is to find conditions that guarantee the epi-convergence of EP ν

f to EP f . Recall
that the domain of an extended real-valued function g is the set dom g = {x | g(x) < ∞}, and its
lower closure is the function

(cl g)(x) = lim inf
y→x

g(y).

A function is called lower semicontinuous (lsc) if it is equal to its lower closure. The lower epi-limit
of a sequence {F ν} of functions is the lsc function given by

(e-lim inf F ν)(x) = inf
xν→x

lim inf
ν→∞ F ν(xν)

and the upper epi-limit is the lsc function given by

(e-lim sup F ν)(x) = inf
xν→x

lim sup
ν→∞

F ν(xν).

If e-lim inf F ν = e-lim sup F ν , then the common limit, denoted e-lim F ν , is called the epi-limit of
{F ν} and the sequence is said to epi-converge to it.

Epi-convergence has many important implications in studying approximations of minimization
problems. The following is one of them; see (Attouch, 1984, Section 2.2).

Theorem 7 If e-lim F ν = F , then

lim sup
ν→∞

inf F ν ≤ inf F,

and if there is a convergent sequence xk → x such that xk ∈ argminF νk
for some subsequence

{νk}∞k=1, then x ∈ argminF and inf F νk → inf F . In particular, if there is a compact set C such
that argminF ν ∩ C �= ∅ for all ν, then inf F ν → inf F .

Our proof of epi-convergence for (SP ν) is based on ideas from Artstein and Wets (1995), where
{P ν}∞ν=1 was a sequence of empirical measures, and the main tools were the strong law of large
numbers and an approximation algorithm due to Beer (1987). In our case, {P ν}∞ν=1 is a weakly
convergent non-random sequence, and our main tools are the algorithm of Beer and Theorem 8
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below. Recall that a sequence of functions {ϕν}∞ν=1 converges continuously to a function ϕ0 at
ξ ∈ Ξ if

ϕν(ξν) → ϕ0(ξ),

whenever ξν → ξ. The following is based on (Artstein and Wets, 1994, Remark 4.3) and (Schultz,
2000, pp. 67–68).

Theorem 8 If P ν → P 0, ϕν → ϕ0 continuously at P 0-almost every ξ ∈ Ξ, and if for each ε > 0
there exists a measurable set Kε ⊂ Ξ and a bound bε ∈ R, such that for each ν = 0, 1, 2, . . .

1. |ϕν(ξ)| ≤ bε for P ν-almost every ξ ∈ Kε,

2.
∫
Ξ\Kε

|ϕν(ξ)|P ν(dξ) < ε,

then
lim

ν→∞EP ν
ϕν = EP 0

ϕ0.

Proof. Choose an ε > 0 and let bε ∈ R and Kε ⊂ Ξ be the bound and the measurable set,
respectively, provided by the last condition. For each ν, let ϕν

ε be the bounded function whose value
at a point ξ is the projection of ϕν(ξ) onto the interval [−bε, bε]. Then |ϕν

ε | ≤ |ϕν |, ϕν
ε (ξ) = ϕν(ξ)

for P ν-almost every ξ ∈ Kε, and ϕν
ε → ϕ0

ε continuously P 0-a.s. We have

|EP ν
ϕν − EP 0

ϕ0| ≤ |EP ν
ϕν − EP ν

ϕν
ε | + |EP ν

ϕν
ε − EP 0

ϕ0
ε | + |EP 0

ϕ0
ε − EP 0

ϕ0|,
where the second term on the right converges to zero by (Billingsley, 1968, Theorem 5.5), and for
ν = 0, 1, . . .,

|EP ν
ϕν − EP ν

ϕν
ε | =

∣∣∣∣∣
∫

Ξ\Kε

[ϕν(ξ) − ϕν
ε (ξ)]P

ν(dξ)

∣∣∣∣∣ ≤ 2
∫

Ξ\Kε

|ϕν(ξ)|P ν(dξ) ≤ 2ε.

Since ε > 0 was arbitrary, the result follows. �

In particular, if ϕ is P 0-a.s. continuous and bounded, then

EP ν
ϕ → EP 0

ϕ.

Note that this is also implied directly by Theorem 1.
We can now state our epi-convergence result for EP ν

f .

Theorem 9 Let P ν → P 0. If for each x ∈ X,

1. there is an open set N  x such that f is bounded from below on N × Ξ,

2. (cl f)(x, ·) = f(x, ·) P 0-a.s.,

then
e-lim inf EP ν

f ≥ EP f.

If for each x ∈ domEP 0
f ,

3. there is a sequence xν → x such that P ν and ϕν := f(xν , ·) satisfy the conditions of Theorem 8,
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then
e-lim sup EP ν

f ≤ EP f.

Proof. To verify the first claim, fix an x ∈ X and let xν → x. According to Beer (1987) (see also
the proof of (Bertsekas and Shreve, 1978, Theorem 7.14)), the first condition implies that there
exists a sequence {fk} of bounded from below Lipschitz functions on N × Ξ such that fk ↗ cl f .
The functions gk = min{fk, k} are also Lipschitz with gk ↗ cl f but, in addition, they are bounded.
Then

EP ν
f(xν) ≥ EP ν

gk(xν) ≥ EP ν
gk(x) − Lkd(xν , x) ∀ν, k

where Lk is the Lipschitz constant of gk and d is the metric on X. Since P ν → P , we get

lim inf
ν→∞ EP ν

f(xν) ≥ lim inf
ν→∞ EP ν

gk(x) = EP 0
gk(x) ∀k,

where EP 0
gk(x)↗EP 0

(cl f)(x) as k↗∞ by the monotone convergence theorem. Since by the
second condition, EP 0

(cl f)(x) = EP 0
f(x), and since x ∈ X and xν → x were arbitrary, the claim

follows.
For the second claim, it suffices to consider points x ∈ domEP 0

f . The result then follows from
the third condition and Theorem 8. �

Note that choosing P ν = P 0 for all ν, the first claim shows that under conditions 1 and 2 EP 0
f

is lsc.
Theorem 9 applies to any discretization method that generates weakly convergent sequences of

measures. In particular, it yields epi-convergence results for the method proposed in Pflug (2001)
where the measures P ν are chosen by minimizing the distance of P ν from P in the sense of the
Wasserstein metric; see also Pflug and Hochreiter (2003).

Theorem 9 is close to the epi-convergence results in Lucchetti and Wets (1993), Artstein and
Wets (1994), Zervos (1999), but it has some advantages. The results of Zervos (1999) concerned
real-valued functions which do not allow modeling constraints as infinite penalties. In Lucchetti
and Wets (1993), Artstein and Wets (1994), the tightness-like conditions are much stronger than
condition 3 above. In particular, condition 3 only asks for a measurable set Kε instead of a compact
one, and instead of all sequences xν → x, it only involves one sequence for each x ∈ domEP 0

f . This
is important since it is the tightness-like conditions that are usually hard to check for discretizations
in practice. Also, requiring condition 3 to hold at all x ∈ X would imply domEP 0

f = X. In a
sense, we have traded the stronger tightness-like conditions for conditions 1 and 2, which are often
much easier to check; see Section 4. The lower-boundedness property in condition 1 holds in many
applications arising in practice. Condition 2 holds in particular if f is lsc, which was assumed in
(Bertsekas and Shreve, 1978, Section 8.3) and Lucchetti and Wets (1993). According to the remark
after Theorem 7, we have the following simplified version, which is often sufficient in applications.

Corollary 10 Let P ν → P 0 and assume that f is lsc. If

1. for each x ∈ X, there is an open set N  x such that f is bounded from below on N × Ξ,

2. for each x ∈ domEP 0
f , f(x, ·) is P 0-a.s. continuous and bounded,

then the functions EP ν
f both pointwise and epi-converge to EP f .

10



4 Numerical tests

4.1 Mean-variance portfolio optimization

We start the testing with a model which can be solved exactly. Discretization is unnecessary in
such cases but here we get to compare the approximate solutions with the exact one. We will study
the mean-variance model

minimize
x∈�n

EP 0
(r · x − r̄ · x)2 (MP )

subject to r̄ · x ≥ w,
n∑

i=1

xi ≤ 1,

x ∈ C,

where x = (x1, . . . , xn) is a portfolio of assets, r = (r1, . . . , rn) is the vector of returns (that is, ri

is the ratio of the final and initial price of asset i), r · x =
∑n

j=1 rixi is the terminal wealth, w is
the required level of expected wealth and C is the set of feasible portfolios. The components of the
return vector r are random variables with joint distribution P 0 and expectation r̄. The expectation
in (MP ) can be computed explicitly as

EP 0
(r · x − r̄ · x)2 = EP 0

[(r − r̄) · x]2 = EP 0
[x · (r − r̄)(r − r̄)T x] = x · V x,

where V = EP 0
[(r − r̄)(r − r̄)T ] is the covariance matrix of r. If V and r̄ are known, (MP ) can

then be solved without discretization with standard solvers yielding the optimal value and optimal
solution.

To test the performance of integration quadratures in discretization, we approximate problem
(MP ) by the discretizations

minimize
x∈�n

ν∑
i=1

pν
i (r

ν
i · x − r̄ · x)2 (MP ν)

subject to r̄ · x ≥ w,
n∑

i=1

xi ≤ 1,

x ∈ C.

Under mild conditions, convergence of optimal values and solutions can be guaranteed. Recall that
the support, suppP , of a measure P is the intersection of all closed sets of full measure. For a Borel
probability measure suppP is well defined and unique with P (suppP ) = 1.

Proposition 11 Assume that suppP 0 is bounded, C is closed, and that the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ suppP 0. If the feasible set is bounded, then the optimal
values of (MP ν) converge to that of (MP ) and the cluster points of the solutions of (MP ν) are
solutions of (MP ).
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Proof. This fits the format of (SP ) with ξ = r and

f(x, r) = (r · x − r̄ · x)2 + δC′(x),

where C ′ = {x ∈ C | r̄ · x ≥ w,
∑n

i=1 xi ≤ 1}. By Theorem 7, it suffices to verify the conditions of
Corollary 10. Lower semicontinuity and condition 1 are clear. Since suppP ν ⊂ suppP 0, we can
assume that Ξ = suppP 0, and then condition 2 holds by boundedness of suppP 0. �

In our test, the number of assets n = 10 and

r = r̄ + 12L(u − 1
2
e),

where u is uniformly distributed in the 10-dimensional unit cube, L is a 10 × 10 matrix and e is a
vector of ones. Then suppP 0 is bounded, r has mean r̄ and variance V = LLT . We can then solve
(MP ) exactly by standard QP-solvers and the discretizations (MP ν) are easily generated by the
integration quadratures described in Section 2.2. Note that the objective of (MP ν) can be written
as x · V νx, where V ν = EP ν

[(r − r̄)(r − r̄)T ] =
∑ν

i=1 pν
i (r

ν
i − r̄)(rν

i − r̄)T , so (MP ν) can also be
solved with a QP-solver. We chose C = R

n
+, which means that “short selling” is prohibited.

With our choices of r̄ and V , the optimal value in the original problem (MP ) turned out to
be 1.9221. Figure 2 shows the development of the optimal value of (MP ν) as a function of the
number of quadrature points ν = 100, 200, . . . , 10000 for six quadratures. In our implementation,
the number of points in the lattice rule is restricted to powers of 2. Each quadrature produces
discretizations whose optimal value seems to converge toward the exact value 1.9221. The objective
values corresponding to Halton sequence seem to behave most stably whereas Hammersley exhibits
slowest convergence.
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(a) Lattice rule, Niederreiter and Sobol.
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(b) Halton, Hammersley and Faure.

Figure 2: Optimal values of (MP ν) as a function of ν.

For comparison, we discretized the problem also with Monte Carlo sampling. Almost sure epi-
convergence of such discretizations have been established under quite general conditions in Artstein
and Wets (1995). These conditions are strictly weaker than those in Theorem 9, which guarantees
sure (not just almost sure) epi-convergence. For each ν = 100, 200, . . . , 10000, we generated 250

12



discretizations and computed the average and the 90% confidence interval of the corresponding
optimal values. In other words, 25 out of the 250 discretizations obtained with Monte Carlo
fell outside this interval. The results are displayed in Figure 3. The optimal values obtained with
Sobol sequence are repeated for reference. The average of the Monte Carlo values seems to converge
towards the correct value but the convergence of the confidence interval seems slow.
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Figure 3: Average and 90% confidence intervals for Monte Carlo.

Figure 4(a) displays the logarithmic error in the optimal value for Sobol discretizations as a
function of ln ν. Figure 4(b) does the same for Monte Carlo. Interestingly, in both cases, there
seems to be an upper bound on the log-error which is linear in ln ν. For Sobol, the slope is
roughly -1 whereas for MC it seems to be close to -1/2. This kind of quantitative behavior is not
explained by the general results of Section 3, but since, in this particular example, the objective
is strongly convex, the quantitative results of Römisch and Schultz (1993), Shapiro (1994), Rachev
and Römisch (2002) may apply. However, it is not at all clear how one should quantitatively
compare the performance of a deterministic discretization method with a random one. One may be
able to give convergence rate results for a sequence of deterministic approximations of a specially
structured stochastic program as the number of quadrature points is increased, but the same cannot
be done for Monte Carlo. Indeed, no matter how large a sample is taken, Monte Carlo can lead
to an arbitrarily bad approximation of the original problem. For Monte Carlo, one may be able
to estimate confidence intervals (or “statistical bounds”) for the approximate optimal values, but
such intervals have to do only with the randomness of the approximation method, not with the
actual problem to be solved. The above way of computing confidence intervals and averages from
250 independent sample approximations does not seem very practical since it involves the solution
of 250 optimization problems.
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Figure 4: Log of objective errors as a function of ln ν.

4.2 Utility maximization

The objective in the Markowitz model penalizes for exceeding the expected wealth r̄ · x. When the
distribution of r is symmetric, this does not matter, but in practice, the distribution of r is usually
nonsymmetric since r ≥ 0. The following utility maximization problem still makes sense

maximize
x∈�n

EP 0
u (r · x) (UP )

subject to
n∑

i=1

xi ≤ w0,

x ∈ C.

Here x, r and C are as in the previous example and u measures the utility from terminal wealth.
The components of the return vector r are nonnegative random variables with joint distribution
P 0.

In general, (UP ) cannot be solved analytically, so we will consider the discretizations

maximize
x∈�n

ν∑
i=1

pν
i u(rν

i · x) (UP ν)

subject to

n∑
i=1

xi ≤ w0,

x ∈ C.

Proposition 12 Assume suppP 0 ⊂ R
n
+, u is continuous and bounded on R+, C is closed and

contained in R
n
+ (short selling is not allowed) and that the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ R
n
+. Then the optimal values of (UP ν) converge to

that of (UP ) and the cluster points of the solutions of (UP ν) are solutions of (UP ).
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Proof. This fits the format of (SP ) with Ξ = R
n
+, ξ = r, and

f(x, r) = −u(r · x) + δC′(x),

where C ′ = {x ∈ C | ∑n
i=1 xi ≤ w0 }. By Theorem 7, it suffices to verify the conditions of Corol-

lary 10. Since u is continuous and C is closed, f is lsc. Condition 1 follows from the boundedness
of u on R+, and the fact that r · x ∈ R+ for all r ≥ 0 and x ∈ C ⊂ R+. Condition 2 follows from
the boundedness and continuity of u on R+. �

Many familiar utility functions, like the exponential utility, are bounded on R+. More general
utility functions are easily modified to be bounded on R+ in a way that does not affect computations
in practice.

In our test, the number of assets n = 10, r is log-normally distributed, u(w) = − exp(−w)
and C = R

n
+. Figure 5 shows the development of the optimal value of (UP ν) as a function of the

number of quadrature points ν = 100, 110, . . . , 2500 for six quadratures. Again, the quadratures
seem to converge to a common value, but this time, Halton and Faure exhibit slowest convergence
whereas Sobol, Niederreiter and lattice rule seem to work best. Figure 6 depicts the development of
the average and the 90% confidence interval for the optimal values obtained with 250 Monte Carlo
samples for each value of ν. The values obtained with Sobol are shown for reference. The average
converges to the same value as the optimal values obtained by the quadratures but the confidence
interval narrows down very slowly.
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Figure 5: Optimal values of (UP ν) as a function of ν.
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Figure 6: Average and 90% confidence intervals for Monte Carlo.

4.3 Super-replication of contingent claims

Consider the problem

minimize
V,θ

V (PP )

subject to S0 · θ ≤ V,

S · θ ≥ F, P 0-a.s.

θ ∈ C,

where V is the wealth invested in a portfolio θ = (θ1, . . . , θJ) of assets that have prices S0 =
(S1

0 , . . . , SJ
0 ) at the beginning and S = (S1, . . . , SJ) at the end of a holding period and F is a

cash-flow at the end of the holding period. S and F are random variables with joint distribution
P 0. (PP ) can be interpreted as a pricing problem of a seller of the cash-flow F ; see for example
King (2002) and (Korf, 2002, Section 7). The seller tries to find the least amount of initial wealth
that can be used to buy a portfolio that is almost surely worth at least F at the end of the holding
period. The optimum value of (PP ) is called the seller’s price of F and an optimal portfolio θ is
called a seller’s hedge.

(PP ) is a semi-infinite linear programming problem and, in general, impossible to solve ana-
lytically. Replacing P 0 by a discrete measure P ν =

∑ν
i=1 pν

i δ(Sν
i ,F ν

i ) with pν
i > 0, for all i = 1, . . . ν

gives the problem

minimize
V,θ

V (PP ν)

subject to S0 · θ ≤ V,

Sν
i · θ ≥ F ν

i , i = 1, . . . , ν,

θ ∈ C,

which is an LP problem for which many solvers are available.
In this example, the feasible region depends on the measure, and domEP 0

f is impossible to
characterize explicitly in general. This problem does not fit the frameworks of Lucchetti and Wets
(1993), Artstein and Wets (1994), Zervos (1999) and Shapiro (2000).
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Proposition 13 Assume that the points {(Sν
i , F ν

i )}ν
i=1 are all contained in suppP 0 and that for

some {pν
i }ν

i=1, ν = 0, 1, 2, . . ., with pν
i > 0, for all i = 1, . . . ν, the measures

P ν =
ν∑

i=1

pν
i δ(Sν

i ,F ν
i )

converge weakly to P 0. If the feasible set is bounded, then the optimal values of (PP ν) converge to
the seller’s price of F and the cluster points of the solutions of (PP ν) are seller’s hedges for F .

Proof. This can be written as (SP ) with x = (V, θ), ξ = (S, F ) and

f(V, θ, S, F ) = V + δC(θ) + δC0(V, θ) + δC1(θ, S, F ),

where
C0 = {(V, θ) | S0 · θ ≤ V }

and
C1 = {(θ, S, F ) | S · θ ≥ F } .

Since C0 and C1 are closed, f is lsc. It is also clear that condition 1 of Corollary 10 holds. To verify
condition 2, note first that for each (V, θ) ∈ domEP 0

f , f(V, θ, ·) is the constant function V on the
set

C1(θ) = {(S, F ) | S · θ ≥ F}
which is of full measure. Since C1(θ) is closed, we must have suppP 0 ⊂ C1(θ) for every (V, θ) ∈
dom EP 0

f . Thus, condition 2 holds if we let Ξ = suppP 0, which is legitimate since suppP ν ⊂
suppP 0. �

In our test, the set of assets consists of cash, SP500 index and 28 European call and put options
on the index with maturity of 17 calendar days. The value of S is fully determined by the value
of the index at the maturity which is assumed to be log-normally distributed. The cash-flow F is
taken to be that of a call option with the same maturity but different strike than any other call
included in S.

Figure 7(a) displays the objective values obtained with Sobol along with the averages and
90% confidence intervals obtained with Monte Carlo from 250 samples for each value of ν =
100, 110, . . . , 2500.

Our random variable being one-dimensional in the current problem suggests using Gaussian
quadratures. The use of Gauss-Hermite quadrature for discretizing the normal distribution has
been already described in Subsection 2.1. We will also utilize Gauss-Legendre quadrature that
gives convergent discretizations of the one-dimensional uniform distribution on [0, 1]. From this
we obtain discretizations of the normal distribution by mapping each point through the inverse of
the normal distribution function. The results are shown in Figure 7(b). With ν = 60, the optimal
values obtained with Gauss-Legendre quadrature have converged to the same value as the optimal
values obtained with Sobol after 2500 points. Gauss-Hermite is almost as good but it results in
slight oscillations.
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Figure 7: Optimal values of (PP ν) as a function of ν.
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Variance reduction in sample approximations of stochastic programs

Matti Koivu
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Abstract

This paper studies the use of randomized Quasi-Monte Carlo methods (RQMC) in sam-
ple approximations of stochastic programs. In high dimensional numerical integration, RQMC
methods often substantially reduce the variance of sample approximations compared to MC. It
seems thus natural to use RQMC methods in sample approximations of stochastic programs. It
is shown, that RQMC methods produce epi-convergent approximations of the original problem.
RQMC and MC methods are compared numerically in five different portfolio management mod-
els. In the tests, RQMC methods outperform MC sampling substantially reducing the sample
variance and bias of optimal values in all the considered problems.

Keywords: Stochastic optimization, discretization, variance reduction techniques, random-
ized quasi-monte carlo methods, antithetic variates.

1 Introduction

Let Ξ be Borel subset of R
d, and Σ the Borel σ-algebra on Ξ. Let P be a probability measure on

(Ξ, Σ), and f an extended real-valued function on R
n ×Ξ, such that f(x, ·) is measurable for every

x ∈ R
n. This paper studies numerical solution through discretization of stochastic programs of the

form
minimize

x∈�n
EP f(x) :=

∫
Ξ

f(x, ξ)P (dξ), (SP )

where the integral is interpreted as +∞ when f(x, ·) /∈ L1(Ξ, Σ, P ). The decision variable x is
not a function of ξ, so (SP ) represents a static (one-stage) stochastic program. By allowing f
to take on the value +∞ we can incorporate constraints into the objective, which makes (SP ) a
very general model for optimal static decision making under uncertainty. Unlike most studies of
stochastic programs, we do not assume the feasible set

domEP f(x) = {x ∈ R
n | f(x, ·) ∈ L1(Ξ,Σ, P )}

to be known a priori. This is essential e.g. in stochastic programs without relatively complete
recourse and in certain financial applications, where the determination of the feasible set is part of
the problem rather than its statement; see Subsection 4.2.

A common approach to solving (SP ), is to replace P by a finitely supported measure of the
form

P ν =
ν∑

i=1

pν
i δξν

i
,

1



where δξν
i

denotes the unit mass located at ξν
i . This yields

minimize
x∈�n

EP ν
f(x) :=

ν∑
i=1

pν
i f(x, ξν

i ), (SP ν)

which, is often easier to solve than (SP ). In general, the aim is to choose P ν so that (SP ν) is a good
approximation of (SP ) and that the number ν of support points of P ν is small enough to allow for
numerical solution of (SP ν). The simplest and the best-known method for numerical approximation
of high-dimensional integrals is the Monte Carlo method (MC), i.e. random sampling. MC has also
become the most popular method for constructing sample approximations of stochastic programs.
However, in the literature of numerical integration there are many methods that usually perform
better than MC in high-dimensional integration; see e.g. (Boyle et al., 1997, Jäckel, 2002). Quasi-
Monte Carlo (QMC) methods can be seen as a deterministic counterpart to the MC method.
They are designed to produce point sets that cover the d-dimensional unit hypercube as uniformly
as possible. By suitable transformations QMC methods can be used to discretize many other
probability distributions as well. They are just as easy to use as MC but they often result in faster
convergence of the approximations thus allowing for smaller values of ν and cheaper computations.

L’Ecuyer and Lemieux (2002) review several QMC constructions and their randomizations that
have been proposed to provide unbiased estimators and for error estimation. Randomizing QMC
methods allows us to view them as variance reduction techniques. Randomized Quasi-Monte Carlo
(RQMC) methods can be used just like MC in estimating confidence intervals and variances for
sample approximations in numerical integration. RQMC often result in significant variance reduc-
tion with respect to MC. In this paper, we apply RQMC to stochastic optimization and obtain
similar results. RQMC methods can be viewed as an alternative to MC in computing statistical
bounds, as e.g. in Shapiro (2003). In our tests, the bounds for the optimal values obtained with
RQMC are consistently tighter than those obtained with MC.

Other variance reduction techniques, like antithetic variates, importance - and latin hypercube
sampling have been used in stochastic optimization e.g. in Kouwenberg (2001), Infanger (1992),
Higle (1998) and Linderoth et al. (2002). These studies show that variance reduction techniques can
significantly improve the accuracy of the sample approximations over MC. It was found in Linderoth
et al. (2002) that latin hypercube sampling provides tighter confidence intervals for optimal values
than MC. In our tests, the best performing RQMC methods consistently outperform latin hypercube
sampling.

Since we are dealing with minimization problems, a natural framework for analyzing approxi-
mations is epi-convergence; see Attouch (1984) or Rockafellar and Wets (1998) for introduction to
epi-convergence. Epi-convergence of the objectives is a minimal property that should be satisfied
by any approximation scheme for optimization problems in order to get asymptotic convergence of
optimal values and solutions. Epi-convergence for sample approximations of stochastic programs
have been proved in Artstein and Wets (1995) for MC, and in Pennanen and Koivu (2003) for
QMC. In MC {P ν}∞ν=1 is a sequence of empirical measures, whereas in QMC it is a weakly conver-
gent non-random sequence. In this paper we will show that the epi-convergence result derived in
Pennanen and Koivu (2003) for QMC also applies to RQMC methods.

The rest of this paper is organized as follows. Section 2 gives a brief review of the epi-convergence
results that will be utilized in this paper. Section 3 reviews the used randomization technique for
QMC point sets. It is shown in Section 3 that RQMC methods produce weakly convergent prob-
ability measures, thus allowing us to utilize the epi-convergence results derived in Pennanen and
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Koivu (2003). In Section 4 we use RQMC methods to construct epi-convergent sample approxima-
tions of stochastic programs in various test problems, and compare the behaviour of optimal values
numerically with MC.

2 Epi-convergence of sample approximations

Epi-convergence results for sample approximations of stochastic optimization problems have been
given in Artstein and Wets (1995) for MC, and in Pennanen and Koivu (2003) for QMC. In MC
{P ν}∞ν=1 is a sequence of empirical measures, whereas in QMC it is a weakly convergent non-random
sequence, that is

EP ν
ϕ → EP ϕ, (1)

for all bounded and continuous functions ϕ; see Billingsley (1999). Epi-convergence has many
important implications in studying approximations of minimization problems; see e.g. Rockafellar
and Wets (1998). The following is one of them; see (Attouch, 1984, Section 2.2).

Theorem 1 If a sequence of functions F ν epi-converges to F , then

lim sup
ν→∞

inf F ν ≤ inf F,

and if there is a convergent sequence xk → x such that xk ∈ argminF νk
for some subsequence

{νk}∞k=1, then x ∈ argminF and inf F νk → inf F . In particular, if there is a compact set C such
that argminF ν ∩ C �= ∅ for all ν, then inf F ν → inf F .

Recall that a function g is called lower semicontinuous (lsc) if for every x

lim inf
y→x

g(y) ≥ g(x).

Theorem 2 (Artstein and Wets (1995)) Let ξ1, ξ2, . . . be a sequence of i.i.d P -distributed draw-
ings from Ξ and let

P ν =
ν∑

i=1

1
ν

δξi .

If

1. f(x, ξ) : R
n × Ξ → (−∞,∞] is measurable on R

n × Ξ, and f(·, ξ) for ξ fixed is lsc in x,

2. for each x0 ∈ R
n there exists an open set N 	 x0 and an integrable function α(ξ) : Ξ →

(−∞,∞), such that for almost all ξ ∈ Ξ the inequality f(x, ξ) ≥ α(ξ) holds for all x ∈ N ,

then the functions EP ν
f almost surely epi-converge to EP f .

The following is a simplified version of the epi-convergence result in Pennanen and Koivu (2003),
which is sufficient in the applications of this paper.

Theorem 3 (Pennanen and Koivu (2003)) Let P ν → P 0 and assume that f is lsc. If

1. for each x ∈ R
n, there is an open set N 	 x such that f is bounded from below on N × Ξ,

2. for each x ∈ domEP 0
f , f(x, ·) is P 0-a.s. continuous and bounded,

then the functions EP ν
f both pointwise and epi-converge to EP f .

Note that the conditions of Theorem 3 imply the conditions of Theorem 2.
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3 Randomized quasi-monte carlo and weak convergence

A discrete approximation P ν of P is usually generated as follows: In the scalar case, approximate
the uniform distribution on [0, 1] and transform each point with the inverse of the distribution
function of the desired distribution. This is known as the method of inversion. The same idea
works whenever P = QG−1, where Q is the multivariate uniform distribution and G is Q-a.s.
continuous, in other words, whenever

ξ = G(u),

where u is uniformly distributed in the unit cube [0, 1]d, and G : [0, 1]d → Ξ is almost everywhere
continuous. This is based on the following very useful result from Billingsley (1999) where U is any
metric space with Borel algebra B.

Theorem 4 (Billingsley) Let G : (U,B) → (Ξ, Σ) be a measurable function and Q a probability
distribution on (U,B). Then QG−1(A) := Q(G−1A) defines a probability measure on (Ξ,Σ), and if
G is Q-a.s. continuous, then

Qν → Q =⇒ QνG−1 → QG−1.

Given a Q-a.s. continuous G and a discrete approximation Qν =
∑ν

i=1 pν
i δuν

i
of Q, Theorem 4

says that the discrete measures

P ν := QνG−1 =
ν∑

i=1

pν
i δG(uν

i )

converge weakly to P = QG−1 whenever Qν → Q. It is then natural to try to choose discrete
approximations Qν which are as close as possible to the uniform distribution Q. Quasi-monte carlo
methods are designed to do exactly this; see the books of Niederreiter (1992) and Sloan and Joe
(1994). Much of this theory has evolved around the following notion of distance from Q.

Definition 5 The star-discrepancy of a point set Uν = {u1, . . . , uν} ⊂ [0, 1]d is defined as

D∗(Uν) = sup
C∈C0

|Qν(C) − Q(C)|, (2)

where

Qν =
ν∑

i=1

1
ν

δui ,

and C0 is the set of rectangles C ⊂ [0, 1]d with 0 ∈ C.

The following is a direct consequence of Corollary 11 in Lucchetti et al. (1994).

Proposition 6 For each ν, let Uν
ν = {uν

1 , . . . , u
ν
ν} be point sets in the unit cube. The measures

Qν =
ν∑

i=1

1
ν

δuν
i

converge weakly to the uniform distribution if and only if D∗(Uν
ν ) → 0.
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Thus, if we can find point sets whose star-discrepancy approaches zero as ν ↗∞, we obtain
weakly convergent discrete approximations of the uniform distribution. If P = QG−1, we can then
use the method of inversion to get weakly convergent discretizations of P .

In the literature of numerical integration, many methods have been developed for producing in-
finite sequences, which satisfy the property, that D∗(Uν) = O(ν−1(ln ν)d), for all ν. Such sequences
are called low-discrepancy sequences. The main constructions of low discrepancy sequences are due
to Halton (1960), Sobol’ (1967), Faure (1982) and Niederreiter (1988). The last three methods fall
in the general class of (t, s)-sequences; see Niederreiter (1992). If it is not required that ν points of
a (ν + 1)-point quadrature are the points of the ν-point quadrature, it is possible to obtain more
accurate quadratures called low discrepancy point sets, which satisfy D∗(Uν) = O(ν−1(ln ν)d−1).
Examples of low discrepancy point sets include Hammersley point sets (Hammersley, 1960), which
are easily obtained from the Halton sequence and so called (t, m, s)-nets, which are obtained by
using certain parts of the points in (t, s)-sequences; see (Niederreiter, 1992, Chapter 4). Another
general family of methods for generating point sets with low discrepancy are lattice rules, which
are designed to take advantage of additional regularity properties of integrands; see for example
Niederreiter (1992), Sloan and Joe (1994) and L’Ecuyer and Lemieux (2000).

To enable practical error estimation for QMC methods a number of randomization techniques
have been proposed in the literature; see L’Ecuyer and Lemieux (2002) for an excellent survey. An
easy way of randomizing any QMC point set without destroying its regular structure, suggested
by Cranley and Patterson (1976), is to shift it randomly, modulo 1, with respect to all of the
coordinates.

Let Uν = {u1, . . . , uν} ⊂ [0, 1)d be a low discrepancy point set in a d-dimensional unit hypercube.
Generate a point u uniformly distributed in [0, 1)d and replace every ui in Uν with ũi = (ui + u)
mod 1, where i = 1, . . . , ν. Now Ũν = {ũ1, . . . , ũν} is a randomized point set used to approximate
[0, 1)d uniform distribution. This can be repeated m times, independently, with the same Uν . We
thus obtain m i.i.d copies of the random variable EP ν

ϕ, which we denote by EP ν
1 ϕ, . . . , EP ν

mϕ. Let
σ̂2 =

∑m
j=1(E

P ν
j ϕ − µ̂)2/(m − 1), where µ̂ = (EP ν

1 ϕ + . . . + EP ν
mϕ)/m.

Proposition 7 (L’Ecuyer and Lemieux (2000))

E[EP ν
j ϕ] = EP ϕ and E[σ̂2] = V ar[EP ν

j ϕ].

Hence, EP ν
j ϕ is an unbiased estimator of EP f and σ̂2 is an unbiased estimator of its variance.

Proposition 7 holds for an arbitrary point set Uν ; see (L’Ecuyer and Lemieux, 2002, Tuffin, 1996).
In direct numerical integration, Monte Carlo methods achieve a convergence rate of ν− 1

2 ; more
precisely, in Monte Carlo, the standard deviation of the integration error is Std(ϕ)ν− 1

2 , where
Std(ϕ) is the standard deviation of ϕ. The following estimates the convergence speed for the
variance of a randomized QMC estimator obtained from a low discrepancy sequence.

Theorem 8 (Tuffin (1996)) For any low discrepancy sequence Uν ⊂ [0, 1)d and almost every-
where continuous and bounded function ϕ over [0, 1)d, we have

V ar

(
1
ν

ν∑
i=1

ϕ(ũi)

)
= O(ν−2(ln ν)2d).
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In Monte Carlo, the convergence speed is independent of the dimension of the space, whereas
the above convergence speed depends on the dimension, so that the actual error estimates obtained
in practice with RQMC may be greater than Std(ϕ)ν− 1

2 . In many practical applications, however,
RQMC methods considerably improve the accuracy over MC. One explanation offered for the
success of QMC and RQMC methods on high dimensional problems is that the integrands may have
effective dimensions much smaller than d. Effective dimension is roughly the number of important
dimensions of the problem, which account for most of the variability of the estimator; see Caflisch
et al. (1997) and Wang and Fang (2002) for details. Asymptotically the variance reduction factor
obtained with RQMC over MC is proportional to ν. The same effect can be observed in the test
problems of Section 4, for sample variances of optimal values already with moderate values of ν.

It is well known, that for MC

inf
x∈�n

E
[
EP ν

f(x)
] ≥ E

[
inf

x∈�n
EP ν

f(x)
]

,

i.e. v∗ ≥ E[v̄∗] where v∗ denotes the optimal value of the true problem (SP ). That is, v̄∗ is a
biased estimator of v∗. This property also holds for RQMC methods. The value v̄∗ is called a valid
statistical lower bound of the true optimal value v∗ if v∗ ≥ E[v̄∗] and v̄∗ epi-converges to v∗ as
ν → ∞; see e.g. Shapiro (2003).

For obtaining epi-converge of the sample approximations of stochastic programs generated via
RQMC methods we need to show that RQMC methods generate weakly convergent probability
measures.

Lemma 9 Let Uν and Ũν be low discrepancy and randomized low discrepancy point sets, respec-
tively. Discrepancy of a randomized low discrepancy point set D(Ũν) satisfies

D(Ũν) ≤ 22dD∗(Uν).

If D∗(Uν) → 0, the measures

Qν =
ν∑

i=1

1
ν

δũν
i

converge weakly to the uniform distribution.

Proof. From Niederreiter (1992) we get

D∗(Uν) ≤ D(Uν) ≤ 2dD∗(Uν),

where D(Uν) is a discrepancy measure. Tuffin (1996) showed that

D(Ũν) ≤ 2dD(Uν),

which yields
D(Ũν) ≤ 22dD∗(Uν).

The weak convergence of the probability measures Qν =
∑ν

i=1
1
ν δũν

i
follows from Proposition 6 by

noting that D∗(Uν) → 0. �
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Hence, we can use the results of Theorem 3 for obtaining epi-convergence of EP ν
f to EP f . In

sample approximations of stochastic programs a natural goal is to try to generate the samples so
that the bias v∗ − E[v̄∗] and the sample variance of the optimal values are as small as possible. In
the next Section we use RQMC methods as variance reduction techniques alone and in combination
with other variance reduction techniques to improve the accuracy of sample approximations with
respect to MC in various test problems.

4 Numerical tests

In the numerical tests we compare MC with variance reduction techniques: Antithetic Variates
(AV), Latin Hypercube sampling (LH), randomized Lattice Rules (LR), Sobol (SOB), Faure (FAU),
Hammersley (HAM), Niederreiter (NIE) and Halton (HAL) point sets in discretization of five
portfolio optimization problems. We will also test the efficiency of the best performing RQMC
methods in combination with AV, namely Sobol sequence (SOB+AV) and lattice rules (LR+AV).
For the MC method and randomization of the QMC point sets we use the Mersenne Twister
generator (MT19937) by Matsumoto and Nishimura (1998). The LIBSEQ1 library based on Friedel
and Keller (2002) is used for Latin Hypercube sampling. Rank-1 lattice rules are used to generate
the lattice point sets; see e.g. L’Ecuyer and Lemieux (2000) 2. Our implementation of the Sobol
sequence is based on the implementation in Press et al. (1992). For Niederreiter sequence the
routine in GSL (Gnu Scientific Library) is used. Routines by Fox (1986) are used for Faure and
Halton sequences and the Hammersley point sets are easily obtained from the Halton sequence; see
Hammersley (1960).

We consider one-stage problems with ν = 2i scenarios, where i = 5, . . . , 14. For every i we
generate 250 independent discretizations, solve the resulting problems and record the obtained
optimum value and other relevant statistics. The same procedure is repeated for each test problem,
except in Section 4.2.1, where the random variable is one-dimensional and i = 5, . . . , 9.

The test problems are divided into two categories. In Section 4.1 we consider problems without
implicit constraints, i.e. domEP f is known and does not depend on P . In Section 4.2 we consider
problems with implicit constraints, i.e. domEP f may not be known and may depend on P .

4.1 Problems without implicit constraints

4.1.1 Mean-variance portfolio optimization

We start the numerical tests with a model which can be solved exactly. Of course, sample approx-
imations are unnecessary in such cases but here we get to compare the approximate solutions with

1www.multires.caltech.edu/software/libseq
2The parameters required by the method were provided by Professor L’Ecuyer.
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the exact one. Consider the mean-variance model

minimize
x∈�n

EP 0
(r · x − r̄ · x)2 (MP )

subject to r̄ · x ≥ w,
n∑

i=1

xi ≤ 1,

x ∈ C,

where x = (x1, . . . , xn) is a portfolio of assets, r = (r1, . . . , rn) is the vector of returns, r · x =∑n
j=1 rixi is the terminal wealth, w is the required level of expected wealth and C is the set

of feasible portfolios. The components of the return vector r are random variables with joint
distribution P 0 and expectation r̄. As is well-known, the expectation in (MP ) can be computed
explicitly as

EP 0
(r · x − r̄ · x)2 = EP 0

[(r − r̄) · x]2 = EP 0
[x · (r − r̄)(r − r̄)T x] = x · V x,

where V = EP 0
[(r − r̄)(r − r̄)T ] is the variance matrix of r. If V and r̄ are known, (MP ) can

then be solved without discretization with standard solvers yielding the optimal value and optimal
solution.

To test the performance of the proposed variance reduction techniques, we approximate problem
(MP ) by the discretizations

minimize
x∈�n

ν∑
i=1

pν
i (r

ν
i · x − r̄ · x)2 (MP ν)

subject to r̄ · x ≥ w,
n∑

i=1

xi ≤ 1,

x ∈ C.

Under mild conditions, convergence of optimal values and solutions can be guaranteed. The proof
of the following Proposition can be found in Pennanen and Koivu (2003).

Proposition 10 (Pennanen and Koivu (2003)) Assume that suppP 0 is bounded, C is closed,
and that the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ suppP 0. If the feasible set is bounded, then the optimal
values of (MP ν) converge to that of (MP ) and the cluster points of the solutions of (MP ν) are
solutions of (MP ).

In our test, the number of assets n = 10 and

r = r̄ + 12L(u − 1
2
e),
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where u is uniformly distributed in the 10-dimensional unit cube, L is a 10 × 10 matrix and e is a
vector of ones. Then suppP 0 is bounded, r has mean r̄ and variance V = LLT . We chose C = R

n
+,

which means that “short selling” is prohibited. With our choices of r̄ and V , the optimal value in
the original problem (MP ) is 1.9221.

The numerical test results are displayed in Table 1, where µ̂ and σ̂ denote the sample mean and
standard deviation computed from 250 optimal values of (MP ν) for different values of ν. The value
vr = σ̂2

MC/σ̂2
q , denotes the variance reduction factors for optimal values obtained with sampling

method q with respect to the variance of MC, for all the considered methods and reported values
of ν. The best performing methods are LR and Sobol, Halton and Niederreiter sequences, with
variance reduction factors increasing with ν. These methods clearly outperform MC, AV and LH
sampling. The results with AV are presented to point out the fact, that the use of AV doubles the
variance with respect to MC because the objective function is quadratic and it is well known, that
AV reduces the variance compared to MC only when the integrand is a monotonically increasing
function of the random variables; see (Bratley et al., 1987). Figure 1 shows the sample mean and
90% confidence intervals for the optimal values obtained with LR and MC. Lattice rules produce
much tighter confidence intervals and reduces the sample bias for the optimal value, compared to
MC.

1
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1.8
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2.4

32 64 128 256 512 1024 2048 4096 8192 16384
(a) Lattice rule.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

32 64 128 256 512 1024 2048 4096 8192 16384
(b) Monte carlo.

Figure 1: Mean and 90% confidence interval for the markowitz problem.
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Table 1: Statistics for MP ν as a function of ν.

ν MC AV LH LR SOB FAU HAM NIE HAL

µ̂ 1.609 1.413 1.668 1.639 1.662 1.461 1.567 1.708 1.704
32 σ̂ 5.00E-1 6.99E-1 4.06E-1 3.68E-1 3.83E-1 5.76E-1 4.92E-1 3.78E-1 3.31E-1

vr 1.0 0.5 1.5 1.8 1.7 0.8 1.0 1.7 2.3

µ̂ 1.758 1.689 1.752 1.837 1.855 1.742 1.796 1.840 1.818
64 σ̂ 3.38E-1 4.61E-1 2.98E-1 1.48E-1 2.05E-1 2.56E-1 2.20E-1 1.82E-1 1.72E-1

vr 1.0 0.5 1.3 5.2 2.7 1.7 2.4 3.4 3.9

µ̂ 1.839 1.803 1.846 1.905 1.875 1.888 1.890 1.883 1.889
128 σ̂ 2.08E-1 2.93E-1 1.74E-1 7.73E-2 1.20E-1 1.06E-1 1.22E-1 1.16E-1 9.43E-2

vr 1.0 0.5 1.4 7.3 3.0 3.9 2.9 3.2 4.9

µ̂ 1.876 1.820 1.887 1.911 1.906 1.904 1.909 1.916 1.913
256 σ̂ 1.53E-1 2.22E-1 1.15E-1 5.78E-2 6.93E-2 5.78E-2 6.33E-2 6.19E-2 5.52E-2

vr 1.0 0.5 1.8 7.1 4.9 7.1 5.9 6.1 7.7

µ̂ 1.908 1.877 1.899 1.921 1.920 1.909 1.916 1.914 1.914
512 σ̂ 1.04E-1 1.38E-1 8.48E-2 2.15E-2 3.45E-2 4.48E-2 3.75E-2 3.53E-2 2.84E-2

vr 1.0 0.6 1.5 23.5 9.1 5.4 7.8 8.7 13.5

µ̂ 1.911 1.902 1.917 1.920 1.920 1.920 1.921 1.923 1.922
1024 σ̂ 7.09E-2 1.02E-1 5.87E-2 1.24E-2 1.81E-2 2.10E-2 1.97E-2 1.89E-2 1.67E-2

vr 1.0 0.5 1.5 32.7 15.3 11.4 12.9 14.0 18.1

µ̂ 1.920 1.906 1.920 1.922 1.921 1.921 1.923 1.922 1.922
2048 σ̂ 4.98E-2 7.02E-2 4.15E-2 8.17E-3 8.87E-3 1.32E-2 1.01E-2 1.02E-2 9.34E-3

vr 1.0 0.5 1.4 37.1 31.5 14.2 24.1 23.8 28.4

µ̂ 1.914 1.917 1.920 1.922 1.922 1.922 1.922 1.922 1.922
4096 σ̂ 3.29E-2 5.25E-2 2.89E-2 3.65E-3 4.69E-3 6.97E-3 5.29E-3 6.43E-3 5.90E-3

vr 1.0 0.4 1.3 80.9 49.0 22.2 38.6 26.1 31.1

µ̂ 1.919 1.921 1.923 1.922 1.922 1.922 1.922 1.922 1.922
8192 σ̂ 2.61E-2 3.57E-2 2.02E-2 3.33E-3 3.32E-3 3.55E-3 2.83E-3 3.59E-3 2.94E-3

vr 1.0 0.5 1.7 61.4 61.7 54.1 85.3 52.8 78.8

µ̂ 1.922 1.920 1.923 1.922 1.922 1.922 1.922 1.922 1.922
16384 σ̂ 1.79E-2 2.46E-2 1.42E-2 1.49E-3 1.37E-3 1.84E-3 1.53E-3 1.18E-3 1.78E-3

vr 1.0 0.5 1.6 145 170 94.5 137 229 101

4.1.2 Utility maximization

Consider the problem

maximize
x∈�n

EP 0
u (r · x) (UP )

subject to
n∑

i=1

xi ≤ 1,

x ∈ C.

Here x and C are as in the previous example, u measures the utility from terminal wealth, and the
components of the return vector r are nonnegative random variables with joint distribution P 0.
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In general, (UP ) cannot be solved analytically, so we consider the discretizations

maximize
x∈�n

ν∑
i=1

pν
i u(rν

i · x) (UP ν)

subject to
n∑

i=1

xi ≤ 1,

x ∈ C.

The same type of problem was analyzed in Pennanen and Koivu (2003), so we can use their
Proposition to show the epi-convergence of (UP ν) to (UP ).

Proposition 11 (Pennanen and Koivu (2003)) Assume suppP 0 ⊂ R
n
+, u is continuous and

bounded on R+, C is closed and contained in R
n
+ (short selling is not allowed) and that the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ R
n
+. Then the optimal values of (UP ν) converge to

that of (UP ) and the cluster points of the solutions of (UP ν) are solutions of (UP ).

In the test, the number of assets n = 10, r is log-normally distributed, u(w) = − exp(−w) and
C = R

n
+. Table 2 summarizes the test results. AV reduces the bias and variance of the optimal

values significantly compared to MC. Among the RQMC methods LR perform the best, with all the
other quadratures, except Faure sequence, performing almost as well. Since the use of AV reduced
the variance of optimal values considerably, we tested them in combination with LR and Sobol
sequence, see Table 3. The combination of these methods produce the most significant variance
reduction factors compared to MC. Figure 2 displays the sample mean and 90% confidence interval
for the optimal values obtained with LR and MC. Again the variance reduction factors with RQMC
methods increase almost linearly with ν.
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Table 2: Statistics UP ν as a function of ν.

ν MC AV LH LR SOB FAU HAM HAL NIE

µ̂ -298.543 -312.304 -312.014 -312.372 -310.990 -306.122 -308.435 -306.970 -310.261
32 σ̂ 1.94E+1 3.84E+0 7.10E+0 5.18E+0 6.90E+0 1.20E+1 5.89E+0 5.82E+0 5.85E+0

vr 1.0 25.6 7.5 14.0 7.9 2.6 10.8 11.1 11.0

µ̂ -304.718 -313.774 -313.855 -314.307 -313.418 -311.252 -312.172 -311.824 -313.258
64 σ̂ 1.26E+1 2.67E+0 3.55E+0 2.77E+0 3.78E+0 7.26E+0 3.56E+0 3.33E+0 3.13E+0

vr 1.0 22.3 12.6 20.8 11.2 3.0 12.6 14.4 16.3

µ̂ -309.980 -314.782 -314.865 -314.945 -314.853 -314.599 -314.174 -313.945 -314.681
128 σ̂ 9.07E+0 1.72E+0 1.92E+0 1.38E+0 2.02E+0 2.88E+0 1.81E+0 1.69E+0 1.54E+0

vr 1.0 27.7 22.4 43.1 20.2 9.9 25.2 29.0 34.8

µ̂ -312.546 -315.173 -315.171 -315.303 -315.201 -315.295 -315.136 -314.915 -315.236
256 σ̂ 6.78E+0 1.09E+0 1.04E+0 7.66E-1 9.55E-1 1.86E+0 9.40E-1 8.99E-1 8.28E-1

vr 1.0 38.9 42.4 78.4 50.4 13.2 52.0 56.9 67.1

µ̂ -313.600 -315.151 -315.368 -315.448 -315.475 -315.289 -315.350 -315.357 -315.389
512 σ̂ 4.40E+0 9.27E-1 5.33E-1 4.17E-1 4.77E-1 1.23E+0 4.78E-1 4.79E-1 4.07E-1

vr 1.0 22.5 68.1 111 84.9 12.8 84.6 84.2 116

µ̂ -314.658 -315.443 -315.414 -315.489 -315.502 -315.411 -315.440 -315.471 -315.457
1024 σ̂ 3.07E+0 6.18E-1 3.06E-1 2.02E-1 2.60E-1 5.66E-1 2.68E-1 2.44E-1 2.11E-1

vr 1.0 24.7 100 232 139 29.4 131 158 211

µ̂ -314.858 -315.440 -315.465 -315.505 -315.512 -315.473 -315.492 -315.486 -315.498
2048 σ̂ 2.15E+0 4.58E-1 1.74E-1 1.07E-1 1.37E-1 3.07E-1 1.32E-1 1.40E-1 1.10E-1

vr 1.0 22.1 153 404 245 49.0 264 235 381

µ̂ -315.270 -315.475 -315.481 -315.506 -315.506 -315.482 -315.509 -315.498 -315.496
4096 σ̂ 1.70E+0 2.94E-1 1.16E-1 5.89E-2 7.61E-2 1.57E-1 7.60E-2 7.01E-2 6.13E-2

vr 1.0 33.3 216 832 498 118 500 587 767

µ̂ -315.421 -315.483 -315.495 -315.505 -315.502 -315.493 -315.508 -315.503 -315.504
8192 σ̂ 1.23E+0 2.02E-1 6.62E-2 3.16E-2 3.78E-2 9.33E-2 4.05E-2 4.25E-2 3.20E-2

vr 1.0 37.5 348 1527 1062 175 926 844 1482

µ̂ -315.381 -315.495 -315.495 -315.504 -315.505 -315.511 -315.503 -315.506 -315.504
16384 σ̂ 8.07E-1 1.58E-1 4.89E-2 2.00E-2 1.91E-2 4.66E-2 2.08E-2 2.11E-2 1.90E-2

vr 1.0 25.9 272 1630 1791 299 1510 1462 1804

Table 3: Statistics for UP ν as a function of ν, Lattice rule and Sobol with AV.

ν LR+AV SOB+AV ν LR+AV SOB+AV

µ̂ -313.078 -312.744 µ̂ -315.485 -315.488
32 σ̂ 1.61E+0 2.26E+0 1024 σ̂ 1.13E-1 1.33E-1

vr 145 74 vr 737 528

µ̂ -314.278 -314.295 µ̂ -315.498 -315.496
64 σ̂ 1.15E+0 1.31E+0 2048 σ̂ 5.94E-2 7.43E-2

vr 121 93 vr 1312 837

µ̂ -314.962 -315.040 µ̂ -315.499 -315.503
128 σ̂ 5.79E-1 6.35E-1 4096 σ̂ 3.91E-2 4.71E-2

vr 246 204 vr 1886 1304

µ̂ -315.324 -315.317 µ̂ -315.505 -315.507
256 σ̂ 3.16E-1 3.75E-1 8192 σ̂ 2.75E-2 2.45E-2

vr 460 327 vr 2007 2532

µ̂ -315.415 -315.429 µ̂ -315.504 -315.505
512 σ̂ 2.37E-1 2.16E-1 16384 σ̂ 1.41E-2 1.50E-2

vr 343 416 vr 3295 2889
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Figure 2: Mean and 90% confidence interval for the utility maximization problem.

4.1.3 Hedging with contingent claims

Assume that a company’s operating revenue at time t = 0, . . . , T can be expressed as a function
πt(ξ), where ξ = (ξ0, . . . , ξT ) is a stochastic process with joint distribution P 0. The company
wishes to hedge its operating revenue against unfavorable outcomes of ξ using contingent claims
with pay-outs Ft(ξ). Let θ+ = (θ1, . . . , θJ) and θ− = (θ1, . . . , θJ) denote the amounts of contingent
claims bought and sold with prices Pa and Pb, respectively, at time t = 0. The company faces the
hedging problem

maximize
θ+,θ−

EP 0

[
u (π0(ξ0) − tca · θ+ − tcb · θ−) +

T∑
t=1

u (πt(ξ) + Ft(ξ) · (θ+ − θ−))

]
(HP )

subject to Pa · θ+ − Pb · θ− ≤ π0(ξ0)
θ+, θ− ≥ 0,

where u is a utility function, π0(ξ0) is fixed and tca and tcb denote the transaction costs of bought
and sold assets, respectively. Since (HP ) is impossible to solve analytically we consider the dis-
cretizations

maximize
θ+,θ−

ν∑
i=1

pν
i

[
u (π0(ξ0) − tca · θ+ − tcb · θ−) +

T∑
t=1

u (πt(ξν
i ) + Ft(ξν

i ) · (θ+ − θ−))

]
(HP ν)

subject to Pa · θ+ − Pb · θ− ≤ π0(ξ0)
θ+, θ− ≥ 0.

13



Proposition 12 Assume that u is continuous and concave, the first moments of the random vari-
ables πt(ξ) and Ft(ξ) exist and

P ν =
ν∑

i=1

pν
i δ(ξν

t,i)
T

t=1

is a sequence of empirical measures. Then with probability one the optimal values of (HP ν) converge
to that of (HP ) and the cluster points of the solutions of (HP ν) are solutions of (HP ).

Proof. This can be written as (SP ) with x = (θ+, θ−) and

f(x, ξ) = −u (π0(ξ0) − tca · θ+ − tcb · θ−) −
T∑

t=1

u (πt(ξ) + Ft(ξ) · (θ+ − θ−)) + δC′(θ+, θ−),

where C ′ =
{
(θ+, θ−) ∈ R

n
+ | Pa · θ+ − Pb · θ− ≤ π0(ξ0)

}
. By Theorem 1 it suffices to verify the

conditions of Theorem 2. Since u is continuous and πt(ξ) and Ft(ξ) are measurable f is measurable
and lsc in x. To verify condition 2 let (x0, ξ0) be such that f(x0, ξ0) < ∞. By convexity of −u we
have

f(x, ξ) ≥ f(x0, ξ0) + γ0
0

(
tca · (θ0

+ − θ+) + tcb · (θ0
− − θ−)

)
+

T∑
t=1

γ0
t (πt(ξ) + Ft(ξ) · (θ+ − θ−)−

π(ξ0) − Ft(ξ0) · (θ0
+ − θ0

−)),

where γ0
t denote subgradients of −u. Using the Cauchy-Schwarz inequality we get that for any

bounded N 	 x0

f(x, ξ) ≥ ψ0 − γ0
0 (tca · θ+ + tcb · θ−) +

T∑
t=1

γ0
t (πt(ξ) + Ft(ξ) · (θ+ − θ−)) ≥

a +
T∑

t=1

γ0
t πt(ξ) + b

T∑
t=1

|Ft(ξ)|,∀x ∈ N,

where a and b are constants. Since it was assumed that the first moments of the random variables
πt(ξ) and Ft(ξ) exist condition 2 is satisfied. �

By assuming that πt(ξ) and Ft(ξ) are almost everywhere continuous and bounded, the conditions
of Theorem 3 would be satisfied and we would obtain epi-convergence for RQMC methods. However,
it is interesting to study the behavior of RQMC methods in this problem numerically. In the
test u(w) = − exp(−w), T = 12, ξ0 is deterministic and ξt is a three dimensional log-normally
distributed random variable, which means that the dimension of the probability space, d = 36.
The stochastic factors affecting the company’s operating revenue are the Euro-U.S. dollar (USD),
Norwegian krone-USD exchange rates and the USD price of zinc. The set of contingent claims
consists of zero coupon bonds and futures contracts for the underlying stochastic factors, with
maturities 1, 2, . . . , T months.

The results are displayed in Table 4. The use of AV increased the variance of optimal values
compared to MC, because the profit function πt(ξ) is not a monotonically increasing function of the
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random variables, these results are not reported. The results for Niederreiter sequence are missing,
because in our implementation of the sequence the maximum dimension for the probability space
is 12. Again RQMC methods, except Faure sequence, clearly beat MC and LR seem to perform
slightly better than the other RQMC methods. In this problem Faure sequence performs poorly
and even loses to MC for low values of ν. Latin hypercube sampling substantially improves the
performance over MC. Compared to LH, LR and Sobol sequence produce more accurate estimates
for optimal values, for all values of ν. Figure 3 displays the sample mean and 90% confidence interval
for the optimal values obtained with LR and MC, which also shows that LR clearly outperform
MC. The sample means of optimal values seem to converge toward a common value with all the
methods, even though we were able to proof the epi-convergence only for MC.

Table 4: Statistics for HP as a function of ν.

ν MC LH LR SOB FAU HAM HAL

µ̂ -210.165 -214.596 -216.088 -215.000 -202.903 -205.388 -203.808
32 σ̂ 1.77E+1 8.87E+0 6.69E+0 8.17E+0 2.09E+1 1.26E+1 1.31E+1

vr 1.0 4.0 7.0 4.7 0.7 2.0 1.8

µ̂ -213.241 -216.771 -217.430 -217.106 -207.698 -215.237 -215.076
64 σ̂ 1.22E+1 4.69E+0 3.87E+0 3.82E+0 1.71E+1 5.11E+0 5.04E+0

vr 1.0 6.8 10.0 10.2 0.5 5.7 5.9

µ̂ -216.275 -217.842 -218.051 -217.945 -211.040 -217.492 -217.844
128 σ̂ 7.35E+0 3.04E+0 2.38E+0 2.57E+0 1.42E+1 2.52E+0 3.10E+0

vr 1.0 5.8 9.6 8.2 0.3 8.5 5.6

µ̂ -217.459 -218.298 -218.332 -218.198 -211.715 -218.202 -218.196
256 σ̂ 5.28E+0 1.90E+0 1.19E+0 1.43E+0 1.16E+1 1.53E+0 1.47E+0

vr 1.0 7.8 19.7 13.6 0.2 11.8 12.9

µ̂ -218.143 -218.461 -218.482 -218.433 -215.089 -218.372 -218.398
512 σ̂ 4.06E+0 1.15E+0 8.14E-1 7.79E-1 7.46E+0 8.59E-1 9.04E-1

vr 1.0 12.5 25 27.2 0.3 22.4 20.2

µ̂ -218.101 -218.402 -218.496 -218.455 -218.264 -218.455 -218.423
1024 σ̂ 2.60E+0 7.59E-1 4.42E-1 5.01E-1 2.19E+0 4.79E-1 5.77E-1

vr 1.0 11.8 35 27 1.4 30 20

µ̂ -218.272 -218.484 -218.505 -218.494 -218.212 -218.490 -218.501
2048 σ̂ 1.76E+0 4.81E-1 2.79E-1 2.82E-1 1.51E+0 2.98E-1 3.06E-1

vr 1.0 13.4 40 39 1.4 35 33

µ̂ -218.535 -218.484 -218.513 -218.496 -218.419 -218.512 -218.516
4096 σ̂ 1.41E+0 3.80E-1 1.26E-1 1.59E-1 6.31E-1 1.70E-1 1.86E-1

vr 1.0 13.8 125 79 5 69 58

µ̂ -218.553 -218.504 -218.508 -218.507 -218.450 -218.507 -218.509
8192 σ̂ 9.54E-1 2.46E-1 8.34E-2 8.79E-2 5.60E-1 8.89E-2 1.01E-1

vr 1.0 15.1 131 118 3 115 90

µ̂ -218.455 -218.505 -218.514 -218.510 -218.489 -218.508 -218.511
16384 σ̂ 6.72E-1 1.70E-1 6.63E-2 5.29E-2 4.84E-1 5.26E-2 6.27E-2

vr 1.0 15.6 103 161 2 164 115

4.2 Problems with implicit constraints

In the remaining examples, the feasible regions depend on the probability measure. These problems
do not fit the frameworks of Lucchetti and Wets (1993), Artstein and Wets (1994), Zervos (1999)
or Shapiro (2000).

15



-240

-230

-220

-210

-200

-190

-180

32 64 128 256 512 1024 2048 4096 8192 16384

(a) Lattice rule.

-240

-230

-220

-210

-200

-190

-180

32 64 128 256 512 1024 2048 4096 8192 16384

(b) Monte carlo.

Figure 3: Mean and 90% confidence interval for the hedging problem.

4.2.1 Super-replication of contingent claims

Consider the problem

minimize
V,θ

V (PP )

subject to S0 · θ ≤ V,

S · θ ≥ F, P 0-a.s.

θ ∈ C,

where V is the wealth invested in a portfolio θ = (θ1, . . . , θJ) of assets that have prices S0 =
(S1

0 , . . . , SJ
0 ) at the beginning and S = (S1, . . . , SJ) at the end of a holding period and F is a cash-

flow at the end of the holding period. S and F are random variables with joint distribution P 0.
(PP ) is a semi-infinite linear programming problem and, in general, impossible to solve analytically.
Replacing P 0 by a discrete measure P ν =

∑ν
i=1 pν

i δ(Sν
i ,F ν

i ) with pν
i > 0, for all i = 1, . . . ν yields

minimize
V,θ

V (PP ν)

subject to S0 · θ ≤ V,

Sν
i · θ ≥ F ν

i , i = 1, . . . , ν,

θ ∈ C,

which is an LP problem for which many solvers are available.

Proposition 13 (Pennanen and Koivu (2003)) Assume that the points {(Sν
i , F ν

i )}ν
i=1 are all

contained in suppP 0 and that for some {pν
i }ν

i=1, ν = 0, 1, 2, . . ., with pν
i > 0, for all i = 1, . . . ν, the

measures

P ν =
ν∑

i=1

pν
i δ(Sν

i ,F ν
i )

converge weakly to P 0. If the feasible set is bounded, then the optimal values of (PP ν) converge to
that of (PP ) and the cluster points of the solutions of (PP ν) are solutions of (PP ).
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In our test, the set of assets consists of cash, SP500 index and 28 European call and put options
on the index with maturity of 17 calendar days. The value of S is fully determined by the value
of the index at the maturity which is assumed to be log-normally distributed. The cash-flow F is
taken to be that of a call option with the same maturity but different strike than any other call
included in S.

Since the random variable in this problem is one dimensional all the QMC methods produce
identical discretizations. As a result we consider discretizations only with LR, AV and MC. Table
5 displays the test results. The use of AV does not improve the performance over MC. Lattice
rules reduce the variance of optimal values considerably and with 256 scenarios the optimal values
have converged. Figure 4 displays the average and 90% confidence interval for optimum values of
(PP ν) obtained with LR and MC, for each value of ν = 2i, i = 5, 6, . . . , 9. With LR the confidence
interval is much tighter and the optimal value converges faster than with MC.

Table 5: Statistics for PP as a function of ν.

ν MC AV LR

µ̂ 19,598 17,320 28,417
32 σ̂ 1,71E+1 2,37E+1 2,25E+0

vr 1,0 0,5 57,4

µ̂ 27,072 26,739 29,682
64 σ̂ 6,27E+0 6,87E+0 1,74E+0

vr 1,0 0,8 13,0

µ̂ 29,844 30,261 31,287
128 σ̂ 3,18E+0 2,12E+0 9,05E-1

vr 1,0 2,2 12,3

µ̂ 31,194 31,177 32,004
256 σ̂ 1,39E+0 1,37E+0 0,00E+0

vr 1,0 1,0 ∞
µ̂ 31,786 31,841 32,004

512 σ̂ 7,44E-1 6,00E-1 0,00E+0
vr 1,0 1,5 ∞
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Figure 4: Mean and 90% confidence interval for the hedging problem.
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4.2.2 Utility maximization with wealth constraint

Consider the following problem

maximize
x∈�n

EP 0
u (r · x) (WP )

subject to

n∑
i=1

xi ≤ 1,

x ∈ C

r · x ≥ 0, P 0-a.s.

This problem is a modification of the utility maximization problem of Section 4.1.2. Here C ⊂ R
n,

so short selling is allowed but we have added a constraint, which requires the final wealth to be
almost surely non-negative. Here we are interested in studying how the short selling affects the
behavior of the optimal values and solutions. The function u measures the utility from terminal
wealth and the components of the return vector r are random variables with joint distribution P 0.
Discretization of (WP ) yields

maximize
x∈�n

ν∑
i=1

pν
i u(rν

i · x) (WP ν)

subject to

n∑
i=1

xi ≤ 1,

x ∈ C,

rν
i · x ≥ 0, i = 1, . . . , ν.

Proposition 14 Assume u is continuous, nondecreasing and bounded on R+, C is closed and that
the measures

P ν =
ν∑

i=1

pν
i δrν

i

converge weakly to P 0 and satisfy suppP ν ⊂ suppP 0. Then the optimal values of (WP ν) converge
to that of (WP ) and the cluster points of the solutions of (WP ν) are solutions of (WP ).

Proof. This fits the format of (SP ) with Ξ = suppP 0, ξ = r, and

f(x, r) = −u(r · x) + δC1(x) + δC2(x, r),

where

C1 =

{
x ∈ C

∣∣∣∣∣
n∑

i=1

xi ≤ 1

}

and
C2 = {(x, r) | r · x ≥ 0} .
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We need to verify the conditions of Theorem 3. Since u is continuous, C1 and C2 are closed, f
is lsc. Condition 1 follows from the fact that u is nondecreasing and bounded on R+. To verify
condition 2 note that for each x ∈ domEP f by continuity of the inner product the requirement
r · x ≥ 0, P 0-a.s. is equivalent to r · x ≥ 0,∀ r ∈ suppP 0. Since suppP ν ⊂ suppP 0 Condition 2
follows from the boundedness and continuity of u on R+. �

In the test supp r = R
n
+, which together with the wealth constraint implies that, domEP f is

R
n
+, so this problem differs from the utility maximization problem of Section 4.1.2 only in finite

samples. The numerical test results are presented in Tables 6 and 7. The results are similar to those
of Section 4.1.2. The use of antithetic variates reduces the variance considerably. When no other
variance reduction technique is used, LR, Sobol and Niederreiter sequences perform the best and
they reduce the variance by a factor as large as 2000. The combination of AV with LR and Sobol
sequence are again the most efficient techniques; see Table 7. As expected, the sample average of
optimal values converges to the same value as in the utility maximization problem of Section 4.1.2.
Expected value and 90% confidence interval for the optimal values obtained with LR and MC are
shown in Figure 5. In this problem, LR reduce the sample bias by a large factor and produce very
thight confidence intervals for the optimal value. We characterize the infeasibility of the optimal
solutions with implicit constraints by the amount of short selling in each discretized problem. The
sample mean and 90% confidence interval for the maximum amount of short selling in the optimal
portfolios for LR and MC are shown in Figure 6. With LR the minimum investment proportion
converges towards zero much faster than with MC.
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Table 6: Statistics for (WP ν) as a function of ν.

ν MC AV LH LR SOB FAU HAM HAL NIE

µ̂ -249.881 -305.066 -306.359 -308.130 -305.050 -283.060 -290.676 -289.656 -302.463
32 σ̂ 4.64E+1 8.81E+0 9.47E+0 7.56E+0 9.20E+0 2.55E+1 2.05E+1 1.97E+1 1.01E+1

vr 1.0 27.7 24.0 37.6 25.5 3.3 5.1 5.6 21.1

µ̂ -289.891 -312.191 -312.484 -313.656 -312.167 -306.806 -308.114 -307.586 -311.766
64 σ̂ 1.84E+1 3.63E+0 4.08E+0 2.99E+0 4.10E+0 8.74E+0 5.80E+0 5.23E+0 3.74E+0

vr 1.0 25.7 20.3 37.8 20.1 4.4 10.0 12.3 24.1

µ̂ -304.675 -314.157 -314.529 -314.818 -314.600 -314.295 -312.871 -312.464 -314.280
128 σ̂ 1.13E+1 2.03E+0 2.05E+0 1.60E+0 2.09E+0 2.95E+0 2.50E+0 2.46E+0 1.68E+0

vr 1.0 31.1 30.2 50.0 29.1 14.6 20.4 21.1 45.0

µ̂ -310.518 -314.955 -315.057 -315.253 -315.143 -315.198 -314.895 -314.597 -315.161
256 σ̂ 7.25E+0 1.20E+0 1.08E+0 7.77E-1 9.65E-1 1.88E+0 1.03E+0 1.03E+0 8.51E-1

vr 1.0 36.7 44.8 86.9 56.4 14.8 49.6 49.2 72.5

µ̂ -312.667 -315.069 -315.333 -315.435 -315.462 -315.238 -315.311 -315.278 -315.373
512 σ̂ 4.62E+0 9.56E-1 5.44E-1 4.20E-1 4.80E-1 1.23E+0 4.93E-1 5.06E-1 4.12E-1

vr 1.0 23.4 72.2 121 92.6 14.1 87.7 83.5 126

µ̂ -314.353 -315.408 -315.401 -315.486 -315.498 -315.400 -315.425 -315.455 -315.452
1024 σ̂ 3.13E+0 6.34E-1 3.12E-1 2.02E-1 2.60E-1 5.67E-1 2.74E-1 2.53E-1 2.12E-1

vr 1.0 24.3 101 239 144 30.4 130 153 217

µ̂ -314.729 -315.424 -315.459 -315.504 -315.511 -315.470 -315.489 -315.480 -315.496
2048 σ̂ 2.18E+0 4.66E-1 1.77E-1 1.07E-1 1.38E-1 3.07E-1 1.34E-1 1.43E-1 1.11E-1

vr 1.0 21.9 152 412 250 50.4 266 233 389

µ̂ -315.208 -315.469 -315.479 -315.505 -315.505 -315.481 -315.508 -315.497 -315.502
4096 σ̂ 1.71E+0 2.96E-1 1.17E-1 5.93E-2 7.62E-2 1.57E-1 7.65E-2 7.08E-2 5.69E-2

vr 1.0 33.5 214 835 505 119 500 584 905

µ̂ -315.394 -315.480 -315.494 -315.502 -315.501 -315.492 -315.507 -315.502 -315.503
8192 σ̂ 1.23E+0 2.02E-1 6.66E-2 3.17E-2 3.80E-2 9.34E-2 4.09E-2 4.28E-2 3.24E-2

vr 1.0 37.3 344 1512 1057 175 912 833 1454

µ̂ -315.492 -315.494 -315.495 -315.506 -315.505 -315.511 -315.503 -315.506 -315.506
16384 σ̂ 8.68E-1 1.59E-1 4.93E-2 1.95E-2 1.91E-2 4.67E-2 2.09E-2 2.12E-2 1.89E-2

vr 1.0 29.9 310 1991 2066 346 1733 1673 2103

Table 7: Statistics for (WP ν) as a function of ν, Lattice rule and Sobol with AV.

ν LR+AV SOB+AV ν LR+AV SOB+AV

µ̂ -305.578 -306.069 µ̂ -315.452 -315.482
32 σ̂ 8.92E+0 7.35E+0 1024 σ̂ 1.39E-1 1.37E-1

vr 27 40 vr 510 518

µ̂ -312.915 -313.070 µ̂ -315.496 -315.494
64 σ̂ 2.82E+0 2.12E+0 2048 σ̂ 5.46E-2 7.54E-2

vr 42 75 vr 1597 837

µ̂ -314.719 -314.737 µ̂ -315.498 -315.502
128 σ̂ 7.23E-1 7.99E-1 4096 σ̂ 3.95E-2 4.78E-2

vr 244 200 vr 1876 1285

µ̂ -315.192 -315.211 µ̂ -315.505 -315.506
256 σ̂ 4.17E-1 4.50E-1 8192 σ̂ 2.66E-2 2.47E-2

vr 302 259 vr 2156 2489

µ̂ -315.366 -315.405 µ̂ -315.505 -315.504
512 σ̂ 2.49E-1 2.30E-1 16384 σ̂ 1.36E-2 1.67E-2

vr 344 404 vr 4096 2719
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Figure 5: Mean and 90% confidence interval for the optimal value in utility maximization problem
with implicit constraints.
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Figure 6: Mean and 90% confidence interval for infeasibility min
i

xi.
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