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1 Introduction

In recent years, commodity contingent claims have become increasingly popular and

important hedging instruments in the financial markets characterized by varying degree

of volatility. Previously, companies have primarily focused on hedging interest rate and

foreign exchange risks. During recent years, hedging the commodity price risk of the

production process has received more attention. As a result, the over-the-counter market

for commodity contingent claims has grown remarkably. Therefore, the modelling of

price processes and the development of new contingent claims pricing approaches are

important area of research today.

This thesis aims to contribute to the literature on commodity contingent claims

pricing through four interrelated essays. The first essay studies the estimation of the

term structure of forward prices from the prices of traded long-term commodity swaps.

The second essay investigates empirically the factor structure of the term structure

movements using data from oil and pulp derivatives markets. Whereas previous studies

have used futures prices, the data used in this study consists of swap market quotes.

The forward curves used in the empirical study are derived using the method developed

in the first essay. In the third essay, the focus is moved to the pricing of Bermudan

swaptions using a simple binomial model. In addition to presenting an algorithm for

pricing interest rate swaptions, an extension to handle commodity swaptions is also

provided. Here again, the forward values of the variables are derived using the method

developed in the first essay. Finally, the fourth essay is a joint work with Harri Toivonen.

We concentrate on the necessary modification of the Black -76 formula in order to price

European commodity swaptions. The central theme in all of the essays is the orientation

towards using market data efficiently and the simplification of the modelling approach.

Market oriented approaches towards modelling of the commodity price processes is a

relatively new avenue. The vital ingredient to enable full utilization of those techniques
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is extraction of the term structure of forward prices as the zero coupon term structure

is an essential input in pricing interest derivative securities.

The structure of this introductory chapter is as follows: Section 2 presents the cen-

tral concepts underlying the analysis of commodity contingent claims and describes the

functioning of commodity markets in general. Section 3 reviews the existing literature

on the term structure estimation. This earlier material is concerned almost exclusively

with the estimation of the term structure of interest rates, the results of which form

the essential basis for the results derived in this thesis. In Section 4, the objective is to

review the existing literature on the theoretical models for pricing commodity contingent

claims and to introduce the theory of storage. Finally, Section 5 presents a summary of

the four essays in this thesis, with an emphasis on their contribution and extensions to

the previous research.

2 Specific Features of Commodities

Commodities differ from financial assets in a profound way; unlike most financial assets,

commodities are continuously produced and consumed. Moreover, from an economic

point of view, commodities form an interesting asset class as production and consumption

do not have to match each other in every period as commodities can be stored in the form

of inventories. As an exception to this general rule some commodities, e.g. electricity

and bandwidth, are not storable. Moreover, there are also other types of commodity

classes such as agricultural and animal products that are perishable and hence in practice

storable only for some period of time.

In equilibrium, supply increases if the price of commodity is high, and as a conse-

quence higher cost producers enter the marketplace. Correspondingly, supply decreases

if the price is low as some of the higher cost producers exit the marketplace. This
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economic activity is reflected by the well-known and documented phenomena of mean-

reverting commodity prices. Moreover, seasonal effects introduced by the nature of the

production process are typical for many commodity markets. In particular, seasonal

effects can be observed in agricultural commodity and electricity markets.

For the purpose of understanding futures prices, it is convenient to divide commodity

futures contracts into the following two categories according to the underlying asset:

investment and consumption commodities. Investment commodities, e.g. gold and silver,

are held for investment purposes by a significant number of investors. Consumption

commodities, e.g. oil, are held primarily for consumption purposes. In the case of

consumption commodities, it is not possible to obtain the futures price as a function of

the spot price and other observable variables. Hence, a parameter known as convenience

yield becomes important.

Most commodity markets also have a well-functioning and liquid futures markets.

One question that is often raised is whether the future price of an asset is equal to the

expected future spot price. When the futures price is below the expected spot price, the

situation is known as normal backwardation. Strong backwardation is the situation in

which the futures price is below the current spot price. The situation where the futures

price is above the expected future spot price is known as contango.

3 Review of Literature on Term Structure Estima-

tion

3.1 Estimating the Term Structure of Interest Rates

The theoretical models for term structure estimation have been developed especially for

interest rate markets where the amount and quality of data available has been good

3



enough to facilitate the empirical comparison of the different methods. The first serious

estimation method was proposed by McCulloch (1971). He developed a method for

estimating the discount function by fitting a cubic spline to the data of government

Bills and Bonds. The method proposed by McCulloch (1971) is especially appealing

from the perspective of estimation: since the model is linear in the discount function,

it can be estimated using simple linear regression. McCulloch (1975) applies the spline

method to the estimation of the tax-adjusted yield curve. Carleton and Cooper (1976)

estimated the discount function of the US Government securities, but without imposing

any functional form. Their method produces a set of discrete discount bond prices that

minimize the pricing error of the bonds. The estimation was carried out using linear

regression.

Since the first steps in the estimation of the term structure of interest rates were

taken, the research intensified and many new methodologies and extensions to the ex-

isting methods were proposed. One line of research extended the spline methodology

to other functional forms. An important account in this respect is Vasicek and Fong

(1982). The authors modified the spline estimation method so that the resulting dis-

count function is exponential. The exponential form, the authors claim, avoids some of

the problems associated with using polynomial forms in discount function estimation.

Vasicek and Fong (1982) do not provide comprehensive evidence on the performance of

their method. Shea (1985) criticized the exponential spline method and proved that it

essentially produces a similar type of unstable forward rate functions as does the or-

dinary polynomial spline. Chambers, Carleton, and Waldman (1984) use exponential

splines of varying lengths to estimate the present value functions. They let the sample

decide which polynomial length best suits the given estimation problem. Maximum like-

lihood method is used to find the appropriate parameterization. Chambers, Carleton,

and Waldman (1984) postulate that their method confirms that the use of a constant

parameterization does not yield good results over heterogeneous samples. Their method,
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however, is rather awkward to use in practical situations.

Research on improving the spline method, especially to yield smooth forward rate

functions, is extended by Fisher, Nychka, and Zervos (1995) and Käppi (1997). These

authors propose smoothing splines that impose a penalty on the target function which

aims to produce a smoother forward rate function. The forward rate function is im-

portant especially for traders of derivative contracts, since the values of the underlying

instrument often need to be derived from the forward rates (or prices). Fisher, Nychka,

and Zervos (1995) claim, based on empirical comparisons against McCulloch (1971),

that their method generally produces the most reliable forward curves and less biased

results. The smoothing splines need to be estimated numerically.

Even though spline methods have received most of the attention, other methods

for estimating the term structure of interest rates have also been proposed. One of

the best known of these other approaches is Nelson and Siegel (1987). The proposed

model expresses the instantaneous forward rates as a solution to the difference equation

describing the movements of the spot rates. In the continuous time framework, the

yields are just averages of these instantaneous forward rates, and the parameters of

the solution equation can be estimated from, for example the yields of the government

securities. Nelson and Siegel (1987) provide illustrations of their method using data on

Treasury Bills. Depending on the chosen parameterization, there is a trade-off between

fitting the front-end and back-end of the curve. Finally, the term structure of interest

rates can be estimated using the so-called bootstrap method. This method is especially

popular among traders of the derivatives contracts in the swap market, since par swap

quotes provide ideal data to effectively bootstrap the term structure. As the quotes are

always equally spaced, they do not move with the passage of time. Fama and Bliss (1987)

is the best known academic treatment of the bootstrap methodology. They present two

methods for estimating the discount functions: 1) Unsmoothed and 2) Smoothed. The
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former produces a piecewise linear discount function and prices the bonds used for

estimation exactly, whereas the latter first estimates the unsmoothed discount factors

as in the former case, but then tries to smooth out the discount function by fitting an

approximating function through the discount factors.

Bliss (1996) conduct an extensive empirical comparison between the various methods

for term structure estimation. The methods he tested were: 1) Unsmoothed Fama-Bliss,

2) McCulloch spline, 3) Fisher-Nychka-Zervos smoothing spline, 4) Extended Nelson-

Siegel and 5) Smoothed Fama-Bliss. The most important conclusions of his study are

that although the Unsmoothed Fama-Bliss method was able to fit the long term struc-

tures best, the method suffered from over-parameterization. Of the other methods, the

Fisher-Nychka-Zervos method somewhat surprisingly performed the worst. The other

methods were approximately equal.

3.2 Estimating the Factor Structure of Forward Curve Move-

ments

Research on the commodity forward curve dynamics has used data almost exclusively

on short term, exchange traded, contracts. Of these, among the first is Cortazar and

Schwartz (1994), who studied the dynamics of the futures price curve of copper futures.

They found that the factor structure of the copper futures curve was surprisingly similar

to the factor structure of yield curve movements. Moreover, the explanatory power of the

first two principal components was 97 percent. By contrast, Litterman and Scheinkman

(1988) found that the explanatory power of first two principal components of the gov-

ernment yield curve movements was remarkably lower, around 90 percent. Clewlow and

Strickland (2000) studied the factor structure of NYMEX oil futures and they found that

three factors explained over 98 percent of the variation of the futures price movements in

the period from 1998 to 2000. A recent paper by Tolmasky and Hindanov (2002) inves-

6



tigated the dynamics of the petroleum futures contracts. They found that especially for

heating oil, seasonality is an important variable driving the factor structure, however the

statistical significance is somewhat unclear. Crude oil and petroleum markets were not

found to be affected by seasonality. Koekebakker and Ollmar (2001) studied the forward

curve dynamics using data from the Nord Pool electricity derivatives exchange, using

fitted forward curves. The explanatory powers they report are fairly low in comparison

with other studies. They argue that the most likely reason for low explanatory power is

the extremely complex dynamics of the electricity prices.

4 Review of Literature on Pricing Commodity Con-

tingent Claims

4.1 Theory of Storage and Convenience Yield

Two different models have been introduced as alternative perspectives for the price for-

mation of commodity futures prices. Working (1949) and Kaldor (1939) developed the

theory of storage, which explains the difference between contemporaneous spot and fu-

tures prices on the basis of interest foregone in storing commodity product, warehousing

costs and a convenience yield on inventory. The alternative model views commodity

futures price as a combination of an expected risk premium and a forecast of the future

spot price, see Cootner (1960). It has been argued that if hedgers tend to hold short

positions and speculators tend to hold long positions, the futures price will be below

the expected future spot price. This is because speculators require compensation for

the risks they are bearing. They will only trade if there is an expectation that the

futures price will rise over time. Hedgers, on the other hand, are prepared to enter into

contracts where the expected payoff is slightly negative because they primarily aim at
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reducing the risk. Hence, if hedgers tend to hold long positions while speculators hold

short positions, the futures price must be above the expected future spot price. To

compensate speculators for the risk they are bearing, there must be an expectation that

the futures prices will decline over time. Many studies on agricultural, wood, animal

products and precious metals markets have shown results in favor of the former expla-

nation, i.e. the theory of storage is able to explain the difference between the futures

price and the contemporaneous spot price. This relation can be summarized into the

following equation.

F (t, T ) = (S(t) +W (t, T ))er(T−t)

Where F (t, T ) is the futures price at time t, for delivery of a commodity at time T . S(t)

is the spot price at time t and W (t, T ) is the present value of all the storage costs that

will be incurred during the life of a futures contract. If the storage costs per unit are

proportional to the price of the commodity, w(T, t), they can be regarded as providing

a negative dividend yield

F (t, T ) = S(t)e(r+w)(T−t)

The theory of storage predicts that the return form purchasing the commodity at time t

and selling it for delivery at time T , F (t, T )−S(t) equals the interest foregone, plus the

marginal storage cost W (t, T ), less the marginal convenience yield from an additional

unit of inventory, δ(t, T ). Or, equivalently

F (t, T ) = S(t)e(r+w−δ)(T−t)

Where F (t, T )−S(t), or (F (t, T )− S(t)) /S(t) is commonly known as basis, and r+w,

or equivalently for consumption commodities r+w−y is referred to as the cost of carry.

Often the above equation is written as in the form of net convenience yield, defined as
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convenience yield minus storage costs.

F (t, T ) = S(t)e(r−δ)(T−t)

Convenience yield, δ, of a commodity is defined as the flow of services which accrues

to the owner of the physical inventory, i.e. spot commodity, but not to the owner of

a contract for future delivery, Brennan (1958). For investment assets such as gold, the

convenience yield must be zero otherwise there will be arbitrage opportunities. How-

ever, a consumption asset behaves like an investment asset that provides a return equal

to the convenience yield. The marginal convenience yield arises due to the fact that

inventory can have productive value. The most obvious reason for this is that the owner

of the commodity is able to determine where the commodity will be stored and when to

liquidate inventory. Moreover, considering time lost and the costs incurred in ordering

and transporting a commodity from one location to another, marginal convenience yield

reflects both the reduction in costs of acquiring inventory and the value of being able to

profit from temporary local shortages of the commodity through ownership of a larger

inventory. Profit may also arise either from local price variations or from the ability to

maintain production process despite local shortages of raw materials.

The convenience yield reflects the markets expectation concerning the future avail-

ability of the commodity. Hence, the greater the possibility that shortages will occur

during the life of the futures contract, the higher the convenience yield. If users of the

commodity have high inventories, there is very little chance of shortages in the near fu-

ture and the convenience yield tends to be low. On the other hand, low inventories tend

to lead to high convenience yields. This is especially true on those commodity markets

where there are agents in the market who do not buy commodities only for production

process purposes. This speculative storage activity can smooth the price and supply in

this commodity market as the speculative storers buy the commodity when it is cheap
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and abundant, thus increasing the price, and then release their stores onto the market

when the commodity is expensive and in short supply, thus reducing price. The conve-

nience services yielded by particular inventory naturally depend upon the identity of the

agent holding it. However, in theory, competition between potential storers will ensure

that in equilibrium the convenience yield, net of any direct costs of storage, the marginal

unit of inventory will be balanced across all storers. Then, assuming that there exists a

positive inventory of the commodity, the relation between spot and futures price of the

commodity will reflect this marginal net convenience yield.

In the case of Commodities with constant marginal costs of storage, the estimated

convenience yield function is large and positive at low inventory levels and small and

negative at high inventory levels, i.e. the theory of storage posits that the net rate of

convenience yield depends upon the level of inventories. The economic reasoning behind

this argument is as follows: Convenience yield is high because inventories are low and

storage firms will tend to have an incentive to increase their investment in inventories

which, in turn, will tend to reduce the convenience yield. Hence, the theory of storage

predicts a negative relation between convenience yields and levels of inventories. Positive

correlation between changes in the spot price and changes in the convenience yield of the

commodity is induced by the level of inventories. As the inventories decrease, the spot

price should increase due to the fact that the commodity is scarce, and the convenience

yield should increase as the futures price will not increase as much as the spot price.

4.2 Summary of Pricing Models

Modelling commodity prices for the purposes of valuing derivative securities can be

categorized into two distinct approaches, namely 1) convenience yield models and 2)

forward price models. While this thesis concentrates exclusively on the latter, the for-

mer approach has been more common in the academic literature. It has sometimes been
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named as the traditional approach. The ideological inspiration of the approach is derived

from the theory of spot rate modelling, pioneered by Vasicek (1977) and Cox, Ingersoll,

and Ross (1981). The forward price modelling is the more market-oriented approach,

since the quantities traded in the market are prices and therefore, it is intuitively more

straightforward to model the prices directly. Similar developments have already taken

place in the study of interest rate modelling. So-called market models (see Miltersen,

Sandmann, and Sondermann (1997), Brace, Gatarek, and Musiela (1997) for the earliest

developments and Musiela and Rutkowski (1997) and Jamshidian (1997) for generaliza-

tions) have largely replaced the traditional models of Hull and White (1990) and Black,

Derman, and Toy (1990).

In a seminal paper, Gibson and Schwartz (1990) develop a two-factor model in which

the dynamics of the commodity prices are determined as a function of the stochastic spot

price of the commodity, and the stochastic instantaneous convenience yield. Schwartz

(1997) extends the previous model by introducing also the stochastic interest rates.

Furthermore, he provides empirical evidence on three different models using copper, oil

and gold data. Evidence suggests that for the commercial commodities(copper and oil),

mean reversion is an important characteristic of price movements, whereas for gold it

is not. Miltersen and Schwartz (1998) take this idea a step further and introduce a

model for forward/future convenience yield. The approach is similar to the infamous

Heath, Jarrow, and Morton (1992) approach for interest rates. Hilliard and Reis (1998)

introduce jumps to the spot price process.

Whereas in interest rate derivatives research, the forward rate based models have

been more popular objects of study than spot rate models among both academics and

practitioners, in commodity derivatives research, little attention has been devoted to

developing forward price based models. The few exceptions include Reisman (1991)

and Cortazar and Schwartz (1994). Both model the forward price processes as multidi-
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mensional geometric Brownian motion. The processes have zero drift, since under the

risk-adjusted measure, it can be shown that forward prices must be martingales. Using

Ito’s lemma, one can make a transformation from the defined forward price process to

the forward cost of carry process and vice versa, Cortazar and Schwartz (1994). Even

though the theoretic notion of convenience yield is appealing from an economic point

of view, practitioners working in the commodity derivatives industry will certainly find

modelling the forward prices directly more intuitive.

4.3 Simple Approaches to Valuation

Complex pricing models are required to handle exotic derivative structures, whereas if

market data on the plain vanilla instruments is available with reasonable accuracy, it is

often more convenient to use standard Black and Scholes (1973) and Black (1976) models

instead. To handle interest rate swaptions, modifications to the Black (1976) model have

been proposed by Neuberger (1990) and Smith (1991). Since then, these formulas have

become the market standard for pricing plain vanilla interest rate swaptions. Moreover,

the practitioners use model implied volatilities in order to calibrate more complex models

to the market data and, therefore, the exotic products can be priced consistently with

actively traded instruments. This is essential, since the plain vanilla instruments are used

for hedging exposures arising from trading the exotic products. Initially, it seemed that

the Black (1976) model was inconsistent when applied to pricing interest rate products,

since it assumed constant discounting. However, the measure change techniques, see

Geman, Karoui, and Rochet (1995), formed theoretical justification for these simple

models. In addition, the research efforts turned away from the traditional short rate

models to modelling the stochastic evolution of the underlying variables (Libor and

Swap rates) instead.

12



Black and Scholes (1973) model was a breakthrough in derivatives research. The

formulas, however, applied only to European options. Therefore, applicable numerical

methods were needed in order to handle more general option types. Algorithms for solv-

ing the Black-Scholes partial differential equation do exist, and Monte Carlo methods

can be used to simulate Black-Scholes model stochastic differential equation in order to

calculate path-dependent option prices. One of the best known numerical methods for

calculating Black-Scholes model prices is Cox, Ross, and Rubinstein (1979). The authors

derive a binomial lattice algorithm that converges at the limit to the Black-Scholes con-

tinuous time model as steps are increased to infinity. The binomial algorithm provided

not only option price, but also the replicating portfolio calculations. The binomial model

of Cox, Ross, and Rubinstein (1979) (CRR) has become the most important pedagog-

ical tool in discrete time finance. In addition, it is one of the most applied numerical

methods in actual option pricing.

Since the publication of the article by Cox, Ross, and Rubinstein (1979) article was

published, researchers have devoted a great deal of interest to improving and modifying

the simple binomial model in order to handle more difficult option structures and differ-

ent stochastic processes. Jarrow and Rudd (1983) parameterize the algorithm so that

the probabilities for up and down movements in the tree are always 1/2. This is some-

times a more convenient parameterization for constructing algorithms, for example if the

interest rate and volatility parameters are not constant throughout the tree. Hull and

White (1988) improve the accuracy of the binomial method by applying a control vari-

ate technique. In addition, Hull and White (1993) extend the binomial method in order

to handle path-dependent options. Boyle (1988) and Boyle, Evnine, and Gibbs (1989)

extend the CRR binomial model to handle options dependent on several assets. These

and many more refinements and modifications to the original CRR binomial model have

been proposed to improve pricing efficiency, handle complex exotic option contracts and

deal with different distributional assumptions. One of the most important extensions
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to the model is the so called ”Implied Binomial Tree” method, proposed by Rubinstein

(1994). With this algorithm, the binomial tree structure is made consistent with the

prices of traded options. Therefore, market data is used efficiently and other, more com-

plex option structures can be priced with maximum utilization of market information.

5 Summary of the Four Essays

The first essay in this thesis develops methods for deriving the term structure of forward

prices, or the forward curve, from the price quotes of commodity swaps. The importance

of developing methods for forward curve extraction derives from the fact that dealing

in commodity swaps has increased dramatically over the last decade. Existing research

on commodity contingent claims pricing has concentrated exclusively on using the data

from the futures markets, since it is readily available in convenient form. By contrast,

the data (broker quotes) on the swap market contracts only became available in the late

1990’s, and only for the most liquid markets. The focus of this first essay is mainly

on extending the methods for interest rate term structure estimation to the commodity

world. Empirical data from the oil and pulp derivatives markets is utilized to illustrate

and compare the methods. The literature on the interest rate term structure estimation

is vast, one of the seminal works being by McCulloch (1971), who applied the cubic

spline method to the derivation of the discount function.

The main conclusions of this first essay are that the bootstrap method produces a

very saw-toothed forward curve, particularly in cases where the averaging frequency of

the index values over the settlement periods is high, i.e. daily. An example of this would

be oil derivatives market. For most practical purposes then, the bootstrap method is

not a realistic method to use. The standard cubic spline produces a smooth curve, but

often with very large pricing errors. Finally, the optimization of fit method produces
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a smooth curve with acceptable pricing errors, so this method, or modifications of it,

provides traders a practical means for deriving the forward curves for commodities.

The second essay examines the factor structure of the commodity term structure of

forward price changes. This essay is an empirical examination, based on the estimation

method developed in the first essay. To the best knowledge of the author, this is the

first study on the commodity forward curve factor structure using swap contract quotes.

There exists earlier studies on the commodity futures curve factor structure. Cortazar

and Schwartz (1994) is one of the first studies examining the changes in the copper

futures curve, and their findings were largely similar to corresponding studies done using

the term structure of interest rate data. Koekebakker and Ollmar (2001) have studied

the Nord Pool exchange’s electricity contracts using a forward curve estimation method

that is similar in spirit to the method used in this paper.

The empirical results of the second essay lead to a conclusion that the dynamics

of the term structure of forward price changes is more complex when the data on the

long-term derivatives contracts are used for estimation. Moreover, the dynamics of the

front end of the curve is largely dictated by how the proxy for the spot index value

is chosen in the forward curve estimation phase. It seems that bias is caused by the

use of infrequently published index value data; if possible, one should therefore use the

shortest future’s quote as a proxy for the spot index value instead. In general, the results

were similar to those found in earlier studies. The explanatory power of the first three

principal components of Principal Components Analysis (PCA) applied to forward curve

movements is around 89 percent for oil data and 84 percent for pulp data.

The data used in the first and second essays consists of weekly NBSK Risi pulp

swap quotes covering the period from June 1998 to October 2001 and of monthly oil

swap quotes (European Brent) covering the period from February 1997 to February

2002. The data was obtained from Nordea Bank Finland. The interest rate data used
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in estimation consists of Libor rates and zero rates. The European interest rate data

consists of EuroLibor quotes and zero rates until 1.1.1999 and from that date onwards of

Euribor quotes and zero rates. The interest rate data was retrieved from DataStream.

The third essay in this thesis concentrates on the pricing of the derivatives contracts.

In particular, a simple binomial method is presented for pricing Bermudan swaptions,

an important subset of options, found especially in the interest rate markets. Existing

algorithms and pricing methods are fairly complex to implement and calibrate to the

prices of plain vanilla European Swaptions. This essay also extends the algorithm to

be applicable in the commodity swaption markets. It is likely that in the near future,

the Bermudan type swaptions will become interesting and popular hedging vehicles, as

already is the case in the interest rate swaption market.

Finally, the fourth essay is a joint work with Harri Toivonen. We derive formulas for

European commodity payer and receiver swaptions and provide extensions. The pricing

formulas are direct modifications of the famous Black (1976) formula for options on the

commodity futures. Similar formulas have been derived for the case of interest rate

swaptions by Neuberger (1990).
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ESSAY 1:

Estimating the Forward Curve for Commodities

Abstract

This paper develops methods for estimating the term structure of forward prices

and the term structure of convenience yields for general storable commodity classes on

which tradable derivative contracts exist. The methodologies presented here can be

used to infer inputs for the pricing of commodity contingent claims such as options.

Another important area of application is the extraction of long-term convenience yields

and forward prices for empirical studies on the stochastic processes of these variables.

The estimation procedures are tested empirically using swap price quotes from the oil

and pulp markets.
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The forward curve is the fundamental input in pricing contingent claims on any un-

derlying assets with an active market. To date, there has been very little research on

the estimation of the forward curve for commodity contracts of longer maturities. By

contrast, estimation of the term structure of interest rates from the prices of bonds has

been an active area of research pioneered by McCulloch (1971) and later extended by

many researchers. In this paper, the estimation of the forward curve for commodity con-

tracts from prices of actively traded over-the-counter derivative contracts is investigated,

both theoretically and empirically. The potential uses of the estimation methods include

applying new pricing models, testing hypotheses of the term structure of forward prices

and convenience yields, and projecting futures prices for capital budgeting purposes.

Various approaches have been presented for estimating the term structure of interest

rates. The best known and actively quoted method, presented by McCulloch (1971),

is based on estimating the discount function using the cubic spline specification. The

method is amenable to the use of linear regression due to equations being linear in

parameters. The spline method has been expanded and investigated by many authors,

Vasicek and Fong (1982), Shea (1984) and Chambers, Carleton, and Waldman (1984),

among others. Fisher, Nychka, and Zervos (1995) and Käppi (1997) have extended the

spline method further by exploiting the smoothness penalty in the estimation of the

term structure of forward rates. Yet another well known approach to estimation of the

term structure of interest rates has been presented by Nelson and Siegel (1987). They

devised a parsimonious parameterization of the yield curve that can be used to generate

yield curves with many different shapes. In addition to the above mentioned methods

that rely on fitting to the data, there is also the well-known bootstrap method1, which

is based on iteratively solving a system of equations. The bootstrap method has also

been extended by many authors - see, for example Fama and Bliss (1987). In addition

to studying some of these well known methods of forward curve fitting for commodity

forward curve estimation, this paper proposes a non-parametric minimization of the sum
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of squared pricing errors and the squared difference of two adjacent maturity forward

prices for extracting the forward prices from the prices of swap contracts. This method

has a close counterpart from the interest rate yield and forward curve estimation field:

Delbaen and Lorimier (1992) propose a non-parametric optimization method where the

squared difference between adjacent forward rates is minimized.

The growing importance of obtaining reliable forward curves for commodity contracts

is due to the expanding over-the-counter market for long term commodity derivatives.

At present, active swap markets can be found for oil and some metals. At the same

time, the modelling of the stochastic processes tailored for pricing contingent claims are

moving from the traditional spot convenience yield models towards more market oriented

approaches.2 This transition has already been observed in the interest rate markets. One

of the best known new models developed for pricing commodity contingent claims is by

Miltersen and Schwartz (1998). Their approach is based on the celebrated Heath, Jarrow,

and Morton (1992) model for the stochastic behavior of the instantaneous forward rate

curve. Miltersen and Schwartz (1998) derive a model where the starting points are the

initial term structure of interest rates and commodity futures prices along with the spot

price of the commodity. After obtaining the risk neutral processes for each stochastic

quantity, it is possible to price other contingent claims such as futures options within

the model framework. A similar model is also presented by Hilliard and Reis (1998).

Their approach extends the Miltersen and Schwartz (1998) model by including a jump

component to the stochastic process for the spot price. In addition to these models that

are based on the term structure of convenience yields, Reisman (1991) and Cortazar

and Schwartz (1994) have developed a model that directly specifies the evolution of

the term structure of futures prices. Cortazar and Schwartz (1994) apply the principal

components analysis to estimate the model using the futures price data from the copper

market. Both types of term structure models, convenience yield and futures prices, can

be applied to price longer maturity contracts, as soon as the initial curves are available.
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The main contribution of this paper is to provide a theoretical framework and appli-

cable methods for obtaining the forward price curve from the prices of swaps. Several

methodologies are presented: Bootstrapped Extraction, non-parametric Optimization of

Fit, Cubic Spline based method and Cubic Spline including seasonality factor. The for-

ward curve can be put into a linear form that conveniently enables the use of regression

methods for minimization of the sum of squared errors. The Bootstrap method provides

output forward curves that are exceedingly saw-toothed in the presence of average price

swaps. The non-parametric Optimization of Fit method presented in this paper is flex-

ible to use, and similar in spirit to calibrating model prices of options to the market

prices. The methods presented here are primarily designed for estimation of the forward

price curves, but the equivalence between the forward price and the convenience yield

facilitates translation between the two quantities. In addition to the theoretical devel-

opments, empirical evidence on the performance of various methods is also presented as

well as graphical illustrations. In this paper, the fitting methods are compared using

data from the pulp and oil swap markets.

This paper is primarily interested in the pricing efficiency of the methods presented.

Another area in forward curve estimation that needs to be investigated in future studies

is the economic realism of the chosen methods for extracting the forward curves for

commodities. In fact, it is often quoted that commodity prices are mean-reverting, follow

business cycles and / or exhibit seasonal patterns depending on the type of commodity.

Of the methods analyzed in this paper, only the Cubic Spline method including sin-cos

functions aims at producing seasonal behavior on the extracted forward prices. All other

methods are designed primarily to produce minimal pricing errors, in the same way as is

done in the interest rate market. Optimization and basic Cubic Spline methods trade-off

some of the pricing effectiveness against the smoothness of the forward price curve.

Another aim of this paper is to study empirically the methodologies presented with
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the data from oil and pulp markets. By definition, the Bootstrap method prices each

of the swaps in the sample exactly, so the empirical section of this paper focuses only

on comparing the fitting methods. Evidence suggests that among the fitting methods

proposed, the Optimization of Fit provides the best alternative for extracting the forward

curve from the market prices of swaps. Friedman Rank Statistic strongly rejects the null

hypothesis of no difference between the models. It is also found that using internal

knot points with the spline method significantly improves the overall performance of

the spline method. However, no method is satisfactory for real trading situations at

all times. Even the Optimization of Fit method has to be applied with caution, due

to intolerably large pricing errors with some term structures. An applicable remedy

to resolve the pricing error issue is to use weighting to assing importance to specific

portions of the curve. All the methods presented here are based on linear interpolation

between the observed and derived curve points: This provides efficiency for estimation

and simplicity for the formulas. Future research is needed to investigate the effect of

various interpolation techniques to the results.

The paper is organized into eight sections. Section 1 introduces the basic definitions

and terminology of the analysis framework. Section 2 describes the Bootstrap method-

ology for forward curve estimation, with consideration of both forward price curve and

convenience yield term structure specifications. Section 3 presents the Cubic Spline

estimation method and Section 4 develops the Optimization of Fit method. The new

methodologies are compared in Section 5 and in Section 6 the models are fitted to the

data and empirical results reported. Section 7 discusses some possible extensions to the

methodologies. Finally, section 8 concludes the paper.
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1 Preliminaries

The aim of this paper is to derive theoretical commodity forward price curves from

the prices of traded swap contracts. This chapter reviews the fundamental concepts of

commodity swaps. The basic elements needed for the analysis are the par swap quotes

G(t, T ) for all maturities T , t ≤ T , the spot price of the underlying commodity St, the

forward prices of the commodity, F (t, T ), for all maturities T , t ≤ T . In addition, we

set F (t, t) = St. Futures prices, f(t, T ), and the pure discount bond prices P (t, T ), for

all maturities T , t ≤ T , are also essential parts of the framework. P (t, T ) denotes the

present value, at time t of one unit of money received at time T . The analysis assumes

constant interest rates throughout, so theoretical forward and futures prices are equal,

as shown by Cox, Ingersoll, and Ross (1981). Rather than theoretical futures prices,

in the current setup the futures prices, f(t, T ), are taken to represent exchange traded

futures contracts that can be utilized in the curve generation process.

The starting point of the analysis is the valuation formula for commodity swaps.

Typically, the swap contracts quoted in the commodity derivatives markets are such that

fixed payment streams are exchanged, in monthly or quarterly intervals, for floating price

payments. The floating price payments are usually based on some index or spot value

of the commodity, calculated and defined by a reliable market information provider.

Additionally, sometimes the futures price quotes are used to determine the floating

price settlements. The distinguishing feature of a typical commodity swap contract

from a standard interest rate swap contract is the averaging of the floating prices in

determination of the final settlement prices. In more liquid markets, such as the oil

derivatives markets, the averaging frequency is usually daily, whereas in the less liquid

markets the observations are typically made weekly or monthly. Single price observation

swaps also exist, but they occur less frequently in the commodity derivatives markets.3

Consider a standard commodity swap contract, with maturity TN and a fixed contract

27



price G(t, TN). The present value of this fixed leg of the swap, given the discount bond

prices P (t, T ) is given by

V N
fx = G(t, TN)

N∑
i=1

P (t, Ti) (1)

i.e, simply a sum of the present values of the payments. The other side of the swap

contract, the floating leg, is composed of the present values of the yet unknown average

prices of the commodity at settlement dates Ti, i = 1, 2, ...N and T1 < T2 < ... < TN . In

mathematical notation

V N
fl =

N∑
i=1

FA(t, Ti)P (t, Ti) (2)

where A is used to indicate that the swap contract has average- based floating price

settlement. If we know the forward price curve, the par swap prices for all maturities,

T , t ≤ T , could be obtained by setting the values of the floating and fixed legs to be

equal. Solving for the par swap price G(t, TN) gives

G(t, TN) =

N∑
i=1

FA(t, Ti)P (t, Ti)

N∑
i=1

P (t, Ti)

(3)

which shows that the par swap price is defined by the ratio of the discounted value of

the floating price payments and an annuity. Therefore, as with interest rate swaps, the

par swap price can be interpreted as the present value weighted average of the forward

prices.

The traditional approach of modelling the forward prices of commodities is based

on defining the net convenience yield, which is defined as the net ”income”, accruing to

the owner of the physical commodity, Brennan (1958). The relation between the spot

price of commodity, St ,and the forward price of maturity, T , is given by the well known
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formula

F (t, T ) = Ste
(r(t,T )−δ(t,T ))(T−t) (4)

which can be written, using the familiar formula e−r(t,T )(T−t) = P (t, T ), as follows:

F (t, T ) =
Ste

−δ(t,T )(T−t)

P (t, T )
(5)

showing that there is a one-to-one correspondence between the net convenience yields

and forward prices. Therefore, either the term structure of forward prices or the term

structure of convenience yields can be estimated from the prices of swaps (and futures).

2 Bootstrap Method

In this section, the whole procedure of deriving the implied average forward prices and

direct forward prices (forward prices without averaging) is presented. The procedure is

based on direct application of the net present value rule in order to iteratively solve the

system of equations. Assume that par swap quotes G(t, Ti) for maturities Ti = 1, 2, ...

years are observed in the market. In addition, the spot price of the commodity, St, is

observed. The procedure begins with interpolation of the par swap curve in order to

find the par swap prices for maturities corresponding to the settlement dates of the swap

payments. Interpolation of the swap curve is necessary because there are not enough

swap quotes to cover all the settlement dates. For example, if the market convention

is fixed price versus quarterly settled averages of daily price observations, then the par

swap curve needs to be interpolated in order to find prices for three month, six month,

nine month, etc par swaps. The first implied average forward price sets the initial seed

for the Bootstrap method.

Having interpolated the par swap curve to find the swap price corresponding to the
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first settlement date of the one year swap, we can use the standard net present value

method to obtain the first implied average forward price. As at contract initiation, the

value of a swap is zero, so it follows that

(
GA(t, T1)− FA(t, T1)

)
P (t, T1) = 0

and solving for FA(t, T1) gives

FA (t, T1) = GA(t, T1) (6)

Hence, the first implied average forward price is just the value interpolated from the par

swap curve. Therefore, the procedure can now be continued in order to find the second

point. For this one can use the net present value with the six month par swap, that is:

(
GA (t, T2)− FA (t, T1)

)
P (t, T1) +

(
GA (t, T2)− FA (t, T2)

)
P (t, T2) = 0

with the solution

FA (t, T2) = GA (t, T2) +
(
GA (t, T2)− FA (t, T1)

)P (t, T1)

P (t, T2)
(7)

The full procedure, generalizing up to Tn ≤ TN -maturity par swap quote, can be ex-

pressed with a simple formula

FA (t, Tn) = GA (t, Tn) +
n−1∑
i=1

(
GA (t, Tn)− FA (t, Ti)

) P (t, Ti)

P (t, Tn)
(8)

Using equation (8), the whole term structure of implied average forward prices can

be recovered. Having obtained the implied average forward prices, the next step is

to obtain the implied direct forward prices. This needs to be done because the term
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structure of implied average forward prices is not flexible enough to be used for pricing

general commodity derivative products, since there may be different averaging periods

or no averaging at all in other derivatives structures.4 Let k denote the number of

observations for the arithmetic average on a single settlement period. (In practice, k

is the number of bank days on a single settlement period, if the averaging frequency

is daily, though other conventions are also possible.) The following shows the steps for

finding the implied direct forward prices. First it should be noted that there is a problem

of non-uniqueness of the direct forward prices, since our task is to produce FA(t, Ti) from

a set of possible direct forward prices, F (t, T j
i ). The average can therefore be arrived

at by any suitable combination of F (t, T j
i )’s. Therefore, in order to force unique direct

forward prices from a set of average prices, impose the linear interpolation constraint as

follows

FA(t, Ti) =

k∑
j=1

F (t, T j
i )

k

=

k∑
j=1

(
(F (t, Ti)− F (t, Ti−1))

j
k
+ F (t, Ti−1)

)
k

which can be rewritten

FA(t, Ti) =

F (t, Ti)
k∑

j=1

j
k
+

(
k −

k∑
j=1

j
k

)
× F (t, Ti−1)

k

and using the fact that
k∑

i=1

i = k(k + 1)/2, the equation can simplified further:

FA(t, Ti) =
1

2

[(
1 +

1

k

)
F (t, Ti) +

(
1− 1

k

)
F (t, Ti−1)

]
(9)

This can now be solved inductively, so that a full term structure of direct forward

31



prices can be extracted. The first step is to solve for F (t, T1). This can be done,

because we know that the first direct forward price is equal to the spot price (which

is directly observable), so F (t, T0) = St. Finally, use equation (9) and FA(t, T1), which

was already solved in the first phase when the implied average forward prices were

obtained. This process is continued iteratively until the whole term structure of direct

forward prices is derived. Figures 1 and 2 show examples of forward price curves using

the method presented above. The data is from the Brent oil market in both upward

and downward sloping swap price curve environments. Also note that the observation

frequency of the index values for the settlement prices of the floating legs can be daily,

weekly, monthly etc. If the payment frequency is equal to the observation frequency,

then clearly FA(t, T ) = F (t, T ), and there is no need to complete the last step of the

Bootstrap method.

The main problem with the Bootstrap method is that the forward curve it produces

is exceedingly saw-toothed. This is even more so if the underlying swap market data

consists of average settlement contracts. The average forward prices are solved for first

with the Bootstrap method, i.e. the first phase of the algorithm derives a forward

curve for implied average prices. In order to force the direct forward curve to yield

those same average prices, it must attain extreme values. An example clarifies this:

Consider that the spot index value is 100 units. The settlement frequency is daily with

22 observations in the current one month period. The implied average forward price for

the first settlement is 105 units. Then applying formula (9) yields the direct forward

price of 109.57 units.

Additionally, the forward price curve can also be derived directly in terms of the net

convenience yields. In this case, one starts with the implied average forward price curve

that has already been derived at this point. The term structure of cost of carry can then
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Figure 1: OIL SWAP AND FORWARD CURVES FOR 3/31/99, bootstrap forward
prices method
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Figure 2: OIL SWAP AND FORWARD CURVES FOR 3/31/02, bootstrap forward
prices method
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be obtained by solving iteratively

FA (t, Ti) =

St

k∑
j=1

ec(t,Ti)(∆j+Ti−1)

k
(10)

where St is the spot price of the commodity, c(t, Ti) is the cost of carry parameter for

the period of average forward. ∆ divides the period into intervals, from the start to the

end of averaging. For example, if the observations are taken daily, then ∆ = 1/365. k

again denotes the number of observations on a single settlement period from Ti−1 to Ti.

Equation (10) has to be solved iteratively for c(t, Ti). That can be easily done using, for

example the Newton-Raphson scheme. After the full term structure of cost of carry is

obtained, various swap structures, including the standard swap products, can be priced.

Using the fact that ec(t,T ) = er(t,T )−δ(t,T ) = e−δ(t,T )/P (t, T ), together with (10), it is

possible to derive the net convenience yield δ(t, T ) term structure, using the formula

given below

FA (t, Ti) =

St

k∑
j=1

e−δ(t,Ti)(∆j+Ti−1)

P (t,T(i−1+∆j))

k
(11)

Note that the net convenience yield parameter is expressed in terms of continuously

compounded return. This is due to the fact that the theoretical models of the net

convenience yield are defined this way. If one wants to use some other compounding

style, the adjustments to the formulas are then straightforward. However, the price

average is always defined in terms of the arithmetic average. Therefore, it must be in

the form presented above.

Figures 3 and 4 show examples of forward curves derived using the bootstrapped net

convenience yield method.
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Figure 3: OIL SWAP AND FORWARD CURVES FOR 3/31/99, bootstrap convenience
yield method
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Figure 4: OIL SWAP AND FORWARD CURVES FOR 3/31/02, bootstrap convenience
yield method
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3 Spline Method

In this paper, the spline form used is the standard cubic functional, similar to that

used by McCulloch (1971), though more general forms could be applied. Results are

derived using general functional forms. It is demonstrated that the forward price term

structure can be obtained using simple linear regression, analogously to discount function

estimation. The net present value rule requires that the fixed leg and floating leg present

values are equal, for each n = 1, 2, ..., N

G(t, Tn)
n∑

i=1

P (t, Ti) =
n∑

i=1

FA(t, Ti)P (t, Ti) (12)

In order to fit a spline function to the forward curve by linear regression, k continuously

differentiable gj(T ) functions must be defined. In the following, it is assumed that t = 0.

Hence, the forward curve can be represented as a constant term and a linear combination

of the functions gj(T )

FA(0, T ) = α0 +
k∑

j=1

αjgj(T ) (13)

Since the forward price for F (t, t) must equal St, it is therefore required that α0 = St.

Combining equations (12) and (13), the function to be estimated becomes, for each

n = 1, 2, ..., N

Vfl,n =
n∑

i=0

FA(0, Ti)P (0, Ti)

=
n∑

i=0

k∑
j=0

αjgj(Ti)P (0, Ti)

=
k∑

j=0

αjGn+1,k+1
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which can be expressed in vector notation as follows

Vfl = GA (14)

where

G =




1 g1(0) g2(0) · · · gk(0)

P (0, T1) P (0, T1)g1(T1) P (0, T1)g2(T1) · · · P (0, T1)gk(T1)
2∑

i=1

P (0, Ti)
2∑

i=1

P (0, Ti)g1(Ti)
2∑

i=1

P (0, Ti)g2(Ti) · · ·
2∑

i=1

P (0, Ti)gk(Ti)

· · · · · · · · · · · · · · ·
N∑

i=1

P (0, Ti)
N∑

i=1

P (0, Ti)g1(Ti)
N∑

i=1

P (0, Ti)g2(Ti) · · ·
N∑

i=1

P (0, Ti)gk(Ti)




and A is a vector of coefficients. The fact P (t, t) = 1 has been used to simplify the

notation. Figures 5 and 6 show examples of forward curves derived using the standard

Cubic Spline method.

The spline method can be made more flexible in order to handle difficult curve shapes

by introducing knot points. Therefore, the spline method will be extended to piecewise

polynomial functions for the empirical part of this paper. In the empirical study, only two

internal evenly spaced knot points are used. It is left for further research to investigate

the effect of knot positioning and the optimal amount of knots. Details of the effects on

the estimation of the resulting regression are given by Suits, Mason, and Chan (1978).

In addition to the standard piecewise cubic spline, the sine and cosine functions are

also used in order to capture possible seasonality in the data. It is often postulated

that commodity prices exhibit mean reversion. Therefore, that possibility will also be

considered in this study. In order to implement seasonality with curve estimation, a

combination of cubic polynomial and an expansion of two sine and cosine functions are

used. Since with polynomial, we have k = 4, it follows that there will be four additional
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Figure 5: OIL SWAP AND FORWARD CURVES FOR 3/31/99, splining forward curve
method

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75
Maturity (years)

P
r
i
c
e

Swap Prices

Forward Prices

Figure 6: OIL SWAP AND FORWARD CURVES FOR 3/31/02, splining forward curve
method
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coefficients to be estimated

gk+1(T ) = cos
(2 ∗ T ∗ π

β

)
gk+2(T ) = sin

(2 ∗ T ∗ π

β

)
gk+3(T ) = cos

(4 ∗ T ∗ π

β

)
gk+4(T ) = sin

(4 ∗ T ∗ π

β

)

where β is the period factor. In principle, β can either be estimated from the historical

data or used as one parameter in the fitting procedure.

As is the case with the bootstrap method, the direct forward prices F (t, T ) can

be obtained by imposing the linear interpolation constraint and then using (9). The

direct forward price curve will still be a saw-toothed function, however. If one wants

to get a smooth direct forward price curve, then the floating price leg value has to

be transformed to be dependent directly on the direct forward prices (instead of the

implied average forward prices). An obvious choice is to use equation (9), to impose

linear interpolation constraint. The spline can then also be configured to handle this

situation.

4 Optimization Method

This section develops the Optimization of Fit method for extracting forward curve infor-

mation from the prices of commodity swaps. The method is based on the minimization

of the sum of squared errors. The aim is to fit the observed swap prices as precisely

as possible while maintaining a reasonable degree of smoothness in the output forward
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curve. The proposed target function of the minimization problem is

min
{Fi}N

i=1

[
N∑

i=1

(Vfl(t, Ti)− Vfx(t, Ti))
2 + λ

N∑
i=1

(F (t, Ti)− F (t, Ti−1))
2

]
(15)

where the fundamental idea is to match the swap values from the forward curve to the

observed swap values, and simultaneously controlling that consecutive forward prices

are not too far apart. To motivate this choice, let us note that the desire of a trader is

often to produce a realistic looking, or at least not excessively vibrating, forward curve

with which to price other products. Similar ideas have been used in the interest rate

market in the spline form, for example by Fisher, Nychka, and Zervos (1995) and Käppi

(1997). Delbaen and Lorimier (1992) use similar methodology to estimate the forward

rate curve from the prices of bonds. Their objective is to minimize the squared difference

between two adjacent maturity forward rates. Additionally, they impose a constraint

that the relative pricing errors lie within a given tolerance. The approach presented in

this paper is closely related to the latter method. The empirical results show that the

method works well in comparison with the spline method. This suggests that, especially

in the commodity markets where rather extreme and awkward curve shapes are very

common, it is beneficial to have a more flexible fitting method.

The parameter λ is introduced to adjust the weight put on the forward curve smooth-

ness. Note that the formulation uses the direct forward prices, so the output curve from

the optimization problem is immediately of desired form. Moreover, it follows from

the linear interpolation constraint that the derivatives for the optimization problem are

straightforward to calculate. Therefore, analytic derivatives can be used in the actual

minimization - see Appendix for the calculation of the derivatives. The optimization

problem can be solved using any suitable algorithm. The method utilized in this paper

is based on a simple gradient search with constant step size and analytical derivatives.

While not the fastest possible algorithm, the convergence properties are good and the
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global minimum is almost sure to be attained for any curve shapes. For an excellent

description on the various optimization algorithms, see Press, Teukolsky, Vetterling, and

Flannery (1992).

In choosing λ, two points need to be mentioned. First, if one picks λ = 0, then

the Optimization of Fit method will converge to the bootstrapped curve and the target

function value will be equal to zero. I.e. exact match can be obtained through the

Optimization method. Alternatively, if a high enough λ is chosen, then, starting from

the spot value St, the final forward curve will be flat. Hence, a reasonably shaped

and correctly pricing forward curve will result only if one picks a reasonable value for

λ. For the purposes of this study, λ is set equal to one. The decision is based on

experimenting with the algorithm, not explicitly on any objective criteria. In further

research, implementing some penalty function like in Fisher, Nychka, and Zervos (1995)

might yield interesting results. Figures 7 and 8 show examples of forward curves obtained

using the Optimization of Fit method.

5 Comparison of Methods

Four methods for estimating the forward curve for commodities are developed. The

Bootstrap methods use the analogy from the term structure of interest rate estimation

research to iteratively solve a system of equations to obtain the forward prices either

directly, or indirectly through convenience yield. Also, the Cubic Spline method de-

rives analogy from the term structure of interest rates estimation literature to specify

equations for commodity forward curve estimation. The Optimization of Fit method,

however, is more like a calibration procedure, where the forward curve is derived by

minimizing the sum of squared pricing errors. Weighting can also be utilized to express

the relative importance of each swap price and the forward curve smoothness.
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Figure 7: OIL SWAP AND FORWARD CURVES FOR 3/31/99, optimization of fit
method

10

11

12

13

14

15

16

17

18

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75
Maturity (years)

P
r
i
c
e

Swap Prices

Forward Prices

Figure 8: OIL SWAP AND FORWARD CURVES FOR 3/31/02, optimization of fit
method
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• Bootstrap Forward Curve Method
The Bootstrap forward curve method is a recursive method to solve for implied

average forward prices and, further, direct forward prices. At each step, the next

forward price is obtained from the swap pricing equation and previous forward

prices. In order to find the swap prices for intermediate points, it is necessary to

interpolate the swap prices since there are not enough quotes to span all periods.

An easy choice is to interpolate linearly, but other choices are also possible. More-

over, it is also necessary to impose interpolation condition on the derived implied

average prices, since an average forward price is composed of a set of direct forward

prices. The Bootstrap forward curve method prices market swap quotes exactly,

but the resulting curve is intolerably jagged.

• Bootstrap Convenience Yield Method
Bootstrapping the convenience yield term structure results in a forward price curve

that behaves better than bootstrapping the forward prices directly. However, it

is not as convenient to use in real applications, since the specification presented

in this paper is such that the spot convenience yield is constant for each period.

Therefore, if one interpolates the forward curve, as is customary in trading systems,

the market swaps are no longer priced exactly. However, correct results can be

obtained by appropriately constructing the algorithms used in this approach.

• Cubic Spline Method
There are many possibilities to specify splining of the forward price curve in order

to find the best suited result for each particular need. One can put the spline

on the implied average forward price curve or on the direct forward price curve

according to what is considered suitable. Moreover, it is possible to make the spline

more flexible by specifying knot points. Therefore, more difficult curve shapes can

be dealt with efficiently. One particularly interesting possibility is to include sine
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and cosine functions in order to capture cyclicality (or seasonality) that is often

encountered in the commodity markets. Furthermore, since the problem is linear,

the standard linear regression methods can be used in estimation. By the very

nature of the minimization of the squared errors, it is not possible to price market

quoted swaps exactly.

• Optimization of Fit Method
The Optimization of Fit method is similar in many ways to the calibration methods

used in the option markets. By expressing the swap prices as functions of direct

forward prices and adding the condition that the following forward prices are not

allowed to deviate too much from the previous forward prices, it is possible to define

a well-formed problem that yields basic analytical formulas. The Optimization of

Fit method handles many different curve shapes with little difference in goodness-

of-fit results, and is therefore a good candidate for applied work and even for

trading desks of investment banks. It is also possible to include futures in the

optimization problem fairly easily or build the curve in such a way that the short-

end of the curve is built using quoted futures prices and the long-end of the curve

is build using the Optimization of Fit method. Hence, this method provides much

respected flexibility.

Of the four methods (and their variants), two are constructed so that the market

prices of swaps are recovered exactly. Therefore, it would be pointless to test the pricing

efficiency of these methods; Moreover, the scarcity of data would render out-of-sample

tests meaningless. Hence, the pricing efficiency tests are conducted only on the Cubic

Spline method and the Optimization of Fit method.
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6 Empirical Results

The empirical section of this study concentrates on comparing the pricing errors that

result from fitting the forward curve to the data, using the Spline and the Optimization

of Fit methods. To keep the scope of the study manageable, only the simple cubic spline

is used. It is left for further studies to investigate the effect of using other functional

forms, knot points and seasonality. The data used in this study consists of weekly NBSK

Risi pulp data covering the period between June 1998 to October 2001 and of monthly

Brent oil data covering the period between October 1997 to February 2002. The data

is obtained from Nordea Bank. The interest rate data used in estimation consists of

Libor rates and zero rates is retrieved from DataStream. The commodity market data

is in the form of mid market prices only, so arbitrage violations are not considered in

the present study. Figures 9, 10 and 11 show the evolution of the forward curves over

the study period for the NBSK Risi pulp data.

For testing estimated forward curves, the fitted price errors are defined as

Vfx − V̂fl (16)

That is, the difference between the value of the fixed price leg and the value of the floating

price leg. The absolute values of the fitted price errors are then used as a criterion for the

goodness-of-fit. Friedman Rank Test is used as a formal test for comparing the relative

ranking of the proposed estimation methods.

Summary statistics for NBSK Risi pulp and Brent oil are shown in Tables 1 and

2. Inspection shows very clearly that there are great differences among the estimation

methods in their ability to price market swaps. The sum of absolute fitted price errors

is very large for the Cubic Spline method without knots. However, for the two other

methods, the errors are much less significant, with the Optimization of Fit method
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Figure 9: NBSKRISI PULP FORWARD CURVES ESTIMATED USING THE CUBIC
SPLINE METHOD
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Figure 10: NBSKRISI PULP FORWARD CURVES ESTIMATED USING THE CUBIC
SPLINE METHOD (with two equally spaced internal knot points)
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Figure 11: NBSKRISI PULP FORWARD CURVES ESTIMATED USING THE OPTI-
MIZATION OF FIT METHOD
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Table 1: Summary Statistics NBSK Risi Pulp

Statistic Cubic Spline Cubic Spline with Knots Optimization of Fit
Mean 235.78 90.38 47.39
Standard Error 12.14 4.54 2.12
Median 199.16 77.67 39.89
Standard Deviation 161.91 60.63 28.30
Kurtosis 2.59 1.04 0.98
Skewness 1.43 1.05 1.04
Range 868.92 326.47 152.36
Minimum 14.22 6.71 5.73
Maximum 883.14 333.18 158.09
Count 178 178 178

• Reported statistics are for the Sum of Absolute Fitted Price Errors.
• Data consists of weekly observations for NBSK Risi Pulp swap quotes from June
1998 to October 2001.

• Models used are: standard Cubic Spline for direct forward prices, standard Cubic
Spline for average forward prices with two internal knot points and Optimization
of Fit method for direct forward prices.

giving the smallest total errors and standard deviations. Casual inspection immediately

suggests that the standard Cubic Spline method without added flexibility is not suitable

for estimating the forward curve for commodities.

In order to gain more insight into how the relative portions of the forward curve are

fitted, the maturity spectrum is divided into five annual subperiods. The results are

reported in Tables 3 and 4. Within these intervals, the absolute fitted price errors are

weighted by the respective annuity factors in order to examine the effect on the actual

price quotations derived from the analysis. The results indicate, once again, that the

Optimization of Fit method yields implied price quotations that are reasonably close to

the actual market prices that were used as inputs in the analysis. The standard Cubic

Spline method, on the other hand, implies price quotes that are intolerably far from the

actual market quotes: The pricing errors range from 50 cents to almost 5 dollars, with
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Table 2: Summary Statistics Brent Oil

Statistic Brent oil Cubic Spline Cubic Spline with Knots Optimization of Fit
Mean 13.57 4.69 4.58
Standard Error 1.14 0.44 0.43
Median 11.90 3.66 3.91
Standard Deviation 9.06 3.46 3.40
Kurtosis 0.66 0.75 0.44
Skewness 0.99 1.24 1.01
Range 37.17 13.59 14.13
Minimum 1.24 0.94 0.55
Maximum 38.41 14.52 14.68
Count 63 63 63

• Reported statistics are for the Sum of Absolute Fitted Price Errors.
• Data consists of monthly observations for Brent oil swap quotes from October 1997
to October 2002.

• Models used are: standard Cubic Spline for direct forward prices, standard Cubic
Spline for average forward prices with two internal knot points and Optimization
of Fit method for direct forward prices.

more severe errors observed at the short-end of the curve.

In general, it seems that the methods yield larger pricing errors at the short-end of

the curve than at the long-end of the curve. This phenomenon was also observed by

Bliss (1996), who studied the performance of term structure estimation methods to fit

the prices of Treasury securities. The most likely reason for this is that the initial swap

curves tend to be relatively flat for longer maturities but often very steeply upward or

downward sloping for maturities below two years. As the long-end of the curve contains

more observations than the short-end, the minimization of the squared errors will put

more weight on fitting the long end correctly. A partial remedy for this would be to

introduce more knots to the Spline method to make it more flexible in dealing with

shorted maturities. The Optimization of Fit method could be made more flexible by

making the λ-parameter time dependent, so that the smoothness penalty would have a
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Table 3: Non-parametric Test of Mean Absolute Pricing Errors (NBSK Risi)

Method 0 - 1 year 1 - 2 years 2 - 3 years 3 - 4 years 4 - 5 years
Cubic Spline 4.85 2.19 1.45 0.60 0.68
Cubic Spline w Knots 4.42 0.58 0.47 0.27 0.15
Optimization of Fit 1.88 0.30 0.28 0.08 0.09

• Errors are defined as the mean error weighted with the annuity factor within the
shown intervals

Table 4: Non-parametric Test of Mean Absolute Pricing Errors (Brent oil)

Method 0 - 1 year 1 - 2 years 2 - 3 years 3 - 4 years 4 - 5 years
Cubic Spline 0.438 0.123 0.069 0.031 0.032
Cubic Spline w Knots 0.246 0.047 0.47 0.008 0.004
Optimization of Fit 0.135 0.042 0.28 0.014 0.010

• Errors are defined as the mean error weighted with the annuity factor within the
shown intervals

smaller effect on the short maturities. Of course, each presented method may also utilize

simple weighting schemes.

The formal comparison of the relative performance of the methods is carried out

using the non-parametric Friedman Rank test applied to the sum of absolute fitted price

errors over the whole sample. Results are given in Table 5. For NBSK Risi pulp, the

evidence strongly rejects the null of no difference between the methods. The test statistic

336.58 is significant at 1 % level. In fact, the standard Cubic Spline method without

knots ranks the worst in all 178 cases, whereas the Optimization of Fit method ranks

the best in all but eight cases. For Brent oil, the results are not quite so strong, in

particular, there do not seem to be very big differences between the Optimization of Fit

method and Spline method with knots. The test statistic for Brent oil data is 95.14,

which is still significant at 1 % level. Now, the Optimization of Fit method provides

the best fit in 36 cases, whereas the Spline method with knots is the best method in 27
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Table 5: Non-parametric Test of Mean Absolute Pricing Errors

Statistic Friedman Stat Cubic Spline Cubic Spline w Knots Optimization of Fit
NBSK Risi
Rank Sum 336.58 ** 532 350 186
Brent Oil
Rank Sum 95.14 ** 189 99 90

* (**) indicates that the Friedman Statistic is significant at 5 % (1 % ) level

• Reported statistics are for the Absolute Fitted Price Errors.
• Data consists of weekly observations for NBSK Risi Pulp swap quotes from June
1998 to October 2001 and of monthly monthly observations for Brent oil swap
quotes from October 1997 to October 2002.

• Models used are: standard Cubic Spline for direct forward prices, standard Cubic
Spline for average forward prices with two internal knot points and Optimization
of Fit method for direct forward prices.

cases. The standard Cubic method without knots ranks worst in all cases.

In general, the performance of the fitting methods for estimation of the forward curve

for NBSK Risi pulp indicates a strong preference for the non-parametric Optimization

of Fit method over the Cubic Spline methods. Investigation shows that the short end

of the curve is more demanding for the fitting methodologies to handle than the long

end. This is true for all methods. From the data perspective, the NBSK Risi pulp data

yields more demanding curve shapes overall than Brent oil data.

7 Extensions

This chapter discusses some possible extensions to the presented methods for handling

forward curve estimation more flexibly. The most important extension is related to the
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handling of the futures contracts as part of the curve generation process. There are,

in general, two possibilities for doing this: The prices of futures contracts can be taken

as an internal part of the optimization problem; alternatively the curve can, at least in

some cases, be bootstrapped.

In real trading situations, the market participants have straightforward requirements

for suitable forward curve derivation methodologies. First and foremost, the resulting

forward curve has to be able to recover the prices of quoted swaps as accurately as

possible. Usually, the errors have to be within the bid-ask spread, or else the proposed

method is unsuitable and must be improved and extended. The empirical evidence

shows that, in general, the Optimization of Fit method does a good job in recovering

the market prices of longer term instruments. However, at times, the short end causes

problems due to the often observed steep and concave form of the sequential quotes.

The method can be modified if a liquid futures market exists by creating the short end

of the curve from the futures price quotes and fitting only the long end of the curve

using the Optimization of Fit method.

One possible extension would be to introduce Nelson and Siegel (1987) parameter-

ization to the forward curve and investigate how well it would price the market swap

quotes in different market scenarios 5.

8 Conclusions

Several methods for deriving the forward curve from the market prices of commodity

swaps are developed. The methods can be classified into 1) bootstrapping methods and

2) fitting methods. By definition, the bootstrapping methods recover the market swap

quotes exactly. However, the downside of these methods is the saw-toothed shape of

the resulting forward curve. In particular, if the averaging frequency of the underlying
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commodity swaps is daily, then the bootstrap method will result in a forward curve

that is excessively badly shaped. By contrast, the fitting methods are able to generate

smooth curves. However, the methods vary in terms of pricing performance, with all

fitting methods performing worse than the Bootstrap method for recovering market swap

quotes.

In addition to developing methods for forward curve estimation, two fitting methods

were tested with data from pulp and oil swap markets. The evidence shows that the

Optimization of Fit method is preferred to the Cubic Spline method (even with internal

knot points). The Cubic Spline method performs so poorly in recovering the market

prices of quoted swaps that its application to real trading situations cannot be consid-

ered. The Optimization of Fit method, by contrast, provides a reasonable alternative

for traders, though its properties in different curve shape environments and extensions

to the method’s flexibility need to be explored further.

Extensions to the methodologies presented in this study are suggested. The most

important issue is the inclusion of the futures prices into the curve building procedure,

which calls for some modifications to the basic structure of the methods. In general,

the most versatile way of including the futures contracts is to divide the curve into two

parts where the short-end of the curve is built directly from the futures price quotes

and the long-end of the curve is derived using the Optimization of Fit method. This

approach provides a very appealing alternative for traders, since the liquid part is built

from the most liquid instruments and the longer end is fitted to market prices of swaps.

Empirical evidence suggests that the Optimization of Fit method performs very well

especially in fitting the long maturity swaps. Finally, the paper presents also a simple

application of the sine and cosine function in conjunction with the Cubic Spline method

to introduce seasonality to the forward curve. The issue of bringing in more economic

realism to the estimated forward curve is left for further studies to explore. This realism
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is particularly important in the energy and agricultural markets where cyclical and

seasonal components are generally very strong and identifiable.

Notes

1The description of the bootstrap method can be found from any standard text book on fixed income

markets.

2Some of the most well known traditional models include Brennan and Schwartz (1985), Gibson and

Schwartz (1990) and Schwartz (1997), among many others.

3There exist many settlement procedures depending on market conventions and common practices.

Mostly, the contracts are settled against an arithmetic average price and sometimes the nearby futures

contract is used in place of the spot price in order to calculate the settlement price.

4This is to some extent analogous to the interest rate market, where the yields of benchmark bonds

cannot readily be used to accurately price other bonds.

5This idea was taken up by Jari Käppi during a seminar session at Helsinki School of Economics
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Appendix

Implementing the optimization method requires the calculation of the gradient of the

target function, i.e. equation (15). This can be done either numerically or analytically.

It transpires that the derivatives of the target function are straightforward to obtain (in

the calculations below; λ = 1).

∂Fct
∂F (t,Ti)

= 2×
N∑

j=i+1

(Vfl(t, Tj)− Vfx(t, Tj))× (γP (t, Ti) + (1− γ)P (t, Ti+1))

+ 2× (Vfl(t, Ti)− Vfx(t, Ti))× γP (t, Ti)

+ 2× (F (t, Ti)− F (t, Ti−1))− 2× (F (t, Ti+1)− F (t, Ti))

∂Fct
∂F (t,TN )

= 2× (Vfl(t, TN)− Vfx(t, TN))× γP (t, TN)

+ 2× (F (t, TN)− F (t, TN−1))

where

Vfl(t, Ti) =
i∑

j=1

(
γF (t, Tj) + (1− γ)F (t, Tj−1)

) × P (t, Tj)

Vfx(t, Ti) = X
i∑

j=1

P (t, Tj)

γ = (m+ 1)/(2m)

andm is the number of price observations on a settlement period, c.f. linear interpolation

constraint. The futures contracts, fk, can be included in the optimization by defining

∂fk

∂F (t,Ti>k)
= 2× τ × (τF (t, Ti) + (1− τ)F (t, Ti−1)− fk)

∂fk

∂F (t,Ti<k)
= 2× (1− τ)× (τF (t, Ti+1) + (1− τ)F (t, Ti)− fk)

where τ is time (in years) from the previous forward price to the settlement date of the

futures contract. Subscript k denotes the position of the futures price relative to the for-

ward curve points. Additionally, the futures prices are assumed equal to forward prices.

Therefore, the objective is to match the observed futures prices with the optimized for-

ward price curve. As the linear interpolation again is assumed, only the forward prices
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right before and after any fk contribute to the result of the optimization.

Minimization Algorithm:

The derivatives of the target function with respect to the given set of forward prices

can be utilized, for example, in the implementation of the method of steepest descent

(as is done in this study). Below is a schematic description of the methodology used in

this paper. This method is called a simple gradient search.

Choose the direction where the value of the target function, f decreases most quickly,

which is in the direction opposite to the gradient, ∇f(xi). Start the search at an

arbitrary point, or preferably with some reasonable initial value, and then move along

the opposite direction of the gradient until the solution is reached (or is close enough).

In other words, the iterative procedure is

xk+1 = xk − λ∇f(xk)

where λ can be also be chosen to be of optimal size; for details see Press, Teukolsky,

Vetterling, and Flannery (1992). Alternatively, a constant value for λ can be used, then

the method is much simpler and requires many more iterations. However, each iteration

takes less time to compute and experimentation with the algorithm helps in choosing a

suitable step size. Continue these iterations until |∇f(xk)| < ε.
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ESSAY 2:

Principal Components Analysis of Commodity Forward Curves:

Evidence from Oil and Pulp Swap Markets

Abstract

This paper investigates the factor structure of commodity forward curve dynamics

using data from pulp and oil markets. The data used consists of swap contract quotes,

from which forward curves are derived using an optimization algorithm. A three factor

model explains 89% of the price variation of the oil forward curves and 84% of the price

variation of the pulp forward curves. The factor structure, especially in pulp derivatives

market, is more complex than found in many other studies conducted mainly using

interest rate data. Possible reasons for this phenomenon are discussed.
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The dynamics of the forward curve is important for practitioners pricing and hedging

derivatives contracts and for economists studying stochastic movements of economic

variables. Traditionally, modelling of the yield curve movements has been an active area

of research, both theoretically and empirically. By contrast, research on commodity

forward curve dynamics has been relatively scarce. This paper contributes to the research

on commodity forward curve dynamics by presenting empirical evidence on the factor

structure of long term forward prices estimated from the broker quotes of the swap

contracts.

Analogously to the study of the interest rates, there has been two approaches to

the study of commodity prices. The traditional method has focused on modelling the

stochastic process for the spot price of the commodity and possibly other state variables,

such as the convenience yield. Seminal research along these lines include Brennan and

Schwartz (1985), Gibson and Schwartz (1990) and Schwartz (1997). More recently, the

study of the stochastic movements in commodity prices has concentrated on modelling

the whole term structure of either forward prices directly, Cortazar and Schwartz (1994),

or convenience yields, see for example Miltersen and Schwartz (1998). This current paper

builds on the whole term structure modelling principle.

Earlier research on the commodity forward curve dynamics has concentrated on

modelling the factor structure of the short term contracts, i.e. exchange traded futures.

Among the earliest of this research was Cortazar and Schwartz (1994), who studied

the dynamics of the futures price curve constructed from copper futures. They found

that the factor structure of the copper futures curve was surprisingly similar to the

factor structure of yield curve movements. Moreover, the explanatory power of the

two most important principal components was 97 percent. By contrast, Litterman and

Scheinkman (1988) found that the explanatory power of the two most important prin-

cipal components of the yield curve movements was remarkably lower, at around 90
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percent. Clewlow and Strickland (2000) studied the factor structure of NYMEX oil

futures and they found that three factors explained over 98 percent of the variation of

the futures price movements during the period between 1998 to 2000. A recent paper

by Tolmasky and Hindanov (2002) investigated the dynamics of the petroleum futures

contracts. In particular, they focused on isolating the effect of seasonality in the fac-

tor structure of returns. They found that, especially for heating oil, seasonality is an

important variable driving the factor structure, however it’s statistical significance is

somewhat unclear. Crude oil and petroleum markets were not found to be affected

by seasonality. In a closely related line of research, Koekebakker and Ollmar (2001)

studied the forward curve dynamics using data from the Nordpool electricity derivatives

exchange. The explanatory powers they report are fairly low in comparison, the most

likely reason being the extremely complex dynamics of the electricity spot and forward

prices. Koekebakker and Ollmar (2001) use fitted curves as is also done in this current

paper.

The results obtained in this study extend the results of the empirical investigations

of the forward curve movements by presenting evidence using data from two distinct

commodity markets. In particular, the focus is on modelling the dynamics of the long

term forward prices that are implied, not actually observed, from the market quotes of

the swap contracts. Using the swap market data significantly complicates the analysis

and the results obtained are also less clear cut than those obtained using the data on the

short term futures contracts. The data used consists of Brent crude oil swap quotes up to

five years, covering the period between 1997 to 2002, and NBSK Risi pulp swap quotes,

also up to five years, covering the period between 1998 to 2001. The former data is in the

form of monthly observations and the latter is weekly sampled. Principal Components

Analysis (PCA) applied to the implied forward curve movements reveals complex factor

structures and the explanatory power of the first three principal components is around

89 percent for oil data and 84 percent for pulp data.
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The paper is organized as follows. Section 1 introduces the underlying theoretical

model. Section 2 presents and discusses the data used in the study. Section 3 introduces

the method used for estimating the forward curves and Section 4 gives a description

of the Principal Components Analysis method. In Section 5, the empirical results are

discussed and comparisons are made with results obtained in earlier studies. Finally,

Section 6 concludes the paper and gives suggestions for further research.

1 Model

The model studied here is similar to the model proposed by Reisman (1991) and Cortazar

and Schwartz (1994). The main idea is to model the movements of the forward curve

directly, instead of modelling the forward prices as a function of the spot price and

convenience yield processes. Utilizing this approach, the principal components analysis

is applied to the movements of the whole extracted term structure of the forward prices.

The procedure for obtaining the term structures of forward prices is explained in the

next section.

In the analysis that follows, the spot price of a commodity, at time t, is denoted

by S(t). A futures contract at time t, for delivery at time T , is denoted F (t, T ). The

underlying market is assumed to be complete and frictionless. In the absence of arbi-

trage opportunities there exists an equivalent martingale measure Q, under which all

discounted asset prices are martingales (Harrison and Kreps (1979)).1 This implies that,

under the risk-neutral pricing measure, the instantaneous expected return on all finan-

cial assets is the instantaneous risk free rate and hence, the expected return on futures

contracts is equal to zero. Therefore, the stochastic process for the futures (and forward)

prices is given by

dF (t, T ) =
K∑

j=1

σj(t, T )F (t, T )dWj(t) (1)
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and in integrated form

F (t, T ) = F (0, T ) exp
(
− 1

2

K∑
j=1

∫ t

0

σ2
j (u, T )du +

K∑
j=1

∫ t

0

σj(u, T )dWj(u)
)

(2)

where dW1, dW2, ..., dWK are independent increments of Brownian motions under the

risk-neutral measure, and σj(t, T )’s are the volatility functions of the futures (or forward)

prices. The volatilities are only functions of time to maturity (T − t). The analysis

presented here is based on the assumption of constant interest rates, and therefore, the

futures prices and forward prices are equivalent as shown by Cox, Ingersoll, and Ross

(1981).

2 Data

The forward price model (1) describes the stochastic evolution of each of the forward

prices along the forward curve under an equivalent martingale measure. However, ob-

servations are taken under the real world measure. This is not a problem, since only

volatility functions are of interest here, and they are invariant with respect to the mea-

sure change 2. Let F (ti, Tj) denote the forward price at time ti, with maturity Tj (t < T ),

for all i = 1, 2, ...N and j = 1, 2, ...M . The instantaneous proportional change in the

forward price is approximated by

dF (ti, Tj)

F (ti, Tj)
=

F (ti, Tj)− F (ti−1, Tj)

F (ti−1, Tj)
= xi,j (3)
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The data set X(N,M) is a matrix of returns (3) constructed from the fitted forward price

curve and swap price curve

X(N,M) =




x1,1 x1,2 . . . x1,M

x2,1 x2,2 . . . x2,M

...
...

. . .
...

xN,1 xN,2 . . . xN,M




(4)

The matrix entries are obtained in the following way. First, the forward curves are

derived from the swap price data using Järvinen (2002). The forward curves are then

used to find the individual forward price observations. From these observations, the

percentage differences are calculated. This procedure is replicated until the whole matrix

is filled.

The data used in this study consists of weekly NBSK Risi pulp data covering the

period between June 1998 to October 2001 and of monthly oil data (European Brent)

covering the period between February 1997 to February 2002. The data was obtained

from Nordea Bank Finland. The interest rate data used in estimation consists of Libor

rates and zero rates. The European interest rate data consists of EuroLibor quotes and

zero rates until 1.1.1999; from that date onwards the data consists of Euribor quotes

and zero rates. The interest rate data was retrieved from DataStream. The commodity

data consists of mid market quotes. Tables 1 and 2 report the summary statistics for

NBSK Risi pulp forwards and swaps, and Tables 3 and 4 report the summary statistics

for Brent oil forwards and swaps.
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Table 1: NBSK Risi Forwards Summary Statistics

Statistic Index 6m 1y 2y 3y 5y
Mean -0.0009 -0.0004 -0.0004 -0.0004 -0.0004 0.0000
Standard Deviation 0.0167 0.0109 0.0116 0.0098 0.0109 0.0184
Kurtosis 9.2818 1.9003 2.2834 1.7928 1.5060 4.7249
Skewness -0.4417 0.6824 0.4424 0.0452 0.3460 0.2415
Range 0.1495 0.0688 0.0778 0.0646 0.0656 0.1514
Minimum -0.0755 -0.0306 -0.0327 -0.0324 -0.0305 -0.0555
Maximum 0.0741 0.0382 0.0451 0.0323 0.0351 0.0958
Count 177 177 177 177 177 177

Table 2: NBSK Risi Swaps Summary Statistics

Statistic Index 6m 1y 2y 3y 5y
Mean -0.0009 -0.0006 -0.0005 -0.0005 -0.0005 -0.0004
Standard Deviation 0.0167 0.0099 0.0101 0.0080 0.0073 0.0059
Kurtosis 9.2818 1.8828 2.4779 1.7625 0.9910 2.2131
Skewness -0.4417 -0.2175 0.4850 0.0794 -0.0438 0.3648
Range 0.1495 0.0626 0.0672 0.0537 0.0382 0.0343
Minimum -0.0755 -0.0333 -0.0289 -0.0279 -0.0188 -0.0169
Maximum 0.0741 0.0293 0.0383 0.0258 0.0194 0.0175
Count 177 177 177 177 177 177

Table 3: Brent Forwards Summary Statistics

Statistic Index 6m 1y 2y 3y 5y
Mean 0.0062 0.0024 0.0021 0.0051 0.0025 0.0008
Standard Deviation 0.1255 0.0650 0.0578 0.0547 0.0491 0.0630
Kurtosis 0.5542 0.4751 1.7357 1.3674 0.4552 0.5037
Skewness 0.3486 -0.1424 0.6150 0.5294 0.1060 0.5465
Range 0.6924 0.3386 0.3400 0.2950 0.2471 0.3165
Minimum -0.3059 -0.1754 -0.1299 -0.1239 -0.1235 -0.1340
Maximum 0.3866 0.1631 0.2101 0.1712 0.1236 0.1825
Count 62 62 62 62 62 62
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Table 4: Brent Swaps Summary Statistics

Statistic Index 6m 1y 2y 3y 5y
Mean 0.0062 0.0031 0.0018 0.0023 0.0024 0.0016
Standard Deviation 0.1255 0.0709 0.0645 0.0434 0.0383 0.0390
Kurtosis 0.5542 1.3295 1.0097 0.3944 0.3283 0.4677
Skewness 0.3486 0.2551 -0.4186 0.0352 0.0610 0.1655
Range 0.6924 0.4248 0.3501 0.2161 0.1887 0.1889
Minimum -0.3059 -0.1959 -0.2063 -0.1099 -0.0846 -0.0859
Maximum 0.3866 0.2290 0.1439 0.1062 0.1041 0.1030
Count 62 62 62 62 62 62

3 Curve Estimation

The first step in applying the principal analysis to the forward curve movements, is

to estimate the forward curves from the par swap quotes. To introduce the idea, we

consider a standard commodity swap contract, with maturity TN and a fixed contract

price G(t, TN). The present value of this fixed leg of the swap, given the discount bond

prices P (t, T ) is

V N
fx = G(t, TN)

N∑
i=1

P (t, Ti) (5)

i.e. a simple sum of the present values of the payments. The other side of the swap

contract, the floating leg, is composed of the present values of the unknown forward

prices of the commodity at settlement dates, i = 1, 2, ...N . That is,

V N
fl =

N∑
i=1

F (t, Ti)P (t, Ti) (6)

where forward prices may be based on average or single observation settlement values.

If we know the forward price curve, the par swap prices for all maturities, t ≥ T , can be

obtained by setting the values of the floating and fixed legs equal. Solving for the par
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swap price G(t, TN) gives

G(t, TN) =

N∑
i=1

F (t, Ti)P (t, Ti)

N∑
i=1

P (t, Ti)

(7)

which shows that the par swap price is defined as the ratio of the discounted value of

the floating price payments and an annuity. Therefore, analogously with interest rate

swaps, the par swap price can be interpreted as a present value weighted sum of forward

prices.

The method for extracting F (t, T )’s is based on the Optimization of Fit method,

introduced by Järvinen (2002). The method is applied by minimizing the sum of squared

pricing errors, which is an analogous idea to the option model calibration to observed

implied volatilities. The aim is to fit the observed swap prices as precisely as possibly

while maintaining a reasonable degree of smoothness in the output forward curve. The

target function of the minimization problem is

min
{Fi}N

i=1

[
N∑

i=1

(Vfl(t, Ti)− Vfx(t, Ti))
2 + λ

N∑
i=1

(F (t, Ti)− F (t, Ti−1))
2

]
(8)

where parameter λ is introduced to adjust the weight put on the forward curve smooth-

ness. The forward prices that are the solution of the problem are direct forward prices,

and not average-based. 3 For further of this procedure, see Järvinen (2002). The op-

timization problem can be solved using any suitable algorithm. The method utilized

in this paper is based on a simple gradient search using analytic derivatives. For ex-

planation on the various optimization algorithms, see Press, Teukolsky, Vetterling, and

Flannery (1992).

In choosing λ, two points need to be mentioned. First, if one picks λ = 0, then

the result of the optimization will converge to the bootstrapped curve and the target

69



function value will be equal to zero. In other words, an exact match can be obtained

using this method. On the other hand, if a high enough λ is chosen, then the final

forward curve will be flat, starting from the spot value S(t). Obviously, a reasonable

value from λ is such that a smooth, yet reasonably shaped and correctly pricing forward

curve will result. For the purposes of this study, λ is set equal to one. The decision is

based on experimenting with the algorithm, not explicitly on any measurable criteria.

4 Principal Components Analysis

Principal Components Analysis (PCA) is a statistical tool used to identify a structure

within a set of interrelated variables. Applying (PCA) to the data, the number of

orthogonal factors and the corresponding volatility coefficients (assuming that volatility

functions depend only on the time to maturity (T-t)) can be estimated. The data

consists of N observations of M different variables, i.e. percentage differences calculated

from curve points. Hence, the data matrix is given by (4).

The sample covariance matrix is of order M , and is denoted by ω. The orthogonal

decomposition of the covariance matrix is given by

Ω = CΛC′ (9)

where

C = [c1, c2 . . . cM] =




c1,1 c1,2 . . . c1,M

c2,1 c2,2 . . . c2,M

...
...

. . .
...

cN,1 cN,2 . . . cN,M




(10)
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and

Λ =




λ1,1 0 . . . 0

0 λ2,2 . . . 0

...
...

. . .
...

0 0 . . . λM,M




(11)

TheΛ-matrix is a diagonal matrix and the diagonal elements are the eigenvalues λ1,1, λ2,2, ..., λM,M .

C is an orthogonal matrix of order M . The columns of C are the eigenvectors corre-

sponding to λj,j. C
′ denotes the transpose of C. The matrix P = XC is the matrix of

principal components. The columns pj of P are linear combinations of the columns of

X, i.e. the j : th principal component is

pj = Xcj = x1c1j + x2c2j + . . . + xMcMj (12)

In order to explain all the variance in the sample, one needs to use all M principal

components. However, the main idea behind using (PCA) is to reduce the dimensionality

of the data. Therefore, the covariance structure is approximated by using K < M largest

eigenvalues. The larger the proportion of the explained variance, the better the objective

is achieved. The criteria for selecting K is somewhat ambiguous, since there exists no

clearcut statistical criterion for selecting significant eigenvalues, and hence, the number

of factors 4. Therefore the conventional methodology, employed in the majority of the

finance literature, is to add factors until the cumulative explained variance reaches a

specified limit; this procedure is also used in this study. In addition, financial derivatives

multifactor models usually aim at constructing a model that contains from two to four

driving factors. The proportion of the total sample variance explained can be found

using the following formula

CEVK =

∑K
j=1 λj∑M
j=1 λM

(13)

Where CEVK denotes Cumulative explained variance of first K factors.
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Table 5: NBSK Risi Fwds Correlations

Index 6y 1y 2y 3y 5y
Index 1 -0.01 -0.09 -0.06 -0.06 0.02
6m -0.01 1 0.85 0.06 -0.01 0.01
1y -0.09 0.85 1 0.17 -0.05 -0.12
2y -0.06 0.06 0.17 1 0.64 -0.36
3y -0.06 -0.01 -0.05 0.64 1 -0.03
5y 0.02 0.01 -0.12 -0.36 -0.03 1

Table 6: NBSK Risi Swap Correlations

Index 6m 1y 2y 3y 5y
Index 1 0.48 0.23 0.15 0.07 0.07
6m 0.48 1 0.62 0.62 0.4 0.47
1y 0.23 0.62 1 0.83 0.6 0.51
2y 0.15 0.62 0.83 1 0.73 0.6
3y 0.07 0.4 0.6 0.73 1 0.67
5y 0.07 0.47 0.51 0.6 0.67 1

5 Empirical Results

Tables 9 and 10 show the results from the PCA analysis applied to both data sets.

Empirical results are markedly different, a one factor model is able to explain 62 percent

of the variation of returns of the Brent forward prices, whereas it can explain only 38

percent of the returns in the case of NBSK Risi prices. The explanatory power of one

factor model, in particular for NBSK Risi pulp, is very low. The most likely reason for

this is the stickiness of the reference index price. NBSK Risi index prices are published

only monthly, whereas the swap quotes change, in principle, daily, and in most cases at

least weekly. Inspection of the empirical correlation matrices (see Tables 5 and 6) reveal

that movements of the NBSK Risi pulp prices are almost non correlated (particularly in

the short term) whereas correlations of oil price movements are clearly stronger (Tables

7 and 8).
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Table 7: Brent Fwd Correlations

Index 6m 1y 2y 3y 5y
Index 1 0.36 0.14 -0.25 -0.13 -0.13
6m 0.36 1 0.84 -0.03 0.08 -0.02
1y 0.14 0.84 1 0.26 0.33 0.17
2y -0.25 -0.03 0.26 1 0.86 0.71
3y -0.13 0.08 0.33 0.86 1 0.91
5y -0.13 -0.02 0.17 0.71 0.91 1

Table 8: Brent Swap Correlations

Index 6m 1y 2y 3y 5y
Index 1 0.78 0.63 0.47 0.3 0.16
6m 0.78 1 0.87 0.74 0.53 0.33
1y 0.63 0.87 1 0.88 0.68 0.46
2y 0.47 0.74 0.88 1 0.93 0.77
3y 0.3 0.53 0.68 0.93 1 0.93
5y 0.16 0.33 0.46 0.77 0.93 1

If more factors are used, then the difference in explanatory power of PCA decreases

considerably. A two factor model is able to explain 81 and 63 percent of variation in price

returns and a three factor model can explain 89 and 84 percent. Using the eigenvalue

criterion that only eigenvalues greater than one are considered significant, the analysis

would select a three factor model for Brent and a four factor model for NBSK Risi

pulp. For practical modelling purposes, 90 percent has often been considered a minimal

threshold. If this criteria is used, then both data sets need a four factor model to explain

enough variation of returns. The plotting of eigenvalues for NBSK Risi pulp and Brent

oil forward prices are shown in Figures 1 and 2.

Inspection of the factor loadings, see Figures 3 and 4 (Tables 11 and 12), provides

more insight on how the dynamics of the forward curves are determined. The most strik-

ing finding of the analysis is that contrary to the factor structure found in many other
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Table 9: NBSK Risi Fwd Eigenvalues

Eigenval Variance (% total) Cumul Eigenval Cumul %
7.610 38.051 7.610 38.051
5.001 25.006 12.611 63.057
4.278 21.390 16.889 84.447
1.656 8.280 18.545 92.727
0.669 3.346 19.215 96.073
0.108 0.539 19.322 96.612
0.058 0.289 19.380 96.901
0.048 0.240 19.428 97.141
0.048 0.240 19.476 97.380
0.048 0.238 19.524 97.619

Table 10: Brent Fwd Eigenvalues

Eigenval Variance (% total) Cumul Eigenval Cumul %
12.378 61.888 12.378 61.888
3.842 19.210 16.220 81.098
1.627 8.135 17.847 89.233
0.932 4.659 18.778 93.892
0.330 1.651 19.108 95.542
0.217 1.083 19.325 96.625
0.053 0.266 19.378 96.891
0.050 0.248 19.428 97.139
0.048 0.241 19.476 97.380
0.048 0.239 19.524 97.619
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Figure 1: Plot of Eigenvalues (NBSK Risi Fwd)
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studies, see for example Litterman and Scheinkman (1988) and Cortazar and Schwartz

(1994), there seems to be no obvious level, slope and curvature factors. By contrast, the

factors obtained here exhibit much more complex shapes. There is no general factor that

would change the forward prices equally across the whole term structure. For example,

in the case of NBSK Risi, a shock to the first factor changes the very short term for-

ward prices upwards, albeit marginally, and the medium term forward prices downwards

and finally, the long term forward prices upwards. An interesting note is also that only

the first factor is important in explaining the variation in the very long forward prices

whereas all four factors have an important impact in explaining the movements in the

short end of the forward curve. The conclusion from the analysis of the factor loadings

is that when long term contracts are included in the estimation of the dynamics of the

forward curve, the complexity of curve changes increases dramatically. Possible expla-

nations for these results could be the strongly mean-reverting nature of the commodity

prices and the complex interplay between future demand and supply expectations and

also the possibility of storing these commodities for speculating or hedging. Another

possibility is that there are great differences in the liquidity of the contracts of differ-

ent maturities, and that the reference index value changes non-synchronously with the

prices of the swap contracts. It is likely that both these factors have an effect on the

estimation results.
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Table 11: NBSK Risi Fwd Factor Loadings

Factor 1 Factor 2 Factor 3 Factor 4
3 month 0.1286 0.4087 -0.4804 -0.3098
6 month 0.0461 0.5391 -0.6561 -0.4472
9 month -0.0444 0.5104 -0.6815 -0.4333
12 month -0.0992 0.5437 -0.7116 -0.2477
15 month -0.1437 0.6316 -0.6914 0.1920
18 month -0.1907 0.6210 -0.4666 0.5726
21 month -0.3033 0.6493 -0.1704 0.6459
24 month -0.4914 0.7227 0.2408 0.3678
27 month -0.5327 0.6310 0.5266 -0.0289
30 month -0.4893 0.5516 0.6181 -0.1880
33 month -0.4078 0.5487 0.6616 -0.2374
36 month -0.1616 0.6409 0.6822 -0.2434
39 month 0.4938 0.6775 0.4853 -0.1397
42 month 0.8639 0.4303 0.1604 0.0042
45 month 0.9337 0.2831 0.0601 0.0524
48 month 0.9520 0.2124 0.0559 0.0628
51 month 0.9592 0.1691 0.0739 0.0635
54 month 0.9624 0.1388 0.0891 0.0630
57 month 0.9639 0.1200 0.0967 0.0630
60 month 0.9643 0.1135 0.0987 0.0632
Expl.Var 7.6102 5.0011 4.2780 1.6561
Prp.Totl 0.3805 0.2501 0.2139 0.0828
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Table 12: Brent Fwd Factor Loadings

Factor 1 Factor 2 Factor 3 Factor 4
3 month -0.1198 -0.5095 0.5732 -0.5889
6 month -0.0133 -0.8371 0.3798 -0.3023
9 month 0.1552 -0.9329 0.0182 0.1437
12 month 0.2625 -0.8840 -0.1496 0.3018
15 month 0.4091 -0.8136 -0.2359 0.2296
18 month 0.6779 -0.5946 -0.3486 -0.0340
21 month 0.8166 -0.1628 -0.4142 -0.2615
24 month 0.8263 0.0900 -0.3969 -0.2973
27 month 0.8764 0.1521 -0.3237 -0.2454
30 month 0.9237 0.1429 -0.1991 -0.1520
33 month 0.9266 0.1518 -0.0978 -0.0732
36 month 0.9329 0.1509 -0.0256 -0.0258
39 month 0.9578 0.0879 0.0582 0.0076
42 month 0.9644 -0.0006 0.1500 0.0383
45 month 0.9511 -0.0266 0.2126 0.0646
48 month 0.9389 0.0060 0.2484 0.0873
51 month 0.9280 0.0636 0.2702 0.1076
54 month 0.9153 0.1209 0.2859 0.1252
57 month 0.9023 0.1649 0.2982 0.1391
60 month 0.8926 0.1905 0.3068 0.1480
Expl.Var 12.3776 3.8420 1.6270 0.9317
Prp.Totl 0.6189 0.1921 0.0814 0.0466
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Figure 3: Plot of Factor Loadings (NBSK Risi Fwd)

Figure 4: Plot of Factor Loadings (Brent Fwd)
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6 Conclusions

This paper has investigated the dynamics of the commodity forward price curves using

the principal components analysis on the Brent oil and NBSK Risi pulp data. The

forward curves have been estimated using the fitting method, presented in Järvinen

(2002). The data consists of broker swap quotes from 1998 to 2002 for Brent and from

1997 to 2002 for NBSK Risi. The longest maturity swaps are five years. The principal

component analysis was conducted on the percentage changes of the forward prices from

the fitted forward curves.

The main findings of the study are: At least three and even four factors are needed

in order to adequately model the dynamics of the forward curves for both data series.

Interestingly, the factor structures of the markets analyzed are markedly different, and

furthermore do not resemble the structures found in earlier studies: level, slope and

curvature. By contrast, the results derived in this paper reveal that the short-end of the

curve is very demanding from the modelling perspective. In contrast, the long-end of the

curve exhibited simpler dynamics. Possible reasons for these findings include: complex

demand, supply and storage dynamics leading to non-synchronously moving forward

prices, in particular, in the short-end of the curve; liquidity and reliability of the swap

quotes from which the forward curves are derived; and stickiness of the reference index

quotes that provide the pseudo spot index value for the fitting algorithm. Finally, the

results are naturally dependent on the forward curve estimation algorithm. Since the

forward curve points cannot be estimated uniquely from the swap data, a fitting method

is necessary in order to obtain the forward curves.

This paper provides the first documented results of applying PCA to model the

dynamics of the commodity forward curves using long term swap contract data. Earlier

studies have used readily available futures data. As the OTC market for long term

commodity derivative contracts is growing rapidly, more research is needed in order to
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investigate the statistical behavior of the prices of these contracts. As new data arrives

at an expanding rate, this provides the academic community fruitful opportunities to

investigate the subject further. Moreover, since the futures markets are often very liquid

and usually proxy the spot price better than reference index values, future studies might

benefit from integrating these two markets in order to study the term structure dynamics.

Notes

1The equivalent martingale measure is commonly called the risk-neutral measure, in particular in

the applied research.

2This is strictly correct only in continuous time

3By direct forward prices we mean forward prices that apply to single settlement date values. On

the contrary, average forward prices contain resets from the start of the forward period to the end of

the forward period.

4Criteria discussed in the literature includes: 1) Scree plot test: the test is carried out by graphical

inspection of the eigenvalue plot; eigenvalues are added until the plot levels off. 2) Eigenvalue criterion:

eigenvalues that are greater than one are considered significant.
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ESSAY 3:

Simple Binomial Model for Bermudan Swaptions

Abstract

This paper presents a model for pricing Bermudan swaptions in a standard binomial

tree. In particular, we adopt the equal probability specification of Jarrow and Rudd

(1983). The model is extremely simple and efficient to implement, but the most obvious

gain comes from its intuitive nature and its ability to incorporate market information

without calibration. The methodology involves the computation of recombining Markov

lattices for every floating leg underlying the swaption. An option tree is constructed and

used to value a Bermudan swaption. We give examples of applying the model to price

interest rate and commodity swaptions.
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A BERMUDAN SWAPTION is an option which, at each predetermined date in

the exercise schedule, gives the owner the right to enter into a swap, either to pay fixed

(payer swaption) or receive fixed (receiver swaption). The importance of Bermudan type

swaptions arises from the widespread use of call features in the issuance of corporate

and government bonds. Bermudan swaptions provide hedges for these bonds and the

Bermudan swaption pricing models can also be used to estimate the value of the call

provision for the benefit of both the issuer and the investor.

The most popular models for pricing Bermudan swaptions are low-dimensional (typ-

ically one-factor, sometimes two factors). Familiar models include classics such as BDT

Black, Derman, and Toy (1990) and HW Hull and White (1990) among many others.

The popularity of these well-known one-factor models comes from their low-cost im-

plementation in the binomial (or trinomial) lattices. Moreover, lattices are generally

preferred to Monte Carlo methods in the pricing tasks that involve estimation of the

early-exercise premium, since using lattices this can be done in a straightforward fashion

1. It is often claimed that the convenience of one-factor models comes at a cost, since

we are restricted to evolve the whole spectrum of rates using only one driving Brownian

motion. This severely limits the possible shapes that the yield curve may obtain in

the future and also forces the yields to move in tandem. Whether this is a practically

relevant, restrictive feature or not is still to be proved. Empirical evidence is, to date,

weak and mixed.

In the implementation of the models above, the BDT model comes closest to the

market practice, since under this model the interest rates follow the lognormal law.

However, there is a drawback: The nodes in the binomial lattice have to be solved

numerically, since analytical formulae do not exist 2. Furthermore, it is not enough to

build the tree until option expiry. The tree has to be evolved up until the maturity of

the underlying swap. By contrast, the HW model is analytically more tractable, but
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problems arise due to underlying Gaussian law for the rates. The normal distribution

of the interest rates is not what the market assumes and, moreover, it follows that the

rates can be negative at positive probability in the HW model. Finally, the calibration

to market data is less transparent than in the BDT model, since the volatilities of the

rates in HW are absolute, not proportionate to the level of rates as the market implicitly

assumes.

To introduce a more realistic framework for the modeling of yield curves, many

authors have proposed the so-called market models Miltersen, Sandmann, and Sonder-

mann (1997) and Brace, Gatarek, and Musiela (1997), LMM’s (Libor Market Models)

and their implementation specific variations. These models describe the evolution of

the market quantities (Libor rates), rather than the instantaneous rates of preceding

models. The change of modelling standpoint allows for lognormal forward Libor rates.

This assumption coincides with the market practice of pricing caps. Therefore, interest

rate caps can be priced using an analytical formula and, hence, calibration to market

data is straightforward. The purpose of the LMM’s is to model the yield curve in a

consistent way, using multiple factors to better capture imperfect correlation properties

of forward rates. The inclusion of many factors makes it harder to implement tree meth-

ods. Therefore, Monte Carlo techniques must be used instead. This field of research has

grown tremendously during the past decade, see for example Broadie and Glasserman

(1997), Barraquand and Martineau (1995), Carr and Yang (1997), and Longstaff and

Schwartz (2001) for various methods to incorporate the value of early exercise into the

Monte Carlo method. One of the major motivations behind the popularity of this area of

research has been to enable pricing of Bermudan swaptions in the LMM’s, see Andersen

(1999) and Pedersen (1999).

While the field of yield curve modelling continues to flourish, there still exists the

problem of finding a reliable way to model the curve evolution. The empirical evidence
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has been discouraging and the intuition of the model is easily lost if the model contains

multiple driving factors. While multifactor models are intuitively the hardest models to

understand and use in practise, the one-factor models have their own problems too. The

first and obvious one is the calibration. The HW model for example is Gaussian and

must be fitted to a lognormal market, using the parameters of the stochastic differential

describing the motion of the hypothetical short rate. BDT, on the other hand, is less

analytical and more market oriented.

The method presented in this paper is based on a simple idea of pricing, in an

arbitrage-free manner, the European swaptions underlying the Bermudan swaption.

Each of the Europeans will be priced using their individual, broker quoted, volatilities.

The forward swap rates are recovered exactly from the swap curve. Hence, there is no

need for any kind of calibration whatsoever. Moreover, from an intuitive point of view,

using the European swaption volatilities as inputs in the pricing along with the forward

swap rates means the trader will have a greater degree of trust in the pricing procedure.

The pricing procedure goes as follows: first we build trees of underlying forward floating

legs of the swap, using the volatilities of the European swaptions. In fact, we only need

to produce the end node values. After that we can compute the Bermudan option tree

in a standard way of working from back to the root and checking for early exercise. The

pricing method is very efficient, since along with the avoidance of any calibration, we

can use a lattice similar to the famous Cox, Ross, and Rubinstein (1979) or Jarrow and

Rudd (1983), the latter being more suitable for this type of implementation. In addition

to presenting the algorithm for standard interest rate Bermudan swaptions, we extend

the analysis to cover the case of the commodity Bermudan swaption. For applications of

the swap market models, Jamshidian (1997) has proposed pricing Bermudan swaptions

using an ordinary binomial lattice in order to get quick and accurate results. He does

not, however, present details of the implementation.
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The rest of this paper is organized as follows: Section 2 introduces the notation,

the general ideas of the swap derivatives and the standard binomial pricing model. In

Section 3, we develop the model and show how the pricing of the Bermudan swaptions

can be done in this framework. Section 4 contains numerical examples of pricing and

hedging of a Bermudan swaption within the model framework and compares the results

with the BDT prices. In Section 5, an application to handle the commodity Bermudan

swaptions is presented. Section 6 concludes the paper and suggests further research.

1 Notation, Swap Derivatives and Binomial Pricing

In this section, we review the fundamental background of swap and swap derivatives.

We also present an application of the famous Cox, Ross, and Rubinstein (1979) (CRR)

type binomial tree for the pricing of European swaptions. This will provide us with a

tool for extending the model to price Bermudan type swaptions. We start by introducing

the basic notation and concepts of swap derivatives, concentrating first on the interest

rate swaption.

The fundamental building blocks of the interest rate derivatives are zero coupon

bonds. The value at time t of a zero coupon bond maturing at Ti is denoted by P (t, Ti).

It is assumed that the zero coupon bond exists for every maturity Ti. The par swap rate

is a fixed interest rate that equalizes the present values of the floating and fixed legs.

The value of the floating leg at time t is given by

Flt = P (t, T0)− P (t, TN) (1)

where the subscripts 0 and N denote the start date and the end date of the contract.

The derivation of this result is straightforward and can be found in Rebonato (1996).

The value of the fixed leg at time t is the value of an annuity with tenor structure τ 3.
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In mathematical notation, this is expressed as

Fxt = Xτ
∑N

i=1
P (t, Ti) (2)

where X is the fixed rate of interest. Hence, we write the par (spot or forward) swap

rate as

St =
P (t, T0)− P (t, TN)

τ
∑N

i=1 P (t, Ti)
(3)

So, the derivation of the values of the floating and fixed legs of any swap at any time

t requires only knowledge of the discount function. Similarly, any forward swap rate is

instantaneously recovered from the discount function. Note that in the calculation of

the spot swap rate, the numerator becomes P (t, t)−P (t, TN) = 1−P (t, TN ). The above

definitions show that the fundamental quantities in the swap market are very easy to

derive. The market practice for extracting the P ’s is to bootstrap the par swap curve

to get the zero coupon bonds for maturities 1, 2, 3 etc years. The intermediate zero

coupon prices can be obtained via some interpolation method.

1.1 Standard European Swaption Formula

The underlying model used in this paper is a version of the famous Black (1976) for-

mula applied to swaptions. In this formula, the floating leg of the swap is treated as

a stochastic variable whereas the value of the fixed leg is a constant annuity (the dis-

counting factor). The present value of basis point PVBP τ
∑N

i=1 P (t, Ti) is used as the

martingale measure. Therefore, the floating leg discounted using this numeraire (i.e. the

forward swap rate), will be a martingale. The stochastic differential of the forward swap

rate, under the forward swap measure Q, is

dSt = σStdW̃t (4)
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where dW̃t is the standard Brownian motion under Q. Hence, the European swaption

(payer) price is given by the following well-known formula

Payert = FltN (h1)− FxtN (h2) (5)

where

h1 =
ln (Flt/Fxt) + 1/2σ2T

σ
√
T

, h2 = h1 − σ
√
T

and N(·) represents the cumulative standard normal distribution function. In this form,

the European payer swaption formula has the most convenient representation. The

formula for the receiver swaption can be obtained directly from the put-call parity.

The Black (1976) model for European commodity swaptions is derived in Järvinen and

Toivonen (2002).

1.2 Binomial Approximation

We now illustrate how the standard binomial model of Cox, Ross, and Rubinstein (1979)

is used for calculating the price of a European swaption. We start by defining the risk-

neutral probability for a futures market.

q =
1− d
u− d =

1− e−σ
√

dt

eσ
√

dt − e−σ
√

dt
(6)

where σ is the volatility of the forward swap rate and dt equals time to maturity of the

swaption divided by the number of periods in the binomial tree. Therefore, the floating

leg of the swap evolves as follows
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The requirement u > 1 > d is enough to guarantee that the model is arbitrage-free.

To enable calculations of option prices using the model, we construct a binomial tree for

the value of the floating leg as follows

EXHIBIT 1 Standard Binomial Tree of the Floating Leg Value
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In the binomial model above, index i runs from 0 to N (number of periods in the

tree). It is a well-known fact that in order to price American options, we must calculate

option values in every node to find out whether it pays off to exercise early or not (the

optimal stopping problem). However, in the case of European options, the above tree

reduces to the calculation of the probability-weighted average of the option values at the

end nodes. The formula for European payer swaption is

Payert =
N∑

i=0

N !

i!(N − i)!q
i(1− q)N−i max

[
uidN−iFl − Fx, 0] (7)

Note that there is no explicit discounting in the formula. The discounting is implicit,

since Fl and Fx are already present values This is how the original CRR model is applied

to price European swaptions. In what follows, we will change the probabilities from q

to 1
2
in order to make the computations more efficient. This change of probability also

affects both the up and the down factors. The details can be found in Jarrow and Rudd

(1983).

2 The Binomial Model for Bermudan Swaptions

The object of analysis here is a Bermudan swaption with exercise dates T1, T2, ..., TN . We

consider a time interval 0 � t � TN . At this interval, there exists a collection of European

swaptions Ot,Ti
and spot swaps St,Ti

with maturity dates Ti. The economic setting is

a frictionless financial market where a given set of swaps and European swaptions are

traded on a given finite time interval (all time points mentioned below are assumed to

fall within this interval). The interval between trades is of length ∆ > 0, measured in

units of time. The total number of steps until the final maturity date is n and steps to

each Ti (maturity date), is given by Ti/∆.
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In order to construct a feasible and efficient binomial tree, we set the probabilities

of up and down movements equal to 1/2. The continuous-time dynamics of the forward

swap rates are given by (4) with the same Wiener process driving all the forward swaps,

but with separate volatility parameters. There exists a zero coupon bond for each Ti,

denoted by Pt,Ti
. We start by approximating the dynamics of the forward floating leg

processes using the discretization

FlTi,Ti,TS
= Flt,Ti,TS

exp

(
−

∑Ti/∆

k=1

σ2
Ti

2
∆ +

∑Ti/∆

k=1
σTi
ρk

√
∆

)
(8)

where TS denotes the time of maturity of the swap underlying the option. The random

variables ρ can take values in 1 and -1 with probability 1/2 for each realization. The

random variables are independent and identically distributed. In addition, they are the

same for all forward floating legs. In the limit, the discrete process (8) converges to its

continuous-time counterpart

FlTi,Ti,TS
= Flt,Ti,TS

exp

(
−σ

2
Ti

2
Ti + σTi

WTi

)
(9)

The volatility parameters in (8) and (9) can be obtained directly from the volatility

matrix for European swaptions. Hence, we construct a binomial tree for each floating

leg, FlTi
, using the market volatilities in equation (8). The initial, time 0, values for

each FlTi
are calculated directly from the discount curve, using equation (1).

With the given set up, we can now proceed by building a binomial tree for FlTN
,

i.e. the floating leg underlying the longest maturity European swaption. This represents

the last exercise opportunity of a Bermudan swaption and therefore gives the end-node

values for the binomial tree. To simplify notation somewhat, we drop the subscripts

denoting the maturity of the floating and fixed legs. It should be clear that for each

floating and fixed leg, the maturity is equal to the last exercise opportunity of the
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Bermudan swaption plus the remaining term. Now, the final node values are given by 4

max
[
Flj

TN
− FxTN

, 0
]

(10)

with Flj
TN

’s obtained from equation (8). FxTN
is the exercise price, taken from the

initial discount curve. After the end node values have been calculated for each state j,

using (10), the recursive valuation methodology can be applied. From the last exercise

opportunity, we move on to consider exercising at date TN−1. As the exercise opportuni-

ties of Bermudan swaptions occur usually annually or semi-annually, we do not have to

consider each step, as in the American option case. Instead, it is enough to step straight

to the time point where there is potentially an early exercise opportunity. The value of

a Bermudan swaption at the second last exercise opportunity is given by

max
[
Flj

TN−1
− FxTN−1

,Ej
TN−1

[max [FlTN
− FxTN

, 0]]
]

(11)

where the expectation is a conditional expectation evaluated at each particular node j.

The graph below illustrates this

EXHIBIT 2 Calculation of conditional expectations

The optimality of early exercise is checked using (11). The next step is to make the
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analogous calculations for the preceding steps, the general formula for this is

max
[
Flj

Ti−1
− FxTi−1

, BOj
Ti

]
(12)

where BOj
Ti

is the expected value, at time Ti−1 of the Bermudan swaption at time Ti,

i.e. at the next exercise opportunity. The expected value is calculated for every state

of nature j. Therefore, we calculate the value of the Bermudan swaption using iterated

conditional expectations so that the probabilities are set to 1/2. Moreover, the binomial

distributions of the underlying floating leg values are generated using the market quoted

volatilities (potentially different for each underlying floating leg) and the initial values

of the floating legs are extracted directly from the discount curve. To find the present

value of the Bermudan swaption, we finally calculate the expected value today of the

Bermudan swaption at the first exercise opportunity, T1.

2.1 Market Data

To implement the binomial pricing algorithm for pricing Bermudan swaptions, we first

need to supply the necessary market data. This data includes the par swap curve and

the volatility matrix for European swaptions. In order to calculate the initial values of

the floating leg and fixed leg (strikes) values, a bootstrapping method need to be used

to find the discount bond prices. After that, the required variables are calculated using

equations (1) and (2).

The volatility matrix for European swaptions gives the Black (1976) swaption volatil-

ities for at-the-money swaptions. On the other axis are the maturities of the underlying

swaps, whereas the other axis gives the swaption maturities. Therefore, in order to price

a ten-year Bermudan swaption using the binomial model presented here, we need to

read specific entries from the volatility matrix. Of course, the entries in this case are
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1y/9y, 2y/8y, 3y/7y,...,9y/1y. Here the first and second numbers represent the swap-

tion maturity and the underlying swap maturity, respectively. These volatilities are the

volatilities of the European swaptions maturing at the time of exercise opportunities of

the Bermudan swaption. Each European swaption has the same term for the underlying

swap as the Bermudan has, should it be exercised.

Working with the volatility matrix presents two difficulties in practice. The first

is a mismatch of the tenors of the European swaptions and the Bermudan swaption

that should be valued. This problem is easily overcome by using a two-dimensional

interpolation scheme. The second problem is due to the volatility matrix data being

quoted for at-the-money European swaptions. Almost always, the Bermudan swaption

has a constant strike yield. Therefore, at-the-money European swaption data is not fully

appropriate for valuation. A reasonable remedy for this would be to obtain smile data

directly from brokers, at least for the most valuable European swaptions.

2.2 Variable Strike Bermudan

Using the binomial algorithm in pricing a Bermudan swaption with a variable strike is

straightforward. As the strikes in the OTC interest rate option market are quoted as

rates, we only need to apply these strike rates in the calculation of fixed leg values for

individual exercise opportunities. Obviously, if the strike rates deviate significantly from

the quoted at-the-money rates, then the volatility matrix figures need to be adjusted.

2.3 Hedging Parameters

Derivation of the hedging parameters is similar to the standard binomial model. How-

ever, in this case, there is a freedom in the choice of the hedging instrument, i.e. which

of the underlying forward swaps to use. From the available choices, there are two that
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stand out. The first is to use the forward swap underlying the most valuable European

swaption. Since the value of that instrument accounts for a large part of the value of

the Bermudan swaption in total, it is likely that the hedging error is not going to be

exceedingly large if that particular forward swap is used . The second good alternative

is to use some combination of the underlying forward swaps. This reduces the effect of

the yield curve risk in case of non-parallel movements. Conceptually this is similar to

bucket management of risk. Analysis and management of risk based on bucketing is a

widely-used approach in practice.

The formula for calculation of the Delta is

Deltat

(BOup
t

−BOdown
t

)

(uTi
− dTi

)Ft,Ti

(13)

where

uTi
= e−

σ2
Ti
2

∆+σTi

√
∆

dTi
= e−

σ2
Ti
2

∆−σTi

√
∆

(14)

3 Numerical Examples

We illustrate the use of the binomial model by applying it to the pricing of a Bermudan

interest rate swaption. In addition, we compare the prices given by the binomial model

to BDT model values.

Further assume that we want to price a Bermudan payer swaption with the maturity

of two years, exercisable after one or two years. Suppose that the initial data values are

as follows and the strike rate is 6.00. As indicated previously, the probabilities in the

tree are 1/2 throughout.
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The data: N = 2, K=1, D=0.5, and

time swap rate volatility

t = 0.5 swap = 0.048

t = 1 swap = 0.051 vol = 0.13 (swap 2y)

t = 1.5 swap = 0.054

t = 2 swap = 0.056 vol = 0.15 (swap 1y)

t = 2.5 swap = 0.057

t = 3 swap = 0.058

From the initial swap market data, we calculate the values of the floating and the

fixed legs (strike prices) and the corresponding value trees using the dynamics given by

(8). The resulting trees with end-node option values are shown in Exhibit 3 below
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EXHIBIT 3 Binomial Evolution of Floating Legs and End Node Values of

a Payer Swaption with Strike 6.00%

Using the formula (7), the current price of the European payer swaption with time

to maturity of two years and the underlying swap length of one year is

EOt = 0.54 ∗ (0.031 + 4 ∗ 0.016 + 6 ∗ 0.003)

= 0.0071

To price a Bermudan swaption, we need to check the possibility for early exercise. We

start by observing the intrinsic values at the end nodes of the 2y/1y tree. Using these

values we calculate the prices of Bermudan options at end-nodes of the 1/2 tree (the

first exercise opportunity). According to equation (11), we find that in the upper node,
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the value of the Bermudan swaption with strike rate 6.00% is

max [0.1304− 0.1044, 0.25× 0.0317 + 0.5× 0.0159 + 0.25× 0.0032] = 0.0260

Hence, early exercise is optimal. Similar calculations give: 0.0056 (no early exercise)

for the middle-node and 0.0008 (no early exercise) for the lower-node. Finally, we can

calculate the present value of the Bermudan swaption as follows

BOt = (0.25× 0.0260 + 0.5× 0.0056 + 0.25× 0.0008) = 0.0095

In order to calculate the delta we need the up and down values for the Bermudan

swaption. In addition, assume that we are going to implement the hedging with the

two-year swap starting after one year. The Delta parameter in this case becomes

Deltat =
(0.0158− 0.0032)

(1.1009− 0.9160)× 0.1076
= 0.6332

The procedure described here illustrates how the Bermudan swaption values can be cal-

culated using a very simple binomial algorithm. In practise, the number of steps between

the exercise opportunities would usually be between 100 and 1000. The algorithm is very

quick, so this does not present any problem.

To gain some insight on how the binomial model values Bermudan swaptions, we

compare the simple binomial model with the BDT model that is widely used by market

participants. We fitted the BDT model to market data using a tree with 100 steps. Three

different yield curve environments were used: flat, linear upward and linear downward.

The volatility structure was flat in all cases, but the level varied from 10 to 20 percent. In

calculating the option values, we set the number of steps between exercise opportunities

to 100. The results are shown in Exhibit 4 below
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EXHIBIT 4 Simple Binomial Algorithm and BDT Model Compared

Exhibit 4 shows that, in general, the prices given by the simple binomial model and

the BDT model are fairly similar. The shorter maturity swaption prices, in particular,

are almost equal. With longer maturity swaptions, the divergence is more pronounced,

increasing with the level of volatility. This may be due to the fact that the valuation

tree is relatively scarcely sliced. Given that the binomial algorithm is far simpler to

implement, calibrates automatically, doesn’t need an iterative algorithm to solve for

node values, it provides a good alternative to the traditional interest rate models for

valuation of Bermudan type swaptions. In particular, if the aim is a quick and reliable

valuation using market data, then the best method is to implement the simple binomial

algorithm presented in this paper.
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4 Application to Commodity

It is possible to extend this simple binomial model to handle commodity Bermudan

swaptions as well. Although the model is overly simplistic in the assumed dynamics

(i.e. one driving Brownian motion for the set of forward par swap prices, scaled by the

individual constant volatility parameters) it is still an applicable method in the presence

of suitable market data. The model implemented here closely resembles the ideologies

put forth in the papers by Reisman (1991) and Cortazar and Schwartz (1994). That is,

instead of modelling forward prices through the stochastic model for the spot price and

net convenience yield, the dynamics of the prices is exogenously given. In that sense,

the effect of a stochastic net convenience yield, which is able to generate mean-reversion

to the prices and affect the volatility structure is ignored. It is fair to say that in the

absence of reliable market data on both the forward prices and forward price volatilities,

the model is not applicable in practice. However, if one does have good data to use

and a liquid market to trade in, then even this simple one-factor implementation is

able to produce useful results. A recent paper by Driessen, Klaassen, and Melenberg

(2003) shows that the hedging performance of one-factor versus multi-factor models

is approximately equal if one uses a many underlying instruments i.e. bucket hedging,

which is a common practice among trading institutions. Even though they analyzed data

on US interest rate cap and swaption prices, the general observation of the disappearing

advantage of multi-factor models when implementing bucket hedging strategies is likely

to be valid when applied to other markets and instruments as well.

In order to describe how the model is to be adjusted for handling commodity Bermu-

dan swaptions, we need to redefine the underlying variables: the value of the floating

leg and the value of the fixed leg. The present value of the floating price leg at time t is
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given by

Flt =
N∑

i=1

F (t, Ti)P (t, Ti) (15)

where F (t, Ti)’s are the implied forward prices from the forward curve. See Järvinen

(2002) for various methods to handle the derivation of the forward curve from swap

quotes. In commodity implementation, the value of the floating leg has to be calculated

forward price by forward price and the sum of the discounted forward prices finally gives

the present value of the floating leg of the swap. The value of the fixed leg at time t is

given by

Fxt = X
N∑

i=1

P (t, Ti) (16)

Note that there are no day count conventions used, since the fixings of a commodity

swap are defined as notional multiplied by the fixed price, X. Multiplying these fixing

values by the appropriate discount factors gives the present value of the fixed leg.

Analogously with the analysis of the interest rate instruments, by setting the values

of the floating price and fixed price equal we can solve for the par forward swap price,

i.e. the forward swap that makes the present value of the contract zero. Solving for X

gives the par swap price St

St =

N∑
i=1

F (t, Ti)P (t, Ti)

N∑
i=1

P (t, Ti)

(17)

Moreover, we assume that the par swap price follows geometric Brownian motion with

the drift rate of zero, i.e. a gaussian martingale process for the log par swap price.

Hence, the European commodity swaption prices can be calculated by using the standard

Black (1976) formula, i.e. equation (5). Järvinen and Toivonen (2002) presents detailed

arguments for arriving at this result.

After the underlying variables have been calculated to enable the building of the
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multilayer binomial tree, the rest of the analysis is analogous to the interest rate case.

In contrast to the interest rate market, where data on European swaption volatilities

on both maturity and strike axis is available, the data from the commodity derivatives

market is definitely more difficult, if not impossible, to obtain. Therefore, the practical

applicability of this pricing methodology is suspect, or at least varies across commodity

types.

5 Conclusion

A simple binomial algorithm enables the calculation of Bermudan swaption values and

hedges very efficiently. More importantly, it enables inclusion of the market volatilities

and forward swap rate information instantly, without the need for any sort of calibration.

The algorithm itself is based on the standard binomial model, with probabilities set to

1/2. The underlying assumption is that there is only one source of randomness that

drives the values of all the forward swaps (or forward floating legs) simultaneously, each

weighted by their own Black (1976) market volatilities. Discounting is assumed constant.

It is demonstrated that the model prices do not differ much from the Bermudan

swaption prices given by the BDT model fitted to the yield curve. This suggests that,

in particular for those market parties who need a good and fast estimate of the value of

Bermudan swaptions or multi-call bonds, the algorithm provides a cost efficient valuation

method. Also traders, experienced with the Black (1976) model for European caps

and swaptions, will find the simple binomial algorithm a useful tool for the analysis of

Bermudan swaptions.
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Notes

1Recently, many feasible methods for adapting the Monte Carlo method to handle early-exercise

problems have been proposed. One of the major motivations for these studies have been to find ways

of implementing the multifactor Libor Market Models, LMM’s ( Brace, Gatarek, and Musiela (1997)

and Miltersen, Sandmann, and Sondermann (1997)) to price also Bermudan swaptions.

2Bjerksund and Stensland (1996) have proposed an analytical approximation.

3There exists various methods for calculating interest rate day count factors, τ . Some of the most

often used are act/360, act/act and 30/360, where act is the actual number of days applying to the

interest accrual period.

4For a receiver option, this becomes max
[
FxTN

− FljTN
, 0

]
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ESSAY 4:

Pricing European Commodity Swaptions

Sami Järvinen and Harri Toivonen

Abstract

In this paper, we present formulas for commodity swaptions. By utilizing the forward

price based approach we derive a simple closed form solution for European swaptions

based on the assumption of deterministic volatility for lognormal variables. The formulas

given result from applying the Margrabe (1978) exchange option concept to the present

problem. A special case of constant volatility yields the Black (1976) formula that has

been the market standard in the interest rate swaption markets for many years.
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Futures markets have been the traditional vehicle for participating in the commodi-

ties markets, and exchange-traded futures contracts on commodities have a long history

dating back to the 1800s. In fact, the first standardized derivative contracts were traded

on commodities. In recent years, the OTC market for commodity derivatives has also

expanded rapidly: BIS (2002) reports that the notional amount outstanding of OTC

commodity derivative contracts was USD 590 billion in June 2001 1. The increasing

financial importance of these products has also led to growing interest among academic

researchers.

Modelling the stochastic behavior of underlying commodity prices is important for

the valuation of contingent claims on commodities. Earlier studies on commodity deriva-

tives have concentrated on modelling the joint stochastic process for net convenience

yield and spot commodity price; a seminal paper along these lines is Gibson and Schwartz

(1990),2 who develop a two-factor model where the state variables are spot price and

mean-reverting instantaneous net convenience yield. Schwartz (1997) extends this ap-

proach by introducing three alternative stochastic models, where the most sophisticated

has three state variables: spot price of commodity, convenience yield and interest rate.

Miltersen and Schwartz (1998) present a different approach and extend earlier models

by utilizing information in the initial term structure of interest rates and futures prices,

thereby obtaining a more market-oriented model in the spirit of the classic Heath, Jar-

row, and Morton (1992) paper. In addition, by assuming normal distribution for instan-

taneous interest rates and convenience yields, Miltersen and Schwartz (1998) are able

to derive simple closed form solutions for futures and forward prices. Hilliard and Reis

(1998) present a three-factor model which allows for jumps in the spot price. In addi-

tion, they develop an equilibrium-based diffusion for the convenience yield process and

an arbitrage free term structure process. Hilliard and Reis (1998) make this choice for

applicability; convenience yield data is hard to obtain, but interest rate data is reliably

available.
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Hence, in practice, in order to price commodity derivatives, it is often more con-

venient to model the evolution of the forward variables instead of explicitly modelling

the spot variables, especially the rather abstract convenience yield. This approach was

pioneered by Black (1976). He priced options directly in terms of the forward price

of the underlying asset with general stochastic dividends, though he kept the interest

rates constant. Since then, the forward approach to arbitrage valuation of contingent

claims has gained popularity. Bick (1998) developed a general forward price based val-

uation framework and replication strategy. More recently, the numeraire change based

technique, formalized by Geman, Karoui, and Rochet (1995), has become the standard

tool for derivatives valuation, and it has been used to give mathematically formal jus-

tifications for many important pricing models, e.g. the Black formula for interest rate

swaptions, originally developed by Neuberger (1990) and later formalized by Jamshidian

(1997).

Chance and Rich (1996) have previously introduced a methodology for pricing com-

modity swaptions. However, in order to use their pricing formula in practice, one needs

to know the continuously compounded convenience yield. In this paper, we present

a valuation formula for a European commodity swaption, based on the forward price

approach, i.e. we specify the dynamics of the forward price exogenously. Within this

framework, no information regarding the stochastic process of the net convenience yield

is required in order to price commodity instruments. This approach simplifies the pricing

of commodity swaptions considerably. To the best of our knowledge, to date, there have

been no published studies where the forward based approach has been applied to the

pricing of commodity swaptions. We contribute to the existing literature by presenting

a general framework for pricing commodity swaptions using the change of numéraire

technique by Geman, Karoui, and Rochet (1995). Use of the forward price process is

arguably a more market-oriented approach than using the joint processes for spot vari-

ables. The results presented in this paper also include the effect on the pricing formula
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if one allows for stochastic interest rates.

The paper is organized as follows: An exact definition of a commodity swaption is

given in Section 1. The pricing formula for both the constant and stochastic interest

rates are derived in Section 2. Extensions are presented in Section 3. Finally, Section 4

discusses the validity of the approach and Section 5 concludes the paper.

1 Basic Definitions

A commodity swaption is an option that gives the holder a right to pay (payer swaption)

or receive (receiver swaption) a fixed price against the floating price of the underlying

commodity. In many ways, the commodity swaption is similar to the standard inter-

est rate swaption. However, there are some important differences: First, the notional

amount of the commodity swaption is in tonnes or barrels or other units of the underly-

ing commodity, whereas the notional amount of the interest rate swaption is a currency

amount. In addition, the settlement prices of the underlying swap are often calculated

from multiple price observations instead of a single observation that is typically the

case with interest rate swaps. The underlying instrument in the commodity swaption,

when it matures, is a spot commodity swap. However, it is often more convenient to

cast the actual pricing of the contract into the framework where forward start commod-

ity swap is used as the underlying instrument. Let us fix a collection of future dates

T0 = T < T1 < . . . < TN . The forward swap is a financial contract entered into at

trade date t < T0 with settlement dates T1 < ... < TN . Often the spot price of the

commodity or a proxy index, is observed daily or weekly between the settlement dates

and that value is then used as the settlement price. At each settlement date of the

swap, the other party pays the difference S(Ti) − X, where S(Ti) is the floating price

for settlement Ti and X is the agreed fixed price.
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A forward swap contract is composed of two legs, namely the floating price leg and

the fixed price leg. The present value of the floating price leg is given by

Vfloat =
N∑

i=1

F (t, Ti)P (t, Ti) (1)

i.e. it is the sum of the discounted forward prices. Usually, the swap contracts exist for

maturities far exceeding the longest dated available forward or futures contracts. By

contrast, the spot swap prices are quoted for maturities of many years, typically at least

five years. Therefore, the forward prices in (1) have to be implied from the swap market

data using a suitable estimation algorithm - see Järvinen (2002) 3.

The present value of the fixed price leg can be obtained by the following formula

Vfixed = X
N∑

i=1

P (t, Ti) (2)

So, the fixed price leg value is simply the sum of the discount factors for the settlement

dates of the swap contract multiplied by the fixed price of the swap. The sum of discount

factors is often called annuity. Both of the leg values are multiplied by notional per fixing

to find the actual currency denominated values. In equations (1) and (2), the notional

quantity is assumed to be one to simplify notation.

By setting the values of the floating price and fixed price leg values equal, we can

solve for the par forward swap price, i.e. the forward swap which makes the present

value of the contract zero. Solving for X gives

X =

N∑
i=1

F (t, Ti)P (t, Ti)

N∑
i=1

P (t, Ti)

(3)

The payoff of the European commodity swaption can be defined as the maximum of the
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values of the floating price leg and the fixed price leg. We have for the payer swaption

C(T0) = max [Vfloat(T0)− Vfixed(T0), 0] (4)

and for the receiver swaption

P (T0) = max [Vfixed(T0)− Vfloat(T0), 0] (5)

In effect, the payer swaption is a call on the floating price leg, and the receiver swaption

is a put on the floating price leg. From the homogeneity of the payoff functions (4) and

(5), it follows that we can rewrite the payoffs as

C(T0) =
N∑

i=1

P (T0, Ti)×max [S(T0)− X, 0] (6)

P (T0) =
N∑

i=1

P (T0, Ti)×max [X − S(T0), 0] (7)

In other words, the swaption payoffs can be rephrased as the annuitized difference be-

tween the spot swap price at date T0 and the fixed strike price agreed upon the contract

initiation. The rewritten payoff functions can be compared with the interest rate swap-

tion payoffs. First, the spot swap price corresponds to the spot swap rate in the interest

rate swaption with the fixed strike price having an analogous interpretation. Second, the

price difference is annuitized, which corresponds to present valuing the rate difference in

the interest rate swaption. Third, there are no day counts or annual notional amount.

Instead, there is a notional amount per fixing.4 In the case of commodity swaps and

swaptions, the notional amount is not a monetary unit, but rather it is the quantity of

the underlying commodity’s unit of quotation.
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2 The Pricing Formulas

Valuing a commodity swaption requires the specification of the dynamics for the under-

lying variables, namely, the forward floating price leg value and the forward fixed price

leg value.

We assume that the dynamics under the real-world probability P are given by

dVfloat(t) = α1(t)Vfloat(t)dt+ σ1(t)Vfloat(t)dW 1
t (8)

and

dVfixed(t) = α2(t)Vfixed(t)dt+ σ2(t)Vfixed(t)dW 2
t (9)

where dWt is the standard Brownian motion under P and α1,2(t) and σ1,2(t) are drift

and volatility coefficients, respectively. In addition, the standard Brownian motions

are correlated with instantaneous correlation given by ρ(t)dt. As in Bick (1998) we

assume no specific processes for convenience yield and interest rates. Instead, the forward

processes (8) and (9) are modelled as correlated geometric Brownian motions. This

facilitates straightforward calculation of swaption values. Under the traditional risk-

neutral measure Q, the drift coefficients of the processes (8) and (9) become r(t) , which

denotes the continuously compounded risk-free rate of return.5

In order to derive simple formulas, we model the forward floating leg and the for-

ward fixed leg values by summing up all the associated elements P (t, Ti)F (t, Ti) and

P (t, Ti), respectively. This way, assuming that the volatility of the forward swap price

is deterministic, it then follows the lognormal law. In analyzing (6) and (7) we are

effectively calculating the expected value of the option payoff using the forward fixed

price leg divided by the strike price as the numéraire (this is also known as annuity).

This is an application of the general numéraire change technique developed by Geman,
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Karoui, and Rochet (1995). Our results are direct applications of the general theorems

established in their paper. We get the following expression for the expectation

Vfloat(0)

AN,T (0)
= EA

[
Vfloat(t)

AT1,TN
(t)

]
(10)

where EA denotes expectations under the annuity measure and AT1,TN
(t) =

N∑
i=1

P (t, Ti).

It is well known that under this change of numéraire, the forward swap price is a martin-

gale and the expected spot swap price equals the forward swap price. In fact, given our

assumptions, the problem of finding the value function for European commodity swap-

tion is analogous to exchange option problem, introduced by Margrabe (1978). The

strike price X can be interpreted as simply a scaling factor. The equation (10) general-

izes to the contingent claims valuation function, where f denotes any attainable simple

claim, having T0 as maturity date

f(0) = AT1,TN
(0)× EA

[
f(T0)

AT1,TN
(T0)

]
(11)

Substituting the payer commodity swaption pricing formula in (11), we get

C(0) = AT1,TN
(0)× EA

[
AT1,TN

(T0)×max [S(T0)− X, 0]

AT1,TN
(T0)

]
= AT1,TN

(0)× EA [max [S(T0)− X, 0]]

This is the payoff of the standard European call. From the assumption of deterministic

volatility of the forward swap price, we have the familiar results

C(t) =
N∑

i=1

P (t, Ti) [S(t, T0, TN)N(d1)− XN(d2)] (12)
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and

P (t) =
N∑

i=1

P (t, Ti) [XN(−d2)− S(t, T0, TN)N(−d1)] (13)

where

d1 =
ln (S(t, T0, TN)/X) +

1
2

∫ T0

t
‖σ1(u)− σ2(u)‖2 du√∫ T0

t
‖σ1(u)− σ2(u)‖2 du

d2 = d1 −
√∫ T0

t

‖σ1(u)− σ2(u)‖2 du

where ‖ · ‖ denotes Euclidean norm. Equations (12) and (13) are solutions to the call
(payer) and put (receiver) prices for commodity swaptions under our restrictive assump-

tions. Similar results have been derived already by Merton (1973) for the case of equity

options with stochastic interest rates. In case of constant volatility and correlation

coefficients, we will have

√∫ T0

t

‖σ1(u)− σ2(u)‖2 du =
√
(σ2

1 + σ2
2 − 2ρσ1σ2) (T0 − t) (14)

and we have a version of the famous Margrabe (1978) formula for options to exchange

one asset for another. Furthermore, if we set σ2(t) = 0 , then the Black (1976) formula is

recovered. To interpret the formula, we note that if the stochastic interest rate environ-

ment is assumed, then the implied volatility of the asset is actually the implied volatility

of the forward swap price. Only in the constant interest rate world is the interpretation

of volatility being the implied volatility of the asset correct.
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3 Extensions

Due to the simplicity of the assumed dynamics, it is straightforward to extend the model

to include more driving factors providing one makes sure that the forward swap price has

a deterministic volatility. Moreover, the model can easily be extended to price structures

such as swaptions on swaps with spread, cross currency swaptions, quanto swaptions

and many popular exotic swaptions. These results have already been established for the

standard options assuming the Black and Scholes (1973) market. We give examples of

pricing a swaption with spread and an amortizing notional swaption. A swaption on a

swap with spread is similar the same as the swaption apart from the fact that there is

a spread attached to the floating price leg of the swap underlying the swaption. As the

spread is a fixed value, we therefore adjust the strike price to account for the spread and

treat the floating price leg as a pure floating price leg. Hence, the spread L, is subtracted

from the fixed price leg value

Vfixed−adjusted = (X − L)
N∑

i=1

P (t, Ti) (15)

Now, the swaption payoff becomes

CT0 = max [Vfloat(T0)− Vfixed−adjusted(T0), 0] (16)

and again, from linear homogeneity

CT0 =
N∑

i=1

P (T0, Ti)×max [S(T0)− (X − L) , 0] (17)

Thus, the swaption with a spread can now be valued in the same way as the ordinary

swaption with strike price replaced by (X − L).

Amortizing notional can be handled as in Jamshidian (1997). Let us denote the
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notional quantity of the underlying swap on settlement date Ti by L(Ti). Then equations

(1) and (2) become

Vfloat =
N∑

i=1

L(Ti)F (t, Ti)P (t, Ti) (18)

and

Vfixed = X
N∑

i=1

L(Ti)P (t, Ti) (19)

Now, the ”break-even” forward swap price will be

X =

N∑
i=1

L(Ti)F (t, Ti)P (t, Ti)

N∑
i=1

L(Ti)P (t, Ti)

(20)

and again, assuming that this ”break-even” price has deterministic volatility, the results

given earlier apply. As noted by Jamshidian (1997), the assumptions of deterministic

volatility for different swap prices may not be consistent with each other, but individually

they appear to be quite reasonable, robust and convenient.

4 Discussion

The standard approach to analyzing commodity derivatives has traditionally been based

on stochastic models of the spot price, convenience yield and interest rates. The ap-

proach presented here relies on modelling the forward prices directly without making

any statements on the stochastic behavior of convenience yield. Moreover, in order to

establish a simple formula for pricing swaptions, we treat the ratio of the forward float-

ing leg value and the forward fixed leg value as a stochastic variable with deterministic

volatility. That is, instead of modelling the underlying forward swap price as a sum of

weighted individual forward price dynamics, we first put the package together and only

then define the stochastic model. This approach creates a modelling problem in the sense
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that if the forward swap price follows the lognormal distribution, then the components

(forward prices) can not be lognormal simultaneously. This problem is already known

from the interest rate derivatives modelling, where the Libor market models (Miltersen,

Sandmann, and Sondermann (1997)) and (Brace, Gatarek, and Musiela (1997)) cannot

be valid simultaneously with the Swap market model (Jamshidian (1997)). Even Libor

market models configured for certain tenor structure, i.e. quarterly, semi-annual, etc.,

are inconsistent with each other. We refer to Jamshidian (1997) for an excellent discus-

sion of the merits of using different models for different products despite the apparent

inconsistency between the model’s assumptions.

In summary, the market for commodity derivatives is still rather young compared

to, for example the market for interest rate derivatives, where modelling approaches

have evolved from simple instantaneous short rate models to the Libor market models

currently being the tool of analysis in the sophisticated investment banks. In contrast,

the commodity markets are much more heterogeneous in terms of the institutional set-

tings and details (such as the liquidity and quotation practices) of the market for the

underlying commodities, as well as in the products themselves. It remains to be seen

what the standard market models for these instruments will be in the future. This paper

attacks the problem from the point of view of pricing in terms of the forward variables,

and the validity of such an approach obviously depends upon the depth of the market

for forward contracts, swaps and plain vanilla options. If there is enough liquidity in

those contracts, then there is certainly a good argument for applying the forward price

based approach.
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5 Conclusions

This paper presents a Black-76 formula for commodity swaptions. The underlying

stochastic variables are the values of the floating and fixed price legs. Using the an-

nuity factor as the numéraire, the familiar closed form solution for the swaption price

is obtained. Interest rate market participants have long used the interest rate swaption

formula, derived initially by Neuberger (1990), to price plain vanilla interest rate swap-

tions. For commodity swaptions, a similar formula is shown to exist, with the same

distributional assumptions. Hence, it is very likely that the traders, familiar with the

Black-76 volatilities, will use the model as a base when the OTC-market for commodity

swaptions is large enough to support regularly quoted market prices.

Notes

1The figure comprises of OTC contracts for commodity forwards, swaps and options.

2Convenience yield is defined as the benefit derived from holding the physical commodity instead of

the futures contract on the underlying. Net convenience yield is convenience yield net of holding period

storage costs.

3The quotations for longer maturity swaps are usually average-based, which complicates the boot-

strapping process.

4The formula can be specified so that it uses annual notional and year fractions instead

5The forward floating price leg and the forward fixed price leg do not provide income before the start

date of the spot swap, since convenience yields are already capitalized into the forward prices. This can

be shown using Ito’s Lemma.
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