
Petri I. Salonen

EVALUATION OF A PRODUCT PLATFORM

STRATEGY FOR ANALYTICAL

APPLICATION SOFTWARE

PETR
I I. SA

LO
N

EN
: EV

A
LU

ATIO
N

 O
F A

 PR
O

D
U

C
T PLATFO

R
M

 STR
ATEG

Y
 FO

R
 A

N
A

LY
TIC

A
L

A
PPLIC

ATIO
N

 SO
FTW

A
R

E
A

-239

HELSINKI SCHOOL OF ECONOMICS

ACTA UNIVERSITATIS OECONOMICAE HELSINGIENSIS

A-239

ISSN 1237-556X
ISBN 951-791-867-4

2004

HELSINKI SCHOOL OF ECONOMICS

ACTA UNIVERSITATIS OECONOMICAE HELSINGIENSIS

A-239

Petri I. Salonen

EVALUATION OF A PRODUCT PLATFORM

STRATEGY FOR ANALYTICAL

APPLICATION SOFTWARE

© Petri I. Salonen and

Helsinki School of Economics

ISSN 1237-556X

ISBN 951-791-867-4

ISBN 951-791-868-2 (Electronic dissertation)

Helsinki School of Economics -

HeSE print 2004

To Rita and her unconditional love.

Never, give in! Never give in! Never, never, never, never…. In nothing great or small,
large or petty, never give in except to convictions or honor and good sense!

 ------ Sir Winston Churchill

I

Abstract
The challenge for software business executives is to bring new software products to the market
rapidly, using both a software development approach that enables effective delivery of products
and a robust software product architecture that addresses the needs of selected market segments.
This study addresses the development of analytical application software solutions that are
the foundation for a decision support solution, providing to end user organization executive
management the needed tools to track critical key performance indicators using technologies
such as digital dashboard software.

Unfortunately, executive management has to make several decisions long before the actual
software product is delivered, and some of these decisions can have a long-lasting impact
on both future software development and the market segmentation of the software product.
To alleviate the challenge of long-term strategic software product development, researchers
have applied the concept of the product platform from mechanical engineering to software
development, enabling the utilization of a common core product platform that becomes the
foundation for derivative product development within a product family. The product platform
concept has been demonstrated within several industries, for example, the automobile industry
(Ford automobiles) and the electronics industry (Hewlett Packard printers). Existing software
related product platform literature does not address the practical implications of building
software products using a product platform approach.

This study introduces software product line engineering as a viable alternative foundation for
software product family development using the product platform approach. Its aim is to identify
an optimal analytical application software architecture that becomes the foundation for long-
term derivative software development using the same common core (the product platform) across
different derivative products for given market segments. The product platform development
approach has the aim, contrary to that of the traditional software development approach, of
maximizing the revenue (and not of minimizing the cost) that can be leveraged from a product
platform using a product architecture that is specifi cally designed to be common to all selected
market segments. The study also introduces six different alignment perspectives that demonstrate
the relationships between the selected product architecture, market segment, and technology
dimensions. Each alignment perspective has characteristics which depend on the emphasis
given any of the three dimensions. When setting long-term product development strategy, each
of these dimensions must be carefully evaluated against the others before management makes
a decision on any of the dimensions. Negligence in this evaluation could result in a disconnect
between the dimensions, with long-lasting impact. From our analysis, it is evident that each
alignment perspective can be specifi c to each software vendor due to the characteristics of the
vendor, such as its core competence in technology, its software application domain, and its
selected market segment.

The results of this longitudinal (ten year) single-case study demonstrate the use of the product
platform concepts and alignment perspectives introduced herein. These alignment perspectives
help to show how changes in product architecture, market segmentation, or technology can
impact a software vendor’s product development effectiveness, and how executive management
can assess the impact and reasons for these changes. The empirical evidence reinforces the
researcher’s view that a software vendor can achieve signifi cant benefi ts using the product
platform concept in its software development. The study also demonstrates how technology
selections can impact future market segmentation strategies for a software vendor and how
these selections can impact software development.

KEYWORDS: DATA WAREHOUSING, ANALYTICAL APPLICATION SOFTWARE, PRODUCT
PLATFORM, SOFTWARE APPLICATION FRAME STRATEGY, SOFTWARE PRODUCT LINE
ENGINEERING, SOFTWARE BUSINESS

II

Acknowledgements

It all started in the most eastern Swedish-speaking elementary school in the world. Our school
was very small and competitive, and it became evident that nothing comes for free in this
world and the winners are those who fi ght for their future. My parents, Leena-Ilkka Salonen
and Seppo Olavi Salonen, gave me an understanding of why one has to go to school, and I
am very grateful that they gave me the chance to do what I did. I knew already in 1989, when
getting my master’s degree in Accounting from the Helsinki Swedish School of Economics
and Administration, that I would return to school once I had accumulated some practical
experience in the software industry. Mr. Kyösti Anttonen believed in me and hired me into
Unic Oy, and I am still on that road. Thank you, Kyösti, for the opportunity you gave me!
With the support of Jorma Hänninen (Chief Executive Offi cer at the time for Unic Oy), I
continued with my studies at the Helsinki School of Economics. I am greatly indebted to the
vision Jorma had, that he felt the importance of continued education. I wish all CEO’s could
be as forward looking as Jorma was in the early 1990s. I promise to continue in the tradition
he established.

I am forever indebted to my mentor and always-helpful Professor, Markku Sääksjärvi, from
the Helsinki School of Economics, for providing me with the keys to the academic world.
Professor Sääksjärvi did not give up on me, even though my dissertation work took quite a
while due to my other responsibilities as Chief Executive Offi cer for an international software
company. To make things even more challenging for my family, we decided to immigrate to
United States in the late 1990s. Even then, Professor Sääksjärvi did not give up on me. Only
Professor Sääksjärvi and I know what took place during those years. It was certainly not easy
for anybody.

I am also very grateful to all of the employees of the case study organization. I did not have
any understanding of IBM midrange environments, but Mr. Jorma Vesterinen, Mr. Markku
Riekkinen, and others have convinced me that IBM has created a truly great piece of technology.
I would also like to thank Mr. Mika Rihtilä and Ms. Hannele Piri for the numerous hours they
spent collecting fi nancial information that did not previously exist. My longtime colleague
Mr. Olli-Pekka Siikarla gave me the foundation for understanding the importance of software
architecture during the long nights and weekends that we spent together. This time has had a
tremendous impact on my life. Timo Sinisalmi showed me what it takes to become successful
in product development by keeping things simple.

At the worst time in my research, Dr. Liisa Savunen of the Academy of Finland led me back
to the road and gave me several pieces of practical advice that I will be sure to pass on
if I ever coach other Ph.D. students. Also, the feedback from Dr. Veikko Seppänen from
Oulu University and Dr. Jyrki Kontio of the Helsinki University of Technology provided me

III

with valuable insight during the process of fi nalizing my work. I am also indebted to Dr.
Alan Chmura of the University of Wyoming, who was willing to take on the huge task of
proofreading my work. This type of friendship is hard to fi nd anywhere!

Without the understanding of my dear wife Rita Salonen and my children, Sebastian and
Daniela Salonen, this work would never have been completed, period and end of discussion.
The ups and downs of doctoral work have taken their toll on our lives, but my wife kept me
“hanging in there,” even when I felt that the work would never be fi nished. It is unbelievable
how much resilience my family has shown during the years when “papsu” had to work on this
dissertation in his Trophy Club home offi ce and Kalevankatu 52 apartment. Even our family
dog, Karva, knew enough to stay away and keep quiet when I was working. Rita, one of these
days we will travel around the world as we envisioned while we were still in Finland – that is
a promise!

Finally, please forgive me for not mentioning the hundreds of different people I have met
during the years who have infl uenced my way of thinking. You all deserve to be mentioned,
but the limited space does not allow me to do that.

Abbreviations

AFE ...Application Family Engineering
API ...Application Program Interface
APPC ..Advanced Program-to-Program Communications
AS/400 ...Application System/400
ASE ...Application System Engineering
CBSE ..Component-Based Software Engineering
CEO ...Chief Executive Offi cer
CFO ...Chief Financial Offi cer
CIF ...Corporate Information Factory
CMM ..Capability Maturity Model
COM ..Component Object Model
CoPAM ...Component-oriented Platform Architecting Method
CORBA ..Common Object Request Broker Architecture
COTS ...Commercial-Off-The-Shelf Software
CSE ...Component System Engineering
CSF ...Critical Success Factor
CSV ..Core Strategic Vision Framework

Petri I. Salonen
Dallas, Texas and Helsinki, Finland

May 2004

IV

DCOM ...Distributed Component Object Model
DLL ..Dynamically Linked Library
DOLAP ...Desktop On-Line Analytical Processing
DSS ..Decision Support System
EIS ..Executive Information System
ERP ...Enterprise Resource Planning
ETL ...Extraction, Transformation and Load
FeatuRSEBFeature Reuse-driven Software Engineering
FODA ...Feature-Oriented Domain Analysis
FORM ..Feature-Oriented Reuse Method
HOLAP ...Hybrid On-Line Analytical Processing
IC ...Integrated Circuit
IDC ..International Data Corporation
IDL ...Interface Defi nition Language
ISV ...Independent Software Vendor
IT..Information Technology
KLOC ...Thousand (kilo-) Lines of code
KobrA ...Komponentenbasierte Anwendungsentwicklung
 (from German language)
KPI ...Key Performance Indicator
MOLAP ..Multidimensional On-Line Analytical Processing
MVC ...Model-View-Controller
ODBC ..Open DataBase Connectivity
ODS ...Operational Data Store
OLAP ...On-Line Analytical Processing
OLE DB for OLAPMicrosoft OLE DB for Analytical Processing (OLAP)
 – set of objects and interfaces that extends the ability
 of OLE DB to provide access to multidimensional
 data stores (OLAP applications)
OLTP ..On-Line Transaction Processing
OOA&D ...Object-Oriented Analysis and Design
PDA..Personal Digital Assistant
R&D ...Research and Development
RAD ...Rapid Application Development
ROLAP ...Relational On-Line Analytical Processing
RPG Report Program Generator (iSeries/400 based
 programming language)
SEI ..Software Engineering Institute
SNA ..Systems Network Architecture (IBM technology)
SQL ..Structured Query Language
TDWI ...Data Warehousing Institute
UML ...Unifi ed Modeling Language

V

Figures and Tables
Fig. 1. A Flexible Approach to Software Development (Iansiti, 1998).
Fig. 2. Product Platform Evolution (Meyer and Lehnerd, 1997).
Fig. 3. Platform Strategy for Software Products (Meyer and Seliger, 1998).
Fig. 4. Frame Elements and their Strategic Fit (Sääksjärvi, 1998).
Fig. 5. Software Application Frame Strategy (Sääksjärvi, 2002).
Fig. 6. Moving from Single Systems to Multiple Systems Families (van Der Linden, 2002a).
Fig. 7. The PLE Lifecycle as Domain and Application Engineering Phases (Mili et al, 2002).
Fig. 8. Data Warehousing Architecture (Chaudhuri and Dayal, 1997).
Fig. 9. Traditional Data Warehouse Architecture.
Fig. 10. Federated Data Warehouse Architecture (White, 2000b).
Fig. 11. Three-tiered Packaged Application Architecture (Julie Hahnke, 1997).
Fig. 12. Analytical Application Functional Architecture.
Fig. 13. Analytical Application Frame Architecture Sub-Strategy for an Analytical Application.
Fig. 14. Analytical Application Frame Technology Sub-Strategy for an Analytical Application.
Fig. 15. Analytical Application Frame Leverage Sub-Strategy for an Analytical Application.
Fig. 16. Three Different Fits Resulting from the Alignment of Three Sub-Strategies.
Fig. 17. Analytical Application Technology Sub-Strategy as Strategic Driver.
Fig. 18. Analytical Application Frame Architecture Sub-Strategy as a Strategic Driver.
Fig. 19. Analytical Application Frame Leverage Sub-Strategy as a Strategic Driver.
Fig. 20. Alignment Perspectives Grouped by Different Disconnects.
Fig. 21. Layered Software Architecture (Jacobsen et al., 1997).
Fig. 22. Maturity Levels for Software Product Lines (Bosch, 2002).
Fig. 23. Total Revenue and Software License Revenue as a Percent of Total Revenue.
Fig. 24. Total Revenue and R&D as a Percent of Total Revenue.
Fig. 25. Revenue Classifi cation.
Fig. 26. Server and Client Product Release Milestones.
Fig. 27. Original Software Application Architecture.
Fig. 28. Extended Solution Offering.
Fig. 29. Server and Client Frame Milestones.
Fig. 30. New Client Frame Architecture.
Fig. 31. Client Frames and Derivative Products.
Fig. 32. Product Family Profi tability for the Company.
Fig. 33. Key Indicators for Software Application Frame Development.
Fig. 34. Comparison of Software Application Frame Releases.
Table 1. Comparison of Data Warehouse Architectural Models.
Table 2. Architectural Comparison Criteria for a Software Vendor and an End User
 Organization.
Table 3. Technology Permutation Matrix for a Software Vendor.
Table 4. Framework of Analysis.
Table 5. Case Study Documentation.
Table 6. Analytical Application Frame Strategy Analysis through 1998.
Table 7. Analytical Application Frame Strategy Analysis from 1998.
Table 8. Historical Product Sales through 2002.
Table 9. Product Gross Margin Calculation.

VI

ABSTRACT

ACKNOWLEDGEMENTS

ABBREVIATIONS

FIGURES AND TABLES

TABLE OF CONTENTS

1. INTRODUCTION ... 1
 1.1 Research Problem .. 3

1.2 Contributions ... 6
1.3 Structure of the Dissertation .. 7

2. PRODUCT PLATFORM THEORY .. 9
2.1 A Reflection of the Software Industry ... 9

2.1.1 Changes in the Software Industry .. 9
2.1.2 New Ways of Implementing Software ... 11

2.2 The Product Platform ... 14
2.2.1 The Product Platform in Mechanical Engineering 14
2.2.2 Product Platforms for High Technology Companies 16
2.2.3 Other Known Product Platform Publications and Sources 18

2.3 The Product Platform in Software Development ... 20
2.3.1 The Software Platform as Part of Core Technology Capability 21
2.3.2 Product Platform Theory in Information Products 23
2.3.3 Platform Strategy for Software Products .. 24
2.3.4 The Software Application Frame and Frame Strategy 28

2.4 Findings and Comparison of Product Platform Related Theories 32
2.5 Platform Metrics in Product Platform Development ... 35
2.6 Other Useful Metrics Applied to Software Application Frame Development 36

2.6.1 Economic Metrics for Software Businesses .. 37
2.6.2 Extended Product Platform Metrics for Software Products 39

2.7 Related Theories in Software Development with Large-Scale Reuse 41
2.7.1 Building a Business Case for Large-Scale Reuse 42
2.7.2 Product Line Engineering Using Product Families 44
2.7.3 Domain Engineering with Application Engineering 47
2.7.4 Component-Based Software Engineering (CBSE) 49

2.8 Definitions of Concepts and Assumptions in the Study 51
2.9 Chapter Summary .. 53

3. ANALYTICAL APPLICATION FRAME ARCHITECTURE DEVELOPMENT 57
3.1 Introduction ... 57
3.2 Technologies Supporting Analytical Application Software 59

3.2.1 Data Warehouse Technologies .. 61

VII

3.2.2 Data Mart Technologies .. 64
3.2.3 OLAP and EIS Technologies .. 66

3.3 Analytical Application Architectural Models .. 68
3.3.1 Data Warehouse vs. Data Mart Implementation 68
3.3.2 Different Data Warehouse Architectural Models 70
3.3.3 Pros and Cons of Different Data Warehouse Architectural Models 74
3.3.4 Conclusions – Findings of Architectural Models 76

3.4 Analytical Application Software Solutions ... 77
3.4.1 Definition of an Analytical Application ... 78
3.4.2 Analytical Application Functionality ... 79
3.4.3 Selection of an Architectural Model for an Analytical Application 83

3.4.3.1 Characteristics of an analytical application frame
 architecture. ... 87
3.4.3.2 Functional flexibility of an analytical application frame
 architecture .. 87
3.4.3.3 Complexity of software development 88
3.4.3.4 Core competence requirements .. 88
3.4.3.5 Conclusion ... 88

3.5 Selected Analytical Application Functional Architecture 90
3.5.1 An Analytical Application Functional Architecture 90
3.5.2 Information Flow in an Analytical Application .. 93
3.5.3 Information Distribution in an Analytical Application 95
3.5.4 Conclusion ... 97

3.6 Chapter Summary .. 98
4. DEFINING A BALANCE BETWEEN SUB-STRATEGIES IN ANALYTICAL
 APPLICATION SOFTWARE ... 101

4.1 Defining an Analytical Application Frame Architecture Sub-Strategy 101
4.1.1 Analytical Application Frame Architecture .. 101

4.1.1.1 Analytical application defining technology 104
4.1.1.2 Service component layer .. 105
4.1.1.3 Extension component layer .. 106

4.1.2 The Analytical Application Frame Architecture From Two Perspectives . 107
4.1.2.1 Selection of an analytical application frame architectural 109
 model .. 109
4.1.2.2 Functional adaptability of frame architecture 110
4.1.2.3 Underlying information technology infrastructure 110

4.1.3 Summary .. 111
4.2 Defining an Analytical Application Frame Technology Sub-Strategy 112

4.2.1 Technology Selections for an Analytical Application Software Vendor .. 112
4.2.1.1 Underlying technology (standardized infrastructure) 115
4.2.1.2 Execution and development environment 117
4.2.1.3 Software development approach .. 118

VIII

4.2.2 Summary .. 120
4.3 Defining an Analytical Application Frame Leverage Sub-Strategy 121

4.3.1 Scoping the Market Segment For an Analytical Application Software
 Solution .. 121

4.3.2 Different Variation Options for an Analytical Application Solution 124
4.3.3 Summary .. 125

4.4 Analytical Application Frame Strategy Framework ... 126
4.4.1 Analysis of Fit Within the Analytical Application Strategy Framework ... 129

4.4.1.1 Technological responsiveness ... 130
4.4.1.2 Functional flexiblity ... 131
4.4.1.3 Technological adaptation ... 132

4.5 Alignment Perspectives Within an Analytical Application Frame Strategy
 Framework .. 132

4.5.1 Analytical Application Frame Technology as a Strategic Driver 135
4.5.1.1 Implementation of technology in the analytical application
 frame ... 136
4.5.1.2 Commercialization of technology innovation 138
4.5.1.3 Comparison of alignments .. 139

4.5.2 Analytical Application Frame Architecture as a Strategic Driver 140
4.5.2.1 Leverage of an analytical application frame into different
 market segments .. 141
4.5.2.2 Implementation of analytical application frame technology into
 market segments .. 142
4.5.2.3 Comparison of alignments .. 144

4.5.3 Analytical Application Frame Leverage as a Strategic Driver 146
4.5.3.1 Harnessing market potential using technology strategy 147
4.5.3.2 Harnessing market potential using an analytical application
 frame ... 148
4.5.3.3 Comparison of alignments .. 148

4.5.4 Disconnects in Alignment Perspectives ... 149
4.5.4.1 Architectural disconnect ... 151
4.5.4.2 Segmentation disconnect ... 151
4.5.4.3 Technological disconnect ... 152

4.6 Chapter Summary .. 152
5. IMPLEMENTATION APPROACHES FOR A SOFTWARE APPLICATION FRAME 156

5.1 Introduction .. 157
5.2 Implementation of an Analytical Application Frame Architecture 158

5.2.1 Software Architecture in Analytical Applications 159
5.2.2 Importance of Software Modularity and Layered Software Architecture 161
5.2.3 Software Architectures in Software Product Lines 163

5.3 Selection of Analytical Application Frame Technology 164
5.3.1 Selection of Underlying Technology (Standardized Infrastructure) 165

IX

5.3.2 Architectural Styles and Patterns ... 168
5.3.3 Selection of an Execution and Development Environment 169
5.3.4 Selection of a Software Development Approach 171

5.3.4.1 Software product line engineering .. 171
5.3.4.2 Software assets within a software application frame and
 component granularity ... 174
5.3.4.3 Component-based software engineering (CBSE) with software
 assets ... 177

5.4 Leverage of the Analytical Application Frame .. 179
5.4.1 The Software Business Model and Market Segmentation Approach 180
5.4.2 Variation Using an Analytical Application Frame Architecture
 Sub-Strategy ... 181
5.4.3 Variation Using an Analytical Application Frame Technology
 Sub-Strategy ... 184
5.4.4 Variation Using an Analytical Application Frame Leverage
 Sub-Strategy ... 187

5.5 Chapter Summary .. 190
6. EMPIRICAL RESEARCH DESIGN .. 193

6.1 Research Methodology .. 193
6.2 Framework of Analysis ... 196
6.3 Selected Research Strategy and its Implementation .. 199
6.4 Data Collection Methods ... 202
6.5 Reliability and Validity of the Study ... 207

7. ANALYTICAL APPLICATION DEVELOPMENT IN A CASE STUDY COMPANY 210
7.1 Definitions and Analysis Approach .. 210
7.2 Background of the Case Study Organization .. 211

7.2.1 Business Model for the Case Study Company 212
7.2.2 Software Product Release Analysis Overview 215
7.2.3 Software Application Frame Release Analysis Overview 219

7.2.3.1 Analysis of server frames .. 221
7.2.3.2 Analysis of client frames ... 222

7.3 Ex-Post Analysis of the Case Study Company Through 1998 222
7.3.1 Analytical Application Frame Architecture Sub-Strategy 224

7.3.1.1 Server frame architecture for initial server frame V1R1 225
7.3.1.2 Server frame extension (V1R5 – Ex.1) – Buying time for client
 software ... 226
7.3.1.3 Client frame evolution (V1R1-6) ... 226

7.3.2 Analytical Application Frame Technology Sub-Strategy 227
7.3.2.1 Server frame V1R1 .. 227
7.3.2.2 Client frame V1R1 introduced .. 228
7.3.2.3 Server frame (V1R5 – Ex.1) – extension to support
 Microsoft Office solutions .. 229

X

7.3.2.4 Server frame renewal V2R1 .. 230
7.3.3 Analytical Application Frame Leverage Sub-Strategy 230

7.3.3.1 Server frame extension (V1R5 – Ext.1) to add new solutions ... 231
7.3.3.2 Renewal of server frame V2R1 to broaden segmentation 231

7.3.4 Summary and Key Findings .. 232
7.4 Ex-Post Analysis of the Case Study Company From 1998 235

7.4.1 Analytical Application Frame Architecture Sub-Strategy 236
7.4.1.1 Two new server frame extensions introduced
 (V2R3, Ext.2 and V2R4, Ext.3) .. 236
7.4.1.2 New client frame V2R1 .. 237

7.4.2 Analytical Application Frame Technology Sub-Strategy 240
7.4.2.1 Server frame to support larger database environments
 (V2R3, Ext.2) .. 240
7.4.2.2 New server frame to support a new architectural tier
 (V2R4, Ext.3) .. 241
7.4.2.3 Client frame renewal (V2R1-2) ... 241

7.4.3 Analytical Application Frame Leverage Sub-Strategy 243
7.4.4 Summary and Key Findings .. 244

7.5 Ex-Post Analysis of Economic Metrics in the Case Study Company 246
7.5.1 Data Sources and Collection of Data .. 247
7.5.2 Measurements in the Quantitative Analysis .. 249
7.5.3 Product Family Profitability .. 250
7.5.4 Application Frame Efficiency and Effectiveness Analysis 252

7.5.4.1 Comparison of software application frames 255
7.5.4.2 Analytical application frame effectiveness 256
7.5.4.3 Analytical application frame efficiency 257
7.5.5 Key Findings in Economic Analysis ... 258

7.6 Key Findings of the Case Study Research ... 259
7.6.1 Discussion of the Analytical Application Architectural Model 259
7.6.2 An Analytical Application Frame and its Identification 261
7.6.3 Software Application Frame and Large-Scale Reuse of Common
 Software Assets ... 262
7.6.4 Identifying the Use of an Analytical Application Frame Strategy
 Framework ... 263
7.6.5 Management of Dependencies Between Underlying and Defining
 Technology ... 265
7.6.6 Generalizability of Analytical Application Frame Strategy Framework .. 266
7.6.7 Discussion of Case Study Results in Light of Meyer and Seliger’s
 Definition of a Platform .. 266

7.7 Chapter Summary .. 268
8. KEY FINDINGS AND SUMMARY ... 273

8.1 Use of the Product Platform Approach in Software Development 274

XI

8.2 Identification of Generic Analytical Application Architectures 275
8.3 Using a Balanced Software Application Frame Strategy 278
8.4 Changes in Effectiveness Criteria when Applying the Product

 Platform Approach .. 282
8.5 Relevance and Generalizability of the Study .. 284
8.6 Limitations of the Study and Future Research ... 287

9. REFERENCES ... 290
10. APPENDICES ... 306

10.1 Appendix 1 – Comparison of Product Platform Theories 306
10.2 Appendix 2 – Software Product Releases ... 307
10.3 Appendix 3 – Interviews and Other Communication 310
10.4 Appendix 4 – Analysis of Analytical Application Frame Strategy Evolution 313

1

1. INTRODUCTION

Software development has become a major part of our lives, and computer based systems
pervade today’s society (Miller and Ebert, 2002). Hardware and software systems have become
increasingly integrated with each other, and hardware applications that were formerly not
controlled with software are more or less driven by software in today’s world. These changes
have increased the pressure for software organizations to fi nd more effective ways to build
and maintain software. The software engineering world has evolved during the last twenty
years from traditional waterfall development methodologies to highly componentized software
development methodologies. Software organizations are studying the manufacture of physical
products to learn how software development can achieve better leverage. McGregor et al.
(2002) give examples of Eli Whitney and Henry Ford and their approach of interchangeable
parts. Another view of this is the concept of modularity, wherein products are assembled from
a set of modules. Each module can be complex internally, but with clearly defi ned interfaces,
each module can be linked with other modules in different combinations. An organization “can
use modularity to produce a wide variety of products in extremely short lead times” (O’Grady,
1999). Modular products require an adaptable software architecture that forms the foundation
and structure for a product family. According to Cusumano (2004), modularity can be defi ned
as “a subset of functionality that is smaller than the whole product and that the designers can
isolate from other small chunks of functionality and, to some degree, test as a separate unit.”

Modularity can also be tied to a promising product development approach – product platform
theory – which has been identifi ed within mechanical engineering. Product platform theory
emerged in the early 90s, introduced by Wheelwright and Clark (1992) and Meyer and Utterback
(1993), with several other follow-up articles (Meyer and Lopez, 1995; Meyer and Zack, 1996;
Meyer et al., 1997; Meyer and Seliger, 1998) and books (Meyer and Lehnerd, 1997; McGrath,
1995; 2001). This theory has its origin in mechanical engineering. According to Sääksjärvi
(2002) the theory proposed product architecture as the foundation for effective leverage of
implemented underlying technology in a series of products in a product family. Sääksjärvi
(1998; 2002) reviewed product platform theory from the software development perspective,
resulting in a framework (Software Application Frame Strategy) which is specifi cally adapted to
the software products domain. This framework considers other implications or dimensions in
software development that a software vendor must consider, such as technology selection and
market segmentation. The Software Application Frame Strategy framework from Sääksjärvi
(2002) is not bound to any specifi c software domain.

Our aim in this study is to research practical implications with rich insight via a longitudinal
single-case study company into how the analytical application software domain could
utilize this type of software development approach. Analytical application solutions were
fi rst introduced in 1997 by International Data Corporation in an article describing analytical

2

application solution functionality. A follow-up article to this article was published in the Journal
of Data Warehousing in the fall of 1998, where Morris (1998) described the purpose of an
analytical application and the intended use and required functionality. Gleason (1998) took the
next step to discuss whether an analytical application should be bought or built and what type
of functional components can be found in an analytical application. Surgan (2000) discussed
and analyzed in a follow-up article the different time eras of decision support. Her claim in
the article is that the data warehousing market has matured and that the next logical step in
the decision support domain would be to use and support solutions that have an end-to-end
integrated data warehouse solution with pre-built functionality for given vertical markets. The
Data Warehousing Institute (TDWI) has increased the number of studies of the use of analytical
application software solutions from the end user organization perspective. A recent broad
defi nition of analytical application software was released by Eckerson (2002) as follows:

“An analytical application is a domain-specifi c solution that enables all types of
business users to access, analyze, and act on information in the context of the
business processes and tasks they manage. The solution leverages data warehouses
and analytical tools and integrates with operational systems.”

These analytical applications include predefi ned business metrics for a selected vertical
market segment and cover typically 80% of the business analytics and processes that a given
vertical industry segment requires (Morris, 1998). This type of transition from custom-built
data warehousing environments to prepackaged analytical applications changes the focus
from technology development to contents-driven development, where given vertical market
segments with corresponding business processes and key metrics must be implemented into the
analytical application software solution. This change requires an adaptable product architecture
that enables a software vendor to address given market segments using a common architectural
core that is optimized to cover these market segments. We will limit the discussion of software
architecture and defi nitions to issues and concepts relating to product platform theory.

We have selected Ulrich and Eppinger’s (1995) defi nition of product architecture, which relates
to the concept of product platforms. According to Ulrich and Eppinger (ibid), an architecture
of a product is “the scheme by which the functional elements of the product are arranged
into physical chunks and by which the chunks interact.” In a manner similar to O’Grady
(1999) and Cusumano (2004), Ulrich and Eppinger (ibid) emphasize the importance of
modularity in an architecture and the importance of how each module within the architecture
interacts according to predefi ned and well defi ned interfaces. We recognize the importance
of software architecture when using the product platform approach in software development
and therefore we will explore different domain-specifi c architectural models for analytical
application software solutions and different implementation architectural styles that can be
found in software architecture literature. We will exclude discussion of software architecture

3

with respect to its different defi nitions that can be found in the literature. According to Malveau
and Mowbray (2004) there are several different schools of thought for software architecture,
and these are outside the bounds of our research. The Software Engineering Institute (SEI) has
conducted considerable of research into software architecture (Clements and Northrop, 2002;
Clements et al., 2002; Bass et al., 2003). Their web site (SEI, 2004) has a broad collection of
software architecture related defi nitions and literature with case studies.

The fi ndings of existing software related product platform literature do not include discussion
of the practical implementation of software products using the product platform approach.
Sääkjärvi (1998, 2002) introduced his Software Application Frame Strategy framework without
practical implications for any specifi c domain. The aim of this study is to include software
engineering related issues when implementing software products using the product platform
approach. A closely related software engineering approach with aims similar to those of the
software product platform approach is that of large-scale reuse using software product line
engineering as its implementation approach in derivative software development.

1.1 Research Problem

An emerging concept from mechanical engineering, introduced in the early 1990’s, has
recently been reviewed for its applicability for use in the development of software products
(Meyer and Seliger, 1998; Sääksjärvi, 1998; 2002). The framework – the Software Application
Frame Strategy – proposed by Sääksjärvi (2002) presents without empirical consideration
three generic alignment perspectives that a software vendor can utilize in development of
software products. Our aim in this study is to evaluate this framework in the light of analytical
application software solutions, with the intent of describing the practical implications of how
this type of framework can be used in analytical application solution development. Existing
software-related literature does not specifi cally address the complexities and approaches of
software development using the product platform concept. Our aim is to describe closely
related software engineering concepts that can be linked to the product platform concept.

Part of software development, specifi cally derivative software development, is to defi ne an
adaptive domain-specifi c software architecture that is the foundation for implementation of
an optimal architectural construct which is in turn the foundation for an analytical application
solution. This architectural construct – later defi ned as an analytical application frame – must
be adaptable to changes in market conditions (market segmentation) and technological
changes that could take place either in end user Information Technology (IT) infrastructure
environments or underlying technologies that have to be selected as the foundation for any
software domain (such as the operating system, the hardware environment, the database
management system, etc.).

4

The aim of a product platform is to enable implementation of reuse in large using technologies
like component-based software engineering. Reuse as defi ned in the software engineering
literature is not suffi cient to implement software related product platforms. The main aim of
software product platform related theory is to maximize revenues by reusing a large common
architecture core within different market segments, while the aim of reuse, according to the
literature, is typically to minimize costs when implementing software solutions. Therefore, the
aim of product platform development is different and the strategic choices must be made at
the executive management level and not within individual product development, marketing,
or technology teams within a software organization. There is plenty of research in software
reuse, component-based software development, and software product line development, but
none of these corresponds directly to the concept of product platform theory other than the
approach of having a modular architecture with modules with well defi ned interfaces. We
will exclude from this study discussion of reuse within software development and associated
economic metrics, as there is plenty of research within these domains (Mili et al., 2002).

Analytical application solutions can be traced back to the decision support domain with data
warehousing, On-Line Analytical Processing (OLAP), and Executive Information Systems (EIS)
architectures. The evolution of each of these has set the boundaries for what current analytical
application software solutions can provide to end user organizations. For a software vendor to
be able to recognize the limitations, it has to build an optimal common architectural construct
that can be the basis for derivative software products. This entity can not be too large, as it
would lose its fl exibility. Selected technologies in the software solution must be restricted and
not cover all the different possible combinations that a software vendor is trying to reach from
market segmentation perspective. Another perspective to evaluate the success of software
development using the product platform approach is to measure economical metrics that
provide to software organizations their effectiveness and effi ciency measures ex-post. We will
evaluate and apply these metrics in this study and provide discussion of the relevance and
use of these specifi cally using a longitudinal single-case study vendor within the analytical
application software solution domain.

Existing analytical application software literature is more or less based on the perspective
of end user organizations (traditional IS research). Our approach will be from the analytical
application software vendor’s perspective. Our study will include three interrelated domains,
with emphasis on the analytical application software domain. The fi rst domain is a literature
search of product platform related literature with corresponding and related software
engineering theories. The second domain is an analysis of analytical application software with
respect to related technologies and domain-specifi c architectural models (data warehouse
architectures). The third domain is more software engineering related, with discussion of how
software product line/family development can be used to implement common software assets
using different derivative techniques. Based on the assumptions presented above, our main

5

research objectives are as follows:

RQ 1: How can a software vendor apply the product platform approach to its software
 business and development of software products?
RQ 2: What types of generic software application frame architectures can be identifi ed for
 analytical application software solutions?
RQ 3: How can software vendors balance their software product architectures when
 changes take place in marketing and/or technology selections?
RQ 4: How can effectiveness criteria change when applying the product platform approach
 in analytical application software development?

The aim of the fi rst research objective is to explore existing product platform theory related
literature specifi cally within software development, and to compare this with the development
of physical products using a product platform concept. This literature study will enable us to
have a better understanding of following topics:

 • What is known in existing product platform literature, both in physical and in software
 product development, and what types of differences can be identifi ed between these
 two different product types (physical vs. software products)?
 • How do available software related platform literatures explain the role of IT infrastructure
 and possible dependences between runtime- and development-time environments?
 • How does the existing software related platform literature defi ne the process of
 building a platform in the software products domain?
 • How does the existing software development community recognize product platform
 development and the respective product line development of software products?

Our aim in the second research objective is to explore different data warehousing architectural
models that are potential models of the foundation for an analytical application solution and
what type of architectural model supports an optimal architectural construct that can be
reused across different derivative products within an analytical application solution.

The third research question explores how different alignment perspectives between product
architecture, technology, and market segmentation in the implementation will impact the
development of analytical application software solutions. We will discuss how product platform
theory can be benefi cial in analytical application software development and how success can
be measured using different metrics defi ned within the product platform literature.

The fi nal research question aims to explain how software development using the product
platform approach could change based on the effectiveness and effi ciency criteria that are
measured ex-post. These measurements are demonstrated via a longitudinal interpretative
single-case study. We will also discuss how product platform approach changes traditional

6

process-oriented software product development and how analytical application software
vendors can build a product platform for their derivative products.

1.2 Contributions

Our study was divided into four different research questions to be responded to. Our fi rst
research question explores how software vendors can apply the software related product
platform approach in the development of software products. Prior work is mostly based
on generic software products, using the product platform approach without addressing any
software application domain specifi cally. Existing software-related product platform literature
introduced the product platform concept to software development without expressing
constructive advice for the implementation approaches a software vendor can take when
building software products. This study introduces software engineering related concepts such
as software product line engineering with corresponding domain and application engineering
and component-based engineering as possible implementation approaches using the software
related product platform approach.

Secondly, our study provides valuable information showing how analytical application software
has evolved during the years from the architectural, technological, and functional perspectives.
This evolution includes a comparison of different data warehousing and OLAP architectural
models with corresponding information distribution technologies such as EIS. Our discussion
of different architectural models provides the foundation for building an analytical application
architecture with a corresponding optimal architectural construct (analytical application frame)
that can be reused across different vertical and horizontal market segments. This discussion
is needed to understand how each technological choice, and each market segmentation
selection, will impact product architecture. Without this type of alignment perspective, a
software vendor could potentially run into future market segmentation diffi culties, as some
of these selections could be in confl ict with the overall strategy for the software vendor. Part
of defi ning an analytical application frame is to defi ne the needed functionality that is going
to be the same for any selected market segment. We need to analyze the functionality that is
expected from an analytical application software solution.

Thirdly, our study introduces a strategic framework – Analytical Application Frame Strategy
– that is a refi ned framework of the Software Application Frame Strategy introduced by
Sääksjärvi (2002). Our framework refl ects the requirements of analytical application software
solutions with six corresponding alignment perspectives that a software vendor can take when
implementing its software development strategy in conjunction with business strategy.

Fourthly, we will demonstrate how product line engineering can be one good alternative
approach to building analytical application software solutions with derivative products that

7

create a product family. We will also discuss different techniques that an analytical application
software vendor can utilize when creating derivative software solutions using the product
platform approach. We will demonstrate different implementation mechanisms for application
frames using software product line engineering with corresponding software assets. This type
of discussion has not been published before and will therefore provide a foundation when
defi ning a strategy for derivative software product development.

Finally, the fi ndings from the existing software related platform literature, analytical application
software literature, and software engineering literature are used to obtain ideas, characterize
the construct, and provide feedback for improvement in a longitudinal interpretative single-
case study of a decision support organization undertaking analytical application solution
development. The benefi t of this case study is that it demonstrates the use of the Analytical
Application Frame Strategy framework and its corresponding alignment perspectives. We also
analyze the impact the use of the Analytical Application Frame Strategy could have on future
development of the software products within the case study company.

1.3 Structure of the Dissertation

To support the objectives for this study, we have divided our research into eight consecutive
chapters, where by one chapter builds the foundation for the following one:

Chapter 1: Introduction
Chapter 2: Product Platform Theory
Chapter 3: Analytical Application Frame Architecture Development
Chapter 4: Defi ning a Balance Between Sub-Strategies in Analytical Application Software
Chapter 5: Implementation Approaches for a Software Aapplication Frame
Chapter 6: Empirical Research Design
Chapter 7: Analytical Application Development in a Case Study Company
Chapter 8: Key Findings and Summary

The fi rst chapter sets the environment for our research with an explanation of the research
objectives and research methodology. We summarize our fi ndings and note the contribution
of the study.

Chapter 2 is a literature study of the existing product platform literature with corresponding
references to software engineering related technologies that can be used for building software
using the product platform approach.

Chapter 3 is a literature study comparing analytical application software solutions with
corresponding technologies such as data warehouses, data marts, and executive information
systems. The chapter includes also the functional requirements for an analytical application

8

software solution and a comparison of different data warehouse architectural models having
potential for an analytical application software solution.

Chapter 4 includes discussion of the Analytical Application Frame Strategy framework with
different alignment perspectives that a software vendor can utilize when implementing analytical
application software solutions. We will also compare different alignment perspectives with
each other and discuss their impact on software development and future market segmentation
strategies.

Chapter 5 includes discussion of different software development approaches that an analytical
application software vendor can take when utilizing the software related product platform
approach. We will also explore different variation techniques that are available to an analytical
application software vendor. This analysis is implemented in the light of three different sub-
strategies defi ned within an Analytical Application Frame Strategy framework.

Chapter 6 discusses our empirical research design, including our research methodology, our
research strategy, and the framework of analysis. We will also discuss data collection methods
used in the study and which types of analysis tools were used when analyzing the data. We
will also discuss the reliability and validity of the study.

Chapter 7 is a longitudinal interpretative single-case case study analysis of a software vendor.
The aim of the study is to obtain ideas and provide rich insight when using an Analytical
Application Frame Strategy framework in analytical application software development.
This study provides a foundation for understanding the complexities that are involved in
development of analytical application software.

Chapter 8 summarizes the contribution of this study, with discussion of the generality of
the study. We selected the interpretative case study as our research methodology using the
hermeneutic circle from Klein and Myers (1999). We will therefore summarize our case study
results in the light of their seven principles. We will give recommendations for future research
and discuss the limitations of this study.

9

2. PRODUCT PLATFORM THEORY

The aim of this chapter is to explore product platform theory specifi cally from the software
product development perspective. We will initiate our discussion by refl ecting on the
changes that are taking place within software development and the types of implementation
approaches introduced for software development during the last few years. This discussion
sets the stage for the following aim, which is to explore existing product platform literature
specifi cally from the high technology and software development perspectives. We will also
introduce product platform related performance metrics that have been introduced in the
existing product platform literature. These metrics will be used when measuring effectiveness
and effi ciency of product development using the product platform approach. Finally, we will
explore closely related software engineering technologies for derivative software development
and the potential of these for use in software product line engineering.

2.1 A Refl ection of the Software Industry

The aim of this chapter is to shed some light on the changes that are taking place within the
software industry. Software vendors must continuously improve their software development
processes to be able to compete in their respective software product domains. We will discuss
current software research and implementation approaches that software organizations are
using to increase productivity and decrease time-to-market.

2.1.1 Changes in the Software Industry

Software development is still often practiced as a craft - by intuition and experience (Qunitas,
1991). Software development is still a relatively young industry, and has therefore not reached
the maturity typically found in more traditional branches of industry (Jacobson, 1992; Herzum
and Sims, 2000). According to Biberstein (1997), if the software engineering profession is to
become truly an engineering discipline, organizations should fi nd “the industrial, or factory,
solution for building software.” Herzum and Sims (2000) characterize a mature industry by
four different criteria: built-to-order, third-party parts market, maintenance by substitution, and
fi nally supply chain. First of all, build-to-order is a manufacturing process where predefi ned
parts (components) are used to assemble customized products according to customer wishes.
Secondly, in a mature industry, there is a third-party market that builds components according
to specifi cations and standards. Thirdly, products should be built of components, and each
component can be replaced by new components without disturbing the whole. Finally, the
costs of the development should be a small part of the overall supply chain.

Several different approaches to software engineering have been discussed in the literature,
such as Hofman and Rockart’s (1994) discussion of application templates as a future method

10

of software implementation to provide an alternative to the traditional buy or build approach.
Card (1995) points out in his article “The Rad Fad: Is Timing Really Everything?” that during
the 1970’s productivity was the fashionable concern, and that during the 1980’s quality took
the center stage of software development. The theme of the 1990’s was time-to-market,
rapid development, and related themes. All these different approaches, whether consisting
of improvements in object-oriented systems engineering or other software development
methods, have a common aim: to get software engineering and software development closer
to the manufacturing of physical products (or at least to achieve similar productivity results).
Manufacturing organizations have introduced the concept of Mass Customization as a way
of modular development (Feitzinger and Lee, 1997) that provides the fl exibility to customize
a product quickly and inexpensively. Gilmore and Pine II (1997) described the four cases of
customization to provide better service to customers.

There are dozens of different ways of crafting software. Many are traditional, with waterfall
software engineering models and other iterative prototyping models. Each of these models
has to be adjusted to each software company. As Brooks (1987, 1995) has stated in his famous
book, The Mythical Man-Month: Essays on Software Engineering, there are no silver bullets
in software engineering. Many misconceptions have arisen when software companies have
assumed that object-oriented software development will be a silver bullet for success. This
has turned out to be a misconception of high degree. According to our own experience,
object orientation takes time to adopt, and the development organization typically has to be
restructured to better meet the objectives of new software engineering processes. Johnson
(2000) discusses the ups and downs of object-oriented systems development. This has been
frequently discussed in other articles as well (Briand et al. 1999; Pancake, 1995; Fichman and
Kemerer, 1993).

According to Hoch et al. (2000), product development cycles are getting shorter and this has
changed the competitive landscape for software vendors. According to the study of Hoch et al.
(ibid), 80 percent of new software has been on the market for less than two years. Companies
competing in Internet time must constantly change their ideas, experiment, and plan complex
new products and technologies to be competitive. Their competitive advantage could appear
or disappear overnight, which makes the competition extremely harsh. Cusumano and
Yoffi e (1998) found that some of the pre-Internet world strategic precepts, such as vision,
leadership, innovation, quality, barriers to entry, customer lock-in, switching costs, and partner
relationships still hold true.

According to Biberstein (1997), the software engineering world has for some time “conceived
that applications systems could be built from prefabricated parts such as integrated circuits
(ICs), mounted together in accordance with plans, an architecture, and design drawings
produced by the system analyst.” This type of software development approach is also closely

11

related to component-based software engineering that “has emerged as a key element in the
development of complex software systems” (Hopkins, 2000). A similar idea is presented by
O’Grady’s (1999) discussion of developing software products using a modular approach.

Software IT infrastructure could be very different in different end user organizations, and
this could in some cases require cross-platform development. This type of cross-platform
development is not without challenges, as have been reported by organizations such as
Netscape (Cusumano and Yoffi e, 1999). Brereton et al. (1999) argue that software evolution
will become a problem in the future due to evolution and advances in technology. The
problem could become worse when different components from different sources need to be
integrated. This could lead to obsolescence and a lack of confi dence in the software industry
(ibid).

2.1.2 New Ways of Implementing Software

Due to the profound changes in the software development environment, the software industry
and academics are all searching for new ways of designing and implementing software.
According to Brereton et al. (1999), software will be “increasingly component-based, that is,
components will be customizable and fl exible, rather than rigid.” The authors (ibid) conclude
that software component technology must achieve or create a rigid “glue” technology that
enables software components to be assembled and disassembled effectively. Based on our
literature search on current focus areas within software engineering, it was very evident to us
that component-based software engineering (CBSE) is one of the most studied topics in current
software engineering research (Jacobsen et al, 1997; Szyperski, 1997, 2003; Sametinger, 1997;
Herzum and Sims, 2000). Component-based software engineering has been compared with
traditional software development methods, and experiences with CBSE have already been
reported (Sparling, 2000).

Another research domain close to component-based software engineering is product line
software development (McGregor et al., 2002; Northrop, 2002), which aims to achieve larger
scale reuse among software development organizations. One current discussion is whether
software organizations have aimed to created software components that are too small, while
the latest literature suggests that component-based development should be more coarse-
grained to be able to achieve more effective reuse of software assets among different products
in a product line. Iansiti and MacCormack (1997) discuss a software development process that
is specifi cally geared to software development in Internet time. This software development
process is a fl exible approach that “allows companies to respond to changes in markets and
technologies during the development cycle.” The increased pressure to increase the time-to-
market has forced software vendors to change their software development practices. Carmel
(1995) discusses cycle-time reduction as a fundamental competitive product strategy which
“reduces the time from conception to delivery of the product to market.”

12

Booch (1996) predicts that future software development will be more complex due to distributed
computing and greater user expectations for better visualization and access to information.
Complexity will not only be seen in traditional software packages, but also in embedded
software systems such as household devices, etc. Consumers drive software development
efforts to be more complex because consumers learn from one product release to the next
how the product could be improved (Jacobsen et al., 1999). Welke (1994) suggested in his
article “The Shifting Software Development Paradigm,” that software development will shift
towards production of “commercially available object components for general and niche
applications.” His view of software development was very accurate, and with the current
knowledge and advancement in software engineering, his prediction is closer to reality.

A group of researchers decided in 1996 to research current practices of software vendors
around the world (Hoch et al., 2000). This decision was inspired by the research conducted
by Cusumano and Selby (1995) into Microsoft and its software practices as key factors for
its continuing success. The research groups wanted to know whether the lessons learned
from Microsoft were applicable to the overall software industry. Therefore, this group made a
survey of a large sample of software companies around the world to fi nd the secrets to their
software success and failure stories. This study is the fi rst of its kind to be executed on a large
scale and on a global basis. Over 450 software executives from over 100 software companies
were interviewed, as were over 50 industry experts. The survey was based on three different
segments: professional services, enterprise solutions, and mass-market products.

Iansiti (1998) performed four empirical studies in which each comprised fi eld investigations
of competitors in a focused industry segment. These industry segments were semiconductors,
mainframe and supercomputer subsystems, workstations and servers, and software. The aim
of the study was to investigate technology integration and its effects on product development.
Good technology selections were found to be a critical factor in successful Research and
Development (R&D), and a good match between technology and product architecture was
critical to the products’ competitiveness (Iansiti, 1998). Iansiti (ibid) researched Microsoft,
Netscape, Yahoo, and NetDynamics and found that technology integration capability and its
importance in the software industry is similar to that of the semiconductor and other hardware
industries.

Yoffi e and Cusumano (1999) introduced a concept called “Judo Strategy,” which describes how
companies should compete in Internet time. Their fi ndings are based on research they did on two
companies, namely Microsoft and Netscape Communications, with three recommendations
for software organizations when setting their strategy. The fi rst recommendation suggests
that software vendors should move rapidly to uncontested ground to avoid head-to-head
competition. The second recommendation is to be fl exible when a superior force attacks
directly. The third and fi nal recommendation is to exploit leverage that uses the weight and
strategy of opponents against them (Yoffi e and Cusumano, 1999).

13

Changes in the software development community due to technological changes (such as the
Internet and wireless technology) and “time-to-market” pressures require software vendors
to review their existing software development processes to refl ect this new change. Software
vendors are now facing a new situation in which project specifi cations are changing during
the course of the project. This makes the old traditional software processes, with “concept
and specifi cation freeze” phases, obsolete. Organizations such as Microsoft have introduced a
new software development approach in which customer feedback is taken into consideration
before the product is shipped (see Fig. 1).

Fig. 1. A Flexible Approach to Software Development (Iansiti, 1998).

Iansiti (ibid) also suggests changes to the traditional concept of concept development and
implementation of the product. The author defi nes total lead-time as a total of concept lead-
time and development lead-time. Lead-time is the time during which new requirements can
be introduced into the project, whereas development lead time is the time when the product’s
architecture is frozen and can therefore not be changed. The author (ibid) suggests that concept
and development lead-time should to some extent be executed simultaneously. He emphasizes
that this model is not the same as concurrent engineering, because concurrent engineering
does not normally imply simultaneous execution of conceptualization and implementation.

Similarly, Cusumano and Selby (1995) explain a software development process called “Sync-
and-stabilize,” used by Microsoft and, during the last few years, also by other software
organizations around the world (Cusumano, 2004). This software development process is
based on the idea that programmers are encouraged to “innovate and experiment but frequently
synchronize their designs with other team members by creating software builds of the product

14

as often as possible” (Cusumano, ibid). This type of development approach enables software
organizations to incorporate new ideas and concepts along the way. This is different from the
more traditional waterfall approach, where all of the functionality must be decided upfront.

In summary, changes in technology and the requirement to introduce new products to markets
quickly require software vendors to innovate and test new ways of implementing software.
Another question that each software vendor faces is the question of whether to become a
software products company, a services company, or a combination of both. According to
Cusumano (ibid), many companies change their business model from a software products
company to a service company due to decreased software product sales. According to
Cusumano (ibid), hybrid software companies can achieve the best of two worlds. When
these companies apply the software product approach, they can achieve rapid growth and
large profi t margins. When software sales are down, these companies can substitute software
product revenue with service revenue.

2.2 The Product Platform

The aim of this chapter is to explore the product platform related literature in mechanical
engineering and high-technology companies. The product platform concept was initially
introduced in mechanical engineering, but it has lately also been discussed within the software
engineering domain. This will be the aim of our next chapter.

2.2.1 The Product Platform in Mechanical Engineering

Several research papers on the product platform theory within mechanical engineering
were published during the 1990s. A common approach in these papers is to make product
development more effective by building a large common product platform that will be reused
across a set of products in a product family. The product platform is seen as a long term
investment wherein the cost of the product platform is considerably higher than the cost of
an individual product. Sanderson and Uzumeri (1995) discuss the impact of product variety
on a company, and Henderson and Clark (1990) discuss the potential fi nancial impact of
choosing an appropriate architecture for a set of products. Papers have also been published
that address the issue of planning commonality within a set of products (Martin and Ishii, 1997;
Wheelwright and Clark, 1992; Meyer and Lehnerd, 1997; Robertson and Ulrich, 1998).

Wheelwright and Clark (1992) concentrate on describing how an underlying product
architecture can be used in successive derivative product development. According to the
authors, the initial platform of a product family consists of “the subsystems and subsystem
interfaces of the basic product design.” These subsystems “can be incrementally reengineered
or redefi ned to generate specifi c product offerings.” A platform extension occurs when a
subsystem within an existing product platform changes substantially or new subsystems are

15

added to the design. The requirements for these platform extensions are that they should not
interfere with existing primary subsystems. The authors also conclude that product platform
renewal occurs when “product design is rearchitected to incorporate major new subsystems
and new subsystem interfaces.”

Meyer and Utterback (1993) added core capability as a key driver for successful product
platform development. They claim that core capabilities cannot be separated from the products
that the company produces. The authors also emphasize that a robust product platform is
the “heart of a successful product family” where “generic core capabilities in any product
family exist in product technology, market understanding, and so on.” They defi ne a product
family as products that share a common platform, but have specifi c features and functionality.
This approach enables companies to create products for different market segments by using
a common product platform. The authors defi ne general-purpose applications that serve
different customer groups and industries as horizontal market applications. The authors
claim that successful product family development requires a solid understanding of customer
requirements and of their technical infrastructure. Management must identify the importance of
product platform development and its impact on long-term product development productivity,
as product platform development has a longer lifecycle than individual products. The platform
enables companies to create product variations more effectively than creating each product
from scratch.

Typically, software vendors create new products based on a market-pull situation. This situation
is characterized by a market opportunity with specifi c customer needs. Ulrich and Eppinger
(1995) classifi ed products into four different categories: technology push products, platform
products, process-intensive products, and customized products. Typically, a technology push
product is based on proprietary technology invented by the software vendor. The vendor
identifi es a market to which to apply this technology. This approach has obvious risk if the
market is not accepting this technology. A platform product is a product which is built on top of
pre-existing technological sub-system. According to Ulrich and Eppinger (ibid), products such
as Sony’s Walkman and Apple’s Macintosh are typical platform products – both of these have
been the basis for derivative product development. Process-intensive products are products
where the product design and the process cannot be separated from each other. Typical
examples of these products are foods and chemicals. Finally, customized products are products
that are variations from a standard confi guration, such as switches, motors and batteries.

Ulrich and Eppinger (1995) argue that products that are built using a technology platform are
simpler to develop than if they were developed from scratch. Product architecture is part of
the technology platform. Ulrich and Eppinger (ibid) defi ne products in two different ways:
functionally and physically. Functional elements describe the operations and transformations
that contribute to the overall performance of the product, while physical elements describe the

16

parts, components, and subassemblies of the product. They defi ne the product architecture
as “the scheme by which the functional elements of the product are arranged into physical
chunks and by which the chunks interact.” Modular product architecture must have well
defi ned interactions between the modules, and every module needs to implement one of a few
functional elements of the architecture. Based on these original product platform publications,
some authors have also calculated both product platform effi ciency and effectiveness,
measuring how well a product platform has performed in a given environment (Meyer et al.,
1997). According to Jacobsen et al. (1997), software reuse has been recognized since Mcllroy
(1969) introduced libraries of shared components. The aim of software reuse is different from
that of product platform development. Software reuse focuses on cost reduction and overall
cost savings when using common software assets, while the product platform strategy focuses
on maximizing software revenue by using an effective product platform. Effectiveness and
effi ciency are measured using software revenue as one of the key drivers.

Product platform theory has been widely researched within mechanical engineering, and
several studies have shown a positive impact of using a product platform in developing products
such as automobiles or other physical artifacts (Gonzales-Zugasti and Otto, 2000; Dahmus
et al., 2000; Meyer and Lehnerd, 1997). Dahmus et al. (2000) discuss both Volkswagen’s
and Ford Motor Company’s product platform development for different car brands with
the use of common product components by sharing these components in different brands.
Product platform development within mechanical engineering is very different from software
engineering and it is therefore important to identify these differences and research whether
software product platforms can be used in developing software products.

Based on these fi ndings from physical product manufacturing using a product platform with a
corresponding product architecture, our next aim is to research existing knowledge in product
platform theory within high technology companies and specifi cally within software products.
Software product line product development addresses the questions and issues arising from
the contention that software organizations no longer can afford to develop multiple software
products one product at a time (Bosch, 2000). There could be several reasons for this,
such as the pressure to improve time to market or pressure to maintain market share. We
suggest that software development organizations have to constantly look for more effective
ways of implementing products in a manner similar to that used in the world of mechanical
engineering.

2.2.2 Product Platforms for High Technology Companies

McGrath (1995, 2001) argues that product strategy work is more diffi cult in high-technology
companies compared with other more stable industries. McGrath published his initial work
on product strategies in 1995, specifi cally addressing product development strategies for high-

17

technology companies. His second edition of the same publication was released in 2001.
The aim of this release was to give an updated version of the work that had taken place since
the original publication was released. McGrath’s initial work explains in detail the elements
that are required to build a product strategy for high technology companies, and his second
edition of the same work extends the original work with a new framework that he names
his “Core Strategic Vision Framework (CSV).” This framework is composed of several sub-
strategies (core competence, competitive strategy, technology strategy, product strategy,
business charter, fi nancial plan) that have to be aligned with the Core Strategic Vision to
achieve an optimal product development strategy. Another new framework found in his new
work is the Market Platform Plan (MPP), which integrates knowledge about the market and
knowledge about the product and its defi ning technology.

According to McGrath (2001), a product platform is primarily a planning construct which
“sets the architectural rules and technology elements that enable multiple product offerings.”
Architectural rules portray how technology elements are integrated and how these elements
interface with each other. McGrath also lists other technologies as important parts of the
platform. These other technologies enable the vendor to develop a complete product offering.
The author also defi nes a product platform not as a product, but “a collection of the common
elements, particularly the underlying defi ning technology, implemented across a range of
products.” McGrath (ibid) defi nes a product platform to be “the lowest common denominator
of relevant technology in a set of products or a product line.” In a software application product,
McGrath defi nes the product platform as consisting of the architecture (such as mainframe,
client/server, desktop, or Web-based), input/output, and application functionality.

McGrath also emphasizes that a product platform should not be as seen static, but as a
construction that will evolve along with time and customer requirements. A product platform
should not include functionality requirements for a specifi c customer, but it should portray
customer needs from all relevant markets that the vendor is going to address. According to
McGrath, a product platform should evolve according to desired vector of differentiation.
This vector is based on the defi ning technology of the platform. McGrath defi nes the defi ning
technology as that platform element that clearly distinguishes it from other platform elements.
An example of defi ning technology in an Apple Macintosh computer is its easy-to-use graphical
user interface. This defi ning technology will typically differentiate it from other products in
the same domain and will therefore provide its competitiveness. McGrath divides platform
technology elements into three categories: defi ning, supporting, and segmenting. Defi ning
elements gives the vector of differentiation for the products, while supporting elements
support or enhance the defi ning technology. The segmenting technology elements address
the specifi c customer value proposition for the given segments.

18

 According to McGrath, the key benefi ts of implementing a product platform as part of the overall
strategy in the organization are numerous. First of all, product platforms focus management
on key decisions at the right time: product will be deployed more rapidly and consistently, the
platform approach encourages a longer-term view on product strategy, a platform strategy can
leverage operational effi ciencies, and product platform principles help management anticipate
replacement of a major platform. The main emphasis in product platform development is
therefore an emphasis on a very strategic level, while product managers and developers can
manage development of individual products without having to involve senior management.

McGrath was able to bring additional dimensions into strategic product development, such
as marketing strategies, product differentiation strategies, and several other strategies that will
affect the company when implementing products using a product platform strategy. McGrath
did not specifi cally address the needs of a software vendor, and his view of a product platform
in the software domain is very naïve and leaves a lot for software developers to desire.
Issues such as software architecture, software development, and IT infrastructure elements
are completely ignored in McGrath’s work, which does not discuss how a software product
platform should be defi ned, designed, or even implemented.

2.2.3 Other Known Product Platform Publications and Sources

Meyer and Lehnerd (1997) published a book The Power of Product Platforms – Building Value
and Cost Leadership that describes the product platform and its theories with a new concept
they call “Power Tower.” According to this construct, organizations are able to plan their
products with respective product families using vertical leverage within a price/performance
tier and/or according to a market segmentation using horizontal platform leverage. This was
the initial publication that introduced market segmentation strategy into product platform
theory. The authors emphasize the importance of internal software architecture and effective
software interface management in product platform development. According to the authors,
manufacturing of the products should be a part of the platform, and they go so far as to
conclude that even the evolution of manufacturing processes could become an opportunity
for innovation. The authors do not specifi cally discuss software manufacturing, but refer to
more generic terms of manufacturing.

The authors portray the evolution of a product family, product platform renewal, and new
product creation in the following way (see Fig. 2).

19

Fig. 2. Product Platform Evolution (Meyer and Lehnerd, 1997).

Figure 2 portrays three product generations: the initial product platform with its derivative
products and two new product family generations with corresponding derivative products.
The authors’ view of modularity is closely related to physical product development without
referencing component-based software engineering. Meyer and Lehnerd (ibid) conclude that
one of the common building blocks for the product platform is a manufacturing process and
that “best-in-class processes have to be integrated with platform design” that could obviously
be such as a selected software engineering methodology or approach. The authors do not
discuss the granularity of the software modules or subsystems other than via composite
design, used to identify the commonalities across different vertical market segments. The
authors (ibid) conclude that some of the key building blocks for the platform might come
from other companies via subcontracting, but the discussion does not explain the risks of
subcontracting core competitive and defi ning technologies outside the internal development
team. The authors also discuss a great deal of both perceived and latent customer needs in
product development, and the importance of this in achieving a competitive edge in the
selected product domain.

20

Another recent product platform research project was completed by Gawer (2000) and
Gawer and Cusumano (2002). This work concentrated on analyzing how some organizations
such as Intel, Cisco, Microsoft, and many others have been able to achieve product platform
leadership in their domain. According to Gawer and Cusumano (2000), modular design of
products has a powerful impact on innovation, whereby “innovation can happen on modules
of the product without having to impact (and threaten the integrity of) the overall system.”
According to the authors, product platform leadership refers to a common objective sought
by the companies to drive innovation in their industry. The authors implemented a framework
– Four Levers of Platform Leadership – that can be used by organizations that have product
platform leadership or want to achieve product platform leadership to “design and test the
validity of their strategy, given the circumstances of their industry and the competences of
their corporation.” These four levers are as follows:

 • Scope of the fi rm – defi nes what the company should do internally and what kind of
 work should be encouraged by external vendors.
 • Product technology (architecture, interfaces, intellectual property) – defi nes the
 product modularity, interfaces, and how open these interfaces will be to
 complementors.
 • Relationships with external complementors – defi nes how collaborative versus
 competitive the platform leader should be with the complementors.
 • Internal organization – defi nes how the product platform leader manages external
 and internal confl icts and confl icts of interest when working together with
 complementors.

The authors conclude that to be able to sustain product platform leadership, all these four
levers have to be managed effectively and be kept part of the corporate strategy. According
to the authors, organizations such as Microsoft have controlled their product platforms by
controlling application programming interfaces. These interfaces have not been submitted to
any standards body, but have been controlled by Microsoft. Microsoft is a good example of a
software organization building a product platform such as an operating system environment
and then building software complements by competing with other software organizations that
use the operating system platform as the basis for development.

2.3 The Product Platform in Software Development

The aim of this chapter is to introduce software related product platform literature published
during the 1990s and early 2000s. First of all, we will introduce Meyer and Lopez’s (1995)
discussion of technology development within a technology company with an operating system
software product. Secondly, Meyer and Zack (1996) introduced the product platform theory
into information products, with examples of two electronic publishing companies. Thirdly,

21

Meyer and Seliger (1998) introduced the theory of platform strategy for software products
and, fi nally, Sääksjärvi (1998, 2002) redefi ned these into the software application and frame
strategy framework.

We will compare these literature sources based on criteria set in Appendix 1 to help us to fi nd
the criteria that are important for software development organizations in evaluating the use of
the product platform concept. The evaluation criteria are set into different categories, such as
the defi nition of a product platform (both traditional and software related), manufacturing or
design of the product platform, IT infrastructure and architecture related questions, product
architecture related questions, technology related questions, market segmentation/leverage
related questions, economical measures such as platform effi ciency and effectiveness, and
fi nally core competence/capability characteristics for the software vendor (see also Appendix 1).

2.3.1 The Software Platform as Part of Core Technology Capability

Meyer and Lopez (1995) released one of the fi rst references to product platform related software
development. The aim of their study was to map the evolution of a software company’s
product family development and to identify core capabilities in product families to be able to
understand the relationships between these two. The study introduced a software company
that provides UNIX operating system adaptation for PC platforms and real-time capability to
the UNIX platform. This study consisted of a detailed analysis of the company’s technology
strategy and product platform and its product family development strategy. One of the key
elements in the analysis was to fi nd and analyze the importance of core capability in product
family development and how a software vendor’s technology strategy affects software product
development. Meyer and Lopez (ibid) emphasized that investments in a company’s core
capabilities and underlying technologies have to be continuous to ensure successful platform
renewal or platform extension.

According to the authors, a product platform design is “comprised of subsystems or modules
and the interfaces between these modules.” These subsystems or modules are typically based
on software components with predefi ned and standardized interfaces and with component
part numbers. Software interfaces can be categorized into internal and external interfaces. An
example of internal interfaces within the UNIX environment is “those protocols, rules, and
mechanisms by which data are exchanged between UNIX kernel, systems administration,
and utilities modules.” Meyer and Lopez identify a layered architectural model for the system
architecture of a UNIX operating system environment. This layered architecture consists of
three main layers, namely the hardware, operating system, and application layers.

Meyer and Lopez defi ne a product family as “a set of products that share core technology
and address a related set of market applications.” According to the authors, the technological

22

foundation of the product family is the product platform, and a platform “is the physical
implementation of a technical design that serves as the base architecture for a series of
derivative products.” The authors consider product platform renewal the basis for continued
successful derivative product family development. A part of this renewal is the need for
core competence (Prahalad and Hamel, 1990) and the capability of selected underlying
technologies. The authors identifi ed two main core competencies in the company, namely
the ability to make UNIX work in PC environments and the ability to add real-time capability
to UNIX. Integration of external technologies to the core product platform infl uenced the
evolution of the case study company’s product family. The management of the company had
to nurture relationships with the UNIX providers and also make sure they knew what these
vendors were up to in their development of subsequent releases, as the case study company
had based its whole business on adding value to the basic core UNIX.

The paper from Meyer and Lopez was the fi rst product platform paper to focus on technology
driven software development in a software development organization. Meyer and Lopez
identifi ed the importance of a balanced technology strategy to enable the organization to
achieve greater market leverage for its UNIX operating system adaptations to PC platforms.
The authors did not explain process platform development from a software development
organization perspective, but rather emphasized the importance of a balanced technology
strategy in product platform development. The authors viewed software development from a
very technical perspective without explaining in detail how interface management is linked to
software development practices or development methodologies.

Meyer and Lopez also discussed the impact of the integration of external technology into
product platform development. One application of this approach is composite design,
which enables the software vendor to identify the elements or subsystems in the product
platform that will be either developed internally or purchased or sub-contracted from third-
party vendors. The authors failed to discuss the dependencies of IT infrastructure on the
software development environment (the development time environment) and the end user
organization IT infrastructure (the runtime environment). Within software development,
software organizations have to balance between the software development time and runtime
environments. Emphasis in one could impact the other either adversely or favorably. The
authors emphasized two areas in product platform development: solid technology strategy that
has to be in balance with the product platform and architecture. The case study company that
the authors analyzed had changed and added to its development strategy a new application
area, progressing from pure UNIX platform adaptation to PC hardware platforms to embedded
real-time capability to UNIX platforms. This change can be regarded as a challenge for any
software vendor, as the underlying IT infrastructure technology changed from one hardware
environment to another.

23

2.3.2 Product Platform Theory in Information Products

Meyer and Zack (1996) published an article within product platform theory about the
development of product platforms for information products. They authors conclude that
within the domain of information products, the concept of sub-systems should be replaced
with information units, a repository instead of a product platform, and a refi nery process
instead of production or manufacturing process. The discussion of the process platform and
the development of information products was new to existing product platform theory, and
the authors even argue that the process platform is a tool to enable greater product variation.
Several other authors (Meyer and Lopez, 1995; Meyer and Lehnerd, 1997; Meyer and Seliger,
1998) refer to product variation as a means to leverage a product platform. The authors (ibid)
do not specifi cally discuss how product variation can be implemented in practical terms. Their
approach is very abstract, leaving the reader to identify the means of using a product platform
in its product development. According to the authors, the process platform “is composed of
the technologies, facilities, and processes for manufacturing a fi rm’s products.” Technological
leverage is “the extent to which investments in basic product and process platforms serve as
a foundation for effi ciently developing derivative products.” These statements include a strong
emphasis on the process platform as the engine for derivative products within the information
products domain.

Meyer and Zack (1996) defi ne the repository of a database services company as the product
platform and the information content as the substance for the product platform. The refi nery
is the process platform, where the database company manufactures information based on
fi ve information processing stages; acquisition, refi nement, storage/retrieval, distribution, and
presentation or use. These stages resemble a typical decision support application and the
processes that must be undertaken when the decision support solution is delivered to the
end user organization. According to the authors (ibid), the combination of the two platform
elements (product platform and process platform), the repository, and the refi nery is the
foundation for derivative product development. The technical leverage is measured when the
database company is able to effi ciently and effectively manufacture new information products
for different market segments using the same underlying repository and process platform.
These different derivative products can be different from many different perspectives – for
example, from that of packaging, formatting, and even distribution media.

The analysis from Meyer and Zack (ibid) is more or less driven from the information content
provider perspective, including only a few references to software product development and
how software development could affect the development of information products. A few
similarities exist in software development between regular database driven products and
information products. The fl exibility of information products (such as traditional database
client/server applications) is also dependent on software related designs such as the database

24

structure, the fl exibility of user interfaces to accommodate new vertical market sectors, and
the fl exibility of the distribution architecture, as information content has to be delivered to
different devices or software applications such as email, Lotus Notes etc. From the software
development perspective, architectural decisions for information products must support
different confi gurations of the driving software application and, therefore, the database
structure or persistent data store has to be abstracted from user interfaces and information
collection mechanisms to enable maximal variety for different vertical markets. Without this
type of abstraction, each derivative product might require changes in its user interface to
refl ect the new contents of the database. This type of software development could become a
nightmare for a software vendor, as several releases might require simultaneous maintenance
and support.

2.3.3 Platform Strategy for Software Products

Meyer and Seliger (1998) introduced a new product platform architecture geared toward
software development in their article “Product Platforms in Software Development.”
The authors defi ne a product platform as “a set of subsystems and interfaces that form a
common structure from which a stream of derivative products can be effi ciently developed
and produced.” Meyer and Seliger (ibid) base their research on two hypotheses of product
platform development advantages. Their fi rst hypothesis is that a well-designed software
platform architecture can provide a substantial R&D advantage for software development
organizations. They conclude that effi ciency that can be achieved by using a product platform
approach measured both by accumulated costs in the platform itself and how quickly a
software vendor can generate new products from a common product platform. The second
hypothesis is that platform architecture provides a software company a fi rm business model
that enables it to build market share and revenue.

Meyer and Seliger (ibid) propose an architectural model that they call their “Platform Strategy
for Software Products.” This architectural model is based on three separate architectural
layers. It is the fi rst attempt from the product platform research community to help software
development organizations to build product platforms for software products (see Fig. 3).

25

Fig. 3. Platform Strategy for Software Products (Meyer and Seliger, 1998).

Meyer and Seliger (ibid) depict the fi rst architectural layer as the supporting or enabling
technologies layer. These are the elements for core technologies that are the basis for a particular
generation of a product family created from a common product platform. The authors include
the operating system environment and the hardware and networking environment as part of
the computing infrastructure environment for a software developer. The authors conclude that
the platform “is composed of the developer’s design strategies and specifi c implementation
procedures and protocols for the products within the entire family.” The rules and tools of a
software development organization could become standards and protocols for the software
organization and they could be regarded as part of the product platform for the software
organization. Their article includes a vague reference to the software development processes
that a software organization must manage when building software solutions for a selected
market domain.

The second architectural layer consists of applications or solutions “that are composed
of specifi c modules of software that plug into and work seamlessly with the underlying
software.” This description explains how each product platform requires a software layer
that includes all common elements for each and every planned vertical market segment. The
third and fi nal layer is needed to provide software extensions to each specifi c vertical market

26

that requires either specifi c functionality or pricing that cannot be achieved by providing all
of the functionality that a high-end or low-end end user organization might expect (price/
performance segmentation).

Meyer and Seliger (ibid) emphasize the importance of application programming interfaces
that provide software organizations with strong product platform leverage by providing a
third-party development community with a published application programming interface. The
authors give some examples of successful software development using a product platform
theory by describing the success of Visio Corporation within the graphics software industry.
Visio Corporation (now part of Microsoft Corporation) was able to create a third-party
development community by providing a generic charting engine (the product platform) with an
application programming interface (API). The result of this development was that the software
engine became the industry standard within the technical graphics industry. Another example
that the authors portray is Lotus Corporation and their attempt to apply component-based
development to the offi ce application suite domain. Lotus decided to create an application
suite that shares some common subsystems between different applications in a way similar to
that used by Microsoft with Microsoft Offi ce.

Meyer and Seliger (ibid) propose that component-based software engineering could have a
fundamental impact on software development. This approach enables concurrent engineering
and incremental development of software applications as long as these components are well
defi ned, are loosely coupled, and have well-defi ned component interfaces. By using a modular
approach, software vendors can externalize some of software development to accelerate
time to market for their products. According to the authors, the platform “is a collection of
subsystems, themselves composed of modules or components, any number of which may solve
a particular application problem or requirement.” The authors also include the characteristics
of a “complete” platform: that it should “include a linkage to all the building blocks that the
application developer requires to satisfy the user at a reasonable cost and time.”

Finally, the Meyer and Seliger (ibid) discuss the timing and renewal of the product platform
and the importance of having the commitment of the executive management of the software
vendor. According to the authors, platform development requires a holistic approach to the
development of software applications, and this will require resources that management has to
commit to core software platform development. Each company also needs to view platform
development as a vehicle to get into new market segments via effective and quick release of
derivative products. The aim is to be able to reuse the applications across different market
segments and therefore avoid redevelopment of functions and features that can be reused in
each market segment. According to the authors, development of a software product platform
is “both architecture and an implementation of architecture that comprises core subsystems
that propel a family of software products or internal corporate applications.”

27

Even though the authors conclude that software systems typically include many more
subsystems when compared with traditional physical products, they argue that the traditional
physical product platform development theory can be applied to the development of a
product platform for software products. The authors assume that component-based software
engineering might be the best approach for building software product platforms. To support
this argument, they built the layered platform architectural model described earlier. The
authors fail to discuss the dependencies between the layers or how software development is
still coupled with the IT infrastructure that is supported by the end user organization. Nor do
they discuss the needed software development environment that could be different from that
of the environment in which the software is run.

Meyer and Seliger (ibid) do not specifi cally address the complexities of a given software domain.
The authors’ architectural model is generic, but we argue that these types of generalizations
could be too strong, as each software domain might include its own specifi c peculiarity on
each and every level of the proposed architectural model. Meyer and Seliger (ibid) use a
generalized defi nition of the software product platform and argue that this generalized
defi nition serves well also for software. We argue that this defi nition is vague, as it does not
imply the dependencies of software development, and the authors fail to discuss in detail the
component granularity levels that a software product platform should consist of and how a
platform should be composed. If the underlying IT infrastructure is selected carelessly, it could
restrict the market segments and run-time hardware environments both for the end user and
the software vendor organization.

Meyer and Seliger (ibid) exclude completely all the complexities of the software development
process: they include the developer’s design strategies and specifi c implementation procedures
and protocols in the core platform without discussing how they relate to overall product
platform development. They have not specifi cally separated the process platform from the
product platform as Meyer and Zack (1996) did in their article “Platform Development of
Information Products.” A question arises as to whether the process platform introduced in the
Meyer and Zack article is unnecessary or if Meyer and Seliger presume it to be irrelevant in
the development of software products.

The authors also discuss the importance of identifying the commonalities between different
market segments to provide leverage to different market segments. Meyer and Seliger conclude
that the product platform is the base software engine and that the derivative products are the
add-in modules that “can be seamlessly plugged into the base engine.” We argue that this
analogy is oversimplifi ed, as the authors have failed to include other key components into the
software platform development, such as software development environment with included
elements. The authors also introduce a new component-based software product platform
architecture for the fi rst time in the product platform literature. This architecture is divided
into three main layers.

28

2.3.4 The Software Application Frame and Frame Strategy

Sääksjärvi (1998) studied existing product platform theory both in the physical and the
software related domains in a research project. The results of this research were published
in the fall of 1998. To augment this literature research, the study also included four software
companies as case studies to test whether these companies had recognized or deliberately
used a product platform as a basis for their product development strategy. Based on the results
from PLAT98 research (Sääksjärvi, 1998; Sääksjärvi and Salonen, 1998), the product platform
theory from mechanical engineering must be amended to be used as a basis for software
product development. Sääksjärvi (ibid) introduced a new concept of a frame and frame
strategy with three different sub-strategies, namely the frame architecture, frame leverage, and
frame technology sub-strategies (see Fig. 4).

Fig. 4. Frame Elements and their Strategic Fit (Sääksjärvi, 1998).

Sääksjärvi (ibid) concludes in his research that the use of product platform theory in the
development of software products requires a strategic alignment between the frame architecture,
the frame leverage, and the frame technology sub-strategies. If and when a software vendor
analyzes strategic fi t between these three sub-strategies, the analysis should help the software
vendor to solve the following questions (Sääksjärvi, 1998):

• What is the product idea of the company, its technological solution and core
 competence (frame strategy)?

29

 • What are the vendor’s customer segments and product families, and which new
 product family is the application frame going to help to build (frame leverage)?
 • What are the needed application frame components for all of the products in the
 product family (frame architecture)?
 • What is the common technology for all of the products in the product family and what
 are the supported infrastructure selections (frame technology)?

The author argues that these three sub-strategies “should be tightly interconnected and
therefore, they should be aligned into an integrated software application frame strategy.”
This type of discussion is not discussed or introduced in earlier product platform related
literature. According to Sääksjärvi’s framework, application frame strategy consists of a frame
architecture, frame extensions to enable leverage, interfaces, and development partners. Thus,
the core of every product needs to be based on a solid and fl exible architecture, supporting
several different market segments and changes within these. Frame extensions can be based
either on vertical or horizontal extensions. Core product architecture is also directly linked to
the functional requirements of the software package.

The framework in Figure 4 portrays three different sub-strategies and their interrelationships.
Frame architecture sub-strategy includes the application frame(s) and their corresponding
interfaces and these will be the basis for derivative software development using the product
family/product line approach. According to Figure 4, the more fl exible the frame architecture
is, the more fl exibility the software vendor achieves when planning its future software releases.
The second sub-strategy within the framework is frame technology sub-strategy which is
divided into three sub-components:

1. Architectural style (and technology recipe)
2. Software development and implementation technologies and tools (process
 technologies)
3. IT infrastructure technologies (both internal and external).

The fi rst sub-component sets the boundaries for the software from an architectural perspective
and describes the main idea of the solution. The second sub-component within the frame
technology sub-strategy describes the implementation technologies and the development
tool strategy. The fi nal sub-component within the frame technology sub-strategy is the set of
decisions that need to be made on both internal and external IT infrastructure technologies.
This was something that had not been discussed in prior product platform literature. Sääksjärvi
concludes that the main difference between component-based software development and
application frame development is that the latter is used to implement very similar products
with the same underlying technology, while component-based software development could
in some cases address the needs for several different types of products and even underlying
technologies.

30

 The frame leverage sub-strategy sets the directions and strategies for extending the application
frame into new market segments. This sub-strategy will be crucial for software vendors, as they
can leverage software assets within the software application frame to derive new products
for new market segments. To enable effective frame leverage to different market segments,
the frame architecture itself must be implemented to be fl exible for different market segment
implementations. Sääksjärvi (1998) has included as a part of his software frame architecture
vertical connectors (V1...V4) that provide the ability to implement effective frame leverage for
selected market segments. A sign of effective product leverage is when the software vendor
does not have to make any changes (or to make only minor changes) in the frame architecture
when extending to new market segments. It can be said that an innovative and fl exible frame
architecture is a good basis for effective platform leverage.

Sääksjärvi (ibid) studied four software companies, all having a very strong and pioneering
technology strategy and technology recipe. Two of the four case study companies had very
close ties to the end user organization IT infrastructure, while two of them had effective
interfaces that isolated the hardware dependent differences. Sääksjärvi (ibid) concludes that
a good software application frame will also include the accumulation of core knowledge
into the application frame, and that this will help software vendors to expand their business
to the next level. According to the study, the selected case study companies all had a core
defi ning technology and core competence in a given domain. This helped these companies
to grow, not only domestically, but also internationally. The author concluded in his study that
the design of a core application frame is an innovative process and that the process might be
different from case to case. This process can be iterative, and the innovation can be based on
an existing product, the technology selection, or a specifi c need in the market.

A follow-up article from Sääksjärvi (2002) introduces a new “integrative concept of software
application frame” that “conserves the original objective of the product platform.” An
application frame is a large reusable core used as base for generation of derivative products
that can be installed in the customer environment or be offered as part of a vendor’s service
to customers (ibid). The software application frame is “an implemented and real construct”
to fulfi ll the criteria of a software application frame (ibid). Sääksjärvi (2002) proposes that a
software frame follows four main principles that have been presented in the product platform
literature (Wheelwright and Clark, 1992; Meyer and Utterback, 1993; McGrath, 1995, 2001).
These four principles are as follows (Sääksjärvi, 2002):

1. The aim of the software application frame is to improve the business effectiveness
 of application development, applying large-scale reuse of a common application
 core in several successive products.

31

2. The application frame is an implementation of the selected architectural style using
 a set of underlying technologies that will be conserved in all products generated
 from the frame. The initial frame consists of subsystems and subsystem interfaces
 that will be incrementally complemented to customer applications.
3. A software application frame extension occurs if particular subsystems within the
 existing frame will be substantially changed and/or new subsystems are added to
 existing frame without disturbing the primary subsystems and interfaces.
4. A software application frame renewal occurs when the application is redesigned to
 incorporate new major subsystems and interfaces.

These four principles defi ne a software application frame, but according to Sääksjärvi (ibid),
the complexities in software development due to frame architecture, frame extensions,
implementation and process technology require a software vendor to view these
simultaneously. Sääksjärvi (ibid) proposes an integrated business strategy whereby application
frame architecture, frame leverage, and frame technology sub-strategy should be aligned
(integrated) with each other (see Fig. 5).

Fig. 5. Software Application Frame Strategy (Sääksjärvi, 2002).

32

Sääksjärvi (2002) proposes in his work that there are three different fi ts to be considered and
improved to achieve an integrated software application frame strategy. He proposed that the fi t
between frame architecture and frame technology sub-strategy be called “Cohesion of frame
architecture and technology,” the fi t between frame leverage and frame architecture be called
“Responsiveness of the frame architecture to leverage” and the fi t between frame technology
and leverage be called “Flexibility of technology for leverage.” Sääksjärvi (ibid) presented
without any empirical consideration three generic alignment perspectives (processes) in his
Software Frame Strategy framework, wherein each alignment perspective portrays specifi c
characteristics of the alignment process. The fi rst alignment perspective – “Implementation
of leverage potential” – responds to the typical customer requirement based-design and the
implementation of frame architecture. The second alignment perspective – “Technology
transformation” – is used in new market segments, and the third alignment perspective –
“Frame architecture renewal” includes new market segments.

Sääksjärvi includes discussion of the continuous need for re-alignment of the three sub-strategies
within the software application frame strategy as customer requirements and technologies
change. Sääksjärvi concludes that the traditional software process approach follows “different
effectiveness logic than the structural (architectural) product frame approach offered by the
original product platform theory.” For this purpose he proposed that the product platform-
based engineering oriented effectiveness norms (platform effi ciency and effectiveness) be
expanded to more carefully calculate economic effectiveness.

2.4 Findings and Comparison of Product Platform Related Theories

To facilitate comparison as part of our research into existing software related product platform
theory, we created a comparison matrix with comparison criteria, including characteristics
specifi c to software development (Appendix 1). A common theme for all existing research
was the lack of discussion of the technical implementation of software products when using
product platform approach. Our research in the existing software related literature showed
two sources that were specifi cally written from a software development perspective – those of
Meyer and Seliger (1998) and Sääksjärvi (1998, 2002). Both papers discussed issues specifi c to
software development, including software architecture, market segmentation, etc. Sääksjärvi
also included discussion of the complexities associated with underlying IT infrastructure
technology in software development and the importance of aligning technology sub-strategy
with a frame architecture sub-strategy and a frame leverage sub-strategy, as each of these
strategies will impact the overall product development strategy.

A study of the existing software related product platform literature showed that the defi nition
of a product platform varied greatly among the different authors. Meyer and Lopez (1995) did
not clearly defi ne a process platform – they conclude that “the design concepts comprising a

33

product’s architecture are physically implemented as product and process platforms.” Meyer
and Seliger (1998) dropped completely the concept of process platform in their paper, even
though that was very strongly emphasized in the paper of Meyer and Zack (1996). Sääksjärvi
(2002) recognized the importance of separating the frame architecture from the software
development process, as both of these have completely different requirements – these two
must be able to be aligned with each in an integrated (balanced) way to provide maximal
frame leverage to different market segments.

Another interesting fi nding is in the paper of Meyer and Seliger (1998). The authors did not
include common applications as part of the product platform. We argue that this could be
a mistake by Meyer and Seliger (ibid), as common applications that are shared by all market
segments should be included as part of the software product platform and will be used
across different derivative products within a product line. All of the existing literature sources
discussed platform extensions and platform renewal, but this discussion was not specifi cally
geared toward software development and the complexities of software variation techniques
within software product line development.

Meyer and Seliger (ibid) include discussion of software component development as a basis for
building a product platform. This discussion does not relate to any specifi c technology, nor
do the authors discuss how this type of software development could be implemented using
software product line development.

The complexity of incremental software development for a product platform with known
complexities such as dependency of software components in a multi-layered architectural
model is not discussed in any of the existing product platform articles. Software products
specifi cally within the distributed computing environment could have a complex architecture.
Each layer of software components could impact the overall functionality of the software
product platform and the decision of when to renew a product platform or when to extend it
to avoid breakages in the overall software solution.

None of the existing software related product platform papers discussed the granularity of a
product platform and its application frame(s). This type of discussion is part of the process of
software asset development that is discussed in the software product line literature. Part of
designing a product platform is to defi ne the commonalities across different software products.
These commonalities are then implemented as part of the software assets used across different
product lines. We will discuss software related product line development as one possible
implementation approach for software application frames in Chapter 5.

Several software product platform papers discuss the use of external third-party development
organizations, and some authors even conclude that platform leadership can only be achieved
by having a strong product platform that will be extended by third-party innovation (Gawer,

34

2000; Gawer and Cusumano, 2002). Software organizations must decide whether software
product platforms are to be used as internal productivity accelerators or if software organizations
are going to use product platforms both to accelerate external innovation and achieve lock-
in of software architecture with respect to the general market. Examples of this type of
product platform leadership and development can be found from several organizations, such
as the software vendors behind Palm software and Visio. These software solutions provide
an underlying product platform that external software development organizations use as the
foundation for their own complementary software development or add-in development,
as Meyer and Seliger (1998) noted in their paper. According to Sääksjärvi (1998), software
development of the product platform itself must be controlled by the software product
platform provider, as the evolution of the platform has to be controlled carefully. This type of
software product platform control was also identifi ed in the work of Gawer and Cusumano
(2002) when analyzing software product platform development at Microsoft.

If the software development organization decides to externalize any development that is linked
to its defi ning technology, the vector of differentiation could have a negative impact on the
software organization, as part of the core competence will be externalized. Usage of third-party
development organizations requires a strong partnering strategy and a well-defi ned software
architecture with a strong software development strategy. A software product platform that
is exposed to third-party developers requires effective application programming interfaces
or connection points (Pronk, 2000). The externalization decision is also very important for
a software vendor. As long as the application programming interfaces are unpublished, the
software vendor can make radical changes to the underlying software architecture without
having to worry about breaking external software applications. Another important factor for
software organizations is to accumulate domain knowledge in the selected software domain,
as this will become the key competitive differentiator for the software organization. It is also
recommended that the core software platform development be kept internal to the software
vendor, specifi cally if parts of the software platform are developed externally using third-party
development organizations.

In the next chapter we will discuss closely related software engineering theories that can be
used when implementing software application frames with corresponding software assets.
These theories will be closely related to software product line engineering with domain and
application engineering (the foundation for building a product line) and component-based
software engineering that enables software organizations to build software assets of different
granularity levels. The chapter is an introduction to the topics surrounding the implementation
techniques of an application frame. Chapter 5 will explore application frame variation in more
detail, using both software engineering and application solution variation techniques with
associated software asset development.

35

2.5 Platform Metrics in Product Platform Development

Several authors have discussed product platform effectiveness (Baker and Freeland, 1975;
Brown and Svenson, 1975; Cordero, 1990). Meyer et al. (1997) propose two metrics for
measuring the performance of research and development, namely platform effi ciency and
platform effectiveness. They argue that existing knowledge in R&D performance measurement
does not help management to understand “the longer term dynamics of evolving product
lines, the renewal of their underlying architectures, and the leverage that these architectures
provide in derivative products.” The authors (ibid) defi ne the effectiveness of a company’s
new product development activity as:

• Its ability to create a continuous stream of successful new products over an extended
 period to time
• The attractiveness of these products to the fi rm’s chosen markets.

According to the Myer et al. (ibid), platform effi ciency measures “the degree [to which] a
platform allows economical generation of derivative products.” Platform effectiveness
measures “the degree to which the products based on product platform produce revenue
for the company relative to the cost of developing those products.” The authors rightfully
argue that measurement of platform development could result to inconsistent results if the
measurements are based on profi t and not sales, as the authors suggest. “Profi t” is measured
differently in different organizations, which could lead to inconsistencies if these organizations
are compared. The authors conclude that platform measurements can be applied at three
levels of the product family:

• Individual products within a product platform version of a product family
• At an aggregated level for the product family as a whole for successive platform
 versions
• Comparatively across different platform versions for different product families.

Platform Effi ciency. Meyer et al. (ibid) defi ne overall platform effi ciency as R&D costs for
derivative products divided by R&D costs for the platform version:

Platform Effi ciency =
R & D costs for a derivative product

 R & D costs for platform version

This formula measures how much the derivative product cost in relation to the cost of the
platform itself. According to the authors, different industries will have different results. In their
case study company, the authors measured an effi ciency value of 0.10 or less, which indicated
that it took less than 10 percent of overall product platform costs to create a derivative product.
Needless to say, if the cost of a derivative product is higher than or similar to the cost of
the product platform, the platform is poorly designed and the organization should consider
replacing it. This platform effi ciency ratio can also be used to measure the weaknesses of the
underlying product architecture.

36

Platform Effectiveness. Meyer et al. (1997) measure platform effectiveness as the accumulated
sales of products or groups of products divided by development costs:

Platform Effectiveness =
Total sales of all products derived from the product platform

 Development costs of platform, platform extensions and its derivate products

The authors discuss signs of declining product platform effectiveness and its linkage to platform
effi ciency. Declining platform effi ciency might well be a sign of a need to renew the underlying
product platform. External technologies might threaten the vendor and its competitiveness, as
competitors are using new technology and achieving high platform effectiveness, while the
subject company is using old technology in its development.

Meyer et al. (ibid) conclude in their article that they did not provide any defi nite answers as
to when management should decide to create a new product platform, but the concepts and
metrics in the article help managers to determine when product platforms should be made
obsolete and how to calculate the effi ciency and effectiveness of the platform. They also
conclude that companies do not typically gather basic data on their product development
efforts. They found it diffi cult to collect data on direct product development related costs, as
these are not collected in most companies. The study by Meyer et al. did not cover specifi c
needs and measurements of software vendors. Our claim is that additional dimensions on the
effectiveness and effi ciency measures need to be implemented for software companies. These
measures will be closely related to software engineering and component-based development.
The framework proposed by Meyer et al. (1997) gives a basis from which software companies
can evaluate the success of their product platform development.

Meyer and Lehnerd (1997) suggest that companies should measure the profi tability of derivative
products. They have defi ned a cost price ratio (CPR) that is the quotient of costs of goods sold
and net sales. Obviously, each company will defi ne its own way of calculating the cost of
goods sold and net sales, and this is why Meyer et al. (1997) decided to use sales as the basis
for their product platform effi ciency calculations. The authors conclude that a basic problem
in calculating product platform and product profi tability is the fact that companies do not
track expenses and sales in a similar manner and continuously across different years.

2.6 Other Useful Metrics Applied to Software Application Frame
 Development

According to Herzum and Sims (2000), software development is still viewed as a craft in many
software organizations: a programmer is still an artist. This type of software development is
inevitably going to change as software organizations aim to increase their productivity with
corresponding decreased time-to-market for their software solutions. Another challenge for
software organizations is that of implementing accurate project tracking applications which

37

enable software organizations to collect and measure every activity that relates to a given
product so as to be able to calculate product profi tability. Unfortunately, according to our
experience, tracking projects with their associated software development phases is viewed as
being too burdensome amongst software engineers, resulting in inadequate measurements.

According to Kaplan and Cooper (1998) some companies have cost systems that are inadequate
even for fi nancial reporting purposes: transactions are “either not recorded or are recorded
incorrectly.” Meyer and Lehnerd (1997) conclude that organizations typically maintain
profi tability numbers for their business units, but only a few organizations can demonstrate
profi tability on individual products. According to Meyer and Lehnerd (ibid), gross margin is
typically a feasible measure and starting point for calculation of product profi tability.

This chapter is divided into two sub-chapters. The fi rst sub-chapter discusses the challenges
of traditional product profi tability measures, while the second sub-chapter relates to metrics
derived from product platform theory.

2.6.1 Economic Metrics for Software Businesses

Economic metrics for software vendors can in some cases be considerably different from
those of manufacturing organizations. A good example of this is gross margin percentage. For
software companies, this measure could be as high as 99%, while manufacturing organizations
have to include the direct costs of materials, which vary with sales. Software organizations can
have different business models: some organizations concentrate on software product sales,
while others might have service-oriented models or even a combination of these (hybrid).
According to Cusumano (2004), software service organizations will have much lower gross
profi t margins on sales due to the costs associated with sales (direct labor etc.). Gross margin
percentages as low as 30% are not unusual, and therefore Cusumano (ibid) suggests that
software products sales are “generally much more profi table than services and maintenance
revenues and easier to grow without adding head count.” In a similar manner Cusumano (ibid)
concludes that gross profi t margin does not provide enough information about the economic
state of a software company given other considerable cost items such as research and
development costs, sales and marketing costs, and general administration costs. According
to Cusumano (ibid), sales and marketing costs should be between 20-30 percent of total
revenues, research and development costs about 10 to 15 percent, and general administration
costs about 5 percent. It is very important to understand that different software business
models have different foundations for evaluating the metrics, as service-oriented organizations
are very different from software product companies.

Calculation of product profi tability using traditional cost accounting practices emphasizes
the collection of all direct costs related to the development of the product. Within software

38

organizations, the largest separate cost item is the labor cost (both internal and external). In
some cases, major parts of the labor costs could be based on software outsourcing contracts
or other similar arrangements that the software vendor has in development of the products.
Once all direct costs are allocated to the individual products, software vendors have to allocate
indirect costs such as administration costs, marketing, software support, and other overhead
costs to the software product. These allocation rules can vary between software organizations,
as each of these has its own characteristics. A typical allocation basis is to use sales revenue as
the driver, as it is impossible to know exactly how these general costs can be allocated to each
individual product. Several different cost accounting practices have been introduced during
the last few years, including activity-based management (ABM), activity-based costing (ABC),
and target costing (Kaplan and Cooper, 1998). Each practice aims to help organizations to set
appropriate allocation rules for cost allocation.

The character of a software organization compared to a manufacturing organization with
physical products is very different, as manufacturing organizations have to deal with raw
materials and other variable costs that are very dependent on overall revenue. Because of
this, economic measures such as a gross margin of 30% could be typical for a manufacturing
company, while a software company gross margin might be 95% (Bragg, 2002). According
to Cusumano (2004), the cost of software license fees (software license revenue) includes
mainly items such as “compact discs, printed manuals, packaging, freight, inventory, third-party
royalties, and amortization expense related to capitalized software development costs” (ibid).

In the case of software organizations, revenue numbers do not drive the direct costs, and
therefore a software vendor must control the amount of investment that is put into any specifi c
product or product family. A traditional measurement for organizations to use is gross margin,
refl ecting the margin when the direct cost of sales is subtracted from total revenue. This gross
margin must be high enough to cover all of the overhead costs, such as administration and
marketing, to enable a software vendor to contribute a healthy operating margin.

Gross margin measurement is a textbook example of a profi tability calculation in any
organization regardless of business domain, and therefore we fi nd it interesting to complement
this measurement with the measurements that have been introduced by product platform
theory. Both of these measurement types (traditional margin metrics and product platform
metrics) are highly dependent on how well the software organization has been able to record
internal transactions, with correct allocation to each and every product within a product family.
Gross margin can be calculated in a given currency or as percentage of total revenue, and in
some cases it might be of interest for the software vendor to calculate the share percentage of
the overall gross margin that a given product has been able to contribute. This could in some
cases reveal that some products that the company is heavily invested in might not contribute
enough to the bottom line for the software vendor.

39

Gross margin percentage enables executive management to compare different products within
a product family or compare different product families with each other. These measurements
do not give the management any idea of long-term profi tability and possible leveraging of the
product platform, and this is why additional product platform specifi c measurements have
been introduced by Meyer et al. (1997) to demonstrate long-term survivability of a product
family. According to Uusi-Rauva (1989), the role of product calculation is to allocate direct
costs to comparable sales revenue so as to be able to decide upon product assortment and
market segmentation.

Regardless of the selected economic metrics, a software vendor must have the ability to trace
product related historical costs and revenues. Software vendors need a solid project tracking
application that will not only track time usage per function, but the time must be allotted
separately to products or product families. According to Meyer and Lehnerd (1997), gathering
this type of information could be very laborious, and in some cases could take months to
accomplish, with the risk of considerable inaccuracy. If the company does not have records
or other means for cost allocation, the management of the software organization must use its
subjective assessment of whether the investment in the product has been reasonable. Meyer
and Lehnerd (ibid) suggest that organizations maintain a simple spreadsheet or database to
keep this data with corresponding line items for each product platform version with reference
to each corresponding product and product family. Each line item should additionally include
all costs drivers that have been included in the calculations (engineering, development,
sales etc.). If the software vendor uses external third-party software contractors in product
development, these costs have to be allocated to each function and product. Meyer et al.
(ibid) concluded that profi tability calculations are hard to measure because organizations do
not track sales per product or might not have enough cost information on which to base their
calculations.

2.6.2 Extended Product Platform Metrics for Software Products

Traditional product platform related metrics were introduced in prior chapters with both
platform effi ciency and effectiveness ratios. To be able to calculate these ratios, a software
vendor should collect all costs related to the development of the software application frame
(the product platform) and total revenue generated from the products that are derived from the
software application frame. The aim of an analytical application software solution is to provide
prepackaged analytics and business processes that a given vertical market segment can utilize
“out-of-the-box.” The reality for a software vendor is typically that 80% of the requirements
are built into the software solution while the remaining 20% have to be manually built, either
by the end user organization or alternatively by the software organization, yielding installation
revenue. We have defi ned this type of revenue as service revenue. Where a software company
realizes both software product revenue and service revenue, the management should measure

40

these two types of revenues over time. If the service revenue goes up over time, it could be
due to the increased complexity of the software application and/or a decrease in software
license sales. Due to the specifi cs of analytical application software (which could be any
software domain with installation activity) we decided to include effectiveness ratios without
and with service revenue. Depending on the software solution, service revenue could be
considerable when compared to the total revenue of software sales. This could be a sign of
weakness in the software application frame.

The aim for a software vendor is to retain its customer base and realize considerable annual
maintenance and support payments. An important measurement for a software vendor is to
accumulate the number of customers the vendor has been able to acquire during the lifetime
of the software application frame. This measurement enables the calculation of software
application frame margin (Total revenue from software sales plus service revenue subtracted
from total cost of software application frame development). When the software application
frame margin is divided by the number of customers, the software vendor is able to calculate
the software application frame’s margin per customer. This number should be tracked and
measured across a longer period of time. The following measurements will be used in Chapter
7 when analyzing our case study software vendor:

• Total direct costs allocated to a software application frame release
• Total revenue for software products for a given software application frame
• Service revenue associated with the software application frame
• Software application frame margin (total revenue from software sales plus service
 revenue minus total direct costs of development of the software application frame
• Number of customers
• Software application frame margin per customer (software application frame margin
 divided by number of customers for the products associated with a given software
 application frame).

The fi rst measurement portrays the overall costs in the software application frame. This
number is also used as the denominator in calculating software application frame effi ciency.
This number will include all the measurable costs of developing the software application
frame, such as personnel costs, costs of outsourcing, etc.

The second measurement is the total revenue for all of the products that have been derived
from the software application frame. This number gives us the ability to calculate software
application frame effectiveness.

The third measurement is the overall service revenue that has been generated when installing
the software solution in the end user organization IT infrastructure. For some software product
domains, this type of revenue might not exist at all. This measurement is needed to calculate

41

the relationship between service revenue and software license revenue. Seasoned software
executives might discover that the prior revenue type could easily hide problems associated
with the software itself, and this could become a problem for the software vendor in the
future. Our recommendation is to calculate software application frame effectiveness numbers
with and without service revenue. It could be deceiving to assume that a software application
frame is effective by reviewing only software license revenue numbers. The service revenue
could be extensive, which typically means that the software is not functionally fl exible to install
or does not have the functionality that is expected from the software solution. Therefore, the
less time the software vendor has to spend tailoring or modifying the software on site, the
more effi cient the software application frame could become from a leverage perspective. If
the service revenue makes up most of the overall revenue, the effectiveness numbers could
become meaningless. This type of discussion was not part of the existing product platform
and software related application frame literature. Service-related strategy is discussed in
Cusumano’s (2003) article, where the author explores the differences between a pure software
products company and a software company that sells both products and services. According
to the author (ibid), service related organizations will require more employees, and if the
software company undertakes customization of the software, the more service-oriented it
becomes. We argue that this type of software vendor and its business model is very different
from a completely product-oriented company, and should therefore be measured and treated
more such as a service organization with associated metrics.

The fourth measurement (software application frame margin) is used to evaluate whether the
software application frame investment has been paid off or whether it is still “under water,”
i.e., the investment has not yet been recouped.

The two fi nal (fi fth and sixth) measurements give an overall picture of how broadly the
application software application frame has been used and what software application frame
margin per customer the software vendor has been able to achieve.

2.7 Related Theories in Software Development with Large-Scale Reuse

The aim of this chapter is to discuss what type of issues a software vendor could face when
seeking and selecting a development approach for a software application frame and its
corresponding software assets. We will assume that development of a software application
frame must be based on large-scale reuse as defi ned in principal one (Sääksjärvi, 2002) for
a software application frame. We will initiate our discussion by refl ecting on the business
case that a software vendor must set to achieve economic benefi ts in its derivative software
development. Secondly, as part of building software assets for an application frame with
the product line/product family engineering approach, a software vendor has to identify the
commonalities and variabilities for a product line, and domain engineering with application

42

engineering is typically applied to achieve this. A solid domain model with corresponding
architecture and software assets would be useless without an understanding of technical
means to implement a software application frame and its software assets. Therefore, we will
introduce component-based software engineering (CBSE) as a vehicle to achieve effective
software engineering results.

2.7.1 Building a Business Case for Large-Scale Reuse

Clements and Northrop (2002) discuss the importance of building a business case for building
software products, and specifi cally for large-scale reuse. Schmidt (2003) concludes that any
business case must have critical success factors and contingencies to enable predictable
results. According to Clements and Northrop (ibid), a business plan should address following
key questions:

• What are the specifi c changes that must occur?
• What are the benefi ts of making the change?
• What are the costs and risks?
• How do we measure success?

Schmidt (ibid) argues that a business case should include several summarized, well-defi ned
fi nancial metrics such as net cash fl ow, discounted cash fl ow, internal rate of return, and
payback period. Weiss and Lai (1999) illustrate the cost model for product lines versus single-
systems. With this model, the cumulative cost without a product line rises steadily from zero,
while with the product line approach the cumulative cost begins with the initial cost of building
the core assets and then climbs at a shallower rate as new products are introduced. This type
of discussion, together with business case and other related documentation, is important when
deciding on investing in product line development using a software application frame.

Based on the aim of effective software application frame leverage using different variation
techniques, a software vendor must identify technologies and methodologies that will support
effective implementation of software application frames. Sääkjärvi (1998, 2002) collected
several principles from existing product platform related literature and used this to address
software-related application frame construction. According to Sääksjärvi (ibid), the aim of
a software application frame is to apply “large-scale reuse of a common application core
in several successive products.” Based on this requirement of large-scale reuse, we need to
identify practical means of implementing an application frame using software engineering
related technologies. There is a lot of research within software reuse. Van der Linden (2002a)
shows that “an increasing number of assets other than software – for example, designs,
patterns, requirements, test specifi cations, and test results – become reusable.” According to
Mili et al. (2002), Henderson-Sellers and Edwards (1990) argue that the traditional waterfall
lifecycle has met criticism, as “each lifecycles stage is infl uenced mainly by the previous

43

stages (top-down), while existence of reusable components requires some sort of look-ahead
procedure to identify opportunities for reuse and take advantage of them.” For Mili et al. (ibid),
reuse has traditionally meant reuse of small code fragments due to inadequate documentation,
but with effective use of component libraries, organizations could achieve reuse on a larger
scale. According to Henderson and Edwards (ibid), object-oriented software development
requires a mix of top-down and bottom-up approaches. Van der Linden portrays the historical
relationship between the level of reuse and the development paradigm (see Fig. 6).

Fig. 6. Moving from Single Systems to Multiple System Families (van der Linden, 2002a).

Figure 6 also portrays the evolution of development paradigms on the x-axis, where the
software engineering has evolved from structured programming and moved towards larger
granular reuse using the component-based software development paradigm. We will initiate
our discussion by exploring and defi ning software product line (product family) engineering,
which we argue is a solid proponent and foundation in the technical implementation approach
to a software application frame. This discussion is then expanded into domain engineering
and application engineering, which are needed in product line engineering efforts. Finally,
we will include discussion of component-based software engineering as a solid proponent for
technical implementation of software assets within a software application frame.

44

2.7.2 Product Line Engineering Using Product Families

Jacobsen et al. (1997) introduced the concept of Application Family Engineering, which he
defi nes as “a process that determines how to decompose the overall set of applications into a
suite of application systems and supporting component systems.” Jacobsen et al. (ibid) explain
that Application Family Engineering has been inspired by Kruchten (1995) and his famous
article “The 4+1 view model of architecture.” A key for Application Family engineering is
to “identify the architecture and a set of components systems that will support the suite of
applications to be built.” To accomplish the aims of Application Family Engineering, Jacobsen
et al. (ibid) defi ne two other engineering disciplines as Application System Engineering (ASE)
and Component System Engineering (CSE). According to Wijnstra (2002), Application Family
Engineering is responsible for product family architecture and reuse, while Component System
Engineering “focuses on the development, maintenance and administration of reusable assets
within the platform.” The role of Application System Engineering is to focus on the development
of the end products using the two former engineering practices.

According to Thiel and Peruzzi (2000), their research on product line engineering was inspired
both by the work of Jacobson et al. (1997) on Reuse-Based Software Engineering and the
work of Kang and colleagues on Feature-Oriented Domain Analysis (Kang et al, 1990). This
collaborative work is very closely related to engineering practice product line engineering.
Product line engineering has become an increasingly important research topic during the
1990s. The Software Engineering Institute (SEI) at Carnegie Mellon University has released
several reports on product line software development and related topics such as software
architecture, domain engineering etc. (Bass et al, 1997; 1998a; 1999). This research initiative
from SEI was launched in January 1997 to help to “facilitate and accelerate the transition to
sound software engineering practices using a product line approach” (Bass et al., 1999). The
aim of this program is to help organizations to produce similar systems of predictable quality at
lower cost. Bass et al. (ibid) conclude that the increasing competition among software vendors
has forced these vendors to introduce new products and functionality at an increasing speed,
and product line development helps these organizations to reach this goal. Bass et al. (1997,
1999) concluded that an increasing number of organizations cannot afford to develop multiple
software products one product at a time, and therefore many organizations have introduced
the concept of product line development. Clements and Northrop (2002) defi ne a product
line as follows:

“A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specifi c needs of a particular market or
mission and that are developed from a common set of core assets in a prescribed way.”

It is clear from our literature research that existing product line engineering literature defi nes
product line engineering and product family engineering differently. To Clements and Northrop

45

(ibid) a product family is “a set of systems built from a common set of software assets.” Geyer
and Becker (2002) conclude that a product family is based on the same reuse infrastructure.
According to van der Linden (2002b) the term product family and product line are used differently
in some European companies. Van der Linden (ibid) defi nes product line and product family
concepts in a manner similar to that of Geyer and Becker (ibid) by stating that a product line
indicates “a set of related, commercial products that appear similar to users but often are built
using different technologies,” while a product family describes “a collection of products that are
based on the same technology.” Similar comments were presented by Northrop (2002), where
different practitioners use different terms but the aim is the same (ibid):

“Regardless of the terminology, software product line practice involves strategic,
large-grained reuse, which means that software product lines are as much about
business practices as they are about technical practices.”

Given the different product line and product family engineering defi nitions, we will take the
same approach as Northrop (2002) did when comparing product line and product family
defi nitions. The aim of product line or product family engineering should be implementation
of a software application frame involving large-scale reuse. We will use product line and
product family interchangeably when analyzing derivative product development of analytical
application software from a common analytical application frame. When we compare the
defi nitions of product line and product family using the Geyer and Becker (2002) and van der
Linden (2002b) approaches, we conclude that the product family is closer to the concept of
software application frame implementation. This is based on the fact that derivative products
from a software application frame are based on same underlying technology as defi ned in the
product family and not only on same type of functionality, as was the case with product line
engineering.

Bosch (2000) introduces two different ways of initiating a product line development effort.
The fi rst approach is to evolve the existing set of products into a product line. In this process,
components are identifi ed that fulfi ll the requirements of more than one product. Once these
components have been identifi ed, they will be adapted into existing products using these
shared components. The more radical approach is more revolutionary, where the existing set
of products is replaced by a product line architecture and set of components. This approach is
more risky, as the initial investment is typically large and as requirements might have changed
during the development time. This revolutionary approach is also more economical, as the
evolutionary model typically requires longer development time and larger investment. This
type of evolutionary development can also be linked to discussion of software application
frame renewal, as software organizations might in some cases be better off by completely
replacing an existing software application frame: the existing software application frame might
be too expensive to maintain and might not allow future feature development.

46

Several research results have been published about the experiences of product line development
(Macala et al., 1996; Dikel et al., 1997; Bosch, 1999a; 1999b; Bosch and Högström, 2000). The
results show clearly that several important core competences are needed when implementing
product lines, such as domain-specifi c expertise, strong architectural knowledge, management
of software requirements, and confi guration management. Key factors for successful product
line development are (Macala et al. 1996, Dickel et al. 1997, Bosch 2000, Bass et al. 1999):

• Domain-Specifi c Expertise
• Architectures
• Confi guration Management
• Business Models
• Scoping the Domain
• Avoid the “Least Common Dominator” Concept
• Managing Requirements in the Product-Line Context
• A Separate Domain Engineering Unit

According to several publications, the results of product line development have increased
the productivity of product development. Thiel and Hein (2002) discuss the pervasiveness
of variability when operating a product line. Jaaksi (2002) discusses via a case study how
a mobile phone manufacturer has achieved product line development in mobile browsers.
Other software product line related articles have been published, such as discussion of
industry-specifi c software product line architectures (Bosch, 1999a), product line software
components (Bosch, 1999b) and evolution of product lines (Svahnberg and Bosch, 1999).
Lopez-Herrejon and Batory (2001) propose a standard problem to evaluate product line
methodologies and conclude that several methodologies have been implemented to create
product line architectures. The authors (ibid) also conclude that the “state-of-the-art” is still
immature and requires further development.

According to Mili et al. (2002), the lifecycle of a product family has different characteristics
when compared with traditional software lifecycles. A product family lifecycle is:

• Architecture-Based
• Economically Driven
• Reuse-Driven
• Domain-Specifi c
• Process-Driven
• A Result of a Producer-Consumer Relationship

According to Mili et al. (ibid), the product line development lifecycle has two main phases.
The fi rst phase is domain engineering, whereby the software organizations produce common
artifacts. The second phase is application engineering, which consumes the artifacts from
domain engineering (Arango, 1994) with the intention of building a product family. The aim

47

of the next sub-chapter is to explain how domain engineering and application engineering are
used within product line engineering.

2.7.3 Domain Engineering with Application Engineering

As the software application frame approach implies reuse of large software entities in the form
of software application frame and corresponding frame components, a method is needed to
extract commonality amongst existing or planned products within the product line. Several
practitioners and software engineering sources (Arango, 1994; Griss, 1996; 2000a; Griss et
al., 1998; Pressman, 2000; Svahnberg and Bengtsson, 2000) consider domain engineering a
technique “to systematically extract features from existing or planned members of a product
line.” Within domain engineering, software designers “use clusters of sets of features to shape
the design of a set of components that cover the product line” (Griss, 2000a). According to
Shlaer and Mellor (1988), there are four different types of domains within systems:

• Application domains, dealing exclusively with business logic
• Service domains, which embody things such as user interfaces, communications,
 event messaging, and other general utilities
• Architectural domains, which embody architectural choices in terms of specifi c
 meta level artifacts (templates, patterns, etc.) and guidelines
• Implementation domains, which include programming languages (and language
 constructs), networks, operating systems, and common class libraries.

Several domain analysis methods have been introduced to the software engineering community,
including Feature-Oriented Domain Analysis FODA (Kang et al, 1990), Feature Reuse-driven
Software Engineering FeatuRSEB (Griss et al., 1998), Feature-Oriented Reuse Method FORM
(Kang et al, 1998) and several others (Griss, 2000a). Mili et al. (2002) recognize Reuse Business
Methodology from Jacobsen et al. (1997) as a method with a set of guidelines and models to
help large-scale reuse. According to the authors (ibid), the Reuse Business Methodology does
not include domain engineering as such, but “distributes the main domain engineering process
between application family engineering and component system engineering.”

Clements and Northrop (1999) defi ne domain analysis as “the process of identifying,
collecting, organizing, and representing relevant information in a domain for the purpose of
making that information reusable in a variety of contexts.” The output of a domain analysis is
a domain model, which defi nes the functions, objects, data, and relationships in a domain.
The authors argue that a domain model will help organizations to capture the commonalities
and variability of related software systems. Development of a product requires knowledge
from several different domains. The software vendor must be able to merge the skills of each
domain to be able to produce successful software products. Domain analysis is dependent
on two factors, namely the depth of the organization’s domain experience and the amount of
resources that the organization can devote to the analysis.

48

Sametinger (1997) concludes that domain engineering can be seen as “a continuing process of
creating and maintaining the reuse infrastructure in a certain domain.” He classifi es domains
into two different categories: vertical domains and horizontal domains. Vertical domains
typically address a specifi c class of systems, while horizontal domains are based on generic
software components used across different vertical domains. Sametinger (ibid) concludes
that common objects (or components) will occur in multiple applications, and that domain
analysis will basically identify the commonalities. He wants to separate domain engineering
from application engineering. Domain engineering is the process whereby the software
engineer identifi es the commonalities between similar systems within a problem domain,
while application engineering takes the results of domain engineering into the software
development process. The domain engineering process will identify the reuse opportunities
in the design of the applications themselves. Similarly, Mili et al. (2002) conclude that the
technical aspects of product line engineering can be classifi ed into domain engineering and
application engineering (see Fig. 7).

Fig. 7. The PLE Lifecycle as Domain and Application Engineering Phases (Mili et al, 2002).

According to the authors (ibid), domain engineering “includes activities such as domain
analysis and defi nition, development of domain (reference architecture), and development of
(core) assets (components).” Furthermore (ibid), “application engineering includes application
requirements analysis, instantiation of the reference architecture, instantiation and customization
of domain components, and component-based development.” One of the key elements in
domain engineering is the development and defi nition of reference architecture that will be the
basis for instantiation of products within a product line. Without a solid reference architecture,
the basis for the products will be weak and cause diffi culties. As product line engineering
aims to achieve reuse in large-scale with derivative product development, the next chapter
discusses the possible building components and techniques for building software assets for a
software application frame in a product line or product family.

49

2.7.4 Component-Based Software Engineering (CBSE)

Several books on large scale component-based software development have been released,
advocating either large-scale component-based development, a software factory approach,
or product line development to manage software development on larger scale (compared
with the traditional object-oriented development approach) (D’Souza and Wills, 1999; Jaaksi
et al, 1999; Brown, 2000; Herzum and Sims, 2000; Clements and Northrop, 2002; Atkinson
et al., 2002). According to Bosch and Högström (2000), during the second half of the 1980’s,
the software development community identifi ed the need for software components to be
of larger granularity levels than functions and classes, and therefore new concepts such as
object-oriented frameworks (Johnson and Foote, 1988; Fayad et al. 1999) were introduced
to improve reuse of common software assets. According to Mili et al. (2002), an application
framework “may be roughly defi ned as a set of interacting objects, together, realizing a set of
functions.” The authors (ibid) concluded that a set of functions defi nes “the area of expertise
or competence of the framework.” Frameworks can be divided into business domains or
computing domains, where the latter domains can be represented by frameworks such as the
Model-View-Controller (MVC) framework.

Component-based development has been studied and discussed in several books (Szyperski,
1997, 1998, 2003; Sametinger, 1997; Pfi ster and Szyperski, 1998; Hopkins, 2000; Vayda, 2000;
Broy et al, 1998). The common thread in these studies is the attempt to fi nd ways to increase
software development productivity for software development organizations. The software
development community has not reached a true maturity level in a manner similar to that of
the manufacturers of physical products. A sign of a mature software industry can be measured
in several different ways: some organizations might measure how well software can substitute
for components within the software product without breaking linkages to other software
components. Other software organizations might act as brokers for commercial software
components in fashion similar to that of car part dealers, who compete with each other on
the OEM and after sale markets for car parts. According to Pressman (2000), component-
based software engineering enables organizations to increase their software development
productivity and increase the quality of software, but that the industry still has to overcome
roadblocks before CBSE will be widely used in the industry. According to the Pressman (ibid),
component-based software engineering can be divided into two separate processes, namely
domain engineering and component-based development. Each of these literature sources
emphasizes the importance of creating loosely coupled software components to enable
software component substitution in cases where one software component reaches the end of
its lifecycle.

Even if software development has increased its maturity, Vayda (2000) argues that the
software industry still has a way to go to achieve manufacturing processes similar to those

50

of other industries today. Vayda concludes that the software industry is “the only industry
that builds the factory and manufacturing processes at the same time it builds the actual
product.” Another view is introduced by Wallnau et al. (2002), in which software systems
become more dominated by commercial components. This will take some of the control of
software architectures from software vendors, as the market will decide which components
will succeed and how these components interacts with each other. This change towards
component-based software development using commercial software components (COTS
commercial off-the-shelf products) will require new approaches from software architects,
as some of the control will be outside the development team. This trend will also require
increased emphasis on software application programming interfaces and encapsulation of
functionality into components to be able to replace software components that are no longer
supported and need to be replaced with new components according to the model suggested
by Herzum and Sims (2000). According to Clements (1996), components have increased in
their size and complexity, and the interaction between components has become better in
both communication and interaction.

Software components are categorized differently based on the purpose, functionality, and
characteristics that they provide in the software product into which they are implemented.
Sametinger (1997) has identifi ed three different component types as a result of a domain
analysis: general-purpose components, domain-specifi c components, and product-specifi c
components. This categorization is according to vertical and horizontal application frame
leverage, as general-purpose components can be used in different applications in different
domains and domain-specifi c components can be used within one domain. Additionally,
product-specifi c components might be specifi c to the application and not reused in any
other application. Another categorization is to classify software components according to a
selected architectural software model. According to Clements (1996) and Szyperski (2003),
component-based development should be based on a layered architectural style. In this layered
architecture, the IT infrastructure is the lowest layer, including infrastructure that is needed in
building the software solution (such as the operating system and network environment). In the
layered architectural model, each layer is allowed to use the components at the same or of the
next lower level. This approach basically isolates different layers from each other and enables
software organizations to replace components in distant layers more easily.

We will explore the use of component-based software development in more detail in Chapter
5, with additional discussion of product line engineering and component-based software
engineering, implementation of software assets, and component granularity and its impact of
building application frames. The aim of next chapter is to explore the impact of software metrics
for software development specifi cally in reference to implementation of a software application
frame with the use of product line engineering and component-based software engineering.

51

2.8 Defi nitions of Concepts and Assumptions in the Study

Part of the core aim of the software application frame is “to improve the effectiveness of
application development by applying large-scale reuse of a common application core in
several successive products.” Within our study, we will be using the term “software application
frame” as the concept of product platform that is more commonly used in manufacturing
of physical products. Using the same analogy, a software application frame for analytical
application software solutions will be named the “analytical application frame,” specifi cally
geared to development of analytical application software solutions.

Based on this defi nition, our aim is to identify an optimal common architectural construct for
an analytical application that can be reused across different vertical domains. To be able to
defi ne an analytical application frame for an analytical application solution, we must have a
thorough understanding of the complexities of these types of solutions. Our defi nition of an
analytical application frame is as follows:

“An analytical application frame is an optimal architectural construct that
is common to all derivative products within an analytical application. This
architectural construct is common to all vertical market segments and horizontal
business processes that a market segment requires.”

Sääksjärvi (2002) defi ned four principles for a software frame. These principles are more or less
generic and do not specifi cally address analytical application software domain characteristics.
As these principles from Sääksjärvi (ibid) are presented without any empirical consideration,
we expect to identify characteristics that are specifi c to analytical application software, its
corresponding architectural model, and functionality. Therefore, our aim is to revisit these four
principles with respect to the analytical application frame later in this study. These will then
be applied in our case study research.

Analytical application software solutions are intended for decision support. Each will have its
own specifi c characteristics and product architecture, which can potentially be very different
from other software application domains. The original product platform theory emphasizes
the use of product architecture in the development of a product platform. According to Ulrich
and Eppinger (1995), product architecture is characterized as follows: “the architecture of
a product is the scheme by which the functional elements of the product are arranged into
physical chunks (building blocks) and by which the chunks interact.” According to Ulrich and
Eppinger (ibid) a modular architecture has two main properties: “chunks implement one or
a few functional elements in their entirety” and “the interactions between chunks are well
defi ned and are generally fundamental to the primary functions of the product.”

Within our study, we will conform to Ulrich and Eppinger’s (ibid) defi nition of product
architecture when analyzing possible architectural constructs for analytical application

52

software. Our reasoning for selecting the defi nition from Ulrich and Eppinger (ibid) goes back
to the theory of the product platform, where a “product platform is the physical implementation
of a technical design that serves as the base architecture for a series of derivative products”
(Meyer and Lopez, 1995) and “a product platform is comprised of subsystems or modules
and the interfaces between these modules” (ibid). In the same vein, our aim within this study
is to portray a modular architecture with functional components for an analytical application
software solution and to demonstrate different interfaces between these modules in the
form of application programming interfaces. O’Grady (1999) concluded that an architecture
specifi es the main modules and their interfaces and that functions within a product can
be classifi ed into three different groups, namely core functions, overlapping functions, and
individual functions. Modularity can also be reviewed from the granularity perspective, where
product architectures with smaller modules can cause software vendors problems due to the
larger number of combinations that these modules or subsystems can cause. From the product
platform perspective, we will concentrate on and limit our research to explain the role of
software product architecture from the granularity perspective using the defi nition from Ulrich
and Eppinger (1995).

There is a great deal of research in software architecture (Clements and Northrop, 2002)
specifi cally by the Software Engineering Institute (SEI). We will exclude discussion of different
attributes for software architectures other than those specifi cally related to analytical
application software development. We will discuss the importance of the domain-specifi c
architecture model versus technological architectural style, as these could represent different
requirements. We will explain the importance of modular software design (Cusumano, 2004)
and the layered software architectural model (Jacobsen et al., 1997). According to Cusumano
(ibid) there is a “sliding scale of modularity for almost any complex product,” whether it is an
automobile or software system. According to Cusumano (ibid), a software module consists of
a set of functions and can be separately tested. Within a modular architecture, components
are loosely coupled, while in an integral architecture components are tightly coupled and
interdependent with each other (Cusumano, ibid).

These conclusions of modular architecture can be related back to software related product
platform development, in which a highly granular software architecture with a software
application frame must be well tested and used across different market segments. If a software
application frame were a “collection of software components,” the concept of the product
platform would be lost, as the combination of small-grained components would cause a
software vendor problems in testing: the possible combinations/confi gurations between software
components grow exponentially. The traditional component-based software development
approach has different aims compared with the software application frame approach. The
former represents purely a software development approach while the latter is a strategic
approach that the software development organization and its management decide upon.

53

The effectiveness and effi ciency of the product platform is dependent on how well derivative
products can be built from the product platform in the form of a product family. According to
Meyer et al. (1997) a product family can be defi ned as “a set of products that share common
technology and address a related set of market applications.” We have to separate defi ning
technology that provides the “vector of differentiation” (McGrath, 2001) for a software vendor
from underlying technology that represents the technological choices that an analytical
application software vendor makes when selecting its IT infrastructure, such as its database
management system, its operating system, and its distributed technology.

Another key question that software vendors might ask themselves is: what type of
implementation approach should be used in implementation of a software application frame?
Our understanding of an analytical application frame does not improve our understanding
of how this can be implemented and deployed to end user organizations. We will explore
what types of software assets and development means can be used when building analytical
application software solutions using a software application frame as their basis.

Interest in component-based software development has increased, with a corresponding
increase in the literature (Larsen, 1999; Stafford and Wolf, 2001; Mili et al., 2002). One of
the key aims of this type of development approach is to concentrate on domain-specifi c
functionality with corresponding software assets. Part of this trend is the use of commercial
infrastructure software assets that are maintained by organizations that have this as their
business model. Other software vendors concentrate on building value-added software as
defi ned by Ryans et al. (2000).

Part of a successful software application frame strategy is to provide a good foundation for
derivative software development. According to McGrath (2001), development of a product
platform without a solid product line strategy is useless. Therefore, our aim was to explore
product line literature on a general level. In Chapter 5, we will explain in more detail how
software assets can be built using product line engineering with associated domain engineering
and application engineering. Both of these latter engineering technologies are used to defi ne,
design, implement, and test software assets within a product line.

2.9 Chapter Summary

In our research into product platform related literature, we were able to re-establish a link
between the original product platform theory defi ned by Wheelwright and Clark (1992) with
the current product platform theory emphasizing software development. Wheelwright and
Clark have a strong emphasis on product architecture and development of physical products,
while Meyer and Utterback (1993) added core capability to the concept of product platform
development and development of product families. Ulrich and Eppinger (1995) added the

54

importance of the technology platform and modular development of products. Finally,
McGrath (1995, 2001) added the concept of product platform strategy into the theory of
product platforms. McGrath (2001) also added additional corporate strategies, including
product line, product differentiation, and pricing into the overall concept of the development
of high technology products.

However, none of these theories was specifi cally geared toward software development and
the specifi cs of software products. Therefore, our analysis was specifi cally aimed at the
product platform theory of software products. Meyer and Lopez (1995) wrote the fi rst product
platform paper introduced within the domain of software development. This paper introduced
technology driven development of UNIX operating systems. This paper was the fi rst attempt to
discuss the peculiarities of software development, but the authors did not include any discussion
of either process or software development (within the integrated development environment)
of the products and how both the internal (development) environment and the external (end
user organization) environment might impact the development of a product platform. Meyer
and Zack (1996) released a follow-up paper about development of information products,
but this paper was more or less geared towards implementation of information contents and
not specifi cally software products. The third and fi nal paper that Marc H. Meyer released
with Seliger was released in 1998, with a specifi c emphasis on product platforms in software
development (Meyer and Seliger, 1998). This paper also introduced several other concepts
that were not discussed in prior papers, specifi cally layered software architecture, object-
oriented design philosophies, and component-based development.

Based on these existing product platform theories, Sääksjärvi (1998, 2002) concluded that
existing product platform theory and product platform theory within software development
were not suffi cient due to the greater complexities of software development. Sääksjärvi
(ibid) concludes that several factors, such as dependence on the underlying IT infrastructure,
complexity of software architectures, and other factors within software development are
diffi cult to manage in an overall software development process. Proper management will
require consideration of additional dimensions, such as frame technology, frame architecture,
and frame leverage sub-strategy. Sääksjärvi (ibid) extended product platform theory by
concluding that pure product architecture design with selected technology is not enough
in software development: three separate sub-strategies should be carefully aligned (frame
architecture, frame technology, and frame leverage sub-strategy).

We also concluded that development of software products is more complicated when compared
with manufacturing of physical products for several reasons, such as dependencies in the
underlying information technology infrastructure, the software development environment,
and software. Some of the existing software related product platform papers identifi ed
component-based software engineering as a good basis for building a product platform or a

55

software application frame (Meyer and Seliger, 1998; Sääksjärvi, 2002). Each of these
generalizations is far from the complexities that can be found within software product
development. Software vendors must select technologies such as the underlying operating
and hardware system environment and the software execution environment required when
running and using software solutions. Another factor in existing software related product
platform literature is the lack of discussion as to whether the software or application domain
will impact both the selected software architecture and the product architecture. Existing
literature generalizes software product platform development for all software domains, while
we argue that each software application domain could have specifi c characteristics, such as
selection of technology, product architecture, and market segmentation.

We also discussed existing product platform related metrics, concluding that these measurements
are not specifi cally geared to development of software products. These measurements could
be amended with measurements and research found in software product line engineering with
associated component-based software engineering and reuse literature as such. We extended
and created general business measurements that will be used in our case study analysis to
demonstrate metrics such as gross margin and software application frame margin, and other
metrics that will be used in the case study.

One of our fi ndings in the existing product platform literature was the lack of discussion
concerning the difference between a software application frame release, an actual product
release and their metrics. This discussion is important for analyzing the effectiveness and
effi ciency of a software application frame. The diffi culty of comparing and measuring
effectiveness and effi ciency measures in different software companies could be challenging, as
each software company is different and has different internal product development processes,
levels of tracking costs, and time spent in each development phase. We have excluded topics
around software reuse in this study, as much research has been done in measuring software
asset reuse (Karlsson, 1995; Mili et al., 2002). Unfortunately, this research has not led to any
signifi cant results for several different reasons, all well documented.

Based on these fi ndings within the product platform related theory within the software
application domain, we have managed to respond to the fi rst research question - How
can a software vendor apply the product platform approach to its software business and
development of software products? - by providing to the reader a theoretical review of existing
software related product platform literature with suggestions for related software engineering
approaches that can be used when implementing a software application frame. This chapter
provided us with a generic framework for software application development using product
platform theory. The next objective is to review analytical application software solutions
from an evolutional perspective by analyzing how these types of application solutions have
developed from well known decision support architectures such as data warehousing, On-
Line Analytical Processing solutions, and traditional Executive Information Systems.

56

The next research question is directed towards our software application research domain
– prepackaged analytical application software solutions – and this requires us to defi ne an
appropriate architectural model with the expected functionality that these solutions provide.
Our following research question is as follows. It will be reviewed in the next chapter:

RQ 2: What types of generic software application frame architectures can be identifi ed for
 analytical application software solutions?

This research question enables us to achieve a better understanding of our software domain
– analytical application solutions – and what type of functionality and architectural models
these types of solutions can be built on.

57

3. ANALYTICAL APPLICATION FRAME ARCHITECTURE
 DEVELOPMENT

The aim of this chapter is to introduce the software application domain that will be the focus
of this study. This domain is analytical application software solutions. We have divided the
chapter into four main sections. The fi rst section lays the foundation for analytical application
software and technologies that are needed to implement these types of solutions. In the
second section we will discuss possible architectural models and implementation approaches
that an analytical application software vendor can utilize when implementing analytical
application software solutions. The third section defi nes the use and functionality requirements
for an analytical application software solution, and the fourth section defi nes an Analytical
Application Functional Architecture that portrays both functional components within an
analytical application solution and how information fl ow impacts each and every one of these
functional components. The fi rst three sections are based on the literature study and have a
strong theoretical emphasis, while the last section on functional architecture provides managerial
implications with contributions to the existing analytical application software domain. We
will explain the complexities of information fl ow in an analytical application and we will also
provide an end user organization perspective in the use of these types of applications.

3.1 Introduction

Decision Support Systems (DSS) have evolved from traditional Executive Information Systems
into today’s business intelligences solutions, which are both web-enabled and leverage different
analytical solutions for different vertical markets. The role of DSS solutions (Scott, 1971) was
to help management to make choices based on the information that was delivered typically
in the form of Executive Information Systems. Rockard and Delong (1988) defi ned EIS as the
solution for upper management to fi nd problems, while a DSS would provide staff people a
vehicle to study these problems and fi nd and offer alternatives for problem solving.

To enable deeper analysis of corporate information, organizations have complemented these
Executive Information Systems with implementation of data warehouses that are targeted to
decision support and “provide historical, summarized and consolidated data,” not detailed
records such as typical On-Line Transaction Processing (OLTP) applications (Chaudhuri and
Dayal, 1997). According to Inmon (1992), a data warehouse is a “subject-oriented, integrated,
time-varying, non-volatile collection of data that is used primarily in organizational decision
making.” Chaudhuri and Dayal (1997) conclude that “data warehousing is a collection of
decision support technology, aimed at enabling the knowledge worker (executive, manager,
and analyst) to make better and faster decisions.” According to Zachman (1997), the lack of an
enterprise wide data architecture resulted in the implementation of a data warehouse solution
because of the discontinuity in the existing legacy operational systems. Paller (1996) argues

58

that another reason for data warehousing is to resolve data access diffi culties in organizations
(Paller, ibid). Data warehousing allows organizations to gather vital corporate information
from different operational systems and to provide this information to management. Zachman
(1997) asserts that one of the biggest efforts in data warehouse projects is to reverse engineer
the often polluted operational data and give this data meaning.

The decision support (and specifi cally the data warehousing) market has evolved and matured
during the last few years. A comparison between the trends in data warehousing from 1997
to 1999 (Gray and Watson, 1997; Watson and Gray, 1998; Gray, 1999; Watson et al., 2000)
shows that data warehousing is moving toward the analytical application market space. The
market is experiencing a trend similar to that which took place in the late 1980s and early
1990s with Enterprise Resource Planning Applications (ERP). It was very typical for end user
organizations to build their own ERP packages, but as this approach was very costly, the
market gradually accepted the concept of standardized ERP packages that covered 80 percent
of the needs and requirements of an organization. A similar trend is taking place for data
warehouse vendors: the market expects delivery of prepackaged analytical applications that
cover most of the needs for a given vertical domain (Surgan, 2000). According to Eckerson
(1998b), data warehousing has “crossed the chasm:” a late majority (Moore, 1991) of end user
organizations contemplate having a data warehouse solution implemented.

These data warehousing technologies are the foundation for analytical application solutions
(Gleason, 1998), as software vendors have to select either a data warehouse or a related data
mart implementation approach as the foundation for these analytical solutions. Whether an
end user organization decides to use data mart technology or data warehouse technology to
feed the business analyst requirements depends on end user organization IT infrastructure
selections and the organization’s information systems strategy. Implementation of an enterprise
data warehouse is a “long and complex process, requiring extensive business modeling, and
may take many years to succeed” (Chaudhuri and Dayal, 1997). Several organizations have
taken another implementation approach by building data marts that departmental subsets
focused on selected subjects. According to Chaudhuri and Dayal (1997), implementation
of data marts is faster and does not require enterprise-wide consensus. Jarke et al. (2000)
conclude that “data marts are small data warehouses, which contain only a subset of the
enterprise-wide data warehouse.”

According to Watson and Gray (1998), the decision support industry is driving toward data
mart technologies with a pre-packaged approach. Even if tools and technologies are improving,
end user organizations should avoid building independent data marts, as these could become
“the legacy systems of the future” (Watson and Gray, 1998). Gray (1999) concludes that if
data mart technology is used, large data warehouse environments should be created “bottom-

59

up.” This approach enables end user organizations to create a virtual warehouse with several
integrated subject-specifi c data marts as a basis.

The aim of the next chapter is to portray and discuss decision support technologies that are
part of an analytical application software solution. This enables us to achieve a perspective
on how analytical application software solutions have evolved during the years and what
types of characteristics, such as architectural models, implementation models, and software
technologies can be identifi ed when building analytical applications.

3.2 Technologies Supporting Analytical Application Software

The analysis of analytical application solutions in this study is based on the perspective of a
software vendor. We will exclude an analysis of implementation methodologies that portray
implementation of an analytical application solution in an end user organization. A typical
analytical application solution is based on an architectural model where data is collected
from different operational applications into a centralized database. The collection process
is controlled and managed by functional software components that make the Extraction,
Transformation, and Load (ETL) of the decision support database automatic according to a
schedule of the end user organization.

An analytical application solution architecture consists of several different technologies. Each
and every one of these technologies has a predefi ned role in the overall architecture, providing
the value proposition that is created when an end user analyst uses the information from
a common information repository. According to Sprague (1980), a decision support (DSS)
solution is composed of three major components: database, model base, and user interface.
A centralized information repository is known as a data warehouse and is a core component
in an analytical application solution. A data warehouse as such does not provide any value
for an end user, but must be supported by technologies such as OLAP with corresponding
Executive Information System user interfaces that help business analysts to utilize information
from the data warehouse repository (see Fig. 8).

60

Fig. 8. Data Warehousing Architecture (Chaudhuri and Dayal, 1997).

Applications such as the balanced scorecard (Kaplan and Norton, 1996), together with
corresponding dashboard technologies, enable end user organizations to present critical key
performance indicators and success factors (CSF) that each business segment in the organization
requires. The balanced scorecard idea is several years old, and analytical application solutions
are fi nally deploying the collection and display of these kinds of applications on broader basis
(Gray, 1999). According to Abatangelo (2001), traditional business intelligence or decision
support applications have to integrate to three categories of data: operational data, business
meta data, and external data. The use of internal data combined with external information
(such as demographics) could provide an end user organization with a profound understanding
of the data provided internally.

The question that an analytical application software vendor could potentially face is: how to
support several different vertical market segments without having to have several different
versions of the same software package. This type of challenge can be translated to a need
to be able to build a common software application frame that can be the foundation for
derivative products within a product family. Each vertical market segment has different
business analytics with corresponding meta data, and the challenge for a software vendor is
to be able to maintain these analytical solutions: to be able to update them with new versions
without breaking existing solutions. The “glue” between these decision support components
- as defi ned by Sprague (1980) - is an effective and centralized meta data repository (Hero,
2001; Soschin, 2001). Soschin (ibid) describes meta data as “the information that describes
each component of an enterprise information system.” The traditional defi nition of meta
data is known to be “data about data,” but this defi nition is according to Soschin too limited

61

and does not portray the importance of meta data in implementation and management of
information systems. Meta data is also important for end user analysts, as each measurement
(key performance indicator) and originating data element has a universal and standardized
description. According to Soschin (ibid), meta data management within an organization
should be standardized, and this process should refl ect data modeling, hardware and software
confi guration, data consistency, data conventions, external standards, modeling standards,
and exchange standards.

Our emphasis in this study is to analyze development of prepackaged analytical applications.
Our aim is to research data warehouse architectures and technologies, as a data warehouse is
the underlying technology infrastructure for storage of information for the analytical application
such as key business metrics and business processes. A data warehouse is just one functional
element in an overall analytical application needed when building software for the analytical
application software market. Other components, such as OLAP software with corresponding
dashboard technologies, are needed to be able to display the contents of the database and
provide much needed analytical information for end users using an Executive Information
Systems user interface. We will fi rst describe data warehousing and data mart technologies,
then work our way to associated OLAP and EIS technologies as portrayed in Figure 8.

3.2.1 Data Warehouse Technologies

The main idea behind data warehousing was and still is the need to separate the operational
data environment from the decision support environment, as operational applications were
never planned or intended to be used as basis for decision support. Dr. E.F Codd introduced
a model in the 1970s in which traditional entity relationship modeling (E-R modeling) breaks
entities (or tables in a physical database) into “small sets of distinct attributes (or columns),
joining them on unique identifi ers (or keys)” (Van Dyk, 2002). This process of normalization
is not well suited for querying and reporting, as reports and queries must include multiple
table joins and this is very time consuming: reporting will become extremely slow when the
database tables are large. E-R modeling is widely used amongst software vendors to provide
the foundation for database models with intensive transaction processing requirements and
a need for continuous record insertions, updates, or retrievals. According to Van Dyk (ibid),
Inmon amended the model of highly normalized databases by adding subject area report
tables that made reporting and querying more intuitive and effective. Van Dyk (ibid) argues
that this approach “allowed for little or no reporting performance improvements since much
of the design emphasis remained on the store of data in the normalized model.” The original
defi nition of a data warehouse from Inmon (1993) relates back to the ability to store a historical
record of data for the all transactions. This typically resulted in extremely large data warehouse
installations that were very common in early 90s. These large enterprise wide data warehouse
implementations could take up to two years to implement, requiring tens of millions of dollars

62

to accomplish. This resulted in several failures, as the organizations had been changed several
times during project implementation, resulting in an obsolete and inconsistent data model.

To avoid the bottlenecks and performance problems, Kimball (1996) defi ned a new model that
was based on the concept of not having multiple normalized versions of the descriptive table
but simply a single intuitive denormalized version of the tables – a star schema. This approach
– dimensional modeling – gives end user analysts a simple database model that is based on
business needs and different subject areas. According to Van Dyk (2002), this dimensional
model is not without problems, mostly due to denormalization of the database tables and
problems associated with this process. A dimensional star schema consists of a fact table with
surrounding dimension tables. A row in a fact table corresponds to a measurement. Fact tables
express the many-to-many relationships between dimensions in dimensional models (Kimball
and Ross, 2002). Dimension tables are entry points into the fact table, providing “slice and
dice” capability to business analysts.

Numerous books have been written about different data warehousing topics (Baquin and
Edelstein, 1997; Humphries et al, 1999; Agosta, 2000; Kelly, 1996, 1997: Singh, 1998, 1999;
Kimball, 1996; Kimball et al, 1998; Giovinazzo, 2000; Jarke et al, 2000; Gray and Watson,
1998; Moeller, 2001; and Debevoise, 1999). The common theme for all these books is more
or less to provide advice for end user organizations in the data warehouse implementation
process. A typical architectural model for data warehousing as defi ned by data warehousing
literature is a process model in which data is extracted, transformed and loaded into a data
warehouse database and furthermore distributed to end users for data analysis. This process-
oriented architectural model describes the typical phases that a data warehouse implementation
must undergo and it also portrays the functional elements to be included in a data warehouse
implementation (see Fig. 9).

63

Fig. 9. Traditional Data Warehouse Architecture.

Some authors (Agosta 2000; Baumöl et al, 2000; Moeller, 2001) add an iterative nature to
the data warehousing process, where the overall solution is build incrementally and some
phases undergo several iterations. Agosta (2000) describes a data warehousing process as
synonymous with the information supply chain, where “elementary operational events – dollar
sales, unit item, quantity sold, and inventory on hand – get molded into business events.” Jarke
(2000) brings reengineering of legacy systems to the data-warehousing domain. According
to the authors, data warehousing can be viewed as a mean of reengineering legacy systems,
as a data warehouse brings heterogeneous data together “under a common conceptual
and technical umbrella.” Therefore, they argue that a data warehouse is “a buffer between
transaction processing and analytic processing,” as operational databases are not well suited
for decision support.

Moss and Adelman (2000) suggest prototyping using a rapid application development
approach (RAD) as a preferred development approach to data warehousing. The authors
suggest that a prototype should not be a throw-away proof of concept, but “a real system
without having to be completely rewritten” (Moss and Adelman, 2000). Several articles have
been written evaluating different data warehousing methodologies (Thomann and Wells, 1998;
1999; 2000), but all of these methodologies analyze data warehouse implementation from
an end user organization perspective and do not therefore provide any guidance to software

64

vendors in building software solutions other than providing an understanding of how these
organizations expect the implementation process to be managed. These methodologies are
not specifi cally defi ned for implementation around prepackaged analytical applications: they
are more or less defi ned to manage a traditional business intelligence or data warehouse
implementation process.

According Moeller (2001), development of a data warehouse requires two separate architectures:
a technical architecture and an information architecture. The technical architecture is important
from the software development perspective, as it lays the foundation of all required technologies
for the solution, including relational database technology, distributed computing technology,
and numerous other technologies. Information architecture describes the behavior of the
included data elements, the data warehouse content, and how data interacts with business
rules that are built into the decision support application. According to Moeller, business objects
within the data warehouse architecture and defi ned by the information architecture use the
services of the components that are defi ned by the technical architecture. These two separate
architectures bring software vendors information on two intersecting architectures. Both of
them will require profound planning by the software vendor.

To facilitate and make enterprise data warehouse development more easy and controlled,
Inmon et al. (2001) have also introduced the concept of Corporate Information Factory (CIF)
which includes Operation Data Stores (ODS) as a key element in the overall architecture.
An operational data store is an intermediate layer that is in some cases built between the
operational sources and the data warehouse environment (Inmon, 1999). According to Jarke
(2000), an ODS contains “subject-oriented, collectively integrated, volatile, current valued,
and detailed data.” The main difference between a data warehouse environment and an
operational data store is that the latter is subject to change much more frequently. An article
by Van Dyk (2002) includes discussion of maintaining a unique normalized staging area/
operational data store as a single source for the data warehouse environment. This eliminates
the need to maintain several ETL processes within the overall solution. Werner et al. (2002)
explain that a Corporate Information Factory can play a signifi cant role in collecting Web
data, enabling decision makers to analyze click-stream data and therefore have a better
understanding of their e-business activities. The authors found that an additional ETL layer
between the data warehouse and the data mart reduced signifi cantly the amount of Web data
for analysis.

3.2.2 Data Mart Technologies

Another approach to building analytical application solutions is to use data mart model as
basis for solution development. Kimball et al. (1998) describe a data mart as a logical subset
of a data warehouse. A data mart is typically restricted to a single business process or to a

65

group of related business processes. Watson and Gray (1998) conclude in their article of new
developments in data warehousing through 1998 that the industry has accepted the data mart
approach for specifi c functional domains such as fi nance, insurance, etc. Watson and Gray
(ibid) state that many organizations have started to build distributed data marts rather than
building an enterprise-wide data warehouse. The article suggests that organizations should
avoid independent data marts, as they could lead to long-term data warehouse problems.
Eckerson (1998b) argues that one of the reasons for data warehousing “crossing the chasm”
was the popular and risk free data mart approach, which led companies to successful
implementations. Another signifi cant contribution is a bottom-up methodology presented by
strong industry professionals such as Dr. Kimball.

Griffi n (1998) discusses whether organizations need a single, enterprise wide data warehouse
or whether departmental data marts are suffi cient as basis for decision support. According
to the author, smaller data marts are easier to build, but at the same time these can cause
problems for the IT department from a support and cost perspective, as each data mart can
be based on a different database technology, a different operating system environment, and a
variety of different OLAP reporting tools. The author suggests that the key to building separate
data marts is to build a scalable technical architecture that can be a basis for enterprise-wide
warehouse development. The author points out that the choice of whether to build a data mart
or an enterprise-wide data warehouse is often political. Cranford (1998) defends the data mart
approach in building fi nancial data marts against enterprise-wide data warehouse development.
According to the author, these data marts “require smaller amounts of source data, fewer data
elements to defi ne, and fewer business rules to develop.” Therefore, these data marts are much
quicker to develop and will not cost as much as typical enterprise-wide solutions.

Kimball et al. (1998) conclude that a data mart has to be “represented by a dimensional
model within a single data warehouse and must consist of conformed dimensions and
facts.” According to Kimball (ibid), a data warehouse is “nothing more than the union of
all the constituent data marts.” This is a major deviation from Inmon’s original defi nition of
a data warehouse. These two different beliefs have formed two different data warehousing
“camps.” One of these beliefs emphasizes that the only way to build data warehouses is by
using an enterprise data warehouse approach, while Kimball and his followers believe that a
data warehouse can be built using subject-oriented data marts using conformed dimensions
(common dimensions across different data marts), these data marts being linked together to
an enterprise data warehouse.

Giovinazzo (2000) warns that a common misconception is that a data mart is a small data
warehouse. The author explains that the difference in these is the scope, as a data mart
typically focuses on an individual subject area within an organization, while a data warehouse
represents the entire organization. Van Dyk (2002) explains that the data model and design

66

method introduced by Kimball “allowed for intelligently and selectively denormalizing the
data model while still retaining the measurements inherent in Inmon’s approach.” The main
reason for this design method was to eliminate the performance bottlenecks that were inherent
from highly normalized data models with corresponding table joins in reporting. According to
Van Dyk (ibid), in the star schema data model introduced by Kimball, there where “no longer
multiple normalized versions of the descriptive table but simply a single intuitive denormalized
version of the tables.”

Data marts can also be divided into different categories based on the aims of the solution.
Moeller (2001) divides them into dependent data marts, independent data marts, integrated data
marts, and point solution data marts. Dependent data marts typically coexist with centralized
data warehouse. This model is a tiered solution, and the data marts are basically subsets of the
enterprise data warehouse. Independent data marts are architected with departmental needs
as basis. Pure data warehousing theorists dislike such kind of development, as it can lead to
data anarchy in the organization. Moeller explains that integrated data marts can be compared
to a shopping mall, where the data marts have a “unifying theme and well defi ned standards
rules for participants.” Therefore, every data mart must comply with the rules before it is
accepted to the mall. Point solution data marts are needed when “each data mart is built to
specifi c needs of a particular group without adhering to any integrative architecture, standard,
or other conformance with any other existing data mart” (Moeller, ibid).

According to Imhoff (1999), size is not the deciding factor in determining a data mart. A
common misconception is that data marts must be separated from the data warehouse
environment. The author concludes that the data warehouse environment can include a set of
star schemas that fulfi ll the business purpose and can be regarded as a data mart. A data mart
need not be based on relational technology: it can as well be based on fl at fi le technology,
multidimensional OLAP technology, or any other technology that support the chosen business
purpose. From a software development perspective, both a detail level data warehouse and a
data mart implementation are similar, as the technology used is typically based on relational
technology.

3.2.3 OLAP and EIS Technologies

An analytical application software solution must include tools for end user analysts to analyze
information stored in either data mart or data warehouse database structures. Some software
development organizations have concentrated their efforts on providing server software
solutions for analytical application solutions, while some software vendors concentrate
on building end user query and reporting tools that enable end users to explore analytical
information in the solution databases. Balanced Scorecard solutions with respective Key
Performance Indicators (KPIs) and Critical Success Factors (CSFs) can be part of an overall

67

analytical application software solution. These measurements have to be both stored in a
central repository and displayed to an end user using some kind of display technology, such
as a personal computer or cellular phone. Regardless of the software solution emphasis of the
software vendor, each software application has to provide a value proposition that provides
the required return on investment numbers for the end user organization.

According to the architectural model in Figure 8, a data warehouse repository will be the
storage mechanism and repository for business critical information. This information is moved
into different analytical applications that are driven by technologies such as multidimensional
On-Line Analytical Processing engines (OLAP) and operational reports that will be the basis
for decision making. The purpose of these solutions is to provide the presentation layer for
business users. Depending on the decision support tools category, some presentation tools are
more passive, while typical OLAP desktop tools (DOLAP) enable multi-dimensional analysis
of data residing in the decision support server. Orfali et al. (1999) conclude that EIS and
DSS applications “provide the human interface to data warehouses.” This statement is the
key of understanding the role of data warehousing. A data warehouse is the repository for
information collection and storage and does not as such provide any tools for information
querying or reporting. These additional Executive Information Systems and decision support
tools (DSS) tools provide fl exible analysis capabilities for end-user organizations.

From a technical perspective, there are several different implementation technologies behind
OLAP solutions. The most traditional implementation is a multi-dimensional database that has
been tuned for Multidimensional On-Line Analytical Processing (MOLAP), while Relational
On-Line Analytical Processing (ROLAP) software products are based on relational technology.
These relational OLAP products typically implement a star-schema database design pattern
that resembles a star with a fact table in the center of the star and a dimension table for each
dimension that can be found in the fact table. If a software vendor decides to implement
the underlying storage database model based on a star schema, the software vendor must
build easy-to-use tools to view and analyze the underlying relational database structure. A
star schema as such does not lend itself to any easier usage of information in the database,
as end users must understand Structured Query Language (SQL) syntax to be able to utilize
the contents of the database. It is fair to say that different desktop OLAP tools permit users
to create multi-dimensional views on top of ordinary two-dimensional relational databases.
A variation of these traditional OLAP tools includes other categories with slightly different
technological foundations, such as Hybrid On-Line Analytical Processing (HOLAP), which
provides a solution with both relational and multidimensional features.

There are several categories of OLAP tools, everything ranging from desktop OLAP tools
to server-based proprietary multidimensional OLAP tools. The purpose of these tools is the
same: to enable multidimensional analysis of data that resides in data warehouse or data mart

68

structures. All of these different OLAP tool categories refer to a decision support database
or engine in one way or the other, and each represents a different underlying technological
architecture. Haisten (1996) identifi ed 16 different tool categories that can be used in decision
support analysis. Eckerson (1998a) has developed a model that portrays two different decision
support domains: reporting and analysis. This model helps end user organizations and software
vendors to categorize and understand the breadth of different analysis tools that can be used
in conjunction with decision support software solutions. According to Eckerson (ibid), there is
a disconnect between software vendors and end user organizations: software vendors oversell
their software packages with functionality that end users are not going to use or which is too
diffi cult to manage.

3.3 Analytical Application Architectural Models

The aim of this chapter is to explore different alternative architectural models that a software
vendor can select when implementing analytical application software solutions. The fi rst sub-
chapter discusses the main differences between a data warehouse and a data mart implementation
approach. The second sub-chapter explains the most common data warehousing architectural
models. The fi nal sub-chapter will explain the pros and cons of each architectural model and
how these could impact development of an analytical application software solution.

3.3.1 Data Warehouse vs. Data Mart Implementation

One of the main new themes in the data warehousing domain is the argument whether data
warehousing should be implemented from an enterprise view or by implementing subject
specifi c data marts one at a time to satisfy the needs of corporate reporting (Tipnis and
Epifano, 1998; Griffi n, 1998; Russell, 2000; Inmon, 1998; Hackney, 1998; Tanrikorur, 1998;
White, 2000b). The discussion of these two models will bring additional topics to be decided
by a data warehouse software vendor. If both centralized data warehousing and subject-
specifi c data marts are implemented, software vendors have to decide on the data distribution
model and IT infrastructure strategies. Several different architectures can be applied; including
centralized, federated, and distributed architectures. These architectural models will also
infl uence software application frame development, as the selected architecture can impact
software application frame technology sub-strategy.

Of these two different approaches to data warehousing, one emphasizes an enterprise view
of building a data warehouse and the other is based on subject specifi c departmental data
marts. Griffi n (1998) points out that small-scale data marts are easier to implement than the
enterprise-wide data warehouse, and the payback is typically short. Griffi n emphasizes that
if a data mart approach is taken, the organization must centralize meta data management
to smooth the transition from the data marts to data warehouse. Tanrikorur (1998) adds that

69

corporate wide data warehouses require an extensive commitment of the company and its
management. Corporate data warehouses typically have high volumes of multiple data sources,
and sorting data out becomes a major undertaking. Singh (1999) states that the quickest way
to implement a data warehouse is to use a bottom-up approach, where the user organization
builds departmental data marts with forethought of an overall corporate information strategy.

Several authors discuss the pros and cons of both bottom-up and top-down data warehouse
implementation models. Inmon (1998) argues strongly that bottom-up data warehouse
development, implementing separate data marts, will lead into data redundancy and simply
can not be implemented. His view is that each organization has to build an enterprise
wide data warehouse without using departmental data marts. Departmental data marts are
typically seen as an easy way to implement a decision support system for departmental use,
but Inmon’s argument is that this approach will lead to duplication of data integration efforts
and, in the worst cases, to different operational system environments. According to Inmon
(ibid), independent data marts could lead to departmental selection of hardware and software,
increasing the overall cost of using the data mart implementation approach.

Hackney (1998) lists the pros and cons of using a bottom-up or top-down strategy in building
enterprise wide data warehouses. His main arguments for a top-down approach are that the
data marts are architected from the enterprise wide data warehouse and therefore the data
marts “inherit” the architecture from the parent data warehouse. This approach will have
an enterprise view of the data and one single and central meta data repository, making the
maintenance of the system less complex. The cons of having an enterprise view according to
Hackney (ibid) are several, one of them being the long implementation time. When an enterprise
data warehouse is built, the subject specifi c data marts will typically be in production after 15
months, which also increases the risks of the implementation, as the organization might have
changed during the implementation. Hackney (ibid) states that one of the greatest dangers in
the data warehousing world is the creation of non-architected data marts. He argues that these
data marts become LegaMarts. These LegaMarts face challenges in later integration work with
other data marts or the enterprise data warehouse.

Tanrikorur (1998) suggest a hybrid approach in her article “Enterprise DSS Architecture –
A Hybrid Approach.” Tanrikorur states that the implementation of an enterprise wide data
warehouse does not become a reality without commitment, and that to implement an enterprise
wide data warehouse is neither easy nor cheap. Tanrikorur (ibid) suggests that organizations
combine the top-down and bottom-up approaches in what she calls a “hybrid approach.” Gill
and Rao (1996) suggested this approach back in 1996 when they called for a “combination
approach.” Their hybrid approach emphasizes that the data marts should be designed with the
enterprise model in mind, but it is not necessary to build the enterprise wide data model at
beginning. The only requirement is to “identify all major problem areas that will eventually be

70

included in the total enterprise solution” (Tanrikorur, ibid). The key people in the organization
should agree upon the enterprise data model before the subject-specifi c data marts are built.
This hybrid approach favors iterative development of a data warehouse solution, which also
supports Inmon’s original idea of iterative data warehouse development (Inmon, 1996).

White (2000b) also suggests a hybrid model – The Federated Data Warehouse – which
resembles the model introduced by Tanrikorur (1998). White claims that there is a trend toward
the use of dependent data marts, and that these data marts are typically also the basis for
turnkey analytic application packages. According to this model, the “design and development
of independent data marts must be managed and must be based on a shared business model of
an organization’s business intelligence requirements” (White, 2000b). This architectural model
includes a common data staging area that includes all the needed elements for independent
data marts. The shared business model ensures consistency in the use of data names and
business defi nitions and allows a centralized storage of all key business measures and processes
that can be shared across different data marts in the organization. Adamson and Venerable
(1998) also follow and suggest a hybrid approach for building a data warehouse. The pros of
a “bottom-up” strategy are the opposite: implementation of data marts is fast, typically taking
between six and nine months for a focused data mart. Return on investment in a data mart is
quick, as the customer sees the business value much more quickly.

Regardless of the selected architectural model, a software vendor has to adjust the selected
model with consideration of several other factors, such as the end user organization IT
infrastructure, available application development tools, and the selected database solution.
The bottom line for an analytical application software vendor is to select its architectural
model according to the requirements of solution functionality (product architecture with
required functionality), and the selected market segment (and this market segment could have
its own restrictions with respect to the operating system environment and other IT infrastructure
elements that the solution must support). Without considering these additional boundaries,
whether technical or functional, an analytical application software vendor could dramatically
restrict its future market segmentation strategies.

3.3.2 Different Data Warehouse Architectural Models

Data warehousing literature suggests several different architectural models that end user
organizations can select when building their decision support solutions. This literature is
specifi cally written and analyzed from the end user organization perspective and does not
therefore refl ect the requirements that analytical application software vendors might have when
developing packaged analytical application solutions. Our analysis of different architectural
models within data warehousing should consider not only the software development
perspective, but also what architectural model provides the best foundation for development

71

of analytical applications for different vertical markets. We assume that there will not be a
single “truth” when selecting architectures, as each selected solution could be a combination
of different strategic elements.

Regardless of whether a software vendor selects an enterprise-wide or a data mart implementation
approach, the overall aim is the same: to provide analytical application information to end
users. The three main data warehouse architectural models are centralized, federated and
multi-tiered/distributed (Jarke et al., 2000). Another architectural model that is based on a
hub-and-spoke architecture is positioned as an alternative in distributed environments with
the need to incorporate local meta data and business metrics (Hero, 2001).

The centralized approach includes one data warehouse (or data mart). All information is stored
in a centralized database. In a federated architectural model, data is logically consolidated but
stored in separate physical databases or even at different physical sites. A tiered architecture
includes a centralized data warehouse with one or several data marts on different tiers that
include summary of data from previous tiers.

Each architectural model has its strengths and weaknesses, and these must be evaluated
together with information technology (IT) infrastructure constraints and the selected software
architectural model that the software vendor sets according to its technology strategy. Noaman
and Barker (1997) assert that each organization must decide whether a data warehouse should
be distributed or reside on an integrated centralized or single machine. Russell (2000) discusses
building an adaptable decision support architecture wherein each organization must balance
between the centralized model and distributed and propagated architectures, normalized and
denormalized table architectures, and database architectures (including parallel technology
and database engine architecture).

A centralized data warehouse model is traditionally depicted with an information fl ow model
in which data sources are portrayed leftmost, the data warehouse database is in the center,
and data distribution and reporting tools are rightmost (Inmon, 2002; Watson and Haley, 1997;
Tipnis and Epifano, 1998). This view of a data warehouse, where data fl ows from operational
systems into an integrated data warehouse from which users can create queries or reports
for decision support, is described by several different data warehousing sources (Watson and
Haley, 1997; Inmon, 1992, 1996, 1997; Noaman and Barker, 1997; Singh, 1998; Orfali et al.,
1999; Moeller, 2001).

The centralized architecture is similar to that of the traditional architecture that Bill Inmon
describes (1992). This model suggests that there is only one enterprise data warehouse with
included subject-specifi c areas. According to Inmon (2002), it makes sense to maintain a
single centralized data warehouse if the environment supports this approach. In some cases

72

a distributed data warehouse environment makes more sense, such as an environment where
most of the businesses are distributed geographically. Another typical case where data
distribution makes sense is if the amount of data becomes very large. In that case, it makes
sense to distribute the data warehouse technologically to several processors while still keeping
a logical view of the overall data warehouse. Some organizations have not built their data
warehouse environment in a coherent manner, and such organizations might have several
independent data warehouses in different geographical locations.

According to Özsu and Valduriez (1996) a fully replicated data warehouse is similar to a
centralized data warehouse architecture. In this model, the centralized master data warehouse
database is fully replicated to each remote site (local replica data warehouse databases).

Several authors (White, 2000b; Hackney, 2000a; Hackney, 2000b; Jarke et al. 2000) suggest a
federated data warehouse implementation model. Jarke et al. (2000) portray a federated data
warehouse architecture where data is logically consolidated, but stored physically in separate
databases. In this approach, local data marts store only the information that is relevant to the
department or subject, and the logical data warehouse is virtual, while in the tiered architecture
the logical data warehouse is physical and each tier can have its own data marts that contain
summarized information and do not include detailed data as in the federated approach.
According to Hackney (2000b), federated data warehouse architecture is “an overall system
architecture that accommodates multiple data warehouse/data mart systems, operational
data stores, amorphous reporting systems, analytical applications etc.” The federated data
warehouse architecture adds a technical detail in the design of a data warehouse, namely a
data staging area that is the main source of information for the data warehouse integration.

White (2000b) describes this federated data warehouse approach in an architectural model
which combines two concepts, namely data fl ow from operational data stores to the data
staging area and the development process from initial business requirements analysis to
implementation of the data warehouse models. White includes the implementation of the
data models for both the data staging area and the data warehouses. He also includes data
reengineering tools and data profi ling tools in the model. This architectural model differs from
traditional data warehouse models by adding the data staging phase in the implementation
of the data warehouse. The main idea behind White’s federated data warehouse model is to
enable organizations to have a centralized data warehouse with independent data marts. The
consistency of these data marts is controlled via a common business area model and data
staging area for the entire enterprise (see Fig. 10).

73

Fig. 10. Federated Data Warehouse Architecture (White, 2000b).

According to Noaman and Barker (1997), the disadvantages of a centralized data warehouse
architecture can be overcome by implementing a distributed data warehouse architecture that
“mirrors more accurately the physical distribution of the actual organization.” This approach
requires that local data warehouses be implemented by extracting information from local
operational systems, resulting in a local data warehouse in each branch. Each local data
warehouse is a subset of an overall view of the corporate-wide data warehouse. Noaman and
Barker (1997) describe two main schools of thought relative to distributed data warehouses:
those of Inmon (1993) and White (1995). Inmon’s approach emphasizes the existence of both
local and global data warehouses, where local data warehouses are fed by local operational
systems and these data warehouses can be mutually exclusive. White’s (ibid) approach, also
known as “two-tier data warehouse,” is a combination of a centralized data warehouse and
decentralized data marts. These decentralized data marts are updated and fed from the
centralized data warehouse environment.

Noaman and Barker (1997) suggest an alternative model for distributed data warehouses.
In this model, decision makers are divided into two different categories; those that make
decisions for the entire corporation and those that make decisions at local branches. The
proposed architecture mirrors these two different categories with a Distributed Detailed Data

74

Warehouse (DDDW) and a Centralized Summarized Data Warehouse (CSDW). This model
provides distributed transparency, where local decision makers use local data warehouses
while decision makers for the entire organization can use these local data warehouses for
detail analysis and also a summarized data warehouse that is centralized and gives users at
headquarters an overall view of the business.

Another architectural model based on hub-and-spoke architecture with a centralized meta
data repository is proposed by Hero (2001). According to Hero, the advantage of having
hub-and-spoke architecture with a middleware platform enables applications to have better
scalability and fl exibility. Applications are integrated, and a hub-and-spoke design “connects
source and target systems to a central hub.” The main idea behind this architectural model
is that each data source represents a spoke and an “information broker” serves as the hub.
A key element in this architecture is to have a strong centralized meta data repository that is,
according to Hero, “a central storage area for source and target meta data, source and target
interface mappings, business rules, transformation rules, data validation rules, scheduling,
and other information about the data exchange process.” These spokes can be different for
midrange systems, mainframes, Windows NT based servers, or even proprietary fi le systems,
according to Hero (ibid).

3.3.3 Pros and Cons of Different Data Warehouse Architectural Models

There are two considerations when deciding upon an architectural model for building a decision
support solution. First of all, the software vendor has to decide whether the solution is going
to be implemented based on a data mart or a data warehouse implementation approach.
Second, the software vendor has to select an architectural model for the solution. According
to our previous chapter, the main models are centralized, federated, or multi-tiered/distributed
or a combination of these (Russell, 2000).

Several authors list pros and cons of the centralized data warehouse model (Noaman and
Barker, 1997; Russell, 2000; Moeller, 2001). A centralized model offers a high level of security
and ease of management. A centralized approach is convenient for organizations whose
operational applications are already centralized. According to Noaman and Barker (1997),
a centralized model suits organizations with a mainframe strategy: all OLAP tools can run
against a centralized data warehouse with centralized processing from a single location. But the
disadvantages of a centralized model are numerous, such as lost performance compared with
distributed or multi-tiered environments, where some of the processing can be decentralized.
Other disadvantages are expensive: expandability of the data warehouse, and reliability, as
a centralized data warehouse is the single point of failure. The cost of implementation and
vendor dependency can be a disadvantage of building a centralized data warehouse.

75

A traditional centralized model would lead to what Hero calls “Point-to-Point Chaos,” where
far too many points of data exchange exist with the IT infrastructure. This model could lead
to repetitive ETL processes across the organization. Changes in either the data mappings
or business rules would lead to chaos, and would be extremely hard to maintain. A fully
distributed model with several architectural tiers requires selection of distributed computing
technology and will therefore require understanding of complex programming issues such as
load balancing, message marshaling, and several others typical for software engineering in a
distributed environment.

The federated approach is similar to the centralized concept, but it adds a data staging
area or operational data store that will reduce the volatility between the data source and
data warehouse database. This architectural model also includes a centralized meta data
repository and a business area model (White, 2000b) that will be available for all dependent
or independent data marts that are integrated together to achieve an overall view of the
enterprise. According to White (2000b), the federated approach will accept independent
extraction, transformation, and load processes in a manner similar to the hub-and-spoke
model proposed by Hero. The main concept behind a centralized meta data database is to
keep all meta data with corresponding ETL rules (as well as other rules) centralized, even
the rules for ETL process that are executed in remote locations. The main advantage that
Hero’s (2001) hub-and-spoke and White’s (2000b) federated data warehouse models provide
to software development organizations is an easier model for creating analytical solutions, as
all meta data with respective business rules, transformation rules, etc. is centrally stored, and
this helps the maintenance and upgrades of new releases to end user organizations. Hackney
(2000a) concludes that a federated data warehouse model shares key metrics, measures, and
dimensions across the entire range of business intelligence systems in an organization. In
similar manner, Hackney (2000b) concludes that if “the Internet is a network of networks, a
federated data warehouse architecture is an architecture of architectures.”

The distributed/multi-tiered architectural model requires software vendors to select a
distributed computing model and decide how to manage the distribution of both data and
meta data. The distributed data warehouse model combined with a layered approach can be
analyzed from two different perspectives. First of all, distribution does not necessarily mean
multi-tier, as some IT infrastructure environments distribute information to remote locations
and use this distributed information as if it were local. The other alternative is to have a true
multi-tier architecture, where information fl ows between different architectural layers and
this information fl ow is managed by distributed components such as Distributed Component
Object Model (DCOM) or Common Object Request Broker Architecture (CORBA). In
distributed environments where information is replicated from one location to the other, some
application logic could be achieved by using the native functionality of the selected database
management system.

76

Russell (2000) asserts that “decision alternatives for the distribution and propagation of data
can be viewed across a continuum.” On one end, organizations can build highly distributed
architectures with independent data marts, and on the other end, organizations can build
centralized enterprise data warehouse architectures with low propagation of data. A
decision that is in between these two continuums is the hub and spoke approach with high
propagation of data. According to Russell, there are several advantages to building distributed
environments, such as performance improvement and less complex and smaller data models.
The hub and spoke approach has disadvantages, including a higher cost of propagation,
increased time to build compared with a centralized or data mart approach, and distribution
of the business analytics calculations needed for cross subject area analysis. This can lead to
a credibility crisis, as these spoke data marts may yield different results when compared with
results from the hub environment. In the analysis of these continuums, Russell concludes that
“once an architectural decision is made, the continuums become unidirectional and future
architectural decisions can be made only one direction – outward.” This means in reality that
if an organization decides to take a distributed data warehouse approach, the organization
cannot move back to a centralized architecture. Russell (ibid) suggests that organizations build
their data warehouse foundation architecture with a centralized data warehouse approach.
This architecture can be the basis for subject specifi c data mart analysis.

3.3.4 Conclusions – Findings of Architectural Models

The architectural models identifi ed in the data warehousing literature are portrayed at a very
high abstraction level – such as architectural patterns or designs - and do not necessarily provide
a clear view of all the functional components that are required within an analytical application
solution. These architectural models are geared more toward demonstrating information
fl ow within the solution than showing how each functional component interacts with other
functional components. From the software development perspective, the architectural models
that can be found in the data warehousing literature do not provide enough detail level
information to be useful in software development. We argue that there is a gap in information
between the software vendor’s perspectives. Each vendor has to explore these architectural
models and build more detailed plans that consider both the complexities and the interactions
of functional components.

A traditional centralized data warehouse model is known to have one centralized enterprise
repository, while a multi-tiered/distributed architectural model can potentially have data on
several architectural tiers. This increases the complexity of software development, as the solution
has to provide tight information integrity across each architectural layer. From the software
development perspective, the traditional centralized data warehouse model is arguably the
easiest architectural model but also the most ineffi cient environment in end user organizations
with heterogeneous data sources and hardware and software environments. The multi-tiered/

77

distributed architectural model provides end users with local data mart repositories. If the
hub-and-spoke architectural model is deployed, the software vendor will be challenged to
keep each spoke updated with current business analytics and metrics as described by Hero
(2001). This model could potentially lead to integrity problems, as each spoke can have a
different set of business rules and measures, localized based on the requirements of the
remote organization (that portrays the spoke). In a federated data warehouse architectural
model, database repositories can be physically distributed in the organization, but the end
user is provided with a “virtual view” of the enterprise data.

Analytical application software vendors have to decide on an implementation approach for
their analytical applications and selection of an architectural model for the solution. We have
discussed the pros and cons of each implementation approach, and we believe that a hybrid
approach (such as the federated data warehouse environment) is more effi cient for end user
organizations and for the software vendor. The hybrid model brings the advantages of having
a centralized database repository and independent data marts using a shared business model
for all of the end user organization’s analytics requirements. We also believe that a common
staging area is benefi cial for an analytical application solution as, it shields the solution from
underlying operational system database volatility. The federated data warehouse environment
supports the concept of common meta data and business analytics repositories that are key
elements in building analytical application solutions for different vertical market segments.

3.4 Analytical Application Software Solutions

The move from custom-made tailored analytical applications to prepackaged applications
is gaining foothold amongst end user organizations (Morris, 1998; Eckerson, 2002). The aim
of prepackaging is to provide to end user organizations predefi ned analytical solutions with
predefi ned business metrics and business processes that are typical for the selected vertical
market segment. Gleason (1998) divides business solutions into two categories: vertical
solutions and horizontal solutions. Vertical solutions are defi ned for specifi c industries such
as insurance, retail, distribution, and banking, while horizontal solutions focus on corporate
functions across different departments, business units, or even industries. From a technical
implementation perspective, data warehouse components will be needed to provide the
ETL functionality to collect information from different operational applications. We see data
warehousing with its included decision support applications (such as OLAP) as elementary
components when building analytical prepackaged solutions. Morris (1998) concludes that
existing data warehouse solutions must “incorporate data from both fi nancial and non-fi nancial
information sources that are required by new analytic methodologies, such as the balanced
scorecard.”

78

3.4.1 Defi nition of an Analytical Application

The history of analytical solution development dates back into the early 1990s, when E. F.
Codd presented the original description of analytical applications in a ComputerWorld article
in September 1993. Several other authors (Morris, 1998; Gleason, 1998; McGuff and Kador,
1999; Surgan, 2000) also raised the question and discussed whether organizations should
build or buy analytical applications and how an analytical application should be positioned
within the decision support market.

One of the most infl uential articles within the fi eld of analytical solution development was
released by International Data Corporation (IDC, 1997). This article gave the fi rst comprehensive
defi nition of analytical solution development, according to Morris (1998). Analytical solutions
represent a convergence of several major forces in the software market (Morris, ibid). First of
all, analytic solutions provide and extend the existing business process methodologies with
new elements such as the balanced scorecard, which was originally defi ned by Kaplan and
Norton (1996). Secondly, analytical solutions drive end user organizations to buy solutions
instead of trying to build them from scratch, which is typically a lengthy process and prone
to failure. Morris (1998) emphasizes that this approach also supports the notion of traditional
decision support defi nition, where these solutions are defi ned and designed to support decision
support business requirements and not transactional systems and reporting that is typically
driven from these systems. Morris (ibid) argues that analytical applications are extensions
of data warehousing, where end user organizations are looking for new ways of analyzing
information, such as balanced scorecard and data mining applications. It is fair to conclude
that analytic applications require a data warehousing or data mart implementation model.
Our aim is to explore how these implementation models can be used as bases for analytical
application solution development from the software vendor’s perspective.

According to Morris (ibid), analytical applications have to support three main characteristics.
First of all, packaged analytical solutions have to support different business processes such as
automation of “groups of tasks pertaining to the review and optimization of business operations.”
These business processes refl ect the specifi ed market segment. Associated business processes
that must be “packaged” in the solution include “business rules, procedures, and techniques
with an accompanying methodology that explains how these elements are to be used together
to successfully complete a set of activities.” Secondly, analytical solutions have to be able
to operate separately from the organization’s transactional systems while being dependent
on the data provided by the transactional systems. Morris (ibid) concludes that analytical
solutions have to support business analysts, sending data back to the analytical application.
This type of closed-loop analysis will enable business analysts to react more quickly to the
information that requires immediate action. The third and fi nal defi nition of an analytical
solution according to Morris is that it must include time-oriented and integrated data. This

79

requirement is supported by data warehouse functional components such as ETL tools, which
“extract, transform, and integrate data from multiple sources (both internal and/or external
to the business).” The second element in the fi nal requirement was to provide time-based
analysis. This is a perfect match for any decision support application that provides time-series
analysis and storage mechanisms for historical data.

Gleason (1998) discusses the relationship between tools and applications to the data warehouse.
He sees generic tools that can be used to build many applications, while data warehouse
applications, packaged applications, and business applications are built and designed for “a
specifi c industry, business function, or type of company.” Gleason (ibid) defi nes a business
application as “a value-added decision support system with front-end that has already fi gured
out what answers business users need and how they want to access it.” This move from custom-
built applications towards pre-built solutions helps end-user organizations to implement their
analytical solutions without having to start from scratch. Gleason (ibid) also concludes that
these packaged solutions do not always fulfi ll all of the requirements that an organization
might have for the application, but the reduced risk and faster implementation will usually
compensate for lost functionality. According to Gleason (ibid), a key advantage for end user
organizations using vertical packaged solutions is that these packages typically already include
best practices, key measures, standards and knowledge of the selected vertical industry. These
solutions include data models that refl ect typical business processes for the selected vertical
industry. Finally, these packaged applications will bring a better return on investment (ROI)
for user organizations, as they provide the opportunity for more rapid implementation, letting
end user organizations concentrate on their own core businesses and competences and not to
building these packaged vertical applications with a customized approach.

Eckerson (2002) categorizes analytical applications into different categories: packaged analytic
applications, custom analytical applications, analytic development platforms, and business
analytic tools (or analytic tools). According to Eckerson (ibid), an analytical application runs
“using data warehousing technology, embeds analytic tools, and employs business process
logic.” This statement reinforces our conclusion that an analytical application software solution
is based on a selected data warehousing architectural model, and that this model is selected
using different criteria in different software vendor organizations.

3.4.2 Analytical Application Functionality

The change from customized data warehouse applications toward packaged data warehouse
applications is discussed by Gleason (1998) as being needed to enable provision of industry
specifi c business solutions quickly, including most of the known business metrics and processes.
According to Gleason (ibid), a business application is a “value-added decision support system
with a front-end that has already fi gured out what answers business users need and how they

80

want access it.” Gleason (ibid) concludes that an analytical business application consists of
two main components, a data model and the decision support application itself. The latter
component typically includes data analysis and front-end access for a specifi c industry. The
business application typically covers common needs for an industry and will therefore not
cover all the needs for every company. According to Gleason (ibid), the data model is based
on an industry-specifi c template that has the needed design (measures and facts) for the given
industry. This template can be regarded as intellectual capital for the software vendor. Gleason
(ibid) does not discuss what kinds of diffi culties the implementation of these templates will
bring to a decision support vendor or whether the software vendor should aim to separate
the development of the software application for a given industry from development of these
industry specifi c templates.

Gleason (ibid) proposes a high-level architecture model for packaged analytical applications
with three distinctive architectural tiers, namely a presentation tier for presenting the information,
a business logic tier for the business logic itself, and fi nally the data tier that embeds the
persistent data that is collected from different operational applications (see Fig. 11).

Fig. 11. Three-tiered Packaged Application Architecture (Gleason, 1998; Original source:
Julie Hahnke, 1997).

The top tier, the presentation layer, typically consists of predefi ned reports for the industry,
either in graphical or numerical format. These reports can be viewed either online or in printed
format. The business logic layer can consist of industry specifi c or business specifi c analytics
and calculation rules and sometimes even workfl ow capabilities. According to Gleason (ibid),
the data tier typically has the greatest variation between different packaged applications, as

81

some packages provide sophisticated data support. This layer consists of three main elements:
the data model, the middleware, and the storage engine. The storage engine can be based
either on relational or multidimensional technology. From a software development perspective,
Gleason does not provide any discussion of the underlying technological selections that a
decision support vendor has to take when building this three-tier architecture, nor does he
discuss the granularity of the decision support components needed to build a decision support
application frame.

White (1999) argues that organizations are seeking faster ways to deploy decision-processing
applications, and that the marketplace is moving rapidly toward analytical applications,
whereas data warehousing vendors are moving from technology driven, build-your-own
solutions towards supplying business-driven, packaged applications. White divides packaged
decision processing solutions into three fl avors:

• Information templates are predefi ned and customizable applications for building a
 data warehouse or data mart to support a specifi c business function or purpose
 (sales analysis, for example).
• Reporting/analysis templates supply predefi ned and customizable queries and
 analyses for a specifi c decision support tool.
• Analytical application packages offer a complete business solution for analyzing and
 reporting on information in a specifi c business area.

White (ibid) distinguishes between three levels of packaged solutions. The last category,
with all needed key metrics for the selected market segment, will be the best basis for a
decision support vendor from a software product platform perspective. White describes
information templates as including three different inner templates that are typically a part of
ETL components and the base for building a business specifi c database model for the decision
support application. He defi nes the extract and transformation template as the predefi ned
rules to extract information from selected operational applications and to transform it into
the format of the analytical solutions, while his business area template defi nes the application
itself, including dimensions, data types, and predefi ned reports that belong to the solution.

White (2000a) also discusses the differences between traditional data warehousing and
analytical solution development. According to White, data warehousing projects have been
able to help many organizations to reduce costs and increase revenues. With analytical
applications, organizations can potentially achieve several aims. First of all, these solutions
enable organizations to reduce the cost of implementation of the decision support application.
Secondly, they will ease the complexity of decision support tools and data access from
operational sources. Finally, they improve the quality of analytical information. His argument
is that traditional data warehousing installations with many disparate data sources lead to
complex and costly implementations. Therefore, organizations are looking into off-the-shelf

82

packaged solutions: solutions that provide most common functionality for a given vertical
market segment or horizontal business function. White (ibid) also discusses the pros and cons
of buying or building an analytical solution. One of the cons of buying a solution is the
restriction that a packaged application might have if it does not fi t into “shared decision-
processing information architecture.” Therefore, the marketplace will include a combination
of both built and bought analytical solutions, and these solutions should be able to interact
with each other. Organizations could be reluctant to buy pre-packaged analytical solutions, as
they presume that their application requirements are unique and are diffi cult to integrate into
an overall decision support architecture.

Surgan (2000) analyzed the data warehousing market and classifi ed its evolution into three
main phases: the custom phase, the component phase, and the packaged phase. The custom
phase took place in the late 1980s and early 1990s, when early adopters began building
enterprise data warehouses under the leadership of Bill Inmon. The second phase evolved in
the mid-1990s, when organizations began looking for data warehouse solutions, and some
organizations began developing data mart solutions to minimize the risk of not completing
their decision support projects. This also resulted in a “methodology” war between some
practitioners, whereby some claimed that the data mart approach leads to islands of disparate
data marts, while an enterprise data warehouse leads to better results. Surgan (ibid) stated that,
as we moved into year 2000, organizations were more ready to buy prepackaged solutions that
are both easy to install and easy to support. Surgan (ibid) also stated that these prepackaged
solutions must “encapsulate the experience and expertise gained in data warehouses that
have already been implemented and operate successfully.” According to Surgan, a packaged
solution should include the following functional components:

• ETL
• Data warehouse design
• Data warehouse management
• Meta data repository
• Scheduler
• Integrated query tool for data analysis

The analysis of different architectural data warehouse models showed three major architectural
styles that a software development organization can choose from when implementing
analytical applications. First of all, the traditional centralized data warehouse model suggests
that all functional frame components be centralized and accessed from a centralized location.
The second approach is the federated architectural model, providing user organizations with a
“virtual” view of enterprise information in the form of one or several data marts with the ability
of cross subject-specifi c analysis between different data marts. The third alternative is to build
a multi-tiered/distributed architectural model, where analytical application functionality could
be spread across multiple tiers. This approach poses several software engineering challenges

83

for software vendors. Our discussion of fully centralized vs. fully distributed vs. federated data
warehouse model resulted in a conclusion that the architectural model should not restrict
the functional requirements that end user organizations expect from these kinds of solutions.
The requirements for distributed information and offl ine usage of analytical information will
require additional functionality of analytical solutions, such as support for local meta data,
together with corresponding calculation and business process logic that provides analysis
results to the end user using an end user tool. The purpose of next chapter is to discuss the
selection process of architectural model for an analytical application solution. This discussion
includes consideration of a large common core that can be reused across different vertical and
horizontal market segments.

3.4.3 Selection of an Architectural Model for an Analytical Application

Development of an analytical application using the product platform approach requires software
vendors to evaluate the selected underlying architectural model by using criteria from product
platform theory. Chapter 2 included a description of the software application frame (Sääksjärvi,
2002) which, according to Sääksjärvi, represents “a large common core” that is used across
different products within a product family. This common core should be optimized to include
functional components that are common to all the software products within a product family.
Variations are implemented by frame extensions that provide needed functionality to each
selected market segment. Within our software solution domain, this common core is defi ned
as the “analytical application frame,” common across any selected vertical market segment
that the software vendor decides to address. This analytical application frame will be defi ned
in more detail in Chapter 4, together with its corresponding characteristics.

To be able to evaluate the feasibility of each architectural model within analytical application
frame development, we listed the pros and cons of each architectural model specifi cally from
an analytical application frame development perspective. Schuff and Louis (2001) conclude
that “information technology departments have historically cycled between centralized
and decentralized application software distribution, although modular program design and
enterprise management software may break the cycle.” Schuff and Louis (ibid) also argue
that even if the centralized architectural model could be proven best for IT management, a
centralized scheme might not be appropriate to all organizations. This type of discussion is
also prevalent in analytical application software, as some of the centralized functionality is
required at remote locations which will require local meta data and a local business analytics
repository. When the solution is centralized, the application software will reside centrally. In
a decentralized scheme, application software typically resides on each of the client PCs or,
alternatively, at remote server locations. This type of decision-making by IT organizations in
end user organizations will refl ect the selection of the domain-specifi c architectural model for
software vendors as well. At this boundary, IS research and software engineering research will

84

meet. The problem of changing from one scheme to another could become a major obstacle
for any software vendor. This was seen clearly in the movement from the traditional client-
server model to the thin-client model during the late 1990s and early 2000s.

Another viewpoint the software organizations must refl ect on is discussed by Hasselbring
(2000), who asserts that the information system architecture is composed of three layers
on top of each other. The initial layer, technology architecture, defi nes the information and
communication infrastructure. This corresponds to the selection of the operating system
environment, the database management system, and other IT infrastructure elements for an
analytical application software vendor. The second layer, application architecture, defi nes the
actual implementation of the business concepts. In this layer, the “central goal is to provide the
‘glue’ between the application domain described in the business architecture.” The fi nal layer
– business architecture – defi nes the organizational structure and the workfl ows for business
rules and processes. This layer corresponds to the functionality and measurements to be found
in the business analytics repository in an analytical application software solution.

Our defi nition of the analytical application frame seeks to fi nd “an optimal architectural
construct” that is common to all derivative products. This defi nition is measured against
different IT architectural models that we have selected for review, namely the centralized,
federated, and distributed/multi-tier architectural models. We consciously excluded the hub-
and-spoke model introduced by Hero (2001) from our comparison table, as this model has
its disadvantages, such as not being able to perform cross subject area analysis, specifi cally
if most of the calculation rules exist in the spokes (data marts). Russell (2000) concludes that
even if the hub were available for centralized reporting, most of the interesting calculations
exist in the spokes, as 80 percent of the contents of a data mart are calculated results, not
derived directly from source data. Hero (2001) concludes that once an organization keeps
all calculation rules in a centralized meta data repository, any changes in the rules will be
broadcast to all remote spokes. This approach is close to the federated data warehouse model
introduced by White (2000b). From a software application development perspective, this type
of hub-and-spoke approach is very diffi cult. From an analytical application frame perspective,
the distribution of application logic is wide, requiring tight control of the replication/transfer of
business rules across different spokes.

Our defi nition of architecture in this study relates back to product platform theory and the
defi nition of Ulrich and Eppinger (1995): “the architecture of a product is the scheme by
which the functional elements of the product are arranged into physical chunks and by
which the chunks interact.” To be able to compare our three architectural models from a
software development perspective, we defi ned factors that would have an impact on the
development of an analytical application frame and its corresponding frame components.
One of the factors that makes software development more diffi cult when compared with

85

development of physical products is the fact that the software development environment (the
development environment) can differ from the environment in which the software solution
is run (the runtime environment). This is something that software development organizations
must consider carefully. We selected four major factors in our comparison table (see Table 1):

• Characteristics of the analytical application frame architecture
 o Type of architectural model
 o Requirements of the underlying IT infrastructure
 o Requirements from an end user organization that could refl ect on the selected
 architectural model
• Functional fl exibility of the analytical application frame architecture
 o Modularity of the application frame
 o Data distribution requirements in end user organizations
 o Selection of IT infrastructure elements such as DCOM, CORBA etc.
• Complexity of software development
 o Complexity of the runtime and development environments
 o Complexity of the architectural model
• Core competence requirements
 o Core competence of software vendor
 o Core competence of third-party vendors
 o Selection of technology, market segment, and product functionality based on the
 software vendor’s core competence

86

Comparison Criteria Centralized Data
Warehouse Model

Federated Data
Warehouse Model

Distributed/multi-tiered
Data Warehouse Model

Characteristics of
analytical application
frame architecture

• Type of architectural
model

• Requirements of
underlying
IT infrastructure

• Requirements
from end user
organization that
could refl ect
on selected
architectural model

• Client/server
environment with
centralized data
warehouse database
server and typically
also one hardware
environment

• Requires more from
frame architecture
as independent or
dependent data marts
require a holistic or
virtual view of all data

• Might also require
more of underlying IT
infrastructure as due to
virtual data warehouse
functionality

• Product architecture is
typically multi-tier with
different fl avors of data
distribution (independent
data marts and dependent
data marts)

• Requires typically more
complex hardware,
software architecture and
is more costly to maintain

Functional fl exibility of
analytical application
frame architecture

• Modularity of the
application frame

• Data distribution
requirements in end
user organizations

• Selection of IT
infrastructure
elements such as
DCOM, CORBA
etc.

• All functional
components are
within the same
solution architecture
(data extraction,
database model, data
distribution)

• Data distribution to
other remote locations
could be a challenge
using centralized
model – remote users
might not have access

• Data warehouse consists
of several data marts
that will be viewed
in a holistic way, new
additional data marts are
added via a common
data staging area and
business area model
is updated at the same
time.

• End user organizations
have the fl exibility to
view subject specifi c
data marts and link
these into an overall
data warehouse view of
the organization.

• Selected technological
environment very
challenging for a
software vendor and
but a distributed frame
architecture (DCOM or
CORBA) enables support
of remote locations if the
distributed model is built
into the frame

• Flexibility is tied to
selected distributed
model. Dependent data
marts are controlled by
enterprise DW, while
independent data marts
can cause isolated data
silos.

Complexity of software
development

• Complexity of
runtime and
development
environment

• Complexity of
architectural model

• All functional software
components within
one centralized
location, could lead to
sloppy internal frame
architecture

• Resembles centralized
data warehouse model,
but implementation of
logical data warehouse
model requires
technical skills from the
software development
organization

• Distributed computing
is very challenging for
software developers
as data marts (both
dependent and
independent) could
reside in different
geographical locations

Core competence
requirements

• Core competence of
software vendor

• Core competence of
third-party vendors

• Selection of
technology,
market segment
and product
functionality
based on software
vendor’s core
competence

• Traditional client/
server programming
model

• Architectural model
that is typically known
also by traditional
programming software
engineers

• Does not necessarily
require competency
in distributed
environments

• Client/server
programming
with application
programming interfaces
as dependent or
independent data marts
must conform to a
logical view to the end
user using the system

• An understanding of
the overall architectural
model with data staging
areas etc. and how these
can be easily used from
an end user application

• Requires selection of
distributed computing
model and this additional
infrastructure selection
requires skills from the
software development
organization

• An understanding of
distributed environments
with its complexities

• An understanding of
distributed runtime-
and development time
environments such as
CORBA and DCOM

Table 1. Comparison of Data Warehouse Architectural Models.

87

3.4.3.1 Characteristics of an analytical application frame architecture.

The aim of the fi rst criterion is to portray the IT infrastructure model that the selected architectural
model represents and what type of requirements can be foreseen when selecting the model.
The main difference between the three architectural models when comparing analytical
application frame architecture is the fact that both the federated and distributed/multi-tiered
architectural models require more from the analytical application frame architecture, both from
the IT infrastructure a well as the software development perspective when compared to the
traditional centralized architectural model. Secondly, both the federated and the distributed/
multi-tiered model can include both the data mart and the data warehouse architectural
models as their underlying foundation, while the centralized model uses typically one or
the other but not both. The centralized architectural model is less demanding for end user
organizations from an IT infrastructure perspective, as these organizations have to maintain
only one hardware/software environment for the analytical application environment, while
the two other models require more from the IT infrastructure.

3.4.3.2 Functional fl exibility of an analytical application frame architecture

The second criterion portrays the functional fl exibility of an analytical application frame
architecture. In the centralized model, all functional analytical application frame components
are within the same hardware/software environment, while in the federated architectural
model, additional data marts can be added via a common data staging area. The common
business area model is updated at the same time. From an IT infrastructure perspective, the
federated architectural model could be very close to the centralized model if the independent
data marts reside in the same hardware/software environment. The federated data warehouse
model also provides the opportunity to have several different data marts across different
hardware and software environments. The software solution itself will cause the end user
experience to be “virtual”: the underlying architectural construct with either data warehouse
or subject-specifi c data mart models can be seamlessly viewed using an end user tool. From
an end user organization perspective, the federated architectural model enables organizations
to build an overall view of the business in a manner similar to that which the traditional
enterprise data warehouse architecture was intended to provide. The adaptability of an
analytical application frame architecture in the distributed/multi-tiered model is tied to the
selected distributed model, as some hardware/software selections could restrict the usage of
the solution in some runtime environments. If the surrounding data marts are maintained by
a centralized data warehouse environment, the consistency and reliability of the surrounding
data marts could be better than in an architectural model where each data mart is treated as
an isolated subject-specifi c data mart without a centralized business area model controlling
the business rules with corresponding key metrics.

88

3.4.3.3 Complexity of software development

The third comparison criterion is viewed from a software development perspective. This
comparison criterion is critical for a software vendor. First of all, if the software vendor selects
a centralized model as the model for development, all functional analytical application frame
components will typically reside in the same hardware/software environment. In the federated
architectural model, the software development team must be able to provide a holistic view
of the business even if the model includes one or more independent data marts. This requires
both technical skills and development of a logical software application layer that provides
business views to a disparate physical implementation. From an IT infrastructure perspective,
a federated architectural model can be either centralized into one hardware/software
environment or it can be physically distributed into several hardware/software environments.

3.4.3.4 Core competence requirements

The distributed/multi-tiered environment is diffi cult from a software implementation
perspective, as the analytical application frame components must be implemented using a
distributed technology such as DCOM or CORBA. Regardless of the selected architectural
model, it will require more core competence from the software development and end user
organizations due to its more complex IT infrastructure environment. This is the fi nal and fourth
comparison criterion. According to our comparison table, both the federated environment
and the distributed/multi-tier environment require more core competence from both software
development organizations and the organizations maintaining the solutions.

3.4.3.5 Conclusion

When we review these different data warehouse architectural models, the question remains:
which of these models is most optimized for analytical application frame development,
providing “an optimal architectural construct that is common to all derivative products?”
The response to this question can not be viewed solely from an analytical application
architectural perspective for several reasons. First of all, the solution and the fl exibility of the
solution is dependent of many other factors, such as the underlying IT infrastructure and the
selection of a software development approach. Secondly, if the software vendor selects a
development environment that does not provide the needed requirements for the selected
architectural model, the software development environment becomes a restriction on the
selected architectural model. Thirdly, selection of architectural model could result in lock-in
to the selected architectural model, as transition from one architectural model to another
might be technologically the same as rewriting the analytical application frame. Changes from
one data warehouse architectural model to another were discussed thoroughly by Russell
(2000) and additional insight was provided by Hero (2001), who discussed the hub-and-spoke
architectural model and what it entails in distributed environments.

89

Our comparison of different architectural models from the software vendor’s perspective shows
clearly that the question of architectural model is not only dependent on functional/application
specifi c criteria, but that it has to be evaluated against a selected technology. An analytical
application frame component can be implemented as a local frame component without any
distributed functionality. This will obviously prevent the software vendor from extending its
solutions to market segments that require distributed characteristics. We can conclude that
the dependence of analytical application frame technology on analytical application frame
architecture is critical for future market segmentation attempts, as one or the other could
impact how easily the software vendor can derive products for new market segments.

From a functional perspective, a centralized architectural model does not provide the fl exibility
an information user might desire when compared to highly distributed solution architectures.
The federated architectural model provides the necessary centralized business area models
and data staging areas to make ETL procedures more effective when requirements change
frequently. A centralized model enables organizations to have all ETL, business rules, and
other corresponding meta data in one centralized location due to its centralized character. This
type of architectural model does not support the advantages of hub-and-spoke architecture,
where extraction, transformation, and load can happen either in the spokes (data sources) or
alternatively in the hub itself (typically the data warehouse server). The centralized concept
fi ts where everything is centralized and all information for the data processing must exist
in the central location. The distributed/multi-tiered model is effective model for end user
organizations, where for example sales representatives need their local copy of data to be
able to run the application in offl ine mode. A distributed architectural model will require
more from a software vendor, but this model will give the software vendor more fl exibility
to defi ne an analytical application frame that can be confi gured in different ways, such as
placing functionality in different architectural tiers. This type of distribution is not possible in
traditional centralized solutions: the underlying application frame does not have the ability to
distribute functionality across different architectural tiers.

Based on our comparison of different data warehouse architectural models, we propose a hybrid
model that includes characteristics from both the federated and the multi-tiered/distributed
architectural models. A key element of these environments is a common business area model
that enables end user organizations to share key business metrics across all dependent or
independent subject-specifi c data marts. The federated data warehouse model includes a data
staging area concept that enables software vendors to minimize the volatility of operational
data sources. A data staging area helps software vendors to create prepackaged ETL templates
between the data staging area and the data warehouse structures, while the ETL logic is
typically adjusted in each and every end user environment due to differences in operational
applications. We do not believe these types of adjustments will go away any time soon. A multi-
tiered/distributed environment gives software organizations the fl exibility to create software

90

solutions that can take advantage of distributed environments, with characteristics such as
better recovery and scalability and access to local meta data in remote locations if needed.

3.5 Selected Analytical Application Functional Architecture

An aim of this chapter is to provide a constructive analysis of an analytical application from
both the functional and the information fl ow perspective. We identifi ed the needed functional
components that an analytical application software solution requires in our prior analysis.
Another aim of this chapter is to demonstrate and build an architectural model – an Analytical
Application Functional Architecture - that demonstrates how each functional component is
connected to each other and how these functional components cooperate and behave when
data is loaded into the solution and end users utilize the information in their analysis. This model
is based on the recommendation we made in our comparisons of different data warehouse
architectural models. We concluded that a hybrid approach with characteristics from both the
federated and the multi-tiered/distributed architectural models is the most suitable solution for
an analytical application software solution.

In the fi rst sub-chapter, we will introduce an Analytical Application Functional Architecture
with all related functional components. In the second sub-chapter, we will discuss information
fl ow, with the corresponding functional components. In the third and fi nal sub-chapter, we
will discuss the requirements that a software vendor must satisfy when distributing analytical
information to end user devices.

3.5.1 An Analytical Application Functional Architecture

Regardless of the data warehouse architectural model selected, an analytical application
requires a set of functional components to fulfi ll the functional criteria set by end user
organizations. We compared three different architectural models (centralized, federated, and
multi-tiered/distributed) in a previous chapter with respect to their pros and cons, concluding
that the centralized data warehousing architectural model includes more cons than pros when
implementing adaptive data warehousing architectures. A hybrid data warehouse architecture
with distributed characteristics as a foundation for an analytical application software solution
provides a compelling foundation for an analytical application architecture. The data staging
area reduces the volatility of operational data sources. Centralized meta data and business area
models standardize business metrics across all dependent and independent data marts, and
centralized ETL rules function for the overall analytical application functional architecture.

Each functional component/module in an analytical application should interact in a predefi ned
and controlled way. All functional components within an analytical application solution are
controlled via effective application programming interfaces that enable external organizations
to utilize the functionality of the analytical application frame without having to worry about

91

internal details. This type of modularity was discussed in Chapter 2. The requirement for these
functional software components/modules is that they be generic, because they are part of an
analytical application frame and will be used across different vertical market segments.

Based on our comparison of different data warehouse architectural models, we concluded
that a hybrid data warehouse model provides the needed characteristics for an analytical
application software vendor. First of all, a traditional centralized data warehouse model does
not provide the distributed characteristics that end user organizations require if and when these
organizations are highly distributed. Secondly, implementing a solution based on centralized
approach does not necessarily lead to a technical implementation that lets the software vendor
change from one model to the other as was described by Russell (2000). Thirdly, the federated
data warehouse model provides two key concepts for an analytical application software
vendor. These are a centralized common business area model and a data staging area that
shields the software solution from volatility that the operational application might cause.

By combining the architectural functional elements from federated and multi-tiered/distributed
architectural models and three-tiered packaged application architecture as shown in Figure 11,
we can derive the needed functional components and the architectural tiers that are needed
within an analytical application software solution (see Fig. 12).

Fig. 12. Analytical Application Functional Architecture.

We have divided our architectural model with corresponding functional components into
six separate tiers. Each tier has is predefi ned role in the overall solution. First of all, tier one
represents the operational data layer: Enterprise Resource Planning software, payroll software

92

applications, or any other software application that represents and operational application
with aims completely different from those of an analytical/decision support software solution.
According to Inmon (2002), “the operational level of data holds application oriented primitive
data only and primarily serves the high-performance transaction-processing community,”
while the data warehouse level of data “holds integrated, historical primitive data that cannot
be updated.” The role of each of these environments is specifi c to their aim and must be
clearly separated to avoid any confl icts, such as performance problems.

Tier two represents the layer between the data warehouse model and the operational data.
The role of this layer is to isolate numerous changes that could take place in the operational
data (White, 2000b; Jarke et al. 2000). Some of these changes could be related to upgrades of
operational applications, with corresponding changes in database structures. In some cases,
an end user organization might completely replace an operational application to another.
The role of the data staging area is to isolate these types of changes and to enable analytical
application software vendors to build predefi ned ETL rules between the data staging tier and
the data warehouse tier (tier three).

Tier three represents a combination of the centralized data warehouse model and subject-
specifi c data marts controlled using the centralized business analytics and meta data repository.
The role of these repositories, according to the federated data warehouse model, is to provide
consistent measures across any organizational unit using the analytical application, and also
to ensure controlled and centralized meta data with corresponding ETL rules across the
solution. In some cases, a software vendor might decide not to implement a data warehouse
architectural model in its analytical application solution, but to base the overall solution on
either independent or dependent subject-specifi c data marts. In these cases, the solution
includes one to many data marts without a centralized data warehouse. Regardless of the
architectural model (with or without a data warehouse structure), the analytical application
solution integrates and has dependencies to meta data and business analytics repositories
that provides the needed centralized metrics to the solution and integration logic to the data
staging layer. These dependencies are portrayed as dotted lines in Figure 12.

Tier four represents the multidimensional/analytics engine, which interfaces the data
warehouse/data mart tier with the corresponding meta data and business analytics repository.
In some cases, this tier is built on OLAP architectures and functionality, while in other cases
this architectural layer could consist of a software engine that provides multidimensional
functionality by reading relational data and converting it into a multidimensional view.

Tier fi ve consists of several functional services/engines that enable end users or other
applications to utilize an analytical application solution. These functional components are
separated from tier four using effective application programming interfaces. Tier fi ve includes

93

meta data and automation services that can be used by other software applications to request
meta data or execute other automation tasks, such as report distribution.

Finally, tier six represents different user interfaces that end users might use while analyzing
corporate data within the analytical application solution. The main idea for an analytical
application is to use standardized interfaces such as OLE DB for OLAP, an industry standard
for accessing multidimensional data from an OLAP database.

3.5.2 Information Flow in an Analytical Application

An analytical application frame can be said to be effective if it can support implementation
of different vertical solutions using the same underlying software package. The underlying
premise of analytical applications is that they will include predefi ned business processes,
predefi ned measurements, and mostly also predefi ned extraction, transformation, and load
defi nitions to selected operational applications. According to our architectural model above,
we have defi ned an operational data store or alternatively a data staging area that acts as the
interface between the operational application and data warehouse or data mart database
solutions. Van Dyk (2002) recommends that organizations “maintain a unique normalized
staging area/operational data store as a single source.”

The value of having a data staging area is to be able to provide a centralized location for
integration of different operational data sources into one centralized data store with source and
target interface mappings that can be reused when new data sources are added into the data
staging area. This architectural model protects the analytical application from unnecessary
volatility that could happen if the extraction, transformation, and load rules and processes
were implemented between the data staging area and the analytical application and not
between the data staging area and the operational data source. Another advantage of having
a centralized data staging area is to be able to combine internal and external data. This could
provide valuable information to end user organizations when combined and analyzed. If the
data staging area were completely left out of the overall architectural model, each separate
data mart would have to have its own data extraction algorithms.

The data staging area basically acts as interface fi le layer for the data warehouse layer, making
it easier to manage the changes that occur in the core operational applications and reducing
the volatility between the operational applications and data warehouse/data mart architectural
tier. All extraction logic, together with source and target meta data, and source and target meta
interface mappings with transformation rules, must be maintained in one centralized location,
which in our case would be a central meta data repository. Once the sources have been
identifi ed for the selected vertical market segment, the corresponding data model for the data
warehouse or subject-specifi c data mart is created, and this defi nition is stored in the common

94

business analytics repository. This repository also includes all the needed information about
the business processes for the solution and is therefore the intellectual knowledge database
for the solution itself.

We have separated the business analytics repository from the common meta data repository,
as the former is specifi cally implemented to enable vertical solution leverage for an analytical
application vendor from an application frame perspective. A meta data repository will include
all of the needed elements that are not specifi c for a vertical industry, while the business
analytics repository includes all industry specifi c information. When the packaged analytical
solution is installed at an end user organization, the installation process will create all physical
database models with included business processes from the business analytics repository. There
are plenty of discussions and differences of opinion of how a physical database model should
be laid out in an analytical solution. Ralph Kimball (1996, 1998; Kimball and Ross, 2002)
and several other authors suggest dimensional modeling with star schemas for the proposed
database model while others such as Imhoff (2000) argue that a star schema does not comply
well with data mining activities or statistical analysis. If a user wants to perform exploratory
analysis, there should “be no hint of bias or arbitrary establishment of data relationships”
(Imhoff, 2000). This requirement is obviously contrary to the star schema, as it typically has
predetermined and physicalized relationships that enable multidimensional analysis. We argue
that installation of the analytical application should include an automated process of database
creation according to the business metrics that are stored in the business analytics repository.
The same requirement applies to the staging area model, as this must be implemented for
the integration of operational data sources. All end user organizations might not accept
implementation of a data staging area, and this needs to be an optional feature in the overall
analytical application, enabling ETL linkages directly to the data warehouse or data mart tier.

As the physical database model is such as a skeleton without data, the next logical step
is to populate these database models with data from operational data sources. Operational
databases in end user organizations are typically dispersed in different operational applications,
and these applications can be distributed across the organization in different operating system
and hardware environments. The aim of an analytical application software vendor should be
to enable the extraction of information by using a standard protocol such as XML to transfer
data from different operational sources. This transfer can be based on predefi ned schedules.
It should include basic agent technology, where the source application notifi es the transfer
mechanism that transfer should take place. In the analytical application architectural model,
the fi rst integration level is from the operational data source to the data staging area. This
integration is performed using extraction, transformation, and load functional components. This
integration operation typically requires three separate elements, the ETL process descriptions
(in a physical table), an ETL process source map, and ETL process statistics. The fi rst element
describes all of the extraction processes from operational sources, the second element shows

95

how operational source fi elds are mapped into the data staging area, and the ETL process
statistics show statistics such as time schedules for the process. This work requires upfront
defi nition and is typically implemented one operational data source at a time.

3.5.3 Information Distribution in an Analytical Application

The results from an analytical solution are distributed to end users using several layers of
functional components before they are displayed on the user interface of choice. Information
in either data warehouse or data mart databases is kept in physical relational tables. When the
end user wants to analyze this information, a multidimensional engine provides the needed
“slice-and-dice” functionality that is expected in analytical solutions. There are two main ways
of providing multidimensional information: either by storing and using a multidimensional
model or by using a multidimensional engine that reads relational tables in a data warehouse
or a data mart solution and does the calculation “on-the-fl y.” Both of these approaches have
pros and cons. For example, the latter approach will require a powerful server hardware
environment to perform the calculations.

The main purpose of the multidimensional calculation engine is to fulfi ll the role of information
broker between the end user’s analysis and actual data in the data warehouse. The calculation
engine implements the needed calculations that the business analytics repository transmits. The
calculation engine logic is closely related to report templates or predefi ned reports that align
the given vertical market segment with predefi ned business processes and key performance
indicators. One could obviously argue that even if the analytical application vendors are able
to create a generic analytical application model for a specifi ed vertical market, the end user
organizations will want to change it to refl ect their own environment. Changes that end user
organizations want must be implemented in either the centralized meta data repository or the
business analytics repository. This provides the ability for the software vendor to maintain the
solutions and provide new versions of the solution without breaking existing solutions that end
user organizations have amended.

Typically, a multidimensional calculation engine has to interface in two different directions;
we will call these directions the input and output interfaces. First of all, the engine needs
to “understand” the underlying logical data model (that links to the physical data model),
and secondly it needs to provide analysis capabilities for the end users via a proprietary
or open API. This output interface provides data for analysis (OLAP) tools with predefi ned
reports. Alternatively, end user organizations can build applications using the published API
and leverage the data warehouse calculation engine as a “black box” for their information
requests. If the application programming interface is proprietary, the software vendor must
provide its own front-end reporting tools, but if the API is based on an industry standard API,
any reporting tool that complies with this standard can be used.

96

The challenge for an analytical application software vendor is to provide an intelligent wrapper
layer between the multidimensional engine and the database models (both logical and physical)
that is exactly the same for any given vertical market segment. The emphasis will be on the
software component interface management that basically provides this abstraction layer. The
second layer that needs to exist is the layer between the calculation engine and predefi ned
reports. This “output” interface knows how to provide predefi ned reports with corresponding
calculation results. This is implemented using an effective application programming interface
and by using the information stored in the business analytics repository. These predefi ned
reports are typically saved in physical relational tables with predefi ned attributes and rules
that the calculation engine is able to utilize. The same calculation engine will typically also
provide a data stream to a communication module that manages both traditional client/server
communication and new distributed computing models. This distributed nature will require more
from the software application frame technology sub-strategy, as each functional component in
the analytical application frame can reside in different architectural layers on different physical
or logical server environments. From an implementation perspective, the programming logic
should fl ow equally whether the data warehouse model is centralized or distributed.

The last layer in an analytical application architectural model is the layer responsible for
displaying information. The underlying data warehouse architecture has to support different
user interfaces such as web-based access, traditional PC-based access, and different mobile
devices. Some of these end user tools have strong emphasis on being able to navigate in
different relational and multidimensional databases using open standards for access (such as
ODBC). Other analytical application software vendors might build their own proprietary user
interfaces that are tightly integrated into their own data models and structures. Standardization
within the analytical application software space could potentially increase the competition
of software vendors, as end user organizations could select end user access tools based on
functional criteria rather than on what database might be supported.

According to Gleason (1998), user access tools are selected based on the user community. Some
organizations will be happy with basic query and reporting tools, while some organizations
require more complex OLAP tools. To satisfy different needs, software vendors should select
their application development environment and corresponding software assets with the
aim of providing maximal reuse of existing software assets across different end user access
environments. Software development tools with corresponding application frameworks (such
as Microsoft .NET) should support automated deployment of different end user devices such
as Personal Digital Assistants (PDA’s), Web browsers, and more traditional personal computers
with Windows operating systems. This application development approach enables software
development organizations to concentrate on building application or domain specifi c logic
and leave application infrastructure support to vendors such as Microsoft.

97

3.5.4 Conclusion

The existing analytical application and data warehousing literature does not explain in detail
how each and every functional component within an analytical application software solution
interacts with every other component. Our architectural construct – Analytical Application
Functional Architecture – portrays how information fl ow is organized within an analytical
application solution. This architectural model is a combination of the multi-tiered/distributed
model and the federated architectural model, as it includes functional components - business
analytics, meta data repository, and data staging area - which are characteristic of the federated
data warehouse model.

The Analytical Application Functional Architecture shows the importance of modularity and
the layered architectural model with effective application programming interfaces between
the layers. This provides software vendors with the ability to replace modules or enable
third-party vendors to utilize the software solution using published application programming
interfaces. The client device tier (tier six) demonstrates how end users do not have to worry
about underlying data structures, as the user interface should provide a “virtual view” of
underlying business analytics. All services in each layer should be transparent to the end user.
The underlying architectural model can be either multi-tiered/distributed, where each layer
includes summarized information from the previous architectural layer, or alternatively the
view could be logical, where databases are located in different physical locations across the
network. Regardless of the architectural model selected as the foundation for an analytical
application solution, the software vendor could potentially face diffi culties when changing
from one architectural model to the other, as explained by Russell (2000).

Information distribution within an analytical application could pose challenges for software
vendors in the future. According to Gleason (1998), end user organizations have to evaluate
analytical application solutions based on “how information is delivered to different types of
users.” Gleason (ibid) provides three factors that end user organizations should consider: user
classifi cation, user mobility, and scalability. The fi rst factor portrays the need for different
types of end user access tools, where business analysts might require heavy-duty analytical
power while executive users are typically happy with executive dashboards or other types of
easy-to-use viewers. Due to these different requirements, an analytical application frame and
its adaptability can be controlled using effective application programming interfaces. This is a
core requirement within product platform theory.

The second factor is user mobility, which will have an impact on the application frame architectural
model from an information distribution perspective. Organizations that are geographically
dispersed and highly distributed with mobile users could potentially require a combination of
multi-tiered/distributed functionality with local business analytics and meta data, while other
users could be satisfi ed with internet-enabled access in a centralized environment.

98

The third and fi nal factor is application scalability. According to Gleason (ibid), scalability
in the case of an analytical application is “the property that provides support for additional
users, larger databases, and higher performance by adding more computer resources.” This
requirement translates back to the selected architectural model that is the foundation for the
analytical application solution, and whether the analytical application frame is fl exible from
a scalability perspective. In our comparison of different data warehouse architectural models,
we concluded that the traditional centralized data warehousing model could potentially
have scalability problems when compared with the federated and multi-tiered/distributed
architectural model. An analytical application solution based on the distributed and federated
architectural model could potentially have several database/hardware environments to
provide the scalability for the solution, with the environment viewed as one from the end user
perspective (the virtual view).

3.6 Chapter Summary

Our comparison of different data warehouse models showed clear advantages for the federated
data warehouse model with a centralized meta data repository providing common dimensions
and measures for both dependent and as independent data marts. This architectural model
could be called the “architecture of all architectures” as it provides a “virtual view” of the
whole enterprise. This approach is also based on the “bottom-up” implementation approach,
wherein the enterprise-wide analytical solutions are built from dependent data marts with an
enterprise view in mind. Another advantage of the federated data warehouse model is the
added data staging area, which enables easier implementation of analytical solutions as a
staging area hides the complexities of operational data sources. We recommend selection of
some of the characteristics of a federated data warehouse model combined with the multi-
tiered/distributed data warehouse architectural model as the best foundation for analytical
application software development.

We also concluded that, regardless of which architectural model is selected as the foundation
for an analytical application solution, existing data warehousing literature portrays these
architectural models on an abstraction level which is too high, with an emphasis on information
fl ow within the solution. Because of this, these models will not be helpful to analytical
application software vendors as the foundation for software development. Software vendors
require more detailed architectural descriptions of how these functional components within
an analytical application interact with each other, and what type of complexities a software
vendor could run into during software development. More detail-level research is needed
in the analytical application software domain; research specifi cally geared towards software
development organizations. This type of literature is non-existent and therefore this study
will add practical and tangible advice for software vendors within the analytical application
solution domain.

99

Thanks to our literature search of functional requirements for an analytical application
combined with analysis of different data warehouse architectural models, we were able to
construct an architectural model which we named the “Analytical Application Functional
Architecture.” This architectural model demonstrates the complexities of information fl ow and
the dependence of different functional components within an analytical application solution.
The challenge for an analytical application software vendor is to provide an architectural
model that will provide an optimal architectural construct that can become the basis for
an analytical application frame. The challenge in the implementation is the heterogeneity
amongst end user organizations, as each organization, even in the same vertical domain,
might have different requirements for business metrics, associated reports and charts, ETL
integration, and more. Management of database models and prepackaged solutions is by no
means easy to implement and maintain, and these types of solutions should have the ability to
be maintained and updated by end user organizations while still having version compatibility
with new releases from the software vendor.

In our analysis of different data warehouse implementation models and data warehouse
architectural models, it became clear that selection of a product development strategy requires
additional dimensions for analysis, such as market segmentation and technology selections.
Selection of the optimal analytical application frame architecture can not be achieved without
aligning the selection to underlying and defi ning technology. Both of these technologies could
impact the adaptability of an analytical application frame architecture, and selection of one
will impact the selection of the other. Because of this, to be able to resolve software related
implementation issues with respect to analytical application software, we need to evaluate
the impact of technological choices on both the analytical application frame architecture and
current and future market segmentation.

The main aim of the next chapter is to refi ne the framework from Sääksjärvi (2002) to refl ect
the analytical application software domain and analyze what type of alignment perspectives
can be identifi ed when implementing analytical application software solutions. Each alignment
perspective could emphasize each sub-strategy differently, causing a software vendor to
experience different types of disconnects if and when one sub-strategy receives less emphasis
than the two other sub-strategies. These strategic alignment perspectives have not been
analyzed in any previous decision support literature, either from a software development
perspective or even an end user organization perspective. Based on our fi ndings so far, the
next research question is as follows:

RQ 3: How can software vendors balance their software product architectures when
 changes take place in marketing and/or technology selections?

100

The analysis of research question three will be the foundation for our fourth research question
and the foundation for analyzing how analytical application frames can be implemented from
a software engineering perspective.

101

4. DEFINING A BALANCE BETWEEN SUB-STRATEGIES IN
 ANALYTICAL APPLICATION SOFTWARE

Our analysis of analytical application software characteristics and functionality in the previous
chapter gave us an understanding of the complexities that software vendors could face when
developing analytical application software solutions. It was also evident to us that an analytical
application is more complex that many other software solutions, as it has to include the ability
to provide predefi ned business metrics with corresponding analytics applicable to end user
organizations in specifi c vertical market segments. This generalization of software solutions
requires adaptability of the software application frame, which can be defi ned as “the ability
to utilize a common architectural construct across selected vertical market segments.” It is
important to realize that this architectural construct could be different in different software
companies, as the selection of which vertical market segment to serve can be very different
between software companies.

Our aim in this chapter is to identify an optimal common architectural construct that can
be reused across all selected vertical market segments. We will defi ne required functional
components for an analytical application frame based on our recommended hybrid architectural
model, described in Chapter 3. We concluded that usage of product platform theory within
the software product domain requires continuous analysis of three sub-strategies (technology,
application frame architecture, and application frame leverage), and that this analysis will result
in different alignment perspectives that a software vendor can utilize in setting its business
strategy. We will demonstrate each and every sub-strategy separately in this chapter together
with the combined Analytical Application Frame Strategy framework that forms the foundation
for building analytical application software solutions using product platform theory.

4.1 Defi ning an Analytical Application Frame Architecture Sub-Strategy

The primary aim of this chapter is to defi ne an analytical application frame architecture sub-
strategy with its corresponding components. The secondary aim of this chapter is to compare
different analytical application architectural models from two different perspectives: those of
the end user organization and the software vendor. This comparison demonstrates a traditional
intersection of information systems science and software engineering/computer science. This
type of analysis is useful for software development organizations, as end user organization IT
infrastructure could become an obstacle to a software vendor’s market segmentation strategies.

4.1.1 Analytical Application Frame Architecture

The challenge of defi ning an analytical application frame and its architecture can be viewed
from several different perspectives. First of all, the software vendor should maximize the
granularity of the software application frame to enable maximal reuse of existing software assets.

102

Secondly, a software vendor must have a thorough understanding of an analytical application
software domain and what functionality is expected in an analytical application. We gave
a defi nition for an analytical application software solution in Chapter 1. A further defi nition
is needed to describe the functional components within an analytical application solution,
specifi cally concerning an analytical application frame. These functional elements – analytical
application frame components – are constructs that compose an analytical application frame.
Therefore, we defi ne an analytical application frame component as follows:

“An analytical application frame component is a coarse-grained functional entity that
is part of an analytical application frame. One or more of these frame components
compose an analytical application frame architecture. A frame component can be
anything from a granular software component to a database repository.”

Our analysis of existing data warehousing (Sach, 1997; Watson and Haley, 1997; Gray and
Watson, 1998) and analytical application software (Morris, 1998; Gleason, 1998; Surgan, 2000)
gave us direction as to what type of functionality must be found in an analytical application.
We also concluded in prior chapters that an analytical application will typically include either
data warehousing or data mart technology as its underlying foundation, and therefore the
solution must include related functionality, such as ETL technology, database administration
tools, a database management solution (a data warehouse storage engine), and some kind of
data distribution functionality, perhaps OLAP or traditional EIS interface technology. As our
research concentrates on analytical applications, selection of a data warehouse architectural
model with its corresponding characteristics is of importance for an analytical application
software vendor.

We concluded in our comparison of data warehousing and data mart architectures that a hybrid
data warehouse model with characteristics from both federated and multi-tiered/distributed
functionality provides a foundation for software organizations to build an analytical application
frame that can be the foundation for derivative products within a product family. The value of
the federated data warehouse model is the existence of a common business area model and a
meta data repository that can be used across the data warehouse and data mart models. This
ensures integrity in business metrics across the organization. The data staging area reduces the
volatility that operational data sources could cause for software and end user organizations. We
excluded the traditional centralized data warehouse model as a foundation for an analytical
application solution, as it does not correspond to the requirements of highly distributed end
user environments, where end users have access to local meta data and business analytics
without having to have access to a centralized data warehouse/data mart architecture.

From a software development perspective, a traditional centralized model would have been
arguably the simplest model, as all functional components reside in the same hardware
environment, whereas in highly distributed environments, software organizations must build

103

software infrastructure to manage data distribution and data integrity to be able to support these
types of solutions. Another valuable characteristic of multi-tiered/distributed environments is
that they allow end user organizations to install the solution either in a centralized or distributed
fashion, as all of the functional components can reside in the same hardware/software
environment. We defi ned an Analytical Application Functional Architecture in previous
chapter that included all of the functional components needed for an analytical application
software solution. To defi ne an optimal architectural construct (analytical application frame),
we have to identify all of the functional components that are needed across all vertical and/
or horizontal market segments. This will become the analytical application frame. This type
of reasoning combined, with our suggested hybrid data warehouse model, leads us to the
following architectural model for analytical application software solutions (see Fig. 13):

Fig. 13. Analytical Application Frame Architecture Sub-Strategy for an Analytical
Application.

An analytical application frame establishes the foundation for all derivative vertical solutions
that a software vendor introduces to the marketplace. Thus, we have divided an analytical
application frame into two layers: the “Analytical Application Defi ning Technology” includes
functionality that gives the software vendor a vector of differentiation, while the “Service
Component Layer” includes functionality that can be built on top of defi ning technology. The

104

third architectural layer portrays the “Extension Component Layer,” which enables software
organizations to extend the software application frame with extensions that provide the means
to fulfi ll the required vertical market requirements without having to rewrite the entire software
application frame.

We asserted in previous chapters that the aim of a software vendor is to identify an optimal
software application frame to maximize the leverage of software assets across selected
market segments. Identifying an optimal architectural construct can be very different for
different software vendors, as the selection of technologies, vertical market segments, and
product architecture can be very different from one software vendor to another. A software
vendor can only measure software application frame effectiveness and effi ciency ex-post,
where considerable investment might already have been made in the software application
frame before the measurement results are available to executive management. Another key
measurement for a software vendor is to maximize the lifetime of the software application
frame, as each derivative product cycle within an effective software application frame
provides leverage to the investment that the software vendor has in the software application
frame. In some cases, an optimal analytical application frame could be ineffi cient (suboptimal)
for one software organization and optimal for another. Our reasoning for selecting specifi c
functional components as part of the analytical application frame is based on the analysis
in Chapter 3, in which we identifi ed all of the functional components that were needed
within an analytical application software solution. The software vendor needs to identify
all of the required components to be able to have an analytical application solution. These
components are portrayed in Figure 13. From a semantics perspective, the arrow from the
data staging area to the data warehouse portrays the data fl ow from the data staging area to
the data warehouse via ETL rules. The dependency between the meta data and the business
analytics repositories is portrayed with bilateral arrows, as a change in any of these will have
an impact on the solution. The data fl ow from the data warehouse structures to the data mart
environment is portrayed with unilateral arrows, as each data mart is loaded from a centralized
data warehouse environment. In a similar manner, the information fl ow to the business and
analytics engine and corresponding overlaying architectural layers is unilateral: information is
read from the lower levels and displayed to the end user via different user interface devices.

4.1.1.1 Analytical application defi ning technology

The two key repositories in an analytical application frame are the meta data repository
and the business analytics repository, providing the needed physical database structure to
store information for any given vertical market segment. The software vendor must separate
the physical database structures from the actual solution content that will give selected
vertical market segments the needed business metrics and integration with given operational
applications, such as ERP software packages. One of the main components in an analytical

105

application is the ETL component, which enables end user organizations to load information
from different operational sources. The ETL engine utilizes at the time of data load rules
defi ned in the meta data repository that include information about source and target meta
data, source and target interface mappings, different transformation rules, data validation
rules, and scheduling functionality.

A meta data repository, together with the business analytics repository, is a key component
which defi nes an analytical application defi ning technology. The business analytics repository
consists of business rules for the given vertical market segments, the database model itself, key
metrics for the given vertical market segment, and reports (charts) and dashboards for the given
market segment. The importance of having a centralized business analytics repository is evident
when an end user organization wants to create both dependent and independent data marts
that will be sharing common business analytics rules with the business analytics repository.

Besides these repositories, we have included data staging database structures, data warehouse,
and data mart database structures as key components in an analytical application software
solution. These structures, together with extraction, transformation, and load procedures,
are required regardless of the selected vertical market segment. These ETL procedures are
controlled by meta data and business analytics repositories. Meyer and Zack (1996) defi ned a
similar model in their analysis of information products in which the contents of the information
products are generated using what they defi ned as their “process platform.” A key element of
defi ning technology is the “business and analytics engine,” needed to leverage the contents of
the solution and provide analytics results to the service component layer.

4.1.1.2 Service component layer

An analytical application software solution requires a multitude of different services that
we have not listed as defi ning technologies. Some of these services are optional and some
software vendors might not have all of the listed functionality in their solution. These services
can be called externally from any other software application as long as the software vendor
has published its application programming interfaces. Based on the analysis of analytical
application software solutions in Chapter 3, we found that at least the following services are
needed in these types of solutions:

• Presentation and user interface component layer
• Distribution component layer
• Meta data services component layer
• Automation services component layer
• Other services component layer

The presentation and user interface component layer provides the needed functionality for
the software vendor to support a variety of different end user interfaces in end user data

106

analysis. A key requirement in analytical application solutions is to be able to provide the same
chart/report to different client technologies such as Windows, an Internet browser, a Palm
device, or any user interface (UI) that the vendor might support, without having to maintain
different versions of the same chart/report. Several software development environments have
automatic support for different end user (UI) devices, enabling software vendors to concentrate
on building the business logic, rather than building infrastructure software components. The
concept of separating the presentation layer from the business layer is known as the model-
view-controller architectural model (Krasner and Pope, 1988). Similar experiences were
reported by Sharp (2000) in the development of avionics software using a layered architectural
model and a medium-grained architectural model. The use of patterns enabled the case study
company (The Boeing Company) to spread expertise across the developers, enhancing reuse
in development of the software solution.

The distribution component layer provides the needed functionality to distribute reports/charts
to different types of user devices. This component layer includes the ability to publish and
subscribe to different reports/charts based on given intervals or threshold values that end users
provide for each report/chart. A typical threshold value could be a budget variance number
that would trigger an event if the value exceeded or were under a specifi ed value.

The meta data services component layer is used in conjunction with the other services,
such as the presentation/user interface component layer, as this service provides end users
with the needed meta data about selected reports/charts and the source of the information.
In some cases, the meta data services component layer provides meta data information to
other software packages via information exchange using published application programming
interfaces. This layer includes information about the existing data warehouse and/or subject-
specifi c data marts and provides to end users a “virtual view” of the overall solution.

The automation service component layer provides end user organizations with the ability to
automate the overall solution, from data extraction to report/chart distribution. This type of
service is important in environments where the solution is embedded with other software
applications, as one software application might execute actions within the analytical application
software solution by calling these automation services.

The other service component layer represents all other possible services that an analytical
application solution might include. This functionality varies from one software vendor to
another.

4.1.1.3 Extension component layer

The combination of analytical application defi ning technology with its corresponding
functionality and the service component layer is defi ned as an analytical application frame.

107

These layers are required in any analytical application software application regardless of
vertical or horizontal market segment. Some software vendors within the analytical application
software domain might have slightly different software application frames because of their
market segmentation or core competence. The fi nal layer in the analytical application frame
architecture is the extension component layer, used to implement specifi c functionality
required in selected market segments or horizontal solutions. These extensions can be
implemented by the analytical application software vendors themselves or alternatively by
third-party development organizations that provide add-on solutions that can be used with
the overall analytical solution.

The boundaries between basic functionality and extended functionality could be very narrow,
and in some cases a software vendor might decide to include functionality in the analytical
application frame to avoid software related versioning and confi guration overhead. Some of this
extended functionality could be managed by software confi guration, using different software
engineering techniques such as parameterization, inheritance, and other methods. The use of an
extension component layer will always require application of some type of software engineering
variation technique. These techniques will be explored in more detail in Chapter 5.

4.1.2 The Analytical Application Frame Architecture From Two Perspectives

We compared different data warehouse architectural models in Chapter 3 purely from
a software vendor’s perspective. Another perspective is to compare analytical application
software development from both the software vendor’s perspective and that of the end user
organization. The former perspective refl ects the typical requirements of software engineering
and computer science, while the latter perspective refl ects end user IT infrastructure research
and usage, that is, a traditional information systems science perspective. Both perspectives
are important, but the difference in these viewpoints is considerable. According to Schuff and
Louis (2001), IT departments have traditionally “cycled between centralized and decentralized
application software distribution, although modular program design and enterprise
management software may break that cycle.” According to the authors, IT departments in
end users organizations are achieving major cost savings by centralizing and standardizing
software using thin-client environments. The authors recognize that centralized software
architectures might not be appropriate in all organizations, and therefore these organizations
prefer distributed schemes. Our selection of a hybrid data warehouse foundation (federated
with distributed characteristics) for a software vendor was based on increased functionality
requirements from end user organizations, where remote end user locations have a need to
analyze information using local meta data and data repositories. This type of environment can
be supported only by using distributed technology.

108

Schuff and Louis (ibid) defi ne a framework with three evaluations criteria when seeking balance
between control, reliability, and speed in an architectural model. These three factors are
application modularity, bandwidth, and feasibility of a uniform confi guration. When evaluating
these from two different perspectives, we defi ned three main comparison criteria (see Table 2):

• Selection of an analytical application frame architectural model
• Functional adaptability of the analytical application frame architecture
• Underlying information technology infrastructure

Criteria Software vendor’s perspective End user organization perspective
Analytical application
frame architectural model

• From IT infrastructure
perspective

• From development
environment perspective

• Selection of analytical application frame
architectural model will impact several
things such as selection of development
tools, selection of IT infrastructure, and
market segmentation in some cases.

• Changes from one architectural model
to another might be impossible in some
cases, for example, the change from a
distributed architectural model back to a
centralized architectural model.

• Existing IT infrastructure might not
support some architectural models
– some models (such as middle-tier
solutions) might require additional IT
infrastructure investments. End user
organizations are typically not that
interested in how the internal frame
architecture is implemented.

• End user organization are more
interested in external IT infrastructure
requirements such as whether the
solution is client/server, mainframe
or fully distributed with middle-tier
technologies.

Functional adaptability of
analytical application frame
architecture

• Business model with
business processes

• Key performance
indicators, critical success
factors

• Software application frame
modularity

• Flexibility to change and
update the solution

• Flexibility to create
derivative products to
different market segments

• Each frame component must be fl exible
and support several different vertical
markets without having to change the
underlying frame components.

• Vertical market solutions must be
managed via business analytics and the
meta data repository

• All frame components must support
ongoing maintenance and additions to
the solution that will be updated to end
user organizations.

• Application modularity enables software
vendors to create different variations
of the software more easily than if the
application were monolithic.

• End user organization must be able
to amend the solution delivered by
the software vendor. They also have
the ability to update the solution in
parallel with own internal solution
development without jeopardizing the
integrity of the solution.

• Software application frame
architecture must provide the
fl exibility to change the underlying
IT infrastructure without breaking the
overall solution.

Underlying information
technology (IT)
infrastructure

• Change of IT infrastructure
from one to another

• Impact on future market
segmentation

• The software vendor must select its
underlying IT infrastructure environment
in concert with its development tools
and core competencies. Wrong
infrastructure selection can also restrict
 market segmentation, as some
organizations might not have the
required IT infrastructure.

• If the application frame is closely tied to
the IT infrastructure, the software vendor
might not be able to amend its solution
to other market segments in the future.

• Selection of analytical application
solution must refl ect the underlying
IT infrastructure environment that
exists in the organization. Some
analytical solutions could be suitable
for the organization, but the solution
from the software vendor does not
support appropriate IT infrastructure
environment.

• Changes in IT infrastructure can create
integration problems within an end
user organization.

Table 2. Architectural Comparison Criteria for a Software Vendor and an End User
Organization.

109

4.1.2.1 Selection of an analytical application frame architectural model

Another critical area of consideration is selection of the software architectural model, both
from the end user organization IT infrastructure perspective and the software application
frame perspective. Some software organizations have achieved lock-in in their application
frame architecture. This lock-in will impede end user organizations planning to move to
other solutions. Morris and Ferguson (1993) discuss proprietary architectures and how these
architectures can provide a technological edge for software organizations with the results of
lock-in strategy. A good example of this type of software organization is Microsoft, which has its
own proprietary operating system environment with its corresponding software development
environment, software application tools, and database management system. In similar way,
IBM has achieved lock-in with the IBM midrange computer hardware environment, as the
software implemented in those environments using proprietary development tools will only
work in those environments. During the last few years, IBM has opened the iSeries/400
environment to cross-platform development tools such as Java and C++. Even if the IT industry
discusses open environments, the unfortunate reality is that each “standard” has different
implementations. Examples include UNIX and CORBA and associated technologies.

Gawer (2000) and Gawer and Cusumano (2002) describe how Microsoft has achieved
its software platform leadership and how it has even moved to what is called supporting
application software development, competing with other software vendors that provide
solutions for Microsoft operating system environments. Other vendors, notably Intel, carefully
consider any development in support product areas due to the competitive reasons and
the fact that they might not get large product platform leverage without these third-party
development organizations.

Selection of an architectural model for an analytical application could be very different.
Selection criteria for a software vendor and an end user organization may vary considerably.
First of all, software vendors have to consider the underlying infrastructure environment that
a selected market segment broadly supports. Secondly, the selected architectural model must
refl ect back to the core competence of the software vendor, as a highly centralized architecture
is very different from a distributed or federated architectural model. Thirdly, the selected
runtime and development environments have to support the domain-specifi c architectural
model, which in this case is the domain of analytical applications. Some development
environments are proprietary to specifi c hardware environments, and this could restrict the
selection of the hardware and/or operating system environment.

A software vendor should select a software development approach that enables the vendor to
move from centralized to distributed data warehouse architectures without having to rewrite
the defi ning technologies (and corresponding frame components). According to Russell (2000),

110

a move from the distributed to the centralized data warehouse model could be extremely
diffi cult compared with a move from the centralized model to the distributed model, but if the
software architectural model and the development approach are modular, movement in either
direction should be possible for the software vendor. Our conclusion is that it is impossible
to select an optimal analytical application frame architecture without fi rst analyzing data
warehouse architectural models together with the corresponding analytical application frame
technology sub-strategy and the analytical application frame leverage sub-strategy. This analysis
is important, as the dependencies in the underlying and defi ning technologies will impact the
adaptability of the analytical application frame architecture to different market segments.

4.1.2.2 Functional adaptability of frame architecture

Adaptability of an application frame architecture could mean completely different things to a
software vendor and an end user organization. A software vendor aims to identify “the most
optimal architectural construct” that can be reused across different market segments, while
an end user organization measures architectural adaptability in terms of its ability to distribute
information across the organization and change and maintain the analytical application without
breaking the solution that was delivered by the software vendor. Functional adaptability also
means that end user organizations are able to create incremental updates on the solution
itself concurrently with the software organization. New updates of the analytical solution
can be inserted on top of end user organization modifi cations. Another sign of adaptability
to an end user organization is the ability to change the underlying IT infrastructure without
having to discontinue the use of the solution or change the solution provider. An example of
this would be iSeries/400 solutions that can not be run in any other hardware or operating
system environments. To a software vendor, functional adaptability means that the solution
can be used as the foundation for several derivative products in a product line/family and
that the software application frame is suffi ciently modular to be changed to refl ect new IT
infrastructure requirements. Application and software application frame modularity give
software development the fl exibility to drop and add new software modules on a required
basis. This type of component-based development is not possible in old legacy applications
without strong application wrappers.

4.1.2.3 Underlying information technology infrastructure

The third comparison criterion is to compare IT infrastructure requirements between the
software vendor and end user organization. This comparison reveals that end user organizations
have typically already selected the underlying IT infrastructure to be supported, while software
organizations usually aim to support as many IT infrastructure environments as possible. This
mismatch between supported IT infrastructure environments (the software vendor) and required
infrastructure environments (the end user organization) could be considerable, limiting future

111

market segmentation for the software vendor. Another dilemma that an end user organization
can run into is that of integration problems: when the application software solution breaks
due to IT infrastructure issues. An example of this could be when an end user organization
updates any element in the underlying technology (operating system environment, database
management system etc.) and this causes the software solution to break. These types of
problems could cause a nightmare to software vendors (as well as end user organizations), as
these problems are unexpected and typically very diffi cult to identify.

4.1.3 Summary

We based our analytical application frame architecture model on our analysis of analytical
application solutions in Chapter 3. Selection of the data warehouse architectural model was
based on architecture comparison, also portrayed in Chapter 3. We also defi ned an analytical
application frame architecture based on our functionality analysis. One of the key tasks that
a software vendor must accomplish is to identify an optimal architectural construct (software
application frame) that can be used across a given vertical market segment. The key is to
understand that the aim for a software vendor is not to try to support all of the possible
market segments, but to predict as accurately as possible the segments that the company
is probably going to address with the selected software application frame. It is not accurate
to suggest that a software application frame is exactly the same for two different software
vendors, but it is accurate to claim that each software domain must include a minimum
set of functional components included in the solution. We have identifi ed these minimum
requirements that any analytical application software vendor must support. These functional
components are either part of the defi ning technology or part of the service component
layer. We also concluded that each software vendor might have a slightly different service
component layer, as each software vendor could address different market segments and have
a different product development strategy. Another key element is to understand that defi ning
technology. Its embedded functional components can provide a key competitive advantage
for a software vendor. This key competitiveness can be achieved by intelligent implementation
of the required functionality. This will give the software vendor a “vector of differentiation” as
was described earlier in this chapter.

We also emphasized the importance of addressing the end user organization and the software
vendor perspectives when implementing and selecting an architectural model with corresponding
IT infrastructure for an analytical application software solution. Software vendors have to consider
the underlying IT infrastructure to be supported, as end user organizations could have a variety
of different underlying IT infrastructure technologies. This fi nding will further emphasize the lack
of discussion in existing traditional product platform theory of the complexities that software
vendors face when selecting a product platform approach in developing software. It is justifi ed
to claim that a software vendor has to analyze a combination of three dimensions (selected

112

product architecture, technology, and market segment) before defi ning an optimal software
application frame for a given software domain. The fi rst dimension is the analytical application
frame with included components (defi ning technology and the other layers within an analytical
application frame architecture), the second dimension is the underlying technology, and the
third dimension is the selected market segment. We can conclude that it is impossible to defi ne
one or the other without including discussion of the remaining two. It is important to be able
to defi ne the defi ning technologies as fl exibly as possible so that the software organization can
select new technologies to support new IT infrastructures when a selected market segment so
requires. Incorrect selection of an IT infrastructure could lock in the software vendor for years
and prevent the vendor from moving into new lucrative market segments.

4.2 Defi ning an Analytical Application Frame Technology Sub-Strategy

Part of the overall business strategy for a software vendor is to defi ne a technology strategy
that enables the software vendor to achieve the implementation of a fl exible application frame
architecture that gives the software vendor the ability refl ect and adjust to the requirements
that are set by a specifi c market segment or even the software functionality that is needed to
fulfi ll the expectations of the end users. We have divided this chapter into two sub-chapters
with an initial analysis of technology strategy and implications of selecting technologies.
We also discuss and explore technology selections specifi cally for an analytical application
software vendor.

4.2.1 Technology Selections for an Analytical Application Software Vendor

Software technologies are evolving at an increasing pace. This could lead to technology
selections that become obsolete from both the software architecture and the market
segmentation perspective (Clements and Northrop, 2002). According to McGrath (2001), a
vendor has to identify and understand “the future roadmap of key technologies, emerging
technologies that could affect the vision in the future and unrelated technologies that could
possibly create substitute products.” Selection of an underlying technology could potentially
impact long-term software development strategy for a software vendor, specifi cally if
technologies are selected inadequately and without refl ecting the market segmentation
strategy of the software products. Cowan et al. (2002) conclude in their article “Software
Engineering Technology Watch” that software vendors are facing tremendous diffi culties in
trying to predict what technologies will bring onboard in the future. According to the authors
(ibid), “the evolution of software technology is fast paced and determined by many factors.
Most cannot be identifi ed, let alone predicted, with any signifi cant advance notice.” Even if a
software organization were able to predict technology trends, it must be able to adapt to them
without having to rewrite the entire application suite that the vendor might have implemented
for a market segment.

113

According to Clements and Northrop (2002), technology forecasting is used within product
family software development to ensure the survivability of any technology selection. From
a software application frame (product platform) perspective, each selection of technology
can have an impact on the lifecycle of the derivative products and thereby also on the
effi ciency and effectiveness of the software application frame. Technology forecasting helps
in identifying technology trends and predicting relevant markets and what standards will
prevail in the future. Clements and Northrop (ibid) divide technology forecasting into two
different areas, namely internal development and customer solutions. Internal development
includes “selections of tools, processes, and methods for producing the software that will
end up in the software,” while customer solutions are decisions that refl ect the end user
organizations and what features and capabilities are embedded into the products. Technology
forecasting is important within product line/product family development, as each technology
selection could impact the future derivative product development efforts both in a positive
and a negative way. If technology selections are made poorly, the software organization might
face a situation in which the overall solution must be replaced due to architectural infl exibility
or obsolete technology.

A classical perspective of software architecture is provided by Jacobsen et al. (1997), in which
IT infrastructure components (system software components) are the foundation and lowest
level in a layered software architectural model. The following layer consists of middleware
components that enable software organizations to build distributed solutions. These middleware
components can include both domain-specifi c and generic middleware components. The
next layer before the application systems layer contains business-specifi c components that
portray the selected software domain and its associated software components. Jacobsen et
al.’s (ibid) architectural model is a generic model which does not specifi cally consider other
aspects of software technology selections.

Bosch (2000) concludes that standardized infrastructure consists of “the operating system and
the typical commercial components on top of it, such as the database management system and
a graphical user interface.” The following two layers within a layered architectural model are
business-specifi c and application systems. The former layer is domain-specifi c and the latter
layer portrays complete applications systems. (Jacobsen et al., 1997). Pronk (2000) concludes
in his case study within the medical imaging software domain that an architectural model
for a product line should have one main objective. This objective is to avoid “a monolithic
design by extreme de-coupling of components and localization of functionality so that every
component can be replaced or upgraded in isolation.” Pronk’s (ibid) statement refl ects back to
our defi nition of an analytical application frame and its characteristics. Pronk (ibid) portrays an
architectural model for the imaging software domain by having three horizontal architectural
layers (a technical layer, an application layer, and a user interface and display) and a separate

114

vertical infrastructure layer that “shields the general purpose hardware and the operation
system calls, and offers basic support classes for licensing, logging, and other infrastructure
services to be used by all software.”

We concluded earlier in this chapter that we have separated the domain-specifi c product
architecture (federated, centralized etc.) from the selected technological style (client/server,
distributed etc.), as these can be very different from each other. Domain-specifi c architecture
describes the domain-specifi c software characteristics, such as in the case of a federated data
warehouse model that provides a “virtual view” of the data warehouse/data marts database
across the end user organization IT environment. The domain-specifi c architectural model could
in some cases be using a different technical implementation architectural style. An example
of this would be when the domain-specifi c solution supports the centralized data warehouse
model, but the implementation architectural style is distributed. This type of combination
gives the software vendor the fl exibility to support two different types of domain-specifi c
architectural models. Because of this, we have separated these two architectures by defi ning
a domain-specifi c architectural style as part of analytical application frame architecture and a
technological architectural style as part of technology strategy.

Our fi ndings in technology permutation (Table 3) and discussion of the dependences between
the domain-specifi c architectural model and selected technologies demonstrate the impact
of underlying infrastructure selections on software application frame development. These
selections are to some extent tied to the selected software domain. In the case of an analytical
application software solution, the software vendor must select the operating system environment,
the database management system, the distributed component technology (such as DCOM and
CORBA), the architectural style, and non-domain specifi c application building blocks. These
selections are tightly integrated to the selected integrated development environment. Some
IT infrastructure selections could limit the selection of integrated development environment
and vice versa. The software vendor must select an appropriate development approach for
its software development. During the years, several approaches have been introduced to the
marketplace, but none of these has provided the “silver bullet” defi ned by Brooks (1987). A
solid proponent within the product platform development approach is software product line
engineering. The general approach is the same, whereby a software vendor aims to create
common software assets that can be utilized in derivative software development. The key
therefore is to provide a modular software architecture with effective interfaces to enable
the software vendor to create an optimal software application frame that can be reused over
a longer period of time. Another key component in software product line engineering is
component-based software engineering (Bass et al. 1998a, 1999; Clements and Northrop,
2002; Bosch, 2000). By summarizing the technology selections that a software vendor must
make, we can identify following model (see Fig. 14):

115

Fig. 14. Analytical Application Frame Technology Sub-Strategy for an Analytical
Application.

Figure 14 demonstrates the relationship between the underlying technology, execution and
development environment and the selected software development approach. It is imperative
to conclude that technological selections as such do not necessarily impact the selected
software development approach. This selection describes only what type of methodology is
used when designing and implementing the software solution.

4.2.1.1 Underlying technology (standardized infrastructure)

Selection of an underlying technology, such as an operating system and database management
system, can have long-lived impact on a software vendor, as some of these technologies
are proprietary, supporting different combinations of hardware and software environments.
A good example of this is the iSeries/400 environment, which did not initially support
development environments other than its proprietary development language or any database
environment other than its own. Software vendors who initially selected these environments
have been forced to invest in new environments during the years, as some of the required
functionality can not be built using pure iSeries/400 technology. Another approach that some
software vendors have tried during the years is to support cross-platform development using
specifi c application development tools and languages. These attempts have been costly to
some companies, as in the case described by Cusumano and Yoffi e (1999). Cusumano and
Yoffi e (ibid) explain how a selected technology strategy can lead to unexpected costs. Their
example is from Netscape Corporation’s selection of a cross-platform development approach
for an Internet browser. Cross-platform development could potentially become a burden

116

for a software vendor due to different technologies and possible confl icts in each selection.
The following table shows an example of how an analytical application software vendor
could face diffi culty if the vendor decides to implement a solution for multiple hardware and
operating system environments. The permutations of operating system environments, database
management system environments, and distributed technologies can be vast. Adding one new
technology to the table will increase the number of permutations exponentially (see Table 3).

Criteria Microsoft Technology UNIX or LINUX
Technology

AS/400 Technology

Operating System
• Microsoft specifi c OS
• Generic OS
• OS/400

• Only Windows
• No support
• No support

• No support
• Support for several OS
• No support

• No support
• No support for other

OS
• Native support

Database environment
• Microsoft specifi c DB
• Generic DB
• OS/400

• Works in Windows
• Works in Windows
• No support

• No support
• Support for several DB
• No support

• No support
• Support for several

DB
• Native support

Development tools
• Microsoft specifi c
• Generic
• OS/400 tools (ILE RPG)

• Works in Windows
• Works in Windows
• No support

• No support
• Support
• No support

• No support
• Support
• Native support

Distributed technology
• Microsoft specifi c
• Generic

• DCOM
• CORBA

• No support
• Support

• No support
• Support

Table 3. Technology Permutation Matrix for a Software Vendor.

The aim of the permutation matrix above is not to simulate all the different technology
permutations, but to show the complexity that an analytical application vendor might face in
development of its software solution. The matrix shows clearly that selection of an operating
system and hardware environment could infl uence all other underlying technology elements,
and also all other execution and development environment selections.

Besides selection of an operating system environment and database management system,
an analytical application software vendor must select an architectural style (client/server,
pipe-and-fi lter, etc.) that could be different from the domain-specifi c architectural model
specifi c to analytical application software solutions. We described three architectural models
(centralized, multi-tiered/distributed, and federated) in Chapter 3 that can be the foundation
for an analytical application vendor. These architectural models are specifi c to the software
domain. The combination of these selections with the implementation architectural style will
defi ne how complex and adaptable the analytical application frame architecture will become
and what type of granularity the software application frame will represent. When an analytical

117

application software vendor selects its application and domain-specifi c architectural model
and implementation architectural style, it has to align these selections to additional technologies
such as distributed computing technology (DCOM, CORBA) and other IT infrastructure
elements that are part of the underlying technology. Some of these architectural dependences
can be isolated using a layered software architecture as proposed by Jacobsen et al. (1997) This
could reduce some of the dependences that could be caused by technological selections.

4.2.1.2 Execution and development environment

The software tools that an analytical application software vendor uses as part of development
of analytical application solutions must support software development from a whole lifecycle
perspective. According to Jarig and Bosch (2002), existing software tools are too bound to
specifi c development phases. According to Stuart et al. (2000), to achieve the full benefi t
of product line development, “processes and methods of the development effort must be
supported by tools.” According to Stuart et al. (ibid), an industrial consortium has been founded
(Computer Technology Corporation) with the aim to developing tool support “needed to make
product line development a reality.”

Depending on our analytical application technology strategy, underlying technology
will have an impact on the execution and development environment, as some integrated
development environments are integrated into the underlying technology, such as the
iSeries/400 RPG programming language. The executables from the RPG (Report Program
Generator) development environment will run only in the iSeries/400 hardware environment.
Some integrated development environments will support cross-platform development with
different underlying IT infrastructures. This approach could help a software vendor to alleviate
some of the risks associated with the selection of technology strategy. These cross-platform
development environments have identical runtime and software development environments.
This enables a software vendor to create software solutions for different IT hardware and
software underlying technologies without having to provide different releases of the software
package. Another scenario for a software vendor is to consciously select specifi c underlying
technology for a selected market segment with the aim of achieving a competitive edge.
If these selections are proprietary and might become legacy technology in the long run,
this market segmentation could become a burden for the software vendor. Changes in the
underlying technology for the software application frame could be outside the boundaries of
the core competence areas that the software vendor represents. This type of evolution could
become costly for the software vendor, as new personnel with associated technologies must
be acquired in one way or the other.

Herzum and Sims (2000) introduced the concept of the “software component factory,”
emphasizing “reuse on a large scale” by using very large coarse-grained software components.

118

The authors (ibid) suggest that the technical architecture “is the set of architectural principles,
models, and design patterns that defi nes and environment in which technical complexities at
all phases of development are hidden from the functional developer.” Basically, the developer
should not have to worry about underlying technologies, but to concentrate on building the
domain-specifi c features (that have been defi ned in analytical application frame architecture
sub-strategy) and functions that end-user organizations expect to fi nd in the software product
under construction. This hiding is what the authors refer as a “business component virtual
machine.” The overall technical architecture is shielded from the developer, implementing all
the IT infrastructure components that are required in a software development environment, such
as the technical infrastructure with its component execution environment and an integrated
development environment that together form the business component virtual machine.

Cheeseman and Daniels (2001) explain the importance of target technology, specifi cally in
distributed computing environments when assembling components into applications and
application systems. According to the authors, software component environments have to
conform to existing component standards that provide basic infrastructure services such as
transaction support, security, and concurrency for the application component to rely on.
Sametinger (1997) explains the dependences between the selected hardware, the operating
system, and other systems on the run-time environment. According to the author, components
and component platforms are more reusable the fewer platforms and underlying infrastructure
they depend on. Sametinger also distinguishes between the execution platform and the
composition platform in a way similar to Jaaksi et al. (1999). The execution platform is the
platform where a component can be executed. This is typically dependent on the underlying
IT infrastructure environment. The composition platform (or the development platform) is the
platform that is used when components are assembled, integrated, and compiled into a binary
executable. The aim of any software development team should be to limit the dependences
both in the run-time and the development environments to optimize the product functionality
for the possible technological combinations. Effi cient usage of application programming
interfaces is a key in limiting the dependences and cohesion amongst software components
in the architecture. D’Souza and Wills (1999) separate the design and composing activity of
components into two different activities. The authors suggest delaying “the bindings made
when components are composed so that the composition can be done as late as possible.”

4.2.1.3 Software development approach

The software development community has transitioned from the traditional Waterfall and Spiral
software development process models to iterative and incremental models. A software process
is described by several different software engineering authorities (Royce, 1998; Kruchten,
1999; Cheesman and Daniels, 2001). Most of them describe it similarly to Ambler (2001) as
“a set of project phases, stages, methods, techniques, and practices that people employ to

119

develop and maintain software and its associated artifacts (plans, documents, models, code,
test cases, manuals, and so forth).” There are numerous articles about current development
strategies and processes (Brown and Wallnau, 1996; Pfi ster and Szyperski, 1998; High, 1998;
Cusumano and Yoffi e, 1999; Sparling (2000). A new industry standard modeling language has
emerged, namely Unifi ed Modeling Language (UML). This new modeling standard has been
applied to different software development techniques, such as component-based engineering
(Kobryn, 1999; 2000).

Several different software development approaches have been introduced on top of this new
modeling language, one of the major approaches being the Unifi ed Software Development
Process from Jacobsen et al. (1999). Some of these new development process models
favor the Unifi ed Software Development Process (Fowler and Scott, 1997; Jacobson, 1999;
Kruchten, 1999), but some argue that the proposed process model has defi ciencies and must
include new additions to be useful (Rosenberg and Scott, 1999; Ambler, 2000). One of these
proposed additions is the ICONIX Unifi ed Object Modeling approach from Rosenberg and
Scott (1999). Another addition is the Object-Oriented Software Process (OOSP) from Ambler
(1998; 1999), which extends the Unifi ed Software Development Process with a production
phase in the software process model. Two component-based models are also introduced,
Catalysis from D’Souza and Wills (1999) and another from Herzum and Sims (2000). This
approach is named the Business Component Factory. All of these latter software development
methodologies are based on UML in one way or the other. Fowler and Scott (1997) point out
that UML is a successor to all the different Object-oriented Analysis and Design (OOA&D)
methods and that UML is a modeling language and not a method. According to the authors,
a method will include both a modeling language and a process.

Software product line development has been introduced as a development approach with the
aim of reuse in large-scale systems (Jaaksi et al., 1999; Brown, 2000). According to Atkinson
et al. (2000), systematic product line development remains “the exception rather than the
rule, and its potential remain largely unfulfi lled.” Atkinson et al. (ibid) continue, explaining
that traditional software implementation technologies do not support the rapid and cost
effective “adaptation of implemented code in a way required by [a] genuine product line
approach.” Because of this, Atkinson et al. (ibid) proposes a software development method
KobrA (Komponentenbasieerte Anwendungsentwicklung) that cleanly integrates product
line development and component-based software development into a “systematic unifi ed
approach to software development and maintenance.” The authors (ibid) explain that product
line development is typically “reuse in the large” while software development using a
component-based development paradigm is “reuse in the small.” The KobrA approach utilizes
the strengths of both product line engineering and component-based software engineering.

120

Figure 14 portrays a software development approach with corresponding domain and
application engineering practices and component-based development as the foundation for
a software application frame implementation approach. Software product line development
includes characteristics similar to software application frame development. First of all, both
approaches have the aim of creating software assets that are common to all derivative products.
Secondly, both approaches have the aim of reuse on a large scale, with a modular architecture
and well-defi ned interfaces. Part of a software development approach is also the selection
of a development notation such as UML. This selection depends on several criteria, such as
the selected product line engineering approach, the tool selection, and core competence of
the development personnel. We will explore in more detail in Chapter 5 how each selection
impacts development from a practical perspective and how each selection is backed up with
recent product line literature.

4.2.2 Summary

In our analysis, it became evident that selections for the underlying technology can have an
impact on an analytical application frame architecture and its defi ning technologies. As an
example, the selection of weak database management technology would adversely impact the
robustness of several functional components within an analytical application employing the
technology for the data staging area, the data warehouse, and the data mart implementation. If
we draw a parallel between IT infrastructure selection and defi ning technology, the overlying
layers within the analytical application frame architecture will be impacted as well. Selection
of underlying technologies will have an immediate impact on the execution and development
environment, as some development environments do not support all IT infrastructure
environments and vice versa.

Our analysis also demonstrated the need to and importance of separating the IT architectural
style from the domain-specifi c architectural model, as the former is part of underlying
technology selection while the latter is defi ned in the analytical application frame architecture.
Each of these selections is closely related but with different requirements, and each must be
selected with different criteria. Software developers who concentrate mainly on the software
application domain expect the IT infrastructure environment to provide services at runtime,
such as replication functionality in the selected database management system.

All of the underlying technology selections will be the basis for the software development
approach and the software development methodology with its included development
processes. Our defi nition of a software development approach consists of all software
engineering approaches, such as software product line engineering and its associated domain
and application engineering approaches. The software development approach is complemented
with development methodologies (such as the Rational Unifi ed Process) with corresponding

121

processes and component-based development. Part of software development for a specifi c
software domain is the defi nition of a product line development approach with corresponding
architectural models that will be shared by all derivative products. If the software organization
does not include these in the process, analytical application frame development might be
effective, but there might be additional factors that relate specifi cally to software product line
development that must be considered to achieve maximum leverage for derivative product
development. Product line development as such is the method of delivering derivative products
using a software application frame. We will include discussion of different implementation
variation techniques within the analytical application software domain in Chapter 5.

4.3 Defi ning an Analytical Application Frame Leverage Sub-Strategy

We concluded in our analytical application frame technology sub-strategy analysis that product
line engineering contributes to the implementation of a product family in analytical application
software solutions. There are many practical examples of the use of software product line
development as a basis for derivative product development (Thiel and Peruzzi, 2000; Jaaksi,
2002). One of the key factors for successful derivative product development within a software
company is dependent on how well the development organization understands the software
domain (Kang et al., 2002). According to Schmid and Verlage (2002), domain engineering
approaches have typically failed and run into schedule and cost overruns if the domains
are not properly scoped. In similar way, the scope for a software application frame and the
size and complexity of the frame are dependent on the specifi c market segments that the
software vendor intends to support. Domain knowledge comes into play when the scope is
defi ned. If the domain is unknown and new, the probability of encountering challenges while
an optimal software application frame increases as the unknown becomes larger. A similar
discussion is led by Bosch (2002), where he notes that organizations that “are more mature in
terms of domain understanding” are more versed to concentrate on domain engineering. We
will explore these topics in Chapter 5 when discussing different variation techniques that an
analytical application software vendor can undertake while creating its strategy for derivative
product development.

4.3.1 Scoping the Market Segment for an Analytical Application Software Solution

According to Cusumano (2004), software organizations have to decide whether they should
have a horizontal or vertical market segmentation strategy. According to Cusumano (ibid),
a horizontal market segmentation strategy might in some cases lead to “the lure of the
horizontal,” whereby organizations “overestimate the potential of horizontal markets and end
up with products that have too few customers or that are too weak to combat the competition”
(ibid). If we inject this statement into the overall trend in the analytical application solution
market with the aim of creating prepackaged vertical market solutions (Eckerson, 2002), we

122

can argue that software vendors in the generic infrastructure/tools market will face increased
competition as end user organizations have the desire to buy and not build their software
solutions, as argued by Gleason (1998) and Morris (1998).

Based on our analysis of product platform related software development, we have identifi ed
the importance of a solid product architecture and the importance of selection of technology in
implementation of an application frame for analytical application software. The third remaining
criterion for successful product family development is the selection of the appropriate scope
for the products with respect to market segments and what software applications/solutions are
going to be supported by the software vendor. According to Thiel and Peruzzi (2000) in their
research on software development within the automotive software system domain, the case
study company used product line scoping (PLS) to “identify the functional, technical, political,
legal and business constraints that are characteristics to the product line.” This activity included
three main practices:

• Business investigation, to interview the business executives and to create the business
 case.
• Product space examination, to identify the characteristics of legacy and competitor
 products and future extensions to it.
• Standards and technology investigation, to identify the standards and technology
 drivers that typically comply with the products under consideration for the product
 line.

If we translate these activities into analytical application software solutions, we do not see
anything that would be different when setting strategies for analytical application software
solutions. Specifi cally, the third activity, standards and technology investigation, is important
for an analytical application software vendor.

A software vendor faces a dilemma when having to build a software application frame
without knowing in advance the possible future market segments and application areas that
must be supported. The aim of the analytical application frame and its development is not
to try to cover all of the possible variations, but to provide a solid combination of software
application frame and software application frame technology that provide economical value
in the form of software application frame effectiveness and effi ciency. The economic results
will be dependent on analytical application frame leverage and how easily a software vendor
can provide for new market segments and applications. Part of the decision to be made when
deciding on a product family is to set the scope that is economically feasible.

The basis for any software domain is to provide a robust analytical application software
frame that the software vendor can use within different market segments without having to
make profound changes into the application frame itself. We defi ned the needed analytical
application frame components in this chapter, together with several architectural layers of

123

domain-specifi c application functionality needed within any market segment. The difference
between these analytical application solutions from one market segment to the other is the
contents of the business analytics and meta data repository and possible extensions within
the extension component layer. The variation within the solution content will be managed
by a process in which intellectual property for the selected market segment will be included
at the time of delivery using an installation process in which the business analytics and meta
data repositories will be populated with market segment specifi c information. Analytical
application frame extensions must be included to the binary executable that is delivered. This
type of variation technique will be discussed more thoroughly in the Chapter 5.

If the analytical application frame does not enable further variation, the software vendor must
renew the analytical application frame by redesigning the application frame or by creating
additional extensions by building additional subsystems that will not disturb the foundation of
the analytical application frame itself. Because of this, the challenge will be for an analytical
application software vendor to defi ne a solid and optimal architectural application frame that
can be reused in all of the selected market segments without having to rewrite any functionality
in the analytical application frame itself. This type of extension model was described by
Meyer and Seliger (1998), where the fi nal market segmentation is implemented using specifi c
software plug-ins that can be maintained and developed by third-party software organizations.
Within the analytical application frame architecture, third-party or vertical market specifi c
software extensions can be implemented in the extension component layer. This layer will
then be integrated into the actual application frame using different variation techniques.

According to Meyer and Seliger (1998) and Sääksjärvi (1998, 2002), market segmentation
strategy can be implemented both horizontally and vertically using different price/performance
tiers. Vertical market segmentation emphasizes the ability to build different software solutions
for different market segments (such as manufacturing, insurance, distribution etc.), while
horizontal market segmentation can be controlled by implementing software products for
different performance/price tiers (see Fig.15).

Fig. 15. Analytical Application Frame Leverage Sub-Strategy for an Analytical
Application.

124

In reality, the software vendor can control each price/performance tier in different ways. One
way is to scale on the price/performance scale by limiting the functionality of the vertical
extensions or limiting the functionality by using control numbers within the application. An
analytical application software vendor could, for example, limit the number of applications
within a fi nancial solution – the lowest entry level could have only loan analysis, whilst
the highest level might include all modules and functionality found in the vertical solution.
Another way of controlling functionality is to limit supported business processes or business
metrics (for example key performance indicators). According to our analysis of an analytical
application software solution, all business metrics and business processes are stored in a
common business analytics repository. This repository is centralized, and specifi c software
features can be controlled by software control numbers even if the whole analytical application
is delivered to the end user organization.

4.3.2 Different Variation Options For An Analytical Application Solution

An analytical application solution can be varied by several different techniques, some of them
being solution variation and some being technical variation. The remaining variation could
be a movement on the functional richness axis of the analytical application frame leverage
sub-strategy matrix. We concluded previously in this chapter that part of a robust analytical
application is the implementation of a domain-specifi c architecture that provides the ability to
build a robust underlying business analytics and meta data repository. The business analytics
repository is specifi cally the foundation for collecting intellectual property from a specifi ed
vertical market segment. This knowledge is not related to technology, but to deep business
understanding of the selected vertical market segment. The meta data repository describes
“data about data,” and includes all relevant information about the included source and target
meta data and interface mappings and more. An analytical application software vendor must
decide the boundary of how far “an optimal architectural entity” or software application frame
can become the basis for any vertical market segment, as each modifi cation in the extension
component layers will increase the complexity of software development.

Software vendors must distinguish between the technical feasibility of maintaining different
vertical solutions and the intellectual skills that somebody within the organization must
provide by building predefi ned business processes and key performance indicators with
their corresponding critical success factors. These business processes will have be linked to
predefi ned charts and reports that are typical for the business domain. These charts will
be delivered to end user organizations together with the software solution itself. When we
analyze our analytical application frame from a market segmentation perspective, the analytical
application’s underlying technology is completely separated from the analytical solution that
will eventually be delivered to the end user organization. Part of the delivery will be to populate
the solution with corresponding vertical market intellectual knowledge. This process can be
mastered at the time of packaging the deliverable for the end user organization.

125

In some cases, the software deliverable must include specifi c functionality to be implemented
in the software package itself. This type of functionality will be included in the extension
component layer as portrayed in our analytical application frame architecture sub-strategy.
Therefore, in some specifi c cases, extended functionality frame components could even
include software modifi cations or functionality that is specifi cally optimized for the selected
vertical market. This extended functionality requires additional software versioning. It will be
included and packaged after physical compilation of the software to binary code or (if the
extension is a self-contained software component in binary format), it can be delivered as
a physical extension to the analytical application frame. The analytical application frame as
such is not a product that can be installed, but will be the basis for packaging and acting as the
core for deriving products for different vertical domains by using extension frame components
in the packaging. The challenge for any analytical application software vendor is to defi ne the
least common denominator functionality in the underlying technology and service component
layer that can be the base for derivative analytical solution development.

One of the decision criteria for packaging could be market segmentation based on price/
performance segmentation of the software vendor. One product family could be based on
building solutions for the fi nancial industry while the other product family could be addressing
the insurance industry. Each industry has its own specifi c needs and needs to be perceived
differently. The product lines or families could also represent different ways of analyzing
information, such as via the Internet, or alternatively, using a native Windows client. This
kind of derivative product development represents technology driven product segmentation,
where the software application frame is used to derive new products for new IT infrastructure
environments and is therefore not based on vertical market segmentation.

Another view of analytical application frame development is to view it as a base for different
horizontal applications, such as customer relationship applications, data mining, or even
corporate budgeting and forecasting. Each of these solutions can utilize the analytical application
frame, but each solution also requires considerable additional software development. Some
of this development could require exceptional functionality that cannot be seen as part of
the analytical application frame and needs to be developed outside this application frame.
This horizontal development takes more development resources and might lead to its own
application frame development.

4.3.3 Summary

We analyzed the required elements for defi ning analytical application frame leverage using
an analytical application frame. The breadth of the analytical application frame is dependent
on the scope of the market segmentation of the software vendor. The more vertical market
segments to be covered, the more challenging it becomes to defi ne the analytical application
frame architecture with associated technological choices. We also concluded the importance

126

of solid domain knowledge as the foundation for defi ning both the functionality of the solution
and the breadth of the market segments.

We identifi ed three different possible variation techniques that an analytical application software
vendor can utilize: each of these will be explained in more detail in Chapter 5. Solution variation
is based on content variation, wherein the software vendor includes intellectual knowledge
of given vertical market segments as key performance indicators, predefi ned reports/graphs,
and business processes. The second variation technique is to use software application frame
extensions (extended functionality) that provide the needed additional functionality that is not
part of the functionality that is needed by every market segment. A third variation technique
is to limit the functionality of the solution by using software control numbers where either the
solution content or the functionality is limited by the given control number.

The main challenge for any software vendor is to identify the optimal software application
frame entity that covers all the current market segments that the software vendor is going to
cover and also possible future market segments. Another challenge that the software vendor is
going to face is the selection of technologies (both defi ning and underlying) that could in some
cases restrict future market segmentation if the selections are made carelessly.

4.4 Analytical Application Frame Strategy Framework

The Software Application Frame Strategy framework from Sääksjärvi (1998, 2002) was a
generic framework with no specifi c emphasis on a given software application domain or
any empirical consideration. For us to be able to analyze the impact of this framework on
analytical application software solutions, we had to construct an analytical application frame
architecture that demonstrated all needed architectural layers with corresponding functional
components that are needed in these types of solutions. We concluded that software vendors
need to separate the domain-specifi c architectural model from the software architectural style,
as these two architectural models could have two different aims.

We also separated defi ning technology from underlying technology: the former defi nes “the
vector of differentiation” for the software vendor while the latter consists of IT infrastructure
technology that a software vendor selects as the foundation for an analytical application
solution. The third major consideration for a software vendor is the selection the of market
segment that the solution is going to address. The challenge for the software vendor is to defi ne
and construct an optimal architectural construct (analytical application frame) that satisfi es
both the existing and the future market segmentation that it intends to support. As a part
of the process of selecting market segment, a software vendor must pose several important
questions, as follows:

1. What customer groups or segment(s) are we going to serve?

127

2. What customer application areas are these customer groups or segments going to
 need to achieve the value-add from the software solution?
3. What is going to be the technological foundation to build these customer application
 areas that are needed in the specifi ed customer group/segment?

The challenge for a software vendor is to fi nd an optimal analytical application frame that
implements the needed functionality for the selected and future market segments. The aim of
the product platform concept is to maximize the economical measures for product platform
effectiveness and effi ciency. It is important to understand that the software vendor should
not try to cover all the different defi ning and underlying technologies that might possibly
be needed in the future. This type of software development would result in a complex
analytical application frame that would be too expensive to maintain. The idea of economical
performance with effectiveness and effi ciency measurements would be negatively impacted.

When analyzing the relationships between each sub-strategy, we have expressed the
relationship between each sub-strategy as “fi t” and the relationship between the three sub-
strategies as “alignment perspective” (process). The following fi gure portrays an Analytical
Application Frame Strategy framework (see Fig. 16):

Fig. 16. Three Different Fits Resulting from the Alignment of Three Sub-Strategies.

128

An Analytical Application Frame Strategy framework consists of three separate sub-strategies,
namely the Analytical Application Frame Architecture Sub-Strategy (“application frame
architecture sub-strategy”), the Analytical Application Frame Technology Sub-Strategy
(“application frame technology sub-strategy”) and the Analytical Application Frame Leverage
Sub-Strategy (“application frame leverage sub-strategy”). The relationship between each sub-
strategy portrays the fi t between the sub-strategies, each with its own characteristics. We have
defi ned three fi ts in our framework:

• Functional Flexibility describes the relationship between the analytical application
 frame architecture and analytical application frame leverage sub-strategy
• Technological Adaptation describes the relationship between the analytical
 application frame leverage and analytical application frame technology substrategy
• Technological Responsiveness describes the relationship between he analytical appli -
 cation frame technology and analytical application frame architecture sub-strategy

Dependencies within each sub-strategy and its corresponding elements are discussed
generally in this chapter to portray possible dependencies that can have an impact on the
fi t between two sub-strategies and/or alignment perspectives. These dependencies can in
some cases be controlled by using any of the sub-strategies to reduce the impact of these
dependencies. If, for example, a software vendor wants to reduce the impact of selecting
underlying technology, the impact of the selection can be reduced by careful selection of
market segment (Technological Adaptation). We argue that careful alignment perspective or
fi t can reduce the impact of dependencies between the elements in each sub-strategy. Our
emphases are in the analysis of alignment perspectives, discussing more generally how the
elements and groups of elements within each sub-strategy could potentially impact alignment
perspectives or the fi t between two sub-strategies.

To achieve a better understanding of different strategic alternatives in the alignment perspectives
that a software vendor can take, we have used an analysis approach similar to that introduced
by Henderson and Venkatraman (1993). Our analysis will consist of different alignment
perspective variations and fi t analysis to identify how emphasis on one specifi c alignment
perspective or fi t analysis will impact others. Finally, we will compare these alignment
perspectives with each other and conclude whether one model versus the other could be an
optimal alignment perspective for an analytical application software vendor.

From a semantics perspective, an arrow between each sub-strategy portrays a fi t. Both sub-
strategies could have an impact on each other (the arrow points in both directions). In a similar
manner, within each sub-strategy, arrows between each element demonstrate a relationship
either unidirectionally or bidirectionally. Within the analytical application technology sub-
strategy, the underlying technology and the execution and development environment are
bidirectionally dependent on each other. The selected software development approach

129

does not necessarily impact the underlying technology or the execution and development
environment, and therefore we have portrayed this with unidirectional arrows. Within an
analytical application frame architecture sub-strategy, each arrow represents the relationship
from an information fl ow perspective, portrayed with unidirectional arrows. Bidirectional
arrows are used when a change in any structure could impact both sides of the arrow, such as
between data warehouse structures, the meta data, and the business analytics repository.

4.4.1 Analysis of Fit Within the Analytical Application Strategy Framework

Both the analytical application frame architecture sub-strategy and the analytical application
frame technology sub-strategy will have an impact on the market leverage of the analytical
application. If the application frame architecture is the driving force, the fi t between these
two sub-strategies is called “Functional Flexibility.” This fi t portrays the ability of the software
vendor to adjust its solution to different market segments from a functional perspective. We
emphasized previously that the aim of an analytical application software vendor should not be
to cover all possible market segments that it could possibly cover in the future, but the selection
should be based on factors such as economic feasibility (application frame effectiveness and
effi ciency) and other factors that are related to analytic application frame architecture and its
selection (such as the architectural model, functional fl exibility etc.).

The relationship between analytical application frame technology and analytical application
frame leverage sub-strategy is called “Technological Adaptation.” This relationship defi nes
how well the software vendor is able to adapt its technological selections to refl ect current
and future market segmentation alternatives. In some cases, a software vendor might select
underlying technology that is restricted (such as the iSeries/400 hardware and operating system
environment) but could potentially offer competitive advantage for a software vendor due to
strict focus on selected technology and possible innovations around that technology.

The third and fi nal fi t demonstrates the software vendor’s ability to change either the frame
technology sub-strategy or the frame architecture sub-strategy without breaking the overall
solution. We have named this relationship or fi t “Technological Responsiveness.” The fi t
between an analytical application frame architecture and an analytical application frame
technology sub-strategy can not be undervalued, as this fi t will impact the future of the
company. The result of this fi t portrays how well the frame architecture can adapt to new
technological changes and whether the analytical application frame architecture is amendable
to new market segments. It can therefore be said that, however good the software company’s
market segmentation, failed technological responsiveness fi t can result in a doomed future.

130

4.4.1.1 Technological responsiveness

“Technological Responsiveness” characterizes the type of impact the selection of underlying
technology has on an analytical application architecture or how the analytical application
frame architecture can be changed, refl ecting possible new underlying technologies. When
the software vendor is successful in selecting underlying technology that can be changed or
amended during the lifetime of the analytical application frame architecture, we can conclude
that technological responsiveness has been good. In a similar way, weak selection of underlying
technology could have an adverse impact how well future changes in technology can be
made in respect to the analytical application frame architecture. This type of relationship
demonstrates the fi t between two sub-strategies while changes occur in either sub-strategy.
Its corresponding elements might not always impact the fi t, and can therefore be managed
internally within the sub-strategy itself. If, for example, the software vendor selects execution
and development environments that support only specifi c underlying technologies, the
software vendor could potentially select new execution and development environments that
support broader selections of underlying technology.

Restricted technology selections, such as selection of a proprietary operating system
environment or database management system, can restrict future frame architecture extensions
due to technology. In a similar manner, a software development effort could fail in implementing
an adaptable analytical application architecture using the best possible technologies. This
type of failure could be compared with an analogy in cooking: even the best ingredients can
result in a poor meal. Unsuccessful fi t between these two sub-strategies can also be a result
of a confl ict between the domain architects developing the analytical application software
solution and the technologists responsible for the underlying technology and execution and
development environment.

Another factor that could potentially impact an analytical application software vendor is
possible change in the software domain. Changes in software requirements from a functional
perspective or changes in general IT infrastructure requirements could cause challenges for
the software vendor. This is where technological responsiveness is measured. If the underlying
technology needs to be changed or if the underlying technology does not support required
software functionality, the software vendor might have to renew its analytical application
frame to refl ect these new requirements. Another challenge which could become a factor in
development of an analytical application software solution occurs when the software domain
enters completely new software application areas. An example of this issue within an analytical
application software solution is the need to add agent technology with data mining features to
the analytical application frame. This type of functionality is not defi ned as part of analytical
application software functionality, and it would therefore challenge an analytical application
software vendor to identify the means for implementing this type of functionality. This would

131

challenge the technological responsiveness whereby the fi t between these two sub-strategies
would be measured. If the software vendor decides to expand its solution base to possible new
technologies and/or functional areas (such as agent technology), the complexity of software
development will increase and the corresponding analytical application frame architecture
could become fragile due to the changes.

4.4.1.2 Functional fl exiblity

Changes in market segmentation require fl exibility from the analytical application frame
architecture to refl ect possible new changes in software functionality. This fl exibility is defi ned
as “Functional Flexibility.” It portrays changes in either an analytical application frame leverage
sub-strategy and/or an analytical application frame architecture sub-strategy. Domain-specifi c
software architecture is dependent on the software application domain. In our case, analytical
application software architecture requires specifi c functionality as portrayed in Chapter 3. This
functionality is also tied to the current and possible future market segments. The challenge
for the software vendor is to balance between the size of the analytical application frame
that fulfi lls each of these market segments and possibly also the analytical application frame
extensions (with included vertical market segment functionality) that have been created to
support market segments that the analytical application frame does not have.

The success of the development of an analytical application solution for a specifi c market
segment/ group is highly dependent on the software architects within the software vendor
fi rm. Any disconnect between the marketing people defi ning the market segments the software
company is going to address and the software architects implementing the architecture could
lead to poor implementation of the application software. This type of miscommunication can
also lead to future market segmentation diffi culties, as the robustness of the domain-specifi c
architecture is weak and can not be amended with analytical application frame extensions.
This type of diffi culty is a refl ection of weak functional fl exibility, which could potentially
result in weak analytical application frame effi ciency and effectiveness.

The implementation of a selected data warehouse architectural model as the foundation for an
analytical application software can have an impact on current and future market segmentation,
as some architectural models will not be supported by all market segments. Some analytical
application frame architectures will not provide the functionality requirements of the market
segment. If the software vendor fails to fulfi ll these requirements using application frame
architecture variation techniques such as modifi cation of business analytics and/or the meta
data repository, the solution and the functional fl exibility fi t might not satisfy the required aims
of the software vendor.

Too much emphasis or too broad customer segmentation will cause fragmentation of software
development and corresponding problems in the analytical application frame architecture. If

132

the software vendor emphasizes and creates a broad selection of application functionality or
application segments, the software development process could become cumbersome due to
the combination of customer segments and included technologies.

4.4.1.3 Technological adaptation

The relationship between the analytical application frame technology sub-strategy and the
analytical application frame leverage sub-strategy is named “Technology Adaptation,” as
the selected analytical application frame technology sub-strategy must refl ect new possible
market segments and/or changes in IT infrastructure technologies in end user organizations.
The implication of selecting a wrong technology sub-strategy could lead to a situation in which
some market segments can or will not use the analytical application solution due to different
IT infrastructure requirements in a selected vertical market segment. This type of confl ict
is a classic example of a software engineering domain clashing with an information system
science domain, as the aims of these two viewpoints are different. Software technologies and
software development environments could be very different in their runtime and development
time requirements. A good example of a development environment is RPG within the OS/400
operating system environment. The executable programming code for RPG is compatible only
with OS/400 environments and can therefore not be run in any hardware environments other
than the iSeries/400 environment. If a software company decides to implement solutions using
Java, the selection of possible runtime environments is much broader, as the Java runtime
environment supports multiple different hardware and operating system environments.
Another scenario for confl ict between an analytical application frame technology and an
analytical application frame leverage sub-strategy could be caused by a software organization
that innovates new disruptive technology requiring specifi c characteristics from the selected
market segment.

The balance between selection of an underlying technology and the market segments that the
software vendor is going to support must be carefully considered, as too broad a selection in any
of these two might cause deterioration of software product development. Too much emphasis
on a broad selection of technologies within the analytical application frame using underlying
technology could increase the complexity of software development. This could increase the
maintenance costs of the analytical application frame(s) and its/their corresponding analytical
application frame architecture(s).

4.5 Alignment Perspectives Within an Analytical Application Frame
 Strategy Framework

While the previous chapter refl ected the relationships between two sub-strategies, the
relationship between three sub-strategies is regarded as an alignment perspective (see also
Venkatraman, 1993). In a manner similar to our analysis of different fi ts, we will also explore

133

what type of impact any changes in any of the three sub-strategies will have on software
development of analytical application software solutions. It is evident from our fi t analysis in
previous chapters that emphasis on any two sub-strategies within an Analytical Application
Frame Strategy framework could potentially lead to weakness in the sub-strategy that has
been ignored.

To identify different possible alignment perspectives, we combined each sub-strategy with
every other sub-strategy to have a better understanding of how a fi t between two sub-strategies
could potentially interact with each other. Once this was accomplished, we combined each
sub-strategy with a third sub-strategy to see what type of alignment perspective could be
identifi ed. Three groupings were identifi ed by taking one sub-strategy at a time for further
analysis to see what type of alignment perspective could be possible when the selected sub-
strategy was chosen as starting point. Using this inductive approach, we were able to identify
two alignment perspectives per selected sub-strategy.

A software vendor that has a strong foothold in technology is more likely to select an alignment
perspective in which technology sub-strategy is the driver for software development. In this
type of alignment perspective, we were able to identify two main alignment perspectives as
follows:

• Implementation of technology in the analytical application frame
• Commercialization of technology innovation

The main difference in these two alignment perspectives is that the fi rst alignment perspective
emphasizes the implementation of a strong and adaptable analytical application frame using
technology. This type of alignment perspective enables the software organization to use
technology as the enabler for effective market segmentation. The second alignment perspective
portrays a model in which a software organization uses technology sub-strategy as the
driver for market segmentation. This type of market segmentation is a potential approach for
innovative start-up companies that have a product idea that they want to bring to the market.
The weakness in this alignment perspective is the negligence of analytical application frame
architecture and its functionality. This could lead to a software offering that does not address
any market segment properly.

If a software vendor has strong domain-specifi c skills in the solution area, the most likely
emphasis for the vendor is an analytical application frame architecture sub-strategy. This type
of emphasis can result in two different alignment perspectives, as follows:

• Leverage of an analytical application frame into different market segments
• Implementation of analytical application frame technology into different market
 segments

134

In the fi rst alignment perspective, the emphasis is completely on the vertical or horizontal
market segmentation. The vendor ignores the importance of technological choices. This could
potentially impact future market segmentation and lead to a weak analytical application frame
architecture.

In the second alignment perspective, the software vendor aims to build technology within
the analytical application software domain. This technology can then be further marketed to
specifi ed market segments, such as other Independent Software Vendors (ISV) or end user
organizations that have decided to buy analytical application frame components from other
software vendors and build the solution themselves. Another option in this type of alignment
perspective occurs when the software vendor has decided to renew the application frame
architecture with new technology that will address the market segment more effi ciently.

The fi nal group has a focus on market segmentation using a top-down approach in which the
management of the company selects either an analytical application frame architecture or a
technology sub-strategy as a driver. Both of these possible alignment perspectives emphasize
selection of a market segment by harnessing a specifi ed market potential:

• Harnessing market potential using an analytical application frame
• Harnessing market potential using technology

When a software vendor leverages its market potential via analytical application frame
architecture, the software vendor aims to implement a software solution that refl ects the
requirements of the selected market segment. In this alignment perspective, the technology is in
a weaker position. This type of alignment perspective has potential for organizations that have
a strong background in a selected vertical market segment where the management decides to
build a solution for that market. The second possible alignment perspective emphasizes a strong
technology and is a potential choice when the management of the software vendor has a strong
technological background and knowledge in a selected vertical market segment. This alignment
perspective gives less emphasis to the analytical application frame architecture and its functionality
and includes a risk of creating a solution that is useless for the selected market segment.

In the remaining part of this chapter, we will analyze in more detail characteristics of each
possible alignment perspective and the impact of each of these for a software vendor. We
argued in prior chapters that emphasis on two sub-strategies can lead to an unbalanced overall
strategy with weakness in the sub-strategy that has been ignored. This type of unbalance creates
a disconnect which could occur for several different reasons. One reason could be a result
of poor communication between different organization groups within the software vendor.
Another reason could be the lack of core competence in any of the three sub-strategies.
Regardless of the reason for a disconnect, a software vendor must recognize the existence of
the disconnect to limit the harm that it can cause.

135

Each alignment perspective is portrayed using dotted lines between the sub-strategies,
demonstrating the direction of the dependency and its characteristics. These dotted lines show
unidirectional dependency between three sub-strategies within an Analytical Application
Frame Strategy framework. We have named each alignment perspective based on the
characteristics of the alignment perspective and the direction of the arrows. The sub-strategy
that gets less attention is portrayed with a line pointing toward the sub-strategy that gets less
attention within the alignment perspective.

4.5.1 Analytical Application Frame Technology as a Strategic Driver

When an analytical application software vendor selects technology as driver for its
development, the software vendor has two alternative alignment perspectives to choose
from. The fi rst alignment perspective emphasizes the implementation of a strong analytical
application frame architecture that can be easily leveraged to different market segments. The
second alternative is to select a market segment with a new innovation that is based on strong
technology implementation (see Fig. 17).

Fig. 17. Analytical Application Technology Sub-Strategy as a Strategic Driver.

The emphasis on technology refl ects each and every layer in an analytical application software
vendor’s analytical application frame technology sub-strategy with all corresponding elements
(underlying technology, execution and development environment, software development
environment). Selection of an underlying technology will have an immediate impact on the
analytical application frame architecture sub-strategy and its corresponding layers, as any
weakness in the underlying technology will impact the adaptability and responsiveness of
the analytical application frame architecture and its ability to meet the requirements of other
possible new market segments. Besides selecting underlying technologies that are specifi c
for an analytical application software vendor, the software vendor either restricts or enables
different choices of the execution and integrated development environment. Some underlying
technologies, such as proprietary databases and operating system environments, will not
support all execution and development environments. This could have an impact on both the
application domain and future segmentation strategies for the software vendor by impeding
future market segmentation.

136

The most profound difference in these two alignment perspectives is the focus on the market
segmentation approach, as one alignment perspective is based on building a solution for a
specifi ed market segment while the other alignment perspective does not have a true market
segmentation strategy: the focus is more or less on technology innovation. By choosing an
alignment perspective in which the analytical application frame architecture is the focus
of development, the software vendor aims to build a strong analytical application frame
architecture using specifi c technology, with the result being a robust analytical application
frame that can be leveraged to different market segments. The other alternative alignment
perspective has technology as the foundation for innovation that the software vendor has
decided to address. This type of alignment perspective is potentially useful for entrepreneurial
organizations with a strong background in selected technologies. These technologies become
the foundation for innovation in different market segments. Unfortunately, this type of alignment
perspective could result in products that are too technical, with features and functionality that
are not needed by end user organizations.

We demonstrated in Table 3 how different technological selections in underlying technology
can complicate software development due to the different combinations of underlying
technology available in the market place. The software vendor might select a narrow
horizontal or vertical market that is know to support specifi c underlying technology, such
as the iSeries/400 hardware and operating system environment. This type of selection can
be defensible if the software vendor achieves a competitive edge by becoming expert in the
underlying technology or selected market segment. Software vendors should avoid selecting
execution and development environments that are not supported by several different underlying
technologies, such as operating system and hardware environments.

4.5.1.1 Implementation of technology in the analytical application frame

Selection of underlying technology as the foundation for an analytical application frame
architecture must refl ect the requirements set by the selected domain-specifi c architectural
model. These requirements, such as the selection of distributed technology, must refl ect how
end user organizations and selected market segments expect to utilize the solution and what
type of functionality is expected from the solution. If the software vendor fails in its selection
of underlying technology, resulting in a weak analytical application frame architecture, future
market segmentation strategies could be jeopardized. Therefore, selection of both underlying
and defi ning technologies can impact the versatility and adaptability of the analytical
application frame architecture. This is measured by how easily the software vendor can move
its solutions to new market segments.

If, for example, the software vendor selects a software development language (part of the
execution and development environment) which does not support the use of distributed

137

technology, the software vendor would exclude itself from data warehouse models requiring
distributed technology. Therefore, technology sub-strategy will clearly limit the choices of
architectural models (centralized, distributed, federated) in the analytical application solution
domain itself. If the analytical application frame architecture sub-strategy is effective and
the integrated application development environment accommodates the selection of different
underlying technologies such as operating systems, database management systems, etc., the
probability of having less dependence and coupling of analytical application frame components
is greater in the selected architectural model.

Different database management systems have their own key innovations and tight coupling to
the underlying the hardware and/or operating system environment. Due to these dependencies,
selection of some of these underlying technologies could impact the implementation of
the analytical application frame components and market segmentation sub-strategy. Some
database selections could restrict the software vendor to accessing specifi c market segments
if the underlying database management system technology is known not to be supported in a
given market segment. From the software vendor’s perspective, database management systems
are relatively standardized, but each database environment has its own API, which makes it
diffi cult for software vendors to support several different technologies and combination of
technologies. A database management system is just one underlying technology amongst
others that must be selected for an analytical application software solution. By using a layered
software architectural model, a software development organization can lessen the impact of
technological choices if these technologies have effective application programming interfaces
based on common standards. These standards can in some cases help software vendors
switch between core IT infrastructure technologies and avoid considerable rewriting of the
software solution.

The emphasis on this alignment perspective is on technology and application functionality
and less on market segmentation. From the software development perspective, this type
of alignment perspective could potentially lead to a situation in which the selection of
underlying technology is too broad and/or application functionality is too complex. Both of
these situations could lead to a weak analytical application frame architecture and a software
development environment that is expensive to maintain. Because of this, the defi nition of
the analytical application frame technology and the analytical application frame architecture
sub-strategy must be implemented in parallel with selected market segments. This type of
alignment perspective with less emphasis on analytical application frame leverage sub-
strategy could potentially cause the software vendor “Segmentation disconnect,” whereby
market segmentation gets the least emphasis of the three sub-strategies within an Analytical
Application Frame Strategy framework.

138

4.5.1.2 Commercialization of technology innovation

The second technology alignment perspective concentrates on commercializing technology
within a selected analytical application software domain. In this alignment perspective, the
analytical application frame architecture with required functionality will get less attention
from the software vendor. This type of alignment perspective could potentially be seen in
an entrepreneurial organization with innovative and technology based development within
a selected software application or problem domain. This approach is typical bottom-up
kind of product innovation, where the software product is innovated and then the software
organization selects the market segment when it has the understanding of what the technology
innovation can do for the market segment. The software vendor should avoid too broad market
segmentation as this could increase the risk of fragmentation of the analytical application frame
architecture. We believe that this approach could work if the innovation is either disruptive
(Christensen, 1997) or has the capabilities of becoming a “killer application” (Downes and
Mui, 1998). The chances for success in this kind of technology innovation is not very high
and therefore we would suggest that both established software vendors and newly founded
entrepreneurial organizations should carefully consider this alignment perspective due to the
high risks. The risks are typically involved with implementing products into the market and
running into a situation where the product is right, but market segment or software application
domain does not require this kind of solution or even that the product be right, but the pricing
(in the price/performance matrix) can not be adjusted according to the expectations of the
market (either too low or too high pricing).

This alignment perspective could also serve organizations that have the aim to create and/
or invent technology within the analytical application solution domain that other software
vendors can use as the foundation (as software assets) in their own software development.
These types of inventions could take the software application domain to the next level,
something that nobody else has been able to address before. Within analytical application
software domain, research organization and market leaders are investing in intelligent agents
or mechanisms that enable end users to see relationships in the data and push the results to
different end user devices such as PDA’s or Internet browsers. These intelligent agents could
provide automated “under-the-cover” activity based on business algorithms that are specifi c
to the selected market segment. The commercialization of these types of technologies could
reach the early adopters (see also Moore, 1991) in the next few years and reach the majority
much later development stages. We believe that once these agents can be prepackaged
without having to be customized separately for each organization, they might become more
appealing for other analytical application vendors to explore. Similar research is already taking
place in predictive modeling of e-commerce sites where organizations want to analyze buying
patterns to be able to meet better customer expectations.

139

Finally, this alignment model emphasizes technology and customer segmentation, but
underemphasizes application functionality with respective functional software end user
requirements. This type of application solution development is potential for software vendors
that are technologists/innovators of technology and can lead to “Architectural disconnect,”
where the analytical application frame architecture becomes weak due to emphasis on either
technology and/or new market segments. These types of software organizations might use
radical new underlying technology in their implementation of defi ning technology, with the
risk of not realizing acceptance from IT organizations for the selected market segment. These
types of problems can be identifi ed with breakthrough technologies that never reach suffi cient
maturity or market share for the software vendor to become profi table.

4.5.1.3 Comparison of alignments

We argue that the fi rst alignment perspective with emphasis on implementation of technology
in analytical application frame architecture, is more appealing for a software vendor, as this
emphasizes the implementation of an adaptable analytical application frame architecture that
can be used in different market segments. The other alternative, with emphasis on innovative
product development, has more risks associated, such as end user organizations not accepting
the new technological innovation that the market does not fi nd useful or practical, or the
vertical market segment does not support the selected underlying technology that is the
foundation for the software innovation.

Technology as a selling factor might be something that only larger organizations can afford, and
therefore the size of the software vendor is also a deciding factor when selecting an alignment
perspective with a technological emphasis. Thus, larger organizations could select a business
strategy where the aim is to implement software technology for other software vendors within
the selected vertical market segment to be used in their own software development. Therefore,
we can conclude that organizations using commercialization of technology innovation as
their alignment perspective have a business model for providing underlying technology to
other software vendors. Obviously, this type of business model is not suitable for smaller
organizations with limited cash resources.

Basing the business strategy on commercialization of a technology innovation alignment
perspective has associated risks if the software vendor uses radical new technology
that is not widely supported by end user organizations or selected market segments. The
objective of supporting different underlying technologies could become a major obstacle
for a software vendor, specifi cally if a cross-platform development approach is selected, as
software development becomes cumbersome and requires deep core competence from the
development organization. Due to these IT infrastructure requirements, development of an
analytical application frame and its associated components for other software development

140

organizations could become a challenge for a software vendor, as these analytical application
frame components have to support several underlying technologies such as operating system
and hardware environments, database management systems, etc. A good example of this would
be innovation in analytical application software development using a specifi c proprietary
hardware technology as a foundation. If this approach is selected, the software vendor might
be restricted to being able to market its solution to current or future market segments that are
known for not supporting these IT infrastructure environments. Therefore, decisions to build
an entire product family based on specifi c technology must be carefully considered and the
software vendor should also have alternative strategies if the selected development or market
segmentation strategy fails.

We also identifi ed two different disconnects with these two alignment perspectives. Both
of these could have an adverse impact on the software vendor. We argue that segmentation
disconnect will cause less harm than architectural disconnect, as the previous alignment
perspective has the aim of an adaptable frame architecture using a strong technology strategy.
Architectural disconnect can lead to a weak analytical application frame resulting in increased
software maintenance and development costs.

4.5.2 Analytical Application Frame Architecture as a Strategic Driver

When a software vendor selects application frame architecture as its strategic driver for
software product development, the selected analytical application frame architecture can be
implemented either by leveraging the analytical application frame architecture into different
market segments or by implementing analytical application frame technology within a selected
software application domain (see Fig. 18).

Fig. 18. Analytical Application Frame Architecture Sub-Strategy as a Strategic driver.

Both of these models represent a business model in which an analytical application frame
architecture is the foundation for solution development. The main difference in these two
alignment perspectives is that one perspective is heavily technology oriented while the other is
more or less driven by market segmentation. The analytical application software domain with

141

the aim of identifying an optimal analytical application frame construct poses considerable
challenges for a software vendor. First of all, an analytical application solution includes a variety
of different functional components that must be aligned with selected underlying technology
and a selected data warehouse architectural model. Secondly, an analytical application frame
architecture with its functional components must be well aligned with a selected domain-
specifi c architectural model and technical architectural style (client/server, distributed,
pipe-and-fi lter etc.). It is imperative for a software vendor to separate these two different
architectural models from each other, as each of them poses different requirements. The
analytical application frame architecture will include requirements in the software application
domain, while the technological architectural style will must consider other factors such as
end user organization IT infrastructure and the execution and development environment for
the solution itself.

4.5.2.1 Leverage of an analytical application frame into different market segments

Selection of the model in which an analytical application frame architecture is mainly built for
selected market segments could restrict the company’s expansion into future possible market
segments. A software vendor might run the risk of building an analytical application frame
that does not allow any future market segmentations, as the technological selections were
wrong in the fi rst place, for example, selecting a technology that never takes off in the general
information technology market. Because of this, analytical application software vendors should
review selected technology in concert with the analytical application frame architecture to
make sure that selected domain-specifi c software architecture is amendable and adaptable to
future market segmentation strategies. Underlying technology selections have to support the
software vendor in defi ning robust technology components as part of the analytical application
frame architecture (meta data repository, business analytics repository, etc.). In each alignment
perspective alternative, the third sub-strategy must be reviewed together with the alignment
perspective itself, as it could have a profound impact on future market segmentation strategies.
One alignment perspective could work better in one organization than another due to different
core competences and backgrounds in software development.

Analytical application software functionality with corresponding vertical market segment
specifi c key metrics and business processes is the main driver in this alignment perspective.
Because of this, business analytics and meta data repositories must be adaptable to
amendment by both software vendors and end user organizations. This adaptability is realized
by effective selection of the underlying technology as a basis for defi ning technology and its
corresponding elements. If the technological foundation is weak, the result is most probably
a weak foundation for the analytical application frame architecture. This leads to ineffective
future market segmentation possibilities. Key performance indicators and related business
processes must be included in the solution, with the ability to change these once the solution

142

has been installed in the end user organization IT infrastructure. These changes are enabled
if the solution supports parallel development of the analytical application solution whereby
the software vendor can deliver new releases of the solution without overwriting the possible
changes that the end user organization has implemented in the solution.

The adaptability and ability to amend the analytical application frame architecture will be
based on how well the underlying technology and its analytical application frame components
are assembled and designed to accommodate new vertical or functional market requirements.
The success of an analytical application frame architecture and its ability to serve different
market segments can be measured by economic metrics as described in Chapter 2. A successful
analytical application frame is the foundation for future derivative products that the software
vendor might not know in advance. The effectiveness and effi ciency can only be measured
ex-post after the product line/family has been implemented.

Our analytical application frame architecture showed the importance of application
programming interfaces that might also give additional leverage to an analytical application
software vendor, as these interfaces can be amended for new functionality or even with new
analytical application frame components that provide additional functionality for the selected
market segments. The analytical application frame architecture is the basis for the ease with
which the software vendor can control the price/performance tiers and whether or not the
software vendor must replace or amend some analytical application frame components to
be able to reach the intended functionality of a selected market segment as portrayed in the
analytical application frame architecture model in this chapter.

Finally, this type of alignment perspective could lead to fragmented product development if the
software vendor selects too many customer segments to be supported. Each of these vertical
market segments could potentially have very different functional requirements (both software
functionality and solution content). This could lead to a weakened analytical application frame
architecture and increased diffi culty in software development. The software vendor might in
some situations run into “Technological disconnect,” which describes potential weakness in
analytical application frame technology sub-strategy.

4.5.2.2 Implementation of analytical application frame technology into market
segments

The second possible alignment perspective when using analytical application frame architecture
as a basis is when an analytical application vendor emphasizes the alignment perspective
between the analytical application frame architecture sub-strategy and the application
frame technology sub-strategy. This was defi ned as “Implementation of application frame
technology into different market segments.” This type of alignment perspective is less likely

143

to occur for most software vendors, as the emphasis in this alignment perspective is to either
create an analytical application frame that becomes part of the technology sub-strategy or the
analytical application frame(s) are used to create other derivative products for different market
segments. The other alternative is that the software vendor builds analytical application frame
components that will be resold to other Independent Software Vendors (ISVs). In both of these
alternatives, market segmentation is de-emphasized. This could become a major problem in
future market segmentation strategies.

If the software vendor selects this type of alignment perspective and decides to become a
software component provider to other software vendors, several other new challenges will
became apparent for the software vendor. Confi guration management for development,
sublicensing policies, and upgrade automation of new releases are major tasks for any software
vendor. The quality of these processes must be high, as other vendors might use these as part of
their own software deliverables. Another factor that the software vendor must consider when
using this alignment perspective is that of ensuring proper selection of underlying technologies,
as too narrow selection could restrict the vendor to a narrow market segment which does not
provide the needed leverage for the software vendor. With broad technological selections
and broad customer market segments, the software vendor could run into a nightmare of
compatibility problems in different releases of analytical application frame components with
corresponding technologies. This analysis is unfortunately something that software vendors
could easily forget, as the dependency in market segmentation is closely tied with technology
selections and the corresponding IT infrastructure that end user organizations support.

If the software vendor’s business model is to deliver analytical application frame components
to other independent software vendors, these frame components become part of other third-
party solutions. We strongly argue that this kind of alignment perspective is not suitable for
smaller companies with limited personnel and fi nancial resources. We also argue that this kind
of alignment perspective is obviously a real threat to all independent analytical application
software vendors, as by competing within their selected application domain with aggressive
pricing, larger software vendors could impact and destroy the markets for these smaller
vendors. This type of alignment perspective is more suited to larger software organizations
with development teams that have software development practices that support development
of large scale and high quality software. Some database management vendors have included
analytical application frame components in their database management software offering,
and therefore these components and their classifi cation changes from defi ning technology
to underlying technology that is part of analytical application frame technology sub-strategy.
The emphasis on technology without clear market segmentation could potentially lead to
“Segmentation disconnect,” as the software vendor is highly technology driven, with the
emphasis on moving defi ning technology to become part of underlying technology for other

144

software vendors. This could potentially cause problems in market segmentation, as the
requirements of the software assets could change between different market segments and
different application areas.

The aim of a software vendor is to optimize the usage of an analytical application frame in different
market segments, but this could lead to too broad a selection of underlying technologies to
support different end user IT infrastructure environments. With broad technological selections
and broad customer market segments, the software vendor could run into a nightmare of
compatibility problems in different releases of analytical application frames and technological
choices. This analysis is unfortunately something that software vendors could easily forget, as
the dependency in market segmentation is closely tied with technology selections and the
corresponding IT infrastructure that end user organizations support. Therefore, a software
vendor must be aware of any changes in underlying or defi ning technologies when selecting
possible new market segments or application areas.

In some cases, implementation of analytical application frame technology can be used to
extend the original analytical application frame with new architectural designs that give the
software vendor the possibility of moving on the price/performance matrix using an analytical
application frame leverage sub-strategy. An example of this could be when a software vendor
extends the existing analytical application frame with technology that extends the solution to
new market price/performance tiers. If, for example, an analytical application vendor requires
analytical application information to be distributed to any information device, it could build a
delivery mechanism that does not exist anywhere else. That system will become a part of the
technology sub-strategy.

4.5.2.3 Comparison of alignments

When comparing these two different alignment perspectives with each other, we can conclude
that the fi rst perspective underestimates the importance of technology selections while the
second uses technology as major part of its development. The second approach differs greatly
from the fi rst one by having a completely different approach, as technology becomes a part of the
overall development strategy for the software development organization. The weakness of this
approach is that the software solution with its analytical application frame and corresponding
analytical application frame components might not refl ect the requirements of the selected
market segment because the technology might have become the focus and major driver for
the whole solution. This occurrence could potentially occur within smaller- and mid-sized
entrepreneurial software organizations that have management with a strong technological
background, aiming to create technology for the selected software application domain, or
where the software vendor’s business model is to provide software development services for
another software vendor in the analytical applications software market. Unfortunately, these

145

software organizations might end up building software for early innovators that are only a
small group of the overall opportunity pool.

When an analytical application software vendor emphasizes analytical application frame
functionality above technology or market leverage, the vendor either does not have the skills
to address any specifi c vertical market or does not command any specifi c technological core
competence that could drive the product development. Software vendors emphasizing product
functionality in selected application areas such as analytical application development might
emphasize functionality above technology innovation, and therefore technology could play
a secondary role in these software organizations. When software vendors develop analytical
application frame components, design and implementation plans should take into account
possible future vertical segmentation strategies. Careless planning can cause problems in
future integration efforts between analytical application frame and analytical application frame
components for extended functionality. Product development with strong emphasis on an
analytical application frame sub-strategy is also typically driven by functionality requirements
on the analytical application frame components and not by technological selections. Obviously,
the functionality decision has to be in sync with the technological selections if the company
wants to build a successful analytical application frame sub-strategy that can be extended to
different vertical markets.

In these two different alignment perspectives, the perspective with emphasis on technology
is less risky, including technological choices that will not carry the solution to new market
segments, compared with the other alignment, where market leverage is given more focus
than the technology itself. A pure comparison between these two alignment perspectives
leaves us to believe that the alignment perspective with emphasis on leveraging an analytical
application frame to different markets is more favorable when compared with the alignment
perspective having a technology focus and development of analytical application frame
components for selected market segments. The reason for this is that we believe the latter
perspective is highly unlikely for typical analytical application software vendors and more
likely for large software organizations with ambitions plans to implement technologies that
can be embedded in other software solutions.

Finally, both alignment perspectives could run into disconnects when applying a specifi c
alignment perspective. Both disconnects are serious if a software vendor does not take
them to consideration, but the disconnect in the alignment perspective “Leverage of
analytical application frame into different market segments” could become a major issues if
technological selections are weak, with a result of a weak and fragile analytical application
frame architecture.

146

4.5.3 Analytical Application Frame Leverage as a Strategic Driver

When an analytical application software vendor selects application frame leverage as the
driver for its development, the selected application frame leverage can be achieved either by
harnessing market potential using a specifi c technology strategy or alternatively harnessing
market potential by building a strong application frame (see Fig. 19).

Fig. 19. Analytical Application Frame Leverage Sub-Strategy as a Strategic Driver.

Regardless of the selected strategy, the underlying analytical application frame architecture
must be adaptable and amendable to enable effective analytical application frame leverage to
new market segments. Part of the defi ning technology for an analytical application software
vendor is its meta data and business analytics repository, the foundation for storing key
business metrics and meta data information about the corresponding ETL processes. We also
concluded that an analytical application software vendor should aim to create “an optimal
architectural construct” that can be reused across different market segments. Therefore, the
challenge for a software vendor is to create an analytical application frame that is as generic
as possible. Only the contents of the analytical application frame repositories will be different
at the time of delivery of the fi nal product. This will require stability in the database structures
of the application. The differences in each market segment are satisfi ed by loading vertical
market metrics on delivery to the end user organization.

The aim of the software vendor is to identify the functionality of selected analytical application
frame components that fulfi ll most of the requirements for each vertical market, to add market
segment specifi c functionality and also to identify business metrics and processes as part of
the packaging of the solution or part of the extended functionality that can be integrated into
the analytical application frame at runtime. Sometimes it could be most effective to include
functionality in the analytical application frame that some of the vertical market segments do
not require. This is typically more effective due to decreased software confi guration and version
management activity, limiting the number of analytical application frames to the minimum. We
will further discuss technical implementation and variation of analytical applications in Chapter
5.

147

4.5.3.1 Harnessing market potential using technology strategy

The alignment perspective wherein the software vendor selects a market segmentation sub-
strategy based on selected technology is based on a top-down planning activity, where the
software vendor selects a set of underlying technologies for analytical application software
development that will impact not only the market leverage, but also analytical application
frame architecture sub-strategy. Our discussion of the analytical application frame technology
sub-strategy demonstrated the complexities and interdependencies between different
technological selections in solution development and how these selections could become the
key element of the success or failure of the software company. Technology based strategies
will support the implementation of a strong analytical application frame architecture for the
software solution from a technology perspective, but they do not necessarily provide the keys
for successful analytical application frame architecture functionality.

Selections in analytical application frame technology include also selection of both the end
user IT infrastructure support (runtime environment) and the development environment
(underlying technology). Each selection will be a combination of different factors that will
impact the overall adaptability of the software solution, the analytical application frame, and
its frame architecture. These two types of environments could be different when developing
software for end user organizations, but by using effective layered software architecture and by
selecting an effective integrated development environment, a software vendor can minimize
these dependencies. Integrated development environments are typically based on application
generator technologies, with predefi ned class libraries and/or component frameworks that can
be reused in software development. These development environments in some cases have
their own proprietary application development language that is compiled to the appropriate
target hardware and operating system environment at deployment time. Therefore, we can
easily conclude that technological selections specifi cally within software development will
impact every alignment perspective and will therefore become almost a centrepiece of any
software development initiative. Emphasis on both market segmentation and application frame
technology could potentially lead to “Architectural disconnect,” as the software vendor might
undervalue the need to build strong architectural bases for the analytical application frame.

Finally, selection of the analytical application frame technology strategy must be evaluated
from the perspective of the end user organization and the software development organization.
If the selections are performed carelessly, future market segmentation could become very
diffi cult and in some cases impossible. Some end user organizations within a selected market
segment could have an IT infrastructure that is very different from the environment that the
software organization can support, and this is something that is and has been very diffi cult for
software organizations. Even today, the software development community is divided between
the Microsoft camp with its .NET initiative and more open environments, where software can

148

be run on multiple hardware and operating system environments. This type of development
enables software organizations to build solutions that can be adjusted to each market situation
more easily than building the overall software solution on one technology that is very hard to
move to any other environments. An example of a limited technology selection is the selection
of the iSeries/400 customer segment, with its corresponding underlying technology selections.
These selections could potentially lead to an analytical application frame architecture that will
not refl ect the requirements of other market segments in the future.

4.5.3.2 Harnessing market potential using an analytical application frame

The alternative to a technology driven alignment perspective is to emphasize the strength of
an analytical application frame architecture by selecting a market segment that the software
organization will focus on. This approach has potential for organizations with management
that has either prior skills or knowledge within a chosen vertical market segment or where the
management of the organization has identifi ed a market niche that they want to address with
an analytical solution and solid value proposition. In this alignment perspective the technology
strategy becomes secondary. This could lead to weak underlying technology and an analytical
application architecture that is neither easy to change nor easy to amend with new features
due to an infl exible analytical application frame and its components. Therefore, the software
could potentially run into “Technological disconnect,” as technology does not play strongly
in the alignment perspective and the management and development team sets application
functionality for a selected market segment as a top priority.

Another consideration when selecting analytical application frame architecture as a driver in
development is to evaluate and pay close attention to the selected market segment and what
hardware/software environments this market segment is known to support. A pricing structure
with corresponding price/performance drivers is important to consider when development
a balanced development strategy for analytical application solutions. The approach in this
alignment perspective is to specify the functional application areas that the software vendor
is going to play in and defi ne the contents of both the meta data and business analytics
repositories with all associated data integration rules for different operational applications.
The software vendor might need to create additional add-in modules within the extension
component layer that are integrated into the analytical application frame at the time of delivery.
This type of additional functionality is needed when the functionality of one market segment
differs considerably from that of another vertical market segment. Optimization is achieved by
separation from the core analytical application frame architecture.

4.5.3.3 Comparison of alignments

Both of these perspectives are initiated from selected market segment(s). The fi rst perspective
has technology as its foundation, while the other uses application frame architecture as its

149

driving factor. The technology driven alignment perspective could result in a product suite that
is either too complex to use or is technically too advanced for regular end user organizations
to maintain and manage. Software organizations with a clear vision of a specifi ed market
segment and a strong belief in a selected underlying technology could lead into a solution that
becomes either obsolete or is well ahead of its time. There are several examples of this type of
technological experimentation in the past few years. For example, IBM OS/2 was selected by
several vendors as their main client environment, but the market decided that OS/2 was not
the one that would win. Software organizations with OS/2-based products had to retreat and
either convert or perish from the marketplace.

In the other alignment perspective where software application functionality is the driving
force, software organizations might forget to align the selected defi ning technology to be in
sync with the underlying technology that is part of the analytical application frame technology
sub-strategy. Software vendors that have strong domain knowledge in the selected market
segment and software application domain could be tempted to not address the importance of
a solid analytical application frame technology. This could lead to a weak analytical application
frame architecture sub-strategy and make future market segmentation diffi cult. An example
of this could be selection of an operating system and a database management system (part of
the underlying technology) that will not scale or support specifi c market segments or is strictly
bound to a selected IT hardware and operating system environment (such as the iSeries/400).
These types of selections are very diffi cult to change later in the development cycle, as they
employ proprietary technologies that are not supported by other IT environments.

We argue that both alignment perspectives could be effective when used carefully. The most
effective perspective would be where both an analytical application frame architecture sub-
strategy and an application frame technology sub-strategy are integrated and in balance with
each other when selecting the market segmentation sub-strategy. Both alignment perspectives
foster different disconnects. Based on our prior analysis, architectural disconnect is more
serious, as the foundation for the analytical application frame could become weak.

4.5.4 Disconnects in Alignment Perspectives

Each alignment perspective includes a possibility for a disconnect that could develop if two
sub-strategies within an Analytical Application Frame Strategy framework are emphasized and
the third sub-strategy receives less attention. The resulting weak alignment perspective will
also result in a weak fi t. The question remains whether the weakness is between two sub-
strategies or all three selected sub-strategies. We identifi ed six different alignment perspectives
and three different types of disconnects that could potentially impair the software vendor
engaged in building software solutions. According to our analysis, a disconnect could develop
in a software organization if two sub-strategies get more emphasis. The third could either

150

be neglected or possibly impact future product development activities because the software
organization did not realize the impact of the decision. We also concluded earlier in this
chapter that an optimal alignment perspective could be different for different software vendors
based on their background, such as core competence in the software application domain and
technology. The idea behind exploring a disconnect is to make software vendors aware of them
so as to be able to recognize the possibility of a disconnect when setting their strategies. Based
on the six alignment perspectives that were identifi ed in this chapter, we were able to identify
three potential disconnects that could develop with unbalanced alignment perspectives:

• Architectural disconnect
• Segmentation disconnect
• Technological disconnect

The common denominator for each disconnect is that they represent weakness in one of the sub-
strategies due to less emphasis when compared with the other two sub-strategies. Figure 20 portrays
the six different alignment models grouped by each of the three disconnects (see Fig. 20).

Fig. 20. Alignment Perspectives grouped by Different Disconnects.

151

The two uppermost alignment perspectives portray a situation in which a software vendor
de-emphasizes the analytical application frame architecture and emphasizes either the
analytical application frame technology sub-strategy and/or the analytical application frame
leverage sub-strategy. The two alignment perspectives in the middle section de-emphasize
the analytical application frame leverage sub-strategy and emphasize either the analytical
application frame technology sub-strategy and/or the analytical application frame architecture
sub-strategy. The bottom alignment perspectives in Figure 20 put the analytical application
frame technology sub-strategy into an inferior role, while the analytical application frame
leverage and/or application frame architecture sub-strategy receives more attention.

4.5.4.1 Architectural disconnect

The fi rst pair of alignment models is represented by “Harnessing market potential using
technology” and “Commercialization of technology innovation.” Both of the alignment
perspectives have the possibility of “Architectural disconnect.” The main difference in these
two perspectives is that the direction of the fi rst perspective is from an analytical application
frame leverage sub-strategy toward an analytical application frame technology sub-strategy.
This could potentially lead to a weakened analytical application frame architecture. The main
reason for a weakening architecture could be both the selection of too many market segments
that the analytical application frame must support or that the software vendor selects too
many underlying technologies to build the analytical application frame architecture.

The second alignment has a strong emphasis on a selected market segment using technology. Less
emphasis is given to an analytical application frame architecture. This disconnect is specifi cally
risky, as selection of an underlying technology might lead to an analytical application frame
that is either too complex to maintain or whose technology has not reached the maturity that
most of the end user organizations will be able to accept as part of their solutions.

4.5.4.2 Segmentation disconnect

The second pair of alignment models is represented by “Implementation of analytical application
frame technology into different market segments” and “Implementation of technology in the
analytical application frame.” Both of these alignment perspectives could potentially lead
to “Segmentation disconnect,” as the analytical application frame leverage sub-strategy is
de-emphasized when building an Analytical Application Frame Strategy framework for the
software vendor. The main difference in these two alignment perspectives is that in the fi rst
perspective, the direction is from the analytical application frame architecture sub-strategy to
the analytical application frame technology sub-strategy, while in the second perspective, the
direction is from the analytical application frame technology sub-strategy toward the analytical
application frame architecture sub-strategy. Both of these perspectives de-emphasize market

152

segmentation of the solution and could potentially lead to analytical application frame and
technological selections that do not support future market segmentations, as too much
emphasis is put on the other two sub-strategies. The software vendor could potentially select
underlying technologies that are known by the development team (part of core competence),
but these might not be technologies that are widely accepted by the end user organizations.
Therefore the software vendor could face a confl ict between the supported IS infrastructure in
end user organizations and the infrastructure that is supported by the software solution.

4.5.4.3 Technological disconnect

The last group of alignment perspectives is “Leverage of the analytical application frame
architecture into different market segments” and “Harnessing market potential using an
analytical application frame.” Both of these alignments could possible lead to “Technological
disconnect” because of less emphasis on an analytical application frame technology sub-
strategy. The difference between these two alignment perspectives is mainly the direction of
alignment perspective. The fi rst perspective takes an analytical application frame architecture
sub-strategy as the basis when leveraging the analytical application frame to different market
segments, while the second alignment perspective takes an analytical application frame
leverage sub-strategy as the basis of an analytical application frame architecture sub-strategy.
Both of these could potentially lead to a situation in which a future market segmentation
strategy could become impaired, either due to the weak technological foundation of the
analytical application frame (because of too broad market segmentation) or because the
selection of underlying technology is weak, providing a weak foundation for the analytical
application frame architecture.

4.6 Chapter Summary

Our analysis of a layered architectural model with emphasis on information distribution and
functionality showed how each functional analytical application frame component interacts
with each other functional analytical application frame component in an analytical solution.
We compared three different data warehouse architectural models and concluded that a hybrid
data warehouse model with federated and multi-tier/distributed characteristics provides the
most potential adaptability for an analytical application software vendor to accommodate
different vertical market segments in its software development. Based on this analysis, we
decided to build an analytical application frame architecture that portrays different architectural
layers and analytical application frame components.

Our aim was to defi ne an optimal architectural construct for an analytical application solution
that could be used across different vertical market segments. To be able to achieve this
goal, we identifi ed all of the needed functionality for an analytical application solution via a
literature study and placed these functional components into the selected architectural model

153

portrayed in this chapter (the hybrid model). The undermost layer consists of data staging area
with inclusive extraction, transformation, and load mechanisms to operational applications.

The second layer in the architectural construct consist of meta data and business analytics
repository and data warehouse and data mart database structures that are the foundation for
an analytical application solution. Another importance part of an analytical application frame
is a generic business and analytics engine that provides the logic for the service component
layer and acts as the interface for underlying database structures. This generic business and
analytics engine can be used across any vertical or horizontal market segment. The service
component layer provides different types of services for the overall analytical application
solution such as presentation and distribution of the analytical information for end users.
This layer provides the foundation for future devices that might be supported, such as PDAs,
cellular phones, etc.

The fi nal layer – the extension component layer – provides the ability for a software vendor
or third-party software vendor to create add-ons to the analytical application frame so that
the software organization does not need to change the functionality of the frame itself, but
concentrate on building additional functionality to the extensions.

We could also see similarities between information products from Meyer and Zack (1996)
and analytical applications, as both include characteristics of a process platform where the
contents of the database will distinguish one vertical market segment from the other. The
idea behind an analytical application solution for a vertical market segment is to have key
metrics and predefi ned reports that are specifi c to the market segment and cover 80% of the
requirements that end user organizations have for the market segment. Myer and Zack (ibid)
defi ned a process platform as the refi nery that enabled a data service company to provide
different contents to different customers. This process would need to be managed by the
analytical application software vendor using a domain specialist who understands the domain
and applies this knowledge to the meta data and business analytics repository. This type of
derivative product development using business analytics and a meta data repository will be
explained in more detail in Chapter 5.

An analytical application software vendor has basically three different ways of creating
derivative products within analytical application software domain. The fi rst is to provide
database contents for different vertical market segments using the analytical application frame.
The second and more diffi cult method is to use software engineering related technologies
that are described within the software product line engineering literature. The third and fi nal
variation technique relates back to market segmentation strategy, where a software company
uses price/performance as its market segmentation strategy.

154

To be able to build an analytical application frame architecture sub-strategy, we needed further
analysis of an analytical application frame’s underlying technology. This enables an analytical
application software vendor to be able to get an understanding of how each technology selection
might impact the overall software solution. An analytical application frame technology sub-
strategy consists of underlying technology that provides core technological elements for an
analytical application software vendor, such as an operating system environment, a database
management system, and other IT infrastructure elements that the software development
organization expects to have access to in its development. We also identifi ed two other
important factors belonging to an analytical application frame technology sub-strategy. First
of all, selection of an execution and development environment must be in concert with
underlying technology, whereby any selection of underlying technology must be supported
by the integrated development environment. Secondly, the software vendor must select a
software development approach. One potential development approach for an analytical
application software vendor is software product line engineering using the component-based
development approach. It was evident that software vendors have to separate underlying
technology from defi ning technology and that these two technologies must be well balanced
to achieve a fl exible application frame that can be used in different market segments.

Based on the fi ndings from chapters two and three, we concluded that existing software
product platform related literature needs to be amended to refl ect the complexity of software
development and also to refl ect the needs of an analytical application software vendor. This
analysis led to an Analytical Application Frame Strategy framework that refl ects the requirements
of an analytical application software vendor and was built using our analysis of the analytical
application frame architecture, the analytical application frame leverage, and the analytical
application frame technology sub-strategies explored in this chapter. We also identifi ed six
different possible alignment perspectives that a software vendor can utilize. We also analyzed
the relationship between each and every sub-strategy, and we named each of the resulting
fi ts with corresponding names (Functional Flexibility, Technological Responsiveness, and
Technological Adaptation). We also showed that each alignment perspective could potentially
lead to three different disconnects (architectural, segmentation or technological disconnect).
These disconnects might not be avoided in real-life settings, but the awareness of these could
help a software vendor to minimize their potential negative impacts.

In our analysis of different possible alignment perspectives, it was evident that technology is
a dominant driver in any alignment perspective, as both underlying technology within the
analytical application frame technology sub-strategy and defi ning technology within the
analytical application frame architecture sub-strategy will impact current and future market
segmentation strategies. Therefore, we argue that software development is still very dependent
on successful technology selections, and that this is something that software vendors must
recognize continually. Software development is closely tied with underlying IT infrastructure,

155

both from the end user organizations and the development perspectives, and these dependences
make software development very dependent on different technologies. We also argue that
continuous re-adaptation of alignment perspectives will occur in software organizations
depending on the current market situation, core competence, and the selected software
market segment. It is also obvious that each software domain must be analyzed separately, as
the presumption of an underlying IT infrastructure environment that must be supported is very
different between software vendors. An example of this occurs when comparing mass-market
software products with word processing and business intelligence or analytical applications
that can be very complex and include several interweaved technologies.

Based on our analysis in this chapter, we can conclude that one alignment perspective
compared with another could work differently with different software vendors, and therefore
it is highly unlikely that an optimized alignment perspective would work exactly the same
for any selected analytical application software vendor. The aim for an analytical application
software vendor should therefore be to be aware of these different alignment perspectives
and the impact of each perspective on its business. Each alignment perspective with unilateral
emphasis on any of the three sub-strategies might lead to an imbalanced product development
strategy and inhibit future market segmentation strategies for the software vendor. Therefore
we suggest that any analytical application software vendor should aim to achieve a balanced
and/or integrated strategy between the selected analytical application frame architecture, the
analytical application frame leverage, and the analytical application frame technology sub-
strategy by evaluating each alignment perspective with its pros and cons. In a balanced/
integrated strategy, the overall corporate strategy is taken into consideration, as executive
management sets the foundation for market segmentation and derivative product development
using an analytical application frame.

Finally, the next step in our analysis is to include discussion of software implementation
approaches for an analytical application frame within the software development community.
So far, our analysis has been more or less theoretical. The aim of next chapter is to concretize
how an analytical application frame can be implemented and what known implementation
techniques are already available in the software development literature to support analytical
application frame development. There is extensive research within product line engineering
and component-based software development, and the aim of the next chapter is to explore
how these research results could be used to implement software products within the analytical
application software domain. It is very important to understand that while underlying
implementation technologies come and go, Analytical Application Frame Strategy theory will
still remain the same; the only difference might be that software application frames can be
reused more easily and therefore provide greater platform leverage. We have now reviewed
and answered our fi rst three research questions. The last and remaining research question is
as follows:

156

RQ 4: How can effectiveness criteria change when applying the product platform approach
 in analytical application software development?

The fourth research question requires us to explore different implementation approaches for
analytical application software solutions with corresponding variation techniques. Existing
product platform related literature does not provide guidance as to how and what type of
software engineering approach could be taken when designing and implementing software
application frames. Our analysis will refl ect theories that are close to the concept of the product
platform with the aim of large-scale reuse. Using selected effectiveness and effi ciency metrics,
software vendors are able to measure whether software application frame development has
been accomplished according to the aims set for the product development. This will be
discussed in more detail in the case study example introduced in Chapter 7.

5. IMPLEMENTATION APPROACHES FOR A SOFTWARE
 APPLICATION FRAME

The previous chapter demonstrated several different strategic alignment perspectives that a
software vendor could potentially face when implementing analytical application software
solutions. Each alternative could be different for each software vendor, and therefore it is
important to understand that none of these alternatives provides the “ultimate truth,” as each
vendor has a different background with different core competences. The aim of these strategic
alignment perspectives is to provide an overview of the impact for an analytical application
software vendor when balancing between market segmentation, software product architecture,
and technological selections. Each alignment perspective is different with a different outcome.
Each software vendor has to fi nd an optimal solution based on the specifi c characteristics of
the software vendor.

The aim of this chapter is to provide operational and practical information for analytical
application software vendors in the implementation of an analytical application frame with its
corresponding analytical application frame software components. Each sub-chapter refl ects
the Analytical Application Frame Strategy framework from Chapter 4. Thereby we will initiate
our discussion with software architectural related issues such as domain-specifi c software
architecture and the importance of creating a modular and layered architectural model for the
analytical application software solution. The second major topic in this chapter is to portray
in more detail technological selections that a software vendor must undertake when selecting
an underlying technology, execution, and development environment. Part of an analytical
application technology sub-strategy is selection of a software development approach.
In our discussion in Chapter 2, we concluded that software product line engineering with
corresponding component-based software engineering is a viable contributor to development
of analytical application frames and corresponding analytical application frame components.

157

We will use the terms “software application frame” and “analytical application frame”
interchangeably depending on the instance. The former defi nition is a generic term for any
software application domain, while the latter defi nition conforms to an analytical application
software domain.

Finally, as part of derivative software development, an analytical application frame and its
success is measured using product platform effectiveness and effi ciency measures defi ned
by Meyer et al. (1997). These measures describe how well a software vendor has been able
to create derivative products from an analytical application frame using different variation
techniques. We will discuss three possible variation techniques that a software vendor can
utilize in its derivative software development. These variation techniques are divided by the
three sub-strategies defi ned within an Analytical Application Frame Strategy framework.

5.1 Introduction

Prior chapters focus more or less on strategic alternatives that an analytical application software
vendor can undertake in development of analytical application software solutions, while the
aim of this chapter is to provide operational directions and ideas that a software vendor can
take when building an analytical application frame with its corresponding product family.
Existing software related product platform literature concluded the possibility of component-
based software engineering as the foundation for product platform development, but these
references did not provide operational information as to how and what type of questions a
software vendor might face when implementing analytical application software solutions. A
common theme closely related to software related product platforms is the software product
line engineering approach, which has been introduced as a viable approach for implementing
software products within a product line/family. This approach supports the aim of leveraging
an analytical application frame in the form of derivative software products from a common
analytical application frame. We defi ned analytical application frame components as the
functional elements that are needed to build an analytical application frame. Each of these
functional components consists of a set of software assets that are built internally by the
software vendor, outsourced to third-party software development organizations, or purchased
in the form of COTS software components.

To shed some light in how market segmentation strategy could be implemented using an
Analytical Application Frame Strategy framework incorporating different software engineering
related technologies, we decided to research current product line engineering literature to
identify technical means for derivative software development. This discussion is extended
with the variation options that an analytical application software vendor has when using
the analytical application frame itself. We will also discuss the importance of software
architectures and corresponding product line architectures when implementing application

158

frame(s) and what type of impact they have on the fl exibility of different variation techniques
– both solution variation and technological variation.

The software vendor has several different avenues for derivative product development. Some of
these are based on analytical application solution variation using application frame architecture
as the basis for the variation. Another variation technique is based on software engineering
related variation. This is described in both the software engineering and the software product
line literature. The third possible variation technique is based on analytical application frame
leverage strategy, whereby a software vendor can use pricing and functionality thresholds to
market its solution. This can be controlled by control numbers within the solution itself.

Because of these different variation techniques, an analytical application software vendor
must distinguish between software asset variation (the application frame itself using software
engineering) and solution variation that might not require any customization of the software to
refl ect the requirements of a given vertical market segment. If the analytical application frame
architecture is weak, a variation technique based on solution variation could be a challenge
for a software vendor, as the defi ning technology layer within the analytical application frame
architecture (business analytics and meta data repositories) might be weak and not support
solution variation and maintenance of these solutions.

Identifi cation of an application frame and its components requires skills from the software
vendor to envision future products within a product line, as an application frame measures
how effectively an application frame can be used for derivative product development. This
effi ciency and effectiveness can be measured using the metrics described in Chapter 2. Based
on our analysis in the previous chapter, the challenge for an analytical application software
vendor is to identify either the market segment(s) or technological innovation(s) that it aims to
address. Competition in technology typically provides less value proposition for the majority of
end user organizations. Competing in pure technology could lead to a fatal spiral, specifi cally
for smaller software vendors with smaller research and development budgets.

5.2 Implementation of an Analytical Application Frame Architecture

Software products in different application domains share a common characteristic: they require
a solid architectural foundation to be able to address current and future market requirements.
Software solutions are becoming increasingly complex from a technological perspective.
Some of this complexity can be managed by intelligent architectural layering (Jacobsen et
al., 1997), with solid application programming interfaces and modular software structure.
Software architecture plays a signifi cant role in anticipating future changes to the software
solution. Therefore, a weak underlying software architecture is typically a common reason for
the high maintenance costs of software products regardless of the software domain.

159

To be able to provide an adaptable software application frame for derivative software
development, an analytical application software vendor must distinguish between two different
architectural models – the analytical application frame architecture, selected according to the
software domain and its required functionality and the software architectural model that includes
elements such as architectural style with design patterns. Software architecture literature
includes several different types of architectural styles, such as n-tier client server, layered,
pipe-and-fi lter, or data repository centric. Software implementation of product lines/families
also requires product line architecture as a foundation for software implementation. These
product lines and product families have different quality attributes and other characteristics
when compared to software architectures where the aim is to create a single product.

We have divided this chapter into two sub-chapters. In the fi rst sub-chapter we will explore the
importance of software product architectures specifi cally in derivative software development
using a software product line/family approach. In the second sub-chapter, we will discuss the
importance of modularity and layered architectures within software development.

5.2.1 Software Architecture in Analytical Applications

According to Messerschmitt and Szyperski (2003), the primary role of software architecture
is to “address systemwide properties by providing an overall design framework for a family of
software systems.” We concluded earlier in Chapter 2 that we will use the defi nition product
architecture defi ned by Ulrich and Eppinger (1995). This defi nition emphasizes functional
elements which are “arranged into physical chunks and by which the chunks interact.” In a
similar manner, Messerschmitt and Szyperski (2003) explain that “architecture decomposes
system into well-identifi ed modules, describes their mutual dependences and interactions,
and specifi es the parameters that determine the architecture’s degrees of confi gurability.” The
most common defi nition of software architecture is given by Bass et al. (1998a) in following
way:

“The software architecture of a program or computing system is the structure
or structures of the system, which comprise components, the externally visible
properties of those components and the relationships among them.”

The discussion of modularity and interaction between the modules using well-defi ned
interfaces can be linked to analytical application frame architecture and its corresponding
analytical application frame components. Each of these frame components interact with each
other in a predefi ned manner via application programming interfaces. Each of these analytical
application frame components has a specifi c role in the overall analytical application frame
architecture. An example of this is the business and analytics engine, which provides an
interface to the service component layer on one hand. On the other hand, it interfaces to data
warehouse and data mart database structures with corresponding business analytics and meta
data repositories.

160

We discussed and compared different data warehouse architectural models in previous chapters
and concluded that each architectural model can be viewed from different stakeholders’
perspective. A software vendor should aim to defi ne a software architecture that has a broad
degree of confi gurability, as was discussed by Messerschmitt and Szyperski (2003). This
confi gurability refl ects back to the ability to utilize an analytical application frame in different
vertical market segments without having to modify or adjust the analytical application frame
to each market segment. Functional requirements that are specifi c to a given vertical market
segment can be implemented in an extension component layer within an analytical application
frame architecture.

Several other authors also explain the importance of software architecture (Jacobsen et al.,
1997; Shaw and Garlan, 1996; Kruchten, 1995; Royce, 1998; Bass et al., 1998b; Brown, 2000)
in software development. Stafford and Wolf (2001) explain that a system’s architecture is “the
arrangement of its components into one of more structures defi ned by the functional role
played by each component and the interaction relationships exhibited by the components.”
According to the authors, there are several different common architectures in place, from
general-purpose architectures such as client/server and pipe & fi lter to domain-specifi c
architectures, such as fl ight dynamics.

Bengtsson et al. (2000) list three main reasons why software architecture is important in
software development. First of all, software architecture sets the constraints for quality
requirements (see also Bass, 2001). Secondly, software architecture facilitates communication
between different stakeholders (see also Katzman et al., 1994) early in the development
process. Thirdly, software architecture facilitates discussion and communication between
software architects and software engineers. Kruchten (1995) also explains the importance of
different stakeholder perspectives in his landmark article “The 4+1 View Model of Software
Architecture.” According to this article, the ability to change architecture and use it in different
variations (variability) and accommodate it to different new existing and future software
requirements is largely defi ned by the robustness of the underlying software architecture. This
type of variability, enabling accommodation of future software requirements, fi ts well with
the requirements of an adaptable analytical application frame that should be built using an
architectural model that accommodates future software requirements. This type of adaptability
increases the effectiveness and effi ciency of an analytical application frame.

In a landmark article, “Architectural Mismatch: Why Reuse Is So Hard,” Garlan et al. (1995)
introduced the concept of architectural mismatch which occurs when “assumptions of the parts
about their intended environment are implicit and either do not match the actual environment
or confl ict with those of other parts.” They name several reasons for this architectural
mismatch, such as programming languages, operating platforms, or database schemas in
different combinations as a source of complexity. They identifi ed three other assumptions that

161

caused architectural mismatch: infrastructure assumptions for the components, assumptions
of what part of the software should hold the main thread of control, and assumptions about
the underlying data model. This type of mismatch is evident when an analytical application
software vendor fails to align selected analytical application frame technology sub-strategy
with selected analytical application frame architecture sub-strategy. This type of mismatch
would be a result of failed selection of underlying technology adversely impacting the defi ning
technology selection, resulting in weak market segmentation. Therefore we can argue that the
alignment between these sub-strategies will have an immediate impact on current and future
market segmentation.

5.2.2 Importance of Software Modularity and Layered Software Architecture

Several authors (Jacobsen et al., 1997; Herzum and Sims, 2000; Bosch, 2000; Griss,
2001; Cheesman and Daniels, 2001; Latchem, 2001) describe component-based software
development using a modular and layered architecture. An advantage of a layered approach
is to hide the complexities of underlying IT infrastructures from functional developers and
therefore differentiate software development of application domain-specifi c components from
component development, what some software theorists call horizontal component application
development. The latter components are typically close to the hardware and operating system
level and deal with IT infrastructure specifi c issues. Each component layer or tier is shielded
from lower levels using appropriate application programming interfaces that can be called by
higher-level components for the functionality that is needed to be able to perform a function.
Jacobsen et al. (1997) depict an example of layered software architecture. This architectural
model is divided into system specifi c components, including middleware components and
business-specifi c components that are the basis for applications and application systems (see
Fig. 21).

Fig. 21. Layered Software Architecture (Jacobsen et al., 1997).

162

This layered architectural model resembles closely the layered model in Chapter 3 (Figure 11),
where the data layer is separated from the business logic and the presentation layer. The only
difference between these models is that the architectural model in Figure 11 is specifi cally
geared to analytical application development, while the architectural model in Figure 21 is
more or less a generic description of a layered software architectural model. Sharp (2000)
concluded that using a layered architectural model and medium-grained architecture enabled
the case study company (The Boeing Company) to achieve “the original goals of encapsulating
change and maximizing reuse.” Sharp (ibid) found out that the layered architectural model
enable the case study company to create an application that was more independent of the
underlying hardware and operating system environment.

Cheesman and Daniels (2001) view a system product as the two lowest level layers (Business
Services and System Services). Adding a user interface (UI) will form an application that end
users can access. The importance of separating the user interface from system logic is obvious,
as different user interfaces may be connected to the same system services. According to the
authors, a component architecture is “a set of application level software components, their
structural relationships, and their behavioural relationships.” In a similar manner to Jacobsen
et al. (1997), Williams (2001) has defi ned components into three different categories, namely
GUI components, service components, and domain components. If we relate this layering
or categorization to our analytical application frame architecture, we can identify similar
layers of functionality in service component layer within our analytical application frame
architecture sub-strategy. These layers are separated by effective application programming
interfaces that enable the software development vendor to replace old software components
with new components whenever this is required.

In a similar manner, Bosch (2000) concludes that the layered architectural style “decomposes a
system into a set of horizontal layers where each layer provides an additional level of abstraction
over its lower layers and provides an interface for using the abstraction it represents to a
higher-level layer.” Bosch (ibid) also discusses different layered architectural models, where
some models allow each layer to call only its immediate subordinate layer, while in some
cases a layer can invoke calls to any subordinate layer, which obviously increases the coupling
between the layers. According to Bosch (ibid), the process of defi ning a layered architecture
includes several steps, such as identifi cation of a number of abstraction levels, representing
them as layers, then assigning components to these layers, and possibly “re-modularization
of components that contain functionality belonging on different levels.” This latter step is very
demanding for software vendors, as some of the required functionality must exist in different
architectural layers. Therefore, some of this functionality has to be duplicated on several layers
to be able to fulfi l the end user organization requirements of the software functionality. A good
example of this is business and analytics engine and meta data management functionality

163

within a hub-and-spoke architecture, where spokes will perform independent calculations
and the hub exists in its own in a highly distributed environment.

5.2.3 Software Architectures in Software Product Lines

Software architectures have a specifi c role within software product line development. This
is discussed by several authors (Bosch and Bengtsson, 2001; Bass et al, 1997; Macala et al.,
1996). Bosch and Bengtsson (2001) emphasize the importance of software architecture within
product lines to provide a means of identifying commonalities between different software
products and building a product line architecture to support maximal reuse of software assets
(Bosch, 1999b). Selection of a software architecture will impact the success of reuse across
products within a product line. Several studies have been reported of product line architectures
(Bass et al, 1997; Macala et al., 1996; Dikel et al., 1997). According to Bosch (2000), software
architecture defi nes the shared components in a software product line. Batory et al. (2002)
conclude that product-line architectures are “designs for families of related applications;
application construction is accomplished by composing reusable components.”

According to Bosch (2000), a product line architecture describes the common architecture
for a set of related products. This type of architecture development must take into account
variability and differences between various products in the product line. Wijnstra (2002)
differentiates between product family architecture and platform architecture, where the latter
architecture “is used to build the reusable assets within a platform” while the former “is the
shared architecture with which the family members must comply.” Jacobsen et al. (1997)
defi ne this type of architecture and software development as application family engineering.
Bosch (2000) divides product line architecture design in six separate steps: business case
analysis, scoping, feature and product planning, product line architectural design, component
requirement specifi cation, and verifi cation. According to the author (ibid), the selected product
line architecture is in some cases used across all different products, while in some cases
separate products have their own component implementation. According to the experience
of Bosch (ibid), products within a product line typically use the same archetypes, with minor
product specifi c modifi cations. In a similar way, Clements and Northrop (2002) conclude
that there is an architecture for the product line as a whole, but also for each and every
individual product. According to the authors, individual product architecture is derived from
product line architecture by “exercising built-in variation mechanisms to achieve instances”
(ibid). The authors also refer to unknown hardware or other performance-affecting factors at
the time of designing the product line architecture. As software organizations do not know
future technological requirements, some of the architectural decisions that are made early in
development could lead to problems in future derivative product development.

164

Software architecture with well-composed component distribution across different architectural
layers is extremely important for a software vendor, as maintainability, performance, reliability,
safety, and security could otherwise be compromised. Specifi cally, if software vendors have
to implement new functionality into the software, a poorly designed layered architectural
model could impact the maintenance of the system, as one layer will impact the other. With
poor interface management, several layers and dependent components must be changed
due to these new functional amendments. The less a software vendor has to change the
existing software component structure, the better the software architecture is. Therefore, the
software architecture is the core and most important factor in any software development due
to the dependences on different elements such as the underlying IT infrastructure described
in Chapter 4.

The importance of the software product line architecture within analytical application software
solutions impacts mainly how well the analytical application frame architecture has been
defi ned to accommodate different vertical market segments. Each variation technique that an
analytical application software vendor can utilize in derivative software development refl ects
back to the adaptability of the software architecture that has been defi ned for the analytical
application software solution. According to Clements and Northrop (2002), software product
line architecture provides the foundation for a software product architecture that is derived
from common software assets. In a similar vein, an analytical application software vendor
should treat the domain-specifi c architectural model as the foundation for derivative products
that accommodate a given vertical market segment.

5.3 Selection of Analytical Application Frame Technology

Chapter 4 included a description of the analytical application frame technology sub-strategy
and how this sub-strategy relates to the two remaining sub-strategies within an Analytical
Application Frame Strategy framework. We concluded that underlying technology, together
with a corresponding execution and development environment, can impact both current
and future market segmentation strategies via different alignment perspectives as identifi ed
in Chapter 4. Weak underlying technology could have an adverse impact on the strength
of the analytical application frame architecture. We concluded prior to this chapter that the
degree of confi gurability of the software architecture can be linked to the modularity of the
software system. We also concluded that the selected software development approach is part
of an analytical application frame technology sub-strategy and that the selected approach
must support derivative software development. Because of this, we concluded that software
product line development is a solid component of analytical application frame development.
Software product line engineering has aims similar to those of large-scale reuse and software
application frame development (Sääksjärvi, 2002).

165

Product line engineering is complemented with domain and application engineering.
According to several articles (Griss, 2001; Pronk, 2000; Atkinson et al., 2000; America et al.,
2000), component-based software engineering is a good complement to these other three
engineering approaches. We have also included commercial-off-the-shelf solutions, as these
can be deployed as part of the reference or domain architecture as described by Dikel et
al. (1997). This architectural layer will also have an impact on the two other layers, but the
impact will be in both directions. The execution and development environment layer includes
the component execution environment, the integrated development environment, and other
tools and methods to enable effective product line engineering. The lower architectural layer
(underlying technology: standardized infrastructure) represents technologies that a software
vendor includes within the software package/solution. These elements can be purchased
and do not require the use of domain-engineering or software development related variation
techniques. It is evident that selected underlying technologies could have an impact on all the
architectural layers listed above.

The aim of this chapter is to discuss in more detail how each technological selection within
an analytical application technology sub-strategy could impact software development of
analytical application software solutions. We will fi rst explore how the selection of underlying
technology can impact execution and development environment and what type of issues and
questions a software vendor might run into in the selection process. Secondly, we will explore
the importance of architectural style and patterns and how these could impact the development
of an analytical application solution. Thirdly, we will explore the impact of the selection of
execution and development environments, as this could become a major factor in market
segmentation if a multiplatform software development approach is selected as the foundation
for software development. Finally, we will discuss how the selected software development
approach could impact analytical application software development. This discussion includes
software product line development and development of software assets using component-
based software engineering.

5.3.1 Selection of Underlying Technology (Standardized Infrastructure)

We listed the elements belonging to underlying technology in Chapter 4: the database
management system, the operating system environment, and distributed technologies such as
DCOM and CORBA. Each of these technologies will have an impact on the domain-specifi c
architectural model, which in our case is the analytical application frame architecture defi ned
in Chapter 4. Distributed technology enables an analytical application software vendor to
implement distributed features that are also required in the hybrid data warehouse model that
we proposed in Chapter 3. This architectural model includes the characteristics of remote data
warehouse and data mart database structures. From the end user perspective, these remote
databases are viewed as if they were local via a “virtual view.” This type of architectural model

166

can be implemented using distributed technologies. Doerr and Sharp (2000) explain that object
request brokers (part of the CORBA standard) provide “a basic communication mechanism
that preserves distribution transparency (and other physical architecture dependencies), while
preserving a method-based interface between clients and servers.” If an analytical application
software vendor decides to build a fully distributed solution environment, selection of a
distributed infrastructure will become part of the selection process for the infrastructure. These
selections will also impact the execution and development environment, as they must support
development of distributed environments.

Selection of an underlying operating system and hardware environment could have a profound
impact on several other dimensions, such as the execution and development environment,
but also on the analytical application frame architecture and its adaptability. In some cases,
a software vendor could cause internal lock-in to a specifi c operating system and hardware
environment. This architectural lock-in is described by Morris and Ferguson (1993) specifi cally
from an end user organization perspective, but in this case the lock-in would be for the
software vendor, as the end user organization could in some cases move to other analytical
application software solutions that support multiplatform environments. A software vendor that
selects proprietary architectural models and/or operating system or hardware environments
could face diffi culties in future market segmentation strategies if the underlying technology
selection for some reason should fade or be replaced by new technology. In some cases,
disruptive technologies (Christensen, 1997) could change the overall IT market, making the
software offering from a software vendor obsolete. An example of a proprietary operating
system and hardware environment is described by Schleicher and Taylor (1989), highlighting
a development effort using Application System/400 (known today as OS/400 for iSeries/400
hardware). If a software vendor implements application software for this environment with
the included development tools (such as RPG), both the software vendor and the end user
organization are locked in to the application vendor and hardware environment.

Pronk (2000) concludes that the software industry used to build proprietary solutions, but
with increased market pressure and end user organizations demanding non-proprietary and
open standards solutions, software vendors have been compelled to initiate the use of COTS
components and other available commercial large-scale reuse components. Pronk (ibid)
explains that within the medical software domain, the typical hardware environment consists of
standard PC architectures, use of standard middleware technology such as DCOM for all inter-
process communication, and use of standard software packages such as database management
systems, license management, and network software. In their case study, Pronk (ibid) selected
COM as a middleware architecture. According to Pronk, “all available interfaces between
units in the platform and between the platform and its plug-ins are exported in IDL (Interface
Defi nition Language).” All of the communications between components are based on standard

167

interfaces, and no classes or major structures are exposed over component boundaries. The
experiences from this platform development, according to Pronk, have demonstrated that “a
dedicated monolithic platform incorporating a lot of application functionality can be well
used to obtain a high level of reuse for a product line with very similar products.”

Morisawa (2000) explains the diffi culties of having different architectural confi gurations that
have to be tested for software applications. Morisawa (ibid) includes discussion of the diffi culties
in writing solutions in distributed computing environments, as “several architectural questions
arise, like where computing resources are distributed, and how the communication among
computing resources are implemented.” To overcome some of these problems, Morisawa
(ibid) introduces a distributed computing model that “classifi es products lines for distributed
processing systems into seven categories based on the location of data storage and the style
of processing between client and server.” This example highlights our prior discussion of the
complexities of highly distributed environments. When these IT infrastructure selections are
combined with domain-specifi c architectural models such as the federated data warehouse
model, the analytical application software vendor will have several challenges to overcome.

Doerr and Sharp (2000) illustrate an architectural model within the avionics software domain
where the aim is to shield the underlying infrastructure environment from the application
software layer. Doerr and Sharp (ibid) conclude in their case study report that “the success
of an avionics product line application rests in large part of the developer’s ability to remove
platform-specifi c hardware dependencies and inter-component dependences, as both of
these factors induce variability.” In this case, Doerr and Sharp do not refer to platforms as
defi ned by other product line defi nitions (Jaaksi et al., 1999; Pronk, 2000; America et al.,
2000; Bosch, 2002), but to hardware platforms and how to shield the applications from the
underlying hardware and operating system environment. Bosch (2002) also concludes that
standardized infrastructure does not include any domain-specifi c functionality and does not
therefore require variability management or domain engineering.

Where the database management system is the foundation for an analytical application solution,
the selection of this technology could have an impact on the robustness and adaptability of
any defi ning technology element. First of all, an analytical application software vendor and
its development organization rely on the functionality of the database management system
and its application programming interfaces. Any weakness in the underlying technology could
translate into a weak analytical application frame architecture. This could have a snowball
impact on any alignment perspective portrayed in Chapter 4. Therefore, the competitiveness
of defi ning technology for an analytical application software vendor can be measured by how
well the fi t between the analytical application frame technology sub-strategy and the analytical
application frame architecture sub-strategy is implemented (Technological Responsiveness).
In a similar manner, weak underlying technology will have an impact on “Technological

168

Adaptation,” which is the relationship between analytical application frame technology sub-
strategy and analytical application frame leverage sub-strategy.

An analytical application software solution is dependent on the performance of the database
management system: the ETL engine and its performance is bound to the performance of the
database management system. The completeness of application programming interfaces for a
database management system is dependent on the implementation of the database management
system. Unfortunately there are differences between different database management systems
which prevents and analytical application software vendor from having one software release
that would implement all these different application programming interfaces.

In summary, selection of underlying technology can impact the development of an analytical
application software solution from several different fronts. Selection of a weak and proprietary
database management system and operating system and hardware environment could cause
considerable harm to a software vendor in the long term both in terms of increased software
maintenance and also in weakened market segmentation possibilities.

5.3.2 Architectural Styles and Patterns

Architectural styles are categorized by the Software Engineering Institute into fi ve different
categories; the independent components family, the data fl ow family, the data-centered
family, the virtual machines family, and the call and return family. According to Clements and
Northrop (2002), architectures are seldom built from scratch and, therefore architectural styles
“represent a current approach to reusing architectural design solutions.” According to the
authors (ibid), a variation of architectural styles is design patterns that “occupy the same role
at a fi ner granularity of design.” The authors conclude that, “whereas architectures prescribe
how large-grained components (subsystems) interact with each other, patterns usually suggest
ways to implement individual (or groups of fi ner-grained) components.” Shaw (1995) compares
different architectural styles and argues that different architectural styles “lead not simply to
different designs, but to designs with signifi cantly different properties.”

Stafford and Wolf (2001) conclude that architectural styles enable stakeholders to communicate
about the high-level structure of a software system. These architectural styles also enable
software designers to utilize predefi ned patterns that describe interactions among components.
Because of this, these styles help software vendors to depict a high-level view of the component
infrastructures. These architectural styles or patterns include the needed functionality to
describe the interaction functionality but not application functionality (Bass, 2001). According
to several authors (Garlan et al, 1995; Perry and Wolf, 1992; Shaw and Clements, 1997),
architectural styles describe the components, their interaction, and possible constraints on the
interaction. These constraints could be anything from the underlying technology selection to
the corresponding execution and development environment.

169

Monroe et al. (1997) argue that “architectural styles, object-oriented design, and design
patterns all hold promise as approaches that simplify software design and reuse by capturing
and exploiting system design knowledge.” According to the authors (ibid), an architectural
style “characterizes a family of systems that are related by shared structural and semantic
properties” (Abowd et al, 1993). Mili et al. (2002) defi ne architectural styles within software
development as “classes of similarly patterned software architectures.” The authors (ibid)
conclude that an architectural style is a class of architectures that is characterized by

• Component types
• Communication patterns between the components
• Semantic constraints
• A set of connectors

An analytical application software vendor must distinguish between IT infrastructure
environments that are part of the underlying technology and the domain-specifi c architectural
model that belongs to analytical application frame architecture sub-strategy. These two will
have a direct dependency as, for example, the distributed data warehouse environment
will require specifi c distributed IT infrastructure technology that will be part of underlying
technology. Some IT infrastructure environments could prevent the software vendor from
expanding its solutions to new market segments due to weak selection of both the underlying
and the defi ning technologies.

5.3.3 Selection of an Execution and Development Environment

Selection of an execution and development environment is driven by the requirement of
whether a software organization must support several different underlying technologies, such
as operating system, database management system, and distributed technologies. The selection
of these technologies is highly dependent on the analytical application frame leverage sub-
strategy and the analytical application frame architecture sub-strategy, as discussed in Chapter
4. If the software organization decides to support a cross-platform development environment,
the choice might cause different complications, as described in the case study of Netscape
Corporation (Cusumano and Yoffi e, 1999). If the selection of the execution and development
environment is restricted to one IT infrastructure environment such as the Microsoft Windows
software, the software organization could run into other problems, for example restricting its
selection of future market segmentation strategies or analytical application frame architecture
amendments that are needed to satisfy the needs of end user organizations. According to
America et al. (2000), the following development tools are some of the standard tools that
software organizations use to support product family development:

• Word processors
• Visual modeling tools

170

• Code generators
• (Cross-) compilers, linkers, debuggers
• Confi guration management tools

Atkinson et al. (2000) assert that current development tools and technologies are not well
versed in supporting true software development of product families, as they are more geared
towards traditional staged development processes, and therefore “existing product line
approaches have been forced to concentrate on the earlier activities in the software life cycle
and thus often appear to developers to be somewhat divorced from the real business of
coding.” This statement demonstrates the dependency between the selected execution and
development environment and the selected software development approach. Atkinson et al.
(ibid) believe that future execution and development environments have to provide better
support for software product family development. The dependency of underlying technology
on both the execution and development environment and the software development approach
is discussed by Doerr and Sharp (2000). Doerr and Sharp (ibid) conclude in their case study
article (The Boeing Company) that “one essential attribute of product line architecture is that
it effectively isolate the logical, or static, aspects of the application from any product-specifi c
variations in the physical architecture, or execution environment.” This statement goes back
to the selection of the underlying technology (standardized infrastructure) and how it impacts
all other dimensions within analytical application software development.

It is also important to understand that the selected software development approach will have
an impact on how a software vendor selects its underlying technology – in the case of using
software product line engineering, it is important to have a good understanding of what is
known in the existing software product line literature in the form of case studies and other
relevant information sources. Doerr and Sharp (ibid) conclude that the aim of physical and
logical architecture is maximize reuse. Physical architecture “supports containing change by
isolating application components from hardware and COTS software volatility.” Interestingly,
this type of volatility in this case relates back to the volatility of physical hardware or even
database models. The data staging area within a federated architectural model shields volatility
from underlying operational data sources as described in Chapters 3 and 4.

In summary, software development tools supporting serious product line engineering
efforts with corresponding development methods such as Component-Oriented Platform
Architecting Method Family for Product Family Engineering (CoPAM) (America et al., 2000)
and KobrA (Atkinson et al., 2000) are still limited and bound to more traditional development
approaches. If a software vendor wants to be serious about supporting true software product
line engineering with corresponding domain and application engineering (with component-
based development), the selected tools must include all of the life-cycle management areas in
the development of common software assets within an analytical application frame.

171

5.3.4 Selection of a Software Development Approach

The aim of this chapter is to discuss software development approaches that a software vendor can
utilize when building analytical application software solutions using a software related product
platform approach. We will initiate our discussion of software product line engineering and how
it can be linked to derivative software development using a product line/family approach. This
discussion is then expanded to show how the literature explains software asset development with
different granularity levels in the software assets as the foundation for an analytical application
frame. Product line engineering expects domain and application engineering to be part of
product line engineering, and these engineering methodologies are used to build the business
case for a software organization to utilize derivative software product development. Each
software organization needs a practical implementation approach for common software assets
within an analytical application frame. We argue that component-based software engineering
is a solid supporting engineering approach to produce line development.

5.3.4.1 Software product line engineering

The manufacturing of hardware products has several advantages compared with development
of software, such as economies of scale. The experience and knowledge of hardware product
lines have provided necessary cost reductions (Svahnberg and Bengtsson, 2000). The same
approach is gaining interest within software development. According to Yacoub et al. (2000),
product line engineering “is a specialized form of software reuse that promises productivity,
quality, and shorter time-to-market in developing similar products in the same domain.”
The underlying premise of this approach is to provide to software developers – in our case
analytical application software vendors – the ability to build a common analytical application
frame with corresponding software assets that can be used across different products in a
product family.

Wijnstra (2002) concludes that introducing a new product development approach such
as product family development – a platform of reusable components – is not enough, as
it will impact “a company’s business, processes and organization.” Wijnstra (ibid) gives an
example of this by explaining how the marketing department must work together with product
management and project management of the software solution. This type of conclusion
refl ects back to our Analytical Application Frame Strategy framework, where each alignment
perspective must be in balance. If there is imbalance between product management and
marketing management, the fi t between the analytical application frame architecture sub-
strategy and the analytical application frame leverage sub-strategy could become a problem.
Therefore, the fi t’s “Functional Flexibility” could potentially create a problem for the software
vendor. Wijnstra (ibid) defi ne the term product family as “a set of related products that are
realized on the basis of a shared architecture, using assets from a platform.”

172

Wijnstra (ibid) categorizes product line scope as being focused on external markets, while
family and platform scopes should be based both on internal and external considerations.
Another interesting question that the author (ibid) raises is whether all of the assets (including
product-specifi c ones) within a platform must be included or only the ones that have been used
by several family members. This kind of discussion is relevant in the case of implementation
and planning of a software application frame, as some of the needed functionality might be
part of the extension component layer and some part of the software application frame itself.
Wijnstra even suggests that a product family could be based on several platforms that are built
on top of each other. This type of discussion needs to refl ect back to a software application
frame and its four principles (Sääksjärvi, 2002), defi ned in Chapter 2. We argue that the notion
of having several platforms to support derivative products is against the four principles of
software application frames. If additional platforms are needed (such as in the form of software
application frame extension), this extension should not have an impact on existing modules in
the originating software application frame. Therefore, dependencies between two platforms
are not allowed according to the original defi nitions of a software application frame.

Bosch (2002) introduces different maturity levels for product lines and concludes that product
line development in an organization “evolves through a number of maturity levels.” These
maturity levels include standardized infrastructure, platform, software product line, confi gurable
product base, program of product lines, and product populations (see Fig. 22).

Fig. 22. Maturity Levels for Software Product Lines (Bosch, 2002).

173

According to Bosch (ibid), a platform precedes a software product line and a standardized
infrastructure. It is typically created by a dedicated domain engineering team. Bosch explains
that a platform includes a standardized infrastructure. It also “captures all functionality that
is common to all products or applications.” The common functionality that is not part of the
infrastructure must be implemented by the software organization itself. According to Bosch
(ibid), the fi rst step in defi ning commonality in software products within a product line is to
standardize the infrastructure for the products under development. This corresponds well with
the selection of an underlying technology within an analytical application frame technology
sub-strategy. A standardized infrastructure includes elements such as the operation system
environment, the database management system, and other infrastructure related components
that a software vendor should not implement internally (underlying technology). According
to Bosch, the infrastructure layer will not include domain engineering efforts. Software
organizations do not include variability management, as it usually does not include any
domain-specifi c functionality. The platform itself requires some level of domain engineering
and variability management even if most of the common functionality for all of the derivative
products is captured in the platform itself. According to Bosch, most of the engineering in
platform development is more or less focused on application engineering efforts.

In summary, the platform layer includes all the standard infrastructures from the previous
level plus all functionality that is common to all products and applications. The following
level represents the actual software product line that exploits all the communality from the
platform, where “consequent development may be undertaken to increase the amount of
functionality in the platform to the level where functionality common to several but not all
products becomes part of the shared artefacts.” This notion relates to our discussion of the
analytical application frame and whether some of the functionality should be implemented
into the analytical application frame that is common to all derivative products or whether it
should be part of extended functionality in our analytical application frame architecture. We
will have further discussion about this subject in the section on analytical application solution
variation techniques later in this chapter.

Pronk (2000) discusses how the software and academic communities have aimed to achieve
higher levels of productivity in software development. Considerable research has been
done into organizational issues (Capabilities Maturity Model), development methodologies
(object-oriented methodologies, component-based development methodologies), technology
(architecture, reuse), but none of these alone has been the silver bullet (Brooks, 1987) for
development. According to Pronk (ibid), product line architecture will help organizations to
reuse “an entire class of products with only minimal variations to support the diversity of
individual product family members.” His work introduces a model in the medical imaging
domain, where product line architecture is based on a platform that can be varied only

174

through well-defi ned interfaces. Pronk concludes that a platform consists of “documentation,
object models, support libraries, templates and examples and a large set of binaries.” Pronk
(ibid) bases his product line development approach on Application Family Engineering (AFE),
defi ned and introduced by Jacobsen et al. (1997). According to Pronk (2000), the maturity of
the given domain regulates the variations that are needed in the platform.

A common approach in platform development is to build the platform to be adaptable to
possible changes in market conditions, whereby the software vendor can make changes in
its segmentation strategy. The challenge for any software vendor is to enable the software
application frame to be amended with future feature requirements – requirements that are not
known at the time of planning the initial software application frame. If the chosen software
application domain is mature and the requirements of selected customer segments are well
known, most of the functionality can be built into the software application frame, and market
segment specifi c features can be built into the software application frame extensions. Pronk
(ibid) concludes that about 80 percent of the required functionality in the case study organization
has been derived from the platform, which can be regarded as aggressive reuse. Pronk also
explains the complexities of underlying technology (IT infrastructure) in the implementation
of the product family due to maintenance of different technological environments and
combinations of technologies. This discussion is relevant also for the analytical application
software domain, as was seen in Chapter 4 when discussing and exploring selection of an
underlying technology with its corresponding execution and development environment.

5.3.4.2 Software assets within a software application frame and component
 granularity

Recent software product line literature (Jaaksi et al., 1999; Pronk, 2000; America et al, 2000;
Wijnstra, 2002, Brown et al., 2002, Bosch, 2002) has defi ned the concept of a platform as the
foundation for software asset development. Bass et al. (1999) explain that several organizations
refer to the core asset base as the platform, and that therefore “core software assets” and
“platform” might be used interchangeably in some software organizations. Bass et al. (ibid)
also conclude that the product line approach involves strategic, large-grain reuse of software
assets as opposed to developing products from scratch. Clements and Northrop (2002) include
in the core assets the architecture, reusable software components, requirements statements,
documentation and specifi cations, performance model, schedules, budgets, and test plans
and cases. They emphasize that the architecture is one of the key core assets in software
development. Several organizations refer to asset development as equivalent to product
platform development.

Clements and Northrop (1999) defi ne how different organizations obtain software. Any
organization has three different ways to obtain software: by developing it itself, by purchasing

175

off the shelf, and by commissioning it to a third party developer. According to the Clements
and Northrop (ibid), core asset development has been traditionally called domain engineering.
They argue that core asset development or acquisition and product development using core
assets can be run in parallel. This basically means that organizations should have both base
assets development and product development running at the same time. They also emphasize
that development products might sometimes turn into core generic assets for further reuse.
The value of core assets is realized when new products are derived from them. The authors
also point out that core assets should be made generic to enable them to be the basis for
several different products.

According to Bosch and Högström (2000) a software product line “exploits the commonalities
within a family of products by developing and maintaining a set of core assets, i.e. a product
line architecture and a set of components implementing the architecture.” Another defi nition of
software assets is given by Withey (1996), where a software asset is “a description of a partial
solution (such as a component of a design document) or knowledge (such as a requirements
database or test procedures) that engineers use to build or modify software products.” Jaaksi et
al. (1999) defi nes reusable assets as a “collection of reusable components grouped into service
blocks, design guidelines, and policies for using them.” According to Svahnberg and Bengtsson
(2000) the concepts within a product line domain are called artifacts, and these artifacts can be
“designed, modeled, analyzed, and instantiated into products of the product line or family.”

Among the decisions to be made when deciding on a product line is to set the scope that
is economically feasible. According to Clements and Northrop (2002), if the scope is set
too large, the associated core assets will be hopelessly too generic and if the scope is too
narrow, the market demand for the product suite will be too narrow. According to the authors
(ibid), “if the scope bounds the wrong products, the product line will not fi nd a market.” This
discussion relates back to different alignment perspectives within the Analytical Application
Frame Strategy framework. If the analytical application software vendor selects too narrow a
market segmentation or an underlying technology that is not widely supported by the general
IT market, the software vendor could run into a situation where the solution offering is not
paying off for the software vendor.

The question of granularity levels for software assets used in software product line development
is addressed by Bosch (1999b). According to Bosch (ibid), some organizations have “moved
towards product-line architecture based software development, especially through the use of
object-oriented frameworks as reusable assets.” These object-oriented frameworks provide
larger reusable entities. According to Bosch and Högström (2000), these entities are larger than
100 Thousand (kilo-) Lines of code (KLOC). According to Batory et al. (2000), frameworks
often arise in product line implementations. Batory et al. (ibid) argue that frameworks are
“appropriate for reusing software parts and specializing them in multiple ways for distinct

176

applications.” According to Johnson and Foote (1988), a framework is “a collection of abstract
classes that encapsulate common algorithms of a family of applications.” Sparks et al. (1996)
provide tips for buying, building, and using object-oriented frameworks and explain the
difference between traditional reuse of library-based artifacts versus reuse of frameworks.
Pronk (2000) concludes that a platform may be considered a component framework as
defi ned by Szyperski (1997). Variation of the platform can be achieve in two ways, both by
confi guration and via well-defi ned interfaces (Pronk, ibid).

According to Sharp (2000), patterns are used to capture industry best practices to answer the
frequently asked question “why software was designed a certain way.” Sharp (ibid) concludes
that Gamma et al. (1995) divide their design patterns into three main categories:

• Creational: patterns used in fl exibly constructing objects
• Structural: patterns outlining class or object composition
• Behavioural: patterns describing how objects interact and distribute responsibility

One known design pattern is the Model-View-Controller (MVC) pattern, originally developed
in the Smalltalk community for development of graphical user interface systems. The main
idea behind the MVC architectural pattern is “the separation of the domain model from the
user interface that presents domain information to users and allows them to manipulate it”
(Sharp, ibid).

Yacoub et al. (2000) argues that product line engineering with commercial-off-the-shelf (COTS)
based development has a great deal of potential in practice, but that “acquiring commercial
components for a product line carries a lot of risks.” Yacoub et al. (ibid) also concludes that
the architecture of a product line is known as reference or domain architecture (Dickel et
al., 1997) because it is “instantiated in applications that belong to the product line domain.”
Components within this domain architecture are “deployed either as in-house off-the-shelf
(OTS) components or commercial-off-the-shelf (COTS) components” (Yacoub et al., ibid). The
characteristic of a COTS component is, according to Yacoub et al., as follows:

• It is sold or licensed to the general public
• Customer have no access to the source code
• The component can only be used as a black box
• The COTS component has been built by a commercial software vendor who also
 provides maintenance and upgrades

As stated before, the risks associated with using COTS components are considerable,
specifi cally if they are included in implementation of a software application frame defi ning
technology. External risks such as the COTS software vendor going out of business or not
providing the needed support and functionality, could be a major issue for a software vendor
in future development. We argue that these types of COTS components should be carefully

177

considered and should not be part of any defi ning technology that can not be quickly replaced
by another vendor’s technology. A good example of COTS usage within the analytical
application software domain is the use of external graphics libraries. The core competence
of an analytical application software vendor is to provide analytical information to end users
via different devices (Internet browser, Windows application, etc.). These graphics libraries
provide the means to display this analytical information in different graphical formats. The
problem of using external libraries without having the source code could become a major
issue for a software vendor, as it would be tied to the performance of the external software
provider in technologies that we defi ne as defi ning technology. Therefore, the usage of COTS
or any third-party technology as part of defi ning technology should be carefully considered
and measured from different alignment perspectives.

5.3.4.3 Component-based software engineering (CBSE) with software assets

Several authors conclude that component-based software engineering (CSBE) can be used as
a basis for implementation of software product lines (Bass et al., 1998a, 1999b; Bosch, 1999b;
Bosch, 2001; Bosch and Högström, 2000; Batory et al., 2002; Clements and Northrop, 2002),
as software components enable software organizations to increase the reuse of software assets.
This will reduce the costs of software development and maintenance for software vendors
(Svahnberg and Bosch, 1999). The aim of software product line development is to build common
core software assets that can be reused across different products belonging to the same product
line. This approach is very close to large-scale reuse of software components. Existing literature
discusses different granularity levels for component-based development. This is one of the key
issues not clearly explained in existing software related product platform literature.

Atkinson et al. (2000) explains the difference between component-based software engineering
and product line engineering in following way:

“Component technologies provide the fl exible and rapid confi gurability needed
for genuine product development, while the disciplines of the product line
approach provide the methodological foundation needed for the development
and deployment of sound component-based frameworks.”

This statement portrays our selection of component-based software engineering as a key
element in building derivative software products from an analytical application frame. Griss
(2001) links product line development with component-based software engineering (CSBE) as
a means to achieve reuse on a large scale (see also Jaaksi et al., 1999; Brown, 2000). According
to Griss (ibid), there is a compelling business reason to “invest in building and managing a set
of products as a family, sharing engineering effort and reusable assets.” From the management
perspective, product line development is more strategic than development of individual
products. According to Griss (ibid), product line development becomes strategically important

178

for the executive management when the software development organization can produce
results in terms of reduced overall costs of product development, enhanced competitiveness
due to decreased time-to-market of the products, and improved product compatibility.

Pronk (2000) expresses his disbelief in the common presumption that “when defi ning a
platform for a product line architecture one simply thinks of implementing it as a number of
completely separated components that can be combined in arbitrary confi gurations by system
groups.” In a similar way, Pronk (ibid) does not believe in a model whereby a component-
creation group will build simple and generic software components without having a strong
linkage to end user application product management. According to Pronk, a new “modern
Lego approach” is needed, whereby the platform must be “a confi ned environment where all
of the customers are known and the architecture is controlled.” Pronk (ibid) concludes that this
type of platform development does not require generic components but rather more or less
dedicated building-blocks that help in building the application frame.

America et al. (2000) introduce another family of methods that enable organizations to
develop product family architecture. CoPAM is a specifi c family engineering method that
can be applied to the development of product families. America et al. (ibid) divide the overall
CoPAM processes into three main sub-processes:

• Platform engineering process: develops the platform, which consists of reusable
 components
• Product engineering process: develops products using these platform components
 and adding new components when necessary
• Family engineering process: provides feedback to platform and product engineering
 processes

America et al. (ibid) recognize that the family engineering process includes several steps that have
been identifi ed by Jacobsen et al. (1999) in their Unifi ed Software Development Process method.

Van Ommering and Bosch (2002) conclude that software organizations can build software
product lines by not using components at all, but by “using a framework with component
plug-ins, where the plug-in components implement diversity rather than commonality.” Van
Ommering and Bosch (ibid) also discuss whether they believe in the third-party development
market. The answer is very interesting, as it refl ects also the analytical application solution
marketplace. According to van Ommering and Bosch (ibid), the third-party market tends to
implement generic software components of different granularity levels. This does not help
Philips (their case study company) to implement the needed domain-specifi c functionality.
This is a common problem in the specialized software development domains that build its
own defi ning technologies requiring specifi c technology, with specialized software assets that
can not be purchased as COTS components.

179

Mili et al. (2002) emphasized several factors that are important to reusable software assets.
These criteria can be linked to both the analytical application frame technology sub-strategy
and selection of the execution and development environment. Software assets must be
programming-language independent to be useful for software organizations, and these
software assets must include effective component interfaces. It is of relevance to be able to
compose software applications from different software assets, and each component must be
properly contained, with effective application programming interfaces.

In summary, component-based software development is a valid software development
approach in software product line engineering. It has the potential to help analytical application
software vendors to achieve large-scale reuse of common software assets in the form of an
analytical application frame. Component-based software engineering emphasizes modularity
and effective interface management, which enables analytical application software vendors
to create a software application frame that is adaptable for changes and can be used in
future market segmentation. If the modularity and interface management is poorly defi ned
and implemented, the software application frame could become useless from the product
platform effectiveness and effi ciency perspective.

5.4 Leverage of the Analytical Application Frame

As discussed earlier in this chapter, software product line development is one way of carrying
out derivative product development for common software assets. Based on our research, it is
one of the strongest components that could be linked to development of software products
using a software related product platform approach. Existing software related product platform
literature does not give practical advice about the methods of implementing variation in
software development and how product line and product families can be implemented from
a common set of software assets.

In the next three sub-chapters, we will explain the three variation techniques available for
an analytical application software vendor. The fi rst variation technique is based on solution
variation within the analytical application frame architecture. The second variation technique is
based on technical variation that can be found in software engineering related literature when
building software product lines or product families. The third and fi nal variation technique
is based on market segmentation, without changing the product itself. This type of variation
could be most effective for a software vendor, as the same software package is delivered
to end user organizations without any modifi cations or customizations. We will initiate our
discussion by exploring what type of changes are taking place within the analytical application
software market and what types of market segmentation issues an analytical application
software vendor could face.

180

5.4.1 The Software Business Model and Market Segmentation Approach

A change from customized analytical application development towards packaged solutions is
discussed in several articles. The main theme in these is whether end user organizations should
buy or build these types of solutions (Morris, 1998; Gleason, 1998; White, 1999; Surgan, 2000).
We did not fi nd any literature discussing software product line or product platform development
of analytical applications and what types of market segmentation and implementation
techniques can be applied when building analytical application software solutions.

This new prepackaged analytical solution development is very different from data warehouse
implementation of early 1990s, where data warehouse vendors were still doing customized
development for end user organizations. According to Surgan (2000), end user organizations
are looking for new ways of building analytical applications. One way of doing this is to
purchase and use prepackaged analytical applications having built-in vertical or horizontal
functionality that the analytical application software solution vendors have accumulated
into their solution. This type of solution development enables rapid and cost effective
implementation for end user organizations, but it challenges analytical solution vendors to build
robust analytical application architectures that enable effective variation to different market
segments or price/performance tiers. Cusumano (2004) divides vertical market segments into
several different categories. First of all, a software solution could be based on a given industry,
whereby the solution is tailored to a given domain such as heavy-equipment rental markets
or the distribution industry. The second category represents a “technical specialty,” such as
computer-aided design programs. If these programs are tailored to a given vertical market,
the category is defi ned as a “technical specialty for a particular industry.” Finally, a software
solution could address a “platform-specifi c market,” which represents software solutions that
run only on a given operating system or hardware environment or a combination of these.

From the software vendor’s perspective, the aim of an analytical application vendor should
be to have everything integrated, packaged, and easily implemented and delivered to any
end user organization in the selected market segment. From the Analytical Application Frame
Strategy perspective, an effective analytical application frame should satisfy the following
requirements:

• A software application frame as such is not a deliverable product, but must be
 packaged with other components that conform to the end product: the analytical
 software solution itself.
• The software application frame should enable analytical application software vendors
 to utilize the core software application frame when creating additional frame
 extensions for different vertical market segments.
• A software application frame must be adaptable to be able to support current and

181

 future market segmentations and architectural models without having to rewrite the
 core software application frame.

Each of these three requirements can be analyzed by different criteria. These criteria will show
whether an analytical application is suitable for analytical application frame development and
what kind of restrictions/requirements are needed in the software application frame itself.

America et al. (2000) conclude in their review of the Component-oriented Platform Architecting
Method (CoPAM) that any development method should achieve the best possible fi t between
the following interrelated aspects:

• Business: requirements of the market about the products and how the company
 intends to respond to it.
• Organization: refers to the structure of the developing organization and their core
 competence.
• Process: portrays the different development steps and activities and their mutual
 relationships.
• Architecture: refers to the structure of the products themselves.

This discussion resembles the alignment perspective and fi t discussion that we explored in
Chapter 4. Business requirements refl ect the market segmentation and business model that the
software vendor is going to address. Organization, process, and architecture relate one way
or the other to both the analytical application frame architecture and analytical application
technology within an Analytical Application Frame Strategy framework.

5.4.2 Variation Using an Analytical Application Frame Architecture Sub-Strategy

Meyer and Zack (1996) introduced a process platform for information products to provide
content variation using a database repository. This refl ects closely the variation techniques
which an analytical application software vendor must employ when using a business analytics
repository as the foundation. The parallels to the Meyer and Zack information products and
analytical application software development are similar. The biggest difference is that in the
case of analytical application software, the end user organization must have the ability to
modify and extend the solution themselves, while the idea behind information products was
more or less that the solution vendor provided the whole solution, and that no customization
was needed in the end user organization.

We suggested in Chapter 4 that other analytical frame components and market segment
specifi c variations should be implemented and stored in the meta data and business analytics
repository. This variation is implemented in the form of predefi ned or customized extraction
rules for different operational data sources, customized database models with corresponding
business processes and business rules and measures, and a selection of predefi ned reports
that the solution will provide “out-of-the-box.” The idea behind these solutions is to provide

182

80 percent of the functionality that is required in the selected market segment. The remaining
20 percent the end user organization either ignores or satisfi es using the repositories to add
the required features. A profound requirement from the analytical application frame is the
ability to maintain several versions of the solution and parallel development of additional
rules without breaking the solution when the solution vendor updates the solution with a
new release. This type of maintenance requires strict rules from both end user organizations
and software vendors. The included documentation of the solution must provide rules and
variation points that are available for extending the contents of the solution.

As each vertical market solution will have a different data model due to specifi c needs,
the installation of the solution must generate the required physical data models, business
processes, and measurements for the selected domain. The difference between data models
in different market segments could be due to different analysis requirements (Imhoff, 2000;
Russell, 2000), the depth of dimensions and hierarchies, or myriad other reasons that require
a customized vertical data model. A further breakdown into physical implementation of the
database data model in an analytical application implies that the database model must be
very fl exible when changes are required in the common business area model that is stored
in the business analytics repository. Some of these changes can be accommodated using a
logical representation of the database model. New changes into the model would be applied
in the business analytics repository, automatically generating a new physical representation of
the database model. Burwen (2000) has described this approach well, where the physical and
logical models are generated according to the specifi ed business process requirement.

Another challenge for a software vendor is to identify functionality for the analytical application
frame that will be common for any vertical market segment with analytical application defi ning
technology that will enable collection of different vertical market solutions without having to
adjust functionality to any specifi c market segment. If this kind of adjustment must be done, it
will be implemented as extended functionality as defi ned in the analytical application frame
architecture in Chapter 4.

To summarize, the elements that are part of a vertical solution that will be implemented to a
meta data and business analytics repository is as follows:

• Customized extraction, transformation, and load (ETL) routines for selected source
 applications (such as Enterprise Resource Planning applications, etc.)
• Customized data models for each selected vertical domain (both the physical and
 the logical data model)
• Business processes and calculation rules for the selected vertical domain
• Key Performance Indicator (KPI) and Critical Success Factor (CPI) management for
 each vertical domain

183

• Customized reports, charts, dashboards, and templates for each selected vertical
 domain.

It is also evident that predefi ned integration logic for operational data sources will require
customization for each end user organization, as every organization, even in the same vertical
domain, could have different business rules and operational applications. These customizations
are controlled via a centralized meta data and business analytics repository as portrayed in an
analytical application frame architecture. Adaptations to predefi ned source and target interface
mappings (ETL rules) are also tracked within a meta data repository. This enables solution
vendors to perform regular updates of the solution without breaking existing changes that
might have been implemented by the end user organization. A centralized business analytics
and meta data repository enables software solution vendors and end user organizations to use
these repositories in the creation of new additional subject-specifi c data marts by “inheriting”
business metrics from the centralized repository with corresponding business processes. This
ensures convergent metrics across all data marts within the end user organization. This is
part of a bottom-up data mart implementation approach with an enterprise data warehouse
implementation approach. The role of the data staging area is to minimize some of the
volatility between the operational application and the analytical application. This architectural
solution will help software vendors to concentrate more on the analytical application solution
development and let other organizations take care of the data integration issues. Therefore, the
data staging area can be viewed as the interface between the analytical application solution
vendor and the outside world with the operational data sources.

Analytical application software solutions typically provide a set of reports or charts that
include a set of specifi c analytic measurement for the selected market segment. These reports
can also be attached to different data models by using a logical abstraction between the
physical and logical representations of the database model with corresponding business
processes and measurements. Each measurement should be defi ned and described by an end
user organization. These measures can then be used across any data mart implementation
throughout the organization. A common dilemma with independent data marts lacking
conformed dimensions and measurements is that each data mart becomes a silo of information
and does not relate to the enterprise view of measurements defi ned by the corporate. This is part
of the reason why a federated data warehouse model (and our hybrid data warehouse model
defi ned in Chapter 3) is suitable for enterprise analytical application business requirements, as
it includes a centralized business analytics and meta data repository.

Finally, an analytical application software vendor can provide solution variation by using a
specifi c license key that will either enable or disable the breadth of the solution that is installed
in the end user organization environment. Jaring and Bosch (2002) conclude that variability
can be identifi ed before and after product instantiation. Variation points can be identifi ed and

184

introduced by design time and bound at runtime. License keys are typically used and built
by Dynamic Linked Libraries (DLLs), whereby solution functionality is activated at runtime
based on the validation of the license key. This type of solution is common amongst analytical
application solution vendors. It also makes software deliveries easier, as the software solution is
delivered and installed in end user environment and the license key defi nes what functionality
the customer is allowed to utilize. From an analytical application software perspective, the
software vendor has two alternative ways of using this type of license key management. The
fi rst alternative is to install all meta data and business analytics defi nitions with the installation
of the software, but restrict the use of some parts of the solution by using a software license
key. The other way of implementing variation is to provide a menu at the time of installation
which will install only the parts of the solution that the software license key recognizes. In
either alternative, the software vendor must maintain one and only software solution. Software
license key management will deliver the needed variation mechanisms.

5.4.3 Variation Using an Analytical Application Frame Technology Sub-Strategy

A key aim in our research into the variability of software is to identify how existing software
product line literature explains software variability with respect to different viewpoints that
this type of variation can have on software product line development. Variation in analytical
application software must be analyzed from two different perspectives. The fi rst and more
common variation technique is to defi ne variation within the analytical solution itself, using
business analytics and the meta data repository as the variation point. The second variation
technique is to use software related variation techniques that have been defi ned in component-
based software engineering and software product line engineering literature. Bosch (2002)
explains that organizations should adopt software product line engineering based on maturity
levels that he defi nes in his work. These maturity levels were discussed earlier in this chapter.
According to Bosch (2002), “a software organization typically evolves through a number of
maturity levels.” This also translates to the conclusion whereby some organization are better
off concentrating on domain engineering if the product development organization is well
versed in the software domain and less well versed in application engineering. Bosch also
concludes that volatile domains could be problematic, even for experienced and mature
software organizations. We argue that this has been the case within analytical application
software development for years, as the software domain has not had a broad development
community producing COTS components. This has also caused implementation of proprietary
solutions. End user organizations are requesting standardized interfaces so as to be able to
combine “best-of-breed” functional software components from different vendors.

Software adaptability, specifi cally with respect to domain-specifi c software architecture, is
of importance when deploying variation to enable effective derivative software and solution
development. The variability must be based on market analysis that determines the product

185

line scope and the required software assets that are needed to build the artifacts to support
the selected market segments. Thiel and Hein (2002) explain the importance of variability
within automotive systems. That variability must be systematically considered throughout the
development process. These types of systems “have typically thousands of requirements, but
some of them are extremely important” and some are based on real-time systems (ibid).
According to Thiel and Hein (ibid), the automotive industry has initiated the development of
multipurpose platforms that “replace mechanical and electronic components with intelligent
software solutions.” According to the authors, “variability affects all product line artifacts, from
requirements to code.”

Leveraging the analytical application frame does not necessary have to be implemented
via solution variation as portrayed in the prior chapter. The software vendor can also utilize
technical variation using strong technology within a software application frame to derive
additional new products. An example of this occurs when a software vendor uses the same
software application frame to derive user interfaces for different devices such as traditional
Windows, an Internet browser, or even a PDA with a tiny screen. This derivative development
requires a strong software application frame for all common elements whereby the variation
points are implemented to fulfi l different user interface technologies and their requirements.
This kind of derivative software development emphasizes the use of technology in derivative
software development.

According to Griss (2000b), a product line is “a set of products that share a common set of
requirements, but also exhibit signifi cant variability in requirements.” According to software
engineering literature, implementation of variation can be based on two granularity levels,
one that is implemented on the actual components and the other that is implemented in the
software product lines. Griss (2000a) proposes domain analysis (Arango, 1994; Griss, 1996;
Griss et al., 1998) as the technique to extract features from existing or planned members of a
product line. According to Griss (2001), domain analysis affects “the design and implementation
of the product line architecture and reusable components, infrastructure, and tools that will
be used to construct the product line.” Domain analysis will be used to identify the needs
for variability within the components in a product line. This variability can be implemented
by “using a combination of inheritance and templates or a preprocessor or generator.” Griss
emphasizes the role of the software architect and required skills in the selected domain to be
able to identify the commonalities and differences that need to be defi ned and implemented
in software components. Griss (2000a) defi nes the complexities when facing “crosscutting”
features, where software designers have diffi culties in separating concerns into separate
components. D’Souza and Wills (1999) emphasize that software developers typically rely on
an underlying set of infrastructure services. According to the authors, the role of these services
is not to customize the behavior of the system, but to “simply provide an implementation of a

186

common virtual machine for use by all components.” This type of infrastructure support is part
of underlying technology within the analytical application technology sub-strategy.

Bosch (2000) discusses of the applicability of object-oriented frameworks as components
in a product-line architecture seen specifi cally from the software product line variation
perspective. Bosch argues that object-oriented frameworks are a “much more accurate model
for reusable components in a product line than the traditional component model.” The author
identifi ed four different framework component models that can be used within software
product line development, namely the product-specifi c extension model, the standard-specifi c
extension model, the fi ne-grained extension model, and the generator-based model. Software
frameworks can be found in different types of vertical domains such as user interfaces, process
control systems within a specifi c application domain, and fi nancial systems. Niemelä (1999)
introduces a component framework of a distributed control system with two dimensions:
tiers and elements. According the author (ibid), the tiers of the component framework “defi ne
the subsystems in the fi rst tier, the integration platform in the second tier, and the product
family in the third tier.” According to the author, these tiers explain the domain, technology,
and business viewpoints of the framework. Part of the work of Niemelä (ibid) explores the
mapping of variability to the architecture and components and discusses the adaptability of a
component framework.

According to Svahnberg et al. (2001) software variability is “the ability to change or
customize a system.” According to the authors, these types of changes can be anticipated
by constructing a system architecture that will provide this type of fl exibility. Jacobsen et
al. (1997) include discussion of several different variation techniques available for software
development organizations in product line software development: inheritance, extensions,
parameterization, confi guration, and generation. According to Svahnberg and Bosch (2000),
inheritance can be used if a method needs to be implemented differently in a product within
a product line. The second variability approach is to defi ne extensions and extension points
to the component in question. This will result in different behavior for the component. The
third approach is parameterization, achieved by having a placeholder and defi ned by build
time. Both macros and templates are typically used in parameterization. The remaining three
variability mechanisms are confi guration and module interconnection languages, generation
using high-level language, and fi nally compile-time selection of different implementations.
All of these different variation mechanisms can be used to derive and implement different
functionality by using common software assets. The result is a new product with new features
within a product line. Wijnstra (2000) discusses using service component frameworks in
product variation within medical imaging product line software. Wijnstra (ibid) also explains
that a framework is a “skeleton of an application that can be customized to yield a product.”

187

America et al. (2000) distinguish between platform time, product time, and installation time
development decisions. When a platform time decision is made, a collection of plug-in
components is built (software assets) and these components defi ne the platform. When the
development team makes a selection of which components will be used in a product, a
product time decision is made. Finally, America et al. (ibid) conclude that the fi nal product
can be confi gured at installation time by using parameter lists and defi ning actual values for
these. This approach enables interesting opportunities in the reuse of common software assets
in a platform. First of all, the same platform can be reused in different products belonging to a
product family. Secondly, some development decisions can be postponed to later stages in the
development process by using parameterized components that will get their values either at
product time (when components are selected) or even at installation time. Therefore America
et al. (ibid) propose that some software development decisions could be made at installation
time. Using parameters in installation basically creates different software confi gurations. This
approach is new to software related product platform literature. Pronk (2000) explains that
variation of a platform can be achieved in two different ways, either using confi guration or by
well-defi ned interfaces.

Regardless of the selected variation technique, the main aim of these different variation techniques
is to provide to an analytical application software vendor the ability to maximize the reuse
from an analytical application frame that consists of common software assets. The variation
techniques presented in this sub-chapter are more technical in nature and require solid software
engineering skills from the development organization. Therefore, the two other variation
techniques (solution and market segmentation variation) are according to our view more
manageable for analytical application software vendors. In the next chapter, we will introduce
our third variation technique, more or less based on market segmentation practice using a price/
performance matrix as defi ned within an Analytical Application Frame Strategy framework.

5.4.4 Variation Using an Analytical Application Frame Leverage Sub-Strategy

The decision support market has evolved during the last ten years from providing highly
customized solutions to providing prepackaged analytical applications (Surgan, 2000). These
types of changes will most likely force analytical application software vendors to intensify
market analysis to be able to stay competitive. Market analysis will also lessen the risks that
software organizations will build products that become obsolete or refl ect requirements that
are not appealing to a selected market segment. Market analysis will include activities such
as gathering competitive studies, customer plans, and strategies. These documents will be
the basis for a “cohesive business strategy and plan” (Clements and Northrop, 2002). We
identifi ed a similar approach in the studies of Meyer and Seliger (1998) and Sääksjärvi (1998),
where market segmentation could be implemented via different price/performance tiers using
product family development.

188

We portrayed both solution variation (part of an analytical application frame architecture)
and technical variation (part of an analytical application frame technology) and the remaining
sub-strategy within the Analytical Application Frame Strategy framework as an analytical
application frame leverage sub-strategy. The aim of this sub-strategy is to defi ne the market
segments and application areas that the software vendor is going to address. The software
vendor has to be extremely careful of not running into problems with any of the defi ned
disconnects in the alignment models that we portrayed in Chapter 4.

The analytical application software vendor has a few alternative ways of variation using an
analytical application frame leverage sub-strategy. Our analysis of solution variation described
an approach where each vertical market segment has the same software package, but
different vertical market business analytics. Another approach is to accommodate additional
requirements by changing the actual software solution, using the approaches that were defi ned
in software variation techniques within software product line development. This approach
takes the existing common software application frame as its basis. Any additional requirements
are implemented as part of extended functionality, defi ned in our analytical application
frame architecture in Chapter 4. Variation can be achieved by implementing plug-ins to the
common software application frame. This method applies also to third-party vendors wanting
to innovate additional functionality that can be integrated into the core analytical application
frame. Using a third-party development organization to provide additional solutions on top
of an analytical application frame could give tremendous leverage for a software vendor, as
the application frame with its corresponding components would become part of a solution
from other software organizations (Gawer, 2000; Gawer and Cusumano, 2002). This variation
technique complies well with an analytical application frame leverage sub-strategy, as it does
not typically require any modifi cations or customizations from the software vendor itself.

Another opportunity for market segmentation and variation is to implement integration to other
horizontal solutions such as budgeting and forecasting, customer relationship management,
or any other software solution that requires analytics from the analytical application solution.
This type of solution integration requires documentation of application programming interfaces
for the software application frame, as these will be the variation points that can be used to
implement extended functionality or horizontal solutions. It is a challenge for any analytical
application solution vendor to defi ne a common software application frame that would be
applicable to any vertical or horizontal market without having to add software extensions
to the core software application frame. This type of variation is more “marketing-oriented
variation,” as the variation could be implemented by a third-party solution without having to
build anything in the analytical application frame architecture itself.

An analytical application software vendor has two main alternatives to utilize the price/
performance matrix defi ned in an Analytical Application Frame Strategy framework. The fi rst

189

option is to append new segments by building new functions/applications internally. The
second option is to use third-party technology. Use of third-party technology requires careful
consideration when deciding whether theses areas should be internally managed and become
part of the core competence for the software vendor. This type of amendment to new vertical
market functions/applications is a big decision for a software vendor and should not be done
lightly. The decision to move into a new area just because competition is doing it could
become “the decision of all times leading to corporate failure.”

One of the most important aims in software application frame development is to identify
the least common denominator for the analytical application frame functionality that is
going to be used across any vertical market segment. In some cases, the software vendor
might decide to include features/functionality in the analytical application frame that are not
common to all vertical domains, but which will reduce the maintenance of software assets.
Another challenge that a software vendor faces is to design the software application frame
to be adaptive for future features and functionality that might be required of the software
solution. It is important to note that an analytical application software vendor might have to
amend its existing core software application frame with additional functionality to be able to
build new vertical extensions and thereby meet the expectations of these additional market
segments. This is very important distinction that must be made in software application frame
development, as additional software solution requirements are sometimes met by amending
the core software application frame and not by creating frame extensions. The decision on
these amendments needs to be made on a case by case basis, as each software application
domain and intended additional functionality will be different, and some of the functionality
might not be used across all market segments. We emphasized in prior chapters the importance
of having strong domain knowledge within selected market segments when building software
solutions. This knowledge will become invaluable when planning the variability of the core
software application frame, when reviewing what parts of common software assets should
become a part of the common software application frame, and when determining what pieces
should be moved to frame extensions for specifi c market segments.

Finally, in the same way we already described in the solution variation of an analytical
application, the software vendor could utilize license key confi guration as means of solution
variation. In this variation approach, the functionality of the software will be dependent on
the license key that the end user organization receives. This type of market segmentation
refl ects analytical application frame leverage sub-strategy, where the software license key will
control the price/performance level of the software functionality. This type of variation is cost
effi cient for a software vendor, as it can provide one software confi guration to all customers,
the license key controlling what features of the software will be activated. Once the end user
organization is ready to amend its solution, the only thing that has to happen is the receipt of

190

a new license key that will activate new features in the software solution. This type of variation
does not require maintenance of several different versions of the software product, but it can
be used for market segmentation purposes on the price/performance matrix that was defi ned
in the Analytical Application Frame Strategy framework in Chapter 4.

5.5 Chapter Summary

The aim of this chapter was to introduce in more detail how an analytical application software
vendor can use existing software engineering technologies effectively when implementing
an analytical application frame involving large-scale reuse as defi ned in principle one by
Sääksjärvi (2002). We were also able to conclude that references to software engineering
approaches in existing software related platform literature discussed component-based software
development. These references did not demonstrate or discuss in more detail practicalities
when implementing software solutions. Another aim of this chapter was to explore how large-
scale reuse can be implemented in the case of analytical application software solutions. We
identifi ed software product line engineering as the closest viable option for an analytical
application software vendor to create derivative products from an analytical application
frame.

The selection of software product line engineering as a viable software development approach
prompted us to research product line software engineering in more detail, and to list the most
important factors that an analytical application software vendor needs to know when initiating
derivative software development. Part of our analysis was to explore what types of methods
have been introduced into the product family engineering domain. Due to the newness or
immaturity of software development tools to support true product line engineering, methods
such as KobrA and CoPAM were introduced in this chapter. Both of these methods support
the notion of component-based software engineering as the foundation for derivative products
from a common software application frame.

We also explored the use of the platform concept within product line engineering, as this
concept has increased in popularity since early 2000. It seems to be a frequently used concept in
recent software product line engineering literature. The most common defi nition of a platform
was “a platform is a construct that consists of software assets (or software components) that
will be reused across different products.” The role of component-based development was
also evident in our literature research. We argue that it will increase in the future. It is also
very important to realize that component-based development as such does not guarantee
successful software application frame development. We believe that development must be
a combination of engineering approaches, such as software product line engineering used
together with component-based software development. Part of software application frame
development is a change in mental attitudes and procedures, together with their associated

191

development processes. This was clearly articulated in the work of Atkinson et al. (2000) and
America et al. (2000).

A common thread in software component development with software reuse and software
application frame development using common software assets is the aim to reuse underlying
artifacts (or software assets) that are part of the a platform. Jacobsen et al. (1997) noted that
software reuse can be divided into different abstraction levels by defi ning concepts, Application
Family Engineering (AFE) and Application System Engineering (ASE), which provide the means
to plan derivative products with common functionality, enabling software organizations
to reuse software assets across product families and product lines. Several authors within
the software product line software domain conclude that Jacobsen’s work is the prelude to
current software product line development and the basis for large-scale reuse within software
development. We introduced domain engineering as the approach to identifying commonalties
across different products within a product line/product family.

Part of our aim in this chapter was to identify different granularity levels for software components
within a software application frame. The article from Bosch (2002) showed maturity levels for
software product lines and how independent products with corresponding infrastructure are
linked with the platform concept, the software product line, and the confi gurable product
base. This article shows different granularity levels for software product line development.
A platform is the layer preceding software product lines. Therefore, software product line
development is the means of achieving effective leverage from a common platform with
common assets. It was also evident in our literature research that larger granularity levels in
software components will enable more effective reuse. This was discussed in several books and
published articles. According to several case studies, object-oriented application frameworks
have been widely used as underlying software assets in software product line development.

It also became evident in our literature research that the role of software architecture is
important when building software architecture for current and future product requirements
and features in a product line. It was also clear to us that the implementation of a software
application frame must be based on large-scale reuse with coarse-grained software assets (or
components). This very same aim has been defi ned by the software product line engineering
community. There was limited discussion of how a software vendor can implement a product
line using a price/performance matrix as presented by Meyer and Seliger (1998) and Sääksjärvi
(1998).

Existing software related product platform literature includes discussions about product line or
family development, but not specifi cally about different variation techniques. An exception is
Meyer and Zack (1996) in their article of information products. We concluded in our analysis of
analytical application solution variation that these types of solutions can have variation in three

192

different ways. First of all, analytical applications can be varied purely based on the contents
of the analytical application defi ning technology (meta data and business analytics repository),
whereby the software application itself (binary code) will remain the same in each end user
organization: only the contents will differ from one vertical market segment to the other.
The second type of variation relates to variation that was described in existing product line
software literature. This type of variation requires more from the analytical application software
vendor. The third variation technique is more or less based on market segmentation, whereby
the same software solution is offered to different market segments without really addressing
specifi cally any market segment. This type of market segmentation can be implemented using
a price/performance matrix together with license key management. Features and functionality
can be controlled, allowing the vendor to enable or disable functionality using license keys.

In summary, we were able to provide a contribution to the exiting analytical application
software literature by combining new knowledge of software product line development with
the result of three main variation techniques: technological variation found in the software
product line engineering literature, solution variation using analytical application frame
architecture, and market segmentation with corresponding variation techniques using different
variation mechanisms.

193

6. EMPIRICAL RESEARCH DESIGN

The aim of this chapter is to describe how the empirical research design was constructed
and carried out in the analytical interpretative single-case study software organization
(“Company”). Selected data collection methods are described, including a corresponding
reliability and validity discussion.

According to Myers and Avison (2002), various philosophical perspectives can inform qualitative
research, and various qualitative research methods can be used with each philosophical
perspective. According to the authors (ibid), the selection of research method will infl uence
the way the researcher collects the data.

We have divided this chapter into four different sub-chapters. First of all, we will discuss our
selected research methodology. Secondly, we will explain our selected research framework,
which includes an explanation of the selected viewpoints for analysis and the selected
time periods. Thirdly, we will explain our selected research strategy with its corresponding
implications. Finally, we will explain the reliability and validity of the case study research.

6.1 Research Methodology

To be able to test and evaluate our framework, we decided to base our research on an analytical
interpretative single-case study (Klein and Myers, 1999). Our research aim was to draw
specifi c implications from the use of a software application frame strategy framework within
analytical application software, and to provide a contribution with rich insight (Walsham,
1995a). Our case study research is supported by quantitative analysis using economic metrics
from product platform theory. This type of combined research methodology provides a
stronger foundation for analyzing the results of our case study research. Interest in interpretive
research has increased in recent years within information systems (Walsham, 1995b), and this
type of research methodology enables researchers to “better understand human thought and
action in social and organizational contexts” (Klein and Myers, 1999). Interpretative research
does not predefi ne dependent or independent variables, but focuses on the full complexity of
human sense making as the situation emerges (Kaplan and Maxwell, 1994).

According to Walsham (1995a), an interpretative case study “is often the in-depth case study,
where research involves frequent visits to the fi eld site over an extended period of time.” Our
analysis took place over several years and could not be performed with any other company
in a similar software domain due to competitive factors. Orlikowski and Baroudi (1991) state
that “instead of the researcher coming to the fi eld with a well-defi ned set of constructs and
instruments with which to measure the social reality, the interpretative researcher attempts
to derive his or her constructs from the fi eld by in-depth examination of and exposure to the

194

phenomenon of interest.” This characterizes the interpretative study and information systems
as constantly changing, where “the organizations are not static and that the relationships
between people, organizations, and technology are not fi xed but constantly changing” (Klein
and Myers, 1999).

According to Yin (2003), a case study is an “empirical inquiry that investigates a contemporary
phenomenon within its real-life context: boundaries between the phenomenon and context
are not clearly defi ned and multiple sources of evidence are used.” According to Yin (ibid),
single-case studies are appropriate when it is a revelatory case where the situation has been
previously inaccessible to scientifi c investigation. Another case is if the study is a critical
case for testing a well-formulated theory, and fi nally if the case is extreme or unique. The
researcher has been involved with the case study company for years, and therefore the case
can be regarded as unique and extreme, enabling the researcher to explore the Company in
depth for years. Due to competitiveness between similar companies, the researchers would
not have gained access to other similar companies to perform a multiple-case study. According
to Benbasat et al. (1987), single-case study projects are most useful “at the outset of theory
generation and late in theory testing.” According to Benbasat et al. (ibid), case study strategy
is “well-suited to capturing the knowledge of practitioners and developing theories from it,”
and most of the case studies are exploratory in their nature.

According to Walsham (1995a), interpretative researchers “are not saying to the reader that
they are reporting facts; instead, they are reporting their interpretations of other people’s
interpretations.” Researchers can either be outside observers or involved researchers when
conducting interpretative case-study research. As this study has continued for several years
with the fi rst research report published in 1998 (Sääksjärvi and Salonen, 1998), the researchers
of this study have been both outside observers and involved researchers throughout the analysis
period. Between 1995 and 1998, the researcher was product development director for the
Company. From late 1998 to 2000, he served as an external observer without interaction with
the unit of analysis. In early 2000, the researcher became a part of the organization with access
to documentation and other materials that were inaccessible before. The authors (ibid) conclude
that neither role should be reviewed as that of an objective reporter, and both of these roles
have pros and cons. One could argue that this study would not have achieved the depth that
it did due to the involvement of the researcher, as was argued by Nandhakumar (1993) when
conducting development of an executive information system as a participant observer.

The researcher has to pose the question in his case study analysis of whether theory formulation
before data collection will impact research questions posed in the research of the case study
organization. According to grounded theory of Glauser and Strauss (1967), theory should be
driven directly from fi eld data, while Walsham (1995a) argues that “it is possible to access
existing knowledge of theory in a particular subject domain without being trapped in the view

195

that it represents fi nal truth in that area.” According to Walsham (1995a) the “key question for
a researcher in any tradition, regardless of philosophical stance, concerns the role of theory in
their research.” Eisenhardt (1989) identifi es three distinct uses of theory:

• As an initial guide to design data collection
• As part of an iterative process of data collection and analysis
• As a fi nal product of the research.

According to Walsham (1995a), the use of theory in the initial stages of interpretative case study
research is to create “a theoretical framework which takes account of previous knowledge,
and which creates a sensible theoretical basis to inform the topics and approach of the early
empirical work.” As our research is based on a single case study company, selection of an
appropriate qualitative research method to correspond and measure the external and internal
validity and reliability of our framework and the generality of our fi ndings is of importance.
Qualitative research methods are designed to help researchers to understand people and the
social and cultural contexts within which they live. Qualitative research exists in three main
forms, positive, interpretive, or critical. Our selected method is interpretive, which is “aimed at
producing an understanding of the context of the information system, and the process whereby
the information system infl uences and is infl uenced by the context” (Walsham, 1993).

Klein and Myers (1999) have defi ned seven different principles for evaluating interpretive
research. According to the authors, these criteria were defi ned to helps academics to evaluate
information systems case study research when interpretive fi eld research is used as a research
methodology. The main and the fi rst principle in interpretive research is the hermeneutic circle,
which suggests that “we come to understand a complex whole from preconceptions about
the meanings of its parts and their interrelationships” (Klein and Myers, 1999). The authors
conclude that “the whole story resulting from the application of the individual principles is
greater than the sum of the parts, i.e. the separate application of each principle.” These seven
principles are divided in the following way:

1. The Fundamental Principle of the Hermeneutic Circle
2. The Principle of Contextualization
3. The Principle of Interaction Between the Researchers and the Subjects
4. The Principle of Abstraction and Generalization
5. The Principle of Dialogical Reasoning
6. The Principle of Multiple Interpretations
7. The Principle of Suspicion.

The second principle refl ects the social and historical background of the research setting,
helping the audience to see and understand the situation under analysis. Therefore, the
researcher should aim to explain and ensure that the intended audience of the work can see
how the current situation under investigation emerged.

196

The third principle explores how the research materials were socially constructed though the
interaction between the researchers and participants. During the study of the subject, the
researcher should recognize that the participants in the study can be seen both as interpreters
and participants, and that this could impact the way the results are interpreted.

The fourth principle of abstraction and generalization portrays the process of generalizing
concepts, generating theory, and drawing specifi c implications from the case presented
(Walsham, 1995a). According to Klein and Myers (1999), the aim of interpretive researchers is
not to specifi cally falsify theory, as in using theory more or less as a “sensitizing device.”

The fi fth principle of dialogical reasoning requires the researcher to “confront his or her
preconceptions (prejudices) that guided the original research design with the data that emerge
though the research process.” This principle emphasizes the need to apply the same principle
several times during the research process, as each stage of the research process will provide
new information and understanding and therefore the previous stage becomes the prejudice
for the next.

The sixth principle of multiple interpretations emphasizes the possibility of different
interpretations amongst different participants. This requires extreme sensitivity on the part of
the researcher. An example of this would be a case in which two people in our case study
would interpret a historical event in two completely different ways. Therefore, the researcher
must document all of these different viewpoints in the case study research.

The seventh and fi nal principle – the principle of suspicion – emphasizes that the researcher
has to have sensitivity to possible biases and systematic distortions in the research. According
to the authors, this type of thinking and principle is the least developed in the IS research
literature. The authors conclude that none of these principles can be reviewed and used “a la
carte,” but must be adjusted and evaluated in any particular situation.

Finally, once the research for the case study company has been accomplished, the results of
the analysis should be reviewed in the light of these seven principles. The aim of this review
is to validate our research strategy, to validate the results of our research, and to ensure that
none of these seven principles was ignored during the study.

6.2 Framework of Analysis

The theoretical foundation for our research is based on software related product platform
theory, specifi cally within the analytical application software domain. We discussed in Chapter
2 the limitations of product platform theory as borrowed from mechanical engineering. Due to
these limitations, Sääksjärvi (2002) defi ned a Software Application Frame Strategy framework
that addresses the complexity of software development without empirical consideration. The

197

aim of our research is to adapt this generic framework to analytical application software
solutions by using the three sub-strategies defi ned in Chapter 4. We also concluded that an
Analytical Application Frame Strategy framework has six different alignment perspectives that
a software vendor can utilize, and that each of these perspectives has different characteristics
and outcomes within software development. To maximize analytical application frame
leverage using the product family solution development approach, a software vendor must
carefully weigh the advantages and disadvantages of each alignment perspective in achieving
its business strategy aims. Different variation techniques were presented in Chapter 5. Some
of these are specifi c to an analytical application software vendor and and some are generic to
any software domain (such as software engineering related variation techniques).

We have analyzed our Analytical Application Frame Strategy framework throughout this
study from three different perspectives that corresponds to the three sub-strategies within our
framework in the following way (see Table 4):

Sub-Strategies for an Analytical Application Frame
Strategy framework

Software
Application

Frame
Release

Analytical
Application

Frame
Technology
Sub-Strategy

Analytical
Application Frame

Architecture
Sub-Strategy

Analytical
Application

Frame
Leverage Sub-

Strategy

Dominant
Alignment
Perspective

Evidence of
Alignment
Perspective
Disconnect

Table 4. Framework of Analysis.

The fi rst column lists all the different analytical application frame releases that could be
identifi ed in the case study company based on the four principles set in Chapter 2. The
next three columns portray the three sub-strategies identifi ed within an Analytical Application
Frame Strategy framework in following way:

Analytical Application Frame Architecture Sub-Strategy: Portrays how the case study
company defi ned its analytical application frame architecture.

Analytical Application Frame Technology Sub-Strategy: Portrays how the case study
company defi ned its technological selections with corresponding elements such as underlying
technology, execution and development environment, and software development approach.

Analytical Application Frame Leverage Sub-Strategy: Portrays how the company selected
its market segments and how the two other sub-strategies supported selected market
segmentation.

The last two columns in Table 4 express how the case study analysis was able to demonstrate
a dominant alignment perspective and whether there were signs or evidence of alignment
perspective disconnect. We have defi ned a disconnect as a weakness in alignment perspectives

198

with respect to one sub-strategy that has been neglected or received less attention. The
analysis of different alignment perspectives with corresponding fi ts is implemented by carefully
examining each analytical application frame release and what type of changes occurred to
each of the three sub-strategies during the analysis period.

Once all three sub-strategies are analyzed and reported, the next step is to explore whether
any of the six identifi ed alignment perspectives has been used by the case study company
and what type of results these alignment perspectives have had both for short- and long-term
product development strategies. Based on this analysis, together with fi nancial data and project
related data, we will use quantitative research methods to calculate longitudinal analytical
application frame effectiveness and effi ciency. These numbers will demonstrate whether the
case study company has been successful in its product development in the light of analytical
application frame development. We are interested to see whether the case study company
would have benefi ted by having strong competence in defi ning an analytical application frame
and its frame components and what kind of results could have been expected with effective
use of the framework.

We have divided our case study research into two main analysis periods. The fi rst analysis
period is from the foundation to 1998 and the other analysis period is from 1998 to 2002. The
reason for dividing the analysis period into two periods is twofold. First of all, the researcher
left the Company to work in a United States subsidiary, causing the connection between the
participants and the researcher to change from a social perspective. Secondly, during 1998 a
research report was published (Sääksjärvi, 1998) whereby the case study company became
aware of the software application frame concept. Our aim is to explore whether this had any
impact on the development of software releases after 1998. We can conclude that after 1998
the case study company became aware of the possibilities that a software vendor can achieve
when using the software application frame development approach.

The theoretical research that has been published about product platform related software
development is limited; the case study sheds some light in the diffi culties that software
engineering will pose for a software vendor and how different development of software
products is compared with development of physical artifacts in a manufacturing environment.
The software solution from the case study company is based on a client/server architecture
using iSeries/400 hardware environment with a corresponding Windows software client. Our
analysis will include discussion of different software releases and corresponding analytical
application frame releases that can be identifi ed during the evolution of the software products
within the case study company.

The quantitative research method is based on effi ciency and effectiveness measures defi ned
by Myers et al. (1997). The materials for these measurements were collected using historical

199

records of worldwide product specifi c sales a well as cost information provided by the fi nancial
department of the case study company.

6.3 Selected Research Strategy and its Implementation

The selected research strategy is built to refl ect the principles of Klein and Myers (1999) with
the idea of the hermeneutic circle, where “the complex whole arises from preconceptions
about the meanings of its parts and their interrelationships.” The idea of the hermeneutic
circle was implemented by studying each sub-strategy within an Analytical Application Frame
Strategy framework separately, which gave a better understanding of the whole by interviewing
each organization group separately during several sessions. Each sub-strategy within an
Analytical Application Frame Strategy framework represents different types of interest groups
with their respective aims. By studying and interviewing each group separately and combining
this information, we achieved a better understanding of the whole in the form of interaction
between these three different alignment perspectives. An example of this is the product
development group, with the responsibility to create a domain-specifi c architectural model,
and the technologists group, whose aim is to defi ne the underlying technology for the analytical
application software solution. If the cooperation between these two groups is uncoordinated,
the “Technological Responsiveness” fi t could be adversely impacted. In a similar manner,
personnel in marketing must have a coordinated discussion with both software technologists
and software architects to avoid either “Functional Flexibility” or “Technological Adaptation”
imbalances. In summary, once we achieved better understanding of the parts (sub-strategies),
they themselves helped “to codetermine the meaning of the whole” (Gadamer, 1976).

According to Klein and Myers (1999), the principle of contextualization requires that “the
subject matter be set in its social and historical context so that the intended audience can see
how the current situation under investigation emerged.” The principle of contextualization and
interpretive research emphasizes that “people, organizations, and technology are not fi xed
but constantly changing.” We could clearly see this in our longitudinal case study research
during the last 15 years. The case study company underwent several profound technological
changes during the evolution of the software offering. There were several organizational
changes during the years, and each and every change impacted the historical evolution of the
case study company. Positivist research presumes that historical patterns are repeated in the
future, while interpretive research perceives historical events to be historical. Future events
are a combination of circumstances that will drive future changes, and historical events are
not always repeated. In retrospect, when viewing the historical evolution of the case study
company, it is clear that the historical evolution has been a combination of technological
changes in the IT market, changes in the end user perception of software functionality,
and careful planning from the management of the company as to which market segments/
application areas needs to be addressed. This refl ects back to the hermeneutical principle,

200

where cycles of interviews of each sub-strategy gave us a better understanding of the overall
software business model of the company.

The principle of interaction between the researcher(s) and the subjects is very challenging
for any researcher, as interpretative researchers “must recognize that the participants, just as
much as the researcher, can be seen as interpreters and analysts” (Klein and Myers, ibid). The
researcher has been with the organization for close to 10 years with the exception of being
located in Dallas, Texas, away from the parent company, since 1998. This research project
was initiated back in 1997. The Company was led by the founding CEO until 2000, when
there was a change in management. The researcher was operationally responsible for the
product development organization until 1998 and as Chief Technology Offi cer from 2000
to 2002. The researcher has relied on historical secondary data from the time period of the
foundation of the company until 1995. From that point going forward, the researcher was
active as a participant in the organization. As Klein and Myers (1999) conclude, even if the
researcher is dependent on secondary historical data, “the researcher’s preconceptions about
the participants still affect the construction, documentation, and organization of the material.”
Most of the interaction between the researcher and participants was through interviews
(physical presence) where the questions were predefi ned and the researcher took notes during
the interview. Some of the questions were posed as email messages (during the period 1998
to 2002), due to physical distance of the researcher and the participants. Additional interviews
were performed as telephone interviews to verify (triangulate) the results that were given as
part of an email message. Finally, one of the founding developers immigrated to United States
in 2002, and the researcher was able to have additional interview sessions with the developer
and confi rm some of the results that were concluded from the case study research.

The principle of abstraction and generalization emphasized the importance that “theoretical
abstractions and generalizations should be carefully related to the fi eld study details as
they were experienced and/or collected by the researcher” (Klein and Myers, 1999). Our
theoretical framework of Analytical Application Frame Strategy includes presumptions of the
impact to analytical application software development when different alignment perspectives
are used. These presumptions are tested against a single-case case study company to highlight
the use of the framework and each of the included sub-strategies. We concluded earlier in this
chapter four different types of generalizations of theory (Walsham, 1995a). Out of these four
types, this research concentrates on two types of generalization. The fi rst is based on drawing
specifi c implications of the use of an Analytical Application Frame Strategy framework and
its different alignment perspectives. The second type is based on providing rich insight into
the use of the framework, specifi cally in the case of analytical application software solutions.
Our analysis of the Software Application Frame Strategy framework construct defi ned by
Sääksjärvi (2002) is retrofi tted to include elements of analytical application software solutions,

201

and our research analysis is purely from an analytical application software perspective. We
argue that the Software Application Frame Strategy framework has to be adjusted to refl ect
the given software domain, as each software domain is different as to its characteristics. The
reason for this is the difference between each sub-strategy and elements within these sub-
strategies. These elements could be very different between different software domains, such
as the selection of underlying and defi ning technology.

The principle of dialogical reasoning is very hard to verify, as “the principle requires the
researcher to confront his or her preconceptions (prejudices) that guided the original research
design with the data that emerge through the research process” (Klein and Myers, 1999). This
principle requires the reader to achieve an understanding of the researcher’s own historicity
and how each prejudice could become the source for understanding the next stage of the
research. This principle is challenging to implement, as the researcher must separate his/her
own historical experience, preconceptions, and intellectual background. Each of these will
have an impact on how the researcher approaches the research objects, the participants, and
how research questions are laid out. Analysis of the fi ndings of an interview will be impacted
by the background of the researcher. The researcher has been actively working within the
decision support software domain for the last fi fteen years, and this has had an impact on
the overall research setting and understanding of the problems in software development of
analytical applications. The researcher has been actively working within the different sub-
strategy domains within the Analytical Application Frame Strategy framework, and this helps
to understand the interrelationships between marketing (analytical application frame leverage),
the domain-specifi c product architecture (analytical application frame architecture), and
technological choices (analytical application frame technology). Without this understanding,
it could be very diffi cult to set relevant research questions on the one hand and on the other
hand draw conclusions from the case study research and the implications between different
stakeholders and their social setting.

The principal of multiple interpretations could be identifi ed in the research due to different
stakeholders and their interests. Some of the historical evolution was explained differently by
the management and the developers. The reason for this could be either that the stakeholder
wanted to see the event in a specifi c light or that the participants had forgotten the factors
leading to a specifi c decision. Most of the fi ndings during our research were well aligned
with all of the participants. In cases where there was a difference, we used different types
of documentation to verify what really happened. If the questions were the same for two
different groups of stakeholders, we compared the answers for each group. If there were any
confl icts in the answers, additional questions were posed.

The principle of suspicion requires the researcher to consciously suspect systematic distortions
or biases in the analytic process. According to Klein and Myers (1999), this principle appears

202

to be the most underdeveloped principle within the IS research literature. The researcher
should critically view any of the statements or fi ndings given by the participants, as various
stakeholders could have different aims and interests in the research outcome. According to
Klein and Myers (ibid), in some cases strong management could impact the statements and
information given by other participants in the study due to different reasons such as fear,
conscious political acts, or other psychological reasons. Within the case study company, the
founding CEO is known for a strong personal drive and sometimes intimidating personality.
This type of knowledge was taken into consideration in the case study research, as some of
the fi ndings might have been neutralized by some of the interviewees. As Myer and Klein
(ibid) argue, the social and political relationships between different actors within the case
study research can impact the outcome of the results. Even if the researcher has been actively
involved within the organization for close to ten years, some bias could be present during the
“learned” predefi ned conceptions that the case study company has maintained during the
ears. In some cases, some public statements could become “the truth” for the participants
because they want to believe them to be true even if the case were far from the reality.

Finally, the interdependence of each of the seven principles will impact the overall results
of the research, as described by Klein and Myers (ibid). Each case study is different in its
characteristics, and therefore each of the seven principles can have a different impact on
the outcome of the study. Klein and Myer (ibid) emphasize that the researcher should not
arbitrarily leave any of the principles out without explaining the reason for it. In some cases
even Klein and Myers (ibid) approve of a principle being left out, such as in the case of the
principle of suspicion. This principle goes beyond the understanding of case study data to the
understanding of the social world, where the actors have their social preconception of events
and historical happenings for the case study company.

All revenue and cost information in the following charts and tables is reported in the unit of
currency used in the case study company’s headquarters country. To protect the proprietary
information of the case study company (which is privately held), we will report all currency
amounts without identifying the name of the currency unit itself. All of the numbers reported
represent correct proportions: all analytical application frame effi ciency and effectiveness
calculations are reported accurately.

6.4 Data Collection Methods

According to Orlikowski and Baroudi (1991), interpretative research is not aiming to generalize
from the setting, but the intent is rather to “understand the deeper structure of a phenomenon,
which it is believed can then be used to inform other settings” (ibid). We have based our research
strategy both on qualitative and some quantitative research methods to provide triangulation
for the results found in the study. Some researchers (Gabe, 1994; Kaplan and Ducheon, 1988)

203

argue that a combination of research methods within one study enables stronger triangulation
than using only one research method. Jick (1979) explains several important opportunities that
triangulation can provide a researcher, such as allowing the researcher to be more confi dent
in the research results. It can stimulate the creation of inventive methods, etc. Therefore,
quantitative methods were added to the research by applying Myers et al. (1997) product
platform effectiveness and effi ciency calculations to the case study research. Both research
methods together can provide an enriched explanation of the research problem at hand. The
study also employed ethnographic techniques such as observation of participants, researcher
interaction with the study objects, documentation review, social contact, unstructured
interviews, and structured interviews. The study was executed over several years as portrayed
by Orlikowski and Baroudi (1991).

According to Yin (2003), evidence for case studies may come from six different sources:
documents, archival records, interviews, direct observation, participant observation, and
physical artifacts. The Company has historically externalized most of the client software
development to an external software development organization, and therefore the collection
of fi nancial records is more accurate when comparing the calculations of internal records of
costing information. These external development organizations have been tightly integrated
into the core development organization, and all the numbers presented in the calculations
include the use of external development organizations, both for server and client software
development. Walsham (1995a) concludes that within interpretative case studies, it is
particularly important to pay attention to how fi eldwork is reported and show how the author
has arrived at the results of the research. Walsham (1995a) includes discussion of the minimum
requirements of explaining how the researcher performed in following way:

“As a minimum, reporting on the collection of fi eld data should include details
of the research sites chosen, the reason for this choice, the number of people
who were interviewed, what hierarchical or professional positions they occupied,
what other data sources were used, and over what period the research was
conducted.”

According to Eisenhardt (1989), overlapping data analysis with data collection provides a
number of advantages, giving the researcher a head start in analysis. The analysis of the case
study company took place over several years, and several iterations of case writing were
made. The skills of the researcher were improved along the way as the understanding of the
different implications of different alignment perspectives became clearer. Additional literature
analysis of product platform related theory and software product line/family development
literature gave the researcher a better understanding of the complexities involved in software
development, adding to the researcher’s long background in managing software development
teams using a component-based software development approach. Our case study material

204

included several different types of documentation sources that were the foundation for our
case study analysis. We have divided the documentation into six different categories (see
Table 5):

Documentation Description
1. Financial records of the company Financial statements included annual reports from the

foundation of the company until end of 2002:
• Income statements
• Balance sheets

2. Product development documentation Project reports and access to a Lotus Domino-based database
that enabled us to view historical information by

• Project, by developer, by time. Each of these views had
associated costs included

3. Internal documentation Product strategy documents, internal memos, internal Microsoft
PowerPoint presentations from different stakeholders

4. External documentation • Annual user group meeting documentation (slide shows,
handouts etc.)

• User manuals (both designer’s and end users’ manuals)
with “What’s new section”

• Installation documentation

5. Internal software tracking application The Company provided access to all internal tracking
applications that are used by the Board of Directors, executive
management, and development and sales management.

Analytical applications (based on the Company’s own
applications)

• Invoicing database
• Contracts database
• Financial statements database
• Software license database

6. Documentation created during the
research

• Microsoft Visio documents (fi gures, tables)
• Microsoft Excel documents (collection of product related

fi nancial information)

Table 5. Case Study Documentation.

We had full access to fi nancial documentation from the foundation of the Company until mid-
2003. This documentation included all fi nancial annual reports, monthly and quarterly reports,
and associated reports. The second category represents product development documentation
that includes internal design documents, internal memos of product plans, component model,
and other associated documentation. The third category represents internal documents such
as product development strategy documents, internal documents that have been used in
training business partners and internal personnel. The fourth category represents external
documentation such as user manuals, user group documentation, and other documents
that represent the company and its products to the market. The fi fth category represents
all software applications that the company uses internally to track its product development,
fi nancial performance, and sales around the world by business-partner.

205

Due to geographical distance, some of the interviews were conducted using conference calls
and emails that were collected in a centralized database. All fi nancial data were recorded in
Microsoft Excel spreadsheets. Additional questions about the data resulted in several iterations
of these results. The researcher’s understanding of the complexity developed during this iterative
process as portrayed by Klein and Myers (1999). All interview questions were written before
the interview, and the researcher took notes during the interview process. All of our email
correspondence related to the data with questions were collected and saved for later reviews.

Even though the researcher had extensive background in the case study company both as
an outside observer and as an involved researcher, the in-depth analysis of the development
organization during the last 15 years resulted in research fi ndings that were a big surprise
even to the founders and key developers of the Company. The case study company had
not previously measured or calculated gross margins on any of the products that have been
developed during the years. Only through extensive research by the chief fi nancial offi cer
and controller via multiple interviews and passes of the results were gross margin numbers
generated and revealed. Another factor that changed the overall landscape of data collection
was the departure of the founding Chief Executive Offi cer of the Company. Social and
political issues prohibited the researcher from gaining access to all detail information, as some
information was treated as confi dential or sensitive (see also Walsham, 1995a).

The case study analysis also consisted of numerous in-depth interviews between 1996 and
2002 (see Appendix 3) with the management and development organization of the Company.
Several interviews were performed on-site with the original developers and founders of the
Company. Additional questions to confi rm results of the interviews were asked and answered
either by emails or by additional phone interviews. To achieve triangulation of the results,
comparisons were made to old documentation such as product manuals, user conference notes,
and other documents. These interviews, combined with product documentation, enabled to
us to identify all major software releases that the Company had released during its lifetime.
The aim of the interviews was also to explore and identify how the product development
organization had defi ned application specifi c architectures and how technology selections
had been made with respect to the Company’s market segmentation strategy (if any). The
aim of the literature research, using old documentation, was to identify the key marketing and
selling points that the Company had at each product release. From this documentation and
product release specifi c aims, we could identify major product releases and whether these
had been major or minor upgrades (see also Appendices 2 and 4). All of the analysis was
tabularized in Microsoft Excel spreadsheets, Microsoft Vision graphics images, or Microsoft
Word documents. The study also has a database of the historical evolution of the case study
analysis since the fi rst report was released in 1998 (Sääksjärvi and Salonen, 1998).

206

To be able to perform needed effectiveness and effi ciency calculations as defi ned in Chapter
2, the Chief Financial Offi cer of the case study company provided extensive sales information
and product development costing information for the analysis from the foundation of the
Company until end of 2002. These numbers included information about how the numbers
have been derived and what kind of development cost averages had been used when
evaluating the R&D costs for the years that did not have any mechanisms for tracking product
development costs. During the study, the researcher discovered the diffi culties in collecting
fi nancial records of product development costs, as the Company had weak internal processes
to collect project and fi nancial data in the early years of software development. To be able to
measure software development costs, the researcher had to make approximations that could in
some cases be inaccurate and lead to false conclusions. First of all, historical sales revenue per
product was allocated with a 70/30 rule, whereby 70 percent of the sales were allocated to the
server software product and 30 percent to the client software product. For the historical cost
calculations, we used personnel costs as a basis, as well as external invoicing from third-party
development organizations. To be able to calculate software application frame effectiveness
and effi ciency, we analyzed each software application frame separately (but combined frame
effectiveness and effi ciency numbers are also presented in the analysis).

According to the Chief Financial Offi cer (CFO), even if the ten years accounting rule for
keeping records of old accounting vouchers is already passed, he had access to old fi nancial
records that were presented to the shareholders on an annual basis. We also had access
to old product documentation that was kept by one of the founding members of the case
study company. This provided us with detailed information about how each software product
release had evolved during the years. Old presentation materials from user group meetings
were accessible in the analysis of both server and client frame releases.

Triangulation of the collected data (fi nancial and project data) and initial analysis results were
used to verify in separate interviews with the development managers of the company that
the estimates proposed by the CFO of the case study company were in line with reality. To
be able to measure the success of any software product, the accounting organization must
match the accrued sales revenues with the costs accrued in the products and respective
software application frames. Without this matching, calculations of software application frame
effectiveness and effi ciency are very error prone and leave too much room for incorrect
results. We decided to include all known R&D costs and associated product sales costs when
calculating software application frame effectiveness. We were able to analyze all product
related sales information by using an internal sales tracking application that is used in Board
of Directors reporting. This sales profi tability application is now used on a regular basis within
the Company, and all product related data is automatically collected on monthly basis. The
results of the case study caused the management of the Company to initiate the collection of
information on a more regular basis.

207

6.5 Reliability and Validity of the Study

The researcher gained additional understanding of the research domain during the iterative
data collection and analysis of the data. According to Walsham (1995a), interviews are “the
primary data source since it is through this method that the researcher can best access the
interpretations that participants have regarding the actions and events which have or are taking
place, and the views and aspirations of themselves and other participants.” As our research
method is based on a qualitative interpretative case study combined with quantitative analysis,
the aim of this chapter is to evaluate each of Klein and Myers’ (1999) seven principles when
conducting fi eld studies in information systems.

According to Klein and Myers, without these seven principles, each interpretative researcher
would have to “spend considerable time deriving the theoretical foundations for their research
from diverse literature sources.” These principles enable researchers to defend their work,
as these principles are fi rmly grounded in a major direction of interpretative research, and
the authors do not have to rely on and use inappropriate positivist criteria. These principles
enable external reviewers of the research to verify that none of the seven principles are left
out arbitrarily and give validity for the overall research. The main idea behind the hermeneutic
circle is to provide to researchers an overall value that is larger than the sum of the parts. Each
part will enable the researcher to understand the research results in a different light, rather
than just studying the research object as a whole. The conclusions are derived by an iterative
process, and as the case study research has lasted for several years (the fi rst research report
was published in 1998), the researcher has written and analyzed the case study analysis
multiple times. Each time, he has gained more understanding in the product platform related
theory, specifi cally with respect to software development.

All six other principles besides the fundamental principle of the hermeneutic circle are the
foundation for evaluating interpretive fi eld studies in information systems. The fundamental
principle of the hermeneutic circle was applied in an iterative manner with multiple interviews
as well as documentation reviews with corresponding fi nancial and project data. To enable a
better understanding of the software development process, we conducted several interviews
with both executive management and senior development managers to ensure the validity
of our fi ndings. We were also able to break down the data collected into product specifi c
information which had not existed before. This enabled the management and the board to
review the profi tability and effectiveness and effi ciency of the analytical application frame
development within the case study company. It was also evident that this breakdown of
information into smaller pieces enabled us to achieve a better understanding of the whole and
the complexities surrounding the analytical application frame software development.

208

The analysis of each and every principle leads to a more complete understanding of how an
analytical application frame can be applied to analytical application software and how this has
been applied in the case study company. The case study research showed also the importance
of critical refl ection into how software vendors should evaluate a product release from an
analytical application frame perspective. We identifi ed diffi culties in deciding how each new
product release should be evaluated and whether two or more software releases belonged
to the same analytical application frame release. We had the same diffi culty when we had to
evaluate whether an analytical application frame was renewed or merely extended. The case
study has enabled us to achieve a better understanding of product platform related analytical
application development with its software related complexities. This type of research did not
exist before, specifi cally with respect to analytical application software.

The applicability of the second principle – the principle of contextualization – requires “that
the subject matter is set in its social and historical context so that the intended audience can
see how the current situation under investigation emerged” (Klein and Myers, 1999). This
principle is problematic for several reasons, including changes in the management of the
Company and other relationships that the researcher has been able to experience during
the last ten years. The case study company was founded by a very strong entrepreneur who
led the Company over the years, and several of the decisions were made by the founder. By
interviewing other participants in the decision making, the researcher was able to refl ect the
impact of the social and historical environment at the time.

As for the third principle – the principle of interaction between the researchers and the
subjects: the research was a combination of in-depth interviews concerning the subject
and the collection of old product documentation and strategy documents presented in the
Company’s user group meetings. The researcher has been actively involved with both the
product development organization and the management of the organization. The object of the
most critical part of our study – renewal of the client frame – was implemented without the
participation of the researcher, and therefore the research could be viewed both critically and
objectively. All research materials were collected, and confl icting documentation or interview
results where compared with additional materials or interviews.

The research results from prior product platform theory did not include deep discussion
of software related issues around product platform development. Issues such as defi ning
a software application frame for a software product, granularity of a software application
frame, dependability of selected technology, and several other issues were completely left
out of the discussion in existing literature. Our analysis of the analytical application software
domain does not necessarily apply to any software application domain, as some products
have extreme characteristics (embedded software in mobile phones, microwave ovens etc.)

209

Because of this analysis, we argue that we have been able to include necessary elements to
comply with the principle of abstraction and generalization.

The main idea behind the principle of dialogical reasoning is that “the researcher should make
the historical intellectual basis of the research as transparent as possible to the reader” (Klein
and Myers, 1999). This principle is problematic, as the researcher has been involved with the
Company and has 15 years of experience in the application domain. Even if a strong attempt
was made during the analysis of not letting preconceived experiences refl ect the research,
an attempt was made to separate the researcher’s own ideas from the actual happenings via
additional documentation and multiple interviews.

As our research was based on single case interpretative case study, we emphasized strongly the
principle of multiple interpretations. First of all, the case study company has evolved in several
different stages during its lifetime – from a highly entrepreneurial company to a professionally
run international organization with an aggressive focus on third-party development partners.
This evolution has enabled a review of different perspectives of the various stakeholders in
the study. Confl icting interpretations were verifi ed by additional interviews, and in some cases
against additional documentation. Especially during the initial years with strong leadership
from the CEO, it was important to get the viewpoints of other founding partners, as the agenda
for the CEO could have been different from that of the other stakeholders. For the time period
with aggressive growth in personnel (from 1995 to 1998), when the researcher was part of
the development organization, the research documentation and decisions where confi rmed
by both the management team and the development organization. The fi nal analysis period
results were more or less based on several interviews and additional documentation produced
by both the case study participants and a third-party development organization.

Due to the strong leadership of the founding CEO of the company, the fi nal principle – the
principle of suspicion – is of importance to the research evaluation. First of all, all product
releases with their corresponding software application frames where confi rmed by several
founding partners. These interviews where triangulated using supporting documentation.
Secondly, several interviews revealed that several decisions regarding both technology and
market segmentation were infl uenced by the CEO of the company without consulting or
refl ecting on ideas and arguments from other people in the organization. This type of social
interaction can be typical for entrepreneurial organizations. This puts additional emphasis on
viewing the actions and statements of the actors within the case study company.

210

7. ANALYTICAL APPLICATION DEVELOPMENT IN A CASE
 STUDY COMPANY

The aim of this chapter is to perform a longitudinal single-case analysis of a European analytical
application software vendor (“Company”) in the light of our Analytical Application Frame
Strategy framework, defi ned in Chapter 4. We have divided our analysis into several different
sub-chapters. The overall research strategy is based on qualitative interpretative research,
using Klein and Myers’ (1999) set of principles for conducting and evaluating interpretative
fi eld studies in information systems as described in the previous chapter.

We have divided our case analysis into two analysis periods, where the fi rst period ranges from
the foundation of the Company to 1998, while the second analysis period ranges from 1998
to 2002. We will analyze each sub-strategy within the Analytical Application Frame Strategy
framework separately for both analysis periods to achieve an understanding of how the analytical
application frame architecture was built and what type of technological and market segmentation
strategies were selected. This analysis will be the basis for our quantitative analysis of software
application frame effi ciency and effectiveness performance for each analysis period.

We will initiate our discussion by defi ning some key concepts in our analysis, as well as
our analysis approach in this chapter. Once this has been accomplished, we will analyze
the case study company using the Analytical Application Frame Strategy framework as the
foundation. Finally, we will explain our fi ndings in light of our research questions, suggesting
recommendations for software vendors within the analytical application software domain.

7.1 Defi nitions and Analysis Approach

We noted in previous chapters that we use “software application frame” when referring
to software application frame development in generic terms without refl ecting any given
software domain. In our case study analysis, we have divided our software application frame
analysis into two software application frames. The case study company has two main software
modules, one that is installed on the iSeries/400 environment and the other installed in client
workstations. The reason for this separation is the different technological foundation for each
of the software modules. The server software is implemented using iSeries/400 technology,
while the client software module is a Windows application with a corresponding execution
and integrated development environment. From a commercial perspective, both software
solutions are sold together. Therefore, we will include software application frame effi ciency and
effectiveness calculations for each software application frame (client and server) individually
and together. We have defi ned the software application frame for the server solution as the
“server frame” and the corresponding software application frame for the client solution as the
“client frame”.

211

Our analysis is divided according to the three separate sub-strategies within an Analytical
Application Frame Strategy framework. Each sub-strategy is analyzed according to the discussion
introduced in Chapter 4. This discussion will include analysis of whether any alignment
perspective has been dominant within the selected analysis period and what implications this
has had for the case study company. We divided our case study analysis into two separate
analysis periods. The fi rst period represents a time period in which the case study company
was more or less unaware of the possibilities of the software application frame concept. The
second analysis period represents a time period in which the development organization
actively implemented derivative products using a client frame. Another reason for the time
period selection is the clear renewal of both server and client frame versions with server frame
V2, released during 1997-1998. A new client frame was implemented during 1998-1999. The
initial server and client frames had scalability problems, and the client frame had architectural
defi ciencies that could not be fi xed by amending the existing client frame. The development
team concluded that the only way to continue adding features and functionality to the client
frame was to renew the whole client frame.

The CEO at the time explained in our interview in early 1998 the following about the client
and server frames and their architectural structure and performance:

“It seems to have become a cyclical problem for us with these two different
application frames. Once we are able to remove the bottlenecks from the server
frame, we seem to run into the same problem in the client frame and vice versa.”

Interestingly, the renewal of the server frame was initiated roughly one year prior to the renewal
of the client frame, and this was exactly what the CEO referred to in the quotation above.
The new server frame was improved to enable larger databases and perform data loads more
effi ciently. Soon thereafter, the development team initiated the renewal of the client frame.

7.2 Background of the Case Study Organization

Our case study company was founded in 1987 by an entrepreneur who had the vision to create
a management software solution for IBM midrange end user organizations. The Company is
privately held, specializing in horizontal data warehouse and analytical application solution
development for organizations with IBM iSeries/400 technology. Over the years, hundreds of
organizations in different vertical market segments, such as manufacturing, insurance, fi nance,
distribution, etc. have chosen to run their management reporting using the software solutions
from the case study company.

The Company is headquartered in Helsinki, Finland, with direct operations in the US and
Sweden. The Company has a strong business-partner strategy (channel strategy), with a partner
network both in the US and Europe. It has recently (2002) opened its South American marketplace.
The Company has based its product development and product offerings on the award winning

212

iSeries/400 hardware platform (previously known as AS/400), with an original market segment
of small-and medium sized organizations. The performance improvements in Series/400 server
technology, together with new market segmentation strategies, have enabled the Company
to offer its solutions to larger organizations as well. IBM Corporation rates the case study
company as a key player within the iSeries/400 business intelligence market, and the Company
has received several awards due to its product development efforts. The Company was also
included in the famous IBM Red Book series in the mid 1990s (Chilanti, 1997) that rated
and compared different serious business intelligence vendors. Part of the overall strategy for
the company has been to form relationships with universities to perform basic research into
the development of new technologies that can be applied within the decision support domain.

The case study company has used outsourcing throughout its entire history, both in server
and client software development. The initial server software solution was implemented jointly
with a third-party organization. The result was not impressive: it had to be redeveloped by
the case study company. The fi rst client frame was implemented by a small external software
organization according to the specifi cations of the Company. Later, the main developer joined
the case study company. The renewal of the client frame was implemented by another third-
party software organization. This organization has worked jointly with the Company since
1997. We can conclude that the Company has accrued valuable information about external
outsourcing for more than ten years and is in good position to continue with this model in
the future as well.

7.2.1 Business Model for the Case Study Company

The Company’s business model throughout the years has been to be a software products
company. Leverage is achieved by selling the same software package to any fi rm in any
vertical industry without any tailor-made modifi cations. This packaged approach has enabled
a relatively small development organization to implement a product that has been sold to
hundreds of end-user organizations around the world, each of these organizations having
the same core software solution. The Company is facing a tough decision as the software
analytics marketplace matures, with larger software organizations providing similar solutions
at a fraction of the traditional price. The question will become whether some of the lost
software license revenue will have to be replaced with additional service revenue or whether
the Company must transform itself to a hybrid, where the solution is packaged together with a
set of solutions that are maintained by the Company. This type of combination could result in
lock-in for the end user organization, as it would require continuous support from the software
vendor.

The fi nancial performance of the Company has been reasonable during the years, with
growth in total revenues and personnel. The early decision by the founders of the Company

213

to become a software products company directed all activities into developing a generic
software solution that could be easily implemented in any end user organization. The share
of license revenue as a percent of total revenue increased steadily during the years until 1997
(65%). This share has decreased since then, reaching 33% in 2002 (see Fig. 23).

Fig. 23. Total Revenue and Software License Revenue as a Percent of Total Revenue.

The Company has invested aggressively in product development during the years, with two
considerable peaks in research and development. The fi rst peak was in 1991 (37%), when
the Company invested heavily in redevelopment of the server software solution. The second
clear peak was in 1998 (40%), when the client frame was renewed (V2) to refl ect the new IT
infrastructure requirements (see Fig. 24).

214

Fig. 24. Total Revenue and R&D as a Percent of Total Revenue.

The challenging economic environment on a global basis has also required the Company
to decrease its expenditure on product development in 2002 to meet the decreased global
software license sales. Even though the share of research and development costs relative to
total revenue decreased, the case study company kept its development budget on higher
levels going forward. According to Cusumano (2004), software organizations typically have
research and development costs that are between 15 to 20 percent of total revenue. Even in
2002, the Company invested 17 percent of its total revenue in research and development.
Overall, the Company has invested heavily in product development over the years (between
14% and 40%), with strong emphasis on technology development.

We concluded earlier in this chapter that the Company wanted to be a software products
company, and that software license revenue should be the driving factor when doing business.
Initially, the Company undertook a considerable amount of implementation consulting for
customers that had bought the initial software release (see Fig. 25).

215

Fig. 25. Revenue Classifi cation.

Initially, the Company had mostly service revenue, but very early (1990), software products
revenue became a larger contributor to total revenue. During 1993, there was a clear increase in
software license revenue, mainly due to the opening of international markets for the Company.
The share of service revenue relative to software license revenue has dropped during the years,
mainly due to a larger share of the software license revenue coming from international markets
and business partners. The Company does not have knowledge of how much service revenue
is generated by international business partners, or of how this will lead to a reduced service
revenue share relative to total software revenue. The relationship between maintenance and
software license revenue has been stable during the years, with a clear drop in software
license revenue in 2002, when these two revenue types were almost equal. Typically, the
Company has charged 15% to 20% of the initial software license revenue as maintenance.
This maintenance revenue covers the cost of support and continued development of new
software product releases.

7.2.2 Software Product Release Analysis Overview

A study of all the releases of both server and client products of the case study company
was performed based on product documentation, user group meeting materials, and several
repetitive interviews (see also Appendix 4). As the Company was founded in late 1980s, many

216

of the details had been lost in the “bigger picture,” but we were able to reconstruct the past
using several interviews. The Development Manager for the server (OLAP Server) product
went so far as to investigate the source code to see his textual comments in the past releases.
Early manuals were also found in private homes, even though the Company had moved its
offi ce location several times. All of the software releases (both client and server software
releases) are listed in Appendix 2. Figure 26 shows a longitudinal overview of the software
product release evolution since 1989 (see Fig. 26).

Fig. 26. Server and Client Product Release Milestones.

The initial software product architecture (not shown in Figure 26) consisted of a server software
product (1.0) and client with presentation capabilities (Harvard Graphics). The initial software
product offering was completely replaced by subsequent releases (server software 2.0 and
beyond). Development after 1.0 did not use any of the earlier technology (other than the RPG
implementation language). The second server release (Server 2.0) became the foundation for
all subsequent server frame releases and was based on iSeries/400 technology, with Harvard
Graphics as the front-end software to display information. With integrated software release
2.3, the case study company replaced Harvard Graphics with its own software client that
was more integrated with the server software module. Version 2.3 of both the server and the
client software became the basis for subsequent releases of the software. Our interview with
the server Development Manager revealed that “version 2.3 of the server and client software
was strong enough for distribution to the international marketplace.” The integrated software
solution was initially based on traditional client/server architecture, with two software modules
(see Fig. 27).

217

Fig. 27. Original Software Application Architecture.

Figure 27 demonstrates the overall solution offering, with its integrated multidimensional
OLAP Server that includes ETL functionality and client software that provides the end user
experience. The fi rst integrated release with both the server and the client software module
was introduced with version 2.3. The two subsequent integrated software releases (2.5 and
3.0) did not include any specifi c new functionality. With integrated software release 4.0,
several major changes took place. First of all, the Company introduced new software modules
for budgeting and planning solutions. Secondly, the client frame communication module was
converted from a 16-bit environment to a 32-bit environment. This became a requirement
from the IT infrastructure perspective. Due to additional technologies in development, the
Company added new complexity into its software development (see Fig. 28).

218

Fig. 28. Extended Solution Offering.

With integrated software releases 5.2 and 5.6, the Company introduced major changes in the
server software by improving the performance of database load and data retrieval (software
release 5.2) and adding new business calculation rules to the server (software release 5.6).
With integrated software release 5.6, the case study company converted the internal 16-bit
client software to 32-bit technology. This undertaking took several months to accomplish. This
exercise, together with increased pressure to review the client software to accommodate new
end user organization requirements, caused the case study company to replace the initial
client software with a new client that would provide end user organizations more fl exibility to
integrate with different offi ce productivity environments such as Microsoft Offi ce. The decision
was also made to separate product versioning by introducing different version numbers for
client and server software modules. The initial renewed client software 1.0 was introduced
together with server software 5.7, enabling backward compatibility with old client software.
The case study company dropped support for the old client software coinciding with the
introduction of the new client software module, and the fi nal release of the old client software
module came with server software release 5.7.

With integrated software release 6.0, the Company introduced a new architectural tier to the
overall solution, enabling end user organizations to build detail level data warehouses and to

219

deploy large enterprise data warehouses. This solution enabled the Company to address new
end user organization requirements that it had not been able to solve before. But the new
solution also added one additional layer of complexity that the case study company had to
deal with, both from a solution implementation perspective and a development perspective.

The company introduced three distinct client software releases for the new client software
module (1.0, 2.0, and 2.4), with corresponding server software releases (5.7, 6.0, 6.1, and
6.2). The last server release, 6.2, includes functionality that enables faster database loads in
multiprocessor iSeries/400 environments.

7.2.3 Software Application Frame Release Analysis Overview

A common mistake that software organizations make is to interpret a software product release
as a software application frame release. A software application frame release should be the
foundation for multiple software releases or derivative products, as the cost of a software
application frame is typically much larger than the cost of a product release. We introduced
the four principles from Sääksjärvi (2002) in Chapter 2. These four principles are used to
identify software application frames within the case study company.

The fi rst principle – that the application frame must improve the effectiveness of application
development by applying large-scale reuse of a common application core – requires a predefi ned
aim of the software organization to implement a solution that can be used across any vertical
or horizontal market segment without having to change the core software application frame.
The second principle – that the software application frame is an implementation of a selected
architectural style using a set of underlying technologies that will be conserved in all products
generated from the frame – expresses the requirement that the software application frame
not be changed from one product release to the other. The third principle – that of software
application frame extension - is applied when a company has a need to add new functionality
without disturbing existing modules within the software application frame. The fourth principle
– that of renewal of the software application frame – happens whenever the internal modules
and/or interfaces have been redesigned and therefore changed dramatically.

The task of identifying, separating and describing each historical software application frame
release was challenging, as product and product development documentation did not
explain in great detail what had been accomplished with which software product release.
We compared different types of documentation (product documentation, user group meeting
documentation, strategy documents, etc.) with each other and interviewed the original
founders of the Company, resulting in both software product release and software application
frame release schedules (see also Appendices 2 and 4). As an example of the results of our
interviews, the Server Development Manager concluded the following:

220

“The underlying foundation from version 2.0 to version 4.0 has stayed the same,
and not until version 5.x did the server frame have major redesign. All of the
server frame releases have been internally the same through version 6.2. We have
done several extensions such as adding support for multiprocessor environments,
and we have also added support for a relational data warehouse environment that
helps us in large environments.”

We constructed a table (see Appendix 2) with the aim of listing all the software product
releases the Company had introduced since its inception. In parallel with this analysis, we
interviewed development team members and management to identify internal changes to the
software solution (in both the server and the client software modules). This was triangulated
with software documentation and additional requests to confi rm our analysis results. The
results of our software release analysis, with corresponding software application frame
releases, are tabulated in Appendix 4. A summary of these two appendices can be portrayed
as follows (see Fig. 29).

Fig. 29. Server and Client Frame Milestones.

Figure 29 shows the lifecycles of both the software product and the software application frame
releases for the case study company. To be able to identify software application frames, software
application frame extensions, or software application frame renewals, we had to compare each
software product release with the changes that had taken place in the corresponding software
application frame release. Fortunately, the Server Development Manager has been with the
Company since its inception and is still actively involved in the development of the software
product. Many of the changes in each product release were confi rmed by him checking in both
the manuals and the source code of the server frame releases.

Client frame development has been mostly performed by an external development organization,
so that each software release has been under strict version control. We could therefore analyze
the changes that have taken place during the years. This was confi rmed by the client software

221

Development Manager, who concluded that the case study company “can go back into any
prior release to see what was changed in the client frame.”

7.2.3.1 Analysis of server frames

The fi rst server software release from the case study company dates back to 1989. It was more
or less a prototype release that demonstrated the software application domain to the founders
of the Company. The fi rst initial server product used Harvard Graphics to display fl at fi les
from the server. According to the Server Development Manager, “the maintenance of these
fi les became impossible later on as the multidimensionality increased the amount of fi les.”
One of the key innovations that the case study company implemented in later development
stages was the concept of “navigation,” where one single chart/report could be used across
dimensions or a combination of dimensions (called a dimension set).

According to our interviews with both the CEO at the time and the Server Development
Manager, it became evident that the Company had maintained the idea of having one solution
that would be deployed across any vertical or horizontal market segment. This type of large-
scale reuse (principle one) across market segments enabled the case study company to deploy
the same software solution regardless of selected market segment. The server and client frame
architectures and underlying technologies were kept unchanged during their lifetimes. This
complies with the second principle of software application frame utilization. It can be argued
that the internal architectural models for both the client and server frames were not specifi cally
implemented for derivative product purposes, but the idea of having one solution without
modifi cations was a strong leading idea in the development. The Development Manager for
the server products concludes:

“I have received requests from right and left during the years and if I had
implemented all of these requests, the server module would be architecturally
a disaster. Our approach has been to enable end user organizations to create a
solution that can be applied to any business area or vertical segment regardless
of the company.”

The fi rst server frame (V1) included fi ve different releases, with one software application frame
extension that was needed to enable better integration to Microsoft Offi ce environments. The
server faced increased pressure for renewal, and this renewal resulted in a renewed server frame
(V2). This renewal included replacement of several internal subsystems, aimed at increasing the
performance of database loads and enabling deployment of larger multidimensional databases.
The renewal included major new rewrites of application interfaces within the server frame,
but these changes did not cause any changes in the communication protocol between the
client and the server frame. The renewed server frame (V2) has had several releases (fi ve) and
extensions (three) since it came out in early 1997. The underlying technology has been kept

222

the same during the years, with the exception of an added programming language (C++) that
has enabled more effi cient communication with the new client frame release (V2).

7.2.3.2 Analysis of client frames

The pressure to renew client frame V1 increased when changes in desktop operating system
technology took place in the middle of the 1990s. First of all, client software applications
transitioned from 16-bit to 32-bit technology. This pressured the case study company to either
convert its existing application to 32-bit technology or completely renew the client frame.
Secondly, end user organizations became more interested in integrating information with
other offi ce productivity tools, such as Microsoft Offi ce. This requirement became an inhibitor
given the competition. The core of the client frame V1 was not architecturally solid: it had to
be renewed to enable future enhancements. The CEO of the case study company concluded
that “we need to fi nd a third-party software company that helps us in this transition, as we
do not have the skill set required.” The work on a new client frame started in early 1998,
becoming one of the largest investments the Company has ever made in any specifi c product.
The client frame was planned to support different derivative products, and it was designed to
be component-based, with different architectural layers. This new client frame became the
basis for two derivative products. With the release of client frame V2, the case study company
decided to separate the release cycles of the server and the client frame from each other. This
demonstrates that while the client and server frames have been isolated from each other from
technological perspective, they are commercially inseparable.

7.3 Ex-Post Analysis of the Case Study Company Through 1998

The fi rst Analytical Application Frame Strategy framework analysis period covers product
development from 1990 to 1998 within the case study company. We presented our elements
of analysis in Chapter 6. The following table portrays our analysis results for the software
application frame (see Table 6):

223

Sub-Strategies for an Analytical Application Frame
Strategy

Software
Application

Frame
Release

Analytical
Application

Frame
Technology
Sub-Strategy

Analytical
Application

Frame
Architecture
Sub-Strategy

Analytical
Application

Frame
Leverage

Sub-Strategy

Dominant
Alignment
Perspective

Evidence of
Alignment
Perspective
Disconnect

Server frame
V1R1
Year 1990-
1992
(Version 2.0)

• iSeries/400
technology on
server

• DB2 on
iSeries/400
relational
technology

• Initial server
frame, client
product still
based on Harvard
Graphics (third-
party technology)

• None • No evidence
of any specifi c
alignment

• No disconnect
identifi ed

Server frame
V1R5 – Ext.1
Year 1996-
1996
(Version 4.0)

• iSeries/400
technology on
server, DB2
on iSeries/400
relational
technology

• Middle-tier
technology based
on Microsoft
COM, C++ and
Visual Basic as
development
language

• Server extensions
to support
new software
application
frames on client
side (PC)

• Change in
database model

• Addition of
dynamic data
groups

• Horizontal
market
segmentation
via a new
planning and
budgeting
software
solution

• “Harnessing
market potential
using analytical
application
frame”

•“Technological
disconnect”

Server frame
renewal,
V2R1
Year 1997-
1997
(Version 5.2)

• iSeries/400
technology on
server

• DB2 on
iSeries/400
relational
technology

• User index
technology on
iSeries/400

• Major
replacement/
rewrite of several
server frame
components

• Use of new
user index
technology within
the database
architecture

• Leverage
achieved via
performance
increase in the
server frame,
which enabled
to address the
needs of larger
organizations.

• “Implementation
of technology
in the analytical
application
frame”

• “Segmentation
disconnect”

Server frame
V2R2 – Ext.1
Year 1998-
1998
(Version 5.6)

• iSeries/400
technology on
server

• DB2 on
iSeries/400
relational
technology

• User index
technology on
iSeries/400

• Extension of
server frame
to support
calculated data
types

• No impact on
frame leverage

• “Implementation
of technology
in the analytical
application
frame”

• “Segmentation
disconnect”

Client frame
 V1R1-6
Year 1993-
1999

• C and C++ as
new implemen-
tation language

• Release
development
outsourced,
proprietary
communication
protocol

• Client frame
based on
proprietary
defi ning
technology

• Six major releases
during its lifetime

• None • No evidence of
any alignment
perspective

• Weak fi t
between frame
architecture
and frame
technology
strategy

Table 6. Analytical Application Frame Strategy Analysis through 1998.

224

The fi rst column identifi es the software application frame release. The three following
columns demonstrate the three sub-strategies within an Analytical Application Frame Strategy
framework with our observations. The fourth column portrays the dominant alignment
perspective identifi ed for the selected analysis period, while the fi fth column expresses
possible fi ts and other alignment perspectives. The fi nal column portrays possible alignment
perspective disconnects that the case study company might have experienced during the
analysis period.

7.3.1 Analytical Application Frame Architecture Sub-Strategy

Sääksjärvi (2002) set four principles for an application frame to satisfy the requirements of
a software application frame. The fi rst and arguably most important criterion is to identify
whether the software application frame is built with the intention of large-scale reuse: to be
able to have several successive products within a product family. All of the analysis of possible
software application frame usage is performed ex-post, which makes it challenging: historical
records must be collected to be able to calculate software application frame effectiveness
and effi ciency. The main goal for the Company was to create a software solution that would
satisfy the needs of a large set of vertical and horizontal markets without having to maintain
several different versions of the same software product. Our interviews with the founders of
the Company revealed that the intent was to create one software solution. There was no plan
to create a product family based on a common core (software application frame). The reuse
was more or less achieved by enabling a large set of customers to use the same technology
and solution base.

In a similar manner, the second principle was realized, as the basic underlying technology
(iSeries/400) and architectural style have stayed the same during the years until 1998, when
the server frame was renewed. It is also fair to conclude that the management of the Company
was exceptionally forward thinking, as the initial server frame included all the basic elements
of a defi ning technology (meta data repository, ETL functionality, etc.) that was expected to
be found within a software solution in the given software domain. The case study company
built a concept called the “Chart Gallery” that enabled user organizations to save charts/
reports into a common repository with business analytics such as measures (data types) with
corresponding exception reporting (with variances). This enabled end user organizations to
implement a solution more rapidly when compared to other solutions in the marketplace.

When the software product architecture implemented by the case study company is compared
with the analytical application functional architecture in Chapter 3 and the analytical
application frame architecture sub-strategy in Chapter 4, we can identify clear resemblances
in these models. The biggest difference is mainly in functional components and technical
implementation of the software application frame. In the initial server and client frames,

225

the development team did not use a strict layered architectural model. This caused some
confl icting designs, such as application logic residing in the wrong software application frame.
Even if the development organization recognized these defi ciencies, the logic could not be
easily changed due to different execution and development environments.

The two last software application frame principles – software application frame extension
and software application frame renewal – were also identifi ed during the fi rst analysis period
(1990-1998). To be able to satisfy the needs of users who required better integration with
offi ce productivity tools such as Microsoft Excel, the server frame (V1R5 – Ext.1) had to be
extended to include a new module that enabled fl at fi le extraction for these types of offi ce
productivity tools. This extension did not disturb or change any of the existing modules within
the server frame. Another clear indication of change to the server frame was introduced
during 1997, when the server frame met increased pressure to enable accommodation of
larger multidimensional OLAP databases. This prompted the case study company to renew
the server frame (V2R1). This was a major new release, with most of the internal modules
being replaced or refi ned. The Company also included new underlying technology that had
not been used before in the server software environment (user indexes that are part of the
OS/400 operating environment). One additional extension was introduced to the server frame
(V2R2 – Ex.1) when new calculated data types were added to the software solution. These
calculated data types had previously been part of the client frame, but they had to be added to
the server frame to service other client software packages as well and to be part of a common
business analytics repository as defi ned in the analytical application frame architecture in
Chapter 4.

7.3.1.1 Server frame architecture for initial server frame V1R1

The initial server frame (V1R1) included the most rudimentary functionality required of
analytical application defi ning technology. The solution was purely based on a server module
with an extraction, transformation, and load functionality that enabled the integration from
operational applications such as ERP software applications. The fi rst version of the server
frame did not include complex report/chart types. The main chart type was a time series chart
that enabled end users to track strategic trends. This led to the initial naming of the product
(“Trendbank”). The CEO concluded in our interview how the product was positioned:

“The ability to trend business information gave us the idea to call the overall
solution for Trend Bank and this was exactly what business executives needed
and we were the fi rst one to provide this type of functionality on the iSeries/400
hardware environment.”

The fi rst release of the server frame was dependent on Harvard Graphics from 1990 to 1993.
The overall functionality of the solution was cumbersome, requiring lots of manual maintenance.

226

The Development Manager for the server frame confi ded in one interview: “if customers only
know the underlying structure and what we were doing during the nights when updating and
changing the server frame modules based on the feedback that was received during the business
hours.” Service revenue from 1991 to 1992 was approximately the same size as the license
revenue. It was evident that the software product became more mature in 1993 forward, as
software license revenue grew more rapidly when compared to service revenue.

7.3.1.2 Server frame extension (V1R5 – Ex.1) – Buying time for client software

To buy some time for the old client frame (1996 to 1998), the case study company initiated
a development project wherein three new software applications were created. Two of these
applications were based on Microsoft Excel technology and the third was the software
solution which enabled data transfer from the OLAP server engine. The client frame had to
undergo several major changes in a technological sense, such as moving from 16-bit to 32-bit
environments, but none of these added new functionality to the client frame itself.

However, the existing server frame did not have the ability to align with these new requirements
and had to be extended with a server frame extension (Server frame V1R5-Ext.1). This
extension came out with software release 4.0. Up until release 5.7, both server software and
client software releases were synchronized with same release numbers, but with the renewal
of client frame, the software release schedules were changed and numbering refl ected each
software release separately. Another internal change in the server frame architecture was a
change in the data model that enabled the database size to grow beyond its old limitations.

Another server frame extension (V2R2- Ext.1) was developed for software version 5.6 that
included major new functionality, enabling calculations to be defi ned in the multidimensional
OLAP server database and calculated on data retrieval. This was a clear extension to the
server frame. This extension did not disturb or impact any of the existing modules or interfaces
(principle three). This new extension also increased scalability, as most of the calculations
were executed on the server and not on the client, as was most common way of doing things
at the time.

7.3.1.3 Client frame evolution (V1R1-6)

The server frame did not include any specifi c vertical market segmentation functionality that
would have helped the case study company to address specifi c needs for selected market
segments. This type of market segmentation was at the time not very common. Only recently
have analytical application software vendors begun extending their solutions by enabling
vertical market segmentation via predefi ned business metrics and data models. The server
frame lasted more or less with a similar internal architectural structure until the mid 90’s,
when end user organizations started to pressure the case study organization to add more

227

support for Microsoft Offi ce environments. Due to the outdated client frame architecture, the
development team could not amend the existing client frame to include new functionality. The
frame had become fragile, requiring considerable work to add any new features. The Chief
Architect of the software development organization concluded:

“Without renewing the client frame we will not be able to add any new features.
We keep on adding new stuff into the product and the previously added features
do not work anymore. We can not keep doing this anymore.”

The quote from the Chief Architect refl ects a typical situation when the internal architecture
of software application becomes fragmented and the development team spends more time
maintaining the software solution and trying to keep it running than adding new features
that end user organizations have been asking for. A new client frame was introduced and
implemented between 1998 and 2000, one built to satisfy both new technical and functional
requirements.

7.3.2 Analytical Application Frame Technology Sub-Strategy

The case study company had fi ve different server frame versions and six different client frame
versions during the analysis period. The server frame included one frame extension (V2R2
– Ext.1) that extended the analytics functionality within the analytical application frame
architecture.

7.3.2.1 Server frame V1R1

The initial server frame release from 1990 to 1992 was the fi rst crude server software release
that the Company built with support for the Harvard Graphics presentation tool. The server
frame included the fi rst versions of ETL components that enabled integration of physical fi les
on the iSeries/400 server. The programming language environment was purely based on
RPG, as this was the only programming language environment supported by iSeries/400. The
technical architecture was more or less a server software solution with rudimentary fl at fi le
transfer mechanisms to support the viewing of information using Harvard Graphics.

According to the Server Development Manager “during the days I did consulting at the
customer site and during the nights I did programming of the features I realized were missing
in the product.” The execution and development environment during this server frame release
was exactly the same environment (iSeries/400), with the included integrated RPG compilers
and programming environment. The company released fi ve different versions (V1.Rel. 1-5)
of the server frame during 1990-1997. During this time period, the technological foundation
stayed the same.

228

7.3.2.2 Client frame V1R1 introduced

With software release 2.3 (a combined server and client software release), the Company
introduced a new client software solution that was very different from the server frame
solution from a technological perspective. The overall architectural model changed to native
client/server, with a highly optimized communication protocol between the iSeries/400 server
and the client software. This communication protocol was built on top of Advanced Program-
to-Program (APPC) communication (part of IBM’s SNA architecture). The protocol required
that a router to be installed on the PC desktop that used the client software. The initial client
software solution was based on the IBM OS/2 operating system environment, as this was seen
as a strong component at the time. The CEO at the time explained in an interview that “OS/2
was a natural choice for us as it seemed to be well aligned with other IBM technologies and
it was not sure at all that Microsoft Windows would become the standard.” Soon thereafter,
the Company decided to support the Windows operating system environment as well, using
a cross-platform development approach. Similar decisions were made at the time by other
companies such as Netscape, which was trying to support Internet browsers in different
client operating system environments (Cusumano and Yoffi e, 1999). The decision to support
cross-platform development within the client frame environment required the Company to
implement not only domain-specifi c application logic, but also infrastructure components
that are typically already implemented as part of the integrated development environment.
Because of the immaturity of graphical user interface development environments and the need
to support two different operating system environments (Windows and OS/2), the Company
made a decision to build and use proprietary class libraries in its development.

The decision to support and build core infrastructure components resulted in painful
experiences when the IT infrastructure market and end user organizations moved from 16-bit
to 32-bit environments. Similar results were reported by Cusumano and Yoffi e (ibid) when
using a cross-platform development approach at Netscape Corporation. The Company was
forced to migrate the existing 16-bit software frame into a 32-bit environment. Due to the
proprietary class libraries, the task became major, taking several man months to accomplish.
The new client software required a new execution and development environment that was
based on Microsoft C/C++ development tools.

The client frame showed initial signs of a weak underlying architecture and structural fragility
in the mid 1990s. This could be measured by analyzing the cost of maintaining the solution
and the company’s inability to extend the solution with new functionality without breaking
existing code. The Client Software Development Manager concluded in our interview that
support calls were taking more time than new development:

229

“I keep on spending most of my time on the phone talking with customers and
partners about the bugs that we have in our product. If we keep on adding new
features, our problems will just accelerate and we will defi nitely lose the war.”

The old client frame technical architecture was technically not componentized, neither did it have
architectural layers that would shield IT infrastructure elements from functional domain-specifi c
elements. This mixture of C/C++ implementation language with partly object-oriented and
non-object-oriented aspects had to be replaced. The Company did buy some time with this
replacement by coming out with new Microsoft Offi ce supported products during the time period
from 1996 to 1998. The client frame replacement project was initiated during early 1998.

7.3.2.3 Server frame (V1R5 – Ex.1) – extension to support Microsoft Offi ce
solutions

With the requirement for integration with the Microsoft Offi ce environment, the case study
company introduced new underlying technology to support the development of Microsoft
Excel-based planning and forecasting solutions. To support the integration between Microsoft
Offi ce and the iSeries/400 environment, the development organization had to implement a
server frame extension (V1R5-Ex.1) that enabled extraction of both meta data and data from the
multidimensional OLAP server database. This new server frame extension was still based on
iSeries/400 technology, but the middle-tier implementation was based on C++. The planning
and forecasting solutions were based on Visual Basic for Applications (VBA). The Company
had to add new personnel who had experience in object-oriented languages and OMT++, one
of several predecessors to UML. The execution and development environment was Microsoft
integrated C++ with Microsoft Foundation Classes (MFC). Microsoft Visual Basic and Visual
Basic for Applications were used to implement these new Microsoft Offi ce solutions. The
software development approach was also changed, with a move toward component-based
software development and defi ned software development methodologies such as OMT++.

The new software solutions increased the complexity of the software development environment,
as new software development languages were added. Also added were new integration
requirements between the Microsoft Offi ce solutions and the OLAP server architecture. This
new Microsoft Offi ce dependency added additional requirements to the IT infrastructure
environment from both the end user organization and the software vendor perspective. The
case study company also had to introduce a middle-tier architecture based on Microsoft COM
to enable communication between Microsoft Offi ce products and the OLAP Server. The Chief
Architect concluded in an interview concerning these new integration requirements:

“There is no way we can add additional complexity in our client frame to enable
these new Microsoft Offi ce solutions to communicate with the OLAP server. We
must build a middle-tier server software solution that is completely separated

230

from the existing client frame. If we do this in the client frame, we will have severe
problems in stability and this could lead to problems in our customer-base.”

Another dimension that the Company had to evaluate was whether to add core competency in
this new technology. The decision was to use external contractors. We concluded in Chapter
2 that software vendors should avoid externalizing core competence, as the accumulation
of knowledge outside the software organization could have an adverse impact on future
software development. External contractors can be used to develop software assets based
on the design of a software vendor and with strict control of source code. The Development
Manager for the client software product concluded:

“Each day the external contractors have to check in their work to the source
control software environment that enables us to ensure the integrity.”

Use of the outsourcing organization increased the pressure to add version and confi guration
management procedures into the overall development processes of the Company.

7.3.2.4 Server frame renewal V2R1

In the mid 1990s, the server frame faced increased pressure for a major renewal (principle four),
as the competition among iSeries/400 software vendors increased and end user organizations
had a requirement to build larger multidimensional databases. In our interview with the Server
Development Manager about the reasons for the renewal and the work included in the renewal:

“I knew it was coming and I had started planning it already early 1996 even if
customers really did not complain about scalability. However, I do not even want
to think about the other alternative of not having done something about it. It
would now be too late.”

This renewal that came out in software release 5.2 was based on iSeries/400 proprietary
indexing technology (user indexes), which enabled the server developers to utilize features of
the iSeries/400 hardware environment that do not exist in other operating system and hardware
system environments in the same form. The technological foundation did not change with the
last server frame release (Server frame V2R2 – Ext.1) for this analysis period.

7.3.3 Analytical Application Frame Leverage Sub-Strategy

The original founders of the Company had the simple vision of creating a solution for
management in the IBM midrange market. This vision was to provide easy access to corporate
information by using a personal computer. This original market segmentation included two
main factors that would determine the future of the Company. First of all, selection of IBM
midrange technology would restrict the Company from offering its solutions on any other
hardware and/or operating system environment. Secondly, this market segmentation also

231

included a strong statement of belief in the future of IBM’s midrange technology. Both of
these selections have been major inhibitors to any future market segmentation strategy for the
Company. From the technological perspective, the server frame technology selections have
restricted the Company from broadening its solutions to any other hardware or operating
system environments.

7.3.3.1 Server frame extension (V1R5 – Ext.1) to add new solutions

Our interviews with management indicated that pressure was mounting from existing customers
around 1996-1997 to add new functionality to the solution offering. A key requirement was
to be able to have better integration with offi ce productivity tools such as Microsoft Offi ce.
According to the Chief Architect of the Company, this type of integration was not possible to
implement in the existing client frame without jeopardizing the stability of the client frame.
Therefore, the development team decided to add server frame extensions to enable this type
of integration. As the existing client frame did not support additional features, the Company
decided to build new products, based on Microsoft Excel technology, to enable the use of data
extracts from the server product. The chief architect evaluated the success of these changes
in following way:

“In retrospect, we should not have created the middle-tier server, that part of
technology should be really part of the server frame and not a product that is
installed on client desktop. We have run into so many different problems with
this architectural model like distribution of queries, query-sets, scheduling the
data updates, integration problems with Microsoft Offi ce due to technological
problems, etc. We have also run into a myriad of problems because end user
environments have so many different versions of Microsoft Offi ce, desktop
operating system environments, and other factors that will increase the instability
of the overall offering.”

The decision to add support for these new Microsoft technologies was also to enter budgeting
and forecasting markets, whereby end user organizations can extract information from
decision support server into spreadsheets and then submit budgets and plans back to the
OLAP server for analysis purposes. This type of market segmentation goes beyond regular
market segmentation, as it provides a completely new software application area in which the
Company had no prior knowledge. This was a strategic move into new application areas and
underlying technologies on the part of the case study company.

7.3.3.2 Renewal of server frame V2R1 to broaden segmentation

Another key event for the Company occurred when it decided to update its server frame (V2R1)
technology to include more robust support for larger organizations. This enabled the Company
to move its offering from small- and medium-sized organizations to larger corporations. This

232

new release of the server frame (V2R1) included the use of index technology, enabling faster
performance in database loads and maintenance of the database structures. The performance
improvement enabled the Company to change its position on the price/performance matrix
within the analytical application frame leverage sub-strategy.

The Company did not show any specifi c market segmentation strategy in the development of
client frame V1R1-6 other than predefi ned chart/report galleries for typical sales, wholesale,
and distribution organizations. The whole idea behind the software solution was to provide
an easy-to-install software package that could be applied to any vertical or horizontal market
segment. The Company did not have any specifi c features or plans to amend the client frame
to other market segments. The product did not have the fl exibility to include any variation
techniques for further market segmentation.

Overall, neither the server nor client frame included any specifi c features/functionality that
would enable effective analytical application solution variation. The server frame with its ETL
functionality and meta data repository did include the ability to predefi ne operational data
sources and create predefi ned charts/reports, but none of these was implemented with the
aim of variation to increase the effectiveness of solution implementation in different market
segments.

7.3.4 Summary and Key Findings

To be able to evaluate the success of product development within the case study company for
the fi rst analysis period, we need to evaluate it against the six alignment perspectives defi ned in
Chapter 4. The initial server frame release (V1R1), with its corresponding frame technologies,
frame architecture and customer segments, targeted any market segment (undifferentiated
segmentation strategy) that had iSeries/400 as its hardware foundation. The software solution
was based on multidimensional OLAP functionality. The business model was relatively simple,
as the technological foundation was one set of technologies (iSeries/400) and the business
defi nition was clear. This is how the CEO explained the situation in our interview:

“Back in the late 1980s IBM midrange computers where like ‘black boxes’ for the
users, and it seemed to be very diffi cult to deliver information to users, desktops.
Based on this limitation, we saw a tremendous business opportunity to deliver
information easily to management users and that is why we decided to categorize
our solution as Executive Information System, even if we already had a robust
OLAP server architecture as the backend while many others had only a sexy user
interface but nothing to show in the backend.”

Based on our interviews and documentation (internal memos), it became evident that the
case study company did not have any specifi c Analytical Application Frame Strategy defi ned
when designing and implementing its fi rst releases of software solution. We stated before

233

that the Company had managed to implement a software application frame architecture that
enabled large-scale reuse (principle one) when reviewing it against the number of customers.
During the years 1990 through 2002, the number of users had steadily grown (see Appendix
4). This enabled the Company to achieve leverage on its software investment. In an interview
with the Director of Product Strategies, it became clear that the very early vision had been to
provide a solution that could be used across any vertical market segment. The development
team did not implement any customer-specifi c features that could have caused incompatibility
problems in future release updates. We argue that this has been one of the key competitive
factors for the case study company when compared to other iSeries/400 vendors.

We had to pose the question in our analysis of whether any specifi c sub-strategy had
dominated during the fi rst analysis period, and whether any fi t (any relationship between two
sub-strategies) had been more strongly emphasized. In our analysis, we could not identify
any specifi c alignment model during the period 1990-1992, when the Company had a server
software solution with a Harvard Graphics interface. The case study company was very small
and entrepreneurial, with the aim of surviving the economic downturn which took place in
early 1990s. When we review the same question from a fi t perspective for the fi rst server
frame release (V1R1), we recognized “Technological Responsiveness” as the most dominant
fi t, as the founders of the Company had a strong background in IBM midrange technology,
and this was used to build the initial software solution. The management of the Company did
not emphasize any given vertical market segment other than the availability of an iSeries/400
server in the end user organization.

The fi rst signs of true strategic market segmentation were identifi ed in mid 1990s, when the
management of the Company realized that they had to extend their solution to the budgeting/
planning solution market. This decision was more or less driven by a “Harnessing market
potential using an analytical application frame” alignment perspective. This resulted in the
development of a server frame extension (V1R5, Ext.1) and a new set of Microsoft Excel-based
software solutions. The emphasis in this decision was very function/solution oriented, and less
emphasis was given to the selected technology. Therefore, there were signs of “Technological
disconnect,” as the technological foundation for the software got less attention. The Director
of Product Strategies concluded:

“We did not realize the implications of selecting Microsoft as the foundation for
the development of a budgeting/planning solution. We later found out that end
user organizations have a need to do their budgets online and Microsoft Offi ce
development environment does not provide this functionality. It is fair to say that
we were locked in Microsoft technology and could not move in any direction.”

The strongest fi t was “Functional Flexibility.” The dominant alignment perspective was
“Harnessing market potential using an analytical application frame.” The software application

234

frame for the budgeting/planning application was generic, usable across any customer
segment. The selected alignment perspective showed potential “Technological disconnect,” as
most of the focus was given to the analytical application frame and the analytical application
architecture sub-strategy.

According to our interviews, the Company met increased pressure (during 1997 and 1998)
from larger end user organizations to be able to build larger multidimensional OLAP databases.
This resulted in the renewal of the server frame (V2R1), which included major rewrites of
internal modules and interfaces (principle four). Our interviews with both management and
development personnel revealed that this renewal was not an attempt to change market
segmentation, but was more or less a move that had to be done to be able to survive given
the competition and to remove the physical limitations on the size of the database that could
be created. Another signifi cant requirement on the server frame was to enable users to access
the application using a graphical user interface in the Microsoft Windows environment. This
task required that two new people be added on the development team, doubling the cost of
server frame development when compared to the costs in 1996.

The renewal of server frame V2R1 was a clear attempt to improve “Technological
Responsiveness,” as the server frame architecture became weak and could not have been
the foundation for future customer feature amendments. The same server frame release also
had signs of “Functional Flexibility,” as the solution enabled the Company to lift its solutions
to new price/performance tiers. This type of segmentation did not require any specifi c
variation techniques from the product development team. The main alignment perspective,
“Implementation of technology in the analytical application frame,” was identifi ed, as the
Company focused more on technology and the internal server frame architecture. This resulted
in an improved software release that provided the Company with better price/performance
segmentation when selling the solution. In a similar manner, the functional improvement brought
about with the server frame extension (Server frame V2R2 – Ext.1) was an improvement on
the server frame architecture which would specifi cally enable the Company to better satisfy
the needs of business analytics. Even if both the server frame renewal (V2R1) and server
frame extension (V2R2 – Ext.1) improved market segmentation, the emphasis was more on
application frame technology and application frame architecture. This resulted in increased
risk of “Segmentation disconnect.”

The client frame evolution did not show any specifi c signs of an alignment perspective. Most
of the time was spent in adding new functionality into the client frame to satisfy the needs of
end users. The client software became very fragile, as it lacked a robust internal architecture.
Less emphasis was given to architectural soundness and technological foundation. The lack
of architectural soundness eventually led to increased maintenance costs, and the lack of a
suitable technological foundation led to a large migration effort, supporting a transition from

235

16-bit to 32-bit environments. We did not identify any efforts of the Company to increase the
fl exibility of the client frame to accommodate the needs of new market segments.

7.4 Ex-Post Analysis of the Case Study Company From 1998

The second analysis period for the Analytical Application Frame Strategy framework analysis
covers product development within the case study company from 1998 to 2002. We presented
our elements of analysis in Chapter 6. The following table portrays our analysis results for each
respective application frame (see Table 7).

Sub-Strategies for an Analytical Application Frame Strategy

Software
Application

Frame Release

Analytical
Application

Frame
Technology
Sub-Strategy

Analytical
Application Frame

Architecture
Sub-Strategy

Analytical
Application

Frame Leverage
Sub-Strategy

Dominant
Alignment
Perspective

Evidence of
Alignment
Perspective
Disconnect

Server frame
V2R3 – Ext.2
Year 1999-1999
(Version 5.7)

• iSeries/400
technology on
server

• DB2 on
iSeries/400
relational
technology

• User-index
technology on
iSeries/400

• Extension of server
frame to support
multiprocessor
environments

• Ability to create
100 time larger
dynamic addresses

• Ability to address
larger databases
enabled move
on price/
performance
matrix

• “Implementation
of technology
in the analytical
application
frame”

• “Segmentation
disconnect”

Server frame
V2R4 – Ext.3
Year 2000-2000
(Version 6.0)

• iSeries/400
technology on
server, DB2
on iSeries/400
relational
technology

• Relational
technology
using SQL as
DML language

• Size of OLAP
database increase
tenfold

• Extension of
server architecture
to support new
architectural tier

• New application
frame with frame
components

• None other
than the server
would enable
new price/
performance tier
leverage

• “Harnessing
market potential
using analytical
application
frame”

• “Technological
disconnect”

Client frame
renewal, V2R1-2
Year 1998-2002
(Version 1.0 to
2.4)

• Native
Microsoft COM
technology

• IIS technology
• Component-

based software
engineering

• Major replacement/
re-write of client
frame with two
major releases

• Strong frame
leverage for
future client
software
derivatives

• “Implementation
of technology
in the analytical
application
frame

• “Segmentation
disconnect”

Derivative
products from
client frame
V2R1
Year 2000-2002

• Microsoft
DCOM

• Microsoft IIS
• C++, Visual

Basic, Java
Script, VP Script

• Thin client
architecture based
on middle-tier
server, core client
frame components
reused in derivative
products

• New derivative
client products
from client
frame, no
specifi c vertical
segmentation
strategy

• “Implementation
of technology
in the analytical
application
frame”

• “Segmentation
disconnect”

Table 7. Analytical Application Frame Strategy Analysis from 1998.

236

The case study fi rm had fi ve server frame releases and three server frame extensions during
the analysis period. The initial client frame (V1) was replaced with a new client frame (V2)
that enabled the case study company to produce two derivative products. Two client frame
releases occurred during the analysis period.

7.4.1 Analytical Application Frame Architecture Sub-Strategy

In a manner similar to that of the fi rst analysis period, we need to evaluate whether the four
software application frame principles were met when defi ning the software application frame
releases for the second analysis period. The principles of large-scale reuse (principle one) of the
server and client frames did not change from server frame version V1 to V2. Even when the server
frame was renewed, the internal functionality was kept the same, with corresponding analytical
application frame elements such as the defi ning technology, the service component layer, and
the extension component layer. The case study company added one additional data warehouse
tier based on relational technology. This enabled the product to address new enterprise data
warehousing requirements that had arisen specifi cally in large end user organizations. The
Company had three server frame extensions during the analysis period, and it renewed old
client frame V1. The new client frame V2 gave the Company the ability to create the fi rst true
product family based on common software assets that were part of the client frame.

The pressure to increase the functionality of both the server and the client frames increased
during 1996 and 1997. The Company had to evaluate once again its ability to provide the
functionality expected from the software solution. From an analytical application frame
perspective, the Company had three options to choose from when deciding on the renewal of
client frame. The fi rst option was to keep on adding new features and functions to the existing
client frame, which would have increased the maintenance costs and jeopardized the stability
of the client frame itself. The second choice was to amend the existing client frame with new
extensions without impacting the existing client. The third and more radical alternative was to
replace the client frame completely with a new client frame.

In our interviews with senior development managers, we learned that the Company did
not really have an alternative other than to replace the existing client frame by using a new
architectural model and a new execution and development environment. The existing client
frame was outdated and architecturally too complex to modify. Extension or renewal could
not be accomplished without major investment. Even if the Company had invested money in
maintaining the existing code base, the results would have been unpredictable in the future,
as technological changes could not have been embedded into the existing client frame.

7.4.1.1 Two new server frame extensions introduced (V2R3, Ext.2 and V2R4, Ext.3)

The Company initiated a renewal process by renewing the server frame (V2R1) in 1997. The

237

initial product based on the new server frame was released in 1998. This new server frame
enabled deployment of larger OLAP multidimensional databases, which had become a major
requirement for larger end user organizations. This server frame was later amended with several
frame extensions that provided additional functionality without disturbing the core server frame
and its stability (principle three). One of the new extensions that came out during 1999 enabled
the software to run natively in a multiprocessor environment and take advantage of several
CPU’s when loading data into the multidimensional OLAP database. This new functionality was
made possible by implementing a new server frame extension (V2R3, Ext.2) that was included
as a new module without disturbing existing modules or interfaces in the server frame.

A new major extension was released early in 2000 that enabled the Company to extend its
solutions to enterprise data warehousing. This new extension can be regarded as a server frame
in itself, coexisting with the original multidimensional OLAP server frame. The new extension
enables end user organizations to build relational enterprise data warehouse structures. The
Director of Product Strategies discussed in an interview the importance of amending the
solution to enable enterprise data warehousing:

“This new relational technology takes us to the next level in the competitiveness
as some countries have always been a problem for us. German customers for
example want to build huge OLAP databases with too large dimensions, and this
has given us negative feedback. With this new technology we are able to build
detailed level data warehouses and keep the OLAP multidimensional server as it
was originally intended to be used for strategic trend analysis.”

The Director of Product Strategies continued explaining that “these two server frames will
eventually become one frame with one set of ETL tools that enables us to create a more
user-friendly look-and-feel for the products.” The server frame was implemented using more
architectural layers. For example, the communication module for client/server communication
was implemented as a new functional layer above the data structures. The server frame (V2R4,
Ext.3) was complemented with the ability to build larger multidimensional OLAP databases
by a factor of ten.

7.4.1.2 New client frame V2R1

The management and development organizations of the case study company defi ned three
ambitious goals for the client frame (V2R1) renewal.

1. The software application frame would have to enable derivative product
 development from a common client frame.
2. The overall architectural model for the client frame would be highly layered,
 with the business and analytics component layers isolated from the presentation
 and distribution component layers.

238

3. The new client frame would have to support other software programs calling
 its application programming interface to support future client frame
 extensions.

These requirements refl ect the analytical application architecture described in Chapter 4, with
the exception of the middle-tier layer that acts as the broker between the analytical application
defi ning technology and the service component layer. This layer was implemented to achieve
more fl exibility in future client frame development, such as support for other environments
and thin clients (see Fig. 30).

Fig. 30. New Client Frame Architecture.

239

From an architectural perspective, a layered architectural model enables the Company to
amend its solution to support different client environments such as the Pocket PC and cellular
phones. If the Company had implemented the solution in the traditional non-layered model,
derivative technological product development would have required considerable effort. We
interviewed the Chief Architect of the solution, the Development Manager, and several of
the development team members. Each interview resulted in the conclusion that layering the
software architecture enabled the Company to add features later in the development cycle.
The client frame includes predefi ned design patterns such as database logging, exception
management, meta data management, and several others that can be shared regardless of
the device used by the end-user analyst, both now and in the future. Each architectural layer
within the client frame architecture has a well-defi ned application programming interface,
which enables each software component to work within a single application, with both a
presentation and a business logic layer or, alternatively, using a model in which the presentation
layer is separated from the business logic layer. This latter model is specifi cally used in thin
client environments, where business logic must reside in middle-tier servers. This kind of
separation would not have been possible with a traditional client/server architecture.

The overall client frame architecture is divided into several layers (an analytical application
server layer, a middle-tier layer, a business component layer, a presentation component layer,
and an end user application layer). The architectural model is also divided into vertical layers.
The framework components can be reused across any derivative end products, across any
analytical application software components (the components that provide the functionality
in the application itself), and fi nally across the software application that represents the
software artifact that is delivered to the end user organization. An interview with the Project
Manager from a third-party vendor revealed that the common framework components were
defi ned based on their generic functionality within the selected application domain, while
the analytical application components were defi ned and designed based on the functionality
requirements of the software solution. The middle-tier layer acts as a load-balancing tier,
providing more scalability for the overall solution. One of the key fi ndings was that each
middle-tier service layer has a corresponding counterpart in the business component layer.
Therefore, the components that are implemented in the middle-tier layer have divided
functionality. They will be controlled via the application programming interfaces that both
layers share. In an interview with the team leader for the entire client product family, it was
learned that extremely rapid implementation of SQL drill-through was implemented via these
paired software components.

A comparison of this client frame architecture with the analytical application frame architecture
in Chapter 4 shows that the client frame architecture is only a partial implementation of
an analytical application frame architecture, with frame components from the business and

240

analytics component layer and the presentation and distribution component layer. This type of
separation of user interface and distribution logic from the business and analytics component
layer enables software developers to reduce dependencies between different architectural
layers. The development organization had to implement middle-tier software components to
manage connection pooling, adding communication managers to the analytical application
server layer presented in Figure 30. The client frame architecture model portrays a business and
analytics component layer that will be applicable and sharable for all derivative products within
the client product family. The same applies to the presentation and distribution component
layer. This layer will also implement the functionality needed to display information on
different devices. Software development organizations typically expect this type of software
infrastructure technology to be found in the software component framework or in the software
components that are part of the execution and integrated development environment.

The selected architectural model, with clear separation between the IT infrastructure
environment and the application domain environment, enables the case study company
to deploy and reuse common software assets across different derivative products. This
layered architecture has enabled our case study company to repackage modules in different
confi gurations using different collections of software components. Usage of a software
component framework enables the development organization to propagate or create new
additional services without having to change the client frame itself.

7.4.2 Analytical Application Frame Technology Sub-Strategy

We portrayed all the needed elements within an analytical application technology sub-strategy
in Chapter 4. During this analysis period, there were two major changes in the development
environment. First of all, the server frame development team included new implementation
technologies such as SQL as part of the data manipulation language. The client frame renewal
included several other technologies which have resulted in a more complicated execution and
development environment.

7.4.2.1 Server frame to support larger database environments (V2R3, Ext.2)

The server frame version in 1999 (Server frame V2R3, Ext.2) did not include any major new
technologies other than the ability to utilize iSeries/400 multiprocessor environments more
effi ciently. The Server Development Manager concluded in an interview that “large end user
organizations will be able to utilize the iSeries/400 hardware to its fullest and the effi ciency
of our ETL processes will increase dramatically.” The release included the ability to increase
the size of “dynamic addresses” by a multiplier of one hundred, which enabled end user
organizations to create larger databases.

241

7.4.2.2 New server frame to support a new architectural tier (V2R4, Ext.3)

The management of the Company decided to invest in an additional data warehouse layer
that enabled end user organizations to build enterprise data warehouses using relational
technology. This server frame release can be regarded as a server frame release by itself,
with the same underlying technology as the initial multidimensional OLAP server frame. The
new OLAP server frame release (V2R4, Ext.3) extended the size of the OLAP cube tenfold,
which benefi ted larger organizations. According to the development team members, the
communication module was rewritten using C++ as its implementation language. This was
something that the iSeries/400 included as an alternative development language in the late
1990s. Interestingly, the operating system environment for OS/400 was written using C++
when IBM moved the operating system environment from CISC to RISC processors, and it
took a while to get support for the C++ development environment on the iSeries/400. This
communication module was implemented as an extension to the server frame, with data
exchange between RPG and C++ modules.

The new relational server frame release did not include any major new technologies other than
including SQL as part of the data manipulation language. From a technological perspective,
both of these server frame releases were still mostly based on RPG. This obviously prevents
the Company from moving the application logic to any other operating system or database
environments. Moreover, the selection of RPG as main implementation language also
impacted the execution and development environment in a way similar to that of the fi rst
server frame (V1) release. If the Company wants to extend its solutions to other environments
in the future, it will be a major investment for the Company not only in technology, but also in
core competence and other factors that are at present unknown to the Company. These types
of technological choices are very diffi cult for any software vendor, as software technologies
could potentially move in different directions, as has been seen in the Microsoft vs. Java
implementation communities.

7.4.2.3 Client frame renewal (V2R1-2)

The renewal of the client frame was based on several factors, but the most compelling
factors were the increased maintenance costs and the inability to add new features to the
client product without breaking existing code. Our interviews with the development team
members revealed that the selection of a new underlying IT infrastructure environment did
not leave many choices, as most of the selections were already chosen by the market: the
new client frame had to be based on and supported by Microsoft Windows. Secondly, this
new client frame would have to be used in thin client environments. The only choice at the
time was Microsoft web server technology, as the comparable web technology in the OS/400
environment did not meet the requirements set by the application group. These technologies

242

also supported distributed component technology (DCOM), needed to distribute functionality
across different architectural layers within the selected application architecture.

These selections refl ected the core competence of the development team members, as the
client frame was heavily based on the Microsoft application development environment with
its corresponding execution and development environments. The Microsoft development
environment also supported natively distributed computing (DCOM), which was needed
to provide load balancing between the client software module and centralized meta data
management. Load balancing was planned to help an existing architectural design fl aw
that prevented executive management end users from using the client software application
remotely with large OLAP databases. Instead of loading meta data into a local client, the
meta data would be staged in the middle-tier server. Using distributed computing, the client
software could act as though the meta data were local. To evaluate each technology selection,
the technology group documented each alternative selection and combinations of feasible
selections. In the end, most of the selections were decided based on practical reasons, as
comparable technologies were either weak or did not fulfi ll the criteria set for the solution. An
excellent example of an alternative technology for distributed computing was CORBA, which
at the time of selection had 42 different implementations, each requiring royalty payments.

To meet the functional requirements for the new client frame, the development team concluded
that a highly modular multi-tiered architectural model would be best suited to the current and
future requirements of the software solution. Modularity had more potential to facilitate the
use of common software assets across different derivative software products within a product
family. A multi-tiered architectural model could give additional fl exibility for better load
balancing with larger end user organization analytical application implementations. A multi-
tiered architectural model would enable the software development team to build a business
logic tier with centralized functions such as meta data management and confi guration and
installation of software. This type of layered software development approach enabled the case
study Company to plan, design, and deploy thin client environments, as most of the business
logic resides in the middle-tier server environment. The Development Manager of the client
frame team noted in an interview:

“Middle-tier technology will enable us also to implement a software wrapper
around the “legacy” analytical application server and this will therefore minimize
the changes that would have to be implemented to the server frame itself.”

 According to the development team, a layered component model adds dynamics and
fl exibility in future product amendments, as frame components can be scattered across
different architectural layers. A middle-tier solution will increase the scalability of the solution,
as client users can use several middle-tier servers instead of one. From a software development
perspective, a multi-layered architectural model is more challenging for software developers,

243

as the software must be divided into separate logical layers according to the model-view-
controller paradigm.

7.4.3 Analytical Application Frame Leverage Sub-Strategy

The case study company had not practiced any serious market segmentation other than to provide
an analytical application solution for the IBM midrange computer market. This segmentation is
very coarse and does not provide any vertical market segmentation as such. The fi rst conscious
market segmentation was undertaken when the Company decided to enter the enterprise data
warehousing market by extending the server frame with an additional database tier (V2R4,
Ext.3). This segmentation was more or less a move in the horizontal price/performance matrix,
as the Company could charge more for the solution, which was specifi cally aimed at larger
enterprises. A major success factor for the Company was the success of the US subsidiary,
which made several new enterprise deals early in 2000 due to the increased performance of
the multidimensional OLAP server frame and the relational server frame.

The new server frame (V2) did not include any other features or functions that would have
promoted vertical market segmentation, such as a solution for different vertical applications
that would include a business analytics repository with predefi ned business metrics and other
critical performance indicators that are typical for a given vertical market segment. These
types of applications have become more accepted, and in some cases required, amongst
end user organizations (Eckerson, 2002). The value proposition for end user organizations
is to buy most of the functionality that is needed. The rest will be modifi ed by the end user
organization. In our interview with the Director of Product Strategies, we learned that future
server and client frame releases will include support for the development and deployment of
ready made solutions. The director explained the following relative to analytical application
solution support:

 “There will be several changes in both the server as well as client frame to support
some level of solution development. The problem in solution development will
become apparent if the end user organization amends the solution that has been
provided by the software vendor and the versioning could become a nightmare.
These types of solution confl icts are by no means easy to manage and will require
extensive work and changes from our part.”

Segmentation does not necessary have to be based on creation of a vertical solution,
but segmentation can also be based on technical market segmentation. According to our
interviews, one of the key decision criteria in the planning of the new client frame (V2) was
to include the possibility to use common software assets when creating solutions for different
client devices such as Pocket PCs and cellular phones. This was enabled by allowing most of
the client frame software components and analytical application components to be reused

244

across the different functional combinations that the software development teams and end
user organizations require. The aim of effective reuse of common software assets within an
analytical application frame is to use market segmentation leverage either by creating vertical
solutions or, alternatively, by using horizontal leverage via price/performance segmentation.
Another typical segmentation for analytical application solution vendors is to create horizontal
applications, such as budgeting and forecasting or customer relationship management solutions.
The case study company had executed this type of horizontal segmentation by implementing
a Microsoft Excel-based planning solution.

The renewal of the client frame enabled the Company to use the client frame in derivative
product development, mainly to provide alternative user interfaces to the multidimensional
OLAP server database. The fi rst derivative product, “Broker” (Der.1 V1, R1-2), enabled
centralized meta data management using a middle-tier Windows 2000 server. The second
derivative product, “Webulator” (Der.2 V1, R1-2), enabled users to access the same data using
an Internet browser without having to install anything on the client workstation (see Fig. 31).

Fig. 31. Client Frames and Derivative Products.

According to our interviews with the development team and the executive management, both
derivative products were already planned at the time of client frame V1 renewal.

7.4.3 Summary and Key Findings

The second analysis period can be characterized by the need to either improve the underlying
architecture of the solution and/or increase the performance of the software solution. This
performance increase could have been achieved either by amending the existing analytical
application frame with new technology or using technology as the driver to improve
performance bottlenecks. The server frame’s (V2R3, Ext.2) internal architecture was changed

245

to improve the size of the OLAP database that indirectly enabled the case study company
to address the needs of larger end user organizations. This release included new iSeries/400
based technology (user indexes) that enabled more effi cient management of data and
implementation of larger databases.

The main alignment model for the new server frame (V2R3, Ext.2) was “Implementation of
technology into the analytical application frame.” The main emphasis for the new server
frame was to improve the internal architecture from the performance perspective. This also
enabled the Company to make a move on the price/performance matrix in its application
frame leverage sub-strategy. The main fi t for the new renewed server frame was “Technological
Responsiveness,” as new user index technology was introduced, enabling better performance
of the multidimensional OLAP server software. The impact of the new server frame was to
improve the performance of the server frame, but also to address the needs of larger end user
organizations from a sizing perspective. As the focus was more on architecture and technology,
the Company did not specifi cally address the needs of any given market segment, and therefore
“Segmentation disconnect” could be identifi ed when analyzing the alignment perspective.

In a similar manner, the Company wanted to address larger multinational end user organizations.
This led to implementation of a new relational data warehouse solution with “Harnessing market
potential using an analytical application frame” as its dominant alignment perspective. The
focus in this perspective was the fi t between the analytical application frame architecture sub-
strategy and the analytical application frame leverage sub-strategy. This was named “Functional
Flexibility” in our Analytical Application Frame Technology Strategy framework. The case study
company focused specifi cally on providing new market segmentation on the price/performance
matrix, as well as functional architecture. Less emphasis was given to selected technology;
therefore the dominant disconnect was identifi ed as “Technological disconnect.” This could
become a problem for the Company in the long run, as it is purely based on iSeries/400
technology and is very closely tied to the OS/400 operating system environment.

The client frame renewal (V2R1-2) was a major change in the product development
strategy for the case study company. The main alignment perspective for the renewal was
“Implementation of technology in the analytical application frame,” which was true because
several new technologies were selected for the implementation, and these had an impact
on the underlying and defi ning technologies of the Company. The development team also
added new domain-specifi c architectural models that had not existed before. The overall
architectural software solution, with both server and client software products, has become
more dependent on external IT infrastructures such as Microsoft supported web technologies
and programming environments. The original software product architecture was clean and
simple, having one server software module with associated client software. The software
offering in the new client frame includes middle-tier technologies with distributed computing

246

(DCOM) and requires specifi c web-server technology. The Server Development Manager
concluded in an interview about this new architectural model:

“The solution has become more vulnerable due to the more complex technical
environment. I do understand that these technological selections were made
when iSeries/400 did not provide the technology that was needed to implement
the functionality that customers wanted. In retrospect, now we are tied into this
technological architecture and Microsoft has managed to lock-in our solution to
their proprietary technology.”

This comment made by the Server Development Manager portrays well the change in
the business model that new technologies and applications have caused the development
team during the years. The Company focused mostly on an analytical application frame
technology sub-strategy and an analytical application frame architecture sub-strategy, where
“Technological Responsiveness” was the fi t that the development team emphasized. This
emphasis could potentially hamper future marketing segmentation strategies for the company,
and its “Segmentation disconnect” could become an issue for the Company and its software
development. According to the development managers, these selections have already met
some resistance in the end user IT organizations, as the Microsoft web technology and
operating system environment have been recently (2001-2004) affected by heavy security
vulnerabilities. The renewal of the client frame resulted in two derivative products with the
same alignment perspective as the client frame renewal (V2R1-2).

Another issue that the case study company is facing in its client frame development is the
versioning of analytical application frame software assets and the use of these assets with
derivative products in a product family. The Development Manager for client software
concluded in one of the interviews:

“It seems to be that due to our technological selections and technologies from
Microsoft, we are spending more time on these derivative products that we really
should.”

This statement from the development manager shows clearly that there is a confl ict between
the selected technology and how this is controlled from a software development perspective.
The selection of Microsoft technology has already caused the management grief, as Microsoft
has announced that it will discontinue the development environment that the Company has
been using. These types of risks can not always be controlled, and might potentially cause
considerable harm for independent software vendors.

7.5 Ex-Post Analysis of Economic Metrics in the Case Study Company

We introduced platform related effectiveness and effi ciency measures found in the product
platform literature in Chapter 2. These measurements were complemented with software

247

business-related economic metrics defi ned in this study. These additional measurements
enable software organizations to evaluate the performance of product development for an
analytical application frame with corresponding margin and investment calculations. To be
able to calculate both platform effi ciency and effectiveness for the combined frame (client
and server frame), we decided to use the measurements defi ned by Meyer et al. (1997):
these measure the effi ciency and effectiveness of the analytical application frame(s). Platform
effi ciency depicts the “degree to which a platform allows economical generation of derivative
products,” while platform effectiveness shows the “degree to which the products based on a
platform produce revenue for the fi rm relative to the cost of developing those products.”

7.5.1 Data Sources and Collection of Data

To identify and differentiate software product releases from software application frame
releases (both client and server), we conducted several recurring interviews with the founders
of the Company and development managers who have been with the Company for several
years. Multiple interviews were required was because historical software product releases
were not well documented: we had to estimate the release schedules. Fortunately, the server
Development Manager had stored old documentation that enabled us to reconstruct historical
software product release dates.

The collection of fi nancial data took several weeks, as some of the data had to be collected
manually from fi nancial bookkeeping records and transferred onto Microsoft Excel spreadsheets.
To verify the collected information, the researcher conducted several iterations of email
exchanges and conference calls with the CFO and Controller of the case study company to
confi rm the conclusions made from the data. The Controller of the Company assisted in the data
collection and spent several months collecting licensing information from existing contracts.
This enabled us to estimate overall license revenue and related key performance indicators,
such as gross margin per customer and per product. We were able to collect service revenue
from each subsidiary and parent company. We were not able to collect service revenue from
business partners, as this part of revenue is not recognized by the parent company.

Once all of the historical software license and service revenue data and corresponding cost
information had been collected and allocated to each software product by year, the data
was allocated to each software application frame based on our product release analysis (see
also Appendix 2). Therefore it became imperative to differentiate software application frame
releases from software product releases.

We presented product platform related effectiveness and effi ciency measurements in Chapter
2. To measure these for the case study company, we collected the needed elements from
general ledger accounts, accounts payable, and internal analytical application databases.

248

Several different Microsoft Excel spreadsheets were created during the data collection process.
The fi nal spreadsheet includes the following data elements (see Table 8):

Date
of sale

Sales
organization

End user
customer

Product
sold

Units Unit
price

New/Existing
customer

Share of
revenue
to parent
company

Corporate
Gross sales

Royalty
percentage

Table 8. Historical Product Sales through 2002.

The columns in Table 8 show the following:
1. the date of sale of the product
2. the sales organization
3. the end user organization
4. what was sold
5. how many units
6. new sales
7. recurring sales to existing customers
8. the share of revenue recognized for the parent company
9. corporate gross sales
10. the royalty percentage paid to the business partner.

We decided to separate the two types of sales (columns 6 and 7), as this information allowed
us to see how much the case study company has been able to up-sell to existing customers.

Another spreadsheet was created, portraying overall costs and software license revenue
information for each product for each year (see Table 9):

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Total Costs

License revenue
Maintenance
revenue
Service revenue
Total Revenue

Gross Margin

Table 9. Product Gross Margin Calculation.

The fi rst line item in the table corresponds to the overall development cost associated with a
given software product. The next three line items show software license, maintenance, and
service revenue for each product and year. The fi nal line item (after total revenue) is calculated
by subtracting total revenues from total costs. The result is gross margin for each product.

249

We have divided revenues into three different categories. The fi rst category represents
software license revenues, while the second category represents maintenance revenue that
enables end user organizations to receive new software updates and support from the case
study company. A separate line item (third category) for associated service revenue has also
been added to enable comparison of the ratio between software license revenue and service
revenue. This service revenue includes installation and/or implementation work performed for
end user organizations. The question that every software company must answer is to decide
whether it should be a products company, a service oriented company, or a combination of
these (hybrid). According to Cusumano (2004), hybrid software companies have survived
better in economic downturns, as declines in software license revenue have been replaced
with strong service revenue.

The line item for total costs consists of development salaries with corresponding social benefi t
and third-party software development costs. Total sales revenue numbers are derived from
the accounting system combined with an internal analytical application solution that provides
the ability to categorize and classify sales by country/business partner and software product.
Some earlier software product sales have been estimated using a 70/30 rule, where 70 percent
of the software license revenue is from server software sales and 30 percent consists of client
software sales. Service revenue that the case study company has recognized is mainly from
the domestic service organization and its work with end user customer organizations.

7.5.2 Measurements in the Quantitative Analysis

We introduced product platform measures in Chapter 2, originating from the work of Meyer
et al. (1997). According to Meyer et al. (ibid), platform effectiveness and effi ciency measures
can be calculated on product-by-product basis or for a group of products within a distinct
platform level. We decided to apply both calculations methods to achieve an overall view of
the product development efforts in the case study company. Meyer et al. (1997) also conclude
that both platform effi ciency and effectiveness should be analyzed by product category and
industry. Their analysis of a case study company showed platform effi ciency of 0.25, which
shows that the company was able to produce a new derivative product at roughly 25 percent
of the cost of the overall platform. The authors conclude that if the platform effi ciency ratio is
close to 1.0, either the base platform has not been effi cient for derivative platform development
and should be renewed or the platform has been poorly designed.

We also included additional measurements that we introduced in Chapter 2, as these will
provide additional valuable information regarding the product development efforts from a
product gross margin perspective. The fi rst group of additional measurements reveals information
about overall profi tability of software product development (Total Revenues – Total Costs) and
how each software product is doing in comparison to every other software product:

250

• Product gross margin per product (in currency)
• Product gross margin as a percentage of all products
• Total cost (in currency)
• Share of total cost.

The second group of measurements gives us a comparison of how each software application
frame release compares to each other in the form of leverage, service revenue, and software
application frame margin:

• Total costs, including all costs associated with the product’s development
• Total revenue for the products that have been derived from the software
 application frame
• Service revenue associated with the software application frame
• Frame gross margin (this gives us an idea of whether a frame release has been
 paid off or if it is still “under water”).

These two sets of numbers are used to calculate the outcome of software application frame
development. We also added frame effectiveness with and without service costs. It could be
deceiving to assume that a software application frame is effective only by reviewing its associated
software license revenue. Service revenue could be extensive, suggesting ineffi ciencies in the
software solution, such as infl exibility or labor-intensive implementation of the data model
and integration to source applications. Therefore, the less the software vendor has to spend
time tailoring or modifying the software on site, the more effi cient the software application
frame is from a leverage perspective. If service revenue makes up most of the total revenue,
the effectiveness numbers could become meaningless. This type of discussion was not part
of the existing software related product platform literature. We also added two additional
measurements into our quantitative analysis to give an overall picture of how well the software
vendor has been able to provide leverage in relation to customers: numbers of customers and
gross margin per customer. The fi rst number demonstrates how many customers the Company
has had for a specifi c software application frame release and the second measure shows the
average gross margin per installed customer.

7.5.3 Product Family Profi tability

The case study company initially had only two software modules: server software and client
software. Over the years the Company has developed new software modules that have kept
the overall solution competitive or provided functionality that could not be implemented in
the original software offering. Based on this, we divided the different types of offerings into
three different product families:

251

• Server software
• Client software
• Solution software

The last category – solution software - represents Microsoft Excel-based products such as
planning and forecasting and reporting solutions and other tools to help analytics reporting.
The historical product margins (Total revenue – Total Costs), with corresponding costs for the
product categories, are divided as follows (see Fig. 32):

Fig. 32. Product Family Profi tability for the Company.

Figure 32 shows the importance of the server software to the overall architecture and the
share of historical investment that it has had in product development. A considerable amount
of product gross margin has been generated from value added software modules: they
represent more than 11 percent of the historical gross margin. It is also clear that the server
software product has been the core for the Company, with an impressive 72 percent of the
product gross margin. To our surprise, in our analysis of all products that the Company has
released during the years, we were not able to identify any products that had negative gross
margin: even a couple of discontinued products had positive product gross margin. Another
consideration that a software company should make when investing in new software products
is the alternative cost: the cost of doing something else. Even if the Company has not had
any products that have had a negative gross margin, the question remains whether the same
investment dollars/euros could have been better spent on existing products or other alternative
products yielding higher return on investment.

Our interview with the developers and sales executives confi rmed that the tradition of the
Company has been to sell its products well before each product is released. Each new module
has been installed at a customer site prior to its general release to make sure it will fulfi ll the
minimum requirements. By analyzing the historical sales revenue from the Microsoft Excel
spreadsheet produced by the CFO and Controller of the case study company, we could
identify a few interesting trends in the Company’s sales statistics. First of all, the international
distribution channel has successfully sold specifi cally value added products, such as planning
and forecasting modules, to markets such as France. Secondly, it became evident that the
North American market became the driver of new software sales in the early 2000s. The US

252

business unit was the fi rst one to introduce new products to the market. The more traditional
way of conducting business is sell new software in the domestic market to reduce the number
of possible fi rst release bugs that are typical for software organizations.

The seemingly high product gross margin for the server family and the much lower number for
the client frame do not necessarily translate to poor gross margin performance from the client
family, as the pricing model has been different between the two software modules, with the
server product carrying a much higher revenue stream. Another factor that might have played
into the overall profi tability of the client software module is that the pricing model is based
on concurrent users and not named users, as many other software organizations price their
products. Our analysis showed that there was a limited amount of re-purchase of additional
software client modules. We assume that the concurrent user model with less frequent usage
of the software will never run into a situation where the concurrency counter is exceeded
in the end user organizations. This pricing model was changed at the end of 2002 due to
the fi ndings in our study. The Company has put additional variation techniques, based on
control code management, into the product. This type of management enables the case study
company to ship the complete package with all features and control the functionality on the
price/performance matrix of the frame leverage sub-strategy using application control codes.

Once the initial calculations had been performed, the Server Development Manager verifi ed
our calculations and provided additional feedback and insight into the historical events and
reasons for some of the selections and decisions that had been made. The Server Development
Manager concluded in one of the interview:

“I wish we had these numbers before so we could have seen the profi tability
by product across the lifetime of the Company. We really didn’t do a good job
of collecting data but fortunately this was still possible via documentation and
interviews.”

This statement explains well that aggressively growing software companies could in some
cases lose focus on tracking their investments, failing to ensure that each product offering
provides adequate product gross margin and return on investment.

7.5.4 Application Frame Effi ciency and Effectiveness Analysis

We introduced in Chapter 2 the additional measurements that provide executive management
of an analytical application software vendor with information relevant to their business, such as
product profi tability calculations, ratios between software solutions, and installation revenue
(see Fig. 33).

253

Fig. 33. Key Indicators for Software Application Frame Development.

Meyer et al. (1997) did not include discussion of any type of installation cost/revenue and its
impact on the effectiveness and effi ciency of a product platform. Cusumano (2003) discussed

254

in his article “Technology Strategy and Management: Finding Your Balance in the Products
and Services Debate” the issues of whether a company should concentrate on building its
software business or whether it should provide both software and consulting services. The
measures in Figure 30 are divided into two main server frames (V1 and V2) and two client
frames (V1 and V2). Each of these four line items includes accumulated numbers for nine
different measurement columns in the following way:

• Total costs = Total costs of development of the software application frame
• Total revenue = Total software license revenue plus corresponding maintenance
 revenue
• Service revenue = Total installation and consulting revenue for the solution at the
 customer site
• Software application frame effectiveness with service revenue = (Total revenue of all
 software products derived from the software application frame + Service revenue)/
 Total costs of software application frame, its extensions, and derivative products
• Software application frame effectiveness without service revenue = Total revenue
 of all software products derived from the software application frame/Total costs of
 software application frame, its extensions, and derivative products
• Software application frame effi ciency = Total costs of the derivative product/Total
 cost of the software application frame version
• Software application frame gross margin = Total revenue – Total costs
• Number of customers = Number of individual customers for the software
• Gross margin per customer = Software application frame gross margin/Number of
 customers

Both the total cost and the total revenue have been accumulated from annual sales numbers
collected by the CFO and Controller of the case study company. Service revenue numbers
were allocated according to the domestic end user organizations that could be traced using
fi nancial information. The two main indicators from Meyer et al. (ibid), platform effi ciency and
effectiveness, were complemented with service revenue information that could in some cases
demonstrate whether a software application frame has been an effective foundation for the
software solution or whether the software application frame requires additional effort when
the software is installed at the end user location. Effectiveness number could be dramatically
different if installation of the software is diffi cult, as the numerator will grow, causing the
effectiveness number to show values which are too high. When the analytical application
solution vendor spends a lot of time customizing the solution for the end user organization,
the prepackaged solution loses its intended function of rapid and cost effective delivery.

Effi ciency calculations are based on how successfully a software company can derive new
products from a software application frame, but as our case study company did not have

255

any true derivative product development from the server frame (even if the same frame
was delivered to hundreds of end user organizations), we decided not to include any frame
effi ciency calculations on the server frame. The case study company had two derivative
products for its client frame (V2) that were the foundation for derivative software development.
The initial derivative product, “Broker,” provides end user organizations with centralized meta
data management. The second derivative product, “Webulator,” gave end users thin-client
web access to the analytical information.

7.5.4.1 Comparison of software application frames

Figure 34 enables us to compare the overall costs and revenue streams for each frame release
(see Fig. 34).

Fig. 34. Comparison of Software Application Frame Releases.

Figure 34 demonstrates that server frame V2 has generated most of the revenue for the case
study company when compared with the other software application frame releases. In a
similar way, it is obvious that server software has been the core of the solution offering over
the years. The client application has enabled the Company to offer a complete package, with
OLAP server technology and an associated analytical user interface. Another fi nding from
Figures 33 and 34 is that client frame V2 has yet to show a return on investment (ROI), as
the total cost is very close to the total revenue received from the client software offering. It
is also obvious that the total cost of client frame V1 is considerably less than the total cost of
client frame V2. This can be explained by a much larger development organization working

256

on the replacement of the previous client frame V1. The service revenue from the server
frames is also higher compared with client frame service revenue. This is due to the fact that
most of the time spent in installing a solution is in the integration of the analytical application
solution to operational data sources. This could in some cases take time and effort due to data
consistency issues within the end user organizations.

Client frame V2 has been on the market for a few years, having accumulated sales by which
the costs have been covered (effectiveness ratio of 1.4). Client frame V1 did not have any
derivative products, while client frame V2 had two derivative products that used common
software assets from client frame V2. From a cost perspective, the combined client frame cost
(V1 and V2) and the combined server frame cost (V1 and V2) are almost identical (client frame
cost is 87% of server frame cost), but when the total revenue is compared, the client frame
gross margin is only 16% of the server frame gross margin. In an interview with the Server
Development Manager, we concluded that the pricing model for the client product has been
too fl exible and cost effective from the end user organization perspective, as the concurrent user
pricing model has not generated signifi cant additional revenue from the existing customer base.

It is highly probable that named user pricing could have brought the case study company
ongoing software sales revenue which in turn would have had an impact on the gross margins
of the client software. Based on these fi ndings, the Board of Directors of the case study
company decided to move into the named user pricing model in late 2002. as it became
evident that the case study company had lost a considerable amount of ongoing software
license revenue when selling concurrent user licenses to end user organizations. One of
the main reasons for this is that the statistical probability of exceeding the concurrent count
decreases with the number of users. With a user community of 50 users, a concurrent model
of 25-30 users is required, but when the concurrent user license count is increased to 100,
it will service a much broader user community than 100 users (anything up to 150 to 200
users). The more concurrent user licenses an end user organization buys, the less probable it
becomes that the concurrent count will be reached.

7.5.4.2 Analytical application frame effectiveness

Initial server frame V1’s effectiveness without service revenue is around three: the total cost
has been well covered over the years. The share of service revenue as a percent of total
revenue is 36, which gives an idea of the additional revenue that the Company has received
during the lifetime of server frame V1. Server frame V2 has more impressive effectiveness
measurements, with frame effectiveness of 6.4. One of the reasons for this effectiveness is
that the number of customers increased during the latter part of the 1990s, and the case
study company did not increase the amount of investment in the server frame in the same
proportion as software license and maintenance revenue grew. The share of service revenue

257

as a percent of total revenue decreased during the lifetime of server frame V2 to 25 percent.
The reason for this could be twofold. The fi rst reason is that the share of revenue from internal
business grew (it did), and this revenue is not recognized in the company (not known) other
than the service revenue generated by subsidiaries. The second reason could be based on
the policy of the Company of not customizing its software products to refl ect any specifi c
end user organization requirements. Therefore, the same product will be delivered to every
organization regardless of vertical or horizontal market segmentation.

The adaptation of the solution to different end user organizations is implemented via built-in
parameterization of the software solution. Interestingly, each customer has exactly same data
model: only the contents of this database distinguish them from each other. We argue that this
type of innovation has enabled the Company to reuse the same server frame in hundreds of
different organizations without any customization. Based on our analytical application frame
architecture as portrayed in prior chapters, the Company has not utilized the implementation of
analytical application solutions using a business analytics and meta data repository as defi ned
in Chapter 4. The Company could have improved its software application frame effi ciency and
effectiveness by creating vertical market solutions with predefi ned key metrics and business
processes and priced these solution based on the vertical market segment. According to our
interviews with the key developers of the Company, these types of market segmentations have
to be supported natively in the product to enable effective software version management. This
type of management is planned for future releases of the server frame architecture.

7.5.4.3 Analytical application frame effi ciency

We concluded in Chapter 5 that an analytical application software vendor has three alternative
ways of implementing analytical application solution variation. The fi rst and most common way
is to provide a vertical market solution for a specifi ed market segment using components of
an analytical application defi ning technology architectural layer (business analytics repository,
business rules, measurements etc.). The second and more diffi cult variation technique is more
or less variation using technology in the software implementation itself. The latter alternative
is obviously more error and risk prone and might not provide the same leverage ratios when
compared with pure solution variation. The third variation technique is based on using market
leverage via price/performance adjustments or by providing the complete solution and
controlling the functionality using control numbers. This type of variation technique is by far the
simplest, and it has been the main variation technique for the Company throughout its history.

An example of technical variation was demonstrated by the Company when it introduced its
two derivative products from the client frame. The variation was pure technical variation using
a common software asset base. It did not provide any means of solution content or market
segmentation variation. The decision to create a common software asset base was done at the

258

time of renewal of the client frame (V2) to enable different client technologies (such as Pocket
PCs, Palms, Internet browsers etc.) to be used for information distribution and access. The
result of this decision was the implementation of two derivative products and one prototype
from client frame V2. The fi rst derivative product was for centralized meta data management
and the other for web-enabled data access. The product for centralized meta data access
(Broker) included almost every aspect of the client software product, with the addition of a
few additional features such as confi guration and scheduling functionality.

Broker has effi ciency numbers of 3.7 percent of the cost of the overall client frame. The
effectiveness numbers for Broker show that the investment has already been recouped tenfold.
These numbers are more or less based on a technology driven effi ciency and effectiveness
initiative, as both of them are pure technological derivatives and not based on a specifi c
solution or vertical market segment. Broker internally includes a meta data repository created
“on-the-fl y” from the server software to provide load-balancing and distributed characteristics
for the solution. The other derivative product for web-enabled access has required more
development effort from the case study company. In a similar manner, a lion’s share of the
common software assets from the client frame are reused within the Webulator environment,
with the addition of specifi c Internet specifi c technologies (such as web server technology,
scripting language in the Microsoft web environment, etc.). Our calculations show the cost of
Webulator to be 49.2 percent of the overall cost of the client frame. Most of this cost is due
to additional technologies that have been applied with the client frame, technologies that do
not exist in the pure Windows client software. Even if Webulator is regarded as a derivative
product, it is evident that the development team had to put a considerable amount of effort
into keeping the derivative product in sync with the client frame itself due to additional
technologies that Webulator required (such as the Internet environment). As the investment of
Webulator has been close to 50 % of the total cost of the overall client frame V2, the question
remains as to whether this can be regarded as effective derivative development.

7.5.5 Key Findings in Economic Analysis

We were able to identify one type of variation technique that the case study company had
used. This variation was implemented in the client frame environment with reasonable
effi ciency numbers. We also concluded that the Company had not used variation in its server
frame environment, and that the case study company could have achieved considerable
additional leverage by using solution variation. This provides a contribution to other analytical
application software vendors, as the derivative development of solutions should be easier to
implement than solution variation using technological means such as those was introduced in
the software engineering literature.

259

However, these types of software application frame key indicator estimates can be extremely
deceiving, as the effectiveness and effi ciency of the software application frame do not
necessary reveal whether the competitiveness of the software application frame has been kept
up-to-date with the required investments. In some cases, the software company could decide
to use the product as a cash cow, where the effectiveness ratio would be extremely good due
to smaller software application frame investments. In the long run, this would have an adverse
impact on the software application frame’s competitiveness and robustness. Another factor
that could impact effi ciency and effectiveness numbers is the architectural robustness of the
solution. In our interviews with the development organization, we noted a few defi ciencies
that had impacted adversely either server or client frame development. Optimization in one
software application frame might lead to poor performance in its counterpart.

It is also evident that a software vendor is required to have a good business strategy when
setting up its metrics with respect to service revenue. This revenue type as such does not
show any impact on how effective the software development organization has been. We
argue that if considerable time is spent on installation of the analytical application solution
in end user organizations, the analytical application frame architecture is weak or does not
provide a solid technological foundation.

All in all, the case study company has been able to show moderate effectiveness measures
during the lifetime of both the server and the client frame. It was not a surprise to us that the
server frame was by far the more profi table software application frame due to its importance
(it is the core of the solution and is priced accordingly). The development organization has
little experience in technical solution variation with respect to client frame derivative product
development, and it remains to be seen whether similar effi ciency numbers can be seen in
future client frame releases.

7.6 Key Findings of the Case Study Research

One of our research objectives for this dissertation was to obtain development ideas and provide
feedback for the improvement of an analytical application frame construct. No prior empirical
studies were made of Software Application Frame Strategy framework usage. This study focuses
on the analytical application software domain. We were able to identify a few practical issues
that a software development organization could potentially run into when implementing and
planning analytical application solutions using analytical application frame constructs.

7.6.1 Discussion of the Analytical Application Architectural Model

In our analysis of the case study company, it became evident that a software vendor must
clearly distinguish between the domain-specifi c architectural model and the IT infrastructure
or execution and development environment. The former is typically extremely important for

260

end user organization information technology departments, while the latter is internal to the
software development organization. End user organizations do not typically care how the
internal software architecture works, as this will be invisible to end user organizations. If
the selected internal product architecture requires specifi c runtime environments due to its
architectural model, this will obviously refl ect on the external IT infrastructure selections,
and therefore will be a consideration for both the users of the software and for the software
organizations. This type of analysis is an interesting cross-section of the traditional information
systems science and software engineering/computer science research domain.

Both of these environments have different aims; therefore we argue that it would be a
mistake to take only one into consideration. We explored several different data warehouse
architectural models in Chapter 3 that could become the foundation for an analytical
application solution. A more traditional centralized model, with a traditional development
approach (not using software components and clear application programming interfaces)
could be more appealing for software vendors who lack core competence in modern software
implementation methodologies. Unfortunately, these types of centralized applications might
not satisfy the needs of highly distributed environments, where subsidiaries or divisions of
organizations require their own localized meta data and business analytics repositories. This
highly distributed environment could become a nightmare for software vendors to maintain.
From a conceptual perspective, a federated architectural model combined with distributed/
multi-tiered characteristics is more appealing to end users, as each of the remote and local
databases is transparent to the end user: the user interface will display analytical information
regardless of the physical location of the data. The architectural model in our case study
company was initially client/server and later multi-tiered, with a middle-tier server acting as
the front end to the iSeries/400 environment.

This layered distributed software architecture has enabled the case study company to utilize
and scatter software frame components across different architectural layers and build new
derivative products by using the client frame architecture and its software components. Several
interviews with the development team members also convinced us that the development
would not have been effi cient without the use of component-based software engineering.
Component-based software engineering as such does not provide any competitive edge,
but the companies that are able to build and design optimal software application frames
that include a multitude of different functionality will have a competitive edge in the future.
According to different studies, component-based software development as such has not
provided tremendous results, as software organizations have not been able to manage and
align the required business processes with the technical implementation.

261

7.6.2 An Analytical Application Frame and its Identifi cation

The task of identifying a software application frame is by no means trivial. Even though we
knew the case study company well, several analysis iterations were required to identify each
and every software application frame version from the software product releases that the
Company has had in its history. We based our principles of identifying a software application
frame on the four principles presented by Sääksjärvi (2002). Sääksjärvi’s (ibid) principles are
based a collection of defi nitions that have been defi ned in the product platform literature.
These principles are specifi cally addressed as generic software application frame principles:
they are not geared to any specifi c software domain.

We initiated our identifi cation of a software application frame within the case study company by
listing all historical software product releases in an attempt to establish some type of historical
timeline. This gave us a better understanding of how each software release has contributed
to the overall value that the Company provides to end user organizations. Once we had a
foundation suffi cient to allow us to understand what had been accomplished, we interviewed
several development organization members and management to fi nd out what types of
changes each software product had required in the form or modules, software components,
and architectural models. By several iterative rounds of interviews and documentation, we
were able to establish the link between a software product release and its corresponding
application frame version. We had to identify how each software application frame release had
been changed from its previous release to identify whether there were signs of either software
application frame extension (principle three) or whether a complete renewal had taken place
(principle four). We used the four principles to analyze which type of release was in question.
When we identifi ed an extension, we interviewed the responsible development manager or
chief architect to determine whether this extension had disturbed any other modules within
the software application frame itself.

We recognize the diffi culty of separating regular “legacy incremental development” from
development of a software application frame with the aim of large-scale reuse. Our view of
the historical server and client software development is that the Company was somewhat
lucky to have envisioned the concept of building a large architectural construct that could be
reused across any given vertical market segment. In our interview and discussion of principle
one (large-scale reuse), the Director of Product Strategies stated:

“We really had the vision of creating a generic product that everybody could
use and we had strict rules that we would not implement any customer-specifi c
functionality. Every time we closed a deal with a new vertical market, we analyzed
carefully what was missing in the product and if we found something that could
benefi t every company, we would then implement it.”

262

One could claim that this was not really “large-scale reuse” from a software development
perspective, but it is obvious that the case study company had a vision of how it could achieve
replicate success by having a large generic application that could be reused across any given
vertical market. Another factor that we were also able to conclude based on our ex-post
analysis was that the Company did not have any plans for product family development as
such during the fi rst analysis period (1990-1998). Only with the renewal of the client frame in
V2 was the development team able to create two derivative products that belong to the same
product family.

7.6.3 Software Application Frame and Large-Scale Reuse of Common Software Assets

Software product line development and software product family development are treated
equally in this study. Some literature sources conclude that in product line development, the
underlying IT infrastructure might not be the same for the derivative products. In product family
development, the idea is to share common software assets using the same IT infrastructure.
The latter concept is closer to the analytical application frame construct, as the overall idea in
software application frame development is not to try to satisfy all the possible future market
segments, but to maximize the fl exibility with the resources and core competence that the
company has at each point in time. Based on our Application Frame Strategy framework,
there is no single optimal alignment perspective, as each software company is different, with
different characteristics and core competence.

A challenging question that each software vendor must deal with is how to defi ne a software
application frame and how to maximize the size of this frame to enable maximal software asset
reuse in derivative software products when using an analytical application frame construct.
The case study company had two different identifi able software application frames with very
different underlying technologies. The server frame is highly bound to iSeries/400 technology,
while the client frame is based on Microsoft technology and can therefore be used only in
Microsoft Windows environments. We interviewed the server Development Manager to fi nd
out whether the iSeries/400 had a true module structure in its early days, and the answer was
as follows:

“In the early 1990s, before ILE RPG became available, the development environment
was not really set in modules, but more in procedure calls. When IBM introduced
ILE RPG (which enables the mix-and-match of programming languages like ILE
C), IBM came out with a more structured module architecture.”

The Company has included other software modules based on other languages such as C++
and Java in later stages, which has had an impact on how the software application frame is
planned and constructed. For example, Java modules will call RPG modules or C++ modules.
It is fair to say that during the second analysis period, the internal architectural structure of

263

the server frame has become more layered: internal modules can be replaced with other
underlying technologies that support other operating system and hardware environments. In
the case of the server frame, we still need to see improvement, specifi cally in frame effi ciency,
as the Company has not built any vertical market segmentation strategy whereby the server
frame could become a software application frame for derivative product development.

The Company needs to improve its server frame to include functionality to support true
versioning of analytical solutions. Our interviews with the senior development managers
revealed that the Company is in the process of deploying solution development features in the
new server frame, due for release in the next couple of years.

The client frame renewal effort showed the power of software asset reuse, as two derivative
products were created from a common client frame. Our effi ciency and effectiveness measures
were also able to demonstrate this specifi cally with the fi rst derivative software product,
“Broker.” As the product line software engineering community has concluded, derivative
software development is by no means without challenges. Different articles concerning
variation mechanisms and architectural models have been published the last few years, as
described in Chapters 2 through 5. According to our interviews, versioning and maintaining a
common software asset base is very challenging, requiring careful planning. Each change in
the core asset base could have an impact on any of the derivative products.

7.6.4 Identifying the Use of an Analytical Application Frame Strategy Framework

We asked ourselves how these alignment perspectives are best identifi ed in a software
company, and whether an “optimal” alignment model will be generic to all software vendors
in the same domain or even across different software domains. Our approach to the analysis
was very pragmatic, as it was mainly based on interviews of current and prior personnel to
identify whether any specifi c sub-strategy within an Analytical Application Strategy framework
had received more emphasis than others. It was of interest to us to see if any one specifi c
fi t (relationship between two sub-strategies) has prevailed more than others. We wanted to
identify whether the full alignment perspective was evident in any of the decisions made
when setting product development strategies within the Company.

Based on the fi ndings in our case study research, we were not able to identify any specifi c
alignment perspective that could have been said to be optimal. There are multiple reasons
for this fi nding. First of all, each decisions made within the Company was made in good
faith with the best knowledge available at time. Some decisions would probably be the same
today as they were a few years ago due to the background of the Company, such as our close
relationship with and knowledge of the iSeries/400 hardware environment. Some decisions
would probably be different today, such as the decision to base the planning/forecasting

264

application on Microsoft Excel. According to our interviews with the Product Manager of
these Microsoft Excel-based applications, the need in organizations today is to enter their
budgets using an Internet browser, not a Microsoft Excel spreadsheet. This type of change in
requirements from end user organizations has put the case study company under pressure.
Unfortunately, not much can be done due to the technological foundation of Microsoft Excel.

A second reason for not being able to specify an optimal alignment model is that businesses
could change quickly based on the surrounding market environment, and therefore one
“optimal” alignment perspective could become ineffi cient in a short period of time. A third
reason for not fi nding an optimal alignment perspective is due to changes in the software
application domain itself. An example of this is the decision support market and its transition
from highly centralized to distributed architectural models. These types of changes could
potentially become too diffi cult for some vendors to cope with due to weak core competence
in the technology or software application domain. Our case study company initiated its
software product offering in the IBM midrange S/36 environment with a Harvard Graphics
user interface. 15 years later, it has a solution offering for web-enabled analytical application
using different types of technologies that did not exist 15 years ago.

Regardless of the challenges that we faced in analyzing the existence of alignment perspectives
in the case study company, two specifi c alignment perspectives were more obvious that
others during the two analysis periods. First of all, the more prevalent alignment perspective
has been “Implementation of technology in the analytical application frame.” The second has
been “Harnessing market potential using the analytical application frame.” The fi rst alignment
perspective was identifi ed when we compared each sub-strategy with every other sub-strategy.
Most of our interviews included statements such as “we had to increase the performance of
server software” or “the client was very unstable when we added new functionality.” These
types of statements demonstrate that the development team was very focused on improving
the server software performance or meeting the end user organization requirements in the
client software. There was very little discussion of market segmentation or implementation
of vertical market solutions using the software solution. It is also evident that “Technological
Responsiveness” was a key question for the Company over the years. In some cases, we saw
signs of a need to improve “Functional Flexibility.” The latter was evident when the server
frame was improved to handle larger multidimensional OLAP databases in larger end user
organizations.

We defi ned three different types of disconnects in Chapter 4. Each of these disconnects is
related to the alignment perspective in question. When the alignment perspective called
“Implementation of technology in the analytical application frame” is identifi ed, there is
increased potential for “Segmentation disconnect,” because an analytical application frame
leverage sub-strategy might get less emphasis.

265

Let’s review what this type of disconnect entails in our case study company. We argued that in
server frame renewal (V2R1), most of the internal modules were rewritten and the Company
selected OS/400 specifi c technology to enhance the performance of data loading, update of the
database, and data deletion. This technology selection (user indexing) was made because the
hardware operating system environment was “given” and not because this specifi c technology
could exist in other operating system and hardware environments. Therefore, a technology
driven decision was implemented without relating it to future market segmentation. This will
restrict and/or increase the costs of moving the solution to other environments in the future if
it is so decided.

In summary, selection and implementation of an Analytical Application Frame Strategy within
a software company is a multifaceted task, which requires new thinking from executive
management and the marketing and software development organizations. Based on the
information provided by the case study company, we were able to identify numerous factors
in analytical application development that make the use of analytical application frames very
challenging. One of the main reasons for the challenge is to keep each sub-strategy within
an Analytical Application Frame Strategy framework well integrated/balanced, as each sub-
strategy could impact the other if not selected carefully. Finally, we do not believe that one
strategy will be the same for all software vendors, as the background of the companies will
differ from case to case. Therefore, the framework will be the starting point for the software
vendor, which must adjust it to refl ect its own requirements.

7.6.5 Management of Dependencies Between Underlying and Defi ning Technology

Based on the numbers presented in the case study, it is evident that an analytical application
frame architecture and its frame component selections are closely tied with the underlying
technologies (operating system environment, database management system etc.) that
an analytical application solution vendor selects in the process of defi ning its analytical
application frame technology sub-strategy. The linkage between the analytical application
frame technology sub-strategy with its corresponding underlying technology and the analytical
application frame architecture sub-strategy with its defi ning technology, “Technological
Responsiveness,” can result in several dependencies in the future development effort, as could
be seen in the case study company. Selection of underlying technology such as the OS/400
operating system with its embedded relational database DB2/400 has kept the Company
out of other hardware environments and market segments that are known not to support the
iSeries/400 environment. We can therefore assume that two of the most critical selections
that the Company can make in the case of analytical application software development are
the underlying technology and the defi ning technology. Unfortunately, it could be challenging
to have executive management in software organizations separate shortsighted revenue
recognition from a long-term commitment to a robust software application frame that will serve
the software organization for years to come and generate revenue on a continuing basis.

266

The complexity of analytical application defi ning technology elements such as business
analytics repositories, data models, and predefi ned ETL processes and such are typically
not very standardized amongst end user organizations, and therefore it is a true challenge
for analytical application software vendors to build a solution that will be a perfect fi t to
any organization in a selected vertical market segment. Provided with adaptability of these
elements, these end user organizations can use these solutions as a foundation for further
analytical application solution development. Software vendors must provide a means to
deliver new releases of the solution that can be readily merged with the customized business
processes and models that these end user organizations might have built using the software
package.

7.6.6 Generalizability of Analytical Application Frame Strategy Framework

The question of whether our Analytical Application Frame Strategy framework can be
generalized to any other software domain poses a challenge. First of all, each software domain
could have different underlying and defi ning technologies: the fi t between software frame
architecture sub-strategy and software application frame technology sub-strategy could be
considerably different in different software domains. Market segmentation of software products
is very different in different cases, as some products (such as offi ce productivity tools) are clearly
defi ned as consumer products while some are built for enterprises. These software categories
pose completely different underlying assumptions of the execution environment. Consumer
products (such as Windows) are sold by the millions, and their underlying infrastructure must
be generally accepted, while enterprise applications could have a combination of requirements
that can be fulfi lled as long as these enterprises are ready to purchase and support these
specifi c requirements (such as having an iSeries/400 server).

We believe that the process of identifying a software application frame, alignment perspectives,
and corresponding disconnects will benefi t other software domains. Each software domain will
have its own characteristics, but the aim of large-scale reuse with derivative products within
a product family remains the same. We believe that software application frame renewals and
extensions will remain the same, as these concepts have been kept the same from original
product platform theory and we do not see any reason for them to change.

7.6.7 Discussion of Case Study Results in Light of Meyer and Seliger’s Defi nition of
 a Product Platform

Meyer and Seliger (1998) concluded in their article “Product Platforms in Software Development”
that a platform is “a set of subsystems and interfaces that form a common structure from which
a stream of derivative products can be effi ciently developed and produced.” Meyer and Seliger
(ibid) constructed an architectural model for software products and named this architectural

267

model the “Platform Strategy for Software Products.” In this model, Meyer and Seliger (ibid)
assume that the product platform itself is made of computing infrastructure and application
building blocks, and that the common applications that are needed by any market segment
are not part of the platform. We disagree with this, as the platform itself should consist of both
the underlying technology and the defi ning technology with the common applications. Meyer
and Seliger (ibid) consider the platform to be a “base software engine” and the platform to be
composed of “developers, design strategies, and specifi c procedures and protocols.”

In light of these defi nitions, the most obvious problem that the Myer and Seliger (ibid) framework
could potentially cause is the lack of discussion as to how selected market segmentation
might impact both technology selections and domain-specifi c (analytical applications) and
IT infrastructure strategies. When reviewing our case study company, the selections of both
the iSeries/400 technology for the server frame and Microsoft technology for the client frame
were made a two-dimensional framework where the future impact and dependencies are
missing, such as in the architectural framework presented by Meyer and Seliger (ibid). Meyer
and Seliger (ibid) made very generic conclusions about the usefulness of the product platform
approach for software products without taking into consideration the characteristics of different
software domains.

We argue that our study has increased understanding of the domain of software application
frame development, and that software related product platform knowledge concerning different
software domains must be adjusted based on each domain’s characteristics. The work of Meyer
and Seliger (ibid) did not cause us to question what type of differences each software domain
could potentially have, but when reviewing the analytical application software domain by
aligning three sub-strategies (analytical application frame architecture sub-strategy, analytical
application frame technology sub-strategy, and analytical application frame leverage sub-
strategy), we were able to achieve a better understanding of how each sub-strategy can impact
the others in different ways. This was demonstrated via different alignment perspectives and
corresponding disconnects that can impact an analytical application software vendor. This
type of analysis added new practical perspectives to the existing traditional and software
related product platform literature.

Meyer and Seliger (ibid) did not analyze the practical implications of developing common
software assets for a product platform. The contribution of this work is to link product line
software engineering with other software engineering approaches and explain how these can
be used in conjunction with software application frame development. Meyer and Seliger (ibid)
did not include discussion of different variation techniques that a software vendor can perform
while working with derivative products. Different scenarios determine how common software
assets can be used across different products using a reference (product line) architecture.

268

And fi nally, had the case study company decided to choose the underlying technologies
without binding itself to a specifi c operating and hardware environment, the results could
have been different. Obviously, in ex-post analysis it is very easy to identify problems in the
decisions made, and therefore it is important to understand that some decisions are made due
to better alternatives, alternatives that occurred once the development had been started and
changes were too late.

7.7 Chapter Summary

The question of whether the case study was able to support our research objectives and whether
our results can be generalized and applicable to other analytical application software vendors
needs to be analyzed from several different perspectives. First of all, no prior research could be
found on analytical application software development from any software vendor’s perspective:
most of the written articles measure the analytical application software domain from the end
user organization perspective. Secondly, no prior research had been done to explain how a
software vendor should implement its technology strategy and how these technology selections
can impact other selections defi ning technology in an analytical application frame architecture
with its corresponding architectural layers, together with its underlying technology and
associated execution and development environment. A third area of research in this study was
to identify the structure of an analytical application frame architecture with all corresponding
functional software application frame components. This architecture will be helpful for any
analytical application vendor to be able to identify the needed software application frame
components when building analytical solutions. Another clear advantage of our framework
and case study was to show the importance of analytical application frame architecture and
how each layer in this architecture will impact development of an analytical product solution.
This type of analysis has not been published before, and this will be of interest for similar
software organizations. We were able to draw parallels between this architectural model and
the renewal of the client frame architecture (V2) within the case study company.

We also undertook a thorough discussion of different data warehousing architectural models
that an analytical application software vendor can utilize in its analytical solution development.
One of the most prominent models is the federated data warehouse model, which enables an
integrated view of multiple data marts. An important distinction that a software vendor must
make is to separate the technical architectural style from the domain specifi c architectural model
that is specifi c to the software application. This separation is extremely important, as these
two architectural models could be in confl ict with each other, and this could impede market
segmentation (analytical application frame leverage sub-strategy) for the Company. It became
evident in our analysis that the case study company has moved from a highly centralized
data warehousing model to a distributed model. Russell (2000) concluded that moving from
a highly distributed architectural model back to a centralized model can be laborious. This

269

is what we also found in our case study analysis. This type of architectural movement will
typically result in major renewals of subsystems, and therefore analytical application software
vendors should consider the architectural basis for their analytical solution very carefully, as
any movement from one architectural model to another will be extremely costly.

The fourth major research result in this study was the identifi cation of six different alignment
perspectives and how these can be used when analyzing the effectiveness and effi ciency of
application frame use in derivative product development. These alignment perspectives were
used in our analysis of the case study company to identify which perspectives had been used
and what type of impact each perspective with its corresponding fi t and disconnect has the
development of software product solutions. It became evident during our analysis that the
case study company could have achieved better results in its software development if it had
known about the Analytical Application Frame Strategy framework and the type of impact
each sub-strategy would have had on the overall product development strategy. We also argue
that these six alignment models can be utilized in other software organizations and software
domains as long as the characteristics of each sub-strategy are taken into consideration in the
analysis. We also argue that each software domain will have a modifi ed version of the generic
Software Frame Strategy framework identifi ed by Sääksjärvi (1998, 2002).

To be able to measure our theoretical fi ndings, we divided our longitudinal single-case analysis
into two analysis periods. The fi rst time period represents the time before major application
frame renewals and the second analysis period included renewal of both the server and the
client frame with several extensions in the server frame to enable satisfaction of the needs of
end user organizations. By studying the case study company for a longer time period, we got
a better understanding of the product evolution and set the historical events into their own
context. The case study company has evolved from a highly entrepreneurial organization into
a professional and international organization, with hundreds of end user organizations using
its software solution.

During the fi rst analysis period – from the foundation of the case study company through
1998 – the Company built its initial server and client frames for both server and client software
products. The Company also had its initial successes in international markets. This time period
did not include any major market segmentation strategy other than to provide solutions for the
IBM midrange server market. The founders of the Company had a strong vision of creating a
product that would enable end user organizations to analyze information that resided on an
IBM midrange server. This showed an emphasis on creating a software application frame with
a corresponding architecture to fulfi ll the requirements of end user organizations. Our analysis
did not show any sign of an Analytical Application Frame Strategy other than construction
of a solution according to the vision set by the management and owners of the Company.
The business model for the case study company was initially very simple, with one major

270

underlying technology (iSeries/400) and only one application area (OLAP technology). With
the increased pressure from end user organizations, the Company had to add additional layers
(Microsoft Offi ce-based solutions), and new technologies had to be put in place.

The second analysis period – from 1998 to 2002 – was mainly marked by two major
improvements in product and market segmentation strategy. First of all, the Company purchased
technology from a third-party vendor to be able to provide an additional architectural tier
that provides to end user organizations the ability to build large enterprise wide analytical
solutions. The second improvement included a full renewal and replacement of the existing
client frame. This new frame enabled the Company to build several derivative products using
common software assets. The renewal of the client frame was a new start for the Company,
providing a much needed competitive edge over other vendors in the same market space.
The renewal of the client frame was the fi rst intentional strategy from the management of the
Company, enabling construction of a true software application frame that would be the basis
for derivative product development. We also completed analysis of software application frame
effectiveness and effi ciency according to the measurements set by Myers et al. (1997). The
results of our analysis show clearly that the use of a software application frame helps software
organizations to derive products from a common software application frame (measured by
effi ciency calculations) at a fraction of the cost that it would take to build these products from
scratch. Our software application frame effectiveness numbers did not yet show whether the
software application frame investment has been successful, as the platform investment has not
yet been recouped for all derivative products and the client frame itself.

When comparing all technological selections in the case study company in the light of
technology selections, it is very clear that the management did not anticipate future market
segmentation strategies, as most of the decision support server technology is based on
proprietary technology. This has become in some cases a technological restriction for the
Company. Selection of IBM midrange technology could impact future market segmentation
strategy, as IBM midrange technology might not be broadly accepted in some vertical
market segments. The product development organization based the underlying technological
foundation for the client frame on the Microsoft execution and development environment. This
is the second time in the company’s history that a technological selection could impact the
future of the Company. Going forward, the case study company and its management should
carefully analyze different alignment perspective alternatives as defi ned in the Analytical
Application Frame Strategy framework. From a business analysis perspective, the second
analysis period increased the complexity of both software development and dependencies on
the end user organization IT infrastructure. Additional technological selections have caused
the product development team to spend more time analyzing IT infrastructure dependencies
with associated customer bug reports.

271

Another objective of this study was to test whether the development of analytical application
software using an Analytical Application Frame Strategy framework would change the
traditional way of implementing analytical applications. To be able to test this objective,
we compared different data warehouse architectural models and concluded that a layered
architecture will support distributed computing, which has become a requirement within
analytical application development, but that this will also change the way we plan and develop
software. No longer will we think in terms of individual functional software components, but
software organizations must build software application frames that need to be adaptable to
future products that are not yet known and requirements for products which are more or less
unknown. As software development fi rms are moving closer to mass-producing software,
software vendors will concentrate on building effective application programming interfaces
that are well documented and published to the third-party software development community.
This type of development could eventually lead to a large third-party development community
that innovates software solutions that complement the application frame developed by the
originating application frame software vendor.

We explained the importance of having an adaptable software application frame to
accommodate different vertical market analytical solutions. This adaptability must be built
into the server frame. The fl exibility must also include easy integration of different operational
applications such as ERP solutions, fi nancial packages, or other operational solutions that
will be the source for integration. Our recommendation for maximum fl exibility is to provide
a business object layer between the physical and logical representation of the data and
business process models. This business object layer enables analytical application software
vendors to build solutions that can be more easily modifi ed when changes occur in the
operational applications. Some of this fl exibility can also be achieved using a data staging
area that resides between the operational data source and the data warehouse or data mart
application. Our analysis of server frames revealed that the Company had not planned to build
analytical solutions by building “plug-and-play” application interfaces to different operational
sources. This could be concluded by analyzing the extraction, transformation and load (ETL)
functionality (“gateways”) and how business rules with their corresponding logic were linked
to the database model itself.

The case study company has externalized most of its client frame development to a third-party
development organization. Our recommendation for any software organization using third-
party development organizations is to set quality criteria for the development and integrate
software development with the internal software development processes of the ordering
company. The case study company has kept very close relationships with its development
partners, providing and exchanging information via email and integrating the third-party
organization into its software development process. Once this type of integration has been

272

accomplished, the use of external software development organizations is not a problem as
long as the relationship continues long into the future. We expect this type of outsourcing
activity to increase in the future as well due to lower cost structures in countries and regions
such as India, China, and Eastern Europe.

273

8. KEY FINDINGS AND SUMMARY

The objective of this study was to explore how the product platform approach can be used in
the development of software products (Chapter 2) using software application frame(s), and to
combine this research with the analytical application software application domain (Chapter
3). These two chapters provide the foundation for Chapter 4, where we proposed a redefi ned
Software Application Frame Strategy framework specifi cally tuned to the characteristics of an
analytical application software domain. As existing software related product platform literature
does not specifi cally address the complexities of software development, we added a chapter
(Chapter 5) to explore possible implementation techniques for derivative software products
using a software application frame. In summary, Chapters 2 through 5 provide interpretative
analysis of the development of analytical application frames. Our case study provides
managerial implications that a software vendor can utilize when defi ning, managing, and
developing an application frame using the Analytical Application Frame Strategy framework.

Using the fi ndings from Chapters 2 through 5, we applied the Analytical Application Frame
Strategy framework using a longitudinal single-case interpretative case study of a European
software vendor. The case study allows us to review software development by a software
vendor over the past 15 years using multiple research strategies, such as quantitative analysis of
software application frame effectiveness and effi ciency, and also qualitative research methods
based on numerous interviews conducted during the past few years. We also benefi ted from
the availability of extensive documentation of product development plans, fi nancial records,
and other records that related to the product development efforts of the products under study.
To be able to test the validity and reliability of our research, we decided to base our case
study research strategy on the Hermeneutic Circle from Klein and Myers (1999), as they
have defi ned seven principles that must be satisfi ed when evaluating an in-depth single-case
interpretative case study analysis. As part of our case study analysis, we analyzed how our
fi ndings and case study analysis were applied in light of these seven principles.

It was evident to us that no prior research has been published about analytical application
software development from a software vendor’s perspective. Most of existing literature
concentrates on topics concerning implementation of analytical applications within an end user
organization. We also reviewed several years of Journal of Data Warehousing articles, none of
which had any reference to a software vendor. Therefore, we could conclude that organizations
such as The Data Warehousing Institute concentrate mostly on end user organizations: it has
not published any reports, articles, or books that would help software organizations to build
software solutions or to explain what kind of impact different software related technologies
have on development of analytical application software solutions. Therefore, the contribution
of this work is to provide more information about the complexities of software development
specifi cally for analytical application software vendors, describing how a software application

274

frame could help these organizations to get better leverage using common software assets that
are the foundation for a software application frame.

We also included discussion of whether our research results can be generalized and whether
the results can be applied to other software application domains. Software development is still
driven by the software application domain, and some generalizations will not be applicable
to all software application domains. This is also one of our contributions in light of our refi ned
Analytical Application Frame Strategy framework. Finally, we included discussion of possible
future research and the limitations of this study in light of the selected research methodology
and research results.

8.1 Use of the Product Platform Approach in Software Development

The fi rst research question in this study, “How can a software vendor apply the product
platform approach to its software business and development of software products?” required
a thorough literature search. The results of this search are reported in Chapter 2. We reviewed
both original physical product platform theory and known software related product platform
theory, with the conclusion that existing product platform related theory exclusive of the work
of Sääksjärvi (2002) is more or less geared to the theories and characteristics of physical
product development. According to Sääksjärvi (ibid), software product development is more
complex and requires software organizations to consider other aspects, such as the software
process platform, as part of the overall Software Application Frame Strategy framework when
setting its product development strategies. Because of this, product platform theory requires
that additional strategies beyond product architecture be included in the design process. These
strategies include those of software application frame technology and a software application
frame leverage sub-strategy. Therefore, we wanted to extend our research to include additional
questions about the feasibility of the product platform concept relative to the development of
software products:

• What type of software development approach should a software vendor use when
 building the foundation of a software application frame with associated software
 application frame components?
• How does existing software product line development literature explain the use of
 the software platform, and how does that help existing software related product
 platform knowledge?
• How can the generic Software Application Frame Strategy framework be used
 in analytical application software solutions, and by how much do domain-specifi c
 characteristics change this framework?

We found two main sources of software related product platform development literature,
with Meyer and Seliger (1998) introducing the concept of product platforms in software

275

development. The authors related software development very closely to the development of
physical products, while the work of Sääksjärvi (1998, 2002) addressed the complexities of
software development in more detail using a generic framework without specifi cally addressing
the needs of any software application domain. This framework, with three sub-strategies and
their corresponding alignments, was introduced without any empirical consideration.

Existing product platform literature is focused on and borrows concepts from physical product
platform development. We argue that development of software product platforms requires
more elements that are specifi cally tied to software development. An important distinction
between the development of software artifacts and the development of physical products
is the dependence of the prior on an underlying runtime execution environment that is set
by end user organization’s IT infrastructure. This has not been clearly identifi ed by existing
product platform theory, and it is clearly a weakness that our work emphasizes more clearly.
Dependencies on the underlying IT infrastructure must be a part of the technology selection that
a software vendor will defi ne together with its product and market segmentation selections.

We were not able to fi nd any discussion of software application frame granularity and its
corresponding software application frame components and what type of planning methods a
software vendor should apply when defi ning a software application frame for a selected software
domain. This type of planning relates closely to software product line development. We were
able to identify several applicable methods, such as software domain engineering, that enable
software vendors to defi ne the commonalities of products within a product line. This helps these
vendors to create common software assets. Bosch (2000) defi ned the concepts of software
archetypes that defi ne recurring patterns across a selected software domain: methods that can
be found in component-based software engineering and approaches to defi ning coarse-grained
software components. We also discussed software assets and how these can be categorized
and used when implementing an analytical application frame. We found that existing software-
related product platform literature did not specifi cally address different variation techniques
that can be used when building derivative products. This study provides discussion of variation
techniques that are available specifi cally for analytical application software vendors. The impact
of a software application frame and its leverage on different market segments is measured by
different economic metrics that were introduced in prior chapters.

8.2 Identifi cation of Generic Analytical Application Architectures

The second research question, “What types of generic software application frame architectures
can be identifi ed for analytical application software solutions?” explored existing knowledge of
data warehousing architectural models and how these could be linked to analytical application
software solution development. Chapter 3 included an architectural description of all the
required architectural elements that are needed in building an analytical application. Elements

276

such as data warehousing, data mart technology, OLAP technology, and EIS technology are all
part of an overall analytical application software architecture. We also concluded that software
vendors must distinguish between application domain specifi c architectural models from the
technical architectural style (such as client/server, pipe-and-fi lter, etc.), as these models could
have signifi cantly different aims. We introduced three data warehouse architectural models
(centralized, distributed/multi-tiered, and federated) in Chapter 3, comparing these models from
both the software vendor’s perspective and the end user organization perspective (Chapter
4). In selecting an architectural model both from the software application domain perspective
and the IT infrastructure perspective, the software vendor should aim to identify an optimal
architectural entity that can be used across all derivative products in a product family. Based
on this requirement, Chapter 4 portrays an analytical application frame architecture with all the
included architectural layers, such as an analytical application defi ning technology, a service
component layer, and an extension component layer. Each of these layers includes additional
elements – analytical application frame components - that are the basis for derivative product
development.

The emphasis on selection of an optimal data warehouse architectural model for analytical
application software development must be a combination of end user organization and software
vendor requirements. End user organizations might not support underlying technologies that
a software vendor selects, and this could become a major hurdle for the software vendor in
future market segmentation strategies. The software vendor should aim to achieve balance
between software application frame architecture optimization and the IT infrastructure this
software application frame is going to support, paying particular attention to derivative
software development. The adaptability of the software application frame will largely dictate
future market segmentation for the software vendor. A software application frame should not
include all the possible underlying technologies that could possibly be needed for different
market segments in the future, as this would cause serious compatibility problems for the
software vendor. The analytical application frame should be implemented to be fl exible, to
accommodate current and future market segments effectively. This can only be measured ex-
post and only if the software vendor tracks its software development activities effectively.

The differentiation between the domain-specifi c architectural model and the architectural style
can be measured or evaluated by “Technological Responsiveness,” which demonstrates the
fi t between the analytical application frame architecture sub-strategy with its domain-specifi c
architectural model and the analytical application frame technology sub-strategy, which
expresses the type of implementation architectural style the software vendor is going to use in its
development. The selection process for the domain-specifi c architectural model must be based
on both end user requirements and the core competence of the software vendor. The change
from centralized computing toward distributed computing has also changed the way software

277

vendors implement their solutions. Even though the technological implementation model is
based on distributed technologies, end user organizations typically require that the end user
experience centralized characteristics. This type of end user experience can be achieved using a
federated architectural model, where all different data marts or data warehouses can be viewed
using client software that provides an “integrated” view of the different underlying databases.
We proposed a hybrid model in Chapter 3, where the selected architectural model is a
combination of the federated and the distributed/multi-tier data warehouse architectural
models.

We concluded in Chapter 3 that the added value of having a data warehousing architecture
with federated characteristics is the ability to shield the layers between the operational
applications and the data warehouse by using a data staging area. A data staging area acts as
an interface to operational data and helps to stabilize the volatility of operational data. This
characteristic is very important within analytical application development. This also helps
software vendors to build analytical solutions, as the most frequent changes in ETL mappings
are implemented between the operational data source and the data staging area, and not
between the data source and the analytical application. Data staging area architecture is not
very technology dependent, as most relational database management systems support the
functionality of staging data for loading data into subject-specifi c data marts in the selected
architectural model.

One key requirement for most end user organizations is to have the ability to use these analytical
application solutions remotely without having access to a centralized meta data repository.
This requirement requires some kind of multi-tier/distributed computing environment from
the software solution. Selection of the federated data warehouse model from the software
development perspective could be most effective for a software vendor, as it provides a
centralized repository for both meta data and business analytics. This model also provides a
seamless enterprise view of several underlying data mart implementations. This centralized
approach assures that all dependent and independent data marts share common business
measurements with conformed dimensions. This architectural model enables organizations to
build enterprise solutions with a bottom-up implementation approach. Russell (2000) provided
important fi ndings in his article “Designing an Adaptable Business Intelligence Architecture,”
where he concluded that movement from the centralized to the distributed architectural
models is far easier than the other way around. Unfortunately, the case study company in this
study had experienced the pain of moving from a highly centralized architectural model to a
corresponding distributed architectural model, and now with the renewal of its server frame,
the Company is aiming to change its architectural model to be more centralized due to several
factors reported in Chapter 7.

278

From a software implementation perspective, the federated or distributed/multi-tier architectural
model is more challenging than the traditional centralized model, as the software development
organization must introduce new technologies such as distributed computing and data replication
between different architectural layers into the analytical application to permit offl ine use of
the solution. With a layered software architecture, the software vendor could theoretically
make changes from a centralized architecture to a distributed architecture easier as long as
these layers have appropriate communications protocols. If distributed technology is needed,
message marshaling is managed by infrastructure elements in the underlying technology within
the analytical application frame technology sub-strategy.

Based on this analysis of software architectures in light of the selected data warehouse
architectural model, is obvious to us that irrespective of the selected architectural model, the
software development organization must select a software architectural model that enables the
implementation of an adaptable analytical application frame that can be used as basis for future
derivative product development. The only way to achieve this type of fl exibility is to select a
robust software architectural style. Software organizations should aim to select an architectural
model that will accommodate all future software requirements that might be set for the product
solution, such as support for PDA technology or software agent technology that enables
intelligent analysis of the data within the data warehouse or data mart databases. A layered
software architecture will also reduce the dependences on the underlying IT infrastructure
environment, facilitating easier portability for software vendors to move from one hardware
and operating system environment to multiple hardware and software environments.

Finally, selection of an architectural model is not only dependent on what end user
organizations will support, but the question is, “What is the most effective and optimized
analytical application frame architecture that a software vendor can use when developing
prepackaged analytical applications?”

8.3 Using a Balanced Software Application Frame Strategy

The third research objective, “How can software vendors balance their software product
architectures when changes take place in marketing and/or technology selections?” is intended
to give an answer to an analytical application software vendor as to what implications the
software vendor can run into when aligning an analytical application frame architecture and
analytical application frame technology sub-strategy with a selected analytical application
frame leverage sub-strategy. It is evident based on our literature search of software-related
platform literature that software development is more complex than the development of
physical products. Changes in any of the three sub-strategies within an Analytical Application
Frame Strategy framework will have an impact on software development. Unfortunately, these
types of changes will typically go unnoticed by executive management, even though the

279

dependencies created by a business decision could impact the future of the company. This
result was reported in Chapter 7 in our case study analysis, where the Company extended
its solution offering to other application areas such as budgeting/planning and enterprise data
warehousing in the mid 1990s and early 2000s, resulting in selection of additional underlying
technologies that made the overall software development more complex for the case study
company.

We were able to identify six major alignment perspectives in an Analytical Application Frame
Strategy framework that a software vendor can potentially utilize when building analytical
application software solutions. We explained the impact of each alignment perspective on the
overall strategy of a software vendor, and we also argued that one and only one alignment
perspective will not be optimal for all software organizations. Each software organization
has a different background, with different core competences and software development
organizations. Each software organization conducts business in a different competitive
environment, and each software organization might have a different business model. The
selected business model could change rapidly due to changes in the business environment.
This could cause a change in the selected alignment perspective as well. In some cases,
the selected software application domain might change in different ways, such as changes
in functional requirements or changes in the end user IT infrastructure environment. The
case study Company ran into the latter change as the OS/2 operating system environment
lost its market presence to Microsoft Windows, causing the Company to change direction
in its development. The challenge for software vendors is to defi ne an effective and optimal
software application frame to include enough adaptability so that even future unknown
product requirements can be implemented as these requirements are identifi ed. It was very
clear in our case study research that the selected software architectural model was important
to the success of the case study company.

Another important factor to consider when using an Analytical Application Frame Strategy
framework is to identify possible alignment perspective disconnects that a software vendor could
face when implementing its strategies. We argued that the probability of these disconnects is
high, as could be seen in our case study research, but as long as the software vendor is aware
of the possible disconnects when implementing any of the three sub-strategies within the
framework, the probability of future problems is lessened. “Architectural disconnect” typically
leads to a weakened software application frame architecture. The reason for this could be too
much emphasis either on market segmentation or on technology. When the software vendor
neglects technological selections, the vendor could run into “Technological disconnect” that
could lead to future market segmentation diffi culties or to a fragile software application frame
architecture. The last potential disconnect is “Segmentation disconnect,” most likely when
software vendors have a strong technological background and/or the emphasize the software

280

application frame architecture, with the result of weak market segmentation. It is important for
a software vendor to recognize the existence of these types of disconnects when utilizing an
Analytical Application Frame Strategy framework.

The connection between the domain-specifi c architectural model (part of an analytical
application frame architecture sub-strategy) and the architectural style defi ned in the
application frame technology sub-strategy must be severed when planning the analytical
application frame architecture. The connection between these two different architectural
models became obvious in both Chapter 3 and Chapter 4, where we explained how selection
of an underlying technology will impact the defi ning technology and vice versa. We also
expressed the importance of defi ning technology for an analytical application software
vendor, as these elements will be the differentiating factor when competing in the fi eld of
analytical application software. This was evidenced within our case study company: the
defi ning technology for the Company had characteristics of an “easy implementation” and an
effective communication protocol that provided quick response times with “state-of-the-art”
dashboard technology. It was evident that changes in the architectural layers and/ or elements
within a sub-strategy could potentially impact other sub-strategies and their elements. If the
software vendor is aware of these interdependences, it can replace some of these elements
without impacting the overall solution. This can be achieved only via effective interfaces and
large-grained modular architecture.

The selection of an architectural model will consider a combination of factors, as we saw in
our comparison in Chapters 3 and 4, factors such as the core competence of the software
development team, the customer segments to be addressed, and also the IT infrastructure
technologies that the customer segment is going to support. The selection of the optimal
architectural model must be based on the search for and identifi cation of “an optimal
architectural construct that will become the foundation for the analytical application frame.”
This architectural construct has to be well aligned with technologies discussed in Chapter 3,
such as data mart or data warehouse architectural models. This architectural construct – the
analytical application frame – will become the foundation for derivative analytical solutions that
refl ect the needs and requirements of selected market segment. To enable derivative product
development, the analytical application frame has to include functionality and fl exibility
to enable the software organization to maintain and build multiple analytical solutions for
different market segments without having to modify the analytical application frame itself.

The adaptability of an analytical application frame can be measured by how easily the
solution can be used for derivative solution development. We discussed in Chapter 5 different
variation techniques that can be used within analytical application derivative software solution
development. The most typical variation technique is solution variation, where the solution
vendor includes predefi ned business metrics for a selected market segment using the meta

281

data and business analytics repository as its foundation. This type of solution variation refl ects
closely the description of solution variation of information products discussed by Meyer and
Lopez (1996). We also expressed the importance of being able to maintain the solutions that are
delivered to end user organizations and the ability to upgrade these solutions with new releases.

Another type of variation is the use of an extension component layer within the Analytical
Application Frame Strategy framework to customize the analytical application frame for
different market segments using software engineering related variation mechanisms. Analytical
application frame development will not allow any customer-specifi c customizations, as
the analytical application frame loses its concept of being the core for derivative solution
development. According to our literature search into analytical application solutions, the
expectation of end user organizations is to have 80% of the common business metrics and
business processes covered in the solution. These organizations expect to be able to redefi ne
the remaining 20% of their own specifi c requirements. It is important that the analytical
application frame support the maintenance and parallel development of the solutions so that
the software vendor can deliver a new release of the vertical solution without breaking the
existing solution that the end user organization has changed and maintained.

Evidence of the use of analytical application frames in analytical application solution
development within the case study company could be found specifi cally within the client
frame development effort, where new derivative products could be created. The question
still remains whether the case study company could have achieved greater leverage by
more active use of the Analytical Application Frame Strategy framework. According to the
quantitative analysis, the Company had not utilized defi ning technology components to
implement different solutions for different vertical market segments. The variation within the
case study company has been mostly technical variation, using the client frame as a basis
for derivative products and variations, by using the price/performance matrix to enable the
solution to work with larger multi-national organizations. According to the interviews with
development management, the new future software application frame is more compatible
with analytical application solution development, having the ability to maintain and update
new solution releases in parallel with end user organization development of solutions. This
fl exibility will include better functionality in maintaining solutions, avoidance of confl icts in
parallel development, and better installation routines when delivering the solution.

Finally, to achieve an integrated/balanced strategy, software vendors must continuously re-
align all three sub-strategies within an Analytical Application Frame Strategy framework
when using an analytical application frame for derivative software solution development. A
deviation from this realignment could cause any of the three sub-strategies to get out of sync,
as was seen in the case study analysis. Careless selection of underlying technology could lead
to an infl exible analytical application frame architecture, and this could prevent the software

282

vendor from extending its solutions to new market segments in the future. A weak underlying
analytical application frame architecture could in the future prevent the software vendor from
selecting new underlying technologies that are needed in a new market segment that the
software vendor would like to address. Therefore, the selected analytical application frame
technologies must match well with the analytical application frame architecture. This type of
alignment is important when building solutions for selected market segments.

8.4 Changes in Effectiveness Criteria when Applying the Product
 Platform Approach

The fi nal research question, “How can effectiveness criteria change when applying the
product platform approach in analytical application software development?” refl ects back to
the redefi ned Analytical Application Frame Strategy framework. According to this framework,
part of the product development strategy is to integrate the included sub-strategies in the
planning process when building analytical software applications. The traditional approach to
analytical application solution development is to focus on one sub-strategy at a time, which
could have consequences as identifi ed in the case study analysis. Another clear difference
from the traditional product platform approach is the dependence on a software development
process, which must be considered when planning the use of an Analytical Application Frame
Strategy framework. Selection of underlying technologies will impact not only the execution
and development environment but also the analytical application frame architecture sub-
strategy and possibly future market segmentation strategies.

Several existing software related product platform references (Meyer and Seliger, 1998;
Sääksjärvi, 1998, 2002) conclude that component-based software engineering could be a
good foundation for developing software related product platforms. The work of Meyer and
Seliger (1998) generalized software development to development of physical products, while
Sääksjärvi (2002) argued that software development is clearly different from physical product
platform development. This argument led to implementation of the Software Application Frame
Strategy framework. Software organizations will not have much use for existing traditional
product platform literature, as this literature does not refl ect the complexities of software
development.

An Analytical Application Frame Strategy framework combines with practical means of creating
common software assets by using, for example, software archetypes (Bosch, 2000). Defi nition
of recurring patterns across products in a product line will give the power of true derivative
software development to any software vendor. It is clear based on our analysis of analytical
application software development that each software product domain will be different with
respect to its software frame technology and software frame architecture sub-strategy. Based
on this, we can conclude that software organizations must put different emphasis on their

283

product development compared with traditional product development. The overall process
for executive management is the same – product market segmentation will be aligned with
corporate business strategy - and it is the responsibility of the software product development
organization to select appropriate technologies that enable the product development
organization to create software assets that are used across different product derivatives. This
variation can be implemented using adaptable frame architecture and techniques provided in
the software product line and software reuse literature.

Using our Analytical Application Frame Strategy framework as a basis when analyzing the case
study company, it became evident that the technology selections in the early 1990s impacted
not only market segmentation but also the analytical application frame architecture. The case
study also showed how technological selections can hinder other elements within the analytical
application frame technology sub-strategy, such as the execution and integrated development
environment, with an impact on the overall development of the software solution. Software
development using an Analytical Application Frame Strategy requires not only technological
selections but also clever identifi cation of recurring functional patterns to enable defi nition
of an adaptable software application frame that can be used as basis for derivative product
development. Existing literature on data warehousing, which we argue is the foundation for
analytical software applications, does not include any analysis of the impacts of software
engineering on related topics, such as common software assets or variation of these common
software assets to enable creation of new software products.

A comparison of analytical application software development with or without the use of
a product platform approach for a software vendor can be analyzed from two different
perspectives. The fi rst analysis perspective is to identify whether the software vendor has used
defi ning technology as the foundation for vertical or horizontal market segmentation. The
second analysis perspective is to determine how effective the derivative product development
has been, using either technical or solution variation. Traditional analytical application software
development does not necessarily include features/functions that make market segmentation
easy to deploy and solution development and maintenance of the solution possible in parallel
with end user development of the same solution. The researcher notes, with close to 15 years
of experience, that software development is still very technology driven, and that customer
experience or customer requirements from a solution development perspective are typically
completely ignored or receive little attention. The case study company can be categorized as a
technology or market-driven software vendor: solution development has been deemphasized,
while technology development has been the focus for the last few years.

An analysis of analytical application frame evolution over the years shows clearly that not until
early 2000 did the Company achieve relatively successful derivative product development
using the client frame. Most of the software application frame development (both server and

284

client) has been more or less technology development, where the server frame has been
the “heart” of the overall solution. The Company has been able to extend the server frame
with three extensions during its lifetime, leading to more effective price/performance market
segmentation. Our interviews with the management and founders of the Company found
relatively successful market focus. The company has achieved good penetration in a few
selected market segments, such as distribution, car dealerships, heavy equipment rentals, etc.,
but this penetration has not included any specifi c features to support these vertical market
segments. Maintenance and support for these domains in concert with end user organizations
is not implemented.

If the Company aims to be successful with both technical and solution variation in its future
analytical application frame development, it needs to increase the fl exibility of its server and
client frame to include the ability to maintain and build analytical solutions in parallel with
end user organizations. Based on the fi ndings in the longitudinal case-study research, it is
recommended that solution development be kept separate from the technology development
of the software. Therefore, it is recommended that the Company have different personnel
for these two different tasks. Software development organizations are traditionally very
technology driven and software engineers are typically not skilled or well versed in different
market segments. This weakness must be attacked by skilled vertical market specialists who
plan and build the analytical solutions using the technology implemented in the technology
development department.

Finally, the case study analysis showed the importance of an analytical application frame
and the selection of underlying and defi ning technologies in derivative software product
development. The case study also showed that, if the executive management does not recognize
the importance of the fi t between the analytical application frame architecture and the selected
analytical application frame technology sub-strategy, future market segmentation strategies
might be impacted by these selections. Unfortunately, software development organizations
do not have visibility of these types of frameworks (such as our Analytical Application Frame
Strategy framework). This will make the involvement of executive management very ineffective
and diffi cult as, existing methodologies, techniques, tools, and languages such as UML are too
diffi cult for management to learn, understand, and use in their planning process.

8.5 Relevance and Generalizability of the Study

Yin (2003) discusses criticisms of the generalizability of the results of single case studies. The
author concludes by stating:

“How can you generalize from a single case study’ is a frequently heard question
… The short answer is that case studies … are generalizable to theoretical
propositions ….”

285

The question of whether our research results can be generalized and applied to other software
application domains should be discussed from several different perspectives. First of all, our
research concentrated on analytical application software development with respect to this
software application domain. As our analysis of product platform related theory in Chapter
2 did not specifi cally address the applicability of product platform development to analytical
applications, we can conclude that the fi ndings in Chapter 2 can be generalized to other
software domains (we specifi cally mention as well the lack of literature investigating the
product platform development of software products and how software application frames
should be defi ned). Other researchers can use the refi ned Analytical Application Frame
Strategy framework and apply it to respective software application domains, building specifi c
alignment models that are typical of the combination of software application frame technology,
software application frame architecture, and software application frame leverage sub-strategy
for the given domain.

Yin (2003) concludes that there are four types of generalizations in interpretative case studies:
the development of concepts, the generalization of theory, the drawing of specifi c implications,
and the contribution of rich insight. According to Yin (ibid), these four types of generalizations
are not mutually exclusive. Because of this, this case study research theory generalization
is based on a combination of factors, drawing specifi c implications and contributing rich
insights. This type of analysis can be also categorized as a critical case (Yin, 2003), as this type
of case study analysis could not have been performed without the specifi c relations that the
researcher had with the software development organization.

The study of Jones and Nandhakumar (1993) used a framework to analyze and explain the
applicability of a framework in building an executive information system (generalization of
theory). Another study from Walsham and Waema (1994) involved specifi c implications in
a particular domain of action (information systems for a fi nancial services company). In this
8 year longitudinal study, the researchers analyzed the relationship between the design and
development process and the business strategy. According to Walsham (1995a), Walsham and
Waema (1994) use verbs such as ‘can’ rather than ‘will’, which implies that the generalizations
are more like tendencies and not like predictions.

The refi nement of the framework by Sääksjärvi (2002), adapted to analytical application
solution development (Analytical Application Frame Strategy framework) and the use of this
framework in building different alignment perspectives for analytical application solution
development, provides a clear contribution to both the analytical application software domain
and to software related product platform theory. This framework was tested in an interpretative
single-case study to measure the effectiveness and effi ciency of software application frame
development within the case study company. As in the case of Walsham and Waema
(1994), the implications of this framework were clear, but the differences between analytical

286

application software vendors can be considerable, and therefore our conclusions are more
of a ‘can’ nature and less of a ‘will’ nature. It is unknown whether any other software vendor
would achieve the same results using an Analytical Application Frame Strategy framework in
its software application frame development.

The generalizability of the Analytical Application Frame Strategy framework to analytical
application solution development can be demonstrated in the case study analysis, specifi cally
in the analysis of client frame derivative product development. It was evident that the lack
of proper selection of an underlying technology has impacted current and future market
segmentation strategies for the case study company. This could have been avoided with
the use of an Analytical Application Frame Strategy framework. The generalizability of this
framework applies only to analytical application software vendors, as every vendor must
provide all the components within an analytical application frame architecture to be able to
provide analytical application solutions to different market segments. The applicability of the
framework within other software domains must be re-adapted to each software domain. This
could be a good foundation for future research.

An example of this re-adaptation work is in Chapter 4, where the analytical application software
domain with corresponding technological elements such as data warehousing architectural
models, executive information systems, OLAP technologies, etc. was analyzed and an analytical
application frame architecture was built specifi cally for analytical applications. Existing decision
support/analytical application literature does not specifi cally address the development of
analytical applications from the software vendor’s perspective, and therefore we had to defi ne
an analytical application frame architectural model to be able to analyze the corresponding
analytical application frame leverage and analytical application frame technology sub-strategy.
The requirement that the product platform concept enable effective derivative product
development caused the researcher to identify an optimal architectural construct with all the
corresponding analytical application frame components (or elements) that can be used across
any horizontal or vertical market segment. We argue that the concept of identifying analytical
application frame components can be generalized to any software application domain if it is
combined with the corresponding characteristics of the software domain itself.

We also expect that each software application domain will have slightly different criteria for
software application frame technology, software application frame leverage, and software
application frame architecture sub-strategy. Because of these differences, it is most likely that
the six identifi ed alignment perspectives with corresponding disconnects from Chapter 4
will also be different in different software domains, and that they must therefore be adapted
to each selected software application domain. We identifi ed the lack of practical software
implementation advice with respect to software application frames in existing software related
product platform literature. This study provided new insight into the existing literature in our

287

analysis of software product lines, domain engineering, and component-based software
engineering. Software application frames are built using common software assets which will
become the foundation for a software application frame. We identifi ed different variation
mechanisms for derivative product development and found that technical variation mechanisms
are generic to any given software application domain. Those variation mechanisms that are
specifi c to analytical application software are not applicable to other software domains, and
therefore each software domain must be analyzed separately to be able to identify the specifi c
variation mechanism for a given software domain.

Finally, the single-case interpretative case study analysis refl ects the fi ndings of an analytical
application vendor. Results cannot be applied to any other software domains as such. Any
software vendor can utilize and learn from the thought process that a software vendor
undertakes when building and analyzing its Software Application Frame Strategy framework
with corresponding alignment perspectives and possible disconnects that could inhibit future
development. These alignments describe the behavior of each sub-strategy within a Software
Application Frame Strategy framework. The behavior will be driven by the characteristics of
each sub-strategy. This characteristic is dependent on the software domain. We do argue that
the method of analysis is the same regardless of the software domain, and therefore other
software domains and software vendors can learn from the thought process. The case study
analysis provided managerial perspectives that any software vendor can utilize when using a
software application frame in its derivative software development.

8.6 Limitations of the Study and Future Research

First of all, this study has some exceptional characteristics. The researcher has had access to
the Company for several years in different roles and responsibilities. The uniqueness of the
case is due to the deep data that was provided. This type of information would be very hard
to gather in organizations that are not in one way or another related to the researcher. The
researcher used several people in the data collection process – specifi cally from the fi nancial
and accounting departments – to ensure accuracy of the data and that the researcher did not
have a subjective view on historical events. We believe that the data we collected will speak
for itself. As the data collection process took place over a very long time, we got more insight
along the way into what measures and data elements were needed for our analysis. Some
of our pre-release data was so strong that the Board of Directors of the case study company
decided to take action based on the data. One example of this occurred when the Company
decided to change from concurrent user pricing to named user pricing. Another fi nding that
took us by surprise was the fact that almost all products had been profi table, even products
that Development had a “gut feeling” were losing money. Even if these products were making
money, the question remains whether a better return on investment would have been realized
with greater emphasis on either server or client frames. All in all, several interesting results

288

were identifi ed. We also became convinced that the product line engineering approach is
a very strong component of derivative software development in the analytical application
software domain, even if the Company has yet to experience the power to its full potential.
Good results have already been demonstrated via the new client frame (V2) and its derivative
products, but still more has be to done to take development to the next level.

We also realized that, as our fi ndings are based on an analytical interpretative single-case
study, there are possibilities for defi ciencies, specifi cally in our generalizations. Some of
these possible defi ciencies are reduced due to the researcher’s practical experience in both
analytical application solution development and software engineering. We also recognize that
the reporting of interpretative case study results by the researcher is not about the reporting of
facts, but rather about “reporting interpretations of other people’s interpretations” (Walsham,
1995a). We also understand that some “double hermeneutic” (Giddens, 1984) might have
occurred in our research, whereby the actions of researchers might impact the interpretations
of the people who are being researched.

The case study analysis was carried out over several years, giving the researcher a specifi c
opportunity to make observations over an extended period of time. The founding Chief
Executive Offi cer left the Company in early 2000, enabling the researcher to gain access to all
information in the company, including fi nancial records and project related information. The
researcher carried out dozens of different interviews during the years that included questions
about the decisions made in the company in its early days. It is obviously possible that the
interviewees could have forgotten some details either intentionally or unintentionally, but
these fi ndings were triangulated with quantitative analysis using fi nancial and project related
data and other interviews. Because we had access to all the needed information, we believe
that the error has been relatively small and has not impacted the overall analysis of the case
study company and its development over the years.

We also recognize that a comparison with other similar software organizations in the same
domain could have provided additional insight, but due to the harsh competition, this type of
analysis could not be performed. The researcher gained access to records that would not have
been available in other similar studies due to several factors: salary information is sensitive,
internal fi nancial records are confi dential, and a myriad of other internal documents might
not even exist. Another question that could be posed is whether the case study company
is somehow exceptional compared with other software organizations in the same domain,
rendering the research results not generalizable. The researcher has been professionally working
within the domain for the last 15 years. Six of those years were spent with another software
vendor (a competitor) in the same domain. Based on this experience, it can fairly be said that
these two organizations have similar products with similar functionality. The biggest difference
is mostly the surrounding environment, such as the size of the company, the importance of the

289

software offering to the organization, the core competence of the software team, etc. These
types of differences will not change the foundation of the analysis, but could lead to different
results when analyzing software application frame effectiveness and effi ciency. Based on this
analysis, the researcher has no reason to believe that either the qualitative or the quantitative
fi ndings of this study would be biased due to the characteristics of the case study company.

Our research was focused on software development of analytical application software solutions.
We were able to determine general fi ndings that can be applied to any software application
domain. As for the differences explained in prior chapter, it would be of interest to compare
them with another software application domain in the light of our Analytical Application Frame
Strategy framework, and to compare how each of these other software application domains
would differ with respect to software application frame technology, software application frame
architecture, and software application frame leverage sub-strategy. Another future research
topic could be to continue to research software product line engineering and how it can be
linked more closely with analytical application software development. This will be a good
opportunity for additional articles to be posted in journals and corresponding conferences.
We strongly believe that software development has to improve and achieve better results in
reuse and derivative product development, and that existing integrated development tools
must be better integrated to engineering practices such as software product line engineering.

Another interesting future research effort could be to use the fi ndings of this study as compared
with other software domains to be able to see what differences our suggested alignment
perspectives could demonstrate. If another research group had access to another analytical
application software vendor to make a comparable study, differences might be identifi ed.
Comparison of the use of an Analytical Application Frame Strategy framework within several
organizations with different business models would also be of interest. This could provide
valuable information to software organizations that are investing in the development of a
common software application frame, showing how service revenue could impact the overall
effectiveness and effi ciency of the software application frame.

Finally, our effectiveness and effi ciency calculations were based on calculations rules that
can be found in the existing product platform related literature as amended with a few new
measures that we defi ned in this study. It would be of interest to defi ne new measurements
for Software Application Frame Strategy framework effectiveness and effi ciency by taking
existing measurements from the software product line engineering literature and use these as
additional measures for evaluating the software application frame development of a software
vendor.

290

9. REFERENCES

Abatangelo D., (2001). “Increasing the Value of Your Analysis, Layer by Layer.” Journal of
Data Warehousing, Vol. 6, No. 3, Summer 2001, pp. 25-31.
Abowd G., Allen R. and Garlan D., (1993). “Using Style to Give Meaning to Software
Architecture.” Proceedings of SIGSOFT ‘93: Symposium on the Foundations of Software
Engineering, December 1993, ACM, New York.
Adamson C. and Venerable M., (1998). Data Warehouse Design Solutions, New York, NY:
John Wiley & Sons, Inc.
Agosta L., (2000). The Essential Guide to Data Warehousing, Upper Saddle River, NJ:
Prentice Hall PTR.
America P., Obbink H., van Ommering R. and van der Linden F., (2000). “CoPAM – A
Component-Oriented Platform Architecting Method Family for Product Family Engineering.”
Proceedings of the First Software Product Line Conference (SPLC1), Denver, CO, USA,
August 28-31, 2000, pp. 167-180.
Arango G., (1994). “Domain Analysis Methods in Software Reusability.” In Schäfer W,
Prieto-Diaz R. and Matsumoto M., (eds.), Software Reusability, Ellis Horwood, New York,
USA, pp. 17-49
Atkinson C., Bayer J. and Muthig D., (2000). “Component-Based Product Line Development:
The KobrA Approach.” Proceedings of the First Software Product Line Conference (SPLC1),
Denver, CO, USA, August 28-31, 2000, pp. 289-309.
Atkinson C., Bayer J., Bunse C., Kamsties E., Laitenberger O., Laqua R., Muthig D., Paech
B., Wust J. and Zettel J., (2002). Component-Based Product Line Engineering with UML,
Boston, Addison-Wesley.
Baker N. and Freeland J., (1975). “Recent Advances in R&D Benefi t Measurement and
Project Selection Methods.” Management Science, Vol. 21, No. 10. pp. 1164-1175.
Bass L., Clements P., Cohen S., Northrop L. and Withey, J., (1997). Product Line Practice
Workshop Report, Technical Report (CMU/SEI-97-TR-003, ESC-TR-97-003). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University.
Bass L., Clements P., Cohen S., Northrop L., Smith D. and Withey J., (1998a). Second
Product Line Practice Workshop Report, Technical Report (CMU/SEI-98-TR-015, ADA
343688). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.
Bass L., Clements P. and Kazman R., (1998b). Software Architecture in Practice, Reading,
Massachusetts: Addison-Wesley.
Bass L., Clements P. and Kazman R., (2003). Software Architecture in Practice, Boston,
Massachusetts: Addison-Wesley.
Bass L., Campbell G., Clements P., Northrop L. and Smith D., (1999). Third Product Line
Practice Workshop Report (CMU/SEI-99-TR-003, ADA 361391). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

291

Bass L., (2001). “Software Architecture Design Principles.” In Heineman G.T. and Councill
W.T. (eds.), Component-based Software Engineering: Putting the Pieces Together, Upper
Saddle River, NJ: Addison-Wesley, pp. 389-403.
Batory D., Cardone R. and Smaragdakis Y., (2000). “Object-Oriented Frameworks and
Product-Lines.” Proceedings of the First Software Product Line Conference (SPLC1), Denver,
CO, USA, August 28-31, 2000, pp. 227- 247.
Batory D., Johnson C., MacDonald B. and von Heeder D., (2002). “Achieving Extensibility
Through Product-Lines and Domain-Specifi c Languages: A Case Study.” ACM Transactions
on Software Engineering and Methodology, Vol. 11, No. 1, April 2002, pp. 191-214.
Baumöl U., Jung R. and Winter R., (2000). “Adapting the Data Warehouse Concept for the
Management of Decentralized Corporations.” Journal of Data Warehousing, Vol. 5, No. 1,
Winter 2000, pp. 35-43.
Benbasat I., Goldstein D.K. and Mead M., (1987). “The Case Research Strategy in Studies of
Information Systems.” MIS Quarterly , Vol.11, No. 3, September 1987, pp.369-386.
Bengtsson P., Lassing N., Bosch J. and van Vliet H., (2000). “Analyzing Software Architectures
for Modifi ability.” Technical Report (HK-R-RES00/11-SE), University of Karlskrona/Ronneby,
Ronneby.
Bosch J., (1999a). “Product-Line Architectures in Industry: A Case Study.” Proceedings of
the 21st International Conference on Software Engineering (ICSE’99), May 16-22, 1999, pp.
544-554.
Bosch J., (1999b). “Evolution and Composition of Reusable Assets in Product-Line
Architectures: A Case Study.” Proceedings of the First Working IFIP Conference on Software
Architecture (WICSA1), San Antonio, Texas, USA, February 22-24, 1999, pp. 321-340.
Bosch J., (2000a). Design & Use of Software Architectures – Adopting and Evolving a
Product-line Approach, Boston: Addison-Wesley.
Bosch J., (2001). “Software Product Lines: Organizational Alternatives.” 23rd International
Conference on Software Engineering (OCSE’01), Toronto, Canada, May 12-19, 2001, pp
91-102.
Bosch J. and Bengtsson P., (2001). “Assessing Optimal Software Architecture Maintainability.”
Proceedings of the Fifth European Conference on Software Maintainability and Reengineering,
Lisbon, Portugal, March 14-16, 2001, pp. 168-175.
Bosch J., (2002). “Maturity and Evolution in Software Product Lines: Approaches, Artifacts
and Organization.” Proceedings of the Second International Conference of Software Product
Line Conference (SPLC2), San Diego, CA, USA, August 19-22, 2002, pp. 257-271.
Bosch J. and Högström M., (2000). “Product Instantiation in Software Product Lines: A Case
Study.” Second International Symposium on Generative and Component-Based Software
Engineering (GCSE 2000), Erfurt, Germany, October 9-12, 2000, pp. 147-162.
Bragg S.M., (2002). Business Ratios and Formulas – A Comprehensive Guide, Hoboken, NJ:
John Wiley & Sons, Inc.

292

Brereton P., Budgen D., Bennet K., Munro M., Layzell P., Macaulay L., Griffi ths D. and
Stannett C., (1999). “The Future of Software.” Communications of the ACM, Vol.42, No.12,
December 1999, pp. 78-84.
Briand L., Arisholm E., Counsell S., Houdek F. and Thevenod-Fosse P., (1999). “Empirical
Studies of Object-Oriented Artifacts, Methods, and Processes: State of the Art and Future
Directions.” Empirical Software Engineering, Vol. 4 No. 4, December 1999, pp. 387-404.
Brooks F.P., (1995). The Mythical Man-Month – Essays on Software Engineering, Anniversary
Edition, Reading, Massachusetts: Addison-Wesley.
Brooks F.P., (1987). “No Silver Bullet: Essence and Accidents of Software Engineering”, IEEE
Computer, Vol. 20, No. 4, April 1987, pp. 10-19.
Brown A.W. and Wallnau K.C., (1996). “Engineering of Component-Based Systems.” In
Brown A.W. (eds.), Component-based Software Engineering – Selected Papers from the
Software Engineering Institute, Software Engineering Institute, IEEE Computer Society, Los
Alamitos, California, pp. 7-15.
Brown A.W., (2000). Large-Scale Component-Based Development, Object and Component
Technology Series, Upper Saddle River, NJ: Prentice Hall PTR.
Brown J.T., Spence I., Kilpatrick P. and Crookes D., (2002). “Adaptable Components for
Software Product Line Engineering.” Proceedings of the Second International Conference
of Software Product Line Conference (SPLC2), San Diego, CA, USA, August 19-22, 2002,
pp. 154-175.
Brown, M.G. and Svenson R.A., (1975). “Measuring R&D Productivity.” Research Technology
Management, July-August 1975, pp. 11-15.
Broy M., Deimel A., Henn J., Koskimies K., Plasil F., Pomberger G., Pree W., Stal M. and
Szyperski C., (1998). “What Characterizes a (Software) Component?” Software Concepts &
Tools, Vol. 19, No. 1, Springer-Verlag, pp. 49-56.
Burwen M., (2000). “ERP, BI and E-Commerce: Where are the Winners?” DM Review, Vol.
10, No. 7, July 2000, p. 34.
Card D.N. (1995). “The RAD Fad - Is Timing Really Everything?” IEEE Software, Vol. 12, No.
5, September 1995, pp. 19-23.
Carmel E., (1995). “Cycle Time in Packaged Software Firms.” The Journal of Product
Innovation Management, Vol. 12, No. 2, March 1995, pp. 110-123.
Chaudhuri S. and Dayal U., (1997). “An Overview of Data Warehouse and OLAP
Technology.” ACM SIGMOD Record, Vol. 26, No. 1, March 1997, pp. 65-74.
Cheesman J. and Daniels J., (2001). UML Components – A Simple Process for Specifying
Component-Based Software, Boston, MA: Addison-Wesley.
Chilanti M. et al., (1997). Data Warehousing Solutions on the AS/400, IBM Red Book SG24-
4872-00.
Christensen C.M., (1997). The Innovator’s Dilemma – When New Technologies Cause Great
Firms to Fail, Boston, MA: Harvard Business School Press.

293

Clements P., (1996). “From Subroutines to Subsystems: Component-Based Software
Development.” in Brown A.W. (eds.) Component-based Software Engineering – Selected
Papers from the Software Engineering Institute, Software Engineering Institute, IEEE Computer
Society, Los Alamitos, California, pp. 3-6.
Clements P. and Northrop, L., (1999). A Framework for Software Product Line Practice,
Version 2.0, Pittsburg, PA, Software Engineering Institute, Carnegie Mellon University, July
1999.
Clements P. and Northrop L., (2002). Software Product Lines – Practices and Patterns, SEI
Series in Software Engineering, Boston, MA: Addison-Wesley.
Clements P., Kazman R. and Klein M., (2002). Evaluating Software Architectures – Methods
and Case Studies, SEI Series in Software Engineering, Boston, MA: Addison-Wesley.
Cordero R., (1990). “The Measurement of Innovation Performance in the Firm: An Overview.”
Research Policy, Vol. 19, No. 4, pp. 185-192.
Cowan R.D., Mili A., Ammar H., McKendall A. Jr., Yang L., Chen D. and Spencer T., (2002).
“Software Engineering Technology Watch.” IEEE Software, Vol. 19, No. 4, July/August 2002,
pp. 123-129.
Cranford S., (1998). “Financial Data Marts.” DM Review, Vol. 8, No. 2, February 1998, p.
28.
Cusumano M.A. and Selby R.W., (1995). Microsoft Secrets: How the World’s Most Powerful
Software Company Creates Technology, Shapes Markets, and Manages People, New York,
NY: The Free Press.
Cusumano M.A. and Yoffi e D.B., (1998). Competing on Internet Time: Lessons from Netscape
and Its Battle with Microsoft, New York, NY: The Free Press.
Cusumano M.A. and Yoffi e D.B., (1999). “What Netscape Learned from Cross-Platform
Software Development.” Communications of the ACM, Vol. 42, No. 10, October 1999, pp.
72-78.
Cusumano M.A., (2003). “Technology Strategy and Management: Finding Your Balance in
the Products and Services Debate.” Communications of the ACM, Vol. 46, No. 3, March
2003, pp. 15-17.
Cusumano M.A., (2004). The Business of Software – What Every Manager, Programmer,
and Entrepreneur Must Know to Thrive and Survive in Good Times and Bad, New York, NY:
Free Press.
D’souza D.F. and Wills A.C., (1999). Objects, Components, and Frameworks with UML
– The Catalysis Approach, Reading, Massachusetts: Addison-Wesley.
Dahmus J.B., Gonzalez-Zugasti J.P. and Otto K.N., (2000). “Modular Product Architecture.”
Proceedings of DETC ‘00: ASME Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Baltimore, Maryland, September 10-13, 2000,
pp. 1-11.
Debevoise N. T., (1999). The Data Warehouse Method, Upper Saddle River, NJ: Prentice
Hall PTR.

294

Dickel D., Kane D., Ornburn S., Loftus W. and Wilson J., (1997). “Applying Software
Product-Line Architecture.” IEEE Computer, August 1997, pp. 49-55.
Doerr B.S. and Sharp D.C., (2000). “Freeing Product Line Architectures from Execution
Dependencies.” Proceedings of the First Software Product Line Conference (SPLC1),
Denver, CO, USA, August 28-31, 2000, pp. 313-329.
Downes L. and Mui C., (1998). Unleashing the Killer App – Digital Strategies for Market
Dominance, Boston, Massachusetts: Harvard Business School Press.
Eckerson W.W, (1998a). “The Decision Support Sweet Spot.” Journal of Data Warehousing,
Vol. 3, No. 2, Summer 1998, pp. 2-7.
Eckerson W.W., (1998b). “Post-Chasm Warehousing.” Journal of Data Warehousing, Vol. 3,
No. 3, Fall 1998, pp. 38-45.
Eckerson W.W., (2002). The Rise of Analytic Applications: Build or Buy? The Data
Warehousing Institute (TDWI) Report Series.
Eisenhardt K.M., (1989). “Building Theories from Case Study Research.” Academy of
Management Review, Vol. 14, No. 4, pp. 532-550.
Fayad M., Schmidt D. and Johnson R., (1999). Building Application Frameworks – Object-
Oriented Foundations of Framework Design, New York, NY: John Wiley & Sons..
Feitzinger E. and Lee H.L., (1997). “Mass Customization at Hewlett-Packard: The Power of
Postponement.” Harvard Business Review, Vol. 75, January-February 1997, pp. 116-121.
Fichman R.G. and Kemerer C.F., (1993). “Adoption of Software Engineering Process
Innovations: The Case of Object Orientation.” Sloan Management Review, Vol, 34, No. 2,
Winter 1993, pp. 7-22.
Gadamer H-G., (1976). “The Historicity of Understanding.” In Connerton P. (eds.), Critical
Sociology - Selected Readings, Penguin Books, Harmondsworth, UK.
Garlan D., Allen R. and Ockerbloom J., (1995). “Architectural Mismatch: Why Reuse Is So
Hard.” IEEE Software, Vol. 12, No. 6, November 1995, pp. 17-26.
Gawer A., (2000). The Organization of Platform Leadership: An empirical investigation
of Intel’s management processes aimed at fostering complementary innovation by third
parties, Ph.D. Thesis, Massachusetts Institute of Technology.
Gawer A. and Cusumano M.A., (2002). Platform Leadership – How Intel, Microsoft, and
Cisco Drive Industry Innovation, Boston, Massachusetts: Harvard Business School Press.
Geyer L. and Becker M., (2002). “On the Infl uence of Variabilities on the Application
Engineering Process of a Product Family.” Proceedings of the Second International
Conference of Software Product Line Conference (SPLC2), San Diego, CA, USA, August
19-22, 2002, pp. 1-14.
Giddens A., (1984). The Constitution of Society: Outline of the theory of structuration,
Berkley, California: University of California Press.
Gill H.S., and Rao P.C., (1996). The Offi cial Guide to Data Warehousing, Indianapolis, IN:
QUE Corporation.
Gilmore J.H. and Pine II J.B., (1997). “The Four Faces of Mass Customization.” Harvard
Business Review, Vol. 75, January-February 1997, pp. 91-101.

295

Giovinazzo W.A., (2000). Object-Oriented Data Warehouse Design – Building a Star
Schema, Upper Saddle River, NJ: Prentice Hall PTR.
Gleason D., (1998). “Decision Support Systems: To Buy or To Build.” Journal of Data
Warehousing, Vol. 3 No. 3, Fall 1998, pp. 12-22.
Gonzales-Zugasti J. and Otto K., (2000). “A Method for Architecting Product Platforms
with an Application to Interplanetary Mission Design.” Research in Engineering Design,
Volume 12, pp. 61-72.
Gray P. and Watson H.J., (1997). “New Developments in Data Warehousing.” Journal of
Data Warehousing, Vol. 2 No. 2, April 1997, pp. 2-4.
Gray P. and Watson H.J., (1998). Decision Support in the Data Warehouse, Upper Saddle
River, NJ: Prentice Hall PTR.
Gray P., (1999). “What’s New in Data Warehousing.” Journal of Data Warehousing, Vol. 4,
No. 2, Summer 1999, pp. 12-14.
Griffi n J., (1998). “Data Mart vs. Data Warehouse.” DM Review, Vol. 8, No. 2, February
1998, p. 10.
Griss M.L., (1996). “Domain Engineering And Variability In The Reuse-Driven Software
Engineering Business.” Object Magazine, Vol. 6, No. 10, December 1996.
Griss M., Favaro J. and d’Alessandro M., (1998). “Integrating Feature Modeling with the
RSEB.” Proceeding of the 5th International Conference on Software Reuse (ICSR), IEEE
Computer Society Press, Los Alamitos, California, pp. 76-85.
Griss M.L., (2000a). “Implementing Product-Line Features with Component Reuse.”
Proceedings of the 6th International Conference on Software Reuse (ICSR-6), Vienna,
Austria, June 27-29, 2000, pp. 137-152.
Griss M.L., (2000b). “Implementing Product-Line Features by Composing Aspects.”
Proceedings of the First Software Product Line Conference (SPLC1), Denver, CO, USA,
August 28-31, 2000, pp. 271-288.
Griss M.L., (2001). Product-Line Architectures, In Heineman G.T. and Councill W.T. (eds.),
Component-based Software Engineering: Putting the Pieces Together, Upper Saddle River,
NJ: Addison-Wesley, pp. 405-419.
Hackney D., (1998). “Who Are You? Part 1.” DM Review, Vol. 8, No. 2, February 1998,
p.30-31
Hackney D., (2000a). “The Federated Future.” DM Review, Vol. 10, No. 1, January 2000,
pp. 34, 78.
Hackney D., (2000b). “Federated FAQs.” DM Review, Vol. 10, No. 4, April 2000, p. 52.
Hahnke J., (1997). “Business Function 1st.” Application Development Trends, May 1997.
Haisten M., (1996). “A History of Access and Analysis Tools.” Journal of Data Warehousing,
Vol. 1 No. 1, July 1996, pp. 46-60.
Hasselbring W., (2000), “Information System Integration.” Communications of the ACM,
Vol. 43, No. 6, June 2000, pp. 33-38.

296

Henderson J.C. and Venkatraman N., (1993). “Strategic Alignment: Leveraging Information
Technology for Transforming Organizations.” IBM Systems Journal, Vol. 32, No. 1, pp. 4-16.
Henderson R.M. and Clark K.B., (1990). “Architectural Innovation: The Reconfi guration of
Existing Product Technologies and the Failure of Established Firms.” Administrative Science
Quarterly, Vol. 35, pp. 9-30.
Henderson-Sellers B. and Edwards J.M., (1990). “The Object-Oriented Systems Life Cycle.”
Communications of the ACM, Vol. 33, No. 9, pp. 143-159.
Hero S., (2001). “Dependable Information without Complexity.” Journal of Data
Warehousing, Vol. 6, No. 4, Fall 2001, pp. 9-14.
Herzum P. and Sims O., (2000). Business Component Factory – A Comprehensive Overview
of Component-Based Development for the Enterprise, New York, NY: John Wiley & Sons.
High R.H., (1998). “Component Model for Managed Objects in Large-Scale Distributed
Systems.” in Thomas J. (eds.), Component-Based Software Engineering, Managing Object
Technology Series, Cambridge, United Kingdom: Cambridge University Press.
Hoch D.J., Roeding C.R., Purkert G. and Lindner S., (2000). Secrets of Software Success
– Management Insight from 100 Software Firms around the World, Boston, Massachusetts:
Harvard Business School Press.
Hofman D.J. and Rockart J.F., (1994). “Application Templates: Faster, Better, and Cheaper
Systems.” Sloan Management Review, Vol. 36, No. 1, Fall 1994, pp. 49-60.
Hopkins J., (2000). “Component Primer.” Communications of the ACM, Vol. 43, No. 10,
October 2000, pp. 27-30.
Humphries M., Hawkins M.W. and Dy M.C., (1999). Data Warehousing – Architecture and
Implementation, Upper Saddle River, NJ: Prentice Hall PTR.
Iansiti M. and MacCormack A., (1997). “Developing Products on Internet Time.” Harvard
Business Review, Vol. September-October 1997, pp. 1-10.
Iansiti M., (1998). Technology Integration, Boston, Massachusetts: Harvard Business School
Press.
IDC, (1997). Packaging the Data Mart: The Application Centered Data Warehouse Emerges,
Number 13493, May 1997.
Imhoff C., (1999). “Intelligent Solutions: Will the Real Data Mart Please Stand Up?” DM
Review, March 1999.
Imhoff C., (2000). “Intelligent Solutions: If the Star Fits – Part 1” DM Review, Vol. 10, No. 4,
September 2000, p. 28, 64.
Inmon W.H., (1992). Building the Data Warehouse, Wellesley, MA: QED Publishing
Group.
Inmon W.H., (1993). Developing Client/Server Applications, Wellesley, MA: QED Publishing
Group.
Inmon W.H., (1996). Building the Data Warehouse, New York, NY: John Wiley & Sons,
Inc.
Inmon W.H., (1997). Building the Data Warehouse, Second Edition, New York, NY: John
Wiley & Sons, Inc.

297

Inmon W.H., (1998). “Bottom-Up Warehouse Development.” DM Review, Vol. 8, No. 2,
February 1998, pp. 20, 41, 69.
Inmon W. H., (1999). Building the Operational Data Store, Second Edition, New York, NY:
John Wiley & Sons, Inc.
Inmon W.H., (2002). Building the Data Warehouse, Third Edition, New York, NY: John
Wiley & Sons, Inc.
Inmon W.H., Imhoff C. and Battas G., (1996). Building the Operational Data Store, New
York, NY: John Wiley & Sons, Inc.
Inmon W.H., Imhoff C. and Sousa R., (2001). Corporate Information Factory, Second
Edition, New York, NY: John Wiley & Sons, Inc.
Jaaksi A., (2002). “Developing Mobile Browsers in a Product Line.” IEEE Software, Vol. 19,
No. 4, July/August 2002, pp. 73-80.
Jaaksi A., Aalto J-M, Aalto A., Vättö K., (1999). Tried & True Object Development – Industry-
Proven Approaches with UML, Cambridge, United Kingdom: Cambridge University Press.
Jacobsen I, Griss M., Jonsson P., (1997). Software Reuse – Architecture, Process and
Organization for Business Success, Reading, Massachusetts: Addison Wesley.
Jacobsen I., Booch G. and Rumbaugh, J., (1999). The Unifi ed Software Development
Process, Reading, Massachusetts: Addison-Wesley.
Jaring M. and Bosch J., (2002). Representing Variability in Software Product Lines: A Case
Study, Proceedings of the Second International Conference of Software Product Line
Conference (SPLC2), San Diego, CA, USA, August 19-22, 2002, pp. 15-36.
Jarke M., Lenzerini M., Vassiliou Y. and Vassiliadis P., (2000). Fundamentals of Data
Warehouses, New York, NY: Springer-Verlag.
Jick T.D., (1979). “Mixing Qualitative and Quantitative Methods: Triangulation in Action.”
Administrative Science Quarterly, Vol. 24, No. 4, December 1979, pp. 602-611.
Johnson R. and Foote B., (1988). “Designing Reusable Classes.” Journal of Object-Oriented
Programming, Volume 1, No.2, June/July 1988, pp. 22-35.
Johnson R.A., (2000). “The Ups and Downs of Object-Oriented Systems Development.”
Communications of the ACM, Vol.43, No. 10, October 2000, pp. 68-73.
Jones M. and Nandhakumar, J., (1993). “Structured Development? A Structurational Analysis
of the Development of an Executive Information System.” In Avison, D., Kendall, J.E. and
DeGross, J. I. (eds.), Human, Organizational, and Social Dimensions of Information Systems
Development, North-Holland, Amsterdam, pp. 475-496.
Kang K.C., Cohen S.G., Hess J.A., Novak W.E. and Peterson A.S., (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study, SEI Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, November 1990.
Kang K.C. et al., (1998). “FORM: A Feature-Oriented Reuse Method with Domain-Specifi c
Architectures.” Annals of Software Engineering, Vol. 5, No. 1, pp. 143-168.
Kang K.C., Donohoe P., Koh E., Lee J. and Kwanwoo L., (2002). “Using a Marketing and
Product Plan as a Key Driver for Product Line Asset Development.” Proceedings of the
Second International Conference of Software Product Line Conference (SPLC2), San Diego,
CA, USA, August 19-22, 2002, pp. 366-382.

298

Kaplan B. and Duchon, D., (1988). “Combining Qualitative and Quantitative Methods in
Information Systems Research: A Case Study.” MIS Quarterly, Vol. 12, No. 4, December
1988, pp. 571-587.
Kaplan B., and Maxwell, J.A., (1994). “Qualitative Research Methods for Evaluating
Computer Information Systems.” In Anderson J.G, Aydin C.E., and Jay S.J. (eds.), Evaluating
Health Care Information Systems: Methods and Applications, Sage, Thousand Oaks, CA,
pp. 45-68.
Kaplan R.S. and Norton D.P., (1996). Translating Strategy into Action: The Balanced
Scorecard, Boston, Massachusetts: Harvard Business School Press.
Kaplan R.S. and Cooper R., (1998). Cost & Control: Using Integrated Cost Systems to Drive
Profi tability and Performance, Boston, Massachusetts: Harvard Business School Press.
Karlsson E-A., (1995). Software Reuse – A Holistic Approach, Chichester, England, John
Wiley & Sons Ltd.
Katzman R., Bass, L., Abowd, G. and Webb, M., (1994). “SAAM: A Method for Analyzing
the Properties of Software Architectures.” Proceedings of the 16th International Conference
on Software Engineering, Sorrento, Italy, May 1994, pp. 81-90.
Kelly B.W., (1997). AS/400 Data Warehousing – The Complete Guide to Implementation,
Second Edition, Carlsbad, CA: Midrange Computing.
Kelly S., (1996). Data Warehousing - The Route to Mass Customization, Chichester, West
Sussex, England: John Wiley & Sons Ltd.
Kimball R., (1996). The Data Warehouse Toolkit, New York, NY: John Wiley & Sons, Inc.
Kimball R., Reeves L., Ross M. and Thornthwaite W., (1998). The Data Warehouse Lifecycle
Toolkit, New York, NY: John Wiley & Sons, Inc.
Kimball R. and Ross M., (2002). The Data Warehouse Toolkit, Second Edition, New York,
NY: John Wiley and Sons, Inc.
Krasner G.E. and Pope S.T., (1988). “A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80.” Journal of Object-Oriented Programming, Vol. 1,
No. 3, August/September 1988, pp. 26-49.
Kruchten P., (1995). “The 4+1 View Model of Software Architecture.” IEEE Software, Vol.
12, No. 6, November 1995, pp. 42-50.
Kruchten P., (1999). The Rational Unifi ed Process – An Introduction, Reading, Massachusetts:
Addison-Wesley.
Larsen G., (1999). “Designing Component-Based Frameworks Using Patterns in the UML.”
Communications of the ACM, Vol. 42, No. 10, October 1999, pp. 38-45.
Latchem S., (2001). “Component Infrastructures: Placing Software Components in Context.”
In Heineman G.T. and Councill W.T. (eds.), Component-based Software Engineering: Putting
the Pieces Together, Upper Saddle River, NJ: Addison-Wesley, pp. 263-283.
Lopez-Herrejon R.E. and Batory D., (2001). “A Standard Problem for Evaluating Product-
Line Methodologies.” Third International Conference on Generative and Component-based
Software Engineering (GCSE 2001), Erfurt, Germany, September 9-13, 2001, pp. 10-24.
Macala R.R, Stuckey L.D. and Gross D.C., (1996). “Managing Domain-specifi c Product-
Line Development.” IEEE Software, Vol. 13, No. 3, May 1996, pp. 57-67.

299

Malveau R. and Mowbray T. J., (2004). Software Architect Bootcamp, Second Edition, Upper
Saddle River, NJ: Prentice Hall PTR.
Martin M.V. and Ishii K., (1997). “Design for Variety: Development of Complexity Indices and
Design Charts.” Proceedings of DETC 97: ASME Design Engineering Technical Conferences
– Design for Manufacturability, Sacramento, CA, USA, September 14-17, 1997, pp. 1-9.
McGrath M.E., (1995). Product Strategy for High-Technology Companies: Hot to Achieve
Growth, Competitive Advantage, and Increased Profi ts, Burr Ridge, Illinois: Irwin Professional
Publishing.
McGrath M.E., (2001). Product Strategy for High-Technology Companies: Hot to Achieve
Growth, Competitive Advantage, and Increased Profi ts, Second Edition, New York, NY:
McGraw-Hill.
McGregor J.D., Northrop L.M. and Jarrad S., (2002). “Initiating Software Product Lines.”
IEEE Software, Vol. 19, No. 4, July/August 2002, pp. 24-27.
McGuff F. and Kador J., (1999). Developing Analytical Database Applications, Upper Saddle
River, NJ: Prentice Hall PTR.
Messerschmitt D.G. and Szyperski C., (2003). Software Ecosystem – Understanding and
Indispensable Technology and Industry, Cambridge, Massachusetts: The MIT Press.
Meyer M.H. and Utterback J. M., (1993). “The Product Family and the Dynamics of Core
Capability.” Sloan Management Review, Vol. 34, No. 3, Spring 1993, pp. 29-47.
Meyer M.H. and Lopez L., (1995). “Technology Strategy in a Software Products Company.”
The Journal of Product Innovation Management, Vol. 12, No. 4, September 1995, pp. 294-
306.
Meyer M.H. and Zack M.H., (1996). “The Design and Development of Information
Products.” Sloan Management Review, Vol. 37, No. 3, Spring 1996, pp. 43-59.
Meyer M.H. and Lehnerd A.P., (1997). The Power of Product Platforms – Building Value and
Cost Leadership, New York, NY: The Free Press.
Meyer M.H. and Seliger R., (1998). “Product Platforms in Software Development.” Sloan
Management Review, Vol. 40, No. 1, Fall 1998, pp. 61-74.
Meyer M.H., Terzakian P. and Utterbach J.M., (1997). “Metrics for Managing Research and
Development in the Context of the Product Family.” Management Science, Vol. 43, No. 1,
January 1997, pp. 88-111.
Mili H., Mili A., Yacoub S. and Addy E., (2002). Reuse-Based Software Engineering –
Techniques, Organization, and Controls, New York, NY: John Wiley & Sons, Inc.
Miller A. and Ebert C., (2002). “Software Engineering as a Business.” IEEE Software, Vol. 19,
No. 6, November/December 2002, pp. 18-20.
Moeller R.A, (2001). Distributed Data Warehousing using Web Technology – How to Build
a More Cost-Effective and Flexible Warehouse, New York, NY: AMACOM.
Monroe R.T., Kompanek A., Melton R. and Garlan D., (1997). “Architectural Styles, Design
Patterns, and Objects.” IEEE Software, Vol. 14, No. 1, January/February 1997, pp. 43-52.
Moore G.A., (1991). Crossing the Chasm, New York, NY: HarperBusiness.

300

Morisawa Y., (2000). “A Computing Model of Product Lines for Distributed Processing
Systems, its Product Sets, and its Applications.” Proceedings of the First Software Product
Line Conference (SPLC1), Denver, CO, USA, August 28-31, 2000, pp. 371-394.
Morris C.R. and Ferguson C.H., (1993). “How Architecture Wins Technology Wars.” Harvard
Business Review, March-April 1993, pp. 86-96.
Morris H., (1998). “The Changing Structure of Information Access Markets: Analytic
Applications and Market Forecast.” Journal of Data Warehousing, Vol. 3, No. 3, Fall 1998,
pp. 23-28.
Moss L. and Adelman S., (2000). “Data Warehouse Methodology.” Journal of Data
Warehousing, Vol. 5, No. 4, Fall 2000, pp. 23-31.
Myers M.D. and Avison D., (2002). “An Introduction to Qualitative Research in Information
Systems.” In Myers M.D and Avison D. (eds.), Qualitative Research in Information Systems
– A Reader, Thousand Oaks, CA: Sage Publications, Inc..
Nandhakumar J., (1993). The Practice of Executive Information Systems Development: An
In-Depth Case Study, University of Cambridge, Ph.D. Thesis, Cambridge.
Niemelä E., (1999). A Component Framework of a Distributed Control Systems Family,
Technical Research Centre of Finland, Ph.D. Thesis, VTT Publications 402, Espoo.
Noaman A.Y. and Barker K., (1997). “Distributed Data Warehouse Architectures.” Journal
of Data Warehousing, Vol. 2, No. 2, April 1997, pp. 37-50.
Northrop L.M., (2002). “SEI’s Software Product Line Tenets.” IEEE Software, Vol. 19, No. 4,
July/August 2002, pp. 32-40.
O’Grady P., (1999). The Age of Modularity – Using the New World of Modular Products to
Revolutionize Your Corporation, Iowa City, Iowa: Adams and Steele Publishers.
Orfali R., Harkey D. and Edwards J., (1999). The Essential Client/Server Survival Guide,
Third Edition, New York, NY: John Wiley & Sons, Inc.
Orlikowski W.J. and Baroudi J.J., (1991). “Studying Information Technology in Organizations:
Research Approaches and Assumptions.” Information Systems Research, Vol. 2, No. 1,
March 1991, pp. 1-28.
Paller A., (1996). “Six Trends You should Be Aware of: Data Warehousing Today.” Journal of
Data Warehousing, Vol. 1, No. 1, July 1996, pp. 41-45.
Pancake C., (1995). “The Promise and the Cost of Object Technology: A Five-Year Forecast.”
Communications of ACM, Vol. 38, No. 10, October 1995, pp. 33-49.
Perry D. and Wolf A., (1992). “Foundations for the Study of Software Architecture.” ACM
SIGSOFT Software Engineering Notes, Vol. 17, No. 4, October 1992, pp. 40-52.
Pfi ster C. and Szyperski C., (1998). “Why Objects Are Not Enough.” In Jell T. (eds.),
Component-Based Software Engineering (CUC 96), Managing Object Technology Series,
Cambridge, United Kingdom: Cambridge University Press, pp. 141-147.
Prahalad C.K. and Hamel, G., (1990). “The Core Competence of the Corporation.” Harvard
Business Review, May-June 1990, pp. 79-90.
Pressman R.S., (2000). Software Engineering – A Practitioner’s Approach, European
Adaptation, Fifth Edition, Maidenhead, Berkshire, England: McGraw-Hill International.

301

Pronk B. J., (2000). “An Interface Based Platform Approach.” Proceedings of the First
Software Product Line Conference (SPLC1), Denver, CO, USA, August 28-31, 2000, pp.
331-351.
Qunitas P., (1991). “Software engineering policy and practice: lessons from the Alvey
program.” Journal of Systems and Software, Vol. 24, No. 1, January 1991, pp. 67-88.
Robertson D. and Ulrich K., (1998). “Planning for Product Platforms.” Sloan Management
Review Vol. 39, No. 4, Summer 1998, pp. 19-31.
Rosenberg D. and Scott K., (1999). Use Case Driven Object Modeling with UML – A Practical
Approach, Reading, Massachusetts: Addison-Wesley.
Royce W., (1998). Software Project Management – A Unifi ed Framework, Reading,
Massachusetts: Addison-Wesley.
Russell T.J., (2000). “Designing an Adaptable Business Intelligence Architecture.” Journal of
Data Warehousing, Vol. 5 No. 3, Summer 2000, pp. 53-63.
Ryans A., More R., Barclay D. and Deutscher T., (2000). Winning Market Leadership:
Strategic Market Planning for Technology Driven Businesses, Etobicoke, Ontario: John
Wiley & Sons Canada, Ltd.
Sach T., (1997). “Building a Data Warehouse – the Key Technical Decisions.” Journal of
Data Warehousing, Vol. 2 No. 4, Winter 1997, pp. 13-20.
Sametinger J., (1997). Software Engineering with Reusable Components, New York, NY:
Springer-Verlag.
Sanderson S. and Uzumeri M., (1995). “Managing Product Families: The Case of the Sony
Walkman.” Research Policy, Vol. 24, No. 5, pp. 761-782.
Schleicher D.L. and Taylor R.L., (1989). “System Overview of the Application System/400.”
IBM Systems Journal, Vol. 28, No. 3, pp. 398-413.
Schmid K. and Verlage M., (2002). “The Economic Impact of Product Line Adoption and
Evolution.” IEEE Software, Vol. 19, No. 4, July/August 2002, pp. 50-57.
Schmidt M. J., (2003). Business Case Essentials: A Guide to Structure and Content,
Solution Matrix White Papers, Boston, MA, Solution Matrix, Ltd.
Schuff D. and Louis R.St., (2001). “Centralization vs. Decentralization of Application
Software.” Communications of the ACM, Vol. 44, No. 6, June 2001, pp. 88-94.
Scott M., (1971). Management Decision Systems: Computer Support for Decision Making,
Boston, Massachusetts: Harvard University Press.
SEI, (2004). How Do You Defi ne Software Architecture?, Pittsburg, PA, Software
Engineering Institute, Carnegie Mellon University http://www.sei.cmu.edu/architecture/
defi nitions.html
Sharp D.C., (2000). “Component-Based Product Line Development of Avionics Software.”
Proceedings of the First Software Product Line Conference (SPLC1), Denver, CO, USA,
August 28-31, 2000, pp. 353-369.
Shaw M., (1995). “Comparing Architectural Design Styles.” IEEE Software, Vol. 12, No. 6,
November 1995, pp. 27-41.

302

Shaw M. and Clements P., (1997). “A Field Guide to Boxology: Preliminary Classifi cation of
Architectural Styles for Software Systems.” Proceedings of the 21st International Computer
Software and Applications Conference (COMPSAC’97), Washington, D.C, August 1997,
pp. 6-13.
Shaw M. and Garlan D., (1996). Software Architecture: Perspectives on an Emerging
Discipline. Upper Saddle River, NJ: Prentice Hall.
Shlaer S. and Mellor S., (1988). Object-Oriented Systems Analysis - Modeling the World in
Data, Englewood Cliffs NJ: Yourdon Press.
Singh H.S., (1998). Data Warehousing – Concepts, Technologies, Implementations, and
Management, Upper Saddle River, NJ, Prentice Hall PTR.
Singh H.S., (1999). Interactive Data Warehousing, Upper Saddle River, NJ: Prentice Hall
PTR.
Soschin D., (2001). “Meta Data As an IT Platform – The Strategy of Meta Data in Your
Organization.” Journal of Data Warehousing, Vol. 6, No. 4, Fall 2001, pp. 30-40.
Sparks S., Benner K. and Faris C., (1996). “Managing Object-Oriented Framework Reuse.”
In Fayad M. and Cline M., (eds.), Managing OO Software Development Theme Issue, IEEE
Computer, Vol. 29, No. 9, September 1996, pp. 53-61.
Sparling M., (2000). “Lessons Learned Through Six Years of Component-based Development.”
Communications of the ACM, Vol. 43, No. 10, October 2000, pp. 47-53.
Sprague R.H. Jr., (1980). “A Framework for the Development of Decision Support Systems.”
MIS Quarterly, Vol. 4, No. 4, December 1980, pp. 1-26.
Stafford J.A. and Wolf A.L., (2001). “Software Architecture.” In Heineman G.T. and Councill
W.T. (eds.), Component-based Software Engineering: Putting the Pieces Together, Upper
Saddle River, NJ: Addison-Wesley, pp. 371-387.
Stuart D., Sull W., Pruitt S., Cobb D., Waskiewicz F. and Cook T.W., (2000). “The SSEP
Toolset for Product Line Development.” Proceedings of the First Software Product Line
Conference (SPLC1), Denver, CO, USA, August 28-31, 2000, pp.413-435.
Surgan M., (2000). “The Coming Packaged Data Warehouse.” Journal of Data Warehousing,
Vol. 5, No. 2, Spring 2000, pp. 26-33.
Svahnberg M. and Bosch J., (1999). “Characterizing Evolution in Product-Line Architectures.”
Proceedings of the IASTED 3rd International Conference on Software Engineering and
Applications, October 1999, pp. 92-97.
Svahnberg M. and Bengtsson P., (2000). Software Product Lines from Customer to Code,
Research Report, Department of Software Engineering and Computer Science, University
of Karlskrona/Ronneby, S-37225 Ronneby Sweden, ISSN 1103-1581, ISRN HK/R-RES--
00/1–SE.
Svahnberg M. and Bosch J., (2000). “Issues Concerning Variability in Software Product
Lines.” Proceedings of the 3rd International Workshop on Software Architectures for Product
Families, Las Palmas de Gran Canaria, Spain, March 15-17, 2000, pp. 146-157.

303

Svahnberg M., van Gurp J. and Bosch J., (2001). “On the Notion of Variability in Software
Product Lines.” Proceedings of The Working IEEE/IFIP Conference on Software Architecture
(WICSA 2001), August 2001, pp. 45-55.
Szyperski C., (1997). Component Software – Beyond Object-Oriented Programming,
Harlow, England: Addison-Wesley.
Szyperski C., (1998). “Emerging Component Software Technologies – a Strategic
Comparison.” Software Concepts & Tools, Vol. 19, No. 1, pp. 2-10.
Szyperski C., (2003). Component Software – Beyond Object-Oriented Programming,
Second Edition, Harlow, England: Addison-Wesley.
Sääksjärvi M.V.T. and Salonen P.I., (1998). InfoManager Oy’s Product Development and
Product Frame Strategies, Technology Report 62/98, Technology Development Centre
TEKES (in Finnish).
Sääksjärvi M.V.T., (1998). Product Frame: A New Thinking in Strategic Development of
Software Products, Technology Report 62/98, Technology Development Centre TEKES (in
Finnish).
Sääksjärvi M.V.T., (2002). Software Application Platforms: From Product Architecture to
Integrated Application Strategy, Proceedings of the 26th Annual International Computer
Software Applications Conference (COMPSAC’02), Oxford, England, August 26-29, 2002,
pp. 435-443.
Tanrikorur T., (1998). “Enterprise DSS Architecture – A Hybrid Approach.” DM Review, Vol.
8, No. 2, February 1998, pp. 62-66.
Thiel S. and Hein A., (2002). “Modeling and Using Product Line Variability in Automotive
Systems.” IEEE Software, Vol. 19, No. 4, July/August 2002, pp. 66-72.
Thiel S. and Peruzzi F., (2000). “Starting a Product Line Approach for an Envisioned Market.”
Proceedings of the First Software Product Line Conference (SPLC1), Denver, CO, USA,
August 28-31, 2000, pp. 495-512.
Thomann J. and Wells D., (1998). “Evaluating Data Warehouse Methodologies: Objectives
and Criteria.” Journal of Data Warehousing, Vol. 3, No. 4, Winter 1998, pp. 11-16.
Thomann J. and Wells D., (1999). “Evaluating Data Warehouse Methodologies: An
Evaluation Process.” Journal of Data Warehousing, Vol. 4, No. 2, Summer 1999, pp. 2-11.
Thomann J. and Wells D., (2000). “Implementing Data Warehouse Methodology: Guidelines
for Success.” Journal of Data Warehousing, Vol. 5, No. 1, Winter 2000, pp. 11-23.
Tipnis V.A. and Epifano P.J., (1998). “An Architecture for Enterprise-Wide Data Warehouses.”
Journal of Data Warehousing, Vol. 3 No. 4, Winter 1998, pp. 23-31.
Ulrich K.T. and Eppinger S.D., (1995). Product Design and Development, New York, NY:
McGraw-Hill.
Uusi-Rauva E., (1989). Tuotekohtaisen kustannuslaskennan kehittäminen modernissa
tuotantolaitoksessa [Development of Product-Specifi c Cost Accounting in a Modern
Production Plant,] Metalliteollisuuden Keskusliitto, Tekninen Tiedotus 10/89.

304

van der Linden F., (2002a). “Engineering Software Architectures, Processes and Platforms for
System Families – ESAPS Overview.” Proceedings of the Second International Conference
of Software Product Line Conference (SPLC2), San Diego, CA, USA, August 19-22, 2002,
pp. 383-397.
van der Linden F., (2002b). “Software Product Families in Europe: The Esaps & Café Projects.”
IEEE Software, Vol. 19, No. 4, July/August 2002, pp. 41-49.
Van Dyk W., (2002). “The Dangers of Denormalizing in Dimensional Modeling.” Journal of
Data Warehousing, Vol. 7 No. 1, Winter 2002, pp. 40-46.
van Ommering R. and Bosch J., (2002). “Widening the Scope of Software Product Lines
– From Variation to Composition.” Proceedings of the Second International Conference of
Software Product Line Conference (SPLC2), San Diego, CA, USA, August 19-22, 2002, pp.
328-347.
Vayda T.P., (2000). “Components on the Assembly Line.” The Future of Software, Fawcette
Technical Publications, 10th Anniversary Issue, Vol. 1, No. 1, Winter 2000/2001, pp. 86-
87.
Wallnau K.C, Hissam S.A. and Seacord R.C., (2002). Building Systems from Commercial
Components, Upper Saddle River, NJ: Addison-Wesley.
Walsham G., (1993). Interpreting Information Systems in Organizations, Chichester,
England: Wiley.
Walsham G., (1995a). “Interpretive Case Studies in IS Research: Nature and Method.”
European Journal of Information Systems, Vol. 4, No. 2, pp. 74-81.
Walsham G., (1995b). “The Emergence of Interpretivism in IS Research.” Information
Systems Research, Vol. 6, No. 4, pp. 376-394.
Walsham, G. and Waena, T., (1994). “Information Systems Strategy and Implementation: A
Case Study of a Building Society.” ACM Transactions on Information Systems, Vol. 12, No.
2, April 1994, pp. 150-173.
Watson H.J. and Haley B.J., (1997). “Data Warehousing: A Framework and Survey of Current
Practices.” Journal of Data Warehousing, Vol. 2 No. 1, January 1997, pp. 10-17.
Watson H.J. and Gray P., (1998). “New Developments in Data Warehousing.” Journal of
Data Warehousing, Vol. 3, No. 2, Summer 1998, pp. 8-11.
Watson H.J., Annino D.A., Avery L.K. and Gerard J.G., (2000). “Perspectives on Data
Warehousing.” Journal of Data Warehousing, Vol. 5, No. 3, Summer 2000, pp. 2-7.
Weiss D.M. and Lai C.T.R., (1999). Software Product-Line Engineering: A Family-Based
Software Development Process, Reading, Massachusetts: Addison-Wesley.
Welke R.J., (1994). “The Shifting Software Development Paradigm.” DATA BASE, Vol. 25,
No.4, November 1994, pp. 9-16.
Werner V., Abramson C. and Kistler K., (2002). “E-Business and the Corporate Information
Factory.” Journal of Data Warehousing, Vol. 7, No. 2, Spring 2002, pp. 21-26.
Wheelwright S.C. and Clark, K.B., (1992). “Creating Project Plans to Focus Product
Development.” Harvard Business Review, March-April 1992, pp. 1-16.

305

White C., (1995). “A Technical Architecture for Data Warehousing.” InfoDB Journal, Vol.
15, No. 2, February 1995, pp. 1-7.
White C., (1999). “Analytical Apps – Build or Buy.” Intelligent Enterprise, Vol. 2, No. 11,
August 1999, pp. 22-28, 38.
White C., (2000a). “Packaged Analytic Applications: The Key to Data Warehouse ROI.” DM
Review, Vol. 10, No. 1, January 2000, pp. 38-40.
White C., (2000b). “The Federated Data Warehouse.” DM Review, Vol. 10, No. 3, March
2000, pp. 58-59, 79.
Wijnstra J., (2000). “Supporting Diversity with Component Frameworks as Architectural
Elements.” 50-59, Proceedings of the International Conference on Software Engineering,
Limerick, Ireland, June 4-11, 2000, pp. 51-60.
Wijnstra J., (2002). “Critical Factors for a Successful Platform-Based Product Family
Approach.” Proceedings of the Second International Conference of Software Product Line
Conference (SPLC2), San Diego, CA, USA, August 19-22, 2002, pp. 68-89.
Withey J., (1996). Investment Analysis of Software Assets for Product Lines (CMU/SEI-96-
TR-010, ESC-TR-96-010). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University.
Yacoub S., Mili A., Kaveri C. and Dehlin M., (2000). “A Hierarchy of COTS Certifi cation
Criteria.” Proceedings of the First Software Product Line Conference (SPLC1), Denver, CO,
USA, August 28-31, 2000, pp. 397-412.
Yin Robert K., (2003). Case Study Research – Design and Methods, Applied Social Research
Method Series, Volume 5, Third Edition, Thousand Oaks, CA: Sage Publications, Inc.
Yoffi e D.B. and Cusumano M.A., (1999). “Judo Strategy: The Competitive Dynamics of
Internet Time.” Harvard Business Review, Vol. 77, No. 1, January-February 1999, pp. 71-
81.
Zachman J.A., (1997). “Enterprise Architecture – The Issue of the Century.” Database
Programming & Design, March 1997, pp. 44-53.
Özsu M.T. and Valduriez P., (1996). “Distributed and Parallel Database Systems –
Technology and Current State-of-the-Art.” ACM Computing Surveys, Vol.28, No.1, March
1996, pp. 125-128.

306

10. APPENDICES

10.1 Appendix 1 – Comparison of Product Platform Theories

The following table shows a collection of different characteristics of the product platform
strategy literature both in physical and software product development. We compare whether
these characteristics can be identifi ed in a few selected literature sources.

Criterion Meyer and
Lopez (1995)

Meyer and
Zack (1996)

Meyer and
Lehnerd (1997)

Meyer and
Seliger (1998)

Sääksjärvi
(1998, 2002)

General defi nition of
product platform

Yes Yes Yes Yes Yes

Clear defi nition of software
product platform

No No No No Yes

General classifi cation of
product platform, platform
extension and renewal

Yes Yes Yes No Yes

Software manufacturing No No Yes No Yes
Process platform Yes Yes Yes No Yes
Component-based software
engineering (CSBE)

No No No Yes Yes

Generic product line
development

Yes Yes Yes Yes Yes

Software product line
development

No No No No No

Generic interface
management

Yes Yes Yes Yes No

Software interface
management

Yes No Yes Yes No

Software asset development No No No No No
Generic IT infrastructure No No No No Yes
Discussion of IT
infrastructure from software
engineering perspective

No No Yes Yes Yes

Importance of generic
product architecture

No Yes Yes No No

Importance of software
architecture

Yes Yes Yes Yes Yes

Layered component
architecture

Yes No Yes Yes No

Technology strategy Yes No No No Yes
Defi ning technology in
product development

No No No No Yes

Supporting technology No Yes No No No
Market segmentation/
leverage

Yes Yes Yes Yes Yes

Discussion of platform
effi ciency and effectiveness

No Yes Yes No Yes

Core competence or
capability

Yes Yes Yes No Yes

Usage of external
development organizations

No No Yes Yes Yes

307

10.2 Appendix 2 – Software Product Releases

The following table shows major product releases (both server and client module releases)
introduced by the case study company from the foundation of the Company until the end of
2002. The aim of the table is to provide an overview of historical product releases and also to
show major changes in each software release when there were also changes in the underlying
server frame or client frame.

Major product
release

Server software Client software New software
application frames
and/or extensions

Used technology

Version 1.0 (test
or prototype
release)
1989 – 1989

Server software
release
• Server software

based on S/36
technology

Client software
release
• Harvard

Graphics

None IBM S/36 and RPG,
Harvard Graphics

Version 2.0
1990 – 1992

Server software
release
• New AS/400-

based server
software

Client software
release
• Harvard

Graphics

None IBM iSeries/400 with
RPG, Harvard Graphics,
Synon 4GL

Version 2.3
1993 – 1993

Server software
release
• No major

changes

Client software
release
• Harvard

Graphics
• A new own client

frame introduced
(based on OS/2)
and Windows

None IBM iSeries/400 with
RPG, Synon 4GL, OS/2
on client desktop,
C on client software
development

Version 2.5
1994 – 1994

Server software
release
• No major

changes

Client software
release
• No major change

None IBM iSeries/400 with
RPG, Synon 4GL, C
on client software
development

Version 3.0
1995 – 1995

Server software
release
• No major

changes

Client software
release
• No major

changes

None IBM iSeries/400 with
RPG, Synon 4GL, C
on client software
development

308

Major product
release

Server software Client software New software
application frames
and/or extensions

Used technology

Version 4.0
1996 – 1996

Server software
release
• Server frame

extension to
support new
COM-server

• Database and
database update
changes to
address larger
databases
addresses

• Support for
dynamic data
groups

Client software
release
• Client frame

extended to
support 32-bit
communication
routers

New frame extension
to support additional
software releases
• COM server for

OLAP Server
access

• New budgeting
and planning
tool (based on
Microsoft Excel)

• New reporting
tool for business
analysis (based
on Microsoft
Excel)

• New Java client/
server reporting
architecture

IBM iSeries/400 with
ILE RPG, Synon 4GL,
C and C++ on client
software development,
Visual Basic, Visual
Basic for Applications,
Microsoft Excel,
Microsoft COM, Lotus
Notes and Domino,
Java

Version 5.2
1997 – 1997

Server software
release
• Major rewrite of

data warehouse
server platform
to increase
performance and
increase capacity

• Use of new user
index technology
within the
database
architecture

Client software
release
• Support for OS/2

discontinued

New product
platforms
• New native 32-

bit GUI builder
for the server
frame

IBM iSeries/400 with
ILE RPG, Synon 4GL,
C and C++ on client
software development,
Visual Basic, Visual
Basic for Applications,
Microsoft Excel,
Microsoft COM, CASE
tool development
for new server GUI
interface, Lotus Notes
and Domino, Java

Version 5.6
1998 – 1998

Server software
release
• Support for

calculated data
types (extension
for COM-server
for OLAP Server
data access)

Client software
release
• Conversion from

16-bit to 32-bit
technology

New product
releases
• Lotus Notes-

based CRM
product

IBM iSeries/400 with
ILE RPG, C and C++
on client software
development, Visual
Basic, Visual Basic for
Applications, Microsoft
Excel, Microsoft COM,
CASE tool development
for new server GUI
interface, Lotus Notes
and Domino, Java

Version 5.7
1999 – 1999

Server software
release
• Server frame

extension to
support multi-
processor
environments

Client software
release
• Last version

of existing
client release,
replacement of
new client frame

New client
replacement
• Replacement

of existing
client frame
(fi rst release of
the new client
software module)

IBM iSeries/400 with
ILE RPG, C and C++
on client software
development, Visual
Basic, Visual Basic for
Applications, Microsoft
Excel, Microsoft COM,
4GL development tool
for new server GUI
interface, Lotus Notes
and Domino, Java,
ActiveX

309

Major product
release

Server software Client software New software
application frames
and/or extensions

Used technology

Version 6.0
2000 – 2000

Server software
release
• Frame extension

to support new
chart generator
in new client
frame

• Extension of the
architecture with
additional data
warehouse tier,
new application
frame with
corresponding
frame
components

• Frame extension
to support SQL
drill through to
relational data
warehouses

Client software
release
• New chart

generator
included in the
new client frame

• Support for
old client
software module
discontinued

New derived
product to product
family
• New middle-

tier server for
centralized
meta-data access
(based on new
client module
components)

IBM iSeries/400 with
ILE RPG, C and C++
on client software
development, Visual
Basic, Visual Basic for
Applications, Microsoft
Excel, Microsoft COM,
4GL development tool
for new server GUI
interface, Lotus Notes
and Domino, Java,
ActiveX, Distributed
COM

Version 6.1
2001 – 2001

Server software
release
• No major

changes to server
release

Client software
release
• No major

changes to client
release

New derived
product to client
product family
• Support for thin

client technology
via middle-tier
architecture, new
product for the
client product
family

IBM iSeries/400 with
ILE RPG, C and C++
on client software
development, Visual
Basic, Visual Basic for
Applications, Microsoft
Excel, Microsoft COM,
4GL development tool
for new server GUI
interface, Lotus Notes
and Domino, Java,
ActiveX, Distributed
COM Microsoft Internet
Information Server
technology

Version 6.2
2002 – 2002

Server software
release
• Improved

multi-processor
support

Client software
release
• New row-

and column
calculation editor
in chart generator

• New architecture
for parameterized
dashboard and
presentations

• Ability to
integrate to third-
party solutions
such as CRM

No specifi c
extensions

IBM iSeries/400 with
ILE RPG, C and C++
on client software
development, Visual
Basic, Visual Basic for
Applications, Microsoft
Excel, Microsoft COM,
4GL development tool
for new server GUI
interface, Lotus Notes
and Domino, Java,
ActiveX, Distributed
COM Microsoft Internet
Information Server
technology

310

10.3 Appendix 3 – Interviews and Other Communication

Place or Activity Time and length Interviewee Topic
Helsinki, Finland October 1997, 1 hr Niina Niemi Company background, fi nancial

and personnel information
Helsinki, Finland October 1997, 1 hr

30 min
Jorma Vesterinen, main
server software developer
and founding member of the
Company

Interview of software releases,
specifi cs of each release, and
major changes between releases

Helsinki, Finland November 1997,
1 hr

Markku Riekkinen, server
software developer and
founding member of the
Company

Interview of product releases,
verifi cation of collected
information

Helsinki, Finland November 1997,
30 min

Jyrki Martonen, main
developer of initial client
software release

Background information on
development of the client
platform, reasons for selected
technology, and defi ciencies
found in later software releases

Helsinki, Finland December 1997,
2 hrs

Esa Suurio, founder and CEO
of the Company

Interview on the Company’s
foundation, overall view of the
company and its direction and
analysis of software development
success

Helsinki, Finland June, 1998, 2 hrs Esko Jaatinen,
Jari Laurila, Patrik Rosqvist

Interview of external third-party
software development company;
analysis of existing client software
and its architectural defi ciencies
and suggestion for future
development

RLI Corporation,
Peoria

August 1999, 2 hrs
30 min

Diana Sutterfi eld, Cindy
Brassfi eld

RLI application structure,
interview of the solution built by
RLI Corporation

Dallas, Texas May 1999, 3 hrs David Ortega, Tina Roos,
Patrick Stapells

Requirement analysis of banking
solution built on the core software
solution of the Company

Dallas, Texas March 2001, 3 hrs Esa Suurio, CEO and founder
of case study company

Discussion of product
development strategies and
product platform development
with the founder of the Company

Telephone interview April 2001, 2 hrs Olli-Pekka Siikarla, Chief
Architect

Analysis of product family
development using new client
software frame

Telephone interview May 2001, 30 min Aimo Asikainen, founder of
the Company

Analysis of the success of the
Company through today’s date
and suggestions for future
development

Email
correspondence

January 2001-June
2001

Aimo Asikainen, Esa Suurio,
Jorma Vesterinen, Jussi
Peltonen, Markku Riekkinen

Strategic discussion of the future
development of the company
by major shareholders of the
Company

Telephone interview May 2001, 30 min Jorma Vesterinen, main
server software developer
and founding member of the
Company

Analysis of the development
success of the Company from its
foundation through 2001

311

Place or Activity Time and length Interviewee Topic
Telephone interview May 2001, 1 hr 30

min
Stefan Westerbladh, main
developer for budgeting and
forecasting solution

Interview on development of
platform extensions

Email questionnaire May 2001 Jorma Vesterinen, main
server developer and
founding member of the
company

Questionnaire on major product
releases and the major changes in
them, several documents sent via
email

Email questionnaire May 2001 Mika Rihtilä, Chief Financial
Offi cer of the Company

Financial information about sales,
product investment, etc.

Dallas, Texas May 2001, 2 hrs
30 min

Pedro Puig, senior consultant
responsible for banking
solution

How does the solution support
vertical solutions – experiences

Interview in Dallas,
Texas

May 2001, 1 hr 30
min

Al Celaya, senior consultant
responsible for training of the
solution

How well does the solution lend
itself to different vertical solutions
– a trainers and consultants view

Kansas City, Kansas June 2001, 2 hrs Tom Leir, Vice President of
Information Systems

Interview on the additional value
that the detailed data warehouse
architecture has brought Westlake
Hardware

Helsinki, Finland August 2001, 3 hrs Olli-Pekka Siikarla, Chief
Architect

Interview on the development
history and evolution of the
Adviser product family

Helsinki, Finland August 2001, 3 hrs Timo Sinisalmi, Team Leader
for Adviser product family
development

Interview on development
history and accrued investments
in development of the Adviser
product family

Helsinki, Finland August 2001, 2 hrs Jussi Peltonen, CEO
Mika Rihtila, CFO, Markku
Riekkinen, Product Manager

Interview on accrued sales
revenue for InfoManager product
family development

Email questionnaire August 2001 Mika Rihtilä, CFO
Timo Sinisalmi, Team Leader

Questions about sales and
product development with a
historical perspective

Dallas, Texas July 2002, 1 hr 30
min

Jorma Vesterinen Review of appendix 1 – Product
releases

Email questionnaire July 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Inquiry on historical revenues
from the foundation until the end
of 2001 and sales per product
category

Telephone interview July 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Discussion of the fi nancial results
provided

Email questionnaire July 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Inquiry of historical product
development costs as a share of
overall revenue per year

Email exchange July 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Product sales from September
2000 through June 2002:
Microsoft Excel spreadsheet

Email exchange
with Finland

July 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Overall annual turnover
information: Microsoft Excel
spreadsheet

Telephone interview July 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Discussion of the fi nancial results
provided

312

Place or Activity Time and length Interviewee Topic
Email exchange August 2002 Mika Rihtilä, Chief Financial

Offi cer of the Company
InfoManager sales vs. product
development costs plus other key
performance indicators: Microsoft
Excel spreadsheet

Email exchange August 2002 Jarmo Jämiä, developer of
relational data warehouse
frame

Question about release dates for
each version of the relational data
warehouse product

Email exchange September 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Relational Data Warehouse sales
per customer and product

Email exchange September 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Update of application frame
information: Microsoft Excel
spreadsheet

Email exchange September 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Update of application frame
information: Microsoft Excel
spreadsheet

Email exchange September 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Customer losses by year and
customer: Microsoft Excel
spreadsheet

Email exchange September 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Update of application frame
information: Microsoft Excel
spreadsheet

Email exchange September 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Update of application frame
information: Microsoft Excel
spreadsheet

Email exchange September 2002 Mika Rihtilä, Chief Financial
Offi cer of the Company

Update of customer losses by year
and customer: Microsoft Excel
spreadsheet

Email exchange January 2003 Mika Rihtilä, Chief Financial
Offi cer of the Company

Questions about the collected
data and its calculation principles

Helsinki, Finland January 2003, 3 hrs Mika Rihtilä, Chief Financial
Offi cer of the Company

Discussion of the results of the
fi nancial data collected

Email exchange January 2003 Mika Rihtilä, Chief Financial
Offi cer of the Company

Questions about the collected
data and its calculation principles

Email exchange January 2003 Mika Rihtilä, Chief Financial
Offi cer of the Company

Update to product profi tability
and product sales: Microsoft Excel
spreadsheets

Email exchange February 2003 Mika Rihtilä, Chief Financial
Offi cer of the Company

Update to product profi tability
due to an error in investment
calculation: Microsoft excel
spreadsheet

Dallas, Texas February 2003, 2
hrs

Jorma Vesterinen,
development manager for
server frame

Review of investment calculations
and product profi tability numbers

Helsinki, Finland February 2003, 1 hr
30 min

Marko Lehtamo,
development manager of
future server application
frame

Discussion of future application
frame and its importance for
market segmentation

Helsinki, Finland February 2003, 2
hrs

Esko Jaatinen, Patrick
Rosqvist, Jari Laurila,

Discussion about client
frame renewal and derivative
development

Dallas, Texas April 2003, 3 hrs Jorma Vesterinen Review of appendix 4

313

10.4 Appendix 4 – Analysis of Analytical Application Frame Strategy
 Evolution

The application frame analysis is divided into two separate tables, one depicting the evolution
of server software and its corresponding application frame and the second table depictings
the evolution of the client frame.

Server frame
release and
release year

Number of
worldwide
customers,
Number of
domestic
customers

Total
software

application
frame cost
(Millions in
currency)

Software
license
revenue

(Millions in
currency)

Domestic
Service
Revenue

(Millions in
currency)

Product
gross margin

amount
(Millions in
currency)

Average
software gross

margin per
worldwide
customer

installation
(Thousands in

currency)
Server frame
V1R1
Year 1990-1992
(Version 2.0)

44 (25) 2,559 3,368 2,580 0,809 18,4

Server frame
V1R2
Year 1993-1993
(Version 2.3)

46(6) 0,668 3,115 0,951 2,447 53,2

Server frame
V1R3
Year 1994-1994
(Version 2.5)

39(3) 0,637 2,360 0,406 1,723 44,2

Server frame
V1R4
Year 1995-1995
(Version 3.0)

61(8) 0,858 3,803 0,975 2,945 48,3

Server frame
V1R5 with
extensions
Year 1996-1996
(Version 4.0)

 72(4) 0,677 3,965 1,199 3,288 45,7

Total server
frame V1

262(46) 5,399 16,611 6,111 11,212 42,8

Server frame
renewal, V2R1
Year 1997-1997
(Version 5.2)

97(9) 1,009 6,841 1,663 5,832 60,1

Server frame
V2R2 – Ext.1
Year 1998-1998
(Version 5.6)

67 (6) 1,045 4,794 1,538 3,749 56,0

Server frame
V2R3 Ext.2
Year 1999-1999
(Version 5.7)

47 (5) 1,103 5,510 1,864 4,407 93,8

314

Server frame
release and
release year

Number of
worldwide
customers,
Number of
domestic
customers

Total
software

application
frame cost
(Millions in
currency)

Software
license
revenue

(Millions in
currency)

Domestic
Service
Revenue

(Millions in
currency)

Product
gross margin

amount
(Millions in
currency)

Average
software gross

margin per
worldwide
customer

installation
(Thousands in

currency)
Server frame
V2R4 Ext.3
Year 2000-2000
(Version 6.0)

35 (9) 1,121 6,156 1,595 5,035 143,9

Server frame
V2R5
Year 2001-2001
(Version 6.1)

22(5) 0,809 6,957 1,438 6,148 279,5

Server frame
V2R6
Year 2002-2002
 (Version 6.2)

25(3) 0,655 6,472 1,323 5,817 232,7

Total server
frame V2

293(37) 5,742 36,731 9,420 30,989 105,8

Total server
frame V1+V2

555(83) 11,140 53,342 15,531 42,201 76,0

315

The following table depicts the evolution of client frames for the Company. Each client frame
release must be synchronized with server frame development, as they must be implemented
in sync.

Client frame
release and
release year

Number of
worldwide
customers,
Number of
domestic
customers

Total
software

application
frame cost
(Millions in
currency)

Software
license
revenue

(Millions in
currency)

Domestic
Service
Revenue

(Millions in
currency)

Product
gross margin

amount
(Millions in
currency)

Average
software gross

margin per
worldwide
customer

installation
(Thousands in

currency)
Client frame
V1R1
Year 1993-1993
(Version 2.3)

46(6) 0,202 0 0 -0,202 -4,3

Client frame
V1R2
Year 1994-1994
(Version 2.5)

39(3) 0,276 0,498 0,174 0,222 5,7

Client frame
V1R3
Year 1995-1995
(Version 3.0)

61(8) 0,378 0,839 0,418 0,461 7,6

Client frame
V1R4
Year 1996-1996
(Version 4.0)

 72(4) 0,461 0,859 0,514 0,398 5,5

Client
frame, V1R5
Year 1997-1997
(Version 5.0)

97(9) 0,864 2,023 0,492 1,159 12.0

Client frame
V1R6
Year 1998-1998
(Version 5.x)

114 (11) 1,810 5,319
(sales of
from 1998
to 2002)

1,665
(consulting
from 1998
to 2002)

3,509 30,8

Total client
frame V1

429(41) 3,991 9,537 3,263 5,546 12,9

Client frame
V2R1
Year 1999-2000
(Version 1.0)

35 (9) 3,541 2,793 0,178 -0,748 -21,4

Client frame
V2R2
Year 2001-2002
(Version 2.0)

47 (8) 2,177 4,255 0,869 2,078 44,2

Total client
frame V2

82(17) 5,717 7,049 1,047 1,332 16,2

Total client
frame V1+V2

511(58) 9,708 16,586 4,310 6,878 13,5

316

Client frame
release and
release year

Number of
worldwide
customers,
Number of
domestic
customers

Total
software

application
frame cost
(Millions in
currency)

Software
license
revenue

(Millions in
currency)

Domestic
Service
Revenue

(Millions in
currency)

Product
gross margin

amount
(Millions in
currency)

Average
software gross

margin per
worldwide
customer

installation
(Thousands in

currency)
Client frame
derivative
product
(Webulator)
Year 2000-2001
(Version 1.0)

14(6) 1,967 2,100 0,049 0,133 9,5

Client frame
derivative
product
(Webulator)
Year 2002-2002
(Version 1.2)

15(4) 0,848 1,184 0,036 0,336 22,4

Total
Webulator
development

29(10) 2,815 3,284 0,085 0,469 16,2

Client frame
derivative
product
(Broker)
Year 2000-2001
(Version 1.0)

21(9) 0,211 1,507 0 1,295 61,7

Client frame
derivative
product
(Broker)
Year 2002-2002
(Version 2.0)

14(2) 0,003 0,644 0 0,641 45,8

Total Broker
development

35(11) 0,214 2,151 0 1,936 55,3

Total Derivative
development

64(21) 3,029 5,436 0,085 2,405 37,6

HELSINGIN KAUPPAKORKEAKOULUN JULKAISUJA
Publications of the Helsinki School of Economics

A-SARJA: VÄITÖSKIRJOJA - DOCTORAL DISSERTATIONS. ISSN 1237-556X.

A:197. ANSSI ÖÖRNI: Consumer Search in Electronic Markets. 2002. ISBN 951-791-680-9.

A:198. ARI MATIKKA: Measuring the Performance of Owner-Managed Firms: A systems approach.
2002. ISBN 951-791-685-X.

A:199. RIITTA KOSONEN: Governance, the Local Regulation Process, and Enterprise Adaptation
in Post-Socialism. The Case of Vyborg. 2002. ISBN 951-791-692-2.

A:200. SUSANNE SUHONEN: Industry Evolution and Shakeout Mechanisms: The Case of the
Internet Service Provider Industry. 2002. ISBN 951-791-693-0.

A:201. MATTI TUOMINEN: Market-Driven Capabilities and Operational Performance. Theoretical
Foundations and Managerial Practices. 2002. ISBN 95-791-694-9.

A:202. JUSSI KARHUNEN: Essays on Tender Offers and Share Repurchases. 2002.
 ISBN 951-791-696-5.

A:203. HENNAMARI MIKKOLA: Empirical Studies on Finnish Hospital Pricing Methods. 2002.
ISBN 951-791-714-7.

A:204. MIKA KORTELAINEN: EDGE: a Model of the Euro Area with Applications to Monetary
Policy. 2002. ISBN 951-791-715-5.

A:205. TOMI LAAMANEN: Essays on Technology Investments and Valuation. 2002.
 ISBN 951-791-716-3.

A:206. MINNA SÖDERQVIST: Internationalisation and its Management at Higher-Education
Institutions. Applying Conceptual, Content and Discourse Analysis. 2002.

 ISBN 951-791-718-X.

A:207. TARJA PIETILÄINEN: Moninainen yrittäminen. Sukupuoli ja yrittäjänaisten toimintatila
tietoteollisuudessa. 2002. ISBN 951-791-719-8.

A:208. BIRGIT KLEYMANN: The Development of Multilateral Alliances. The Case of the Airline
Industry. 2002. ISBN 951-791-720-1.

A:209. MIKAEL EPSTEIN: Risk Management of Innovative R&D Project. Development of
Analysys Model. A Systematic Approach for the Early Detection of Complex Problems
(EDCP) in R&D Projects in Order to Increase Success in Enterprises. 2002.

 ISBN 951-791-717-9.

A:210. SAMI KAJALO: Deregulation of Retail Hours in Finland: Historical and Empirical Perspectives.
2002. ISBN 951-791-734-1.

A:211. TOMMI KASURINEN: Exploring Management Accounting Change in the Balanced Scorecard
Context. Three Perspectives. 2003. ISBN 951-791-736-8.

A:212. LASSE NIEMI: Essays on Audit Pricing. 2003. ISBN 951-791-751-1.

A:213. MARKKU KAUSTIA: Essays on Investor Behavior and Psychological Reference Prices. 2003.
ISBN 951-791-754-6.

A:214. TEEMU YLIKOSKI: Access Denied: Patterns of Consumer Internet Information Search and the
Effects of Internet Search Expertise. 2003. ISBN 951-791-755-4.

A:215. PETRI HALLIKAINEN: Evaluation of Information System Investments. 2003.
 ISBN 951-791-758-9.

A:216. PETRI BÖCKERMAN: Empirical Studies on Working Hours and Labour Market Flows. 2003.
ISBN 951-791-760-0.

A:217. JORMA PIETALA: Päivittäistavarakaupan dynamiikka ja ostoskäyttäytyminen Pääkaupun-
kiseudulla. 2003. ISBN 951-791-761-9.

A:218. TUOMAS VÄLIMÄKI: Central Bank Tenders: Three Essays on Money Market Liquidity
Auctions. 2003. ISBN 951-791-762-7.

A:219. JUHANI LINNAINMAA: Essays on the Interface of Market Microstructure and Behavioral
Finance. 2003. ISBN 951-791-783-X.

A:220. MARKKU SALIMÄKI: Suomalaisen design-teollisuuden kansainvälinen kilpailukyky ja kan-
sainvälistyminen. Strateginen ryhmä –tutkimus design-aloilta. 2003 ISBN 951-791-786-4.

A:221. HANNU KAHRA: Consumption, Liquidity and Strategic Asset Allocation. 2003.
 ISBN 951-791-791-0.

A:222. TONI RIIPINEN: The Interaction of Environmental and Trade Policies. 2003.
 ISBN 951-791-797-X.

A:223. MIKKO SYRJÄNEN: Data Envelopment Analysis in Planning and Heterogeneous
Environments. 2003. ISBN 951-791-806-2.

A:224. ERKKI HÄMÄLÄINEN: Evolving Logistic Roles of Steel Distributors. 2003.
 ISBN 951-791-807-0.

A:225 SILJA SIITONEN: Impact of Globalisation and Regionalisation Strategies on the Performance
of the World’s Pulp and Paper Companies. 2003. ISBN 951-791-808-9.

A:226. EIREN TUUSJÄRVI: Multifaceted Norms in SMC Export Cooperation: A Discourse Analysis
of Normative Expectations. 2003. ISBN 951-791-812-7.

A:227. MIKA MALIRANTA: Micro Level Dynamics of Productivity Growth. An Empirical Analysis
of the Great Leap in Finnish Manufacturing Productivity in 1975-2000. 2003.

 ISBN 951-791-815-1.

A:228. NINA KOISO-KANTTILA: Essays on Consumers and Digital Content. 2003.
 ISBN 951-791-816-X.

A:229. PETER GABRIELSSON: Globalising Internationals: Product Strategies of ICT Companies.
 2004. ISBN 951-791-825-9, ISBN 951-791-826-7 (Electronic dissertation).

A:230. SATU NURMI: Essays on Plant Size, Employment Dynamics and Survival. 2004.
 ISBN 951-791-829-1, ISBN 951-791-830-5 (Electronic dissertation).

A:231. MARJA-LIISA KURONEN: Vakuutusehtotekstin uudistamisprosessi, matkalla alamaisesta
asiakkaaksi. 2004. ISBN 951-791-833-X, ISBN 951-791-834-8 (Electronic dissertation).

A:232. MIKA KUISMA: Erilaistuminen vai samanlaistuminen? Vertaileva tutkimus paperiteollisuusyh-
tiöiden ympäristöjohtamisesta. 2004. ISBN 951-791-835-6, ISBN 951-791-836-4 (Electronic
dissertation).

A:233. ANTON HELANDER: Customer Care in System Business. 2004. ISBN 951-791-838-0.

A:234. MATTI KOIVU: A Stochastic Optimization Approach to Financial Decision Making. 2004.
ISBN 951-791-841-0, ISBN 951-791-842-9 (Electronic dissertation).

A:235. RISTO VAITTINEN: Trade Policies and Integration – Evaluations with CGE -models. 2004.
 ISBN 951-791-843-7, ISBN 951-791-844-5 (Electronic dissertation).

A:236. ANU VALTONEN: Rethinking Free Time: A Study on Boundaries, Disorders, and Symbolic
Goods. 2004. ISBN 951-791-848-8, ISBN 951-791-849-6 (Electronic dissertation).

A:237. PEKKA LAURI: Human Capital, Dynamic Inefficiency and Economic Growth. 2004.
 ISBN 951-791-854-2, ISBN 951-791-855-0 (Electronic dissertation).

A:238. SAMI JÄRVINEN: Essays on Pricing Commodity Derivatives. 2004. ISBN 951-791-861-5,
 ISBN 951-791-862-3 (Electronic dissertation).

A:239. PETRI I. SALONEN: Evaluation of a Product Platform Strategy for Analytical Application
Software. 2004. ISBN 951-791-867-4, ISBN 951-791-868-2 (Electronic dissertation).

A-SARJA: MUITA JULKAISUJA - OTHER PUBLICATIONS

 ANNE HERBERT: The Paradoxes of Action Learning: An Interpretive and Critical Inquiry
into Vocational Educators’ Professional Development. 2002. ISBN 951-791-684-1.

B-SARJA: TUTKIMUKSIA - RESEARCH REPORTS. ISSN 0356-889X.

B:38. KRISTIINA KORHONEN(ed.): Current Reflections on the Pacific Rim. 2002.
 ISBN 951-791-661-2.

B:39. RISTO Y. JUURMAA: Performance and International Competitiveness of Listed Metal and
Telecommunication Industry Groups 1992 - 2000. Finland vs Sweden and Germany. 2002.
ISBN 951-791-668-X.

B:40. KAIJA TUOMI – SINIKKA VANHALA (toim.): Yrityksen toiminta, menestyminen ja hen-
kilöstön hyvinvointi. Seurantatutkimus metalliteollisuudessa ja vähittäiskaupan alalla. 2002.
ISBN 951-791-674-4.

B:41. ANNE ÄYVÄRI: Verkottuneen pienyrityksen markkinointikyvykkyys. 2002.
 ISBN 951-791-682-5.

B:42. RIKU OKSMAN: Intohimoa ja ammattitaitoa: puheenvuoroja tuottajan työstä. 2002.
 ISBN 951-791-700-7.

B:43. RISTO TAINIO – KARI LILJA – TIMO SANTALAINEN: Organizational Learning in the Context
of Corporate Growth and Decline: A Case Study of a Major Finnish Bank. 2002.
ISBN 951-791-717-1

B:44. ELINA HENTTONEN – PÄIVI ERIKSSON – SUSAN MERILÄINEN: Teknologiayrittämisen
sukupuoli. Naiset miesten maailmassa. 2003. ISBN 951-791-737-6.

B:45. KIRSI KORPIAHO: “Kyllä siinä pitää elää mukana!” Kirjanpitäjien tarinoita työstä, osaami-
sesta ja oppimisesta työyhteisönäkökulmasta analysoituna. 2003. ISBN 951-791-742-2.

B:46. NIILO HOME (toim.): Puheenvuoroja ECR-toiminnasta. Discussions on ECR – Summaries.
2003. ISBN 951-791-749-X.

B:47. PÄIVI KARHUNEN – RIITTA KOSONEN – MALLA PAAJANEN: Gateway-käsitteen elinkaari
Venäjän-matkailussa. Etelä-Suomi Pietarin-matkailun väylänä. 2003. ISBN 951-791-756-2.

B:48. ANNELI KAUPPINEN – ANNE ARANTO – SATU RÄMÖ (toim.): Myyttiset markkinat.
 2003. ISBN 951-791-771-6.

B:49. MIKKO SAARIKIVI – SIMO RIIHONEN: Suomen puuteollisuuden kilpailukyvyn parantaminen
ja kansainvälistyminen piha- ja ympäristörakentamisessa. 2003. ISBN 951-791-779-1.

B:50. KATARIINA KEMPPAINEN – ARI P.J. VEPSÄLÄINEN – JUKKA KALLIO – TIMO SAARINEN
– MARKKU TINNILÄ: From Supply Chain to Networks: A Study of SCM Practices in Finnish
Industrial Companies. 2003. ISBN 951-791-780-5.

B:51. SAMI SARPOLA: Enterprise Resource Planning (ERP) Software Selection and Success of
Acquisition Process in Wholesale Companies. 2003. ISBN 951-791-802-X.

B:52. MATTI TUOMINEN (ed.): Essays on Capabilities Based Marketing and Competitive Supe-
riority. Fimac II - Research: Mai Anttila, Saara Hyvönen, Kristian Möller, Arto Rajala,

 Matti Tuominen. 2003. ISBN 951-791-814-3.

B:53. PÄIVI KARHUNEN – RIITTA KOSONEN – ANTTI LEIVONEN: Osaamisen siirtyminen
Suomalais-venäläisissä tuotantoalliansseissa. Tapaustutkimuksia pietarista ja leningradin
alueelta. 2003. ISBN 951-791-820-8.

B:54. JARMO ERONEN: Kielten välinen kilpailu: Taloustieteellis-sosiolingvistinen tarkastelu. 2004.
ISBN 951-791-828-3.

B:47. PÄIVI KARHUNEN – RIITTA KOSONEN – MALLA PAAJANEN: Gateway-käsitteen elinkaari
Venäjän-matkailussa. Etelä-Suomi Pietarin-matkailun väylänä. 2004. ISBN 951-791-846-1,
korjattu painos.

B:55. TAISTO MIETTINEN: Veron minimointi yritysjärjestelyissä. 2004. ISBN 951-791-856-9.

B:56. SOILE TUORINSUO-BYMAN: Part-Time Work, Participation and Commitment.
 ISBN 951-791-866-6.

CKIR-SARJA: HELSINKI SCHOOL OF ECONOMICS. CENTER FOR KNOWLEDGE AND
INNOVATION RESEARCH. CKIR WORKING PAPERS. ISSN 1458-5189.

CKIR:1. SATINDER P. GILL: The Engagement Space and Parallel Coordinated Movement: Case of a
Conceptual Drawing Task. 2002. ISBN 951-791-660-4.

CKIR:2 PEKKA ISOTALUS – HANNI MUUKKONEN: How Do Users of Pda’s React to an Animated
Human Character in Online News? 2002. ISBN 951-791-664-7.

E-SARJA: SELVITYKSIÄ - REPORTS AND CATALOGUES. ISSN 1237-5330.

E:100. JUHA KINNUNEN: Opiskelijoiden valikoituminen pääaineisiin Helsingin kauppakorkeak-
oulussa. Pääainetoiveita ja niihin vaikuttavia tekijöitä kartoittava kyselytutkimus vuosina
1995-2000 opintonsa aloittaneista. 2002. ISBN 951-791-669-8.

E:101. Research Catalogue 2000 – 2002. Projects and Publications. 2002. ISBN 951-791-670-1.

E:102. DAN STEINBOCK: The U.S. CIBER Experience: The Centers for International Business
Education and Research (CIBERs). 2003. ISBN 951-791-781-3.

N-SARJA: HELSINKI SCHOOL OF ECONOMICS. MIKKELI BUSINESS CAMPUS PUBLICATIONS.
ISSN 1458-5383

N:6 JUHA SIIKAVUO: Taloushallinon opas alkavalle yrittäjälle. 2002. ISBN 951-791-686-8.

N:7. JOHANNA NISKANEN: Etelä-Savon pk-yritysten vienti Tanskaan: ulkomaankaupan erityis-
raportti 2001. 2002. ISBN 951-791-687-6.

N:8. MIKKO NUMMI: Etelä-Savon pk-yritysten vienti Saksaan: ulkomaankaupan erityisraportti
2001. 2002. ISBN 951-791-688-4.

N:9. NOORA RUOHONEN – RIIKKA OLLI: Etelä-Savon pk-yritysten vienti Tsekkiin: ulkom-
aankaupan erityisraportti 2001. 2002. ISBN 951-791-689-2.

N:10. ANNA HÄKKINEN – ESKO LÄIKKÖ: Etelä-Savon pk-yritysten vientikohteena USA: ulkom-
aankaupan erityisraportti 2001. 2002. ISBN 951-791-690-6.

N:11. JUHA SIIKAVUO: Verkko-oppimisympäristön kehittäminen. Esimerkkinä HA Boctok Venäjän-
kaupan erikoistumisopintojen yksi moduuli, vuosi: 2002. 2002.

 ISBN 951-791-695-7.

N:12. JUHO PETTER PUHAKAINEN: German Venture Capitalists’ Decision Criteria in New
Venture Evaluation. 2002. ISBN 951-791-650-7.

N:13. MILJA LEMMETYINEN: Suomalaisyrityksen etabloituminen Saksaan. Ulkomaankaupan
erityisraportti 2002. 2002. ISBN 951-791-730-9.

N:14. TAPIO PALLASVIRTA: Pk-yritysten vienti Espanjaan. Ulkomaankaupan erityisraportti 2002.
2002. ISBN 951-791-731-7.

N:15. ELINA HAVERINEN: Etelä-Savon pk-yritysten Viron kauppa. Ulkomaankaupan erityisraportti
2003. ISBN 951-791-732-5.

N:16. REETA RÖNKKÖ: Latinalainen Amerikka markkina-alueena Argentiina ja Brasilia. Ulko-
maankaupan erityisraportti 2003. ISBN 951-791-733-3.

N:17. JAAKKO VARVIKKO – JUHA SIIKAVUO: Koulutus, oppiminen ja akateeminen yrittäjyys.
2003. ISBN 951-791-745-7.

N:18. ANNE GUSTAFSSON-PESONEN – SATU SIKANEN: Yrittäjäkoulutuksesta yrittäjäksi. 2003
ISBN 951-791-763-5.

N:19. TOIVO KOSKI: Impact of a venture capitalists´ value added on value of a venture. 2003.
 ISBN 951-791-764-3.

N:20. LAURA HIRVONEN: Itävalta suomalaisyritysten markkina-alueena. 2003.
 ISBN 951-791-765-1.

N:21. LAURA MALIN: Etelä-Savon pk-yritysten vienti Belgiaan. 2003. ISBN 951-791-766-X.

N:22. JUKKA PREPULA: Ranska suomalaisten pk-yritysten vientikohteena. 2003.
 ISBN: 951-791-767-8.

N:23. HENNA HUCZKOWSKI: Pk-yritysten perustaminen Puolaan. 2003.
 ISBN 951-791-768-6.

N:24. HENNA KATAJA – LEENA MÄÄTTÄ: Kiina suomalaisen pk-yrityksen vientikohteena.
 2003. ISBN: 951-791-769-4.

N:25. KAROLIINA IJÄS: Etelä-Savon pk-yritysten vienti Puolaan. 2003. ISBN: 951-791-770-8.

N:26. MARJO VAHLSTEN: Matkailupalvelujen markkinoinnin kehittäminen verkkoyhteistyön

avulla. 2003. ISBN: 951-791-792-9.

N:27. TUULI SAVOLAINEN: Slovakia suomalaisten pk-yritysten markkina-alueena. 2003.
 ISBN: 951-791-793-7.

N:28. HARRY MAASTOVAARA: Etelä-Savon yritysten ulkomaankauppa 2001.
 2003. ISBN: 951-791-794-5.

N:31. HANNA PERÄLÄ: Etelä-Savon pk-yritysten vienti Ruotsiin. 2003. ISBN: 951-791-799-6.

N:34. TOIVO KOSKI – ANTTI EKLÖF: Uudenmaan yrityshautomoista irtaantuneiden yritysten
menestyminen, Yrittäjien näkemyksiä yrityshautomotoiminnasta sekä selvitys ”yrittämisestä
Työtä 2000” –projektin asiakkaiden yritystoiminnasta. 2003. ISBN 951-791-805-4.

W-SARJA: TYÖPAPEREITA - WORKING PAPERS . ISSN 1235-5674.
ELECTRONIC WORKING PAPERS, ISSN 1795-1828.

W:304. PETRI BÖCKERMAN – KARI HÄMÄLÄINEN – MIKA MALIRANTA: Explaining Regional Job
and Worker Flows. 2002. ISBN 951-791.662-0.

W:305. PEKKA KORHONEN – MIKKO SYRJÄNEN: Evaluation of Cost Efficiency in Finnish Electricity
Distribution. 2002. ISBN 951-791-663-9.

W:306. SATU NURMI: The Determinants of Plant Survival in Finnish Manufacturing. 2002.
 ISBN 951-791-665-5.

W:307. JUSSI KARHUNEN: Taking Stock of Themselves. An Analysis of the Motives and the Market
Reaction in Finnish Share Repurchase Programs 2002. ISBN 951-791-666-3.

W:308. PEKKA ILMAKUNNAS – HANNA PESOLA: Matching Functions and Efficiency Analysis.
2002. ISBN 951-791-671-X.

W:309. MARKKU SÄÄKSJÄRVI: Software Application Platforms: From Product Architecture to
Integrated Application Strategy. 2002. ISBN 951-791-672-8.

W:310. MILLA HUURROS – HANNU SERISTÖ: Alliancing for Mobile Commerce: Convergence of
Financial Institutions and Mobile Operators. 2002. ISBN 951-791-673-6.

W:311. ANSSI ÖÖRNI: Objectives of Search and Combination of Information Channels in Electronic
Consumer Markets: An Explorative Study. 2002. ISBN 951-791-675-2.

W:312. ANSSI ÖÖRNI: Consumer Search in Electronic Markets: Experimental Analysis of Travel
Services. 2002. ISBN 951-791-676-0.

W:313. ANSSI ÖÖRNI: Dominant Search Pattern in Electronic Markets: Simultaneous or Sequential
Search. 2002. ISBN 951-791-677-9.

W:314. ANSSI ÖÖRNI: The Amount of Search in Electronic Consumer Markets. 2002.
ISBN 951-791-678-7.

W:315. KLAUS KULTTI – TUOMAS TAKALO – TANJA TANAYAMA: R&d Spillovers and Information
Exchange: A Case Study. 2002. ISBN 951-791-681-7.

W:316. OLLI TAHVONEN: Timber Production v.s. Old Growth Conservation with Endogenous
Prices and Forest Age Classes. 2002. ISBN 951-791-691-4.

W:317. KLAUS KULTTI – JUHA VIRRANKOSKI: Price Distribution in a Symmetric Economy. 2002.
ISBN 951-791-697-3.

W:318. KLAUS KULTTI – TONI RIIPINEN: Multilateral and Bilateral Meetings with Production
Heterogeneity. 2002. ISBN 951-791-698-1.

W:319. MARKKU KAUSTIA: Psychological Reference Levels and IPO Stock Returns. 2002. ISBN
951-791-699-X.

W:320. MERVI LINDQVIST: Possible Research Issues in Management and Control of New Economy
Companies. 2002. ISBN 951-791-701-5.

W:321. MARKO LINDROOS: Coalitions in Fisheries. 2002. ISBN 951-791-702-3.

W:322. MIKKO SYRJÄNEN: Non-discretionary and Discretionary Factors and Scale in Data Envel-
opment Analysis. 2002. ISBN 951-791-705-8.

W:323. KLAUS KULTTI – HANNU VARTIAINEN: VonNeumann-Morgenstern Solution
to the Cake Division Problem. 2002. ISBN 951-791-708-2.

W:324. TOM LAHTI: A Review of the Principal-agent Theory and the Theory of Incomplete Contracts:
An Examination of the Venture Capital Context. 2002. ISBN 951-791-709-0.

W:325. KRISTIAN MÖLLER – PEKKA TÖRRÖNEN: Business Suppliers’ Value-Creation Potential: A
Capability-based Analysis. 2002. ISBN 951-791-710-4.

W:326. KRISTIAN MÖLLER – ARTO RAJALA – SENJA SVAHN: Strategic Business Nets – Their Types
and Management. 2002. ISBN 951-791-711-2.

W:327. KRISTIAN MÖLLER – SENJA SVAHN – ARTO RAJALA: Network Management as a Set of
Dynamic Capabilities. 2002. ISBN 951-791-712-0.

W:328. PANU KALMI: Employee Ownership and Degeneration. Evidence from Estonian case
 studies. 2002. ISBN 951-791-713-9.

W:329. ANNELI NORDBERG: Yrittäjyys, johtajuus ja johtaminen – uuden talouden innovatiivisia
haasteita. 2002. ISBN 951-791-721-X.

W:330. LEENA LOUHIALA-SALMINEN: Communication and language use in merged corporations:
Cases Stora Enso and Nordea. 2002. ISBN 951-791-722-8.

W:331. TOMMI KASURINEN: Conceptualising the Encoding Process Related to
Institutionalisation in Organisations. From Key Performance Indicator Scorecard to
a Strategic Balanced Scorecard. 2002. ISBN 951-791-723-6.

W:332. PEKKA KORHONEN – HELENA TOPDAGI: Performance of the AHP in Comparison of Gains
and Losses. 2002. ISBN 951-791-724-4.

W:333. TARJA JORO – PEKKA KORHONEN – STANLEY ZIONTS: An Interactive Approach to Improve
Estimates of Value Efficiency in Data Envelopment Analysis. 2002. ISBN 951-791-725-2.

W:334. JUHA-PEKKA TOLVANEN – JEFF GRAY – MATTI ROSSI (edit.): Proceedings of the Second-
Domain Specific Modeling Languages Workshop. 2002. ISBN 951-791-726-0.

W:335. SATU NURMI: Sectoral Differences In Plant Start-up Size. 2003. ISBN 951-791-738-4.

W:336. SATU NURMI: Plant Size, Age And Growth In Finnish Manufacturing. 2003.
 ISBN 951-791-739-2.

W:337. PETRI HALLIKAINEN – HANNU KIVIJÄRVI: Appraisal of Strategic it Investments: Payoffs
And Tradeoffs. 2003. ISBN 951-791-740-6.

W:338. SENJA SVAHN: Knowledge Creation in Business Networks – A Dynamic-capability
 Perspective. 2003. ISBN 951-791-743-0.

W:339. KRISTIAN MÖLLER – SENJA SVAHN: Role of Knowledge in the Value Creation in Business
Nets. 2003. ISBN 951-791-744-9.

W:340. ELI MOEN – KARI LILJA: European Works Councils in M-Real and Norske Skog: The Impact of
National Traditions in Industrial Relations. 2003. ISBN 951-791-750-3.

W:341. KJELD MÖLLER: Salatulla ”arvopaperistamisella” tuhottiin yrittäjyyttä. 2003.
 ISBN 951 791-752-X

W:342. ATSO ANDERSEN: Competition Between European Stock Exchanges. 2003.
 ISBN 951-791-753-8.

W:343. MARKO MERISAVO: The Effects of Digital Marketing on Customer Relationships. 2003.
 ISBN 951-791-757-0.

W:344. KLAUS KULTTI – JUHA VIRRANKOSKI: Price Distribution in a Random Matching Model.
2003. ISBN 951-791-759-7.

W:345. PANU KALMI: The Rise and Fall of Employee Ownership in Estonia, 1987-2001.
 2003. ISBN 951-791-772-4.

W:346. SENJA SVAHN: Managing in Networks: Case Study of Different Types of Strategic Nets.
 2003. ISBN 951-791-774-0.

W:347. KRISTIAN MÖLLER – SENJA SVAHN: Crossing East-West Boundaries: Knowledge Sharing
in Intercultural Business Networks. 2003. ISBN 951-791-775-9.

W-348. KRISTIAN MÖLLER – SENJA SVAHN: Managing in Emergence: Capabilities for Influencing
the Birth of New Business Fields. 2003. ISBN 951-791-776-7.

W:349. TOM RAILIO: The Taxation Consequences of Scandinavian Mutual Fund Investments and
After-Tax Performance Evaluation. 2003. ISBN 951-791-777-5.

W:350. KIRSI LAPOINTE: Subjektiivinen ura työurien tutkimuksessa ja teorioissa. 2003.
 ISBN 951-791-778-3.

W:351. PANU KALMI: The Study of Co-operatives in Modern Economics: A Methodological Essay.
2003. ISBN 951-791-783-X.

W:352. MARJA TAHVANAINEN: Short-term International Assignments: Popular Yet Largely Unknown
Way Of Working Abroad. 2003. ISBN 951-791-784-8.

W:353. MARKKU KUULA – ANTOINE STAM: An Interior Point Method
for Multi-party Negotiation Support. 2003. ISBN 951-791-787-2.

W:354. JOUKO KINNUNEN: Quantification of Ordered-level Business Sentiment Survey Forecasts
by Means of External Validation Data. 2003. ISBN 951-791-790-2.

W:355. TOM RAILIO: The Nature of Disagreements and Comparability Between Finnish Accumu-
lating Mutual Funds and Voluntary Pension Insurances. 2003. ISBN 951-791-798-8.

W:356. JUKKA JALAVA: ‘Has Our Country the Patience Needed to Become Wealthy?’ Productivity
in the Finnish Manufacturing Industry, 1960-2000. 2003. ISBN 951-791-803-8.

W:357. JARI VESANEN: Breaking Down Barries for Personalization – A Process View. 2003.
 ISBN 951-791-804-6.

W:358. JUHA VIRRANKOSKI: Search Intensities, Returns to Scale, and Uniqueness of
Unemployment Equilibrium. 2003. ISBN 951-791-809-7.

W:359. JUHA VIRRANKOSKI: Search, Entry, and Unique Equilibrium. 2003.
 ISBN 951-791-810-0.

W:360. HANNA KALLA: Exploration of the Relationship Between Knowledge Creation, Organisa-
tional Learning, and Social Capital: Role of Communication. 2003. ISBN 951-791-813-5.

W:361. PEKKA SÄÄSKILAHTI: Strategic R&D and Network Compatibility. 2003. ISBN 951-791-817-8.

W:362. MAIJU PERÄLÄ: Allyn Young and the Early Development Theory. 2003.
 ISBN 951-791-818-6.

W:363. OSSI LINDSTRÖM – ALMAS HESHMATI: Interaction of Real and Financial Flexibility:
An Empirical Analysis. 2004. ISBN 951-791-827-5 (Electronic working paper).

W:364. RAIMO VOUTILAINEN: Quantitative Methods in Economics and Management Science.
2004. ISBN 951-791-832-1 (Electronic working paper).

W:365. MATTI KELOHARJU – SAMULI KNÜPFER – SAMI TORSTILA: Retail Incentives in Privatizations:
Anti-Flipping Devices or Money Left on the Table? 2004. ISBN 951-791-839-9 (Electronic
working paper).

W:366. JARI VESANEN – MIKA RAULAS: Building Bridges for Personalization – A Process View.
2004. ISBN 951-791-840-2 (Electronic working paper).

W:367. MAIJU PERÄLÄ: Resource Flow Concentration and Social Fractionalization: A Recipe for
A Curse? 2004. ISBN 951-791-845-3 (Electronic working paper).

W:368. PEKKA KORHONEN – RAIMO VOUTILAINEN: Finding the Most Preferred Alliance Structure
between Banks and Insurance Companies. 2004. ISBN 951-791-847-X (Electronic working
paper).

W:369. ANDRIY ANDREEV – ANTTI KANTO: A Note on Calculation of CVaR for Student ś Distri-
bution. 2004. ISBN 951-791-850-X (Electronic working paper).

W:370. ILKKA HAAPALINNA – TOMI SEPPÄLÄ – SARI STENFORS – MIKKO SYRJÄNEN – LEENA
TANNER : Use of Decision Support Methods in the Strategy Process – Executive View. 2004.
ISBN 951-791-853-4 (Electronic working paper).

W:371. BERTTA SOKURA: Osaamispääoman ulottuvuudet. Arvoa luova näkökulma. 2004.
 ISBN 951-791-857-7 (Electronic working paper).

W:372. ANTTI RUOTOISTENMÄKI – TOMI SEPPÄLÄ – ANTTI KANTO: Accuracy of the Condition
Data for a Road Network. 2004. ISBN 951-791-859-3 (Electronic working paper).

W:373. ESKO PENTTINEN: Bundling of Information Goods - Past, Present and Future.
 ISBN 951-791-864-X. (Electronic working paper).

W:374. KASIMIR KALIVA – LASSE KOSKINEN: Modelling Bubbles and Crashes on the Stock Market.
ISBN 951-791-865-8 (Electronic working paper).

Y-SARJA: HELSINKI SCHOOL OF ECONOMICS.
CENTRE FOR INTERNATIONAL BUSINESS RESEARCH. CIBR RESEARCH PAPERS.
ISBN 1237-394X.

Y:7. ZUHAIR AL-OBAIDI – MIKA GABRIELSSON: Multiple Sales Channel Strategies in Export
Marketing of High Tech SMEs. 2002. ISBN 951-791-703-1.

Y:8. REIJO LUOSTARINEN – MIKA GABRIELSSON: Globalization and Marketing Strategies of
 Born Globals in SMOPECs. 2004. ISBN 951-701-851-8.

Z-SARJA: HELSINKI SCHOOL OF ECONOMICS.
CENTRE FOR INTERNATIONAL BUSINESS RESEARCH. CIBR WORKING PAPERS. ISSN 1235-3931.

Z:9. V.H. MANEK KIRPALANI – MIKA GABRIELSSON: Worldwide Evolution of Channels Policy.
2002. ISBN 951-791-704-X.

Z:10. V.H. MANEK KIRPALANI – MIKA GABRIELSSON: Need for International Intellectual
Entrepreneurs and How Business Schools Can Help. 2004. ISBN 951-791-852-6.

Kaikkia Helsingin kauppakorkeakoulun julkaisusarjassa ilmestyneitä julkaisuja voi tilata osoitteella:

KY-Palvelu Oy Helsingin kauppakorkeakoulu
Kirjakauppa Julkaisutoimittaja
Runeberginkatu 14-16 PL 1210
00100 Helsinki 00101 Helsinki
Puh. (09) 4313 8310, fax (09) 495 617 Puh. (09) 4313 8579, fax (09) 4313 8305
Sähköposti: kirjak@kyyppari.hkkk.fi Sähköposti: julkaisu@hkkk.fi

All the publications can be ordered from

Helsinki School of Economics
Publications officer
P.O.Box 1210
FIN-00101 Helsinki
Phone +358-9-4313 8579, fax +358-9-4313 8305
E-mail: julkaisu@hkkk.fi

