
B

B-108

Proceedings of the 9th

Domain-Specific Modeling
(DSM´09)

OOPSLA Workshop on

Matti Rossi
Jonathan Sprinkle

M
atti R

ossi, Jonathan Sprinkle, Jeff G
ray, Juha-Pekka Tolvanen (eds.):

Proceedings of the 9th O
O

PSLA
 W

orkshop on D
om

ain-Specific M
odeling (D

SM
’09)

B-108

B
-108

Jeff Gray
Juha-Pekka Tolvanen (eds.)

HELSINGIN KAUPPAKORKEAKOULUN

JULKAISUJA

B-108

Matti Rossi, Jonathan Sprinkle, Jeff Gray, Juha-Pekka Tolvanen (eds.)

Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling

(DSM’09)

© Matti Rossi, Jonathan Sprinkle, Jeff Gray, Juha-Pekka Tolvanen (eds.) and
Helsingin kauppakorkeakoulu

ISSN 0356-889X
ISBN 978-952-488-371-9

E-versio:

ISBN 978-952-488-372-6

Helsingin kauppakorkeakoulu -
HSE Print 2009

Welcome to the 9th Workshop on
Domain-Specific Modeling Workshop – DSM’09

Preface

Domain-Specific Modeling (DSM) is continuing to receive interest among the
general software engineering community. As an example, the special issue of
IEEE Software (July/August 2009) gave the approach much needed visibility.
Several controlled experiments have shown that DSMs are more productive than
general model based approaches. As Booch et al. have stated, “the full value of
MDA is only achieved when the modeling concepts map directly to domain
concepts rather than computer technology concepts.” For example, DSM for cell
phone software would have concepts like “Soft key button,” “SMS” and “Ring
tone,” and generators to create calls to the corresponding code components.

Continued investigation is still needed in order to advance the acceptance and
viability of DSM. This workshop, which is in its ninth incarnation at OOPSLA
2009, features research and experience papers describing new ideas at either a
practical or theoretical level. On the practical side, several papers in these
proceedings describe application of modeling techniques within a specific domain.
As in previous workshops, there are plenty of language examples contributed to
these proceedings.

We have organized the 18 papers in these proceedings to emphasize general areas
of interest into which the papers loosely fit. Authors from both industry and
academia have contributed research ideas that initiate and forward the technical
underpinnings of domain-specific modeling. The papers in this proceedings are
categorized into the areas of Language Design, Language Examples, DSLs for the
web, Transformations and Language Evolution, Model Verification and Testing
and Special Topics. Many papers in these proceedings are cross-cutting in their
analysis and reporting. As a whole, the body of work highlights the importance of
metamodeling and related tooling, which significantly ease the implementation of
domain-specific languages and provide support for experimenting with the
modeling language as it is built (thus, metamodel-based language definition also
assists in the task of constructing generators that reduce the burden of tool creation
and maintenance).

We hope that you will enjoy this record of the workshop and find the information
within these proceedings valuable toward your understanding of the current state-
of-the-art in Domain-Specific Modeling.

Matti Rossi, Jonathan Sprinkle, Jeff Gray, Juha-Pekka Tolvanen

October 2009
Orlando, Florida

9th WORKSHOP ON DOMAIN-SPECIFIC MODELING

25-26 October 2009, Orlando, USA

Program Committee

Pierre America, Philips
Robert Baillargeon, Panasonic Automotive Systems, USA
Krishnakumar Balasubramanian, The MathWorks Inc.
Peter Bell, SystemsForge
Jorn Bettin, Sofismo
Philip T. Cox, Dalhousie University
Krzysztof Czarnecki, University of Waterloo
Brandon Eames, Utah State University
Robert France, Colorado State University
Ethan Jackson, Microsoft
Frederic Jouault, AtlanMod (INRIA & EMN)
Jürgen Jung, Deutsche Post
Steven Kelly, MetaCase
Gunther Lenz, Microsoft
Shih-Hsi Liu, California State University, Fresno
Kalle Lyytinen, Case Western Reserve University
Juha Pärssinen, VTT
Arturo Sanchez, Univ of North Florida
Jun Suzuki, University of Massachusetts, Boston
Markus Völter, independent consultant
Jos Warmer, Ordina
Jing Zhang, Motorola Research

Organizing Committee

Juha-Pekka Tolvanen, MetaCase
Jeff Gray, University of Alabama at Birmingham
Matti Rossi, Helsinki School of Economics
Jonathan Sprinkle, University of Arizona

Table of Contents
Welcome message from the organizers
List of program and organizing committees

Language Design

Design Guidelines for Domain-Specific Languages
Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel

7

Evaluating the Use of Domain-Specific Modeling in Practice
Juha Kärnä, Juha-Pekka Tolvanen and Steven Kelly

14

Multi-Language Development of Embedded Systems
Thomas Kuhn, Soeren Kemmann, Mario Trapp and Christian Schäfer

21

Language Examples

ITML : A Domain-Specific Modeling Language for Supporting Business Driven IT
Management

Ulrich Frank, David Heise, Heiko Kattenstroth, Donald F. Ferguson, Ethan Hadar and
Marvin G. Waschke

28

Domain Specific Languages for Business Process Management: a Case Study
Janis Barzdins, Karlis Cerans, Mikus Grasmanis, Audris Kalnins, Sergejs Kozlovics,
Lelde Lace, Renars Liepins, Edgars Rencis, Arturs Sprogis and Andris Zarins

36

Use of a Domain Specific Modeling Language for Realizing Versatile Dashboards
Ulrich Frank, David Heise and Heiko Kattenstroth

43

DSML-Aided Development for Mobile P2P Systems
Tihamer Levendovszky, Tamás Mészáros, Péter Ekler and Mark Asztalos

51

DSLs for the Web

MobiDSL - a Domain Specific Language for Mobile Web : developing applications for
mobile platform without web programming

Ankita Arvind Kejriwal and Mangesh Bedekar

57

MontiWeb - Modular Development of Web Information Systems
Michael Dukaczewski, Dirk Reiss, Bernhard Rumpe and Mark Stein

64

ProcDSL + ProcEd - a Web-based Editing Solution for Domain Specific Process-
Engineering

Christian Berger, Tim Gülke and Bernhard Rumpe

70

Transformations and Language Evolution

Model-View-Controller Architecture Specific Model Transformation
Hiroshi Kazato, Rafael Weiss, Shinpei Hayashi, Takashi Kobayashi and Motoshi Saeki

75

Evolution of a Domain Specific Language and its engineering environment - Lehman’s laws
revisited

Mika Karaila

81

Automatic Domain Model Migration to Manage Metamodel Evolution
Daniel Balasubramanian, Tihamer Levendovszky, Anantha Narayanan and Gabor
Karsai

88

Model Verification and Testing

Using Model-Based Testing for Testing Application Models in the Context of Domain-
Specific Modelling

Janne Merilinna and Olli-Pekka Puolitaival

95

Right or Wrong? – Verification of Model Transformations using Colored Petri Nets
Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes
Schoenboeck and Wieland Schwinger

101

A Tooling Environment for Quality-Driven Model-Based Software Development
Janne Merilinna and Tomi Räty

107

Special Topics

Towards a Generic Layout Composition Framework for Domain-Speci c Models
Jendrik Johannes and Karsten Gaul

113

Model-Based Autosynthesis of Time-Triggered Buffers for Event-Based Middleware
Systems

Jonathan Sprinkle and Brandon Eames

119

Design Guidelines for Domain Specific Languages

Gabor Karsai
Institute for Software
Integrated Systems
Vanderbilt University

Nashville, USA

Holger Krahn
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Claas Pinkernell
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Bernhard Rumpe
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Martin Schindler
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Steven Völkel
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

ABSTRACT
Designing a new domain specific language is as any other
complex task sometimes error-prone and usually time con-
suming, especially if the language shall be of high-quality
and comfortably usable. Existing tool support focuses on
the simplification of technical aspects but lacks support for
an enforcement of principles for a good language design. In
this paper we investigate guidelines that are useful for de-
signing domain specific languages, largely based on our ex-
perience in developing languages as well as relying on ex-
isting guidelines on general purpose (GPLs) and modeling
languages. We defined guidelines to support a DSL devel-
oper to achieve better quality of the language design and a
better acceptance among its users.

1. INTRODUCTION
Designing a new language that allows us to model new

technical properties in a simpler and easier way, describe or
implement solutions, or to describe the problem resp. re-
quirements in a more concise way is one of the core chal-
lenges of computer science. The creation of a new language
is a time consuming task, needs experience and is thus usu-
ally carried out by specialized language engineers. Nowa-
days, the need for new languages for various growing do-
mains is strongly increasing. Fortunately, also more sophis-
ticated tools exist that allow software engineers to define a
new language with a reasonable effort. As a result, an in-
creasing number of DSLs (Domain Specific Languages) are
designed to enhance the productivity of developers within
specific domains. However, these languages often fit only
to a rather specific domain problem and are neither of the
quality that they can be used by many people nor flexible
enough to be easily adapted for related domains.

During the last years, we developed the frameworks Mon-
tiCore [13] and GME [2] which support the definition of
domain specific languages. Using these frameworks we de-
signed several DSLs for a variety of domains, e.g., a textual
version of UML/P notations [17] and a language based on
function nets in the automotive domain [5]. We experienced
that the design of a new DSL is a difficult task because dif-
ferent people have a varying perception of what a “good”
language actually is.

This of course also depends on the taste of the developer
respectively the users, but there are a number of generally
acceptable guidelines that assist in language development,
making it more a systematic, methodological task and less
an intellectual ad-hoc challenge. In this paper we summa-
rize, categorize, and amend existing guidelines as well as
add our new ones assuming that they improve design and
usability of future DSLs.

In the following we present general guidelines to be consid-
ered for both textual and graphical DSLs with main focus is
on the former. The guidelines are discussed sometimes using
examples from well-known programming languages or math-
ematics, because these languages are known best. Depend-
ing on the concrete language and the domain these guidelines
have to be weighted differently as there might be different
purposes, complexity, and number of users of the resulting
language. For example, for a rather simple configuration
language used in only one project a timely realization is usu-
ally more important than the optimization of its usability.
Therefore, guidelines must be sometimes ignored, altered, or
enforced. Especially quality-assurance guidelines can result
in an increased amount of work.

While we generally focus in our work on DSLs that are
specifically dedicated to modeling aspects of (software) sys-
tems, we believe that these guidelines generally hold for any
DSL that embeds a certain degree of complexity.

1.1 Literature on Language Design
For programming languages, design guidelines have been

intensively discussed since the early 70s. Hoare [8] intro-
duced simplicity, security, fast translation, efficient object
code, and readability as general criteria for the design of
good languages. Furthermore, Wirth [22] discussed sev-
eral guidelines for the design of languages and correspond-
ing compilers. The rationale behind most of the guidelines
and hints of both articles can be accepted as still valid to-
day, but the technical constraints have changed dramati-
cally since the 70s. First of all, computer power has in-
creased significantly. Therefore, speed and space problems
have become less important. Furthermore, due to sophis-
ticated tools (e.g., parser generators) the implementation
of accompanying tools is often not a necessary part of the
language development any more. Of course, both articles

7 7

concentrate on programming languages and do not consider
the greater variety of domain specific languages.

More recently, authors have also discussed the design of
domain specific modeling languages. General principles for
modeling language design were introduced in [14]. These
include simplicity, uniqueness, consistency, and scalability,
on which we will rely later. However, the authors did not
discuss how these higher level principles can be achieved.
In [12] certain aspects of the DSL development are explained
and some guidelines are introduced. More practical guide-
lines for implementing DSLs are given in [10]. These focus
on how to identify the necessary language constructs to gen-
erate full code from models. The authors explain how to
provide tool support with the MetaEdit+ environment. [20]
explains 12 lessons learned from DSL experiments that can
help to improve a DSL. Although more detailed discussions
on explicit guidelines are missing, these lessons embed doc-
umented empirical evidence – a documentation that many
other discussions, including ours do not have. In [16] the
authors introduce a toolset which supports the definition
of DSLs by checking their consistency with respect to sev-
eral objectives. Language designers can select properties of
their DSL to be developed and the system automatically
derives other design decisions in order to gain a consistent
language definition. However, the introduced criteria cover
only a subset of the decisions to be made and hence, cannot
serve as the only criteria for good language design. Quite
the contrary, to our experience many design guidelines can-
not be translated in automatic measures and thus cannot be
checked by a tool.

1.2 Categories of DSL Design Guidelines
The various design guidelines we will discuss below, can

be organized into several categories. Essentially, these guide-
lines describe techniques that are useful at different activities
of the language development process, which range from the
domain analysis to questions of how to realize the DSL to the
development of an abstract and a concrete syntax including
the definition of context conditions. An alignment of guide-
lines with the language development activities and the de-
veloped artifacts has the advantage that a language designer
can concentrate on the respective subset of the guidelines at
each activity. This should help identifying and realizing the
desired guidelines. Therefore, we decided for a development
phase oriented classification and identified the following cat-
egories:

Language Purpose discusses design guidelines for the early
activities of the language development process.

Language Realization introduces guidelines which discuss
how to implement the language.

Language Content contains guidelines which focus on the
elements of a language.

Concrete Syntax concentrates on design guidelines for the
readable (external) representation of a language.

Abstract Syntax concentrates on design guidelines for the
internal representation of a language.

For each of these categories we will discuss the design
guidelines we found useful. Please be aware that the subse-
quently discussed guidelines sometimes are in conflict with

each other and the language developer sometimes has to bal-
ance them accordingly. Additionally, semantics is explicitly
not listed as a separate step as it should be part of the entire
development process and therefore has an influence on all of
the categories above.

2. DSL DESIGN GUIDELINES

2.1 Language Purpose
Language design is not only influenced by the question of

what it needs to describe, but equally important what to do
with the language. Therefore, one of the first activities in
language design is to analyze the aim of the language.

Guideline 1: “Identify language uses early.” The language
defined will be used for at least one task. Most common
uses are: documentation of knowledge (only) and code ge-
neration. However, there are a lot more forms of usage:
definition or generation of tests, formal verification, auto-
matic analysis of various kinds, configuration of the system
at deployment- or run-time, and last but increasingly im-
portant, simulation.

An early identification of the language uses have strong in-
fluence on the concepts the language will allow to offer. Code
generation for example is not generally feasible when the
language embeds concepts of underspecification (e.g., non-
deterministic Statecharts). Even if everything is designed to
be executable, there are big differences regarding the over-
head necessary to run certain kinds of models. If efficient
execution on a small target machine is necessary (e.g., mo-
bile or car control device) then high-level concepts must be
designed for optimized code generations. For simulation and
validation of requirements however, efficiency plays a minor
role.

Guideline 2: “Ask questions.” Once the uses of a language
have been identified it is helpful to embed these forms of
language uses into the overall software development process.
People/roles have to be identified that develop, review, and
deploy the involved programs and models. The following
questions are helpful for determining the necessary decisions:
Who is going to model in the DSL? Who is going to review
the models? When? Who is using the models for which
purpose?

Based thereon, the question after whether the language is
too complex or captures all the necessary domain elements
can be revisited. In particular, appropriate tutorials for the
DSL users in their respective development process should
now be prepared.

Guideline 3: “Make your language consistent.” DSLs are
typically designed for a specific purpose. Therefore, each
feature of a language should contribute to this purpose, oth-
erwise it should be omitted. As an illustrative example we
consider a platform independent modeling language. In this
language, all features should be platform independent as
well. This design principle was already discussed in [14].

2.2 Language Realization
When starting to define a new language, there are several
options on how to realize it. One can implement the DSL
from scratch or reuse and extend or reduce an existing lan-
guage, one can use a graphical or a textual representation,

8 8

and so on. We have identified general hints which have to
be taken into account for these decisions.

Guideline 4: “Decide carefully whether to use graphical or
textual realization.” Nowadays, it is common to use tools
supporting the design of graphical DSLs such as the Eclipse
Modeling Framework (EMF) or MetaEdit+. On the other
hand, there exist sophisticated tools and frameworks like
MontiCore or xText for text-based modeling. As described
in [6], there are a number of advantages and disadvantages
for both approaches. Textual representations for example
usually have the advantage of faster development and are
platform and tool independent whereas graphical models
provide a better overview and ease the understanding of
models. Therefore, advantages and disadvantages have to
be weighted and matched against end users’ preferences in
order to make a substantiated decision for one of the real-
izations. From this point on, a more informed decision can
be made for a concrete tool to realize the language based
on their particular features and the intended use of the lan-
guage. Comparisons can be found in [21] or [3].

Guideline 5: “Compose existing languages where possible.”
The development of a new language and an accompanying
toolset is a labor-intensive task. However, it is often the
case that existing languages can be reused, sometimes even
without adaptation. A good example for language reuse
is OCL: it can be embedded in other languages in order
to define constraints on elements expressed in the hosting
language.

The most general and useful form of language reuse is thus
the unchanged embedding of an existing language into an-
other language. A more sophisticated approach is to have
predefined holes in a host language, such that the defini-
tion of a new language basically consists of a composition
of different languages. For textual languages this composi-
tional style of language definitions is well understood and
supported by sophisticated tools such as [11] which also as-
sists the composition of appropriate tools.

However, according to the seamlessness principle [14], the
concepts of the languages to be composed need to fit to-
gether. In the UML, the object oriented paradigm under-
lies both class diagrams and Statecharts which therefore fit
well together. Additionally, when composing languages care
must be exercised to avoid confusion: similar constructs with
different semantics should be avoided.

Guideline 6: “Reuse existing language definitions.” If the
language cannot be simply composed from some given lan-
guage parts, e.g., by language embedding as proposed in
guideline 5, it is still a good idea to reuse existing language
definitions as much as possible. In [18] more possible real-
ization strategies, such as language extension or language
specialization are analyzed. This means, taking the defini-
tion of a language as a starter to develop a new one is better
than creating a language from scratch. Both the concrete
and the abstract syntax will benefit from this form of reuse.
The new language then might retain a look-and-feel of the
original, thus allowing the user to easily identify familiar
notations. Looking at the abstract syntax of existing lan-
guages, one can identify “language pattern” (quite similar
to design pattern), which are good guidelines for language
design. For example, expressions, primary expressions, or
statements have quite a common pattern in all languages.

Only if there is no existing language/notation or the disad-
vantages do not allow using the strategies mentioned above,
a standalone realization should be considered. The websites
of parser generators like Antlr [1] or Atlantic Zoo [19] are a
good starting point for reusing language definitions.

Guideline 7: “Reuse existing type systems.” A DSL used
for software development often comprises and even extends
either a property language such as OCL or an implementa-
tion language such as Java. As described in [8], the design
of a type system for such a language is one of the hardest
tasks because of the complex correlations of name spaces,
generic types, type conversions, and polymorphism.

Furthermore, an unconventional type system would be
hard for users to adopt as well. Therefore, a language de-
signer should reuse existing type systems to improve com-
prehensibility and to avoid errors that are caused by misin-
terpretations in an implementation. Furthermore, it is far
more economical to use an existing type system, than devel-
oping a new one as this is a labor intensive and error-prone
task. A well-documented object-oriented type system can
be tailored to the needs of the DSL or even an implemented
reusable type system can be used (e.g. [4]).

2.3 Language Content
One main activity in language development is the task of
defining the different elements of the language. Obviously,
we cannot define in general which elements should be part
of a language as this typically depends on the intended use.
However, the decisions can be guided by some basic hints
we propose in this Section.

Guideline 8: “Reflect only the necessary domain concepts.”
Any language shall capture a certain set of domain artifacts.
These domain artifacts and their essential properties need
to be reflected appropriately in the language in a way that
the language user is able to express all necessary domain
concepts. To ensure this, it is helpful to define a few models
early to show how such a reflection would look like. These
models are a good basis for feedback from domain experts
which helps the developer to validate the language definition
against the domain. However, when designing a language
not all domain concepts need to be reflected, but only those
that contribute to the tasks the language shall be used for.

Guideline 9: “Keep it simple.” Simplicity is a well known
criterion which enhances the understandability of a language
[8, 14, 22]. The demand for simplicity has several rea-
sons. First, introducing a new language in a domain pro-
duces work in developing new tools and adapting existing
processes. If the language itself is complex, it is usually
harder to understand and thus raises the barrier of intro-
ducing the language. Second, even when such a language is
successfully introduced in a domain, unnecessary complexity
still minimizes the benefit the language should have yielded.
Therefore, simplicity is one of the main targets in designing
languages. The following more detailed Guidelines 10, 11,
and 12 will show how to achieve simplicity.

Guideline 10: “Avoid unnecessary generality.” Usually, a
domain has a finite collection of concepts that should be
reflected in the language design. Statements like “maybe
we can generalize or parameterize this concept for future
changes in the domain” should be avoided as they unneces-

9 9

sarily complicate the language and hinder a quick and suc-
cessful introduction of the DSL in the domain. Therefore,
this guideline can also be defined as “design only what is
necessary”.

Guideline 11: “Limit the number of language elements.” A
language which has several hundreds of elements is obviously
hard to understand. One approach to limit the number of
elements in a language for complex domains is to design
sublanguages which cover different aspects of the systems.
This concept is, e.g., employed by the UML: different kinds
of diagrams are used for special purposes such as structure,
behavior, or deployment. Each of them has its own notation
with a limited number of concepts.

A further possibility to limit the number of elements of
a language is to use libraries that contain more elaborated
concepts based on the concepts of the basic language and
that can be reused in other models. Elements which were
previously defined as part of the language itself can then
be moved to a model in the library (compare, e.g., I/O in
Pascal vs. C++). Furthermore, users can extend a library
by their own definitions and thus, can add more and more
functionality without changing the language structure itself.
Therefore, introducing a library leads to a flexible, extensi-
ble, and extensive language that nevertheless is kept simple.
On the other hand, a language capable of library import
and definition of those elements must have a number of ap-
propriate concepts embedded to enable this (e.g., method
and class definitions, modularity, interfaces - whatever this
means in the DSL under construction). This principle has
successfully been applied in GPL design where the languages
are usually small compared to their huge standard libraries.

Guideline 12: “Avoid conceptual redundancy.” Redun-
dancy is a constant source of problems. Having several con-
cepts at hand to describe the same fact allows users to model
it differently. The case of conceptual richness in C++ shows
that coding guidelines then usually forbid a number of con-
cepts. E.g., the concept of classes and structs is nearly iden-
tical, the main difference is the default access of members
which is public for structs and private for classes. There-
fore, classes and structs can be used interchangeably within
C++ whereas the slight difference might be easily forgot-
ten. So, it should be generally avoided to add redundant
concepts to a language.

Guideline 13: “Avoid inefficient language elements.” One
main target of domain specific modeling is to raise the level
of abstraction. Therefore, the main artifacts users deal with
are the input models and not the generated code. On the
other hand, the generated code is necessary to run the final
system and more important, the generated code determines
significant properties of the system such as efficiency. Hence,
the language developer should try to generate efficient code.

Furthermore, efficiency of a model should be transparent
to the language user and therefore should only depend on
the model itself and not on specific elements used within
the model. Elements which would lead to inefficient code
should be avoided already during language design so that
only the language user is able to introduce inefficiency [8].
For example, in Java there is no operator to get all instances
of one class as this would increase memory usage and oper-
ating time significantly. However, this functionality can be
implemented by a Java user if needed.

2.4 Concrete Syntax
Concrete syntax has to be chosen well in order to have an
understandable, well structured language. Thus, we con-
centrate on the concrete syntax first and will deal with the
abstract syntax later.

Guideline 14: “Adopt existing notations domain experts
use.” As [20] says, it is generally useful to adopt what-
ever formal notation the domain experts already have, rather
than inventing a new one.

Computer experts and especially language designers are
usually very practiced in learning new languages. On the
contrary, domain experts often use a language for a longer
time and do not want to learn a new concrete syntax es-
pecially when they already have a notation for a certain
problem. As already mentioned, it is often the case that the
introduction of a DSL makes new tools and modified pro-
cesses necessary. Inventing a new concrete syntax for given
concepts would raise the barrier for domain experts. Thus,
existing notations should be adopted as much as possible.
E.g., queries within the database domain should be defined
with SQL instead of inventing a new query language. Even
if queries are only part of a new language to be defined SQL
could be embedded within the new language.

In case a suitable notation does not already exist, the new
language should be adopted as close as possible to other
existing notations within the domain or to other common
used languages. A good example for commonly accepted
languages are mathematical notations like arithmetical ex-
pressions [8].

Guideline 15: “Use descriptive notations.” A descriptive
notation supports both learnability and comprehensibility
of a language especially when reusing frequently-used terms
and symbols of domain or general knowledge. To avoid mis-
interpretation it is highly important to maintain the seman-
tics of these reused elements. For instance, the sign “+”
usually stands for addition or at least something seman-
tically similar to that whereas commas or semicolons are
interpreted as separators. This applies to keywords with
a widely-accepted meaning as well. Furthermore, keywords
should be easily identifiable. It is helpful to restrict the num-
ber of keywords to a few memorizable ones and of course, to
have a keyword-sensitive editor.

A good example for a descriptive notation is the way how
special character like Greek letters are expressed in Latex.
Instead of using a Unicode-notation each letter can be ex-
pressed by its name (\alpha for α, \beta for β, and so on).

Guideline 16: “Make elements distinguishable.” Easily dis-
tinguishable representations of language elements are a ba-
sic requirement to support understandability. In graphical
DSLs, different model elements should have representations
that exhibit enough syntactic differences to be easily dis-
tinguishable. Different colors as the only criteria may be
counterproductive, e.g., when printed in black and white. In
textual languages usually keywords are used in order to sep-
arate kinds of elements. These keywords have to be placed
in appropriate positions of the concrete syntax, as other-
wise readers need to start backtracking when “parsing” the
text [8, 22]. The absence of keywords is often based on effi-
ciency for the writer. But this is a very weak reason because
models are much more often read than written and therefore
to be designed from a readers point of view.

10 10

Guideline 17: “Use syntactic sugar appropriately.” Lan-
guages typically offer syntactic sugar, i.e., elements which do
not contribute to the expressiveness of the language. Syn-
tactic sugar mainly serves to improve readability, but to
some extent also helps the parser to parse effectively. Key-
words chosen wisely help to make text readable. Generally,
if an efficient parser cannot be implemented, the language
is probably also hard to understand for human readers.

However, an overuse of the addition of syntactic sugar dis-
tracts, because verbosity hinders to see the important con-
tent directly. Furthermore, it should be kept in mind that
several forms of syntactic sugar for one concept may hinder
communication as different persons might prefer different
elements for expressing the same idea.

Nevertheless the introduction of syntactic sugar can also
improve a language, e.g., the enhanced for-statement in Java
5 is widely accepted although it is conceptually redundant to
a common for-statement. This is a conflict to guideline 12,
but the frequency of occurrence of common for-statements in
Java legitimates a more effective alternative of this notation.

Guideline 18: “Permit comments.” Comments on model
elements are essential for explaining design decisions made
for other developers. This makes models more understand-
able and simplifies or even enables collaborative work. So
a widely accepted standard form of grouped comments, like
/* ... */, and line comments, like // ... for textual
languages or text boxes and tooltips for graphical languages
should be embedded.

Furthermore, specially structured comments can be used
for further documentation purposes as generating HTML-
pages like Javadoc. In [8] it is mentioned that the “purpose
of a programming language is to assist in the documenta-
tion of programs”. Therefore we recommend that every DSL
should allow a user to generally comment at various parts
of the model. If desired, the language may even contain the
definition of a comment structure directly, thus enforcing a
certain style of documentation.

Guideline 19: “Provide organizational structures for mod-
els.” Especially for complex systems the separation of mod-
els in separate artifacts (files) is inevitable but often not
enough as the number of files would lead to an overflowed
model directory. Therefore, it is desirable to allow users
to arrange their models in hierarchies, e.g., using a pack-
age mechanism similar to Java and store them in various
directories.

As a consequence, the language should provide concepts
to define references between different files. Most commonly
“import” is used to refer to another name space. Imports
make elements defined in other DSL artifacts visible, while
direct references to elements in other files usually are ex-
pressed by qualified names like“package.File.name”. Some-
times one form of import isn’t enough and various relations
apply which have to be reflected in the concrete syntax of
the language.

Guideline 20: “Balance compactness and comprehensibil-
ity.” As stated above, usually a document is written only
once but read many times. Therefore, the comprehensibility
of a notation is very important, without too much verbosity.
On the other hand, the compactness of a language is still
a worthwhile and important target in order to achieve ef-
fectiveness and productivity while writing in the language.

Hence a short notation is more preferable for frequently used
elements rather than for rarely used elements.

Guideline 21: “Use the same style everywhere.” DSLs are
typically developed for a clearly defined task or viewpoint.
Therefore, it is often necessary to use several languages to
specify all aspects of a system. In order to increase under-
standability the same look-and-feel should be used for all
sublanguages and especially for the elements within a lan-
guage. In this way the user can obtain some kind of intuition
for a new language due to his knowledge of other ones. For
instance, it is hardly intuitive if curly braces are used for
combining elements in one language and parentheses in an-
other. Additionally, a general style can also assist the user in
identifying language elements, e.g., if every keyword consists
of one word and is written in lower case letters.

A conflicting example is the embedment of OCL. One the
one hand it is possible to adapt the OCL syntax to the
enclosing language to provide the same syntactic style in
both languages. On the other hand different OCL styles
impede the comprehensibility of OCL, what endorses the
use of a standard OCL syntax.

Guideline 22: “Identify usage conventions.” Preferably
not every single aspect should be defined within the language
definition itself to keep it simple and comprehensible (see
guideline 11). Furthermore, besides syntactic correctness it
is too rigid to enforce a certain layout directly by the tools.
Instead, usage conventions can be used which describe more
detailed regulations that can, but need not be enforced.

In general, usage conventions can be used to raise the level
of comprehensibility and maintainability of a language. The
decision, whether something goes as a usage convention or
within a language definition is not always clear. So, usage
conventions must be defined in parallel to the concrete syn-
tax of the language itself. Typical usage conventions include
notation of identifiers (uppercase/lowercase), order of ele-
ments (e.g. attributes before methods), or extent and form
of comments. A good example for code conventions for a
programming language can be found in [9].

2.5 Abstract Syntax

Guideline 23: “Align abstract and concrete syntax.” Given
the concrete syntax, the abstract syntax and especially its
structure should follow closely to the concrete syntax to ease
automated processing, internal transformations and also pre-
sentation (pretty printing) of the model.

In order to align abstract and concrete syntax three main
principles apply: First, elements that differ in the concrete
syntax need to have different abstract notations. Second,
elements that have a similar meaning can be internally rep-
resented by reusing concepts of the abstract syntax (usually
through subclassing). This is more a semantics-based deci-
sion than a structurally based decision. Third, the abstract
notation should not depend on the context an element is
used in but only on the element itself. A pretty bad exam-
ple for context-dependent notations is the use of “=” as as-
signment in OCL-statements (let-construct) and as equality
in OCL-expressions. Here, the semantics obviously differs
whilst the syntax is equal.

Furthermore, the use of a transformation engine usually
also requires an understanding of the internal structure of a
language, which is related to the abstract syntax. Therefore,

11 11

the user to some extent is exposed to the internal structure
of the language and hence needs an alignment between his
concrete representations and the abstract syntax, where the
transformations operate on.

Alignment of both versions of syntax and the seamlessness
principle discussed in [14] assures that it is possible to map
abstractions from a problem space to concrete realizations
in the solution space. For a domain specific language the
domain is then reflected as directly as possible without much
bias, e.g., of implementation or executability considerations.

Guideline 24: “Prefer layout which does not affect trans-
lation from concrete to abstract syntax.” A good layout of
a model can be used to simplify the understanding for a hu-
man reader and is often used to structure the model. Nev-
ertheless, a layout should be preferred which does not have
any impact on the meaning of the model, and thus, does not
affect the translation of the concrete to the abstract syntax
and the semantics. As an example, this is the case for com-
puter languages where the program structure is achieved by
indentation. From a practical point of view, line separators,
tabs, and spaces are often treated differently depending on
editors and platforms and are usually difficult to distinguish
by a human reader. If these elements gain a meaning, de-
velopers have to be much more cautious and a collaborative
development requires more effort. For graphical languages
a well-known bad example is the twelve o’clock semantics in
Stateflow [7] where the order of the placement of transitions
can change the behavior of the Statechart. To simplify the
usage of DSLs, we recommend that the layout of programs
doesn’t affect their semantics.

Guideline 25: “Enable modularity.” Nowadays, systems
are very complex and thus, hard to understand in their en-
tirety. One main technique to tackle complexity is modu-
larization [15] which leads to a managerial, flexible, compre-
hensible, and understandable infrastructure. Furthermore,
modularization is a prerequisite for incremental code gener-
ation which in turn can lead to a significant improvement
of productivity. Therefore, the language should provide a
means to decompose systems into small pieces that can be
separately defined by the language users, e.g., by providing
language elements which can be used in order to reference
artifacts in other files.

Guideline 26: “Introduce interfaces.” Interfaces in pro-
gramming languages provide means for a modular develop-
ment of parts of the system. This is especially important
for complex systems as developers may define interfaces be-
tween their parts to be able to exchange one implementa-
tion of an interface with another which significantly increases
flexibility. Furthermore, the introduction of interfaces is a
common technique for information hiding: developers are
able to change parts of their models and can be sure that
these changes do not affect other parts of the system when
the interface does not change. Therefore, we recommend
that a DSL should provide an interface concept similar to
the interfaces of known programming languages.

One example of interfaces are visibility modifiers in Java.
They provide a means to restrict the access to members in
a simple way. Another common example are ports, e.g., in
composite structure diagrams, which explicitly define inter-
action points and specify services they provide or need, thus
declaring a more detailed interface of a part of a system.

3. DISCUSSION
In the previous sections we introduced and categorized a

bundle of guidelines dedicated to different language artifacts
and development phases. Some of them already contained
notes on relationships with other guidelines and trade-offs
between them, and some of them briefly discussed their im-
portance in different project settings. However, the follow-
ing more detailed discussion shall help to identify possible
conflicting guidelines and their reasons and gives hints on
decision criteria.

The most contradicting point is reuse of existing artifacts
versus the implementation of a language from scratch (cf.
No. 5, 6, and 7). The main reason for the reuse of a lan-
guage or a type system is that it can significantly decrease
development time. Furthermore, existing languages often
provide at least an initial level of quality. Thus, some of the
guidelines, e.g., guidelines which target at consistency (e.g.,
No. 21) or claim modularity (e.g., No. 25), are met auto-
matically. However, reusing existing languages can hinder
flexibility and agility as an adaption may be hard to realize
if not impossible. The same ideas apply to an improvement
of the reused language itself (e.g., to meet guidelines which
were not respected by the original language): the implemen-
tation of a single guideline may require a significant change
of the language. Another important point is that this ap-
proach may influence the satisfiability of other guidelines.
One example is No. 14 which suggests the reuse of exist-
ing notations of the domain. In case there are no languages
which are similar to these notations, this guideline and lan-
guage reuse are obviously contradicting. Furthermore, com-
bining several existing languages may introduce conceptual
inconsistencies, such as different styles or different underly-
ing type systems which have to be translated into each other
(cf., No. 5).

Implementing a new language from scratch in turn permits
a high degree of freedom, agility, and flexibility. In this
case, some guidelines can be realized more easily than in the
case of reuse. However, these advantages are not for free:
designing concrete and abstract syntax, context conditions,
and a type system are time- and cost-intensive task. To
summarize, a decision whether to reuse existing languages
or to implement a new one is one of the most important and
critical decisions to be made.

Another important point which was already mentioned
in the introduction is that some of the presented guidelines
have to be weighted according to the project settings, to the
form of use, etc. One example is the expected size of the
languages instances. Some DSLs serve as configuration lan-
guages and thus, typical instances consist of a small amount
of lines only. Other DSLs are used to describe complex sys-
tems leading to huge instances. In the former case guidelines
which target at compositionality or claim references between
files (e.g., No. 19 and 25) have nearly no validity whereas in
the latter example these guidelines are of high importance.
However, not only the expected size of the instances can in-
fluence the weight of guidelines. Another important aspect
is the intended usage of the language. Sometimes DSLs are
not executable; they are designed for documentation only.
In these cases, the guideline which demands to avoid inef-
ficient elements in the language (No. 13) is of course not
meaningful. However, for languages which are translated
into running code, this is of high importance.

A last point we want to discuss here are the costs induced

12 12

by applying the guidelines. Some of them can be imple-
mented easily and straightforward (e.g., distinguishability
of elements or permitting comments, No. 16 and 18) whilst
others require a significant amount of work (e.g., introduc-
tion of references between files including appropriate reso-
lution mechanisms and symbol tables, No. 19). Of course,
especially guidelines whose implementation is cost intensive
have to be matched against project settings as described
above. For small DSLs such guidelines should be ignored in-
stead as the cost will often not amortize the improvements.
However, from our experiences DSLs are often subject to
changes. While growing these guidelines become more and
more important. The main problem which emerges in these
cases is that adding new things to a grown language (e.g.,
modularity) is typically more difficult and time-consuming
than it would have been at the beginning. Therefore, ana-
lyzing the domain and usage scenarios as described in Guide-
lines 1 and 2 can prevent those unnecessary costs.

4. CONCLUSION
In this paper 26 guidelines have been discussed that should

be considered while developing domain specific languages.
To our experience this set of guidelines is a good basis for
developing a language. For space reasons, we restricted our-
selves to guidelines for designing the language itself. Other
guidelines are needed for successfully integrating DSLs in
a software development process, deploying it to new users,
and evolving the syntax and existing models in a coherent
way.

In general, a guideline should not be followed closely, but
many of them are proposals as to what a language designer
should consider during development. Some of the guidelines
have to be discussed in certain domains, because they might
not have the same relevance and as discussed many guide-
lines contradict each other and the language developer has
to balance them appropriately.

But generally, the consideration of explicitly formulated
guidelines is improving language design. We also think that
it is worthwhile to develop much more detailed sets of con-
crete instructions for particular DSLs. We currently focus
on textual languages in the spirit of Java.

Although we have compiled this list from literature and
our own experience, we are sure that this list is not com-
plete and has to be extended constantly. In addition, guide-
lines might change during time as developers gather more
experience, tools become more elaborate, and taste changes.
Maybe some guidelines are not relevant anymore in a few
years, as some guidelines from the 1970’s are less important
today.

Acknowledgment: The work presented in this paper is
partly undertaken in the MODELPLEX project. MOD-
ELPLEX is a project co-funded by the European Commis-
sion under the“Information Society Technologies”Sixth Frame-
work Programme (2002-2006). Information included in this
document reflects only the authors’ views. The European
Community is not liable for any use that may be made of
the information contained herein.

5. REFERENCES
[1] Antlr Website www.antlr.org.

[2] GME Website
http://www.isis.vanderbilt.edu/projects/gme/.

[3] T. Goldschmidt, S. Becker, and A. Uhl. Classification
of concrete textual syntax mapping approaches. In
ECMDA-FA, pages 169–184, 2008.

[4] J. Gough. Compiling for the .NET Common Language
Runtime (CLR). Prentice Hall, November 2001.

[5] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, and
B. Rumpe. View-based modeling of function nets. In
Proceedings of the Object-oriented Modelling of
Embedded Real-Time Systems (OMER4) Workshop,
Paderborn,, October 2007.

[6] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. Textbased Modeling. In 4th International
Workshop on Software Language Engineering, 2007.

[7] G. Hamon and J. Rushby. An operational semantics
for stateflow. In Fundamental Approaches to Software
Engineering: 7th International Conference (FASE),
volume 2984 of Lecture Notes in Computer Science,
pages 229–243, Barcelona, Spain, March 2004.
Springer-Verlag.

[8] C. A. R. Hoare. Hints on programming language
design. Technical report, Stanford University,
Stanford, CA, USA, 1973.

[9] Java Code Conventions
http://java.sun.com/docs/codeconv/.

[10] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley,
2008.

[11] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[12] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. Technical
Report SEN-E0309, Centrum voor Wiskunde en
Informatica, Amsterdam, 2005.

[13] MontiCore Website http://www.monticore.de.

[14] R. Paige, J. Ostroff, and P. Brooke. Principles for
Modeling Language Design. Technical Report
CS-1999-08, York University, December 1999.

[15] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[16] P. Pfahler and U. Kastens. Language Design and
Implementation by Selection. In Proc. 1st
ACM-SIGPLAN Workshop on
Domain-Specific-Languages, DSL ’97, pages 97–108,
Paris, France, January 1997. Technical Report,
University of Illinois at Urbana-Champaign.

[17] B. Rumpe. Modellierung mit UML. Springer, Berlin,
May 2004.

[18] D. Spinellis. Notable Design Patterns for Domain
Specific Languages. Journal of Systems and Software,
56(1):91–99, Feb. 2001.

[19] The Atlantic Zoo Website
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/.

[20] D. Wile. Lessons learned from real DSL experiments.
Science of Computer Programming, 51(3):265–290,
June 2004.

[21] D. S. Wile. Supporting the DSL Spectrum. Computing
and Information Technology, 4:263–287, 2001.

[22] N. Wirth. On the Design of Programming Languages.
In IFIP Congress, pages 386–393, 1974.

13 13

Evaluating the Use of
Domain-Specific Modeling in Practice

Juha Kärnä
Polar Electro

Professorintie 5
FI-90440 Kempele, Finland

+358 8 5202 100

Juha.Karna@polar.fi

Juha-Pekka Tolvanen
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland

+358 14 641 000

jpt@metacase.com

Steven Kelly
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland

+358 14 641 000

stevek@metacase.com

ABSTRACT
Domain-Specific Modeling (DSM) raises the level of abstraction
beyond coding, making development faster and easier. When
companies develop their own in-house DSM solution — domain-
specific modeling languages and code generators — they often
need to provide evidence that it gives better results than their
current practice. We describe an approach applied at Polar to
evaluate a DSM solution for developing embedded devices. The
evaluation approach takes into account the objectives set for the
creation of the DSM solution and collects data via controlled
laboratory studies. The evaluation proved the benefits of the DSM
solution: an increase of at least 750% in developer productivity,
and greatly improved quality of the code and development
process.

Categories and Subject Descriptors
D.2.2 [Software Engineering] Design Tools and Techniques -
user interfaces, state diagrams D.2.6 [Software Engineering]
Programming Environments - programmer workbench, graphical
environments D.3.2 [Programming Languages] Language
Classifications - Specialized application languages, very high-
level languages

General Terms
Design, Economics, Experimentation, Languages.

Keywords
Domain-specific modeling, code generation, empirical evaluation,
language design

1. INTRODUCTION
Domain-Specific Modeling (DSM) improves on current software
development approaches in two ways. First, it raises the level of
abstraction beyond programming by specifying the solution in
languages that directly uses concepts and rules from a specific
problem domain. Second, it can generate fully functional
production code from these high-level specifications. The most
effective DSM solutions are usually applied within a single
company. The domain can then be narrowed and the automation
becomes easier to achieve when addressing the requirements of
only one company.

When a company moves from coding to DSM the fundamental
questions are: will the DSM solution provide the desired benefits,
and can those benefits be measured? Development teams in

companies, however, do not usually have the time and resources
to conduct extensive analysis, such as building the same system
twice with different development approaches, using parallel teams
[2], evaluating dozens of developers [1], analyzing large numbers
of development tasks [2], or focusing on development activities in
detail with video recording, speaking while working, or observing
individual developers’ actions [6]. Many good scientific research
methods are simply too expensive and time-consuming for
practical use in a commercial setting. Some of the characteristics
of good empirical research, like a large number of participants to
support generalization of the results, are not always even possible
since there may only be a handful of developers using the
particular language within the company.

The evaluation of the DSM solution may not even be necessary at
all if a small inspection already shows a major difference: “why
conduct a comparison when we can see that a task that earlier took
days can be done with DSM during an afternoon?” The
comparison is not always so straightforward. The development
team may need to present more compelling data to management to
get resources for finalizing the DSM solution or investing in
training and tools. The nature of the work may be such that there
is no clear view on the current development process, e.g. it is
scattered among teams. The last situation is typical if the DSM
solution reduces duplication and unnecessary work by changing
the roles and division of work among teams or even organizations.

This paper presents the evaluation of a DSM solution at Polar.
The evaluation approach combines developers’ opinions with
quantative measurements of the development process. We first
introduce the domain for which our case’s DSM solution was
created: UI applications in sports heart rate monitors [4]. We
briefly describe the DSM solution and show a sample model to
illustrate the modeling language. Then we move to the actual
evaluation and describe the evaluation criteria and how the
evaluation was conducted. We report the findings: at least a 750%
increase in productivity, with developers also estimating the
quality of the code and the quality of the design process to be
significantly better with DSM. We conclude by proposing some
improvements for evaluating DSM in companies: gathering
metrics stepwise starting from initial prototypes, and considering
development processes outside the typical implementation phase.

2. DOMAIN
The study was conducted at Polar, the leading brand in the sports
instruments and heart rate monitoring category, delivering state-
of-the-art training technology and solutions. This study focused
on heart rate monitors. Figure 1 illustrates three typical products

1414

in this product category. The features in these products depend on
the product segment and the type of sports the product is designed
for, such as running, cycling, fitness and cross-training, team
sports or snow sports. Some possible features in these products
include:

• Heart rate measurement, analysis and visualization
• Calorie calculation, e.g. current, cumulative, expenditure

rate, active time
• Speed: current, average, maximum
• Distance, based on interval, trip, recovery
• Altimeter, vertical speed, altitude alarms, slope counter,

graphical trend
• Cycling information, e.g. pedaling rate and cycling power
• Barometer, pressure drop alarm, graphical trend
• Compass

• Temperature
• Odometer
• Logbooks
• Exercise diaries
• Sensor connectivity (heart rate, speed, cadence, power, GPS)
• Data transfer for web and other applications
• Date and weekday indicator
• Localization with different display texts
• Visual and audible alarm in target zones

Depending on the features there are also various settings, starting
from age and weight to bicycle wheel size adjustment and various
exercise settings and plans. These products also show time with
various time related applications, such as dual time zone,
stopwatch, alarm, countdown timer and lap time.

Figure 1. Sample products

Software development for these devices is constrained by the
limited resources they contain, such as the amount of memory,
processor speed and battery life. The actual area of interest — the
domain — reported in this study is the UI applications: how the
various capabilities and features are available to the user. The
sample products in Figure 1 give some indication of what UI
applications can look like as they show the display and its content
in different applications. UI applications, however, do not focus
on (G)UI elements alone. They also cover control, navigation, and
connectivity to other devices, such as to sensors and other
applications to transfer the data. The design and implementation
of the UI applications is heavily constrained by device capabilities
such as display size, type, and user interaction controls. It is worth
mentioning that as these devices are used in special conditions —
users may have little time and concentration capability while
exercising — the usability of UI applications is crucial.

3. THE DSM SOLUTION
When implementing the DSM solution Polar decided to focus on
UI applications for two main reasons. First, the UI applications
form the single largest piece of software, typically requiring 40–

50% of the development time. Improvements to UI application
development would therefore have the greatest impact on overall
development times. Second, the analysis of the domain showed
that 70% of UI applications would be easy to automate with
DSM, while a further 25% could probably also be handled with
DSM. This left only 5% of the UIs that would be difficult to cover
with DSM, indicating that the domain was understood well
enough to specify the languages and code generators.

Polar set a number of requirements for the DSM solution. These
included:

1. Fundamentally improve the productivity of UI
application development

2. Significantly reduce the manual work needed to copy
data from specifications into code

3. Be independent of the target environment
4. Be independent of the programming language, but

support currently used languages such as C and
Assembler

5. Make the introduction of new developers easier
6. Be usable for both experienced and novice developers

1515

7. Improve the quality and maintainability of the code
8. Be easy to modify to meet new and changing

requirements, e.g. when resources in the device change

At Polar, one UI application developer defined the modeling
language, along with the generators that transformed models made
with that language into the artifacts the company needed (e.g.
code, configuration files, links to simulators, document
generation). The modeling language was supported by a tool [5]
that provided the functionality needed to work effectively with
models, such as reusing models, refactoring and replacing model
elements, organizing and handling large models, multi-user access
— as well as usual modeling operations like copy and paste.

UI application developers can thus use this modeling language
and tool to create high-level models, such as Figure 2. This model
shows a small sample feature for selecting a favorite drink: a

selection state along with two views ('Water', 'Milk') as well as
various navigation paths within the application. The diagram uses
a small portion of the modeling language: the full set of modeling
concepts are shown in the toolbar. These concepts originate from
the problem domain and thus the modeling language raises the
abstraction from coding, while also providing support for reuse
when developing multiple products. The diagram is also
executable, in that full code can be automatically generated from
it.

While the application in Figure 2 illustrates the use of the
language, it is about the smallest possible model. In real cases
there may be dozens of elements in a diagram, dozens of diagrams
in an application, and dozens of applications in a full product. An
element in one diagram can be linked, referred to and reused in
other diagrams, or can be linked to a subdiagram specifying it in
more detail. Applications too can be reused between products.

Figure 2. Sample model of a UI application.

While the whole lifecycle of product development was
acknowledged and known, the DSM solution focused on technical
design and implementation. In other words, the primary users of
the language and generators described in the paper are the current
UI application developers. This means that the expected outcome
of the generators was the full code of the UI applications, which
earlier had to be written by hand. Other artifacts than code can
also be generated from the same models, e.g. documentation,
build scripts and material for review meetings, saving the UI
developers further time.

In addition to serving UI application implementation, generators
could also be created to support other roles and processes in the
life cycle: Generators can provide input for testing, parts of the
user manuals, or rapid prototyping as part of user interface and
interaction design, typically carried out before the implementation
phase. Limited space does not allow us to go into these details and
the evaluation reported in this paper addresses only the technical
design and implementation tasks.

4. EVALUATING THE DSM SOLUTION
With their evaluation Polar wanted to find out how well, if at all,
the requirements set for the created DSM solution were met. The

1616

evaluation was made by using the DSM solution in product
development, covering the application design and implementation
phases. Development tasks were carried out using the modeling
language to create models and the generator to produce the
application code. The starting point for DSM use during the
evaluation was a UI specification, as used in the current
development process. The evaluation therefore did not test the
possible scenario of using the DSM solution further upstream at
the UI specification phase. Similarly links to other development
phases, like testing, localization, documentation and providing
user manuals, were excluded from the evaluation: although DSM
could help there too, the current DSM solution offers at least the
same output to those phases as earlier manual coding.

Before the evaluation, the creator of the DSM solution had
already used it to build example models during its creation.
During a pilot project he had also implemented the majority of a
whole product’s UI applications, including some large ones.

The evaluation focused on three factors: developer productivity,
product quality and the general usability of the tooling. These
factors also formed the major requirements for the DSM solution
as outlined in Section 3. The measures for these factors were
selected so that they could be easily understood and estimated by
the developers. To calculate the return on investment — when the
effort to define the language and generators is amortized — the
application development time was recorded in addition to asking
developers opinions on the possible influence to productivity. The
evaluation did not evaluate if the requirements of independency of
target environment (#3) and of generated programming language
(#4) were met as the generators were made only for one target and
programming language applied in the company. As the support of
customizable code generators for different targets and
programming languages is well attested, these requirements were
not further analyzed.

The evaluation was set up to find credible and repeatable results
with reasonable costs. Rather than developing a whole product,
Polar set up a laboratory experiment to develop one typical UI
application: the setup for sporting exercises. Experience from the
pilot project allowed the size and complexity of this application to
be chosen such that it was expected to be completed with the
DSM solution within a few hours. Results of the single UI
application development were then compared to the development
approach currently in use, and to the experiences of modeling on a
larger scale in the pilot project.

In the laboratory experiment the same UI application was
developed separately by 6 developers. The developers were
selected so that they all had experience of making UI applications.
They could then compare the DSM approach with the current
development approach. Four of the developers had over three
years’ experience in UI application development; the other two
had less than one year’s experience. Only one of the developers
had previous experience with the modeling tool used.

4.1 Evaluation process
The evaluation process had four phases: training, conducting the
laboratory experiment, evaluating the correctness of the results
and reporting experiences. Training covered introduction to the
modeling language and to the modeling tool. Since the language
concepts were taken directly from the problem domain, and hence

already familiar to the developers, training took 1 hour. In this
time the basic modeling features of the tool were also taught.

The input for the development task in the laboratory experiment
was the specification of the desired exercise setup UI application.
The developers were each timed separately as they modeled the
application. They were asked to finish the task as completely as
possible, and the completeness and correctness of the result were
checked together with the developer. If there were errors or data
was missing the specification or the modeling language was
explained so that the developer could finish the implementation.

Finally, the developers’ experiences and opinions were collected
with a questionnaire and with interviews. The results are
described in the following sections.

4.2 Development time and productivity
The influence on productivity (requirement #1) was inspected in
two ways: by measuring the development time and by collecting
developers’ opinions after having used both approaches: the
current development method and the DSM approach used for the
first time.

Development time for the UI application varied among the
developers from 75 minutes to 125 minutes, with a mean of 105
minutes. Implementing the same UI application with the current
development approach would take about 960 minutes (16 hours).
The productivity improvement for the mean time is thus over
900%. Even for the slowest completion time, the productivity
increase is over 750%.

The pilot project had produced UI applications whose
implementation time with the current development approach was
estimated to have taken 3 weeks (120 hours). The size of the UI
application models in the experiment was measured to be 16% of
the total size of the pilot project, based on the number of states
and views in the models. This gives us a second way to estimate
the time to code this UI application, 16% of 120 hours = 1152
minutes. Taking the mean of the two estimates, 1056 minutes,
gives a mean productivity increase over the 6 developers of over
1000%.

The influence on productivity was also measured by asking the
developers’ opinions — after all, they now had experience of
using both approaches. As shown in Figure 3, there were almost
no differences among developers’ opinions: all found the DSM
approach to be significantly faster than current practice.
Developers’ opinions were asked on a scale from 1 to 5, with 5
being the best. Although the laboratory experiment did not cover
maintenance (new features and error corrections), developers were
also asked if the DSM solution would support maintenance better
than the current approach: 5 developers thought DSM would be
better and one could not say.

1717

Figure 3. Perceived productivity
(scale 1–5, 5=best productivity).

4.3 Quality of process and resulting code
When studying the influence on quality, both process and result
were evaluated (requirement #7). The influence on the process
was evaluated by asking developers’ opinions on how well the
development approaches — current and DSM — prevented
errors. As with the results of the productivity measurement there
was a clear difference in DSM’s favor, although the answers
varied more (Figure 4). The piloting of the DSM solution also
showed that the DSM solution’s support for error prevention
could be further improved. For example, the DSM solution did
not check that values entered as text met a specific syntax (using
regular expressions in MetaEdit+ [5]), and some fields used string
entries when selection lists would better ensure correctness. Also,
model checking did not inspect all relevant parts of model
completeness and errors. These areas for improvement will be
taken into account in future versions of the DSM solution, and the
error prevention grades are expected to improve as a result.

Figure 4. Error prevention

The quality of the outcome was measured by inspecting the
generated code and comparing it with the manually written code.
Code quality is particularly relevant for embedded products like
heart rate monitors. The results show that the generated code was

considered to be of better quality: a smaller, but still clear,
difference between the approaches (Figure 5).

Figure 5. Code quality.

4.4 Usability and learning
To assess the usability (requirement #6) developers were asked
how usable they found the resulting modeling tools and how easy
it was to learn and use the modeling language. The answers were
then compared to the evaluation of the current approach. Figure 6
shows the results on usability. Here the opinions of developers
differed the most, but the created DSM tooling (average 4.5) was
still considered clearly better than current tools (average 2.5).

Figure 6. Tool usability.

Since none of the developers was a beginner the study did not
directly measure how well new developers could learn the DSM
approach (requirement #5). Introducing new developers just for
the sake of DSM evaluation was not considered practical. Instead,
developers estimated the ease of learning. The results indicated
that learning the UI application design and implementation with
DSM would be much easier than with the current approach. As
Figure 7 indicates this opinion was quite clear.

1818

Figure 7. Ease of learning.

5. RETURN ON INVESTMENT
The benefits of DSM do not come for free: first the modeling
language and generators, the DSM solution, must be developed.
Depending on the tooling used, time may also need to be allocated
to tool creation and maintenance.

At Polar, creation of the DSM solution took 7.5 working days,
covering the development of the modeling language and the code
generator. Both of these were implemented using MetaEdit+
Workbench [5]. MetaEdit+ automatically provides modeling tools
based on the modeling language, so no extra time needed to be
spent on tool building. It is worth noting that the 7.5 days also
included the creation of example models specifying UI
applications, along with related code. This was natural since the
best way to test a DSM solution under development is to apply it
immediately on real examples.

When we compare the time to implement the DSM solution to the
productivity improvements when creating UI applications, it is
evident that the investment would pay back very quickly, as
illustrated in Figure 8. The pilot project was estimated to be about
64% of a whole product, so a whole product would take over 23
days to build with the current development method. With DSM,
after the 7.5 days’ metamodeling, the first whole product would
take 2.3 days to build, making DSM over twice as fast as coding
even for the first product. Each subsequent product would take
another 2.3 days, so in the time it took to build one whole product
by coding, Polar could build several whole products with DSM.

The time required to build the UI applications for a complete
product may seem to become almost trivial. However in reality,
the problem domain is not completely static. Therefore after the
pilot project it is essential to evolve the DSM solution further to
maintain the measured benefits. From our experiences in other
languages [3], after the first few products the effort to maintain
the DSM solution becomes a small fraction of the time to develop
each product.

Figure 8. Return on investment: comparison.

6. CONCLUDING REMARKS
We described an approach and results to evaluate a particular
DSM solution. The evaluation showed that the DSM solution for
developing UI applications for heart rate monitors is applicable
for its domain. The applicability was inspected with a pilot
project, laboratory experiment and questionnaire. In the pilot
project the majority of a whole product was developed with the
DSM solution. In the laboratory experiment, the DSM solution
was found to be at least 7.5 times and on average 10 times as
productive as the current development approach. In the
questionnaire, the DSM solution was considered to offer better
productivity, quality and usability, and be easier to learn. Figure 9
summarizes the questionnaire findings by comparing the current
approach and DSM based on the average grading calculated from
developers’ opinions.

Figure 9. Comparing approaches based on average grades.

While the actual evaluation focused on the laboratory experiment
and questionnaire, the DSM solution was also evaluated during its
construction and in the pilot project, which developed a large
portion of a whole product. The collection of data could already
have been started with those initial prototypes, so that
development time statistics could be measured from a wider
variety of modeling tasks. A further point of evaluation would be
to extend the scope of the DSM solution to cover a larger part of
the development processes, from requirements and UI
specification steps to build automation and testing. This would
allow the same domain concepts to be applied pervasively within

1919

the company through the modeling languages. Parts of these steps
could also be automated with generators, saving time and
avoiding manual errors when copying data from one step to
another (requirement #2). The DSM solution evaluated here is
thus not final and complete, but can be extended incrementally in
the future. One obvious way is to extend the language to include
future new UI concepts. This need for extensibility was actually
one requirement (#8) that was not evaluated here, because of the
focus on a single product and its set of UI concepts. One way to
evaluate the extensibility would be to apply the DSM solution to
model older generation products and study if their development
could be supported.

Since companies have limited resources to evaluate new
approaches in practice, the evaluation approach described strikes
a balance between the effort expended on the evaluation and the
credibility of the results achieved. It was considered particularly
important to have several developers involved in the evaluation,
as this improved the visibility of the DSM solution within the
company and the credibility of its evaluation. It also helped to
train the developers and offered the possibility to obtain feedback
for further improvements. While the results are not statistically
significant or generalizable, they are highly relevant and credible
for the company performing the evaluation. The evaluation
approach itself can be used to evaluate other kinds of DSM

solutions and in other companies. In that case, the main
foreseeable changes would be adaptations to the questionnaire to
ensure it covers the issues most relevant to that company’s
development.

7. REFERENCES
[1] Cao, L., Ramesh, B., Rossi, M., Are Domain Specific

Models Easier to Maintain Than UML Models?, IEEE
Software, July/August, 2009

[2] Kieburtz, R. et al., A Software Engineering Experiment in
Software Component Generation, Proceedings of 18th
International Conference on Software Engineering, Berlin,
IEEE Computer Society Press, 1996

[3] Kelly, S., Tolvanen, J-P., Domain-Specific Modeling:
Enabling Full Code Generation, Wiley-IEEE Society Press,
2008

[4] Kärnä, J., Using DSM for embedded UI development (in
Finnish), Master’s thesis, University of Oulu, 2009

[5] MetaCase, MetaEdit+ Workbench 4.5 SR1 User’s Guide,
http://www.metacase.com/support/45/manuals/, 2008

[6] Wijers, G., Modeling Support in Information Systems
Development, Thesis Publishers Amsterdam, 1991

2020

Multi-Language Development of Embedded Systems
Thomas Kuhn
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2177
thomas.kuhn@

iese.fraunhofer.de

Soeren Kemmann
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2218

soeren.kemmann@
iese.fraunhofer.de

Mario Trapp
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2272

mario.trapp@
iese.fraunhofer.de

Christian Schäfer
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2121

christian.schaefer@
iese.fraunhofer.de

ABSTRACT
Graphical, well focused and intuitive domain specific languages
(DSLs) are more and more used to design parts of embedded sys-
tems. These languages are highly specialized and often tailored to
one domain; one single language therefore cannot describe all
relevant aspects of systems and system components. This raises
the need for heterogeneous modeling approaches that are capable
of combining multiple DSLs into holistic system models. Our
CompoSE modeling approach focuses on this problem; it does not
only cover system modeling with DSLs, but provides also inter-
facing of language specific generators and harmonization of gen-
erated code. In this paper, we describe the principles of Com-
poSE, together with the integration of an existing modeling lan-
guage with industrial strength tool support into CompoSE. Sup-
porting the integration of existing languages is of particular im-
portance in the domain of embedded systems, because modern
modeling approaches will only be accepted in industry if they
support existing and proven technologies.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General – System speci-
fication methodology

General Terms
Design, Languages

Keywords
System modeling, Domain specific languages, Multi formalism
development

1. INTRODUCTION
Development of embedded systems in research and industry is
more and more shifting from code based development to model
driven development (MDD) approaches, which are founded on
high-level modeling languages. Modeling languages are not as
generic as general purpose programming languages, they provide
more specialized language constructs, e.g. for the creation of data
flow based systems (cf. Simulink) or for the creation of system
models (cf. SysML). These MDD approaches are supported by
industrial strength tool chains; prominent examples of MDD tools
that are applied in both research and industry are Simulink, AS-
CET, SCADE, Rhapsody, Artisan, and MagicDraw. MDD tools
implement modeling languages, provide infrastructure support,
e.g. tailored editors and code generators, and include runtime
libraries and frameworks that support execution of generated
code. Domain specific languages (DSLs) are more specialized

than generic MDD approaches; being tailored to a specific appli-
cation domain, they enable domain experts to express themselves
with native constructs of their respective domains. One example
for DSLs is a graphical language for creating wiring diagrams.
These modeling languages are either implemented as language
profiles, e.g. as UML profiles, or they are built on top of existing
language frameworks (cf. Eclipse GMF or MetaEdit+). In both
cases, DSLs provide their own tool chains and model to code
transformations.

This is a major challenge for the development of embedded
systems: generic and domain specific modeling languages are
limited and support some aspects of embedded system develop-
ment only. Simulink for example supports definition of data flow
based behavior only, UML based languages support the definition
of software architecture and control flow, and SysML supports
the definition of system architectures. Graphical editors, code
generators, and language frameworks only support one or a lim-
ited set of modeling languages. Detailed modeling of all aspects
of complex embedded systems therefore requires the combination
of models defined in multiple modeling languages and tool chains
to provide one holistic system model. Code generation needs to be
done with multiple independent generators in this case. This
yields the situation that developers need to combine multiple gen-
erated artifacts and runtime libraries, and need to connect required
inputs and provided outputs of models, which may even imple-
ment different semantics. One common execution model is re-
quired that supports all relevant modeling languages. This non-
trivial task currently limits the applicability of DSL approaches in
development of complex software systems, since the effort re-
quired for integrating modeling languages may outweigh the addi-
tional benefits of modeling languages.

CompoSE is our multi formalism modeling approach that
supports the integration of modeling languages on language, in-
frastructure and runtime levels. Being independent of concrete
modeling languages, it defines a common host component model,
which supports multi-formalism development of embedded sys-
tems. Guest modeling languages are integrated as language com-
ponents; these languages are applied for modeling functional and
non-functional details of system components. Support is provided
for the integration of general purpose, and domain specific model-
ing languages. Language components address all of the three
aforementioned layers: they provide integration of modeling lan-
guages at language, infrastructure, and runtime levels.

The remainder of this paper explains CompoSE principles
and is structured as following: Section 2 describes the basic prin-
ciples of our multi-formalism development approach. Section 3
describes the CompoSE host language in greater detail. Section 4

2121

provides an application example that illustrates briefly the inte-
gration of Simulink into CompoSE. Section 5 surveys and dis-
cusses related approaches. Section 6 draws conclusions and lays
out future work.

2. MULTI-FORMALISM DEVELOPMENT
CompoSE supports multi-formalism development through the
integration of independent modeling languages and tools into one
multi formalism framework (MFF). Despite the independency of
the different languages and tools, the MFF ensures their seamless
combination for the creation of integrated system models. This is
achieved through the application of component based develop-
ment basic principles to the domain of language engineering.

CompoSE is based on the principle of one host language and
several guest languages. The host language defines system com-
ponents and a basic set of views for modeling system architec-
tures; it also defines language constructs for the integration of
language components. Language components integrate guest lan-
guages into CompoSE. As shown in Figure 1, language compo-
nents address the three main elements of modeling languages to
ensure their seamless integration: view types provide integration
on language level, infrastructure interfaces integrate tool chains,
and runtime interfaces ensure interfacing of generated code with a
common runtime model.

Language components provide one or multiple view types that
integrate modeling languages. Compose additionally provides
several predefined view types that support definition of interfaces
(InterfaceView), aggregations (AggregationView), and coupling
(CouplingView). Native models of integrated existing modeling
languages are stored in guest models, which are containers that
conform to some unknown, guest specific format, and are there-
fore not directly accessible. Meta models support the (bidirec-
tional) projection of guest model parts into the host model through
transformations – this way, information stored in guest models is
made accessible, and is shared and synchronized between guest
models and language components. Additionally, views represent
their modeling languages to developers and therefore support the
manipulation of their underlying models – for this reason, infra-
structure parts (IFParts) are used to expose language infrastruc-
ture, e.g. graphical editors.

Infrastructure parts (IFParts) enable the integration of exist-
ing language tool chains. These parts implement proxies that pro-
vide common interfaces to the CompoSE MFF and hide native
interfaces of language specific tools. Runtime parts of language
components define the runtime interfaces of generated code; when
existing tool chains are integrated into CompoSE, they model the
interface between generated code and existing, language specific
runtime frameworks. A CompoSE runtime framework then pro-
vides glue code that interfaces generated code for each language

component with each other and that conforms to a common run-
time specification. Note that CompoSE does not include a specific
runtime environment, but it defines common requirements that
conforming runtime environments need to fulfill. These require-
ments define syntactic and semantic constraints that runtime
framework implementations need to conform to. Adapter code
that is generated by generator proxies serves as interface between
the generated code from language specific tools (whose interface
is defined through language components) and the runtime frame-
work. Figure 2 provides an example – two host components are
defined: the component Control that realizes a data low based
controlling algorithm, and a Filter component that preprocesses
data for the Control component. The Control component is real-
ized with Simulink, the Filter component is realized with a do-
main specific language. Therefore, two language components
provide necessary views, infrastructure, and runtime support.

The Simulink language component provides the Simulink re-
alization view, integrates the native Simulink tool chain, which
consists of a code generator (Simulink Generator) and of the
Simulink runtime framework. It also includes the Simulink Proxy
that generated adapter code (Simulink Adapter), which interfaces
generated code by Simulink with the common runtime frame-
work. The DSL language component provides a view that sup-
ports editing models based on its domain specific language to-
gether with a code generator. No proxies and adapters are re-
quired, since the code generator outputs conforming code directly.

3. THE COMPOSE HOST LANGUAGE
The CompoSE host language implements a component modeling
approach that is based on components, properties, ports and links.
Components represent parts of the developed system, which are
either black or white boxes. Ports belong to components and de-
fine points of interaction that links are connected to. Properties
store component information – three types of properties are de-
fined by CompoSE: Guest model properties store complete guest
models in their native format. Meta model properties are based on
a CompoSE conforming meta model definition, and represent
containers that store models conforming to those meta models.
Primitive properties store one type, e.g. an integer or a structured
type. Properties are subdivided into two property types: Specifica-
tion properties define whole or partial component specifications.
Component specifications define what a component does, and
how a component is to be used. Specification properties are asso-
ciated with specification views. Realization properties define how
a component is realized – they are associated to realization views.
Component realizations always need to conform to the specifica-
tion of their component.

Figure 2: Compose Multi Formalism Framework

Figure 1: Language component meta model

2222

3.1 CompoSE language components
Language components integrate new modeling or domain specific
languages into CompoSE that are used for defining component
details. On language level, language components consist of views,
transformations, and models.

Views present data, which is represented by models. For this
reason, two model types are distinguished: guest models and meta
models. Existing modeling languages that ship with their own tool
chains usually store data in their own container format, e.g. a
language specific binary representation. Models stored in such a
container are referred to as guest models. Other language compo-
nents cannot access this data, since file format and structure is not
known – guest model properties are therefore black boxes for
other language components. New, CompoSE conforming DSLs
store all of their data in containers that conform to defined meta
models instead, therefore, this data may be accessed by other
language components – this is a white box representation.

3.1.1 Guest model synchronization
If a language component uses a guest model representation for
storing models, these models are not accessible for other language
components, which may be cumbersome. For example, a Simu-
link view defines component realizations as data flow between
input and output flow ports of components. The InterfaceView
(see below), which is a predefined and therefore language inde-
pendent view of CompoSE, defines component ports as part of the
component interface as well. Both views therefore store the same
information in different properties: the Simulink view stores com-
ponent ports as part of its Simulink guest model, the interface
view stores component ports in a meta model property.

This situation is not satisfactory for developers using Com-
poSE – they need to manually ensure consistency between views.
Existing tools for UML for example provide this synchronization
between diagrams that operate on the same model automatically –
changes in the model through one diagram are immediately re-
flected in all other diagrams. CompoSE provides a similar func-
tionality through transformations in a manner that supports multi-
ple modeling languages. Transformation components implement
model to model transformations; they are part of language com-
ponent views and therefore implement a bridge between host and
guest models. Transformations may be applied to transform mod-
els conforming to one meta model into a model that conforms to
another meta model of the same component, to modify models,
and to transform models into guest models and back. Guest mod-
els may only be accessed by the language component that defines
them, and each guest model type may be defined by one language
component only. Through transformations, complete guest models
or parts of it are projected into models that conform to defined
meta models, and are therefore accessible by other language com-
ponents (see Figure 3).

In the example defined by Figure 3, two views are attached
to the system component type Control. This component type has
three properties – the first property Interface.interface defines the
component interface and contains data conforming to the interface
meta model defined by the common InterfaceView. It is manipu-
lated through the interface specification view. The Simu-
link.simulink property holds the guest model of the Simulink re-
alization, and is manipulated through the Simulink realization

view. Model transformations synchronize the Simulink guest
model and the interface meta model with the Simulink flow meta
model, which is a common white box representation. This model
is not manipulated directly through a view, and stored in the
Simulink.flow property.

As shown in the example, component data is stored in properties.
Therefore, complex components possibly require a large number
of properties to store the data of all views. Additional data that is
shared between views, for example ports, attributes, and opera-
tions are stored in properties as well. Therefore, to prevent name-
space pollution, the name of a property is composed out of a lan-
guage component that its type belongs to, together with its identi-
fier (see Figure 3).

3.1.2 Specialization
Language component hierarchies support the concept of speciali-
zation, which is known from other languages, e.g. from the MOF
or from the UML. However, specialization of language compo-
nents needs different semantics to ensure proper handling of
views, infrastructure, and runtime. Specialized language compo-
nents inherit all elements of more generic components and may
override them. Specialized components, for example, define new
guest models, new transformations, and new meta models. Exist-
ing transformations and meta models are possibly extended by
specialized language components. Infrastructure parts of parents
may be inherited or overridden. In the latter case, the existing
infrastructure (tools, editors, code generators…) of the parent may
be used by the infrastructure of the specialized language compo-
nent. Runtime interfaces may be inherited or overridden, but over-
riding is only permitted with more specialized interfaces that at
least provide the functionality of the base interface type. Figure 6
illustrates an example for language component specialization. The
base component GenericLanguageComponent defines a frame-
work for all subsequent language component definitions. The
component DataflowLanguage redefines the language view and
the runtime. The DataflowView view adds a data flow meta
model, the DataflowRuntime component adds a data flow runtime
interface. The Simulink language component extends all three
views. Therefore, all existing elements are inherited first. The
meta model SimulinkMM may only extend the more generic Data-
flowMM meta model, since it is its specialization. The guest
model definition is a new language component element. Simulink
infrastructure are new language component elements as well. The
Simulink runtime interface SimulinkRuntimeIF replaces the old
DataflowRuntimeIF with a derived and specialized interface.

Figure 3: Components, models, views, and properties

2323

This inheritance scheme supports language component hierar-
chies, e.g. the data flow hierarchy from the example. Specialized
language components may introduce new guest models and tool
chains but still re-use meta models of parent language compo-
nents. Guest and meta model properties that are qualified with the
type of their defining language component retain their type speci-
fier; derived meta model types or replaced guest models therefore
appear with their original qualifier. Therefore, meta models may
only be extended through specialization and therefore are down-
ward compatible to meta models of base components. Guest
model access restrictions ensure that only transformations and
infrastructure of one language component type may access the
same guest model, and therefore also ensure that specialization
does not lead to type conflicts.

3.1.3 Conflicting view types
The special relation conflictingView may be defined for any pair
of views that must never be used together on one component.
Specialized view types inherit this property from their base views.
This way, it is ensured that conflicting realization views are never
used together to define one component. This is handy if two lan-
guage components are not sufficiently synchronized, but enable
definition of similar things. For example, both Simulink and AS-
CET views define (different) data flow models. In order to oper-
ate properly on the same component, both views need to synchro-
nize their whole model into a common meta model. While this is
possible with CompoSE through transformations, this is impracti-
cal in real world applications. For this reason, both view types
could be marked as conflicting instead, preventing developers to
use them together on the same component.

3.1.4 Checks
Automated checks are executed similar to transformations every
time when a connected property was modified. In contrast to
transformations that produce output models, checks validate pre-
defined properties or consistency rules. Typical application areas
for automated checks in the CompoSE framework are DSL spe-
cific consistency checks across views. Similar to transformations,
checks are currently developed in Java; for subsequent implemen-
tations, we plan the development of a DSL for specifying Open-
ArchitectureWare (OAW) based checks and model transforma-
tions using OAW’s extend language.

3.2 CompoSE components
CompoSE components represent all system components – in this
paper, we focus on the definition of software components though.
Components are defined through properties – property values are
modified through views. CompoSE supports two basic relations

between components that are known from the UML: Component
aggregation and component specialization. Currently, no distinc-
tion between aggregation and composition is made in CompoSE.
However, due to the view concept, the behavior of both principles
needs to be adapted.

Component aggregation is supported through the basic view
type AggregationView. Aggregated components, i.e. components
that consist of other components, are created through component
aggregation only; no other non-aggregation realization views may
be assigned to that component type. The two view types Aggrega-
tionView and NonAggregationView, from which all non-
aggregating view types derive are therefore marked as conflicting
views. The realization of aggregated components is therefore only
defined through the aggregation view – no other realization views
may be applied to that component. Component specifications are
not affected by aggregation views. Therefore, specifications of
aggregated components are defined through specification views
similar to any other view type. The aggregation view of Com-
poSE is similar to the composite structure diagram of UML that
defines component substructures through instances, ports, and
links. Figure 5 illustrates an example component aggregation. In
the example, the component CruiseControlSystem is aggregated
out of one instance of the component type Filter and one instance
of the component type Control.

Component specialization is more complicated than component
aggregation, because it affects both component specification and
realization views with unknown language semantics. Component
specifications and realizations are defined through properties.
Specialized components initially inherit all properties of their
derived components. In addition, specialized components also
may override properties of their base components, and therefore
replace their value. This must be done through a compatible view
that is able to modify the property in question. However, when
replacing property values, the following additional restrictions
apply, which are specific to guest languages and therefore are
validated automatically by checks (cf. Section 3.1.4).

• Properties defining component specifications may not be
lowered by specialized components - everything that was de-
fined by the specification of the parent component must still
be part of the specification provided by derived components.

• Properties defining realizations may be overridden and
changed by specialized components as long as the compo-
nent specification, and therefore inherited component speci-
fications are met.

Depending on the guest language, language specific specialization
constructs may be available. For example SDL and UML lan-
guages provide such concepts, while Simulink does not support
type inheritance. If specialization constructs are available in a
guest language, these constructs may be used for creating special-
ized guest models based on their parent guest models from parent
components. Figure 6 illustrates this with an example.

Figure 4: Language component specialization

Figure 5: Aggregation view

2424

The example from Figure 6 illustrates CompoSE component spe-
cialization. The SpeedFilter component specializes the more ge-
neric filter component type. It also replaces the DSL based com-
ponent realization. DSL dependent specialization constructs sup-
port specialization of the original realization of the base compo-
nent. CompoSE aggregation and specialization are intentionally
not strict and enforcing, because this would limit the applicability
of CompoSE to a smaller number of guest modeling languages.
CompoSE defines a necessary and sufficient set of constraints for
aggregation and specialization that enable creation components
and views with defined semantics.

4. MULFI-FORMALISM COUPLING
Up to now, we defined the integration of language components
and therefore new modeling languages into Compose. View types
define properties, meta models, and therefore containers for stor-
ing information. Transformations map models from one meta
model into another, and bridge between guest models. Views also
provide means to modify model elements by integrating infra-
structure parts that represent existing language infrastructure, e.g.
editors. Runtime adapters provide an interface between code gen-
erated by different language infrastructures, i.e. code generators,
and bridge generated code. This works well as long as languages
with conforming runtime semantics are coupled – for example
Simulink and ASCET provide similar semantics, and therefore
coupling is simple. However, multi formalism development re-
quires the combination of modeling languages that implement
different semantics. Bridging these languages is a challenging
task, and the approach used for providing this coupling is an im-
portant design decision.

CompoSE supports this bridging through the InterfaceView
and the CouplingView view types. The InterfaceView predefines
port types that represent different semantics. The CouplingView
supports connections between ports that represent similar seman-
tics, or between port types for which a semantic mapping is de-
fined. Basic port types that are defined by the InterfaceView are
the following:

• Data flow ports (FlowPort) represent data flow semantics.

• Event ports (EventPort) represent asynchronously transmit-
ted and received events.

• Control flow ports (ControlFlowPort) represent control flow
semantics, e.g. the definition of operations with entry points
and control flow transfer upon invocation.

The coupling of components that provide interfaces based on
these port types, and therefore implement conforming semantics
is defined through the coupling view. While coupling of compati-
ble interfaces is trivial, the coupling view also defines coupling
semantics that map from one interface type to another. Runtime
adapters need to support these predefined mappings in order to

support semantic coupling of their supported modeling languages.
The following automated mappings are currently supported by
CompoSE:

• Output data flow ports map to event ports by generating an
event each time the output value changes. Event ports are
mapped to input data flow ports by changing the respective
data value each time an event is received.

• Control flow ports map to output data flow ports, if they
define one operation with one parameter only that is then in-
voked upon parameter change. Mapping of control flow ports
to input flow ports is supported if one operation is provided
that carries one parameter, which will be the new value of
the flow port.

• Mapping between event ports and control flow ports is sup-
ported as following: Whenever an event leaves an event port,
which is connected to a control flow port, the corresponding
operation will be invoked. If a response event is declared, the
return value will be transmitted back upon the operation is
completed. Operation execution is not synchronized with the
execution of the component that transmitted the event. Map-
ping of control flow ports to realize required operation re-
quires the definition of request/response pairs of events. The
execution of required operations is mapped to the transmis-
sion of the request event. The calling component is sus-
pended, until the corresponding response is required, in order
to conform to control flow semantics.

By generating explicit adapter components using any supported
language, more sophisticated mapping may be explicitly defined
in addition to these predefined mappings. This coupling approach
documents the basic rationale of compose to support black box
components with defined white-box interfaces and properties;
definition of component semantics are supported in a similar
manner. While CompoSE is not aware of the complete semantic
model of its black box components, it is aware of their interface
semantics, and therefore is able to connect them to each other.
Runtime semantics of components are supported in a similar way.

CompoSE predefines semantic models that are connected to
views; not components. They are therefore stored in a property of
the view type. These semantic models represent an abstraction of
the runtime semantics of integrated modeling languages – since
components may support multiple views (as long as restrictions
regarding incompatible view types are not violated), they may as
well implement different semantics. Predefined semantic models
need to be supported by all runtime infrastructures. Additionally,
new semantic models may be defined; the support of these models
is then optional to runtime frameworks. The following semantic
models are predefined:

• Data flow semantics realize a continuous data flow that con-
tinuously recalculates output values.

• Event based semantics provide semantics that realize views
defining asynchronously executed behavior, which is trig-
gered by events.

• Control flow semantics are passive – views using these se-
mantics define component behavior that is triggered only
through active transfer of control flow through control flow
ports.

Figure 6: CompoSE component specialization

2525

• Active control flow semantics are used to realize views
which may receive control flow through control flow ports,
but still provide an behavior on its own that is independent
from explicit control flow transfer from other components.

Runtime frameworks, as already mentioned, need to implement at
least these four semantic models. They also need to support com-
ponents that apply different semantic models for different views.

5. COMPOSE APPLICATION EXAMPLE
In this section, we describe the integration of Simulink, an exist-
ing modeling language for data flow models. The Simulink lan-
guage component supports the definition of component specifica-
tions and realizations through two different views, which conse-
quently affect two different component properties. Simulink is
supported by an industrial strength tool chain; this tool chain is
integrated through the infrastructure interface into CompoSE.

Figure 7 describes the new language component SimulinkLan-
guage. New CompoSE language components extends directly or
indirectly the type GenericLanguageComponent. The Simulink
language component defines a white box meta model Simu-
linkMM, a guest model SLGuestModel that represents native .mdl
files, and a model to model transformation that transforms parts of
the native model into the white box model (not shown in Figure
7). Simulink views implement data flow semantics; their provided
infrastructure is defined through an editor and a generator proxy.
The definition of these infrastructure components is implementa-
tion specific. In our case, CompoSE was implemented into
MagicDraw, which is a generic UML modeling tool. Infrastruc-
ture components are magic draw plugins that integrate code gen-
eration capabilities by calling code generators of integrated tool
chains, or by invoking editors of generated tool chains. The editor
connects to the Simulink editor, which is also part of the commer-
cial tool chain. It is invoked in a similar manner as one if Magic-
Draws native UML diagram editors; however, changes in the
model are synchronized only after saving in our implementation.
Simulink diagrams are stored together with its native model rep-
resentation in the guest model; after saving a diagram, transforma-
tions are invoked that extract relevant data from the diagrams and
update component properties and white box meta models. The
runtime interface of generated code is defined by the Simulink-
RuntimeIF interface. Native Simulink code does not conform to
that interface. Therefore, adapter code is generated by the Simu-

linkGen infrastructure proxy to mediate between the CompoSE
runtime and generated Simulink code.

6. RELATED WORK
The author of [1] proposes a generic, component based frame-
work for the evaluation of quality attributes like timeliness and
safety. Each component gets four artifact types assigned: an en-
capsulated evaluation model, an operational/usage profile, com-
position algorithms, and evaluation algorithms. Based on these
artifacts, a process for the evaluation of quality attributes is de-
fined. This approach focuses clearly on evaluation of white box
models; in contrast, CompoSE focuses currently on the efficient
integration of new modeling languages as black box models, as
well as providing an extensible framework for synchronizing
information contained in different black box models.

The work presented in [2] present BIP, a component based
development approach that supports multi formalism development
of behavior components. BIP defines three layers per component,
focusing on component behavior, interaction, and execution. The
authors focus on behavioral realizations, and provide a framework
for modeling components, as well as for the generation of glue
code to link these components together at runtime. This approach
focuses on correctness by construction and the adherence to prop-
erties while composing components, e.g. ensuring deadlock free-
dom. This is done via one common modeling language that com-
ponent behavior is mapped to; in contrast, CompoSE provides the
ability of integrating any language as language component. BIP
could be used as a backend framework for performing formal
analysis by defining the language of BIP as a white box meta
model, and by providing transformations for guest models of lan-
guage components into the formal language of BIP.

The authors of [3] present a framework for multi language
development of embedded systems, which provides tool and
model integration. Modeling languages are integrated into the
proposed framework through adaption layers that provide a link
between domain specific models and the common framework.
Like CompoSE, connected models are divided into public parts
that are exposed to other models, and private parts that are stored
in a common repository, but will not be exposed. In contrast to
this work, the basic framework described in [3] implements multi-
language development on the tool level, not on modeling level.
Therefore, no modeling language for the combination of multiple
modeling languages is defined.

The authors of [4] provide an approach for multi formalism
development that is much more tightly integrated than CompoSE;
the described approach aims at integrating the meta models of
used modeling languages. This is one difference between Com-
poSE and the approach presented in [4]: while CompoSE uses a
central system model to synchronize modeling elements, the au-
thors of [4] directly synchronize meta models with each other.
While this approach is certainly appealing, the creation of the
proposed consistency checking and mapping meta models costs
considerable effort when defining a multi-language modeling
approach for multiple already existing modeling languages. De-
pending on the amount of exported data and the complexity of the
synchronization rules in views, CompoSE might provide such a
tight synchronization as well. However CompoSE scales; in most
cases full meta model synchronization is not required. Therefore,
CompoSE will only synchronize a small subset of model data,

Figure 7: Simulink language component

2626

resulting in a smaller and therefore less expensive synchroniza-
tion approach in these situation (regarding both money and re-
quired processing power).

Ptolemy, which is presented in [5], is a famous approach for
the application of execution semantics in Java environments, as
well as for their evaluation, simulation, and composition. The
focus of Ptolemy is on the semantic coupling, and simulation of
components that implement different execution semantics. How-
ever, other aspects besides runtime semantics, e.g. the integration
of modeling languages, tools, and (meta) model synchronization
is not covered. Therefore, both approaches, Ptolemy and Com-
posE have a slight overlapping, which is the coupling of seman-
tics. This coupling is currently in Ptolemy much more developed
than in CompoSE, which focuses on the integration of modeling
languages and light-weight model synchronization.

The authors of [6] describe Metropolis, which is a compo-
nent based modeling framework, which is based on the following
core concept of separation between communication and computa-
tion, and separation of functionality and architecture. Metropolis
provides a common meta model that most existing models of
computation may be transformed into. The metropolis model of
computation is based on concurrent execution of action se-
quences; actions are subdivided into communication and compu-
tation actions. The main difference between CompoSE and Me-
tropolis is its focus: CompoSE is an approach that aims at inte-
grating (domain specific) languages, infrastructure and runtime
frameworks in a light-weight manner. Runtime frameworks are
combined using common runtime interfaces – as long as a runtime
adapter and semantic mappings are provided, a specific language
may be integrated into CompoSE. Metropolis provides a common
model of computation that languages are transformed into. This
requires a much more tight integration with respect to runtime
models, and therefore much more integration effort.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented CompoSE, our multi-formalism
modeling framework. CompoSE has been devised by applying
principles from component based software engineering to the
creation of a multi formalism modeling approach. It supports
multi formalism development at three levels: the modeling level,
the infrastructure level, and the runtime level. The principle for
multi-formalism development with CompoSE is the application of
guest models and guest languages that are plugged into one host
model as language components. Views provide access to guest
languages at modeling level and present data stored in models.
Guest models are stored in their native file format and meta model
of the guest language, meta models may be used to export whole
guest models or part of it into the host model, so that other lan-
guage components may access this information. This transforma-
tion is performed though explicit transformations. The CompoSE
approach is different from most other approaches, because it pro-
vides a light weight language integration; the degree of language
integration depends on provided meta models and transforma-
tions, and may therefore be adapted. This is an important aspect
for its practical applicability, where integration effort equals to
money.

Through the concept of guest models, existing languages, in-
frastructure, and runtime frameworks may be used with Com-
poSE. This is especially important in industry, because multi for-

malism approaches are only accepted if they support established
and well proven tool chains. The separation between black box
guest models and white box meta models enables a rapid integra-
tion of new modeling languages, because only relevant attributes
of guest models need to be synchronized with the host model; full
meta model synchronization is possible, but not necessary with
CompoSE. We have proven the applicability of CompoSE
through the integration of the existing Simulink language as lan-
guage component.

Ongoing and future work with respect to CompoSE is the
definition of a set of views for systems modeling in the automo-
tive industry. Additionally, the definition of formal semantics for
CompoSE language constructs, relations, as well as for language
and formalism coupling is currently ongoing work. Once this is
finished, clear coupling semantics will be available, as well as an
approach for the integration of new coupling semantics.

8. REFERENCES
[1] L. Grunske, Early Quality Prediction of Component-Based

Systems - A Generic Framework, Journal of Systems and
Software, Elsevier, Volume 80, Issue 5, May 2007, pp. 678-
686

[2] G. Gössler, J. Sifakis, Composition for Component-Based
Modeling, Science of Computer Programming, Volume
55(1-3), 2005

[3] J. El-Khoury, O. Redell, M. Törngren, A Tool Integration
Platform for Multi-Disciplinary Development, Proceedings
of the 2005 31st EUROMICRO Conference on Software En-
gineering and Advanced Applications (EUROMICRO-
SEAA’05), Porto, Portugal, 2005

[4] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wadsack, R.
Wagner, L. Wendehals, A. Zündorf, Tool Integration at the
Meta-Model Level within the FUJABA Tool Suite, Proceed-
ings of the Workshop on Tool-Integration in System Devel-
opment (TIS), 2003

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, Y. Xiong: Taming Heterogeneity
- the Ptolemy Approach. Proceedings of the IEEE, v.91, No.
2, January 2003.

[6] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, M. Sgroi, and Y. Watanabe. Modeling and De-
signing Heterogeneous Systems, volume 2549 of LNCS,
pages 228–273. Springer-Verlag, 2002.

2727

ITML: A Domain-Specific Modeling Language for
Supporting Business Driven IT Management

Ulrich Frank
ulrich.frank@uni-due.de

David Heise
david.heise@uni-due.de

Heiko Kattenstroth
heiko.kattenstroth@uni-due.de

Chair of Information Systems and Enterprise Modeling
University of Duisburg-Essen

Universitaetsstr. 9, 45141 Essen, Germany

Donald F. Fergusona

donald.ferguson@ca.com
Ethan Hadarb

ethan.hadar@ca.com
Marvin G. Waschkec

marvin.waschke@ca.com

CA Inc.
aNew York, NY, USA; bHerzelia, Israel; cWashington, NY, USA

ABSTRACT
Management of today’s IT is a challenging task that requires
a profound understanding of both the IT landscape and the
relevant business context. Numerous relations and depen-
dencies between business and IT exist, which have to be ac-
counted for, e.g., for better IT/business alignment. This pa-
per presents ITML (IT domain specific Modeling Language)
integrated with a comprehensive method for enterprise mod-
eling. The language advantages are illustrated in terms of
support for profound analyses, development of sophisticated
IT Management tools (build-time), and use of corresponding
models at run-time, e.g., as part of IT Dashboards.

Keywords
Domain-Specific Modeling Language, Enterprise Modeling,
IT-Management

1. MOTIVATION AND SCOPE
IT Management is confronted with remarkable challenges.
On the one hand, it is expected to serve the business with
high efficiency, on the other hand it must cope with the di-
versity of IT platforms, networks, and information systems
and their interdependencies. From a technical perspective,
there is need for integrating and consistently maintaining
these IT artifacts. From a managerial perspective, the tran-
sition from taylorism to process-oriented organizations as
well as the growing relevance of cross-organizational busi-
ness processes emphasizes the need for information systems
that are not restricted to particular business functions, but
that provide effective and versatile support for business pro-
cesses and fulfill the business’ needs (’IT/business Align-
ment’, cf.[10, 15]). These challenges are made more difficult
by language barriers between IT and business and between
the different IT domains.

To cope with these challenges, methods and tools are re-
quired that support the range of IT management tasks. Ex-
isting tools and methods for IT Management are unsatis-
factory in this respect. Approaches for integrating IS or
managing the IT infrastructure, such as Enterprise Appli-
cation Integration and Middleware (e.g., [20]) or Configu-
ration Management Databases (CMDBs; e.g., [19]), focus

on issues such as hardware and its operational metrics, e.g.,
address the matter of physical data exchange or manage-
ment of concrete IT resources and the implementation of IT
processes. Their support for elaborate technical analyses,
e.g., for checking IT architectural weaknesses, or for inte-
grating heterogeneous systems (cf. [6]) is somewhat limited,
since these approaches abstract away the business context
of the IS. In contrast, IT Management frameworks such as
ITIL1 or CobIT2 present high-level guidelines for IT organi-
zation’s services and processes. They provide an abstracted
approach for managing IT for typical IT processes, and oc-
casionally define metrics and key performance indicators for
evaluating the quality of the operational status of the IT
domains. However, there remains a gap between the IT
Management and the business context on the one hand, and
the detailed technical level on the other. While the gap is
supposed to be overcome by IT managers, the complexity
of this task suggests appropriate support – both for analysis
purposes and for communicating with various stakeholders.
In this respect, the motivation is twofold: First, we propose
a domain-specific modeling language (DSML) for modeling
IT infrastructures – the IT Modeling Language (ITML). It
provides concepts for conveniently creating illustrative and
consistent models of IT infrastructures, which enable various
types of analyses and transformations. At the same time, it
can be supplemented by corresponding process models to en-
gineer modeling methods for IT Management. Second, the
ITML is intended to support the design of tools for IT Man-
agement (build-time). We also show that ITML is useful
as a versatile management instrument at run-time of these
tools, e.g., by using diagrams as front end for instance data.

The ITML is part of a comprehensive method for enterprise
modeling that includes various other modeling languages,
e.g., an organization modeling language or a strategy mod-
eling language. Therefore, ITML models can be supple-
mented by models of the relevant context in order to pro-
mote IT/business alignment and foster communication be-
tween stakeholders with different professional backgrounds.

1IT Infrastructure Library, [19]
2Control Objectives for Information and Related Technol-
ogy, [11]

28 28

The remainder of the paper is structured as follows: In Sec-
tion 2, the requirements for a DSML for IT Management are
analyzed. In Section 3, two exemplary use cases illustrate
concepts and graphical notation of the ITML and the lan-
guage’s benefits for IT Management. Subsequently, the con-
ceptual background of the ITML is presented in the form of
a meta-model and a language architecture. Related work is
discussed in Section 5. The paper closes with an evaluation
of the solution and an outlook on future work.

2. REQUIREMENTS
The following requirements analysis is aimed at preparing
a foundation for the design of the ITML, and clarifies the
choice between a domain-specific modeling language in gen-
eral and a general-purpose modeling language (GPML).

For many planning and analyses scenarios, accounting for
all resources in all details is not necessary. In fact, too much
detail can obscure goals and make planning and analysis
more difficult than an intelligently simplified view.

Req. 1 – Reduction of Complexity: IT Management demands
for abstractions that allow for focusing on those concepts
that are pivotal for certain types of analyses and applica-
tion scenarios. This requires avoiding distraction caused
by irrelevant technical detail. Nevertheless, ignoring tech-
nical details on principle will not be satisfactory, since
some scenarios require information about concrete instan-
ces.

Ever changing and evolving technologies and corresponding
“buzz words” are distinctive of the IT domain – although the
basic concepts seldom change.

Req. 2 – Protection of Investment: To protect investments
into models, the language concepts should neither repre-
sent technical aspects that are subject to change nor fea-
tures that are specific to particular products. Note that
stressing this kind of abstraction also contributes to the
protection of investments into the IT itself, since it makes
IT infrastructures less vulnerable against changes of vari-
able details.

IT Management is hampered because various stakeholders,
such as end-users, executives, IT experts etc., need to be
involved in planning, designing, and managing IT. The lan-
guage barriers between these groups may cause misunder-
standing, compromising the efficiency of IT systems.

Req. 3 – Support for Multiple Perspectives: On the one hand,
meaningful representations of IT at different levels of ab-
straction are required to satisfy the needs of the various
groups of prospective users of the language. If possible,
they should correspond to concepts and representations
current in the prospective users’ domain. On the other
hand, these perspectives should be integrated to foster
communication between stakeholders with different pro-
fessional backgrounds.

IT is not an end in itself. Instead, it supports an organiza-
tion’s business processes, enterprise goals, and – in general
– its competitiveness. Hence, adequate management of IT
requires a profound understanding of the interdependencies

between business and IT.

Req. 4 – Business Context: IT Management must not be
treated as an isolated function. Instead, users should be
informed of the organizational context of IT. This requires
including concepts that represent the business context,
e.g., strategies and goals or business processes.

IT Management still strives to integrate the multitude of
different tools that are scattered over the enterprise. Data
about the enterprise’s IT areas (e.g., hardware, software, IT
services, security, governance) are often gathered and man-
aged separately in different information systems. This leads
to independent data silos, which jeopardize data consistency
(cf. [6]).

Req. 5 – Integration: To support analyses on interoperati-
bilty of IT systems, there is need for concepts to express
data or functional similarities or functions and integration
deficiencies within business processes. To develop concep-
tual foundations for integrating heterogeneous artifacts,
there is need for concepts – i.e., meta types – that can
be instantiated into a range of corresponding types, e.g.,
different implementation of a type “Customer”.

Models created with the ITML should be used to design
tools for IT Management (build-time), for instance, by trans-
forming the IT models into an enterprise-specific database
schema for software to manage instances of hardware; and
for providing versatile and extensible operational interfaces
that can be used during business operation (run-time).

Req. 6 – Formal Foundation: The semantics of the ITML
should be specified precisely enough for unambiguous trans-
formations into implementation documents such as code.

Ostensibly, general-purpose modeling languages address the
requirements. One could argue that a GPML like the ’Uni-
fied Modeling Language’ (UML, [18]) or the ’Entity Rela-
tionship Models’ (ERM, [2]) meet these requirements. How-
ever, such an approach has serious deficiencies (e.g., [3, 13,
16]). First, a GPML does not effectively support the con-
struction of domain-specific models, because its syntax and
semantics are designed to express any model; they are not
designed to exclude inconsistent models, and thus they do
not constrain users from creating – from a domain’s per-
spective – wrong models, e.g., with ’hardware running on
software’ (lack of integrity). Second, it would be rather in-
convenient to describe IT resources using only generic con-
cepts such as ’Class’, ’Attribute’, or ’Association’ (lack of
convenience), which are well-suited to modeling software,
but were not chosen with modeling IT in mind. Third, the
graphical notation, i.e., concrete syntax of a GPML does
not contribute to an illustrative visualization in the graphic
idiom of IT stakeholders, such as business managers (lack
of comprehensive models); hence, it would, if at all, provide
only little support for cross-IT domain communication.

Against this background, a DSML specific for IT Manage-
ment seems to be more likely to meet the preceding require-
ments than a GPML. In addition to the general requirements
presented above, the design of a DSML is guided by the
objective to reconstruct existing technical languages, in this

29 29

case the professional language of IT Management. This is for
two reasons. First, it benefits from the elaborate and proven
technical language of the domain instead of reinventing the
wheel. Second, it makes the DSML more comprehensible,
since its concepts correspond closely to terms the prospec-
tive users are familiar with – i.e., provide high semantics
(cf. [6]).

3. ILLUSTRATION OF THE SOLUTION
The following scenario serves to illustrate the use of the
ITML to support IT Management. The scenario is divided
into two steps. First, focus is on a model of IT infrastructure
that is integrated with a business process model. This step
aims at indicating the potential of the modeling language
to support for planning as well as ’strategic’ analysis. Sec-
ond, the models are extended with instance level data, which
promises to support decisions dealing with concrete IT re-
sources, e.g., a particular server or software. This requires
integrating an ITML modeling tool with corresponding sys-
tems at the operational level such as CMDBs.

Figure 1 presents a model of an IT landscape (Resource/
Service and Location level), which is extended by a busi-
ness perspective (Process Map). It shows various types of
IT concepts such as (from top to bottom) IT services, soft-
ware, diverse hardware like database systems, mainframe,
mail servers, or web server, and locations (data centers).
Furthermore, the elements are interrelated if they are de-
pendent in some way, e.g., software runs on hardware and
enables IT services. Such a model of the enterprise’s IT
already enables various analyses for IT Management. Two
simplified examples are illustrated below.

Example 1 – Outsourcing: The depicted model at type
level provides a foundation for outsourcing decisions. First,
depending on the interencies (coupling) an IT resource type
– e.g., the hardware type ’DBS 3’ – has with other IT re-
source types, it might be a good/poor candidate for out-
sourcing. This is based on the following assumption: The
higher the amount of interdependencies, the more compli-
cated it will be to detach it and outsource to an external
location. However, accounting only for the sheer amount of
interdependencies would be an oversimplification. Rather,
it is necessary to evaluate the importance of the interde-
pendencies, i.e., the associations of a resource type. For
instance, one can use the depicted models to assess the de-
pendency between ’DBS 3’ and the software type ’SAP BW’.
If the association between these two types does not indicate
strong coupling, and decoupling might be accomplished rela-
tively easy, the impact of outsourcing will be less substantial.

With respect to the business perspective, the models allow
for evaluating a resource’s relevance for the business, e.g.,
by analyzing the ’business impact’ of a resource in case of
its breakdown/malfunction. In our example, an analysis of
the associations among the modeled types reveals that the
’DBS 3’ is used – to a yet unknown extent – in two services
(’customer rating’, ’customer contact’), which in turn sup-
port various business process types. Hence, in contrast to
predominant descriptions of IT – such as records in configu-
ration databases (e.g., a CMDB) – the model-based descrip-
tion, although still on type level, already indicates mani-
fold advantages, like comprehensive analyses. The illustra-

Customer Rating

located at

Data Center

Houston

Data Center

Austin
Data Center

Munich, GermanyL
o
c
a
ti
o
n

P
ro
c
e
s
s
 M
a
p

R
e
s
o
u
rc
e
 /
 S
e
rv
ic
e

DBS 1

Oracle 10g

DBS 3DBS 2 Exchange Website

Groupware

Web-MailOutlook

BI / DW

DBS 9

SAP BW

DW HPC 1

Customer ContactCustomer Data

Web-Server

Mail-Server

Mainframe

Database-Server

Software

IT ServiceBusiness

Process
Location

Legend

Business Process 5

Business Process 4

Business Process 3

Business Process 2

Business Process 1

runs on
comprises / requires
supported by

Data Center

Georgia

Figure 1: Exemplary Scenario

tive visualization further allows for inspecting a model on
sight and by stakeholders that are not familiar with, e.g.,
data-querying languages that are necessary for analyses in
database-oriented apporaches like CMDBs.

In a second step, these models can be enriched with ad-
ditional information about the actual instances. Figure 2
shows the IT/business process models, in which two types,
the ’business process 2’ and the ’customer data’ IT service,
are enhanced with information about current instances. This
requires that the types in the model (e.g., the IT service
type ’Customer Data’) are ’linked’ to corresponding instan-
ces (e.g., information about actual instance of this service).
Such an integration of models with corresponding instance
information, i.e., the use of models at run-time, fosters a
more profound decision-making and a variety of analyses
than analyzing at instance level only, since information about
particular instances are now enriched with the business con-
text, while at the same time distracting complexity of the
domain is still reduced. For our example, this can be applied
to:

- Resource type ’DBS 3’: Is there need for an upgrade in
any way (e.g., based on purchase date, end of maintenance
contract, number of breakdowns/incidents, costs)?

- Software types and their utilization of resource types:
How frequent ly do they depend on each other (e.g., based
on capacity utilization, amount of database accesses)?

- IT services: How frequent are the services accessed (e.g.,
charges, amount of instances)?

- Evaluating the return on investment by monitoring the
IT services usage: How frequent are the services accessed
(e.g., charges, amount of instances)?

- Business processes adjustments: What is the process’ crit-
icality (e.g., based on its value to customer, revenue, amount
of instances)?

30 30

Customer Rating

Data Center
Houston

Data Center
Austin

Data Center
Munich, GermanyL

o
c
a
ti
o
n

P
ro
c
e
s
s
 M
a
p

R
e
s
o
u
rc
e
 /
 S
e
rv
ic
e

DBS 1

Oracle 10g

DBS 3DBS 2 Exchange Website

Groupware

Web-MailOutlook

BI / DW

DBS 9

SAP BW

DW HPC 1

Customer ContactCustomer Data

Business Process 5

Business Process 4

Business Process 3

Business Process 2

Business Process 1

Data Center
Georgia

No. of current instances

Average Revenue / Instance

Total number of faulty
instances

136

4157 $

445

02:54 minutes

Utilization

Averagte duration

Availability

Average costs /
instance

1.20 $

Figure 2: Exemplary Scenario enhanced with in-
stance information

Example 2 – Consolidation/Integration: Already the
development of an ITML model helps to structure the do-
main of interest and identify potential similarities, for in-
stance between services offered to the business processes.
Thereby, such models foster identification of candidates for
consolidation and integration, e.g., of redundant data cen-
ters caused by mergers and acquisitions. If a data center
offers services that are identical or closely related to ser-
vices from another data center, it might be a candidate for
consolidation. In many cases, such analyses still require an
inspection and interpretation of the models by the users.
However, depending on the analyses and application sce-
nario tool-support might be possible, e.g., by highlighting
IT services that have similar relationships; and, for instance,
in contrast to querying datasets in a CMDB, it is more intu-
itive and comprehensive in terms of Req. 3 & 4. In the exam-
ple illustrated in Fig. 1, the data center ’Austin’ offers the
service ’Customer Data’ that is apparently closely related
to the service ’Customer Contact’ provided by data cen-
ter ’Munich’. Moreover, both data centers jointly provide
the service ’Customer Rating’. In order to decide about
consolidating similar or related services into a single data
center, the models can be enriched with information about
the instances, for example, to assess the importance of the
different services and accordingly of the data centers, the
criticality of the underling infrastructure, and type of solu-
tion, the number of problems and tickets associated with the
instance level over time, and more. Note that in decision-
making usually far more information than only name and
associations of, e.g., an IT service type – such as depicted in
Fig. 1 & 2 – is required; in this respect, the models presented
are simplifications (i.e., attributes are omitted for sake of
space restrictions).

4. CONCEPTUAL BACKGROUND: META
MODEL & LANGUAGE ARCHITECTURE

The DSML is specified in a meta model using the Meta
Modeling Language MML (cf. [7]), which was specifically de-
signed for specifying languages for enterprise modeling that
feature a high degree of inter-language integration. The de-

sign of the DSML is guided by several objectives, driven by
the requirements identified in Section 2. First, the model-
ing language should provide concepts that represent a re-
construction of the technical terminology of the IT domain
(cf. Req. 1). This requires finding abstractions that closely
correspond to concepts in the domain – i.e., provide a high
level of semantics – in order to facilitate a comfortable use of
the DSML and communication between the involved stake-
holders. At the same time, the concepts of the modeling lan-
guage should be rather generic in the sense that they apply
to a wide range of enterprise settings and over a longer pe-
riod (cf.Req. 2). The reconstruction also pertains to business
terminology. The language has to consider concepts from the
business domain that might be relevant for IT Management
and provide integration between both domains (cf. Req. 4).

While there are various ways to structure the IT Manage-
ment domain, we follow Kirchner [14], who proposes three
categories of concepts for an earlier version of the ITML:
technological concepts, such as hardware, software, network,
peripherals, and so on; organizational concepts, which in-
clude business processes, roles/people, costs, and goals; and
additional abstractions like IT services or information sys-
tems. Figure 3 illustrates a semantic net of the basic rela-
tions of the most prominent core concepts (cf. [14]): ’hard-
ware’ is located at a ’location’ and required by ’software’.
An ’information system’ is an abstraction over a certain set
of software and hardware. It provides ’IT services’, which
support ’business processes’ and, in the end, contribute to
the realization of the company goals and strategies. Organi-
zational roles are related to these concepts in various ways,
e.g., by means of utilization, maintenance, or responsibility,
and as part of information systems (e.g., a database admin)
or apart from them (e.g., help desk staff). Consequently,
these core concepts constitute the foundation for the ITML
language specification presented in Section 4.1.

Business Processes

Software

Hardware

IT Service

Business Goal

Information System

Location

runs on

realizes

provides

supports

located at

Organizational Role

Figure 3: Core Concepts of ITML

A second design objective refers to offering a graphical nota-
tion (concrete syntax). In contrast to, e.g., textual or formal
descriptions, a graphical notation supports a rich and intu-
itive documentation while it at the same time can depict
numerous relations in a more comprehensible way. The no-
tation has already been illustrated to some extent Section 3.

4.1 The ITML Meta Model (Excerpt)
The concepts in Figure 3 already provide a basis for the
ITML meta-model. However, the specification of the mod-
eling language still faces a number of challenges. The three
most pivotal ones are discussed below. Subsequently, corre-
sponding design decisions are presented.

31 31

Software
implementationLanguage : String

installationDate : String
lastUpdate : Date

SoftwareRole
description : String

License
licenseType : String

validUntil : Date

Hardware
avgAvailability : String
isAtomic : Boolean

serial-no : String
purchaseDate : Date

NetworkDevice
ip-address : String

Network
isWired : Boolean

ip-range : String

HardwareRole
description : String

Location

InformationSystem

IT Service
priority : Integer

availability-start : Date
availability-end : Date

SLA

i
i

SoftwareRoleAttribute
designator : String
attributeType : String

HardwareRoleAttribute
designator : String
attributeType : String

supports aimed at

of
fe

rs

comprises

defined by

requires

runs on

requires has
located at

has

ac
ce

ss
es

BusinessProcess
Goal

name : String
description : String
priority : String

1..1

1..*

1..*1..*
ha

s
i
i

comprises

i
valid for

enriched by

comprises

governs

1..1

specialized from

1..1

specialized from

0..1

context Software
def: let allSuperTypes: collect (me | me = me.super)
inv: (self.allSuperTypes-> includes self) = false

C1

i
i i

i

specified in MEMO-OrgML

1..*1..*

1..1

i i

1..*

1..1

0..1 1..*

1..1

0..1

‚Intrinsic Feature’i

Figure 4: The ITML Meta Model (Excerpt)

Modelling Challenge A: Contingent Classification.
Besides generic concepts such as ’software’ or ’hardware’
there exists a plethora of further refinements and characteri-
zations for these concepts. For instance, software can be cat-
egorized with regard to its architecture (e.g., client/server),
primary purpose (e.g., database management, middleware,
web server), or its nature (e.g., infrastructure, application,
frontend). From a modeling perspective such differentia-
tions can be realized in different ways: In terms of specific
meta types, by the use of generalization/specialization (i.e.,
differentiations as sub-types of ’software’), as a value of an
attribute of the generic meta type ’software’ (e.g., an enu-
meration ’type of software’), or as a role. At first glance,
reconstructing all classifications as separate meta types or
sub-types would conform to Req. 1. However, such a re-
construction would not be compliant with the demand for
invariant concepts (Req. 2) and to an unambiguous assign-
ment of real-world entities to concepts of the language. The
concerns can be that the classification of software is often
superficial and a matter of perspective – i.e., while in one
decision scenario a software might count infrastructural, it
can be regarded as application software in another. Though
accurate in terms of technical concerns of a repeating struc-
ture, it remains conceptually different in a business context.
Prominent examples are modern operating systems (usually
infrastructure software) that provide integrated functional-
ities that count as application software; or complex appli-
cation servers that provide, among others, database, mid-
dleware, and server functionalities. Furthermore, software
can be assigned to several categories. The same accounts
for the concept of ’hardware’. Even more, consider the con-
vergence of devices, when multi-purpose hardware solutions
such as a combined print/fax/copy machine, or a media-
phone-handheld computer are introduced, classification is-
sues are more evident

Modelling Challenge B: Interfacing to Instance Level.
The DSML is designed for creating models at type level
(cf. Req. 5); hence, the concepts in the models represent types.
For design purposes, this focus is usually sufficient and nec-
essary at the same time. However, often, it is required to
differentiate between types and instances (cf. Req. 1). Ignor-
ing instance information in general might generate wrongful

assumptions as indicated by the above application scenarios.
Therefore, the language concepts should allow for referring
to instances somehow.

Modelling Challenge C: Type Differentiation. The
modeling challenge pertains to the restrictions given by the
type/instance dichotomy commonly applied in conceptual
modeling (such as in [17]) and the semantic differences be-
tween instantiation and specialization. A discrimination of
types and instances is – especially in the IT domain – not
trivial, and it remains often unclear whether a real-world
entity is represented as a modeling concept (i.e., a type)
or as an application (i.e., an instance) of a modeling con-
cept. Take, for instance, the meta-type ’software’. Possi-
ble type instantiations could be ’Word Processing Software’,
’Microsoft Word’, ’Microsoft Word 2003’, or ’Microsoft Word
2003 Business Edition’. However, at the same time, ’Mi-
crosoft Word’ could be regarded as an instance of a meta-
type ’Word Processing Software’ or as a specialization. Hard-
ware concepts raise similar abstraction problems. For exam-
ple, ’Printer’ could be conceptualized as a meta-type with
instantiated types such as ’Laser Printer’ or ’Ink Jet Printer’.
Alternatively, ’Laser Printer’ could be specified as meta-
type, with ’Color Laser Printer’, ’HP Laser Printer XY-
Series’ etc. as instantiated types (cf. [5]). The decision for a
certain abstraction, i.e., what is regarded as software type,
as its specialisation and as its instance, variies among enter-
prises. If a modeling language is not flexible in this regard,
it might constrain its application range or even be unsuit-
able for enterprises. Hence, the ITML should provide users
with appropiate concepts and guidelines.

Figure 4 illustrates an excerpt of the ITML meta-model.
Note that certain aspects were simplified due to space re-
strictions. It also shows only one exemplary OCL-constraint
(C1), as well as ’0..*’-cardinalities are omitted for reason
of clarity. The meta-model illustrates the design decisions
which target the above challenges:

Ad A – ’Roles’: To enable users to express that a soft-
ware/hardware type can be assigned to different categories,
we use the concept ’role’. Software and hardware types are
instantiated from meta-types software or hardware. To as-

32 32

sign a type a specific purpose, it can be associated to an ac-
cording softwareRole or hardwareRole, which either already
exists or has to be instantiated (cf. [14]). In order to reuse
and extend software roles that also provide (higher) seman-
tics, a software role can be enriched with further attributes
(SoftwareRoleAttribute/ HardwareRoleAttribute), which al-
lows for defining individual sets of software/hardware roles.
While it would be possible to present a set of predefined role
types by specializing softwareRole/hardwareRole in an en-
terprise specific language modification, our solution is more
convenient because it can be used by users without meta
modeling expertise – i.e., it is not necessary to adapt the
meta model.

Ad B – ’Intrinsic features’: There are certain apparent
features of IT artifacts that we cannot express through the
specification of a type only, since they are used to represent
instance states (e.g., an IP address of a network device, serial
number of hardware, or installation date of software). With
regard to Req. 1, neglecting such instance features would not
be satisfactory. To meet this challenge, we use the concept
of ’intrinsic features’ [7]. An intrinsic feature is a type, an
attribute or an association that reflects a characteristic that
we associate with a type that applies, however, only to the
instance level. Hence, an intrinsic feature within a meta
model is not instantiated at type level, but only one level
further, i.e., at the instance level. In the MEMO Meta Mod-
eling Language (MML), which is used to specify the present
meta model in Fig. 4, intrinsic features are marked by an ’i’
that is printed white on black (cf. [7]). A meta type that is
marked as intrinsic, is actually a type (such as ’Location’).

Ad C – Customized Specialisation: With respect to the
restricted number of instantiation levels available for model-
ing, there is no perfect solution to this challenge. The ITML
offers two approaches to cope with it: First, the meta-types
are restricted to a few rather generic ones (such as ’Hard-
ware’, ’Computer’, ’Printer’ etc.– some are not shown in
the excerpt). More specific types would then be created by
instantiation, e.g. ’Laser Printer’ from ’Printer’. Second,
if there is need to create more specialized types, this can
be done by making use of a ’specialized from’-relationship,
which is specified for IT artifacts such as Hardware or Soft-
ware. Note that the introduction of a specialization rela-
tionship implies additional constraints. These constraints
are not included in the excerpt – along with further at-
tributes and additional concepts such as (software) techni-
cal Standards, Software/Hardware Interfaces, and Organi-
zational Roles.

4.2 Language Architecture
The integration with the business context requires to offer
not only concepts that represent the IT domain, but that
also account for concepts from business (cf. Req. 4). In the
ITML meta-model the business context is represented by the
meta types business process and goal. It would be inefficient
to “re-invent” these modeling concepts for the ITML again,
especially since they are not its primary concepts and main
focus. To promote such reuse the ITML is integrated with
other modeling languages for, e.g., business process or goal
modeling in a way that allows for reusing concepts at the
meta level and, by this, fosters the integrity of the corre-
sponding models at the type level.

Figure 5: MEMO Architecture and the integration
of ITML

For this purpose, the ITML is integrated with a method for
enterprise modeling – the multi-perspective enterprise mod-
eling (MEMO) method [4] – that already contains a number
of domain-specific modeling languages. MEMO is multi-
perspective in that it provides different groups of stakehold-
ers with special abstractions and specific views on their rel-
evant activities within the enterprise. Figure 5 illustrates a
simplified version of the language architecture of MEMO.
A more elaborate version can be found in [7]. All model-
ing languages within MEMO, including ITML, are specified
using the MEMO Meta Modeling Language (MML, [7]) at
the M3 level. This fosters their integration since they are
specified using the same modeling concepts – which allows
for defining and re-using common concepts at the meta-level
(M2). This consequently leads to integrated models at type
level (M1), e.g., integrated IT and business process models.
Thus, the ITML is integrated with a DSML for business pro-
cesses and organizational structure (organizational modeling
language, OrgML [4]), for resources (resource modeling lan-
guage, ResML [12]), and for strategies and goals (strategy
modeling language, SML [8]).

Concerning the use of the ITML, the integration with MEMO
broadens the scope of the ITML as it is extended from an
IT perspective to a more comprehensive view on an enter-
prise, thus fostering IT/business alignment and communica-
tion between the various enterprise stakeholders.

Note, even the excerpt in Fig. 4 might overstrain some users.
Hence, the ’technical’ details of modeling should be hidden
from users, e.g., by a corresponding modeling tool. Further-
more, the amount of concepts that are necessary and the
preferred level of detail vary between decision scenarios and
the stakeholders involved. Thus, it is necessary to adapt
the application of the language from case to case – which
leads to the topic of ’method engineering’ (cf. [1]). Method
engineering is supported by MemoCenterNG3, a modeling
environment that implements the presented language archi-
tecture in Fig. 5). Thereby, it offers modeling editors for the
MEMO languages, which includes an ITML modeling edi-
tor (see [7]). It also offers a meta-model editor that allows
for creating further model editors. This enables experienced
users to generate model editors that are based on the ITML
meta-model and provide customized diagram types that, for

3Visit http://www.wi-inf.uni-due.de/fgfrank/memocenter-
en or refer to [7] for more details.

33 33

instance, hide concepts that are irrelevant in the specific
application scenario.

5. RELATED WORK
In practice, various tools for IT Management, e.g., for moni-
toring, network management, or IT Service Management are
available, which are often based on a Configuration Manage-
ment Database (CMDB) or similar databases. Such tools
often allow for arbitrary models and do not provide a clear
separation between different levels of abstraction, e.g., type
and instance level (cf. Req. 1–3). Furthermore, these mod-
els mainly focus the management of instance data about
IT resources and hardly account for the business context
(cf. Req. 4).

An example of a related approach for modeling IT land-
scapes is the Common Information Model (CIM) published
by the Distributed Management Task Force (DMTF4). It
comprises a meta-model that defines basic concepts used for
vendor-independent descriptions of IT landscapes. In this
regard, the CIM solely focuses on describing IT resources
and its main purpose is to use it as a schema for corre-
sponding databases. However, since CIM does not provide
any concepts from the business domain, e.g., abstractions
for business processes, it neither contributes to a better
IT/business alignment nor fosters communication between
different stakeholders (cf. Req. 3 & 4).

Note, there are some modeling tools available (e.g., ARIS5,
ADOit6) that provide concepts for modeling IT landscapes
and – to a certain extent – allow to integrate them with
models of the business context. However, their language
specification is usually not available. As far as we can ex-
trapolate by examining these tools, they do not foster the
development of customized tools, e.g., through code gen-
eration (cf. Ref. 6). Finally, these approaches and tools do
not go beyond a company’s boundaries – yet, there exist no
mechanisms for exchanging and reusing IT models between
enterprises or even within an enterprise (cf. Req. 2 & 5).

6. EVALUATION & FUTURE RESEARCH
In this paper, we outlined a domain-specific modeling lan-
guage for IT landscapes. The language is aimed at accom-
plishing transparency by structuring and integrating the do-
main and, by this, reducing its complexity in order to sup-
port IT Management.

The language was designed to fulfill six requirements: The
core concepts of the ITML have been reconstructed from
the IT domain to provide abstraction that focus on relevant
aspects (Req. 1). For this purpose, irrelevant technical de-
tails have been omitted. Thereby, focus is on invariant con-
cepts so that efforts and investments made into IS/models
are protected (Req. 2). This also fosters reuse of models and
integration of IS (Req. 5). By embedding the ITML into
a method for enterprise modeling, representations of IT in-
frastructures can be enriched with related representations.
This supports not only accounting for the business context,
e.g., for a better alignment with business objectives (Req. 4)

4http://www.dmtf.org/standards/cim/
5http://www.ids-scheer.com
6http://www.boc-group.com

but also facilitates the communication between stakeholders
with different professional backgrounds (Req. 3). Finally,
the semantics of the ITML allow for transforming an IT
model into, e.g., a database schema for a CMDB, as well as
for code generation in order to develop (integrated) software
for managing IT resources (cf. [9, 13]; Req. 6).

Currently, the ITML primarily focuses on modeling IT in-
frastructures, albeit it also accounts for services and pro-
cesses. Modeling of further important aspects of the IT do-
main, such as IT projects, is subject to future work. More-
over, we plan to refine the language specification, e.g., by
further research projects with business practice, and advance
the implementation of the modeling environment. This in-
cludes research on the aspects addressed, such as promoting
the use of the ITML in IT Management dashboards, i.e., us-
ing models created with a DSML at run-time for advanced
information systems. In this regard, the integration of in-
stance information is a pivotal issue, which will be addressed
next.

Compared to other approaches as described in Section 5,
our approach shows clear advantages, mainly by featuring
a higher level of semantics. Beyond satisfying the require-
ments discussed above, the ITML promises to supplement
de-facto standards such as CobIT and ITIL by providing
common concepts to describe the IT Management domain
– thus fostering the integrated use of both standards. Fur-
ther, the ITML serves as an instrument for bridging the gap
between their high-level guidelines and the technical, i.e.,
more detailed view of IT Management. As highlighted in
the application scenario and the language specification, the
ITML features integration with the instance level, i.e., ITML
models can be used to generate schemata for databases that
manage instance data. Taken one-step further, this integra-
tion can be used to leverage ITML models for run-time, too.
Envisioning an integration of the MEMO modeling environ-
ment with operational systems that manage the instance
data (e.g., workflow management systems or the CMDB),
ITML diagrams can also serve to build versatile and mean-
ingful ’dashboards’ for IT Management. Furthermore, we
illustrated, that the ITML and corresponding models of the
IT landscape foster comprehensive analysis and facilitate
profound decision-making. Finally and with respect to Req. 5,
the language serves as conceptual foundation for integrating
information systems on a level of semantics that goes beyond
all current capabilities: Information systems can describe
themselves by referring to IT models extended (i.e., inte-
grated) with business models – hence, enabling self-referential
information systems (cf. [9]).

7. REFERENCES
[1] S. Brinkkemper. Method engineering: engineering of

information systems development methods and tools.
INFORM SOFTWARE TECH, 38(4):275–280, 1996.

[2] P. P. Chen. The Entity-Relationship Model – Toward
a Unified View of Data. ACM T DATABASE SYST,
1(1):9–36, 1976.

[3] R. Esser and J. Janneck. A Framework for Defining
Domain-Specific Visual Languages. In Proc. of the 1st

OOPSLA Workshop on Domain-Specific Modeling
(DSM’01), Tampa Bay, 2001.

[4] U. Frank. Multi-Perspective Enterprise Modeling

34 34

(MEMO): Conceptual Framework and Modeling
Languages. In Proc. of the 35th Hawaii International
Conference on System Sciences (HICSS-35).
Honolulu, 2002.

[5] U. Frank. Ebenen der Abstraktion und ihre Abbildung
auf konzeptionelle Modelle – oder: Anmerkungen zur
Semantik von Spezialisierungs- und
Instanzierungsbeziehungen. EMISA Forum,
23(2):14–18, 2003.

[6] U. Frank. Integration – Reflections on a Pivotal
Concept for Designing and Evaluating Information
Systems. In R. Kaschek, C. Kop, C. Steinberger, and
G. Fliedl, editors, Information Systems and e-Business
Technologies, pages 111–122, Berlin, Heidelberg, 2008.
Springer.

[7] U. Frank. The MEMO Meta Modelling Language
(MML) and Language Architecture. ICB Research
Report 24, Institute for Computer Science and
Business Information Systems (ICB), University of
Duisburg-Essen, 2008.

[8] U. Frank and C. Lange. E-MEMO: a method to
support the development of customized electronic
commerce systems. Inf. Syst. E-Business
Management, 5(2):93–116, 2007.

[9] U. Frank and S. Strecker. Beyond ERP Systems: An
Outline of Self-Referential Enterprise Systems. ICB
Research Report 31, Institute for Computer Science
and Business Information Systems (ICB), University
of Duisburg-Essen, 2009.

[10] J. C. Henderson and N. Venkatraman. Strategic
alignment: Leveraging information technology for
transforming organisations. IBM SYST J, 32(1):4–16,
1993.

[11] IT Governance Institute, editor. CobiT 4.1:
Framework, Control Objectives, Management
Guidelines, Maturity Models. IT Governance Institute,
Rolling Meadows, 2007.

[12] J. Jung. Entwurf einer Sprache für die Modellierung
von Ressourcen im Kontext der
Geschäftsprozessmodellierung. Logos, Berlin, 2007.

[13] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley, New
York, 2008.

[14] L. Kirchner. Eine Methode zur Unterstützung des
IT–Managements im Rahmen der
Unternehmensmodellierung. Logos, Berlin, 2008.

[15] J. N. Luftman, P. R. Lewis, and S. H. Oldach.
Transforming the Enterprise: The Alignment of
Business and Information Technology Strategies. IBM
SYST J, 32(1):198–221, 1993.

[16] J. Luoma, S. Kelly, and J.-P. Tolvanen. Defining
Domain-Specific Modeling Languages: Collected
Experiences. In Proc. of the 4th OOPSLA Workshop
on Domain-Specific Modeling (DSM’04), Oct 2004.

[17] Object Management Group. Meta Object Facility
(MOF) Core Specification,
http://www.omg.org/docs/formal/06-01-01.pdf.
2009-08-07.

[18] Object Management Group. Unified Modeling
Language Infrastructure,
http://www.omg.org/docs/formal/07-11-04.pdf.
2009-08-07.

[19] Office of Government Commerce, editor. ITIL –
Service Operation. The Stationery Office, London,
2007.

[20] D. Serain. Middleware and Enterprise Application
Integration. Springer, London, 2002.

35 35

Domain Specific Languages for Business Process
Management: a Case Study

Janis Barzdins Karlis Cerans Mikus Grasmanis
Audris Kalnins Sergejs Kozlovics Lelde Lace Renars Liepins

Edgars Rencis Arturs Sprogis Andris Zarins
Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, LV-1459, Riga, Latvia

{janis.barzdins, karlis.cerans, mikus.grasmanis, audris.kalnins, sergejs.kozlovics, lelde.lace,
renars.liepins, edgars.rencis, arturs.sprogis, andris.zarins}@lumii.lv

ABSTRACT
Nowadays, more and more issues need to be considered when
implementing tools for domain specific languages with an
orientation to the business process management. It is not enough
to build just an editor for the language, various specific services
need to be provided as well. In this paper, we describe our
approach how to develop new domain specific languages for the
mentioned field and their support tools. A description of, so
called, transformation-driven architecture is outlined as well. It is
shown how to use principles of the architecture in developing tool
building platforms. Two domain specific languages together with
tools implementing them are described as an example.

Keywords
Transformation-Driven Architecture, tool building platform,
metamodels, model transformations, business process
management.

1. INTRODUCTION
When talking about business processes and their role in
development of information systems, an abbreviation BPM
usually comes up. However, the meaning of BPM is not always
the same. Initially, the letter M stood for Modeling, so with BPM
everyone was to understand the development of tools being able
to design business processes graphically. Later, the modelers'
community realized it is not enough, and the second meaning of
BPM arose – Business Process Management [1]. Now, business
processes are not only modeled but also managed (meaning the
process modeling tool had been integrated into some process
management system which controls the process execution and
integrates other parts of the information system).

Consequently, two kinds of graphical languages regarding
business processes exist nowadays. Firstly, there are plenty of
business process modeling languages. One of the most popular of
them is probably the UML [2] activity diagrams. And secondly,
there are also some business process management languages for
which a compiler to some code executable on a process engine
exists. Here, one must mention the BPMN (Business Process
Modeling Notation [3]) and its possible target language – the
BPEL (Business Process Execution Language [4]). A very
important component of a BPMN tool is a compiler to the BPEL

code being executable by some BPEL engine. According to the
SOA ideology [1], a web service wrapper is developed for the
information system components allowing the BPEL engine to
manage execution of the whole system being allowed to be
distributed through multiple companies.

However, most of these BPM languages or tools are often not
very useful in everyday situations. Being very complex they are
of course very useful for large enterprises. However, smaller and
more specialized systems usually need only a small part of those
facilities provided by the universal languages and tools. As a
result, the usage of them tends to be too complicated. Moreover,
tools (called the BPM suites) providing efficient and reliable
implementation of process management languages and offering a
whole set of support facilities are basically very expensive.
Certainly, there are also some less expensive suites (e.g., BizAgi
[5]) and cheap software-as-service offers by other vendors (e.g.,
Intalio [6]), but they are based on the same complicated languages
and approaches. Therefore, specialized languages for narrow
business domains are required, and that is where the DSLs
(Domain Specific Languages) come into play. Although universal
languages make advances towards specific tool builders (e.g.,
BPMN offers a possibility to add new attributes for tasks), they
can never give such wide spectrum of facilities as DSLs can. In
addition, frequently there are already well accepted notations for
manual design of processes in some business domains, and they
can be adequately formalized by the DSL approach. Moreover,
buying and adapting some universal language or tool for one's
small and specific case can often overcharge the benefits of using
it afterwards. On the other hand, the development of a DSL can
give little benefit if its implementations cost much. So we do have
a need for some simple and unified way of building domain
specific languages and tools. In this paper, we present a method of
developing and implementing domain specific languages. Also, a
success story of implementing two concrete DSLs is described
here.

The paper is organized as follows. In Section 2, some possible
requirements for tools implementing domain specific languages
have been discussed. Two example tools ordered by real
customers are introduced as well. Since they are to be parts of
some information systems, some concrete services were to be
satisfied by the tool. In Sections 3 and 4, our solution is presented.
Besides that, the most important aspects of our metacase tool's

3636

architecture are sketched here as well. The approach of the
architecture is demonstrated on the mentioned example tools.
Section 5 concludes the paper.

2. TYPICAL REQUIREMENTS FOR DSL
TOOLS IN THE FIELD OF BPM
2.1 DSL tools in general
When developing a tool for a domain specific language (a DSL
tool) ordered by a customer, various needs have to be satisfied
usually. Generally speaking, a DSL tool consists of two parts – a
domain specific language it implements, and services it offers. So,
various tools differ one from another not only in the notation of a
DSL, but also in extent how easy they can be integrated in the
outer world. Nowadays, life does not end with an editor of some
domain specific language, it just starts there. In general, various
types of functionality must be provided when designing a domain
specific language including (but not limited to) a compiler to
some target environment, a simulation feature, a debugger etc.
However, when designing a DSL in the field of business process
management, some more specific features come to mind. For a
BPM domain specific tool to be successful, it must be able, for
instance, to establish a connection to some external data source,
for instance, a relational database. A DSL editor is often supposed
to be a part of some larger information system, so it must provide
facilities of collaboration with other parts of the system, the
database being one of them. Besides, the collaboration must be
possible in both design and run time of the tool. A crucial feature
is also the ability to convert a process definition in this DSL into
specification for some process execution engine in the system.
Other important issue to be considered is the ability to generate
some kind of reports from the model information. DSL editors are
often used to ease the preparation of, e.g., HTML or Microsoft
Word documents containing information about the domain. So the
tool should provide a way of generating such documents from the
user-drawn diagrams.
Considering these issues is a crucial factor when designing a new
DSL tool building platform. Some of the key facilities can be
designed easily and added to the platform. However, others can
be added later when such a necessity occurs. So, trying to satisfy
the needs of different customers can play a great role in the
growth of the platform. Therefore, in the next sections, we offer a
description of two domain specific tools and explain their
implementation within our DSL tool building platform.

2.2 Example tools
In this section, two concrete domain specific languages together
with the tools implementing them will be discussed. First of them
– Project Assessment Diagrams (further – PAD) – is an editor for
visualizing business processes regarding review and assessment of
submitted projects. This editor is based on UML activity diagrams
and thus contains means for modeling business processes. Yet,
some new attributes and some new elements have been added in
order to handle the specific needs. For example, elements for
controlling execution duration have been designed (elements
SetTimer and CheckTimer that can be attached to a flow). The
PAD editor has to be a part of a bigger information system for
document flow management (a simplified BPM suite), so services
providing interconnection between the system and the editor were
needed. For example, a PAD model needs to be imported in a

database where the information system can, for instance, make a
trace for each client's project and then project this trace back to
the editor for the visualization. This requirement was in some way
similar to the business process monitoring performed, e.g., in
ARIS [7] where groups of reasonably selected instances can be
monitored. They go even further – a process mining is introduced
to automate the monitoring process. So again – the problem has
been known for some time already, but here we are trying to solve
it by the means of a DSL instead of a universal language. Also,
we do not need such powerful features providing the whole
mining process. Instead, a very simple solution for business
process monitoring was requested here.

The other domain specific language (and tool) we have developed
is an editor for business processes in the State Social Insurance
Agency (further – SSIA). Since users' habits were to be taken into
account, this language syntactically is closer to BPMN. Again,
specific services needed to be satisfied by the tool, three of which
are the most worth mentioning:

• Online collaboration with a relational database – the searching
for information in a database was to be combined with the
graphical tool. The use case of that was a possibility to
browse for normative acts during the diagram design phase –
the normative acts are stored in a database and need to be
accessed from the tool.

• Users wanted to start using the tool as soon as possible – even
before the language definition has been fully completed. That
means we need to assure the preservation of user-made
models while the language can still change slightly. So the
DSL evolution over the time is an issue to be considered.

• The tool must be able to generate some kind of reports from
the visual information, preferably – in the format of Microsoft
Word. Moreover, some text formatting possibilities must be
provided in the tool, e.g., by ensuring the rich text support to
input fields.

Besides those, some more minor issues were highlighted during
the DSL design phase, but we are not going to cover all of them
here due to the space limitation.

It must be mentioned that, when designing languages, the main
emphasis was put on the fact that processes must be easy
perceived by the user. At the same time, however, languages had
to be suitable for serving as process management languages
without any changes. Since languages have been designed in such
a manner, it is possible to integrate them into a full-scale BPM
suite later. There the process definitions will be used to manage
the document flows in a typical to BPM manner.

3. IMPLEMENTATION BACKGROUND
3.1 General ideas
We have used our metamodel-based Graphical Tool-building
Platform GrTP [8] to implement the domain specific languages
PAD and SSIA. The recent version of GrTP is based on principles
of the Transformation-Driven Architecture (TDA, [9]). In this
Section, the key principles of the TDA and GrTP as well as their
applications in DSL implementation are discussed.

3737

Figure 1. The Transformation-Driven Architecture framework filled with some interfaces.

3.2 The Transformation-Driven Architecture
The Transformation-Driven Architecture is a metamodel-based
approach for system (in particular, tool) building, where the
system metamodel consists of one or more interface metamodels
served by the corresponding engines (called, the interface
engines) and the (optional) Domain Metamodel. There is also the
Core Metamodel (fixed) with the corresponding Head Engine.
Model transformations are used for linking instances of the
mentioned metamodels (see Fig. 1).

The Head Engine is a special engine, whose role is to provide
services for transformations as well as for interface engines. For
instance, when a user event (such as a mouse click) occurs in
some interface engine, the Head Engine may be asked to call the
corresponding transformation for handling this event. Also, a
transformation may give commands to interface engines. Thus,
the Core Metamodel contains classes Event and Command, and
the Head Engine is used as an event/command manager.

Since it has been published in [9], we won’t go into details about
TDA here. Instead, we will just outline the main technical
assumptions for TDA in order to set the background:

• The model data are stored in some repository (like EMF [10],
JGraLab [11] or Sesame [12]) with fixed API (Application
Programming Interface).

• The API of the repository should be available for one or more
high-level programming languages (such as C++ or Java), in
which interface engines will be written.

• Model transformations may be written in any language (for
instance, any textual language from the Lx family [13] or the
graphical language MOLA [14] may be used). However, the
transformation compiler/interpreter should use the same
repository API as the engines.

• When a transformation is called, its behavior depends only on
the data stored in the repository.

• Only one module (transformation or engine) is allowed to

access the repository at the same time. Concurrency and
locking issues are not considered.

We have developed a, so called, TDA framework which
implements the principles of the TDA. The TDA framework
contains one predefined engine – the head engine – and the
repository (we are using our very efficient in-memory repository
[15] with a fixed API being available from the programming
language C++ in which engines are to be written). Other interface
engines may also be written and plugged-in, when needed. The
TDA framework is common to all the tool building platforms
built upon the TDA. The framework is brought to life by means of
model transformations. One can choose between writing different
transformations for different tools and writing one configurable
transformation covering several tools.

Actually, one more layer is introduced between the model
transformations and the repository. It is called the repository
proxy and it contains several features being common for all tool
building platforms built upon the TDA. The most notable of them
is perhaps the UNDO/REDO functionality – since it is embedded
in the proxy, engines and transformations do not have to consider
the UNDO and REDO actions. All the commands are intercepted
by the proxy and then passed further to the repository.

3.3 The TDA-based Tool Building Platform
GrTP
Next, we have developed a concrete tool building platform called
the GrTP by taking the TDA framework and filling it with several
interfaces. Besides the core interface, five more interfaces have
been developed and plugged into the platform in the case of
GrTP:

• The graph diagram interface is perhaps the main interface
from the end user’s point of view. It allows user to view
models visually in a form of graph diagrams. The graph
diagram engine [16] embodies advanced graph drawing and
layouting algorithms ([17, 18]) as well as effective internal
diagram representation structures allowing one to handle the

3838

Figure 2. The way of coding models.

visualization tasks efficiently even for large diagrams.

• The property dialog interface allows user to communicate
with the repository using visual dialog windows.

• The database interface ensures a communication between the
model repository and a database.

• The multi-user interface performs the task of turning a project
into a multi-user project and considers other issues regarding
that.

• The Word interface helps user to establish a connection to
Microsoft Word and to send data to it.

The final step is to develop a concrete tool within the GrTP. This
is being done by providing model transformations responding to
user-created events. A fair part of these transformations usually
tend to be universal enough to be taken from our already existing
transformation library instead of writing them from scratch
(transformations responding to main events like creating new
element, reconnecting line ends, making a mouse click or double
click etc., as well as such platform specific transformations as
copy, cut, paste, delete, import, export, etc.). In order to reduce
the work of writing transformations needed for some concrete
tool, we introduce a tool definition metamodel (TDMM) with a
corresponding extension mechanism. We use a universal
transformation to interpret the TDMM and its extension thus
obtaining concrete tools working in such an interpreting mode.
This is explained a bit more in the next subsection.

3.4 The tool definition metamodel and its
usage for building concrete tools
First of all, we explain the way of coding models in domain
specific languages. The main idea is depicted in Fig. 2. As can be
seen here, the graph diagram metamodel (conforming the one
from Fig. 1) is complemented with types turning a general graph
diagram into a diagram of some concrete tool (e.g., some business
process editor). A model here is a set of graph diagrams every one

of which consists of elements – nodes and edges. An element in
its turn can contain several compartments. At runtime, each visual
element (diagrams, nodes, edges, compartments) is attached to
exactly one type instance (see classes DiagramType,
ElementType, CompartmentType) and to exactly one style
instance. Here, types can be perceived as an abstract syntax of the
model while the concrete syntax being coded through styles.

Now, about the proposed tool definition metamodel. The main
idea of the tool definition metamodel together with the extension
mechanism is presented in Fig. 3. Apart from types, the tool
definition metamodel contains several extra classes describing the
tool context (e.g., classes like Palette, PopUp, ToolBar, etc.).
Moreover, the tool definition metamodel contains, so called,
extension mechanism providing a possibility to change behavior
of tools represented by the metamodel. The extension mechanism
is a set of precisely defined extension points through which one
can specify transformations to be called in various cases. One
example of a possible extension could be an
“AfterElementCreated” extension providing the transformation to
be called when some new element has been created in a graph
diagram. Tools are being represented by instances of the TDMM
by interpreting them at runtime. Therefore, to build a concrete
tool actually means to generate an appropriate instance of the
TDMM and to write model transformations for extension points.
In such a way, the standard part of any tool is included in the tool
definition metamodel meaning that no transformation needs to be
written for that part. Instead, an instance of the TDMM needs to
be generated using a graphical configurator. At the same time, the
connection with the outer world (e.g., a database or a text
processor) is established by writing specific model
transformations and using the extension mechanism to integrate
them into the TDMM.

3.5 Benefits of the TDA
The main advantage of the transformation-driven architecture is
its idea of providing explicit metamodeling foundations in
building tools for domain specific languages. Although there

Graph Diagram Metamodel

GraphDiagram
caption :String

GraphDiagramType
name:String

Element

Node Edge

Compartment
value:String

ElementType
name:String

NodeType EdgeType

CompartmentType
name:String

Pair

ElementStyle
lineColor:Integer
...

NodeStyle
width: Integer
height: Integer
bkgColor: Integer
shape: Integer
...

EdgeStyle
startShape: Integer
middleShape: Integer
endShape: Integer
lineType: Integer
thickness: Integer
...

GraphDiagramStyle
layoutMode:Integer

CompartmentStyle
fontSize: Integer
fontColor: Integer
...

*

*

start1

end
1

* *

1..*

start1

end
1

*
1

*
1

*
1

*

*

0..1
*

0..1
*

0..1
*

*

refinement
0..1

*

refinementType
0..1

0..1
1

0..1
1

0..1
1

3939

Figure 3. Basic principles of the tool definition metamodel.

already exist some metacase tools accepting the idea of DSL tool
definition by a metamodel (e.g., Eclipse GMF [19] and Microsoft
DSL Tools [20]), they generally offer only some configuration
facilities allowing definition of a DSL tool in a user-friendly way
while a direct access to metamodels is either limited or provided
using some low level facilities. The pace-maker of the field is
perhaps the Metacase company whose product MetaEdit+ [21]
provides Graph, Object, Property, Port, Relationship and Role
tools to ensure the easy configuration of concrete domain specific
tools. Another well-known example is Pounamu/Marama [22, 23]
which offers shape designer, metamodel designer, event handler
designer and view designer to obtain a DSL tool. On the contrary,
the TDA is completely transparent meaning a user can have a free
read and write access to its metamodels and their instances. Of
course, extra services like graphical configurator of a DSL tool
can be offered as well, but the user is not forced to use it. It must
be underlined that, if following the TDA, the definition of a
concrete domain specific tool only involves developing model
transformations and nothing else. The TDA follows the ideas of
the MDA [24] stating that the common part of syntax and
semantics can be formalized through a metamodel. The whole
specific part at the same time can be put into model
transformations.

The other notable advantage of the TDA is its ability to get in
touch with the outer world. This is being done by adding new

engines to the TDA framework. Since there is no need to go deep
in implementation details of other engines or other parts of the
TDA, this is considered to be a comparatively easy task.

4. The development of PAD and SSIA using
GrTP
Besides the trivial part – generation of a tool definition
metamodel’s instance forming the graphical core of the tool – we
decided to develop three more engines we did not have at that
moment. Those engines were the database engine, the multi-user
engine and the Word engine. Since the TDA framework provides
a possibility to plug in new interfaces (engines together with their
respective metamodels) easily, the development and integration of
the engines was done quite harmlessly. We must admit there were
some difficulties to integrate the multi-user interface, however
they were mostly of technical nature – the tool definition
metamodel had to be changed a bit as well.

Next, according to the extension mechanism, some specific
transformations needed to be written in order to put a life into the
static tools – to make them dynamic. These transformations
referred to generating, for instance, the correct items for combo
boxes, to changing items in context menus dynamically, to
assigning the correct styles to visual elements (although this can
be partly specified in the static part as well) etc. These
transformations had to be written and attached to appropriate

Tool Definition Metamodel: The Core (Simplified) Tool Definition Metamodel:
Extension Mechanism (Simplified)

ElemStyle
name:String
...

PaletteLine

Palette

PaletteBox

Tool
name:String

ElemType
name:String

EdgeType

Pair
startMultiplicityConstraint:Multiplicity
endMultiplicityConstraint:Multiplicity

NodeType
multiplicityConstraint:Multiplicity

CompartType
name:String
startValue:String
isInElement:Boolean
isInDialog:Boolean
isEditable:Boolean

GraphDiagramStyle
layoutMode:Integer
...

PaletteElement
name:String
picture:String

Before
Element
Deleted

After
Element
Modified

After
Element
Created

After
Compart
Created

After
Compart
Modified

AfterClick
ComboBox

ListBox

CompartStyle
fontSize:Integer
fontColor:Integer

PopUpElement
name:String
isVisible:Boolean

GraphDiagramType
name:String Keyboard

Toolbar

ToolbarElement
name:String
picture:String
isVisible:Boolean

Key
name

PopUp

Transformation
name: String

PredefinedToolbarElement AdvancedToolbarElement

 *

defaultStyle
 1

 1

 *

oElType
optionalStyle 1
 *

dElType
defaultStyle 1
 0..1

start

 *
 1..*

{ordered}
 *

{ordered}
 *

end

 *

 1..*

start
 1
end
 1

 1..*

focusStart 0..1

dCompStyle

defaultStyle

 1

 0..1

oCompStyle

optionalStyle

 1

 *

 *

 *

first
 1

{ordered}
 *

choiceItemsGenerator
 0..1

{ordered}
*

{ordered}
 *

{ordered}
 *

 0..1

 0..1

{ordered} *

{ordered}
 *

RClickElement
 0..1

 1

source

target

 *

 0..1

new

 1

 1..*

new

 1

 1

 0..1

4040

Figure 4. Browsing for normative acts stored in the
database from the tool’s dialog window.

Figure 5. A rich text component.

extension points thus forming the concrete tool.

The most challenging part of the development of tools was
perhaps the ensuring interconnection between the tool and a
relational database. Since the graphical tool was meant to be just
one piece of the whole information system’s software, it was
already clear before that this problem will have to be faced sooner
or later. The issue has been classic in the world of workflows –
some business process has been being modeled in a tool and
passed to a relational database afterwards. The information
system would then take care of applying the process to individual
clients and storing the history of how far each client has gone
through the process. On request, the tool should be able to
visualize the history for some particular client as well.

The classic solution of the problem advises using the ORM
method (Object-relational mapping, [25]) stating that a simple
mapping between the model repository and the database must be
made and a generation of metamodel instances and/or database
records must be performed. However, this solution was not
acceptable in our case because of its limitations in the process of
generation of instances as a response to a query for the database –
the types or return tables must be known before. At the same
time, the SSIA project required the possibility of receiving answer
to an arbitrary query.

Our solution included turning a part of the metamodel storing the
business processes together with their respective element types
and styles (see Fig. 2) into a database schema. That was a pretty
straightforward job – if abstracting from the details, the database
was made to store data in RDF format [26]. So, all the database
engine had to do was generating the contents of the database from
the model and vice versa. Next, a translator was made in an
information system part of the system carrying out a connection
between the RDF-type database and the actual database of the
system. Thus, by introducing such an intermediate layer between
the tool and the actual database, the database engine was to be
written once and for all – it does not depend on the actual
database schema.

Eventually, the tools obtained in GrTP satisfied all the needs
customers had highlighted, including the ones mentioned in
Section 2. The connection to the relational database provided by
the database engine ensured fast information searching
capabilities in database in combination with the tool. Thus, an
easy browsing for information stored in the relational database (in

this case – normative acts) was possible from the tool interface
(see Fig. 4). Next, an add-only DSL evolution comes at no extra
cost if using the tool definition metamodel to develop tools in
GrTP. Indeed, if the DSL demands some more element or
compartment types to be added, we just add new instances to
ElementType or CompartmentType classes in the model coding
metamodel. Since it has nothing to do with already existing types
of the language, existing models remain unmodified. This can be
achieved because of the fact that we store the DSL definition in
the same modeling level with the actual models – the connection
between a model element and its definition is obtained without
crossing levels. However, if changes in DSL are not of add-only
type, some extra work needs to be done – elements and
compartments of old types may need to be either deleted of
relinked to some new types (see dashed associations in Fig. 2). In
our framework, all this work can be done by model
transformations. It must be mentioned that add-only changes are
comparatively easy to implement in most metacase tools,
although not in all. For example, it is still a quite tough problem
in tools based on JGraLab repository [11].

Finally, a report generator was built using the Word engine. It
introduces a simple graphical language allowing one to specify
the information to be put in a Microsoft Word document. In the
engine, several extra services were implemented as well. For
example, a Word window was embedded in a property dialog
windows generated by the property dialog engine and providing a
possibility for a user to create rich text compartment values as
was requested by the customer (see Fig. 5).

5. CONCLUSIONS
In this paper, we described our approach how to develop new
domain specific languages and tools for supporting them. A short
description of the transformation-driven architecture and its
framework was outlined as well. The architecture was illustrated
in its application in the graphical tool building platform GrTP
upon which two concrete domain specific languages were
implemented.

It was mentioned that nowadays DSL is often to be only a part of
some bigger information system and the tool supporting it thus
must be able to communicate with the outer world. In fact, this
approach is only one of the possible solutions for the problem of
how to integrate the tool with other parts of an information
system. The other possible way is to develop so called business
process management suites in which all the necessary features are

4141

included. It involves also the issue of how to include fragments of
existing information systems into a tool environment. It is usually
done by turning components of the information system into a web
service thus providing an appropriate network addressable
application program interface for it.

Considering the issues mentioned above, our closest goal is to
develop a platform for building domain specific suites. One of the
possible domains for the approach could be suites incorporating
process and document management integrated with sophisticated
document generation procedures. Though large-scale expensive
solutions such as EMC Documentum exist here, a very
appropriate niche for small-scale, but logically sophisticated
DSL-based solutions could be document management in various
government institutions. The web service based approach will
ensure very tight integration of the DSL execution environment
with the rest of the suite including full access to databases.

6. REFERENCES
[1] J. F. Chang. Business Process Management Systems.

Auerbach Publications, 2006, pp. 286.
[2] UML, http://www.uml.org.
[3] BPMN, http://www.bpmn.org.
[4] BPEL, http://www.bpelsource.com.
[5] BizAgi, http://www.bizagi.com.
[6] Intalio, http://www.intalio.com.
[7] ARIS platform, http://www.ids-

scheer.com/en/ARIS_ARIS_Software/3730.html.
[8] J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L.

Lace, R. Liepins, A. Sprogis. GrTP: Transformation Based
Graphical Tool Building Platform. Proc. of Workshop on
Model Driven Development of Advanced User Interfaces,
MODELS 2007, Nashville, USA.

[9] J. Barzdins, S. Kozlovics, E. Rencis. The Transformation-
Driven Architecture. Proceedings of DSM’08 Workshop of
OOPSLA 2008, Nashville, USA, 2008, pp. 60–63.

[10] Eclipse Modeling Framework (EMF, Eclipse Modeling
subproject), http://www.eclipse.org/emf.

[11] S. Kahle. JGraLab: Konzeption, Entwurf und
Implementierung einer Java-Klassenbibliothek f¨ur
TGraphen, Diplomarbeit, University of Koblenz-Landau,
Institute for Software Technology, 2006.

[12] Sesame, http://www.openrdf.org, 2007.
[13] J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs. Model

Transformation Languages and their Implementation by

Bootstrapping Method. Pillars of Computer Science, LNCS,
vol. 4800, Springer-Verlag, 2008, pp. 130-145.

[14] A. Kalnins, J. Barzdins, E. Celms. Model Transformation
Language MOLA, Proceedings of MDAFA 2004, LNCS,
vol. 3599, Springer-Verlag, 2005, pp. 62-76.

[15] J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins,
M. Opmanis, K. Podnieks. Towards Semantic Latvia.
Communications of the 7th International Baltic Conference
on Databases and Information Systems (Baltic
DB&IS’2006), Vilnius, 2006, pp. 203-218.

[16] J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. A
Graph Diagram Engine for the Transformation-Driven
Architecture. Proceedings of MDDAUI’09 Workshop of
International Conference on Intelligent User Interfaces
2009, Sanibel Island, Florida, USA, 2009, pp. 29-32.

[17] P. Kikusts, P. Rucevskis. Layout Algorithms of Graph-Like
Diagrams for GRADE Windows Graphic Editors.
Proceedings of Graph Drawing ’95, LNCS, vol. 1027,
Springer-Verlag, 1996, pp. 361–364.

[18] K. Freivalds, P. Kikusts. Optimum Layout Adjustment
Supporting Ordering Constraints in Graph-Like Diagram
Drawing. Proceedings of The Latvian Academy of Sciences,
Section B, vol. 55, No. 1, 2001, pp. 43–51.

[19] A. Shatalin, A. Tikhomirov. Graphical Modeling Framework
Architecture Overview. Eclipse Modeling Symposium, 2006.

[20] S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific
Development with Visual Studio DSL Tools, Addison-
Wesley, 2007.

[21] MetaEdit+, http://www.metacase.com.
[22] N. Zhu1, J. Grundy, J. Hosking. Pounamu: a meta-tool for

multiview visual language environment construction. Proc.
IEEE Symposium on Visual Languages and Human Centric
Computing (VLHCC’04), 2004, pp. 254-256.

[23] J. Grundy, J. Hosking, N. Zhu1, N. Liu. Generating Domain-
Specific Visual Language Editors from High-level Tool
Specifications. 21st IEEE International Conference on
Automated Software Engineering (ASE’06), 2006, pp. 25-36.

[24] MDA Guide Version 1.0.1. OMG,
http://www.omg.org/docs/omg/03-06-01.pdf.

[25] C. Richardson. POJOs In Action. Manning Publications Co,
2006, pp. 560.

[26] Resource Definition Framework, http://www.w3.org/RDF.

4242

Use of a Domain Specific Modeling Language for Realizing
Versatile Dashboards

Ulrich Frank
ulrich.frank@uni-due.de

David Heise
david.heise@uni-due.de

Heiko Kattenstroth
heiko.kattenstroth@uni-due.de

Chair of Information Systems and Enterprise Modeling
University of Duisburg-Essen

Universitaetsstr. 9, 45141 Essen, Germany

ABSTRACT
In order to make performance indicators a useful instrument
to support managerial decision making, there is need to thor-
oughly analyse the business context indicators are used in
as well as their mutual dependencies. For this purpose, it is
recommended to design indicator systems that do not only
include dedicated specifications of indicators, but that ac-
count for relevant relationships. In this paper, a DSML is
proposed that enables the convenient design of consistent in-
dicator systems at type level, which supports various kinds
of analyses, and can serve as conceptual foundation for cor-
responding performance management systems, such as dash-
board systems. Furthermore, indicator systems may also be
used during run-time at the instance level to promote the
distinguished interpretation of particular indicator values.

Keywords
Domain-Specific Modeling Language, Enterprise Modeling,
Performance Management, KPI

1. MOTIVATION
In recent years, the increasing appreciation for performance
indicators has promoted the idea of systems that provide
users with performance related data. These systems, which
we refer to as ’Performance Management Information Sys-
tems’ (PMIS), are supposed to inform the individual user at
a quick glance about the performance of entities such as an
entire firm, specific business units, business processes, re-
sources, and IT services. Inspired by technical metaphors
such as ’cockpit’ or ’dashboard’, PMIS are more and more
considered as a general instrument to foster managerial ac-
tion, especially with respect to supporting, measuring, and
monitoring decisions. The design of a PMIS implies the con-
ception of indicators and systems of interrelated indicators
(’indicator systems’). Indicator systems are usually defined
by (top) management – with no regard of how they could
be represented in an information system.

Current PMIS, such as dashboards, predominantly focus on
the visualization of indicators that are considered to be rel-
evant for certain decision scenarios. For this purpose, dash-
board systems provide generic visualization ’gadgets’, e.g.,
speedometers, traffic lights, or bar charts, that are usually
applied to data originating from databases or files. However,
to design PMIS that effectively support mangerial decision
making, focusing on visualization only is not sufficient [3].
Instead, there is need to analyze what concepts are required
to structure and effectively support a targeted decision.

Moreover, the design of indicator systems is not trivial. Al-
ready the specification of an indicator does not only require
a profound understanding of the corresponding decision sce-
nario and the relations to other indicators, but also recom-
mends taking into account how an indicator affects manage-
rial decision making [16, 19]; if managers regard an indicator
as an end in itself, it will result in opportunistic actions that
are likely not compliant with the objectives of a firm. This
is even more important, because managers and other stake-
holders are incited to predominantly align their behavior
with specific (maybe mandatory) indicators and associated
target values only [12, 17, 20]. If PMIS do not adequately
address these challenges, they are likely to fail their purpose.

In this paper, we present an approach for PMIS that incor-
porates a domain-specific modeling language (DSML) for de-
signing expressive and comprehensible indicator systems as
core element. The DSML, called ScoreML, aims at promot-
ing transparency, especially with regard to counter dysfunc-
tional effects of indicators such as opportunistic behaviour.
Also, indicator systems created with the ScoreML serve as
a conceptual foundation for developing corresponding soft-
ware. In addition to this use at build-time, our approach
makes use of indicator systems at run-time as well, for ex-
ample, as a front end to instance level performance data.

The approach is based on a comprehensive method for en-
terprise modeling and consists of the following components:

• a domain-specific modeling method comprising a lan-
guage for modeling indicator systems – the ScoreML
– and a corresponding process model that guides its ap-
plication;

• a modeling environment implementing a ScoreML ed-
itor that is integrated with further editors for domain-
specific modeling languages that are part of the enter-
prise modeling method;

• a software architecture for PMIS, in which the modeling
environment constitutes the core component and that
allows for integration with existing information systems.

Figure 1 illustrates the components of the PMIS. In this pa-
per, we focus on the modeling language and its utilization
in the context of the envisioned systems architecture. The
other components are briefly discussed. The remainder is
structured as follows: We derive domain-specific require-
ments for PMIS in Section 2. The prospects of our approach
are illustrated in Section 3. The conceptual foundation, i.e.,

43 43

Figure 1: Components of the PMIS

meta-model and language architecture of the ScoreML, are
presented in Section 4; the architecture for a model-based
PMIS is envisioned in Section 5. Related work is discussed
in Section 6. The paper closes with an evaluation, conclud-
ing remarks, and an outlook on future work in Section 7.

2. PMIS: REQUIREMENTS
An analysis of the current practice of dealing with indicators
reveals a number of shortcomings. Based on these deficien-
cies, requirements for the domain-specific modeling language
as well as for the envisioned architecture of a PMIS, which
implements the DSML and integrates it with existing tools,
can be derived.

First, currently there is hardly support for systematically
creating and maintaining indicator systems available – indi-
cators or indicator systems that are suggested in pertinent
literature are usually described by informal concepts (e.g.,
[11, 15]). Hence, there is no linguistic support for guiding the
construction of coherent indicator systems. This is a severe
shortcoming: If an indicator system is partially inconsistent
– e.g., includes incomplete indicator descriptions, undocu-
mented dependencies, or even contradicting indicators – it
jeopardizes its very purpose.

Req. 1 – Design of Indicator Systems: The design of
consistent indicator systems should be promoted – if not
enforced.

Second, the interpretation of indicators is crucial for well-
founded decision-making. An adequate use of an indicator
system implies a knowledgeable interpretation of the num-
bers that represent an indicator. Otherwise, a focus on
’meeting the numbers’ (cf. [17]) may result in opportunistic
behaviour, promote misleading conclusions and unfortunate
decisions that – in the worst case – impede the overall en-
terprise performance.

Req. 2 – Business Context: To support the user with an
appropriate interpretation of indicators, the indicator sys-
tems should be enriched with relevant context information
to enhance the interpretation of indicators. This requires
not only offering concepts that represent indicators, but
also allowing for associating them with concepts that rep-
resent the business context (such as business processes).

Third, the utilization of indicator systems affects an enter-
prise and its employees at various – if not all – organizational
levels, e.g., from executives at the strategic level to business
units or IT experts at the operational level. The specific per-
spectives and levels of expertise vary among these groups of
stakeholders. For instance, a process manager will have ex-
pectations that are different from those of an IT manager or
an executive with respect to the types of indicators as well
as the levels of detail and abstraction.

Req. 3 – Stakeholders: Meaningful presentations at dif-
ferent levels of abstraction are required to satisfy the needs
of the multiple groups of prospective users. To foster an
intuitive use of the language, concepts should be provided
that these groups are familiar with.

Fourth, indicators used at different organizational levels are
usually interrelated in that an indicator at a higher organi-
zational level (e.g., strategic level) is often calculated from
indicators at lower organizational levels (e.g., operational
level). If not interrelated directly, indicator types can still
be related indirectly, especially if the objects they meaa-
sure are interrelated. Indicators, for instance, that measure
the performance of business processes might be dependent
on indicators measuring the performance of an information
system underlying these processes, and thus are indirectly
interrelated.

Req. 4 – Cross-Disciplinary Analyses: It should be pos-
sible to analyze interdependencies between indicators as-
sociated with different perspectives. This allows for mak-
ing decisions on a more profound information base and
for considering dependencies that go beyond the indica-
tor system itself. Note that this request corresponds to
the idea of the Balanced ScoreCard [12].

Fifth, supporting decisions requires particular indicator val-
ues, i.e., instance level data. There is a wide range of tools
that aim at preparing and presenting these values, e.g., from
dataware house to monitoring to reporting tools. However,
they usually do not support users in interpretation and as-
sessment of the presented values. Associating indicator val-
ues with the corresponding conceptual level – i.e., with the
indicator system they are instantiated from and that are
integrated with the relevant business context (cf. Req. 2) –
contributes to a more sophisticated appreciation of indicator
values.

Req. 5 – Instance Data: Tools for modeling indicator
systems should be integrated with systems that manage
corresponding instance level data (or integrate a corre-
sponding component). It should be possible to navigate
from the instance level to the conceptual level – and vice
versa.

Sixth, PMIS usually visualize indicators in various ways.
However, the cognitive styles of the involved users differ.
Furthermore, different decision scenarios require different vi-
sualizations [2, 4]. In some cases, already the fact that an
indicator is over (or below) a pre-defined threshold matters.
In other cases, the focus is on performance over time, or
the measured indicator needs to be compared to pre-defined
thresholds.

44 44

Req. no. Description of Requirement

Req. 1 Promote design of consistent indicator systems
Req. 2 Offer concepts for business context
Req. 3 Provide abstractions for different stakeholders
Req. 4 Enable cross-disciplinary analyses
Req. 5 Integrate type and instance level
Req. 6 Enable user-specific visualizations

Table 1: Summary of Requirements

Req. 6 – Visualization: Different stakeholders and differ-
ent decision scenarios demand for versatile graphical rep-
resentations of indicators. Therefore, it should be possible
to adapt graphical visualisations to the individual needs of
stakeholders without compromising the semantics of the
represented concepts.

Table 1 summarizes the requirements for a performance man-
agement information system.

3. PROSPECTS OF THE APPROACH
The requirements pose the demand for an approach that
supports the design and utilization of indicator systems in a
systematic and structured manner. Conceptual models seem
to be suitable, since they promise to reduce complexity by
focusing on those aspects that are essential – and abstract
from other. In this regard, the ScoreML promises more
consistent indicator systems and allows for various analy-
ses that – without such a support – a user can hardly per-
form. In the following, we illustrate the envisioned use of
the DSML for designing and utilizing indicator systems at
build-time as well as its potential for being leveraged as a
’dashboard’ during run-time.

3.1 Focus on Build-Time
Users design indicator systems with the ScoreML by choos-
ing indicators they consider relevant and adquate to support
the targeted decision. At first, these indicators will be de-
scribed on a more abstract level that is usually hardly quan-
tifiable, e.g. “competitiveness”. They can then refine these
high-level indicators until they get down to a set of indica-
tors that allow for expressive quantifications. By associating
them to the objects they refer to, i.e., the reference objects
they measure, the indicators are enriched with additional
context information (cf. Req. 2). Once the indicator system
is designed, (yet undiscovered) interdependencies among in-
dicators can be elicited.

Figure 2 exemplifies this procedure for an IT Manager. It
shows an indicator system model (top) and an excerpt of
integrated IT resource/business process models (bottom).
In the indicator system model, a few indicator types (at-
tributes are omitted) for an IT-related indicator system are
displayed. The indicator type efficiency of IT department is
calculated from IT costs and IT operations efficiency (calcu-
lation rule is omitted, too). Some indicator types are asso-
ciated to reference objects (an IT resource and two business
process types). Here, different perspectives on an enterprise
are accounted for: Two indicator types that are not directly
interrelated (IT costs from an IT perspective and average
throughput time from an operations perspective’s indicator

IT costs [€]

IS
 &

 B
us

in
es

s
In

di
ca

to
r S

ys
te

m

Efficiency of IT
department [%]

Average throughput
time [minutes]

< Business Process A >

IT operations
efficiency [%]

OperationsIT

IT

< Business Process B >
uses

Business Process IT Resource:
Desktop PC

Legend

Computed-from Relationship Measures Relationship

IT costs [€] Indicator (Type)

uses

Figure 2: Short example including notation

system) are indirectly related; hence, an IT manager focus-
ing on improving (e.g., reducing) IT costs only might, in the
end, impede the performance of a related business process
type’s throughput time. If a timely execution of the process
is more important than the IT costs of this resource, the ad-
ditional business context information (cf. Ref. 2) and the ca-
pability to navigate through the other models (e.g., business
process or IT resource models; cf.Req. 4) fosters decision-
making (in this case of the IT manager). With regard to the
ScoreML, the IT Manager could establish a specific asso-
ciation type between IT costs and average throughput time
(e.g., ’influences’) that visualizes the potential cause and ef-
fect relationship between these indicator types for further
utilizations of the indicator system.1

3.2 Focus on Run-Time
Besides using models of indicator systems and the related
models of the business context at build-time, they can also
be used at run-time. A simplified example of an application
scenario is illustrated in Figure 3.

A process owner, who is responsible for an online sales pro-
cess, uses his personal dashboard to monitor the perfor-
mance of the process. While the daily revenue corresponds
to his expectations, the average throughput time (time be-
tween ordering and notification of the customer that the
order has been approved) is exceeding its threshold. As a
consequence, the currently running (active) instances of this
process are affected, which are depicted in the lower section
of Figure 3a.

To get a better understanding of the reasons for the dis-
satisfactory performance, he investigates (’drill-down’) the
indicators on which the critical indicator average throughput
time depends, i.e., is calculated from. An example model of
a business process Online Sales along with the required IT
resources is displayed in Figure 3b.

The process payment activity is not functioning properly be-
cause the required part of the ERP-system is not available.
The process owner escalates the problem to the IT staff, e.g.,

1Further, more extensive examples of indicator system mod-
els by means of ScoreML can be found in [7] and at
http://openmodels.org/node/190.

45 45

0
50
100
150
200
250
300
350
400
450

09
:5
5

10
:0
0

10
:0
5

10
:1
0

10
:1
5

10
:2
0

10
:2
5

10
:3
0

10
:3
5

10
:4
0

10
:4
5

10
:5
0

10
:5
5

10 8 9 5 10 8

5 3 2 10 5 3
2

1 0
5 10

2

0

10

20

30

CW
28

CW
29

CW
30

CW
31

CW
32

CW
33

Database Server

Bu
si

ne
ss

In
di

ca
to

r
Sy

st
em

Average throughput
time [minutes]

Operations

depends on

In
st

an
ce

s

Daily Renue [$]

Finance

#147‐090810‐10:53:58#145‐090810‐10:49:23

#148‐090810‐10:55:01
#146‐090810‐10:52:11

Online Sales

319800
302088

246000

186960
221400

3.8 4.8 5.8 6.8 7.8

60
30

Bu
si

ne
ss

process ordercheck availability process payment

product in stock

shopping
completed

order processed

ERP System

...

IS

Average throughput
time [minutes]

Operations

In
di

ca
to

r
Sy

st
em

0

10

20

30

40

50

60

70

80

09
:5
5

10
:0
0

10
:0
5

10
:1
0

10
:1
5

10
:2
0

10
:2
5

10
:3
0

10
:3
5

10
:4
0

10
:4
5

10
:5
0

10
:5
5

IS
Bu

si
ne

ss
In

di
ca

to
r

Sy
st

em

Response Time [ms]

Operations

Incidents [#/week]

Operations

Online Sales CRM

Credit Card
Checking
(external)

Application Server

Backup

Network

Service

Firewall

ERP System

depends on

(a

(b

(c

0
10
20
30
40
50
60

0

10

20

30

40

50

Figure 3: Dashboard for an Online Sales Process

through a ticket that refers to the particular business process
and the malfunctioning IS. A member of the IT staff receives
a notification about the incident. Hence, he uses his dash-
board to assess the business impact (e.g., how many business
processes are impacted? What is the loss of revenues to be
expected in case of an outage?) of the incident. An ex-
cerpt of a model of the ERP system is displayed in Figure 3c
along with corresponding indicators. The service credit card
checking is offered by an external partner and securely ac-
cessed through a firewall. Obviously, the connection is not
stable, i.e., has a high response time. Furthermore, the fire-
wall was subject of several severe problems (’incidents’) in
the past weeks. Based on the information available, the user
can decide what to do next, e.g., contact the vendor of the
firewall and demand for a satisfactory solution.

4. MODEL-BASED PMIS
The ScoreML is based on a formal syntax and precise
semantics, which provides two advantages over non-formal
or general purpose approaches: First, it effectively supports
and constrains users to build consistent and syntactically
correct models (cf. Req. 1) as well as it facilitates conve-
nient, intuitive, and secure modeling. Second, a DSML
enables various kinds of analyses and transformations in-
cluding code generation for corresponding software (cf.[13]).
Furthermore, the ScoreML comprises a graphical notation
with specialized, interchangable icons, which fosters com-
munication between stakeholders with different professional
backgrounds (cf.Req. 3).

4.1 Language Architecture
The approach we chose to develop the DSML is to enhance
an existing method for enterprise modeling (EM) – the multi-
perspective enterprise modeling (MEMO)-method [5] – by
concepts and further components for designing and utilis-
ing indicator systems. MEMO consists of an extensible set
of domain-specific modeling languages meant to model dif-
ferent aspects of an enterprise, such as corporate stratetgy
(with the Strategy Modeling Language, SML; [8]), business
processes (Organization Modeling Language, OrgML; [5]),
resources (Resource Modeling Language, ResML; [10]), or
IT resources (IT Modeling Language, ITML; [14]). MEMO
is multi-perspective since it provides different views on var-
ious aspects of an enterprise. The MEMO languages are
integrated in two ways (cf. [6]): First, they are integrated by
a common meta meta model (M3), so that the DSMLs are
based on the same language specification (meta language).
Second, they share common concepts at the meta level (M2),
which enables the integration of different perspectives (and
models) addressed by each DSML (e.g., a meta concept
’business process’ in OrgML and ITML).

Figure 4 illustrates the language architecture of MEMO and
the interrelations between the DSMLs and the correspond-
ing models at type level (M1). Integrating the proposed
DSML with the MEMO framework allows to benefit from a
variety of existing modeling languages. Thereby, it is possi-
ble to associate indicator systems with models of the busi-
ness context (cf.Req. 2) and representations different groups
of stakeholders are familiar with (cf. Req. 3). Furthermore,
the integration of the models provides a foundation to en-
able cross-disciplinary analyses that span various perspec-
tives (cf. Req. 4).

46 46

Figure 4: MEMO Language Architecture

4.2 Language Specification: ScoreML
The DSML is specified in a meta model using the Meta
Modeling Language MML (cf. [6]). Figure 5 shows an ex-
cerpt of the ScoreML’s meta model and depicts its main
concepts. The specification of the language faced a number
of challenges. Three important issues are addressed below.

First, ScoreML has to provide the users with a precise
conception of indicators. From a modeling perspective, an
indicator can be an attribute of an object, e.g., ’IT costs’ of
a piece of hardware; an aggregation of attributes of a collec-
tion of objects, e.g., the sum of ’IT costs’ of all IT resources;
or it can represent a snapshot of certain states over time,
e.g., ’Average monthly IT costs’. In order to provide the
user with convenient modeling concepts, we decided to intro-
duce a specific abstraction rather than regarding indicators
as attributes of objects or object collections. Such a concep-
tion includes core attributes and a differentiated conception
of relationships between indicator types. This is realized by
the meta type Indicator that comprises predefined attributes
(e.g., name and description, purpose, potential bias) and a
set of self-reflexive association types (e.g., computed from or
similar to). We further introduced the association type Cus-
tomizedRelationship that enables users to qualify additional
relations between indicators – for instance, an indicator can
have an effect on another indicator (cf. Section 3.1). Addi-
tional customized attributes and non-’1..1’-associations can
be realized by the meta types ’IndicAttributes’ and ’Indi-
cLink’.2

The second decision pertains to the flexibility and adapt-
ability of indicators. The ScoreML has to allow users for
adapting indicators to their individual needs and, further-
more, enrich indicators with additional semantics concern-
ing the context they are used in. The former is addressed by
distinguishing the concept indicator into the meta types In-
dicator and SpecificIndicator : While instances of Indicator
represent generic information about an indicator type, Speci-
ficIndicator allows users to assign this indicator type to spe-
cific reference object types, e.g., an indicator type ’average
throughput time’ assigned to ’business process type A’ and
to ’business process type B’, including different values in the
attributes benchmark, (avg.) value etc. In this context, the
meta type Threshold allows for defining user-specific thresh-

2Note, the meta model at hand is a simplification due to
the given restrictions of this paper. The full version can be
found at http://openmodels.org/node/190.

olds and corresponding notifications for a SpecificIndicator.
This enables users to develop their individual ’performance
dashboard’ that includes indicators, thresholds, correspond-
ing notifications and visualizations, and that fits to their
personal cognitive style (cf. Req. 6). The latter – the need
for additional semantics – is tackled by the meta types Ref-
erenceObject, which is a surrogate for meta types like Busi-
nessProcess, Resource, Product etc., and DecisionScenario,
which enables the mapping of indicator types to scenario
types (e.g., ’assessment of IT resources’). Note, the surro-
gate serves to illustrate the integration of ScoreML with
the other MEMO languages: An indicator can be assigned
to each (reasonable) meta type in one of the other DSMLs,
which is the foundation for performing cross-disciplinary
analyses. The re-use of concepts from other languages is
denoted in the meta model with a rectangle at the con-
cepts headers, including information about the origin (see
the color legend in Figure 5).

Third, it is required to differentiate between types and in-
stances of indicators: An indicator system contains types
of indicators, while indicators that actually measure perfor-
mance are instances. Especially with regard to Req. 5, it
would not be satisfactory to neglect such instance level fea-
tures. For example, a specific indicator type has a ’value’
applying to a business process type (e.g., an average over
all instances of this business process type); instances of this
specific indicator type have a particularValue, describing the
concrete value of a (projection of) process instance(s), e.g.,
at a certain time. To address this challenge, we make use
of the concept ’intrinsic feature’ [6]. An intrinsic feature
– marked in the meta model with an ’i’ printed white on
black – is a type, an attribute or an association defined on
meta level, but that reflects a characteristic we associate
only to the instance level. Hence, although defined in the
meta model this feature is not instantiated at type level but
at instance level.

5. CORRESPONDING ARCHITECTURE
The outlined vision – designing and utilizing indicators in
an versatile dashboard based on a DSML – requires an ar-
chitecture for the PMIS that conforms to the requirements
identified in Section 2.

First, there is need for a modeling environment that sup-
ports the user in designing and maintaining consistent indi-
cator systems and, thus, implements the ScoreML. Figure 6
illustrates the modeling environment in the context of the
PMIS architecture. It comprises a modeling editor for the
ScoreML as well as – with regard to the integration with
an enterprise modeling method – modeling editors for the
other modeling languages.

Although the editors are separate, the underlying meta mod-
els are integrated (cf. Section 4). Thereby, the modeling en-
vironment maintains just a single model (’common model
repository’), and the editors act on a defined set of concepts
– i.e., parts – of this model. Hence, the ’surrogates’ for ref-
erence objects in Fig. 5 are replaced by concrete meta types
of other (MEMO) languages, like meta types for business
processes or resources as indicated in the short example in
Figure 2. This facilitates, e.g., cross-model integrity checks,
since reference objects in the indicator system model refer-

47 47

SpecificIndicator
benchmark : Decimal
value : Decimal
availability : String
datasource : String
 particularValue : Decimal
 measuredAt : Date

BusinessProcess

IndicatorCategory
name : String
description : String

Indicator
name : String
description : String
purpose : String
examples : String
presumptions : String
preferredVisualisation : String

ReferenceObject

Resource Product

OrganizationalRole
name : String
responsibility : String

i
i

computed from

1,1

of kind

similar to

us
ed

 in

surrogate for

in charge ofpart of

pa
rt

of

valid for

measures
0,1

0,1

1,1

context SpecificIndicator inv:
self.decisionScenarios->forAll (d |
self.indicator.decisionScenarios->includes: d)

C1
used in

CustomizedRelationship
name : String
relationSpecification : String
presumptions : String 1,1

affecting via

DecisionScenario
name : String
triggeredBy : String
challenge : String
successFactors : String

affected by

1,1

measuresi

notifies

OrgML

ResML and ITML

ProdML

Color legend for concepts reused
from other MEMO languages:

i
Further symbols:

’Intrinsic Feature’

0,*

0,10,*

1,10,*

0,*

0,*

0,*0,*

0,*

0,*

0,*

0,*

0,*

0,*

0,10,*

0,1

0,*

0,*

0,*

1,1

Threshold
thresholdValue : String
action : String
severity : String

i

Figure 5: Excerpt of the ScoreML’s meta model

ence to existing types in the model repository. Besides this
model-based support during build time, the architecture also
encourages using the models during run time. For instance,
the language architecture of MEMO allows for navigating
between different models (cf.Req. 4). Based on associations
between concepts – i.e., instantiations of the associations
between the corresponding meta types – it is possible to
navigate from one model (e.g., an indicator system) to an-
other (e.g., a resource model) by following the association
between an indicator type and its reference object (in this
case a resource type). The different modeling editors and the
depicted language architecture are implemented in a model-
ing environment – called MEMO Center NG.3

Second, the tool requires a specific component for visualizing
instance values of indicators (cf. Req. 5), e.g., by using the
typical visualizations such as bar charts or traffic lights. In
the architecture, it is represented by the ’dashboard’ com-
ponent. This component can be seen as visualization layer
on top of the models (cf. [1, 4]). The proposed architecture
poses one pivotal challenge that has to be addressed: The
retrieval of instance values that are to be visualized on top of
the models requires a connection to the information systems
that manage the instance values.

On the one hand, the dashboard component can revert to
historical data (e.g., for trend analysis) that are often stored
in a data warehouse (DW). This data access requires to en-
rich an indicator type with a reference to the data source
(e.g., tables in the DW) that contains its instance informa-
tion. An example for a such a reference could be

’Select * from Database1.ITCosts

where DateTime between <BeginDate> and <EndDate>’

which retrieves the IT costs of a certain time period.

On the other hand, the instance data can be retrieved from

3More details on MEMO Center NG can be found
in [6] and at http://www.wi-inf.uni-duisburg-
essen.de/fgfrank/memocenter-en

operational information systems such as a Workflow Man-
agement Systems (WfMS), which contain information about
process instances, an Enterprise Resource Planning (ERP)
System, which holds information about the business ob-
jects such as orders, or a Configuration Management Data-
base (CMDB) that is used to manage information of the IT
resources in an enterprise.

Figure 6: Proposed Software Architecture

The approach is complemented by an extensible set of refer-
ence indicator systems (’reference models’) that are recon-
structions of existing indicator systems (e.g., the ’DuPont’
indicator system), and an indicator library that provides def-
initions of typical business performance indicators. Both
can be loaded into the modeling environment as ’indicator

48 48

systems building blocks’, which serve as a basis for an en-
terprise specific adaption. More details on the purpose of
reference indicator systems and the indicator library can be
found in [7].

6. RELATED WORK
There are various information systems to support perfor-
mance management. However, these tools often focus on
the presentation of quantitative data, and they do not pro-
vide the user with additional information about indicators or
their semantics (like their business context or effect-relations
to other indicators; cf. Req. 1 & 2). In this regard, data
warehouses store data that is extracted, transformed, and
loaded from operational information systems to enable var-
ious analyses with respect to certain dimensions (like time,
region, product) [9]. Thus, data warehouses provide a valu-
able data source for indicator instances (cf. Fig. 6). Unfor-
tunately, data in data warehouses remain on a low level
of semantics. Few approaches exist that try to augment
data warehouses with additional context information. For
instance, extensions of the EERM [21] or DSMLs [22] exist
that allow for modeling dimensions for multi-dimensional
structure of data and the navigation between these dimen-
sions, e.g., roll-up or drill-down; hence, they complement
our approach with respect to creating and maintaining the
data warehouse underlying the PMIS architecture.

There are some commercial tools available (e.g., ARIS4,
ADOscore5) that also offer concepts for specifying indica-
tors and – to some extent – allow for assigning them to con-
cepts that represent the business context. However, their
language specification is usually not available, and thus the
concepts underlying the tool (i.e., the meta models) have to
be reconstructed. As far as we can assess those tools, only
ADOscore contains a more elaborate conception for indica-
tors with respect to Req. 1. Unfortunately, this software is
not (fully) integrated with the other ADO-modeling tools
(esp., ADONIS), so it still lacks the integration of indicator
systems with the business context.

When we developed the indicator modeling method in the
context of MEMO, we built upon approaches that focus on
indicator modeling (like [18, 23]) and extended those by (1)
additional concepts for indicators (e.g., relations) and (2)
concepts for the business context (cf. [7] for a more extensive
description of these approaches).

7. EVALUATION & FUTURE WORK
In this paper, we outlined the domain-specific modeling lan-
guage ScoreML for designing and utilizing indicator sys-
tems. The language is part of a PMIS that enables using
the DSML not only at build-time, but also as versatile front
end to instance-level performance data at run-time.

The PMIS consists of several components: a method for
indicator modeling, which comprises the DSML and a cor-
responding process model, a modeling environment that im-
plements the modeling languages, and a software architec-
ture to enable the design and realization of versatile dash-
boards. In this paper, we focused on the modeling language

4http://www.ids-scheer.com
5http://www.boc-group.com

and its utilization in the context of the envisioned systems
architecture (the other parts are introduced in [7]). The de-
sign of the language and the corresponding architecture for
PMIS were guided by six requirements:

The concepts of the ScoreML have been reconstructed from
an existing technical language. Hence, the ScoreML pro-
vides its users with an elaborate linguistic structure that
guides them with designing transparent and consistent indi-
cator systems (Req. 1). By embedding the ScoreML into a
method for enterprise modeling that also supports modelling
of, e.g., processes, resources, and goals, the indicator models
can be enriched with information about the relevant business
context (Req. 2). Due to the integration of the ScoreML
with other modelling languages (here: the family of MEMO
languages), different perspectives on indicator systems are
supported, e.g., from IT management and business manage-
ment. This fosters collaboration and communication among
the different stakeholders involved (Req. 3), as well as it fa-
cilitates the analysis of interdependencies between indicators
associated with different perspectives (Req. 4). We further
introduced means in language specification and architecture
to integrate the indicator system models with tools that
manage corresponding instance level data (Req. 5) and that
enable the design and utilization of individual performance
dashboards (Req. 6). Compared to the prevalent practice
of creating indicator systems, the ScoreML is promising
clear advantages. However, further studies are required to
analyze factors such as acceptance and further conditions of
successful use in practice.

In our future work we focus on further refining the language.
This includes research on the technical integration between
the modeling environment and the operational information
systems. Also, we will enhance an existing library of ref-
erence indicator systems. We will also continue our work
on model-driven development of versatile early-warning sys-
tems.

Acknowledgments
This research was partially funded by CA Inc. We thank our
project partners for their support and valuable comments on
preliminary versions of our research results.

8. REFERENCES
[1] S. Buckl, A. M. Ernst, J. Lankes, F. Matthes, C. M.

Schweda, and A. Wittenburg. Generating
Visualizations of Enterprise Architectures using Model
Transformation. Enterprise Modelling and Information
Systems Architectures – An International Journal,
2(2):3–13, 2007.

[2] W. W. Eckerson. Performance Dashboards:
Measuring, Monitoring, and Managing Your Business.
Wiley & Sons, Hoboken, NJ, 10 2005.

[3] S. Few. Dashboard Design: Taking a Metaphor Too
Far. DMReview. com. March, 2005.

[4] S. Few. Information Dashboard Design: The Effective
Visual Communication of Data. O’Reilly, Beijing,
2006.

[5] U. Frank. Multi-Perspective Enterprise Modeling
(MEMO): Conceptual Framework and Modeling
Languages. In Proc. of the 35th Hawaii International

49 49

Conference on System Sciences (HICSS-35).
Honolulu, 2002.

[6] U. Frank. The MEMO Meta Modelling Language
(MML) and Language Architecture. ICB-Research
Report 24, Institut für Informatik und
Wirtschaftsinformatik (ICB), University of
Duisburg-Essen, 2008.

[7] U. Frank, D. Heise, H. Kattenstroth, and H. Schauer.
Designing and Utilising Business Indicator Systems
within Enterprise Models – Outline of a Method. In
P. Loos, M. Nüttgens, K. Turowski, and D. Werth,
editors, Modellierung betrieblicher
Informationssysteme (MobIS 2008), volume 141 of
Lecture Notes in Informatics, pages 89–106, 2008.

[8] U. Frank and C. Lange. E-MEMO: a method to
support the development of customized electronic
commerce systems. Inf. Syst. E-Business
Management, 5(2):93–116, 2007.

[9] W. Inmon. Building the data warehouse. John Wiley
& Sons, Inc. New York, NY, USA, 1996.

[10] J. Jung. Entwurf einer Sprache für die Modellierung
von Ressourcen im Kontext der
Geschäftsprozessmodellierung. Logos, Berlin, 2007.

[11] R. Kaplan and D. Norton. Strategy Maps. Harvard
Business School Press, 2003.

[12] R. Kaplan and D. P. Norton. The Balanced Scorecard:
Measures That Drive Performance. Harvard Business
Review, 1992.

[13] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley, New
York, 2008.

[14] L. Kirchner. Eine Methode zur Unterstützung des
IT–Managements im Rahmen der
Unternehmensmodellierung. Logos, Berlin, 2008.

[15] R. L. Lynch and K. F. Cross. Measure Up!: Yardsticks
for Continuous Improvement. Wiley, Blackwell, 1991.

[16] A. D. Neely, M. Gregory, and K. Platts. Performance
measurement system design. a literature review and
research agenda. INT J OPER PROD MAN,
15(4):80–126, 1995.

[17] B. Perrin. Effective Use and Misuse of Performance
Measurement. American Journal of Evaluation,
19(3):367–379, 1998.

[18] A. Pourshahid, P. Chen, D. Amyot, M. Weiss, and
A. Forster. Business Process Monitoring and
Alignment: An Approach Based on the User
Requirements Notation and Business Intelligence
Tools. 10th Workshop of Requirement Engineering.,
pages 80–91, 2007.

[19] V. F. Ridgway. Dysfunctional Consequences of
Performance Measurements. Administrative Science
Quarterly, 1(2):240–247, 1956.

[20] J. M. Rosanas and M. Velilla. The Ethics of
Management Control Systems: Developing Technical
and Moral Values. Journal of Business Ethics,
57(1):83–96, 2005.

[21] C. Sapia, M. Blaschka, G. Höfling, and B. Dinter.
Extending the E/R Model for the Multidimensional
Paradigm. In ER ’98: Proceedings of the Workshops
on Data Warehousing and Data Mining, pages
105–116, London, UK, 1999. Springer-Verlag.

[22] Y. Teiken and S. Floering. A common meta-model for
data analysis based on dsm. In J. Gray, J. Sprinkle,
J.-P. Tolvanen, and M. Rossi, editors, The 8th
OOPSLA workshop on domainspecific modeling
(DSM), 2008.

[23] B. Wetzstein, Z. Ma, and F. Leymann. Towards
measuring key performance indicators of semantic
business processes. In W. Abramowicz and D. Fense,
editors, BIS, volume 7 of LNBIP, pages 227–238,
Innsbruck, Austria, 2008. Springer.

50 50

DSML-Aided Development for Mobile P2P Systems
Tihamér Levendovszky, Tamás Mészáros, Péter Ekler, Márk Asztalos

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

H-1111 Budapest
Goldmann György tér 3. IV. em.

Tel.:+36-1-463-2870

{tihamer, mesztam, ekler.peter, asztalos}@aut.bme.hu

ABSTRACT
The proliferation of Mobile P2P systems made a next generation
mobile BitTorrent client an appropriate target to compare two
different development approaches: the traditional manual coding
and domain-specific modeling languages (DSMLs) accompanied
by generators. We present two DSMLs for mobile communication
modeling, and one for user interface development. We compare
the approaches by development time and maintenance, using our
modeling and transformation tool Visual Modeling and
Transformation System (VMTS).

Categories and Subject Descriptors
D.2.2 [Software Enginering]: Design Tools and Techniques –
state diagrams, user interfaces. D.2.13 Reusable Software –
domain engineering.

General Terms
Design, Languages

Keywords
Domain Engineering, Methodologies, Graphical environments,
Interactive environments, Specialized application languages

1. INTRODUCTION
Mobile Peer-to-Peer technology is a natural demand fueled by the
appearance of Smart Phones on the market. The Applied Mobile
Research Group at our department did pioneering work in this
area. Symella, the first Gnutella client for Symbian OS, has been
downloaded by more than 400,000 users since its first public
release in the summer of 2005. SymTorrrent is the first BitTorrent
client for mobile phones. The first free public version was
available in 2006 October, as of writing the software has been
downloaded by about 300,000 clients. In order to involve
mainstream phones into P2P networks, Péter Ekler has developed
a BitTorrent client named MobTorrent for Java ME platform [1].
The original goal was to examine whether mainstream phones are
able to run such complex applications. The experiment has met
the expectations, and MobTorrent became a suitable for
communicate with the BitTorrent network. The experience
stemming from the products made MobTorrent an apt
environment where we could compare the manual coding and the
Domain-Specific Modeling Language (DSML)-aided
development.
Having developed the manually coded version, we started with
creating domain-specific languages which can be used to describe
P2P systems for mobile applications. We identified two main

functionality groups where the DSMLs are useful: processing the
protocol messages and designing the user interface. As a
DSML platform, we chose the metamodeling and model
transformation tool Visual Modeling and Transformation System
(VMTS) [2]. In VMTS, we could create the DSMLs, and we
could write the model processors that translate the models into
Java ME code.
We tried to address the following issues:

• How can Mobile P2P application benefit from DSMLs?
• Does the DSML technology pays off at all in mobile P2P

development in time?
• Do the domain-specific models require less maintenance

effort?
• Could the DSML approach accelerate the development of

the future versions?

We start with answering the first question by giving an insight of
the used DSLs, moreover, we show how we got the facts that
underpin the answers.

2. Domain-Specific Languages for Mobile
P2P Systems
In VMTS, we developed an integrated environment to visually
model different aspects of JAVA ME mobile applications, and
code generators to turn the models into executable JAVA code.
The Java Resource Editor DSL is appropriate for the rapid
development of the static components of mobile applications,
while the JAVA Network Protocol Designer can be used to model
the static components and the dynamic behavior of simple,
message-based network protocols.

2.1 Java ME Network Communication
Support
The basics of BitTorrent technology [3] are as follows. In order to
download content via BitTorrent, firstly we need a very small
torrent file. This file contains some meta-data describing the
content and the address of at least one central peer called Tracker,
which manages the traffic. After we have the torrent file, the
BitTorrent client connects to the Tracker, which sends a set of
addresses of other peers back to the client. Next the client
connects to these addresses and concurrently downloads the
content from them via a BitTorrent-specific peer-wire protocol
[2]. In BitTorrent, we can download the content simultaneously
from different peers.

5151

We developed two DSMLs for modeling the static and dynamic
aspects of message-based network protocols, an integrated
configuration environment and code generators to support the
rapid modeling and implementation of communication through
the network. It is capable of describing the peer-wire protocol and
its processing logic. Our solution exploits the fact that numerous
well-known and widely used network protocols take a message-
based approach. This means that the entities communicating with
each other use a well-defined language, which consists of exactly
identifiable elements with a predefined structure. The
MessageStructure DSML models the messages (the static
components) of such a protocol. Furthermore, the
MessageProcessor DSML is provided to describe the logic of a
protocol. We use hierarchical state machines to define this logic:
we can declare the possible incoming messages in a state and the
messages to be sent when leaving a state.
With the help of model processors, we can generate a standalone
network library, which can be adapted to the user interface or to
business logic components. The generated network library
provides its services through a unified callback interface. Via this
interface it is possible subscribe to numerous events fired by the
library during communication.

2.1.1 Modeling messages
Figure 1.a presents the metamodel of the MessageStructure
DSML. The most important item of this language is the Message

itself. The message is the unit of the communication of our
approach. Each byte sent over the wire has to be the part of a
message.
Each message consists of several Fields. Fields are the building
blocks of the messages. Fields have a Type attribute which
corresponds to a simple Java type. Currently int, byte and String
types are supported. We distinguish three different types of fields:
ConstantField, FixedLengthField, and SeparatedField. A
ConstantField has an additional Content attribute which is used to
define the exact content of such a field at modeling time. In a
protocol where a user ID (e.g.: 123) is sent in the format of
#userid#123, the #userid# part of the message is a ConstantField.
When reading a message from the network stream, the content of
a ConstantField must be found at the position defined by the field
in the model. Otherwise, the message processing fails. Thus,
ConstantFields play an elementary role when distinguishing
between possible incoming messages in a certain processing state.
FixedLengthFields do not have a predefined content, but a
predefined size (Size attribute). This means that the field
represents a buffer for Size pieces of elements of type Type. The
Size attribute does not have to be a constant value, instead, it can
be contained by a field of the same message or global variable
(see later), or an aggregated value of those. This means that if we
recognize a FixedLengthField in a message it is possible that the
size of this FixedLengthField depends on the already read content
of a previous field in this message. SeparatedFields do not have a
predefined value or size. Their start and end are marked by a
character sequence specified in their Separator attribute. Reading
such a field is finished with reading the value of the Separator
attribute from the stream. This is a useful feature for textual
protocols (e.g FTP or POP3), where the commands are separated
with line-break characters.
During code generation, Java classes are created based on the
message elements. The contained fields of the messages will
correspond to the fields of the Java class. Based on the model and
the order of the fields of the messages, we also generate the
member methods to read or write the message from or to the
network stream. With the help of modeling messages and
generating their wrapper classes, our solution completely hides
byte-wise network stream operations, and provides an interface
based on Java objects to the upper layers of the application.

2.1.1.1 BitTorrent messages
In order to discover and filter the incoming messages described
with the MessageStructure DSML, we have implemented a
message discovery algorithm. After a message is parsed, a
callback method is being called which carries the different type of
MessageFields as parameters. This callback method is used by
the MobTorrent framework to execute BitTorrent-specific
functions such as save the incoming data in a file.
Figure 2 presents the model of the BitTorrent protocol messages.
The green fields are the ConstantFields, whereas the grey ones
are the FixedLengthFields. BitTorrent protocol does not use
SeparatedFields. Usually in every message-based protocol, the
messages have a common structure. In the case of BitTorrent we
can separate the messages into two parts. The first part contains
the MessageHandshake (Figure 2) only, which is used during the
peer-wire protocol to determine whether two peers are compatible
with each other. MessageHandshake starts with two
ConstantFields followed by three FixedLengthFields. The most

a)

b)

Figure 1 Metamodels for modeling the static and dynamic
properties of message-driven state meachines

5252

important field in the MessageHandshake is the torrentInfoHash,
which is basically the SHA-1 value of the torrent file. This value
is used to determine whether the peers are interested in the same
content represented by the torrent file.

According to the protocol when peers are exchanging the
handshake message, this is the only message which can be
accepted, thus, it is easy to discover. After a successful handshake
every other message can be sent or received, there are no
limitations. However we can see that the structure of these
messages is the same. All of them start with a messageLength
field which defines the length of the message in four bytes.
Figure 2 shows that the messageLength field is green in all the
messages, except for MessagePiece and MessageBitfield. The
length of these two messages depends on the amount of data they
carry.
Following the messageLength, each message contains a
messageID field which makes it easy to filter the messages. Only
the MessageKeepAlive does not have this messageID field,
because it contains only a messageLength constant field.
In the BitTorrent protocol, after we have parsed the messageID
field, we can easily determine which message has arrived, and we
can pass the content of the incoming message as the parameters of
the callback functions.

2.1.2 Modeling dynamic behavior
The core concept of our approach is that that communication
layer performs status changes as a consequence of receiving
specific messages from the network stream. In addition, we may
also instantiate and send network messages during a status
change. In our approach, the communication layer can run
standalone, and it informs the connecting components of the
application through a callback interface about the important
events of the communication. The business logic can influence
the behavior of the communication layer through the parameters
of the layer and by sending messages directly through the network
stream. The behavior of the network layer can be modeled with
the help of a message-driven state machine.
Figure 1.b presents the metamodel of the MessageProcessor DSL.
The most elementary item of this state machine is the State. There
are two special types of states: the Start and the Stop states. The
Start state indicates the entry point of the state machine, while the
Stop state indicates the exit point. As states can be nested (see the
containment edge-loop in the metamodel), the start and end states
may also be used as the entry/exit point of a sub-state machine.

States can be connected with the help of Transition edges. A
Transition edge may trigger the reception of a specific message
from the stream: the type of the expected message is defined by
the MessageTypeIn attribute of the edge, which references an
already modeled message. If several outgoing transition edges are
connected to the same state, then the transition whose triggered
message first arrives will be chosen. If a transition is chosen, the
state pointed by its right end will be the next active state. When
activating a state, the instruction described in its Operation
attribute is executed.
An important issue in every message-based protocol is the phase
where we have to decide which message has exactly arrived. We
have implemented an advanced message handling algorithm
especially for the presented MessageStructure DSL: in each state
of the protocol we have a set of messages which can arrive in the
state. Each message knows how many bytes it can consume to
process its current (still not read) field. If the size of the current
field cannot be determined (in case of a SeparatedField or a
FixedLengthField with variable size) then this message can
process only one byte. The key point is that we can increase the
efficiency of message parsing, because if we have a set of
possible in a state, the minimum amount of bytes to read can be
determined. Thus, we do not read the stream by single bytes.
Based on the bytes received, we can filter the set of possible
messages by the fields with constant values. After a reasonable
amount of incoming bytes we can restrict the number of possible
messages to one. If neither of the existing transitions is
compatible with the data read, we have two possibilities to handle
this situation. Either we assume that a Protocol error has
occurred, and handle the error with a special ErrorOccured edge,
) or – if no ErrorOccurred edges are present and the current state
is nested – we let the container state handle the message. We may
also attach preconditions to the transitions so that the transition is
selected only if the appropriate message arrives, and the condition
(Condition attribute of the edge) is evaluated to true. In addition,
there are two special types of transitions: non-reading and
fallback. A transition is non-reading if it does not trigger any type
of incoming message. These transitions are checked only for their
Condition attribute before choosing them. Therefore they always
have priority over the reading transitions. Fallback transitions
(their condition attribute is set to [fallback]) are chosen when
neither of the other transitions in a state can be selected. This
feature is quite analogous to the handling of protocol errors,
however, fallback edges are not to handle errors, but it is regular
behavior. Recall that a transition may also send a message
through the stream. The type of the message sent is defined by the

Figure 2 Message objects used by the BitTorrent protocol

5353

MessageTypeOut attribute, and the initial value of the fields of the
message can be set through the MessageOutParameter attributes
of the edge.
As already mentioned, the ErrorOccured edge is used to handle
the errors (either Protocol or I/O) of the network layer. I/O errors
occur, when the reading or writing to the stream fails. I/O errors
can be handled with ErrorOccured edges whose Type attribute is
set to I/O. If none of the outgoing transitions are applicable in a
state, and an ErrorOccured edge is present whose Type is set to
Protocol, then – regardless of possible container states – we treat
this situation as a protocol error. An ErrorOccured edge always
points to an Error state. Error states are special in the sense that a
callback method is assigned to each of them on the callback
interface. In case of I/O errors, the callback method receives the
last exception as well. A special form of Error nodes is the Abort
node, which immediately finishes the execution of the network
layer.
The state machine may be customized with Variables. Each
variable has a name, a type and a default value. Variables can be
considered as global parameters, which can be accessed by all
states and edges. Variables can be used in the conditions for
transitions, during the instantiation of a new message and also in
the Operation attribute of states. The code generator generates a
member variable for each Variable node in the model, along with
their getter and setter methods. The member variables are
initialized with the content of the DefaultValue attribute of the
corresponding model element.
Recall that a callback method is generated on the callback
interface for each error node. Furthermore, a method is generated
for each stop state as well. However, one may extend the callback
interface arbitrarily, and call its methods from any point of the
state machine. For this purpose we have invented the Callback
node, which symbolizes on method stub on the interface. The
generated method can be parameterized with the help of the
Parameter attribute of that node. Callback methods on the
interface can be invoked in two ways: either through a
DoCallback state, or with the transition edges, as a method invoke
can be assigned to each transition. The parameters of the method

invoke can be set with the CallbackParameter attributes in both
cases.
Network connection handling is also modeled with Connection
edges. Depending on their Type property, such an edge either
opens or closes the network connection. The target host for the
connection is specified by the Host attribute. However, the
parameters of the connection (connection type, direction, timeout
handling etc.) can be customized during code generation.
Figure 3 illustrates the model we have created for the BitTorrent
protocol. The yellow boxes represent the global variables of the
state machine: (i) peerAddress – the address of the peer we are
connected to, (ii) torrentInfoHash – the hash of the downloaded
torrent, (iii) peerId – the unique identifier of the connected peer
and (iv) ownPeerId- our own identifier. The blue boxes with a
small yellow lightning denote the callback methods created on the
callback interface.
The protocol works as follows. After the start state (1), we call the
Initialize callback (2) to instruct the framework to perform
initialization steps. Then the protocol tries to connect to the target
host (the Connect edge is parameterized with the peerAddress
variable). If the connection succeeds, we get to the Connected
state (3), otherwise an I/O error occurs (4). On error, we perform
an IncreaseErrorCounter callback, and disconnect the stream.
Moving from (3) to (5) a MessageHandshake (Figure 2) message
is sent to the remote peer. Edges (6) and (7) trigger the answer-
MessageHandshake message, and check if the parameters of the
answer are valid. On an invalid handshake answer, either the
IncreaseErrorCounter or the DeletePeer state will be active, and
the communication is closed with the current peer. Edge (8) is a
fallback edge meaning that edge (8) is chosen if neither of error
transitions (6-7) can be selected. The state PWConnected can be
considered the default state of the protocol: almost any type of
messages can be received at this state (that is why there are so
many loop edges around it), and each message arrival performs
the appropriate callback invocation. As you can see in Figure 3,
the edge parameters (and also other model parameters) can be
changed with the help of smart tags. They appear when the mouse
is hovered over an item. State PwConnected can be left only if a

Figure 3 BitTorrent client protocol model

5454

protocol error occurs, or the business logic over the network layer
changes the current state.

2.2 Mobile DSL for User Interface
Development
Having generated code from the network model and integrated it
with the MobTorrent framework, we started to work on the user
interface of our new mobile BitTorrent client. With UI DSMLs,
we can model the static structure of user interfaces, and generate
the platform-specific source code according to the models. The UI
DSML also has a metamodel, but its detailed explanation is
irrelevant. Instead, we are focusing on the models we have
created for the BitTorrent application. VMTS supports [4] all the
Screens, Commands and Controls available in Java ME both on
the modeling and the generator level. Besides the general
elements we also provide additional controls which are not part of
the Java ME API, but are used in numerous scenarios, such as the
FileSelectDialog. In P2P applications we usually download
multiple contents at the same time and these downloads are
displayed in a list where the icon of the list item represents the
status (downloading, finished, error, etc.) of the download. With
the help of an ImageList we can easily access image resources and
use them in other components, for example in a List.
In Figure 4, the four screens of the application can be seen both at
modeling time (a), and when executing the application on a real
hardware (b). Screen (1) is used to present the torrents being
processed (TorrentList). It is modeled with a simple JList item
which is replaced with a class derived from Java ME List during
code generation. Screen (2) is the FileSelectDialog itself, with
which one can browse for a torrent file to be processed. Screen (3)
is used to show the download state of the selected torrent. Screen
(3) is built from a JForm item, which contains three StringItems
for presenting the name of the torrent file, the size of the
downloaded data, and the actual transfer rate. A JGauge element
represents a progress bar which shows the progress of the
download. Finally, screen (4) is used to modify the application
settings such as the download path. It is also based on a JForm
element, which contains a JTextField item. (JTextField
corresponds to the TextField Java ME class).

With the VMTS UI DSML, we can also set the commands
(menus) for the screens. The TorrenList contains commands for
torrent handling such as add torrent file, start download, pause

download, and commands responsible for navigating to another
screen like Settings or Download state. Thus, we can also
describe the high-level UI logic. The model also contains an
ImageList (5) with three icons. This list represents the icon set
used by Screen (1). Finally, after modeling and generating the
network layer and the user interface, one task remains: integrating
the generated components with the MobTorrent framework. The
integration is not supported with visual techniques in the current
release of VMTS, the glue-code has to be written manually.
In order to integrate the UI with the MobTorrent framework we
have applied the Observer design pattern. The framework
provides an interface which we have to implement in the UI code.
This interface contains functions that are called from the
framework when the status of the download changes, such as
download speed changed, download progress increased. When we
initialize the framework we have to set which object implements
the observer interface in the UI. By using this observer the
framework can notify the UI if something changes and the
relevant information can be displayed on the screen of the mobile
phone easily.

3. Conclusions
So far we have shown how mobile P2P development can benefit
from DSML technology. We found well-separated functionality
groups, and supported them by DSMLs and code generators.
Table 1 depicts the development times with manual coding and
with DSMLs taking one developer into account who had previous
experience of this sort of application.

Table 1. Development time with and without DSMLs

Additionally, there were functions, which we did not support with
DSMLs. These required the following amount of time:

• File and database handling: 8 days
• BitTorrent specific functions: 13 days
• Tracker communication: 5 days
• Download for other clients: 8 days
The DSML infrastructure, i.e. the languages and the generators, is
developed by an engineer with extensive DSML and tool
experience. The time spent per person is the following:

• MessageStructure and MessageProcessor DSMLs: 4 days
• MessageStructure and MessageProcessor generators: 5 days
• UI DSML: 9 days
• UI generator: 10 days

So the development effort for the functions supported by DSMLs
is as follows:

• With DSMLs: 6 days
• Without DSMLs: 29 days

Functionallity Time with manual
coding

Time with DSL

User interface 5 days 2 day

Peer network
connection

8 days 1 day

Peer-wire protocol 6 days 1 day

Message handling 10 days 2 days

a)model b)real

Figure 4 UI model of the mobile BitTorent client in VMTS

5555

The development time without the time for the DSML
development:

• With DSMLs: 40 days
• Without DSMLs: 63 days

Including the DSML infrastructure development:

• With DSMLs: 68 days
• Without DSMLs: 63 days

These numbers shed a light on the fact that DSML technology is a
generative technique: a generator is much harder to develop than
the generated code once. Therefore, the more times you run the
generator, the more the DSML approach pays off. From the
second time on, the DSML and generator development does not
appear as an additional cost. Our intention was to support UI
changes, protocol changes and updates in the forthcoming version
of a P2P application. That is why we support these functions and
not others. As a matter of fact, our figures look better: we
inherited the UI DSML from another project targeting cross
platform UI development. Thus, we can subtract it from the total,
and we have 47 days for the MobTorrent project.
As long as only the models need to be modified, DSMLs increase
the maintainability. If the generator must also be modified, the
necessary effort can arbitrarily increase. We expect that we need
to modify the models for the next versions because of the
generality of the DSMLs, and subtle generator modifications if
the Java ME UI changes. These DSMLs can be reused for any
Java ME mobile development where UI or network support is
required, but the approach is not limited to the Java ME platform,
since it can be extended to other platforms by modifying the code
generators. The proposed case study can be used as well in other
solutions where BitTorrent technology is used for content

distribution. Since our department is involved in developing such
applications on a regular basis, we have a rational expectation to
have the return of our investment in the DSMLs and the
supporting generators as it happened in the case of the UI models.
We tested the generated code, and decided to include it in the first
release of MobTorrent. Thus, MobTorrent is expected to be
publicly available in January 2010 on its website, as the first
mobile P2P client developed with the extensive help of DSMLs.
ACKNOWLEDGMENTS

The found of “Mobile Innovation Centre” has supported, in part,
the activities described in this paper. Infragistics has supported, in
part the activities described in this paper.

4. REFERENCES
[1] P. Ekler, J. K. Nurminen, A. J. Kiss “Experiences of
implementing BitTorrent on Java ME platform”, CCNC’08. 1st
IEEE International Peer-to-Peer for Handheld Devices Workshop,
pp. 1154-1158, 2008, USA
[2] Visual Modeling and Transformation System Website:
http://vmts.aut.bme.hu
[3] BitTorrent specification, Oct. 13, 2008. [Online].
http://wiki.theory.org/BitTorrentSpecification
[4] I. Madari, L. Lengyel, T. Levendovszky “Modeling the
User Interface of Mobile Devices with DSLs”, Proc. of the
Computational Intelligence and Informatics 8th International
Symposium of Hungarian Researchers, pp. 583-589, 2007,
Hungary

5656

MobiDSL - a Domain Specific Language for Mobile Web Applications
: developing applications for mobile platform without web programming

Ankita Arvind Kejriwal
Birla Institute of Technology and Science, Pilani.

Goa Campus, India
kejriwal.aa@gmail.com

Mangesh Bedekar
Birla Institute of Technology and Science, Pilani,

Goa Campus, India
bedekar@bits-goa.ac.in

Abstract
The enormous potential of mobile web as an information

appliance presents all organizations an urgent need and a
compelling reason to not only create mobile specific versions of
certain parts of their current systems, but also develop new mobile
web applications to derive maximum benefit from this medium.
However, as mobile web applications are generally being built
using the same web engineering methodologies and tools which
are used for building desktop web applications, organizations
around the world require significant resources, making it difficult
for many to quickly build these applications. In this paper, we
describe our aim to mitigate this problem by using a Domain
Specific Modeling (DSM) based approach. We explain MobiDSL
- a Domain Specific Language (DSL) for modeling Mobile Web
Applications and show how it can enable system designers and
analysts to easily define an application's specification at a very
high level of abstraction without any web programming. We also
explain how a Virtual Machine (VM) is used to execute MobiDSL
models, which helps to radically simplify the testing, deployment
and life cycle management of such mobile web applications.

1. Introduction
Mobile Web refers to web content (static or dynamic) which is
specifically designed to be accessed on mobile devices via a
browser [2]. The mobile web is emerging as an information
medium whose reach is projected to surpass all other mass media
(including the print, cinema, radio, television and desktop
internet) as mobile devices have the advantage of being personal,
portable, always on and connected. It presents us with a massive
opportunity to provide information and e-services to entire human
population, not just in developed countries but also in developing
and under-developed regions of the world. It can be the best
enabling mechanism to empower billions of people with
information and to bridge the digital divide.

While it is possible to access standard web content on some
mobile devices, the user experience is often less than satisfactory
primarily due to smaller screen size and lower bandwidth
compared to a desktop or laptop. Therefore, Mobile Web Best
Practices (MWBP) [2] specifies practices for delivering web
content to mobile devices. These recommendations refer to the
‘content’ and not to the processes by which the content is created
or delivered. We find emergence of following trends in creation
and delivery of web content to mobile devices.

1. The static web content is either being re-developed or being
transformed at runtime by using server side software such
as Instant Mobilizer [4].

2. The dynamic web content is being provided by a new class
of re-engineered, light-weight mobile specific versions of
corresponding desktop web applications. Some of the
notable examples are dynamic content sites such as BBC
and ESPN; and dynamic applications such as Gmail,
Facebook, and Twitter.

For the purposes of this paper, we define Mobile Web
Application as “a web application specifically designed to deliver
dynamic information from the database and provide simple
transactional services to mobile devices via a browser”.

The rapidly growing popularity and success of many mobile
web applications has demonstrated the enormous potential of
mobile web as an information appliance. Organizations are faced
with an urgent need as well as a compelling reason to not only
create mobile specific versions of certain parts of their current
systems (legacy, client-server or web applications) but also to
develop new mobile web applications which derive maximum
benefit from this medium.

Though mobile web applications are simpler compared to
desktop web applications, they are generally being built using the
same web engineering methodologies and tools which are used for
building desktop web applications. Thus, organizations around the
world would require significant resources to design, develop, test
and deploy mobile specific versions of their current as well as
new applications. As a result, it might be difficult for many to
quickly develop these applications.

A light-weight development methodology for developing
mobile web applications which could supplement and co-exist
with whatever methodology an organization might be using for
their core systems could help address the aforesaid issue. This
methodology would also have to be simple enough so that it can
be used directly by system designers and analysts to develop such
applications.

We attempted to find a solution using the DSM based
approach. We analyzed the mobile web domain to identify various
constructs and designed a simple, compact and extensible DSL
called MobiDSL for defining mobile web applications. Though
DSM based approaches usually involve generation of code which
can be compiled and run, we chose to develop a Virtual Machine
(VM) to execute MobiDSL models due to various benefits which
are described later. Our approach aims to provide a reasonably
sound framework for rapid prototyping, development, testing,
deployment and life-cycle management of mobile web
applications without the need of any web programming or
provisioning of any special middleware.

The rest of the paper is structured as follows. Section 2
describes the background and related work. Section 3 describes

5757

our approach, objectives and the VM. It also explains MobiDSL
with a few succinct examples and finally provides a brief
overview of MobiDSL’s meta-model. In Section 4, we discuss
various issues and describe the benefits of interpretive approach
over generative approach. Section 5 presents a summary of
contributions and future work.

2. Background and Related Work
Mobile internet access began with the Wireless Access Protocol
(WAP), wherein the pages were composed in Wireless Markup
Language (WML). The advent of WAP 2.0 permitted use of
XHTML markup with end-to-end HTTP. To assist development
community, W3C has launched Mobile Web Initiative [1] and
published standards such as Mobile Web Best Practices (MWBP),
XHTML for mobile (XHTML-MP), Cascading Style Sheet for
mobile (CSS-MP), and MobileOK Basic Tests.

Mobile Web applications are generally being built using the
same Web Engineering methodologies which are used for
building regular web applications. Most methodologies follow a
standard three tier architecture as described below:

a) A database tier – which stores the database and runs the
database server

b) An application tier – which runs the actual application
logic. The application server receives the user inputs from
the client device via HTTP (over TCP/IP) and can use
various API’s to interface with HTTP server. It can
interface with database server using various database API’s
to retrieve information or update transactions.

c) The client tier – which runs the application using a web
browser. The browser renders pages composed in HTML.
CSS is used to specify visual aspects rather than specifying
them in HTML for each hypertext element. The client tier
can also use technologies such as DHTML (to dynamically
construct HTML fragments), JavaScript (to handle events)
and Ajax (to asynchronously access the application tier).

There is a plethora of Web Engineering methodologies and
frameworks ranging from scripting technologies such as ASP, JSP
and PHP (to name a few) to enterprise class web technologies
such as J2EE. There are also sophisticated web modeling based
frameworks such as HDM, WAE, WSDM, UWE and WebML.
The scripting based systems provide API for interfacing with
HTTP server and Database Server and allow the developer to
hand code the programs. Many systems also provide tools and
templates to automate generation of boiler-plate code. The J2EE is
a sophisticated enterprise class technology which divides
application server into partitions, which can be run on different
machines to achieve high degree of scalability. The modeling
based frameworks provide facilities for various facets of modeling
such as Content Modeling, Hypertext Modeling, Presentation
Modeling and Customization Modeling. Some of them also
provide tool support to partially or fully generate application code.
There are also some XML based frameworks employing XML
transformation (XSLT) such as Apache Cocoon.

However, creating a robust and scalable mobile web
application using any of the above methodologies is not a trivial
task. Many researchers have advocated use of Domain Specific
Language based frameworks to develop robust, reliable and
secure programs in a cost effective manner by using high level
abstractions. We were inspired by the reported success of DSM
approach in many application areas [5, 6] and the use of DSL
paradigm in web engineering by some researchers such Nunes et
al. [7], Martin et al. [8], E. Visser [9] and Ceri et al. [10].

We were particularly influenced by Web Modeling Language
(WebML) proposed by Ceri et al. [10], which stands out for
enabling high level abstraction of various models such as
structural model, composition model, navigation model,
presentation model, and customization model. However, whereas
WebML’s meta-model is very elaborate, we have combined the
models into one simple model. Moreover, whereas WebML’s tool
generates the application code, we have implemented a VM to
execute the model. Such a concept of executable DSL models has
already been demonstrated in ModelTalk [11].

3. MobiDSL
3.1 Overview of Mobile Web Applications
The Mobile Web Applications aim at providing a compelling user
experience. We find evolution of new design philosophy for
mobile web, whose central theme is based on simple and
minimalistic design concept [3].

A mobile web application consists of various web pages,
which can be broadly classified as Home Page, Query Pages and
Transaction Pages. These pages are hyperlinked to each other to
enable navigation thorough the system. The links can be either
Contextual Links (which pass certain contextual information
while navigating to another page) or Non-Contextual Links.

The Home Page typically provides certain static choices (menu
options). It may contain an authentication section to allow only
authorized users to access the application. It can also contain
choices created dynamically based on certain information in the
database.

The Query Pages enable the users to access information from
database based on some selection criteria. The selection criteria
can be either based on search parameter inputs defined in the
same page or query string passed to the page by a contextual link.
The Query Pages can either display several records (List View) or
a single record (Record View).

The Transaction Pages enable the mobile users to update
simple transactions on the database. These transactions typically
allow Create, Update and Delete facility on records in a specified
table. They allow elementary validations to be performed on the
data entered by users.

Some mobile applications also require special features such as
Access Control for restricting access to some pages to a certain
group of users based on their user role. Some applications might
require personalization features, wherein user’s preferences such
as presentation skins, accessibility preferences and favorites are
stored in a database table, and web pages are created accordingly.

The mobile web pages typically have different sections as:
 Page Header - which may consist of Branding (Logo,

Name), Title and Navigation Tree
 Body - which can consist of menu options, search request

section, query view section or transaction entry section
 Page Footer - which may consist of Branding, certain links

or other relevant information
We find that Mobile Web Applications differ from regular

Web Applications in several ways which are summarized below:
1. Device limitations - screen/keypad size and bandwidth
2. Different Usage pattern
3. Minimalistic design with Simple Layouts (no frames or

nested tables or complex layouts)
4. No processing on client devices using DHTML, JavaScript

or Ajax, as this would render the application unusable on a
majority of mobile devices.

5. Lesser functional expectations

5858

3.2 Our Approach
The simple nature of mobile web application presents an
opportunity to create new lightweight frameworks suitable for this
emerging medium. Our approach to creating a new framework for
mobile web applications was based on the promise of DSM
approach and on the premise that the mobile web domain can be
analyzed to identify the core requirements and various design
elements, based on which a domain specific language (DSL) can
be designed. DSL is “a high-level software implementation
language that supports concepts and abstractions that are related
to a particular (application) domain” [9].

The driving factor for identification of language constructs was
primarily based on “Domain Expert’s and Developer’s Concepts”
approach [5]. Based on our earlier work in developing mobile web
applications using scripting methodologies, we identified distinct
features and recurring themes in these applications. We also
discussed with an industry expert to understand the domain
expert’s concepts on creating mobile versions of current systems
without any programming. We were also partly led by “look and
feel” approach [5] as far as the user interface (hypertext) was
concerned.

We have designed a simple and concise textual DSL suitable
for developing mobile web applications called MobiDSL, which
enables a developer to define the specifications for each page at a
very high level of abstraction without requiring any knowledge of
web programming. We have used XML as the Meta Language as
XML markup is simple, flexible and easily understood. MobiDSL
allows us to define:

1. Page structure
2. Hypertext (text, widgets and links) in each section
3. SQL for data retrieval
4. Query result presentation
5. Validations and other business logic for transactions

3.3 Objectives of our framework
Our framework aims to:

1. Simplify mobile web application development by allowing
designers, analysts and programmers to define application
at a high level of abstraction

2. Allow the application to be run on most mobile devices by
carrying out all processing and validations on server and
using only XHTML-MP (with CSS-MP) on client device

3. Simplify deployment by adopting a simple three tier
distributed RESTFUL architecture, which employs only
basic protocols (such as HTTP) and basic API’s (such as
CGI and Pass Through SQL)

4. Provide scalability by allowing multiple application servers
wherein a request could be serviced by any of them.

5. Optimize processing by caching to retrieve result sets of
recently executed queries

6. Avoid middleware complexity normally seen in many high
end web applications

3.4 The Virtual Machine
The Virtual Machine (VM) runs the mobile web application as
embodied in the MobiDSL Model. It is implemented as a
stateless, distributed and scalable Application Server. A schematic
view of the MobiDSL VM deployment is shown in figure 1. VM
uses the configuration information in sys.xml file to connect to
Database Server and Memcached. On one side, the VM interfaces
with HTTP server encapsulating the CGI API. On the other side,
it interfaces with database and encapsulates the database access

API. When the VM receives client input it identifies the page to
be delivered based on page identifier in query string. It parses the
corresponding MobiDSL model (<pageid.xml>), runs database
queries based on search request and constructs the response
XHTML page (with embedded mvm.css) as specified in model. In
a nutshell, it handles complete server side processing for the
mobile web application (encapsulating various web engineering
technologies) based merely on the application’s MobiDSL model.
The VM also manages Sessions, Pagination, and a Navigation
tree. The response pages created by VM are compliant with
mobileOK Basic Tests.

Figure 1. A Schematic View of MobiDSL VM Deployment
We have implemented this system on classic Linux-Apache-

MySQL-PHP platform. The implementation follows a distributed
three tier model, allowing any number of application servers to be
connected to database server. A server based session management
stores the session data in Memcached on server side, allowing that
information to be retrieved from any application server. This
makes each request-response cycle completely stateless, making it
possible for each user interaction to be serviced by a different
application server, making the system scalable and reliable. The
VM also caches the result set of recently executed queries to
optimize processing.

3.5 Sample Application
To understand MobiDSL, let us consider an example of a Mobile
Web Pharma Sales Force Application used by Medical Sales
Representatives (MSR). One of the tasks of the MSR is to visit
various physicians (in the towns assigned to her) periodically to
brief them about the company’s products. The application enables
an MSR to view the list of physicians and details of previous
visits. It also enables her to record details of a new visit on-line. A
simplified content model of relevant parts of the application is
shown in figure 2.

.
Figure 2. Content Model of Pharma Sales Force Application

5959

3.6 The Physicians List Query
We first consider the physicians list query page/screen shown in
figure 3. This screen enables the MSR to view a list of all
physicians in the towns assigned to her. Moreover, it also allows
her to optionally search based on part of name, specialty code or
town.

Figure 3. The Physicians List Page

The specification for this page as defined in MobiDSL is shown in
figure 4. The root element page identifies the page and contains
other elements such as pageheader, searchrequest,
queryview and pagefooter corresponding to each section in
the page.

The MobiDSL code for Page Header specifies a static image
(stored on server in directory relative to location of VM), the page
header title, a link back to the home page and the current page’s
title. Most of these specifications are self-explanatory.

The code for Search Request section specifies a text line, input
widgets for search criterion and Submit and Reset buttons. The
SQL statements are used to specify the options for input widgets
such as Specialty (all specialties to be shown) and Town (only
those towns which are assigned to MSR to be shown).

The code for Query View section specifies the SQL to be
executed for retrieving required data from database based on the
search criterion. Here, the SQL specifies the physician’s list by
using a join of the Physician table with the Towns table (for
only those towns assigned to a MSR), and further filtering records
based on search criterion. The search inputs submitted by the
client device are stored in variables with names corresponding to
input widget name prefixed by $. Using caret (^) in expressions
such as a.town=$town^ implies that if the input stored in $town
is empty, the expression is to be ignored (reduced to logical true
by VM). The data retrieved from the database using SQL can be
presented in various layouts such as para, dualcol and table.
The resultrecord element specifies presentation for each
record and can contain one or more resultcol elements (data
columns). A resultcol element can also specify a link which is
invoked when user clicks on that column’s value. It can pass that
value (as well as any other value using passvalues attribute) as
query string to the resource pointed to by it.

<?xml version='1.0' standalone='yes'?>
<page id="phylist">

<pageheader>
<image src="images/psf.gif" nobreak="true"/>
<text class="title">Pharma Sales Force</text>
<text href="mvm.php?pageid=home"

nobreak="true">Home</text>
<text expr="' | '" nobreak="true"/>
<text>Physicians List</text>

</pageheader>
<searchrequest>
<text>Search for Physicians</text>
<input type="text" label="Name" name="physician">
<input type="select" label="Speciality"

name="spclcode"
optionsql="select spclCode from specialty"/>

<input type="select" label="Town" name="town"
optionsql="select town from towns where

medrepid=$_userid"/>
<submit label="Submit" />
<reset label="Reset" />

</searchrequest>
<queryview layout="table" recordsperpage="4">
<sql>select a.* from physician a, towns b

where a.town=b.town and b.medrepid=$_userid
and match(a.physician) against ($physician^)
and a.spclcode=$spclcode^ and a..town=$town^
order by physician</sql>

<text expr=" $_reccount . 'Results Found' "/>
<resultrecord>
<resultcol label="Name" sqlcol="physician"

href="mvm.php?pageid=phydet"
passvalues="town;physician"/>

<resultcol label="Speciality"
sqlcol="spclcode"/>

<resultcol label="Town" sqlcol="town" />
</resultrecord>

</queryview>
<!-- pagefooter code omitted -->

</page>
Figure 4.The Specification for Physicians List Page in MobiDSL

3.7 Key Concepts
Sequence of Events and Processing. Though some MobiDSL
element tags and properties might appear to be similar to HTML
tags, they are not HTML tags. Whereas HTML is processed by
the browser on the client device, MobiDSL code is processed by
the VM (on Server) to handle client device inputs or create HTML
output pages accordingly. The following points summarize the
sequence of events and processing for the previous query page.

1. When this page is requested (as mvm.php?pageid=phylist)
for the first time, the VM creates initial XHTML page with
a list of all physicians in all towns assigned to the MSR (as
all search inputs are empty at that time) in following steps:
a) VM reads MobiDSL code for target page (phylist)

and parses it. It saves parsed DSL in cache for re-use.
b) VM begins to construct the XHTML page by generating

the <head> section with page title and embedding the
CSS file as inline <style>.

c) VM then generates HTML for Page Header.
d) Then, VM generates HTML for Search Request section.

If the section contains any Select widgets, it populates
options for these widgets from result sets of
corresponding optionsql. The HTML for this section
is embedded in <form> tag. VM also embeds control
information like pageid & sessionid as hidden fields.

e) To create HTML for Query View section, the VM first
prepares the SQL statement (by substituting the values
of variables used in SQL) and submits it to database
server. The VM fetches the result set and constructs
HTML for presenting the data in the specified manner.

f) Then, VM generates the HTML for Page Footer section.
g) It finally sends the fully constructed XHTML-MP page

6060

with embedded CSS to the client device.
2. The browser on the client device loads the XHTML page.

The user can see list of first four physicians. The user can
use Next link to request the server to send a page with next
set of records. The user can also select the link associated
with physician name to navigate to Physician’s Details
Page. The user can also enter values for some search
criteria and press Submit to request the server for a filtered
set of data.

3. When the user submits the search criteria, it is posted to the
VM. The VM retrieves control information such as pageid
and sessionid from the posted data. It loads the parsed
MobiDSL code from cache based on pageid. It retrieves
search inputs from posted data and cleans it to guard against
SQL injection attacks. The VM then prepares the SQL
statement as explained earlier and submits it to the database
server. It then fetches the result set and re-constructs the
XHTML page and sends it back to the client device.

4. When the user selects any of the pagination link (First,
Prev, Next or Last), a query string is sent to VM with
appropriate information. The VM receives the query string
and processes it in a manner similar to (3). The VM fetches
the result set from cache and reconstructs the XHTML page
with relevant records.

Variables MobiDSL gives us the flexibility to refer to various
variables in SQL statements or other expressions. These variables
are created and managed by VM automatically in their respective
context; and can be referred to in the specifications in appropriate
contexts. In a nutshell, these variables are:

1. Authentication variables: These are variables like $_userid
and $_userrole. They have global scope.

2. Query String Variables: Name-value pair collections from a
contextual link are stored in variables with corresponding
names prefixed by $. For example, if a query string is
field1=value1&field2=value2, then two variables,
$field1 and $field2 will be created. These variables are
in scope of the page in which they are received.

3. Inputs Fields in a Page: The values received as posted data
from a page are stored in variables with corresponding
names of input fields prefixed by $. These variables are in
scope of the page in which they are received.

4. SQL Query Result Set Control Variable: the $_reccount
variable gives the count of records retrieved by query. It is
in scope of queryview section.

5. SQL Query Result Record Level Variables: a) $_currec
which gives the current record number. b) Result Columns
for current record stored in variables with the column
names prefixed by $_sqlres_. These variables are in
scope of resultrecord specifications.

Expressions. In MobiDSL specifications, we can use expressions
to define some attributes of various elements. These expressions
can be any PHP expression comprising any PHP functions (in-
built functions, library functions or user-defined functions) and
any of the variables available in the given context. The ability to
use expressions in several attributes such as following in the
MobiDSL specification enables the developer to define various
requirements with ease:

1. expr in text and resultcol elements can be used to
define an expression to display required string or value

2. hrefexpr in image, text or resultcol elements to define
an expression for a link associated with that element

3. various attributes such as defvalexpr, disableifexpr,
validexpr etc. for Input field elements in a transaction

It is to be noted that the developer can provide additional
functionality by developing application specific PHP functions
which can be used in expressions. This feature makes MobiDSL
reasonably extensible while keeping its core grammar to a
minimum.

Pass Through SQL. MobiDSL allows us to define a pass through
ANSI SQL to retrieve any data from the database. The SQL can
be of any complexity involving any number of tables and can
contain MobiDSL variables. The MobiDSL VM prepares the SQL
statement by substituting the values of variables and then submits
it to the database server in a pass through fashion. The SQL is
executed as such by the database server and the result set is sent
back to the VM. The SQL can be used in following contexts in the
MobiDSL specification:

1. In queryview section to retrieve the data to be presented.
2. In optionsql attribute for select input widgets to populate

the select options.
3. In pageheader and pagefooter to retrieve required

control information from the database.

3.8 The Physicians Details Query.
We now consider the physicians details query page/screen shown
in figure 5. This screen enables the MSR to not only view contact
details, but also call or email the physician using a single click. It
shows a list of previous visits to the physician and allows the
MSR to view any previous visit transaction. It also allows her to
initiate a new Visit Transaction.

Figure 5. The Physicians Details Query Page

The specification is shown in figure 6. The queryparams
specify query string parameters received by this page. The page
contains two queryview sections:

1. Physician’s Contact Details (Single Record View) - Here,
the SQL specifies the desired selection from the physician
table using query string parameters. The layout is set to be a
two column layout where the first column shows label and
second column shows data. The Telephone, Mobile and
Email values are rendered as links using hrefexpr which
allows us to specify PHP expression for defining the link.

2. Visit Details (List View) - The SQL specifies selection
from phyvisit table. The layout is set as table showing
the visit date and time. The visit date is rendered as a link to
let the user to navigate to Visit Transaction in view mode.

6161

<?xml version='1.0' standalone='yes'?>
<page id="phydet">

<queryparams>
<param name="town"/>
<param name="physician"/>

</queryparams>
<!-- pageheader code omitted -->
<queryview multirecord="false" layout="dualcol">
<sql>select a.*,b.spclname

from physician a,Speciality b where
a.spclcode=b.spclcode and a.town=$town
and a.physician=$physician</sql>

<resultrecord>
<resultcol label="Name" sqlcol="physician"/>
<resultcol label="Speciality"
expr="$_sqlres_spclcode.'-'.$_sqlres_spclname”/>
<resultcol label="Address" sqlcol="address"/>
<resultcol label="Telephone" sqlcol="telno"

hrefexpr=" 'tel:'. $_sqlres_telno "/>
<resultcol label="Mobile" sqlcol="telno"

hrefexpr=" 'tel:'. $_sqlres_mobileno "/>
<resultcol label="Email" sqlcol="telno"

hrefexpr=" 'mailto:'. $_sqlres_emailid "/>
</resultrecord>

</queryview>
<queryview layout="table" recordsperpage="5">
<sql>select * from phyvisit where

town=$town and physician=$physician
order by visitdate desc</sql>

<text expr=" $_reccount . 'Visits' " />
<resultrecord>
<resultcol label="Date" sqlcol="visitdate"

hrefexpr="'mvm.php?pageid=phyvisit'.
'&txmode=view'"

passvalues="phyvisittxno"/>
<resultcol label="Time" sqlcol="intime" />

</resultrecord>
</queryview>
<!-- pagefooter code omitted -->

</page>
Figure 6. The Specification for Physicians List Query Page

3.9 The Physicians Visit Transaction
Now we consider Physicians Visit Transaction page/screen as
shown in figure 7. This screen enables the MSR to enter details of
her visit including the products that she briefed to a physician.

Figure 7. The Physicians Visit Transaction Page
The specification for this page is shown in figure 8. As before,

the queryparams specify query string parameters received by
this page. While the query parameter phyvisittxno is passed to
load the transaction in View Mode, the town and physician
parameters are passed in New Mode to serve as default values for
these fields. This page contains a simpletxn section which
contains two transaction blocks (identified by txnblock):

1. The first transaction block corresponds to phyvisit table.
This block is defined as a parent block with single record

set in dual column layout. While the tablekeys specify
primary keys of the table, loadkeys define corresponding
variables whose values should be used to retrieve the
transaction in View or Edit Mode. The block contains
several fields, the first of which is Tx. No, whose datatype
is defined as autoincr (value of field to be generated by
database server while saving the record). The next field is
Tx. Date, which has default value of current date. The Med.
Rep. field is a protected field with a default value of MSR’s
userid. Then, we have more input fields whose
specifications are self-explanatory.

2. The second transaction block corresponds to phybriefs
table. This block is defined as a child block with multiple
records set in tabular layout. The first field here is Prod.
Code which has a foreign key validation against products
table. The second field is Samples which is optional.

While the transactional model uses Controls such as Submit
button and Cancel link in New Mode, it uses Edit link, Delete
link and Back link in View Mode. The behavior of these controls
is fixed and the developer can only specify alternate labels for
these controls.
<?xml version='1.0' standalone='yes'?>
<page id="phyvisit">

<queryparams>
<param name="town"/>
<param name="physician"/>
<param name="phyvisittxno"/>

</queryparams>
<!-- pageheader code omitted -->
<simpletxn>
<txnblock blocktype="parent" multirecord="false"

layout="dualcol" tablename="phyvisit"
tablekeys="phyvisittxno"
loadkeys="$phyvisittxno" />

<input type="text" label="Tx. No."
name="phyvisittxno" datatype="autoincr"
disableifexpr="1"/>

<input type="text" label="Tx. Date"
name="visitdate" datatype="date"
defvalexpr="date('Y-m-d')"/>

<input type="text" label="Med. Rep."
name="medrepid" datatype="char" size="20"
defvalexpr="$_userid" disableifexpr="1"/>

<input type="text" label="Town"
name="town" datatype="char" size="20"
defvalexpr="$town" disableifexpr="1"/>

<input type="text" label="Physician"
name="physician" datatype="char" size="30"
defvalexpr="$physician" disableifexpr="1"/>

<input type="text" label="In Time" name="intime"
datatype="time" size="5"/>

<input type="text" label="Out Time"
name="outtime" datatype="time" size="5"
valdexpr1="$outtime > $intime"
valdmsg1="OutTime must be morethan InTime"/>

</txnblock>
<txnblock blocktype="child" multirecord="true"

layout="table" tablename="phybriefs"
tablekeys="phyvisittxno"
loadkeys="$phyvisittxno" />

<title>Products Briefed</title>
<input type="select" label="Prod. Code"

name="prodcode" datatype="char" size="10"
optionsql="select prodcode from products"
fkeytable="products"
fkeytablefields="prodcode"
fkeyvaluefields="$prodcode"
fkeyerrmsg="Invalid Product"/>

<input type="text" label="Samples"
name="sampleqty" datatype="num" size="2"
required=”false”/>

</txnblock>
</simpletxn>
<!-- pagefooter code omitted -->

</page>
Figure 8. The Specification for Physicians Visit Transaction

6262

3.10 MobiDSL Metamodel
We can see that MobiDSL has very high expressive power as it
allows us to specify page structure, presentation (static/dynamic
text, widgets), navigation, data retrieval, data formatting and
transactional logic at almost same level of expression as required
in communicating the specifications to a programmer. Further, the
use of pass-through SQL enables system designers, analysts and
programmers to leverage their knowledge to develop mobile web
applications with relative ease without any web programming.
Moreover, MobiDSL allows extensibility by allowing developers
to use any user-defined function in various expressions. Figure 9
presents a simplified view of MobiDSL metamoddel, which
depicts various design elements/constructs at a glance.

Figure 9. A simplified view of MobiDSL metamodel

4. Discussions
4.1 Application Life-Cycle Management
MobiDSL provides a reasonably sound framework for complete
life-cycle management of mobile web applications:
Prototyping: As the MobiDSL specifications are at very high
level almost mirroring the functional requirements, it is possible
to create working prototypes using MobiDSL in similar time that
might be needed to create a prototype using any prototyping tool.
Development: MobiDSL is compact DSL designed specifically
for mobile web applications. The constructs provided in the DSL
along with the ability to use pass through SQL and user defined
functions make it reasonably adequate to cover most of the needs.
Testing: MobiDSL code, being declarative in nature, is far easier
to debug than a procedural code. Moreover, the VM allows quick
testing as the changes are reflected immediately in the application.
This can save considerable time as the change-compile-build-
deploy cycle is eliminated.
Deployment: The VM uses basic protocols (HTTP) and basic
API’s (CGI, pass through SQL). As a result, it can be deployed on
commodity hardware or most of the existing infrastructure in an
organization. It provides scalability by allowing multiple
application servers, which can be added or removed without need
to shut down the application. Finally, the VM does not require any
special middleware typically seen in many high-end applications.
4.2 Generative vs. Interpretive Approach
We believe that a carefully crafted implementation of a VM can
offer several benefits at speeds matching that of the generated

code. Whereas generated code needs to be maintained, versioned,
compiled and installed on an application server, these tasks are
eliminated in the interpretive approach, leading to easier
deployment and maintenance of the application.

5. Conclusions
Contribution. In this paper, we have looked into the question of
how we can simplify the development, deployment and life cycle
management of mobile web applications. The question is
important because mobile web is a fast growing information
delivery medium and it is vital for organizations to quickly
develop systems for mobile platform with least effort. Our main
contributions can be summarized as follows:

1. Identifying core requirements and design elements of
mobile web applications

2. Designing a DSL for defining the complete specifications
of a Page/Screen

3. Incorporating the concept of using SQL in DSL for Queries
4. Creating a VM to support the DSL
This research has resulted in development of a lightweight

framework consisting of MobiDSL and its associated VM. It has
been tested extensively by us, and was found to perform as per
our design expectations on parameters such as coverage of
problem domain, ease of development and deployment, speed of
execution, scalability and reliability. This framework is also being
used in industry to create mobile specific versions of certain parts
of their enterprise application.
Future Work. MobiDSL being a nascent framework, is evolving
continuously. Future work includes enhancing the DSL to
increase functionality, providing client-side validations using
JavaScript (based on device capability) and conducting a detailed
comparative study of various metrics with respect to other popular
web engineering methodologies.

Acknowledgments
We thank the anonymous reviewers for their valuable comments.
We also thank all those who have helped in this work.

References
[1] Mobile Web Initiative. Available: http://www.w3.org/Mobile/
[2] Mobile Web Best Practices1.0. Available:

http://www.w3.org/TR/2008/REC-mobile-bp-20080729/.
[3] dotMobi Mobile Web Developer's Guide. Available:

http://mobiforge.com/starting/story/dotmobi-mobile-web-
developers-guide.

[4] Instant Mobilizer. Available: http://www.instantmobilizer.com/
[5] Janne Luoma,,Steven Kelly, Juha-Pekka Tolvanen : Defining

Domain-Specific Modeling Languages: Collected Experiences.
Available: http://www.metacase.com

[6] Arie van Deursen, Paul Klint, Joost Visser: Domain-Specific
Languages: An Annotated Bibliography. SIGPLAN Notices 35(6):
26-36 (2000)

[7] Nunes, D. A.; Schwabe, D. : Rapid Prototyping of Web Applications
Combining Domain Specific Languages and Model Driven Design.
in 6th International Conference on Web Engineering (ICWE’06),
ACM Press, Jul. 2006.

[8] Martin Nussbaumer, Patrick Freudenstein, Martin Gaedke: Towards
DSL-based web engineering. WWW 2006: 893-894

[9] Eelco Visser: WebDSL, “A Case Study in Domain-Specific
Language Engineering,” in GTTSE 2007: 291-373

[10] Stefano Ceri, Piero Fraternali, Aldo Bongio: Web Modeling
Language (WebML): a modeling language for designing Web sites.
Computer Networks 33(1-6): 137-157 (2000)

[11] Atzmon Hen-Tov, David H. Lorenz, Lior Schachter: ModelTalk: A
Framework for Developing Domain Specific Executable Models.
CoRR abs/0906.3423: (2009)

6363

MontiWeb - Model Based Development of
Web Information Systems

Michael Dukaczewski Dirk Reiss
Mark Stein

Institut f. Wirtschaftsinformatik
Abt. Informationsmanagement

Technische Universität Braunschweig
http://www.tu-braunschweig.de/wi2

Bernhard Rumpe
Software Engineering

RWTH Aachen
http://www.se-rwth.de

ABSTRACT
The development process of web information systems is of-
ten tedious, error prone and usually involves redundant steps
of work. Therefore, it is rather efficient to employ a model-
driven approach for the systematic aspects that comprise
such a system. This involves models for the data structure
that shall be handled by the system (here: class diagrams),
various editable and read-only presentations (views) on com-
binations and extractions of the underlying data (here: a
special view language) and ways to connect these views and
define data flow between them (here: activity diagrams).

In this paper, we present the MontiWeb approach to model
and generate these aspects in a modular manner by incor-
perating the MontiCore framework. Therefor we shortly in-
troduce the infrastructure that helps to develop modular
systems. This involves the whole development process from
defining the modeling languages to final code generation as
well as all steps in between. We present the text-based class
and activity diagram languages as well as a view language
that are used to model our system.

1. INTRODUCTION
The development of web information systems is a domain
that is rather well understood. Quite a number of web
application frameworks offer means to implement such sys-
tems using a wide range of approaches in almost every mod-
ern programming language (for an overview, we refer to
[30]). However, most of these frameworks still demand a
vast amount of repetitive and tedious work to implement
similar parts of a web application: usually a datastructure
needs to be implemented following a well-defined and under-
stood scheme, same applies to the persistence mechanisms
- either manually written or by using a framework such as
JPA [13]. In web systems most of the datastructure need
appropriate presentations to provide CRUD (create, read,
update and delete) functionality and page flow needs to be
defined for each web application. Depending on the tech-
nology employed, the effort needed to implement this varies
a lot: frameworks like Apache Struts [2] require the main-
tenance of lengthy and unreadable XML files to specify the
flow between different pages.

In order to develop such a system as efficient as possible
and thus to reduce laborious and error prone work of man-
ually writing the verbose code and configuration files of a
web application framework, the adoption of a model driven

approach [21, 15, 14] is usually a good choice. Abstract-
ing from implementation details, the developer can focus on
specifying the essentials of the system. These are in partic-
ular (1) means to define the data structure of the applica-
tion, (2) ways that enable the developer to define views on
the data structure and (3) the possibility to connect these
views and specify the relevant parts of a complete web ap-
plication. From the models describing these aspects, one
or more code generators can create many necessary parts
of a web-based system. Of course the discussed languages
do not cover every aspect (e.g. complicated authentication
or application specific functionality is not covered), but the
generators and their frameworks used provide a large part
of the basic functionality.

In this paper, we present the web application modeling frame-
work MontiWeb. One of the main targets of this approach
is to come up with running prototypes early and refine those
in an agile way until the final system is developed. There-
fore, the MontiWeb approach does provide defaults. The
discussed generators are in particular connected to target
frameworks and components, that e.g. do provide persis-
tence and a standard authentication mechanism that how-
ever can be replaced and adapted to specific needs.

Generally DSLs can be designed as graphical or text-based
modeling languages. Both have its advantages and disad-
vantages. As we do not focus on graphical frontends, but
on agile usability, we use a textual notation due to the ad-
vantages presented in [11] and the fact that both can be
transformed into eachother.

The rest of the paper is organized as follows: Section 2 intro-
duces the framework we use to implement the web applica-
tion modeling languages, Section 3 describes the languages
in detail, Section 4 presents related work regarding the mod-
eling of web information systems and Section 5 concludes
this paper and gives an outlook of future extensions.

2. DEVELOPING DSLS USING THE MON-
TICORE FRAMEWORK

As already mentioned in Section 1, we use the modeling
framework MontiCore [18, 17, 19] as technological basis for
MontiWeb. MontiCore is being developed at RWTH Aachen
and TU Braunschweig. It allows the convenient specification
of textual modeling languages and provides an extensive in-
frastructure to process these. It is designed for the rapid

64 64

development of domain specific languages. A modeling lan-
guage can be defined in an integrated format that combines
both abstract and concrete syntax in one specification.

MontiCore-Grammar

1 grammar Classviews {
2

3 external Annotation;
4 interface ViewElement;
5

6 Classviews = Annotation* name:IDENT
7 "{" Attributes? Views* "}";
8

9 Modifier = (Editor:["editor"] |
10 Display:["display"] | Field:["field"]);
11

12 View = Annotation* Modifier name:IDENT?
13 "{" ViewElement+ "}";
14

15 ViewParameter implements ViewElement =
16 Annotation* Modifier? name:IDENT ";";
17 // ...
18 }

Figure 1: Definition of AST (Metamodel) and con-
crete textual syntax for Classviews

As shown in Figure 1, a grammar in MontiCore starts with
the keyword grammar and is identified by a name (here:
Classviews). Non-terminals are notated on the left hand
side of a production (here: Classviews (6), Modifier (9),
View (12) and ViewParameter (15)) and used on the right
hand side. Keywords are enclosed in double-quotes whereas
named elements have a name in front of a colon, followed
by the type of element afterwards (e.g., name as the name
and IDENT as the type of the predefined terminal (6, 12)).
Rules can have a cardinality (e.g. * (6, 7) for 0 to unlim-
ited occurence, + (13) for 1 to unlimited and ? (7, 12, 16)
for optional occurrence) and alternative rules (e.g. (9, 10),
seperated by the pipe character (|)) are supported. The
keyword external marks certain non-terminals as defined
outside of the actual grammar (3) and needs to be linked to
another non-terminal from a different grammar. The key-
word interface (4) implies that the following element is a
placeholder for arbitrary elements that implement this inter-
face. Here, the non-terminal ViewElement can be replaced
by the non-terminal ViewParameter or further here ommit-
ted non-terminals (indicated by the three dots (17)).

Besides these constructs, MontiCore supports extension mech-
anisms such as grammar inheritance (see [19] for a more
detailed description of this and the abovementioned con-
cepts). From the grammar, several tools for model instance
processing, model-to-model transformation, and code gener-
ation are generated and used within the MontiWeb tool.

3. MONTIWEB - MODELING WEB APPLI-
CATIONS

The difficulties with developing web information systems
manually were briefly described in Section 1. These prob-
lems mainly occur due to the application of different tech-
nologies that are not designed to be used together. For
data persistence, a relational database management system

is the common case. Modern frameworks like Struts [2] or
Tapestry [3] use template engines like Velocity [28], Free-
marker [9] or XML for generating the presentation. The
controller is commonly written in a modern GPL like Java.
Since all these technologies are developed independently but
still describe the same elements on different levels, changes
often need to be made in all of them. For example, if a new
attribute shall be added to the data structure, all three lay-
ers are affected and need to be modified. Furthermore, often
glue code in formats such as XML configuration files need
to be touched as well. Thus, a model driven development
approach can help a lot in these cases: convenient infrastruc-
ture provided, each of these layers can be defined in its own
modeling language and describe the appropriate matter con-
cisely. Therefore, adding one field would mainly concern one
model element and reflect into all other layers automatically.
Here the order in which the models are specified is not im-
portant. Modeling can be an incremental process where the
different models are written in parallel and independently
of eachother and then the consistency between them can be
checked on the model level and be ensured through tested
code generation. The three modelling languages with syntax
and function in the websystem and interaction are described
in the following.

3.1 Data Structure
The central aspect of a web information system is the under-
lying data structure. The language describing it should be
flexible enough to express all necessary aspects and yet easy
and domain specific enough to raise the level of abstraction
above manual implementation.

Three requirements for the data structure description are
set: (1) A type system (2) composability and (3) relationship
between model elements. By a domain specific data type
system special characteristics are assigned to the data. Thus
validation of data, transformation rules, storage mechanisms
and other data-specific functions are easily possible.

Composability of complex data means that one data struc-
ture can be made up from elementary data types as well as
complex ones defined elsewhere in the model. The relation-
ships between the data define mapping properties. Since
class diagrams offer enough expressiveness for data model-
ing and are generally well-known, MontiWeb uses a textual
representation of a subset of UML/P [25, 24] class diagrams
to describe the data structure. In the following we explain
how the chosen modeling language met the three require-
ments for the description of the data structure. An exam-
ple of such notation is shown in Figure 2. It shows the
simplified data structure of a carsharing service that con-
sists of persons and cars. A class diagram begins with the
keyword classdiagram and is named right after (1). It con-
tains class definitions that are notated straight-forward with
the corresonding keyword. The different attributes are de-
fined within the class and consist of a type (e.g. MWString

(4) which represents a domain specific implementation of
a String) and a name (e.g. name (4)). MontiWeb distin-
guishes two types of classes: (a) Base classes - are similar to
primitive types of Java. They do not include any attributes
and are implemented in the target system according to their
own rules. (b) Complex classes - contain attributes of base
classes as well as other complex classes. To model relation-

65 65

ships between two classes, associations can be used.

MontiWeb provides two types of associations. Normal asso-
ciations (not shown in the example) in the generated web
system are treated as link between objects, i.e. for an asso-
ciation between class A and B, an object of class A can be
assigned to an object of class B. The second type of associ-
ation is composition. It is denoted by the keyword compo-

sition (17-18) and the two associated classnames (Person
and Car). Associations can have named roles (keeper and
cars), cardinalities (* in this case, the ommission on the
other side implies exactly 1) and directions (here, -> which
implies that a person owns cars that only exists in combi-
nation with the person). In compositions, one class is em-
bedded into the other class, whereas the embedded object is
created simultaneously with its parent object. The compo-
sition represents a part-whole or part-of relationship with a
strong life cycle dependency between instances of the con-
taining class and instances of the contained classes. This
implies that if the containing class is deleted, every instance
that it contains is deleted as well. Using to multiplicity and
direction, other properties of the association or composition
can be defined. In MontiWeb, static selection lists, such as
days of the week, can be defined by enumerations (9), and
can also be considered as a type of attributes. The entire
data structure is distributed over several class diagrams. A
class diagram is an excerpt of the overall system. The source
code in Figure 2 shows a part of the car sharing web system.

Classdiagram

1 classdiagram Carsharing {
2

3 class Person {
4 MWString name;
5 Email email;
6 Number age;
7 }
8

9 enum Brand {AUDI, BMW, VW;}
10

11 class Car {
12 Brand brand;
13 Number numSeats;
14 MWDate constYear;
15 }
16

17 composition Person (keeper)
18 -> (cars) Car [*];
19 }

Figure 2: Datastructure of a Carsharing application

3.2 View Structure
The presentation layer is responsible for rendering the data
and providing the interface between a human user and the
web information system. Since the main focus of MontiWeb
is the domain of data-intensive web applications, the model-
ing language used offers means to conveniently specify data
entry and presentation rather than extensive structures to
detailly describe pretty interfaces. Nevertheless, the gener-
ated layout can be altered by the common means of adjust-
ing the templates for code generation and the inclusion of
Cascading Style Sheets (CSS) and thus fitted to a certain
(corporate) design. From a language to specify views of a

web system, we demand the following: (a) different, pos-
sibly limited views on the underlying data structure must
be specifiable, (b) views are composable, i.e. once defined
views can be composed to and reused in other ones, (c) static
parts (e.g. text or images) can be included in dynamic views
on the data and (d) web specific convenience functionality
like validation, filtering, sorting data etc. can be modeled
with the provided language. Since the UML does not offer
any way to specify such features, we developed a domain
specific Classview language which allows the specification
of different views on a certain class from a class diagram.
Each Classview file includes named views on exactly one
class (and thus fulfilling the abovementioned requirement
(a)). An example of such for class Person is depicted in
Figure 3.

Classviews

1 Person {
2

3 attributes {
4 @Required
5 @Length(min=3, max=30)
6 name;
7 @Required
8 age;
9 }

10

11 display protectedMail {
12 name;
13 @AsImage(alt=false)
14 email;
15 cars;
16 }
17

18 display welcome {
19 text {Welcome to Carsharing Service}
20 include protectedMail;
21 age;
22 }
23

24 @Captcha
25 editor registration {
26 name;
27 email;
28 age;
29 cars;
30 }
31

32 display error {
33 @Warning
34 text {You are not old enough!}
35 }
36 }

Figure 3: Example of Classviews

Within MontiWeb, special functionality (such as the ones
noted above in (d)) is encoded in a syntax that is borrowed
from Java annotations. These begin with an ampersand (@)
and may have additional attribute-value pairs in parens ap-
pended to it (e.g. (5)). For MontiWeb, we already offer
a rich selection of predefined domain-specific annotations -
some of them shown in the example and explained in the
following. The rules within the element attributes (3-9)

66 66

apply to all views within the classview file. Here these im-
ply that the attributes name and age are obligatory to en-
ter (@Required (4, 7)) and name may appear 3 to 30 chars
(@Length(min=3, max=30) (5). These result in the gener-
ation of according AJAX verifictaion mechanisms. Subse-
quently, the different views are specified. These begin with
the type of view (here: display (11, 18, 32) for views that
simply output the data and editor (25) that renders the
appropriate input fields for the classes’ attributes) and are
followed by a name. The view protectedMail renders the
name, email address and cars data of a person whereas the
email address is being transformed to an image (caused by
the web-specific annotation @AsImage to avoid automatic
email address harvesting). The welcome view displays some
static text (19), does furthermore include the protected-

Mail view and displays a persons age. This functionality
satisfies the demands (b) and (c) from above. The reg-

istration view is an editor view and thus provides input
fields for name, email and age of a person and – as cars

denotes the composition of car objects within a person –
means to associate such objects to a person. The annota-
tion @Captcha (24) produces a captcha field on this view.
Finally, the view error (32-35) simply consists of a static
text that is rendered in a manner that indicates a warning.

An example of how the registration view could be ren-
dered is shown in Figure 4.

Figure 4: View ”editor”

3.3 Control- and Dataflow
Defining only the data structure and different views on it
suffices for generating basic web information systems that
allow rudimentary data manipulation functionality like en-
tering and saving, showing and updating the data. To create
more complex web applications, we need means to model
both, control and data flow between the different pages or
views respectively. For this purpose, we use a profile of UML
activity diagrams [22] in textual notation. An example of an
activity diagram is shown in Figure 5. It describes a process
of user registration where a user enters his user data and is
then directed to either a welcome page (in case his age is
greater than 18) or an error page (if the age is smaller than
18).

An activity diagram starts with the keyword activity fol-
lowed by the activities’ name (here: UserRegistration).
Actions (introduced by the keyword action (3, 8, 13)) posses

Activity Diagram

1 activity UserRegistration {
2

3 action Registration {
4 out: Person p;
5 view : p = Person.registration();
6 }
7

8 action Welcome {
9 in: Person p;

10 view : Person.welcome(p);
11 }
12

13 action Error {
14 in: Person p;
15 view : Person.registrationError(p);
16 }
17

18 initial -> Registration;
19 Registration.p -> [p.age >= 18] Welcome.p
20 | [p.age < 18] Error.p;
21 Welcome | Error -> final;
22 }

Figure 5: Example of Activity Diagrams

a name as well and include different contents: in (9, 14) and
out (4) followed by an attribute type (Person) and attribute
name (p) specify input and output parameters of an action.
The keyword view (5, 10, 15) indicates the kind of content
of an action. The view itself is referenced by its name and ei-
ther can take an object as argument (10, 15) to initialize the
view or return an object which is assigned to an output pa-
rameter (5). Transitions within an activity are represented
by an arrow symbol (-> (18, 19, 21)) and may contain sev-
eral sources and targets. The keywords initial and final

denote start and final nodes of an activity and the pipe char-
acter (| (20, 21)) depicts alternative flows - with conditions
on the right hand side (19, 20) or as alternative routes to the
final node (21). Object flow is modeled by appending the
parameter name to the action name and for simple control
flow, these parameters are left out.

Besides these notation elements, concepts such as parallel
flow, hierarchical actions (which themselves are specified by
an activity) and roles to which actions can be assigned are
supported as well but omitted in this paper for the sake of
space. Furthermore, different content can be included in an
action. Presently, the inclusion of Java code is supported
along the already mentioned view calls.

3.4 Aggregation (Interaction) of Component
Specific Languages

The described models define three views on a whole system.
They are developed and specified independently from each
other to maintain clean seperation of the different compo-
nents. Nevertheless the model parts have some well-defined
connection points. Elements that are defined in one model
are referenced from another (e.g., views are referenced from
an action). The inter-model-relationships are essential for
completeness and correctness of the whole system and fi-
nally define its behavior.

67 67

When developing modeling languages from scratch for parts
of a domain, first and foremost only these parts are con-
sidered. However, although they will work in isolation, they
are often used in combination to model the complete system.
Therefore, the notation of a language must provide means
to connect to other components.

Interaction between modeling languages can be realized with
different mechanisms [26], e.g. by embedding one language
into another like SQL is embedded into a GPL like Java. In
MontiWeb, the inter-language interaction is realized by us-
ing the pipeline pattern [26]. There, the different languages
are independent but still implicitly connected, i.e. the im-
plicit relationships are explicitly checked within the genera-
tion process. The visibility between the MontiWeb models
is depicted in Figure 6. The controller functionality is real-
ized similar to the Application Controller pattern [8]. Here,
class diagrams are completely independent from the rest of
the model. Neither the data presentation (classviews) nor
the flow control (activity diagrams) are of importance for the
data definition and thus can not be referenced from there.
Classviews depend on the data structure as they define ex-
plicit views thereof and contain references (e.g. to class-
names, attribute names and types or association names) to
it. Classviews do not reference activity diagrams, vice versa
activity diagrams reference classviews by name. As the con-
trol flow defines the central logic of a web information sys-
tem, both class diagrams and classviews are referenced from
there. To maintain consistency between these models, inter-
model checks are performed through, e.g. modular symbol
tables. Thus the existence of a referenced view or class can
be verified.

Activitydiagram

Classdiagram Classviews

Figure 6: Models of MontiWeb and their dependen-
cies

4. RELATED WORK
Similar approaches of modeling of web information systems
can be classified into (a) modeling using graphical languages,
and (b) modeling using textual languages.

One graphical modeling tool in the domain of web informa-
tion systems is WebML. Unlike MontiWeb, WebML distin-
guishes two domain segments: (a) data design concerns the
specification of data structures and (b) hypertext design is
used to describe the structure of web pages [6]. Both of these
languages incorporate UML class diagrams. For hypertext
design, predefined classes like Entry for the generation of a
web form or Data to display a class are used. The naviga-
tion structure is depicted by directed associations between

classes. Furthermore, WebML supports a XML based tex-
tual modeling language which lacks tool support. Therefore,
the use of their own graphical modeling tool is favored [5].

UWE (UML-based Web Engineering) [16] follows a similar
approach as WebML. It uses class diagrams for data struc-
ture specification and, like MontiWeb, uses acivity diagrams
to describe the modeling of workflow. UWE’s notation is a
graphical one as well. Like WebML, the UWE models can
be exported in an XML format.

Another tool that uses graphical modeling is AndroMDA [1].
AndroMDA does not have its own editor yet, but uses XMI
as input format which is supported by some UML Editors.
Like MontiWeb, it uses class diagrams for data structure
and activity diagrams for workflow description. AndroMDA
does not offer a specific language to describe the view aspect
of a web information system, but generates it from extra
class diagrams that have to be specified additionally. To
get a working application, all parts have to be provided. A
generation of standard behavior as MontiWeb does is not
supported.

As a textual modeling approach, WebDSL [29] follows a sim-
ilar approach as MontiWeb. The language there is specified
using SDF [12] and Stratego/XT [4] for language transfor-
mation. They use a purely domain specific modeling lan-
guage and is not leaned on UML.

The Taylor project [27] follows an MDA approach to model
and develop JEE applications. The models are created using
Eclipse Graphical Modeling Framework (GMF) [10] and are
stored in XMI format by incorporating EclipseUML [7]. As
notation for data structure, Taylor uses class diagrams, busi-
ness processes are defined by activity diagrams as well. The
navigation structure between pages is specified by a state
machine language where states depict pages and transitions
links from page to page.

Another popular approach for generating web information
systems is Ruby on Rails [23]. Although it is not a pure
model based approach, a prototype application can be gen-
erated using the Ruby on Rails scaffold mechanism. From a
simple model in a Rails-specific notation and a HTML-based
view template language, CRUD functionality and a very ba-
sic controller can be generated. However, unlike MontiWeb,
the focus of Rails is the manual programming of all three
components, aided by extensive web-specific functionality
provided by the language.

The Mod4j (Modeling for Java) [20] project aims at the effi-
cient development of administrative enterprise applications
by employing a model driven approach. Like MontiWeb,
Mod4j seperates the application into its different aspects and
offers a modeling language for each. The Business Domain
Model is represented by an UML class diagram. Page flow is
modeled using a specific Service Model and the presentation
in the application has its own modeling language as well.
Mod4j is based on Eclipse technology and uses XText [31]
for the development of languages.

68 68

5. CONCLUSION AND FUTURE WORK
In this paper we described our approach to model and gen-
erate web information systems to tackle the insufficiences
that occur when developing such systems manually. Espe-
cially the difficulties caused by the combination of normally
orthogonal frameworks are approached. Within MontiWeb,
we use three languages for the three main segments of a web
information system. Two of them come from the UML/P,
one language (classviews) is completely new defined. These
languages reflect the requirements of each domain compo-
nent and were adapted to their specific needs.

The currently reached status involves pretty stable languages,
as discussed here, and appropriate generation tools. Fur-
thermore a number of presentation forms for various data
types (such as Date, String etc. are defined). We cur-
rently work on extensions of the provided functionality in
various ways. This includes e.g. components for more fine
grained security, identification and authentication as well as
the possibility to easily integrate predefined (third-party)
components that provide application specific functionality.
We plan to further extend and complete the already used
languages (e.g. include inheritance in class diagrams) and
incorporate new ones to model not yet covered aspects of
a web information system (such as use case diagrams for
requirements modeling). Furthermore, we think of genera-
tion of a modular API to access the generated system via
SOA-services or add SOA-functionality provided by other
servers.

6. REFERENCES
[1] AndroMDA Homepage http://www.andromda.org/.

[2] Apache Struts Homepage
http://struts.apache.org/.

[3] Apache Tapestry Homepage
http://tapestry.apache.org/.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/XT 0.17. A Language and Toolset
for Program Transformation. Science of Computer
Programming, 72:52–70, 2008.

[5] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a modeling language for
designing Web sites. Computer Networks,
33(1-6):137–157, June 2000.

[6] S. Ceri, P. Fraternali, and M. Matera. Conceptual
modeling of data-intensive web applications. IEEE
Internet Computing, 6(4):20–30, 2002.

[7] Eclipse UML Project
http://www.eclipse.org/modeling/mdt/?project=uml2.

[8] M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2003.

[9] Freemarker Website http://freemarker.org/.

[10] Graphical Modeling Framework Website.
http://www.eclipse.org/gmf/.

[11] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. Textbased Modeling. In 4th International
Workshop on Software Language Engineering, 2007.

[12] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers.
The syntax definition formalism SDF - Reference
Manual. Sigplan Notices, 24(11):43–75, 1989.

[13] Java Persistence API http://java.sun.com/javaee/-
technologies/persistence.jsp.

[14] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley,
2008.

[15] A. G. Kleppe, J. Warmer, and W. Bast. MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[16] N. Koch and A. Kraus. The expressive power of
UML-based engineering. In Second International
Workshop on Web Oriented Software Technology
(CYTED), 2002.

[17] H. Krahn, B. Rumpe, and S. Völkel. Efficient Editor
Generation for Compositional DSLs in Eclipse. In
Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling 2007, 2007.

[18] H. Krahn, B. Rumpe, and S. Völkel. Integrated
Definition of Abstract and Concrete Syntax for
Textual Languages. In Proceedings of Models 2007,
pages 286–300, 2007.

[19] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[20] Mod4j Homepage http://www.mod4j.org/.

[21] Object Management Group. MDA Guide Version 1.0.1
(2003-06-01), June 2003.
http://www.omg.org/docs/omg/03-06-01.pdf.

[22] Object Management Group. Unified Modeling
Language: Superstructure Version 2.1.2 (07-11-02),
2007. http://www.omg.org/docs/formal/07-11-02.pdf.

[23] Ruby on Rails Website http://rubyonrails.org.

[24] B. Rumpe. Agile Modellierung mit UML :
Codegenerierung, Testfälle, Refactoring. Springer,
2004.

[25] B. Rumpe. Modellierung mit UML. Springer, 2004.

[26] D. Spinellis. Notable Design Patterns for Domain
Specific Languages. Journal of Systems and Software,
56(1):91–99, Feb. 2001.

[27] Taylor Homepage (http://taylor.sourceforge.net/).

[28] Velocity Website http://velocity.apache.org/.

[29] E. Visser. WebDSL: A Case Study in Domain-Specific
Language Engineering. Technical Report
TUD-SERG-2008-023, Delft University of Technology,
Software Engineering Research Group, 2008.

[30] I. Vosloo and D. G. Kourie. Server-Centric Web
Frameworks: An Overview. ACM Computing Surveys,
40(2):1–33, 2008.

[31] Xtext Homepage http://www.eclipse.org/Xtext/.

69 69

ProcDSL + ProcEd - a Web-based Editing Solution
for Domain Specific Process-Engineering

Christian Berger Tim Gülke

RWTH Aachen University
Software Engineering Group

Ahornstraße 55
52074 Aachen, Germany

www.se-rwth.de

Bernhard Rumpe

ABSTRACT
In a high-tech country products are becoming rapidly more
complex. To manage the development process as well as to
encounter unforeseen challenges, the understanding and thus
the explicit modeling of organizational workflows is more im-
portant than ever. However, available tools to support this
work, in most cases force a new notation upon the company
or cannot be adapted to a given publication layout in a rea-
sonable amount of time. Additionally, collaboration among
colleagues as well as different business units is complicated
and less supported. Since it is of vital importance for a
company to be able to change its processes fast and adapt
itself to new market situations, the need for tools support-
ing this evolution is equally crucial. In this paper we present
a domain specific language (DSL) developed for modeling a
company’s workflows. Furthermore, the DSL is embedded in
a web-based editor providing transparent access using mod-
ern web 2.0 technologies. Results of the DSL’s as well as
the editor’s application to document, model, and improve
selected workflows of a German automotive manufacturer
are presented.

1. INTRODUCTION AND MOTIVATION
In today’s world of business-processes, modeling becomes a
vital factor in an organization’s change and process man-
agement and even daily routines. This in particular holds
for the development of complex machines, such as airplanes,
cars or trains. Each of these domains has their own specific
problems, e.g. induced through supplier integration, need for
quality certification, development for individual customers
or the mass market, etc.

It is therefore not surprising that there is no unique solu-
tion for the management of these processes. Therefore, it
is only natural to find company-specific layouts of process-
descriptions and publications in almost every firm. Unfor-

tunately, tools meant to support organizations in planning
and developing their processes, often force their own layout,
notation and logic upon their users. Although this might be
considered easier and even ’better’ than what the company
is used to, we found it is one main reason to see printed Mi-
crosoft PowerPoint slides and similar documents to arise all
over office walls. Big organizations need a certain amount
of time to agree on a specific appearance of their process-
documents and even longer to publicize this throughout the
company. And even worse, the meaning of icons or the posi-
tion of images tends to change during a company’s evolution.
Programs like [6] or [2] are not able to be easily adapted to
appear like what people know and have worked with already.
This fact clearly shows the need for a modular tool which
can be adapted with considerably less effort than any others
available.

Furthermore, many currently available tools are single user
applications with only limited possibility for company-wide
collaboration. Using MontiCore [5], a framework for devel-
oping domain specific languages, we developed a web-based
editor for modeling organizational workflows that uses a
DSL’s instances as input and output. This DSL was de-
veloped together with company-experts to ensure correct-
ness and completeness. The editor’s interface then was con-
structed separately, so there was a clean cut between the
logic and its representation. This enables us to change ei-
ther the logic behind a process-plan or the frontends’ ap-
pearance without touching the other. Process modeling is
then being performed by the end user through a web-browser
to gain the amount of flexibility necessary in today’s quickly
changing world. AJAX technology enables us to construct
an interface almost as powerful as a traditional application’s
one.

This paper is structured as follows. First, a brief overview
of MontiCore is presented. Following, the design consider-
ations and the implementation of a DSL to model organi-
zational workflows are discussed. This DSL is embedded in
a web-based process editor which is presented afterwards.
Finally, the DSL as well as the editor’s application is shown
on an example from the automotive domain.

70 70

2. MONTICORE – A FRAMEWORK FOR
DEVELOPING DOMAIN SPECIFIC LAN-
GUAGES

MontiCore is a framework for developing textual domain
specific languages from the Department of Software Engi-
neering at RWTH Aachen University. It supports grammar-
based language design as well as meta-modeling concepts
by providing one language for abstract and concrete syntax
definition. Using a given definition it generates automati-
cally a lexer, a parser, and classes for an abstract syntax
graph (ASG) describing the language’s structure. At run-
time, these classes represent a successfully parsed and pro-
cessed instance of a given language [5, 7, 8, 9].

Generated artifacts and MontiCore itself are coded in Java.
Due to its sophisticated language processing concepts and
its support for Java which is also used by the technology
we intended to use for realizing the web-based editor, we
have chosen MontiCore for defining the language and for
processing instances at runtime.

3. PROCDSL – A DSL FOR PROCESS DE-
SCRIPTIONS

We propose a domain specific language to represent the com-
pany’s organizational workflow processing. The reason we
used a DSL to formalize the logic behind a process-plan
was the complex structure of those plans, hidden behind a
rather simple appearance. Basically, a milestone’s appear-
ance in a specific plan was determined by the organizational
view, consisting of a layer and unit combination, the plan
represented. One unit might be only participating to the
milestone’s result while another one is responsible for it.
Both types of access are represented through different icons
in their unit’s process-plan.

Without the use of MontiCore and a DSL, we would only
have been able to construct an application that suits the
current needs and requirements as we understood them.
In case of a sudden change of the appearance or logic of
those process-plans, the application would have to be re-
constructed in a time-consuming way. Through our sepa-
ration it is now possible to change either the model or the
graphical representation without touching the other. The
DSL, which we modeled together with chosen experts, en-
abled us to already start the development of the editor-
frontend while still being in the process of figuring out the
logic’s details behind the plans. This will also save resources
later if for example different views will be needed for the
same data. We predict that in near future, a plan’s lay-
out will change again or a new organizational layer might
be implemented - in that case the model or the editor can
be changed quickly without the need to rewrite a whole
database scheme and an applications access to it.

The main advantage over pure visual process modeling tools
is its formal specification. Additionally, a textually defined
DSL can be simply embedded in different contexts and there-
fore easily reused. In the following, we present briefly the
DSL we designed for modeling organizational workflows con-
sidering the following design criteria.

• Intuitional Representation. Instead of using XML for
defining workflows we chose a much more simple repre-
sentation to avoid XML’s verbosity and redundancy in
its data description. Thus, a better readability for the
user can be achieved if DSL’s instances are processed
without a graphical editor.

• Small Data Format. Since the language is intended
to be used in a web-based context, large entities of
organizational workflow descriptions would cause lots
of bandwidth consumption. Thus, a small data format
to be exchanged with a server is desirable.

• Reusability. The language itself is primarily intended
to be used with a graphical web-based editor to sup-
port process engineers. However, having a formally de-
fined and application-independent process description,
language’s instances can be easily exchanged among
the same application. Moreover, other tools can be
used for checking semantic constraints on the one hand
or to transform an instance into another data format
on the other hand.

• Versioning. Regardless if an available solution like
Subversion is used or a domain-specific (e.g. graphical)
one is programmed it is obvious that textual formats
are easier to put under version control as well to track
and compare changes.

To ensure usefulness, domain experts from the company
were heavily involved in the development of the DSL. Us-
ing a simple UML-representation of the DLS’s structure, we
were able to communicate in a productive way.

In Fig. 1, an excerpt of our grammar is shown. Technically,
MontiCore accepts productions with EBNF-like right hand
sides. Nonterminals (like Milestone or String) can be pre-
ceded by attribute names (like in name:String). Attribute
names can also be attached to terminals like "Scope" or
"resp" denoting, whether the keyword was detected.

Lines 1-5 contain the grammar’s start symbol. The work-
flow description starts with a header containing some meta-
information about the current instance followed by a list of
milestones. Every milestone has a name, a description, and
several other properties of which some are included in 1,
lines 9-13. Line 11 positions the milestone relatively to a
timeline. As already mentioned, the need to separate the
logic behind a process-plan and it its actual graphical rep-
resentation was crucial. Therefore, during development of
the DSL, we made sure not to mix graphical information
like icon positions, colors, and the like with logic-related
things. As a result, an instance of the given DSL does not
only represent a milestone-plan like the one shown in Fig.4
which was used as a blueprint for the DSL, it also enables
developers to get different graphical representations out of
it (e.g. simple lists of milestones, a specific view on inputs
and outputs of a milestone or the involvement of a layer in
process activities).

Besides an informal description, a milestone has a concrete
result which can be any appropriate artifact depending on
a specific workflow. Different scopes and layers can access

71 71

MontiCore-Grammar

1 ProcessFile =
2 "process"
3 ProcessHeader
4 :Milestone*
5 Process
6 :Scope*
7 "end";
8 ...
9 Milestone = "milestone" Name

10 ...
11 "position" TimelinePosition:Number
12 "result" Result:Result*
13 "description" Description:String;
14 ...
15 Scope = "scope" Name
16 "description" Description:String
17 r:Responsibility*;
18

19 Responsibility = "responsibility"
20 (responsible:["resp"]
21 | contributing:["cont"]
22 | noticing:["noti"])
23 "asmilestone" asMilestone:STRING;
24 ...
25 associations {
26 Responsibility.milestone * -> 1 Milestone;
27 }
28

29 concept sreference {
30 ResponsibilityMilestone:
31 Responsibility.asMilestone = Milestone.name;
32 }

Figure 1: Excerpt of our grammar to describe orga-
nizational workflows.

a milestone in different ways, like being responsible or just
contributing to the result. In this case, a scope is a spe-
cific organizational unit within a layer, like manufacturing
within the layer departments. Combined, these selections
define different views on the whole set of milestone-data. A
scope’s responsibilities are described in lines 19-23. Every
scope is either directly responsible for fulfilling a sub-process
associated with this milestone, contributing for a concrete
milestone or only noticing the state of a sub-process.

Using the concept of automatically set associations provided
by MontiCore in line 25-32, the responsibilities’ milestones
are navigably associated with an ASG node describing a
milestone. The following lines starting at line 27 describe
the way a milestone is mapped by its (unique) name to the
corresponding responsibility-object’s association.

For validating given values of concrete DSL’s instances ob-
ject which traverses the ASG, generated by MontiCore can
be defined. For example, a time-validating visitor can be
used to check the semantic constraints whether the start
time of a given milestone is prior to its end time regarding
to the underlying timeline specification, which can be either
a regular calendar or a simple sequence of weeks.

Using the grammar outlined in this section, we designed and
implemented a graphical web-based editor which is described
in the following.

4. GRAPHICAL EDITOR FOR PROCDSL
USING WEB 2.0 TECHNOLOGIES

We wanted the graphical editor to be as easily usable as pos-
sible combined with the flexibility a web-application gives us
regarding deployment and maintenance. AJAX enables de-
velopers to design web-applications that make use of asyn-
chronous callbacks rather than of synchronized ones. There-
fore, the traditional request-response-paradigm is no longer
the limiting factor in a web-application’s interface. Using
AJAX different parts of the website can be loaded dynami-
cally providing a great range of possibilities to the developer
to design the application. For more information about the
AJAX technology see [12].

Since the overall layout was already fixed due to the fact that
we were working with a company which had already specified
its appearance for process descriptions, it was clear that the
editor should not be a generic canvas, but an aid to work
in that given layout. However, it should use the formalism
provided with the DSL to keep users from inventing new
icons and limit them to correct instances.

We selected the Google Web Toolkit[4] as our main frame-
work which enabled us to write Java-code instead of
JavaScript for the web-interface. Through this, a highly in-
teractive web-based application combined with proper test-
ing and a decent coding-style was possible with much less
effort than a traditional one would have required. The imple-
mentation of Drag&Drop-capabilities as displayed in Fig.2
for canvas-objects as well as dialog-windows is another factor
that makes the interface a lot more comfortable for users.
Through asynchronous callbacks, drafts can be saved and
restored automatically.

As one can see in Fig.3, the main window is divided in three
different areas. The largest is used by the actual milestone-
plan, while the other two keep a toolbox to drag objects
out from onto the plan and an object-inspector. The latter
allows users to look into a chosen item’s details. To select
an object on the plan, it can simply be clicked on.

Figure 2: Web-based dragging and dropping of items
and collections of items.

72 72

As input and output, an instance of the above defined gram-
mar is used. After upload, the ASG is constructed from
the file through the MontiCore-generated tools, although
these objects are kept separate from the ones behind the
displayed items. This separation enables us to replace both
sides, grammar-generated objects and data-objects, with-
out changing much at the corresponding one in case an
engineering- or design-related update is necessary. No in-
stance of an ASG-object is kept in a visualizable one and
vice versa to achieve a very clean separation between the
two worlds. Since the editor does not get any display-related
information from the grammar, it has to decide itself on the
positioning and use of visual elements such as icons, colors,
etc.

To keep everything synchronized and to reduce computa-
tional effort and bandwidth, a central class containing a
hashmap keeps all objects and links them to an icon-file
that the user will finally see. This pattern makes searching
and working in general with the data easier as if ASG-objects
would keep their visualized counterparts themselves instead.
A Command-pattern makes sure user-input is handled cor-
rectly and distributed to the right object and also adds an
undo-/redo-functionality to the editor.

The web-application itself is secured through an SSL-connec-
tion and a required login provides a user-environment that
lets a user keep a list of files he is working on. This part of
the application could be extended, for example with func-
tions like shared comments.

Figure 3: Screenshot of ProcEd, a web-based editor
for instances of ProcDSLs.

5. APPLICATION AT AN AUTOMOTIVE
MANUFACTURER

The already fixed layout of graphical representations of the
corporate processes made questions about the application’s
appearance simple. The requirements gathered for this yiel-
ded to a login-screen, traditional file-menus, etc. Example
process files in Microsoft Power Point like the one shown
in Fig.4 specified the canvas’ layout. The real difficulties
therefore lay in the business-objects model and the different
influences the classes have on each other.

We used a graphical representation of our model to be able
to discuss it with selected domain-experts who had no edu-
cation in computer science. UML was a good choice due to
easily understandable class diagrams. However, we needed
several iterations to get to a complete model-specification.

The clearly separated parts in the software though made it
easy for us to keep up an agile workflow. While we could
implement more and more of the interface, the model itself
could be improved independently only requiring to gener-
ate a new lexer and parser using MontiCore to process the
modified version, and correct a function call or the like in
the separated part. Compared to a traditional approach
which would have forced us to complete the model first and
then build the application depending on it; using the afore-
mentioned approach we used during development we simply
could not only integrate but also embrace changes desired
by the customer [1].

Figure 4: Elements for process description at a Ger-
man automotive manufacturer.

6. RELATED WORK
The usage of DSLs in web-applications has received increased
interest in the last years. But as outlined in [10] or [11],
these activities did only focus on modeling an application’s
architecture and related workflows.

Our approach is different, because we did not use the DSL
to define workflows, but to get a data exchange format that
also serves as business layer in the resulting application. A
change in the DSL would not result in a whole new appli-
cation layout, only in differently working interfaces, leav-
ing the former with the customer agreed on GUI intact.
This is crucial, since the organizational layout for process

73 73

documents is already company-wide communicated and ap-
proved. To understand the meaning behind different layers
and associations though can be a tough job which needs flex-
ible tools that will only change parts of the code that need
to be changed with minimum effort.

The choice of Google’s GWT as the framework used for re-
alizing the web-editor was based on the excellent Eclipse in-
tegration and the number of features it includes. However,
the most important factor, compared for example to [3], was
the fact that GWT enables the developer to work in plain
Java without having to care about data exchange or even
JavaScript on the user’s end. This is clearly an advantage
because it decreases development time and simplifies testing
and source code documentation. Moreover, as already dis-
cussed earlier, MontiCore generates the classes representing
the grammar’s ASG in Java which could be easily integrated
with GWT.

Reasons a new DSL was used instead of implementing one
of the business modeling languages available were the very
company-specific process-layout on the one hand and the
missing or incomplete formal specification of those languages
on the other hand. As for example [13] notice, the Business
Process Modeling Language (BPMN) lacks several concepts,
like sub-processes with more than one instance, is partially
ambiguous in its definition and has an incomplete mapping
to the formal representation WS-Business Process Execu-
tion Language (BEPL). Moreover, BPMN did not let us
represent the company-specifics we needed to be able to
model, like a milestone’s different meanings defined by the
way different layers access it. This was a crucial fact since
we needed to be able to display different views from different
layers of the company onto the same sets of milestones and
the connections between them. If one milestone changes, it
has to be updated in every representation. This can only be
achieved with a data-model representing exactly the com-
pany’s structure.

7. CONCLUSION
In this paper, a formal, textual-based domain specific lan-
guage for defining workflows was presented. Using this lan-
guage, both documentation and modeling of organizational
processes of a company is supported and also given instances
of the DSL representing several workflows can be inspected.

For supporting a process engineer in modeling, documenting,
and integrating different workflows, a graphical web-based
editor using modern web 2.0 technologies was provided. Us-
ing this editor, workflows can be transparently presented
and updated nearly everywhere in a company using a web-
browser with state-of-the-art technologies already built-in.

The main contributions of this work – the formal descrip-
tion of organizational workflows on the one hand, and trans-
parent access to the DSL’s instances nearly everywhere on
the other hand – provide valuable support for a process
engineer’s daily work. Furthermore, formal and machine-
processable analysis of the DSL’s instances can be realized
both to check currently implemented workflows and to sim-
ulate changes in a company’s processes to perform what-if-
analysis.

With the MontiCore framework and toolkit, it was easy and
efficient to define and implement the DSL-part of the edi-
tor, including a lexer, a parser, ASG classes, and standard
context conditions. This and other examples from differ-
ent domains have shown that the MontiCore infrastructure
provides efficient techniques to develop DSL-based tools.

8. REFERENCES
[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,

W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas. Manifesto for the Agile Software
Development, 2001.

[2] BOC ADONIS http://www.boc-group.com/.

[3] Echo3 http://echo.nextapp.com/site/echo3.

[4] Google Web Toolkit
http://code.google.com/intl/de/webtoolkit/.

[5] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. MontiCore: A Framework for the
Development of Textual Domain Specific Languages.
In 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, Companion Volume, pages 925–926, 2008.

[6] IDS Scheer ARIS Business Designer http://www.ids-

scheer.de/de/ARIS_ARIS_Platform/7796.html.

[7] H. Krahn, B. Rumpe, and S. Völkel. Efficient Editor
Generation for Compositional DSLs in Eclipse. In
Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling 2007, 2007.

[8] H. Krahn, B. Rumpe, and S. Völkel. Integrated
Definition of Abstract and Concrete Syntax for
Textual Languages. In Proceedings of Models 2007,
2007.

[9] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[10] M. Nussbaumer, P. Freudenstein, and M. Gaedke. The
impact of DSLs for assembling web applications.
Engineering Letters, 13(3):387–396, 2006.

[11] M. Nussbaumer, P. Freudenstein, and M. Gaedke.
Towards DSL-based web engineering. In WWW ’06:
Proceedings of the 15th international conference on
World Wide Web, pages 893–894, New York, NY,
USA, 2006. ACM.

[12] L. D. Paulson. Building Rich Web Applications with
Ajax. Computer, 38(10):14–17, 2005.

[13] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter
Hofstede, and N. Russell. Business Process
Management, chapter On the Suitability of BPMN for
Business Process Modelling, pages 161–176. Springer
Berlin, 2006.

74 74

Model-View-Controller Architecture Specific
Model Transformation

Hiroshi Kazato
Tokyo Institute of Technology /

NTT DATA CORPORATION
Tokyo 152–8552, Japan

kazato@se.cs.titech.ac.jp

Rafael Weiß
Tokyo Institute of Technology

Tokyo 152–8552, Japan
rweiss@se.cs.titech.ac.jp

Shinpei Hayashi
Tokyo Institute of Technology

Tokyo 152–8552, Japan
hayashi@se.cs.titech.ac.jp

Takashi Kobayashi
Nagoya University

Nagoya 464–8601, Japan
tkobaya@is.nagoya-u.ac.jp

Motoshi Saeki
Tokyo Institute of Technology

Tokyo 152–8552, Japan
saeki@se.cs.titech.ac.jp

ABSTRACT
In this paper, we propose a model-driven development technique
specific to theModel-View-Controllerarchitecture domain. Even
though a lot of application frameworks and source code generators
are available for implementing this architecture, they do depend on
implementation specific concepts, which take much effort to learn
and use them. To address this issue, we define a UML profile to
capture architectural concepts directly in a model and provide a
bunch of transformation mappings for each supported platform, in
order to bridge between architectural and implementation concepts.
By applying these model transformations together with source code
generators, our MVC-based model can be mapped to various kind
of platforms. Since we restrict a domain into MVC architecture
only, automating model transformation to source code is possible.
We have prototyped a supporting tool and evaluated feasibility of
our approach through a case study. It demonstrates model transfor-
mations specific to MVC architecture can produce source code for
two different platforms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
Object-oriented design methods; D.2.11 [Software Engineering]:
Software Architectures—Domain-specific architectures, Patterns;
D.4.7 [Operating Systems]: Organization and Design—Interac-
tive systems

General Terms
Design, Languages

Keywords
Model-Driven Development, Model Transformation, Model-View-
Controller Architecture, UML Profile

1. INTRODUCTION
Model-driven development (MDD) [16] is a development para-

digm, which places models as primary artifacts and derives exe-
cutable software by means of model transformation. It aims to
increase productivity, maintainability and reusability of models by
raising the level of abstraction above general-purpose programming
and modeling languages. Some MDD tools, such as openArchi-
tectureWare (oAW) [18] and AndroMDA [1], use their own UML
profiles to include their necessary information into UML models.
Since this kind of tools transform profiled UML models into source
code, hereafter we refer to them as (model-driven) code genera-
tors. Along with the recent evolution in model transformation tech-
niques, they have shown the possibility and effectiveness of MDD
in practice to some extent.

However, because of the diversity of implementation platforms
and code generators, there are a lot of UML profiles corresponding
to various implementation concepts, and thus it is a labor-intensive
and error-prone task to build, maintain and reuse these models. To
cope with these problems, we should think of another level of ab-
straction by identifying similarities of various kind of implementa-
tion platforms and using code generators as building blocks.

In this paper, we propose a model-driven approach called AC-
CURATE, in which theModel-View-Controllerarchitecture style
is used to capture design concepts in a user-interactive applica-
tion as well as to classify implementation platforms such as ap-
plication frameworks and libraries. More specifically, we define a
UML profile to describe architectural concepts directly in a model.
Using this profile as a pivot [3], a bunch of transformation map-
pings is provided for each supported platform, in order to bridge
between architectural and implementation concepts. By applying
these mappings and code generators in sequence, our MVC-based
model can be transformed into implementation models and source
code for various platforms. Automating these transformations is
feasible because we only cover a restricted architecture domain.
The main contribution of this paper is to propose a model-driven
approach specific to theModel-View-Controllerarchitecture.

The rest of this paper is organized as follows. In the next section
we explain our motivation by a brief example. Section 3 presents
the ACCURATE approach. Section 4 briefly introduces the proto-
type implementation of our toolkit and following Sect. 5 evaluates
the approach through a case study of an address book application.
In Sect. 6, we survey some related works and close with conclusion
and future work in Sect. 7.

75 75

(a) EJB Profile (b) Spring and Hibernate Profiles

Figure 1: PSM Examples Using Profiles for the Fornax-Platform [10]

2. MOTIVATING EXAMPLE
Class diagrams shown in Fig. 1 are examples taken from two

different platform specific models (PSMs), one uses a profile for
EJB and the other does a combination of profiles for the Spring
Framework and Hibernate. Both of them specify almost same func-
tionality, i.e. object/relational mapping between Java and relational
databases, but they are different from a technical view because of
their platform-specific profiles.

A problem occurs, e.g. if one would migrate a PSM based on
EJB to Spring and Hibernate. In this case, the EJB profile first has
to be unapplied by removing stereotypes and tagged values, then
the model has to be modified structurally to conform the constraint
forced by Spring and Hibernate profiles, and finally, stereotypes
and tagged values defined by the target profiles have to be attached
to the model. We identify that problems of profiles are closely cou-
pled with code generators because of the following reasons:

∙ Each profile defines many stereotypes and tagged values whose
names and possible values are closely related to the platform
terminology. For example,≪Entity≫ stereotypes denote
EJB entity beans in Fig. 1(a), while they are plain-old Java
objects (POJO’s) managed by Hibernate in Fig. 1(b). Thus,
developers are obliged to learn the platform first, rather than
the profile itself.

∙ Concepts and terms introduced by profiles are technical and
separated from the requirements. For example,≪Service-
Operation≫ stereotype in Fig. 1(b) means that thead-
dOrderoperation runs an application logic within a transac-
tion because the result should be transactional. Thus, one
can hardly tell, which profile need to be applied and how to
elaborate the requirements to models.

∙ Since profiles often put their own constraint over the UML
metamodel, it is not easy to migrate a PSM from one profile
to another, even if both of them offer similar functionalities
and thus are alternatives for the application. For example, the
relationship betweenOrderServiceclass toBookOrderclass
needs to be an association with≪Reference≫ stereotype
in Fig. 1(a) and a dependency in Fig. 1(b).

For these reasons, PSMs are unsuitable to build, maintain and
reuse for the further software evolution. We find it difficult to deal
with a PSM once an application is built, especially when it has
to be migrated to another platform. To address these issues, we
propose an approach which enables developers to avoid operating
with PSMs and code generators directly.

3. ACCURATE APPROACH
In this section we present the ACCURATE approach. The name

ACCURATE comes from an acronym for ‘A Configurable Code
generator Unified with Requirements Analysis TEchniques’. As it
implies, requirements play an important role in both PIM model-
ing and platform decision. The key idea is to capture functional
and non-functional requirements into separate artifacts, a PIM and
a platform configuration respectively, and join them at the down-
stream of the development.

Figure 2 illustrates the workflow of the approach. It defines four
activities, PIM modeling, platform decision, PIM-to-PSM transfor-
mation and code generation. They are carried out by two kind of
actors, application designer and requirements engineer, who are re-
sponsible for functional and non-functional aspects of the system
respectively. During the proposed workflow, models have to run
through different stages (e.g. a PIM is transformed into a PSM).

PIMModelingApplicationDesigner
TransformationMappingsTransformationRepository

SourceCode
PIM PSM

PlatformConfiguration

PIM-to-PSMTransfor-mation
RequirementsEngineer

PlatformDecision CodeGeneration
Figure 2: ACCURATE Workflow

76 76

Figure 3: An Example Usage of the ACCURATE Profile

Following subsections explain these activities in terms of their in-
puts and outputs.

3.1 PIM Modeling
The workflow begins with definition of structure and function-

ality of the system as a PIM. We defined a platform-independent
UML profile, called the ACCURATE profile, to describe PIMs.
This profile adopts established concepts defined in the architecture
styles as names and semantics of stereotypes, since architecture
styles can be considered essentially immutable and independent of
any platforms.

Application designers describe PIMs using UML modeling tools
(such as MagicDraw [15]), which have support for defining and
applying profiles to a UML model. The ACCURATE profile has
fewer stereotypes and tagged values so that designers are easily
able to learn and use, keeping still expressive enough to specify an
application independently of any platform specific details.

Figure 3 illustrates a possible usage of the ACCURATE profile
for the well-knownModel-View-Controllerarchitecture style [6].
According to this style,≪model≫ classes provide core function-
alities of an application domain and propagate changes to≪con-
troller≫ and≪view≫ classes, which are responsible for in-
puts and outputs respectively.

3.2 Platform Decision
In parallel with the PIM modeling activity, requirements engi-

neers communicate with stakeholders around the system to assess
quality attributes expected for the system. The output from this ac-
tivity is a combination of platforms, which usually tends to depend
on experience and knowledge of requirements engineers since esti-
mating quality of the system before implementing it is essentially
a hard problem.

We assume our approach could be combined with certain re-
quirement analysis and quality estimation techniques, but this topic
is out of the scope of this paper due to the limitation of pages.

3.3 PIM Transformation
Once platforms are determined for a system, a PIM can be trans-

formed to a PSM automatically by a model transformation. The
output from this activity is a PSM that conforms to the UML pro-
files for the designated platforms. It can be used directly as an input

/* map a PIM class to a PSM identically */
mapping Class::toPSMClass() : Class {

name := self.name.firstToUpper();
isAbstract := self.isAbstract;
visibility := self.visibility;
...
ownedAttribute := self.ownedAttribute->map

toProperty()->asOrderedSet();
ownedOperation := self.ownedOperation->map

toOperation()->asOrderedSet();
}

/* map a PIM operation to a PSM identically */
mapping Operation::toPSMOperation() : Operation {

name := self.name;
type := self.type;
...
ownedParameter := self.ownedParameter->map

toPSMParameter()->asOrderedSet();
}

/* map a Controller class to a Service class */
mapping Class::toService():Class
inherits Class::toPSMClass
when{

self.isStereotypeApplied(ACCURATE::controller)
}{

end {
result.applyStereotype(Spring2::Service);

}
}

/* map an operation on a controller class to
a ServiceOperation */

mapping Operation::toServiceOperation():Operation
inherits Operation::toPSMOperation
when {

self.class.isStereotypeApplied(ACCURATE::controller)
}{

end {
result.applyStereotype(Spring2::ServiceOperation);

}
}

Figure 4: Mappings between the ACCURATE and the Spring2
Profiles

for the following code generation activity.
To implement this transformation, we defined mappings between

elements of a PIM and a PSM for each supported platform. A
transformation can be achieved by a stepwise conversion of all
contained elements of the PIM due to the mappings to PSM ele-
ments. To define these mappings, we categorized existing stereo-
types and tagged values of the profiles for PSMs according to the
established concepts used in the architecture styles. Although ar-
chitecture styles defines typical structure and behavior of the el-
ements, they usually need to be modified due to additional con-
straints enforced by target platforms.

For example, let’s consider a mapping from a PIM elementOr-
derServicewith the stereotype≪controller≫ (see Fig. 3) to
the PSM elementOrderServicewith ≪Service≫ and≪Ser-
viceOperation≫ stereotypes for the Spring Framework (see
Fig. 1). Figure 4 shows a part of the mappings specified in the MOF
QVT operational language [17]. These mappings create PSM ele-
ments from input PIM elements and map ACCURATE stereotypes
to Spring ones.

As one might notice, not only the stereotypes and tagged values
need to be changed, but it is also required to remove unnecessary
elements (such as≪external≫ stereotyped elements) or mod-
ify the structure (e.g. change associations to dependencies) in this
transformation.

77 77

Figure 5: Platform Selection Dialog for the MVC Architecture
Style

3.4 Code Generation
Source code for the application based on the platform configu-

ration is generated at the end of the workflow. Here we make use
of existing code generator frameworks (such as oAW, AndroMDA)
that support various platforms by separating definitions of transfor-
mation mappings from their execution engines. Such transforma-
tion mappings are often calledcartridgesdue to their replaceable
character and stored in the transformation repository for reuse (as
shown in Fig. 2).

According to the platform configuration determined by the plat-
form decision activity, transformation mappings are chosen from
the repository to configure a code generator specific to that plat-
forms. Using a valid PSM from the PIM-to-PSM transformation
activity, source code generation can be less error-prone.

4. SUPPORTING TOOLS
We have prototyped a PIM-to-PSM transformation tool as a plug-

in for the Eclipse platform. This tool implements transformation
mappings using the QVT operational language implemented by the
Eclipse M2M [8] project. It offers a user interface to specify a PIM
and platform decisions for the system with a wizard-style dialog
shown in Fig. 5. Users just have to select appropriate platforms for
the≪model≫, ≪view≫ and≪controller≫ parts of the
target system from drop-down menus.

After the wizard dialog is finished, a PSM and a platform con-
figuration file are generated. This file is used in the following
oAW code generator to distinguish, which transformation mapping
have to be executed from the transformation repository to generate
source code conforming to the designated platforms. As for the
PSM-to-PSI transformation, we make use of the oAW code gener-
ator framework. One common transformation repository for oAW
is the Fornax-Platform, which offers a variety of cartridges to gen-
erate application code based on profiled UML models and thus is a
possible candidate for the code generator in our tool chain.

5. CASE STUDY
In order to evaluate our approach, we have carried out a case

study derived from a possible real-world scenario in which a sys-
tem is using a specific platform technique. Due to changing re-
quirements of the project, the platform decision was out-dated. As
a result, the PSM and PSI have to be regenerated to adopt the new
platform decision. The aim of the case study is to show that a plat-
form, developed using the ACCURATE approach, can handle such
a situation properly. Furthermore, we are going to argue on the
feasibility and benefits of our approach in Sect. 5.2.

5.1 Address Book Example
Consider a company that is implementing an application for man-

aging their customer’s addresses using the ACCURATE approach.
At the beginning of the scenario, designers described a PIM and

requirements. The ACCURATE profile is applied to the PIM (as
shown in Fig. 6). Around the same time, requirements engineers
assessed quality attributes of the system and determined to adopt
Hibernate for the≪model≫, POJO’s for the≪controller≫
and a Swing GUI for the≪view≫. Using the PIM and the plat-
form decision, the ACCURATE plug-in generated an accordant
PSM (see Fig. 7(a)). After transforming the PIM into a PSM, the
application consists of 28 generated Java classes (six for Hibernate
and 22 POJO’s). From these 22 POJO’s only seven classes have to
be implemented manually since the remaining 15 classes are auto-
matically generated interfaces, abstract or implementation classes
that don’t need to be modified. Besides this, three Hibernate map-
ping files and a Hibernate property file are generated that also not
have to be modified. The PIM-to-PSM transformation took about
one minute and the PSM-to-PSI transformation around ten seconds
with an average laptop PC (with a Pentium M processor at 1.60
GHz and 1.5 GB of memory) in this scenario.

At some point of the project, the project manager decided to
adopt the Spring Framework as a≪controller≫ technology.
Since the PIM doesn’t not hold any platform specific information
by definition, no changes to the PIM have to be made. Using the
ACCURATE plug-in again, another PSM conforming to the new
platform is generated in about one minute (as shown in Fig. 7(b)).
One might notice that Swing is still used as the≪view≫ tech-
nology but the PSM elements are mapped to≪SpringBean≫
instead of≪JavaObject≫ this time. Afterwards, the PSM-
to-PSI transformation is triggered to regenerate the source code,
which took around ten seconds. At this point manual implemen-
tation of the missing parts has already been finished. Since oAW
doesn’t overwrite manual implementation classes during the PSM-
to-PSI transformation, the number of newly generated artifact in
this second scenario is lower than before. As a result, one interface,
abstract and implementation class for each≪controller≫ com-
ponent was generated. These classes are stored at a different lo-
cation due to the platform specification. Furthermore, two helper
classes for enhanced access to Spring beans and three configuration
files are automatically generated. As the final task, the developer
has to move the manually implemented code fragments from the
outdated≪controller≫ classes to the newly generated ones.

5.2 Discussion
One of the main benefits shown in this case study is that the plat-

form of the application can be switched within a small time period
and without modifying the PIM at all. Since the ACCURATE pro-
file is based on architecture styles, which have an essentially plat-
form independent and immutable nature, PIMs using such a profile
show improved maintainability and reusability. Thus, they could
live on until some functional requirement changes or platform evo-
lutions occur in the future.

Furthermore, in case that new platforms emerge they need to be
adopted to our approach, e.g. another implementation technique for
≪view≫ classes. In such a case, we only have to define a trans-
formation from our PIM to the PSM of the new platform, as long
as this platform conforms to some architecture styles adopted in the
ACCURATE approach. Compared to arbitrary PSM-to-PSM trans-
formations like the example shown in Sect. 2, it is rather straight-
forward to refine PIM concepts to those of PSM and thus most of
the transformation can be automated. It has to be mentioned, that
our approach expect a code generator together with a PSM defi-

78 78

+doNew() : void
+doOpen() : void
+doSave() : void
+doSaveAs() : void

<<controller>>

AddressBookController

+firstName : String
+lastName : String
+address : String
+city : String
+state : String
+zip : String
+phone : String

<<model>>

Entry

<<view>>

AddressBookView

+uri : String

<<model>>

AddressBook

+doEdit() : void
+doDelete() : void
+doAdd() : void

<<controller>>

EntryController

<<view>>

EditEntryView

<<view>>

AddEntryView

<<external>>

User

R8

-entries

0..*

-book

R3

-addview

-userR1

-view

-user

R11 -model

-editview

R13

-addview

-model

R10

-addview-controller

R9

-controller-editview

R6-controller

-model

R5

-controller-view

R4

-view

-model

R2
-editview

-user

R12-controller

-model

Figure 6: A PIM for the Address Book Example

+firstName : String
+lastName : String
+address : String
+city : String
+state : String
+zip : String
+phone : String
<<Key>>+key : long

<<Entity>>

Entry

+doNew() : void
+doOpen() : void
+doSave() : void
+doSaveAs() : void

<<JavaObject>>

AddressBookController

<<JavaObject>>

AddressBookView

+uri : String
<<Key>>+key : long

<<Entity>>

AddressBook

+doAdd() : void
+doDelete() : void
+doEdit() : void

<<JavaObject>>

EntryController

<<JavaObject>>

AddEntryView

<<JavaObject>>

EditEntryView

R8 -entries

0..*

-book

R6 -controller-model

R11 -model

-editview

R13

-addview

-model

R10

-addview-controller

R9

-controller-editview

R4

-view

-model

R5

-controller-view

R12-controller

-model

(a) POJO as a
≪controller≫

<<ServiceOperation>>+doNew() : void
<<ServiceOperation>>+doOpen() : void
<<ServiceOperation>>+doSave() : void
<<ServiceOperation>>+doSaveAs() : void

<<Service>>

AddressBookController

<<ServiceOperation>>+doAdd() : void
<<ServiceOperation>>+doDelete() : void
<<ServiceOperation>>+doEdit() : void

<<Service>>

EntryController

+firstName : String
+lastName : String
+address : String
+city : String
+state : String
+zip : String
+phone : String
<<Key>>+key : long

<<Entity>>

Entry

<<SpringBean>>

AddressBookView

+uri : String
<<Key>>+key : long

<<Entity>>

AddressBook

<<SpringBean>>

EditEntryView

<<SpringBean>>

AddEntryView

R8 -entries

0..*

-book

(b) Spring as a
≪controller≫

Figure 7: Two PSMs using Hibernate as a≪model≫ and Swing GUI as a≪view≫

nition. Otherwise, we would have to implement the PSM-to-PSI
transformation by ourselves.

Another advantage worth mentioning is that handwritten parts of
source code are preserved during code regeneration. In the case
study, Swing GUI and Hibernate classes are reused, except that
their instantiation code (i.e. constructor calls) is replaced by a XML
configuration file for Spring. On the other hand, the generated part
for ≪controller≫ classes are regenerated based on the Spring
service components, while handwritten part of the POJO’s are left
untouched. This means that there are some remaining parts, which
have to be migrated manually, even though task can be achieved in
a reasonable time due to the size of the handwritten code. We sup-

pose, that generating complete source code from PIM or providing
help and guidance for each possible migration are two possible so-
lutions to address these problems.

6. RELATED WORK
There is already some existing work focusing on platform inde-

pendent modeling and model transformation in a different problem
domain. Bezivin et al. [4] propose to use ATL transformation [7] to
transform PIMs defined by Enterprise Distributed Object Comput-
ing into PSMs for different web service platforms. Billig et al. [5]
define PIM-to-PSM transformations in the context of EJB by using
QVT [17]. Besides this, some related work define PIMs via UML

79 79

profiles. Link et al. propose to use GUIProfile to model PIMs and
transform them into PSMs [13]. Richly et al. focus on a UML pro-
file to define PIMs for databases [11]. He et al. use template role
models together with PIM profiles for templates to design PIMs,
which are specific for web applications [12] . Ayed et al. propose a
UML profile for modeling platform independent context-aware ap-
plications [2]. Lopez-Sanz et al. define a UML profile for service-
oriented architectures [14]. Finally Fink et al. combine UML and
MOF profiles for access control specifications [9]. As one can no-
tice, there are a lot of approaches, which describe a PIM on a more
abstract level than a PSM. Even so, these approaches are still tai-
lored to a specific technology or architecture and thus need some
detailed knowledge of the concrete problem domain. Furthermore,
the adoption to a different problem domain or architecture such as
MVC is hindered due to the specific notations of these PIMs.

7. CONCLUSION AND FUTURE WORK
In this paper, we have stated out some clear problems of MDD

approach when it has to change a platform to another. To address
this problem, we have introduced an approach called ACCURATE,
which consists of a profile for describing PIMs and transformation
mappings to bridge a PIM to PSMs of existing code generators. Our
approach shows how to specify systems easily without any PSM
modeling skills. The approach offers much automation of the de-
velopment process and thus reducing costs under the pressure of a
shorter time-to-market.

Furthermore, a prototype tool is provided, which both assures the
integrity during model transformation and offers guidance through
the software development process to the user. The current imple-
mentation of the tool provides a workable and extendable solution
to address the stated problems. However, there are still some en-
hancements that we would like to adopt to our approach in the near
future. These possible extensions can be summarized as follows:

1. Further evaluation: This paper focused on applying the
ACCURATE approach to the MVC architecture style. Since
this is just one possible example for an architecture, we would
like to evaluate our approach to a different architecture style
(e.g. Pipes and Filters or Blackboard) and on a larger scale to
prove the applicability more sustained.

2. Platform decision models: As mentioned before, the plat-
form decision can be supported by assessing quality attributes
expected for the system. We are going to introduce platform
decision models more precisely. The first model we are now
focusing on is based on Bayesian networks, which allows to
infer platform decisions based on predefined probability dis-
tribution metrics.

3. Interaction with coding: In theory, complete source code
could be generated from a model. But due to unfamiliarity of
graphical PIM modeling and immaturity of tool support for
MDD at this moment, developers prefer to finish up imple-
mentation by complementing or adjusting generated source
code in their common programming languages like Java. We
would like to adopt oAW recipes to help the developer track
the missing parts of the implementation, and hopefully prop-
agate changes in source code (e.g. adding a method) to its
originated PIM.

8. REFERENCES
[1] AndroMDA.org. AndroMDA.org - Home.

http://www.andromda.org/.

[2] D. Ayed and Y. Berbers. UML Profile for the Design of a
Platform-Independent Context-Aware Applications. In
MODDM’06: Proceedings of the 1st Workshop on Model
Driven Development for Middleware, pages 1–5, 2006.

[3] J. Bezivin and S. Gerard. A Preliminary Identification of
MDA Components. InGTCMDA’02: Proceedings of the
OOPSLA 2002 Workshop in Generative Techniques in the
Context of Model Driven Architecture, 2002.

[4] J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying
MDA approach for Web service platform. InEDOC’04:
Proceedings of the 8th IEEE International Enterprise
Distributed Object Computing Conference, pages 58–70,
2004.

[5] A. Billig, S. Busse, A. Leicher, and J. G. Süss. Platform
Independent Model Transformation Based on TRIPLE. In
Middleware’04: Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware, pages 493–511,
2004.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal.Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, Inc., 1996.

[7] eclipse.org. ATLAS Transformation Language (ATL).
http://www.eclipse.org/m2m/atl/.

[8] eclipse.org. Model to Model (M2M) Project.
http://www.eclipse.org/m2m/.

[9] T. Fink, M. Koch, and K. Pauls. An MDA approach to
Access Control Specifications Using MOF and UML
Profiles.Electronic Notes in Theoretical Computer Science,
142:161–179, 2006.

[10] fornax-platform.org. The Fornax-Platform.
http://www.fornax-platform.org/.

[11] D. Habich, S. Richly, and W. Lehner. GignoMDA:
Exploiting Cross-layer Optimization for Complex Database
Applications. InVLDB’06: Proceedings of the 32nd
International Conference on Very Large Data Bases, pages
1251–1254, 2006.

[12] C. He, F. He, K. He, and W. Tu. Constructing Platform
Independent Models of Web Application. InSOSE’05:
Proceedings of the 2005 IEEE International Workshop on
Service-Oriented System Engineering, pages 85–92, 2005.

[13] S. Link, T. Schuster, P. Hoyer, and S. Abeck. Focusing
Graphical User Interfaces in Model-Driven Software
Development. InACHI’08: Proceedings of the 1st
International Conference on Advances in Computer-Human
Interaction, pages 3–8, 2008.

[14] M. López-Sanz, C. Acuña, C. Cuesta, and E. Marcos. UML
Profile for the Platform Independent Modelling of
Service-Oriented Architectures.Software Architecture, pages
304–307, 2007.

[15] No Magic. MagicDraw UML.
http://www.magicdraw.com/.

[16] OMG. MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf,
2003.

[17] OMG. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.0.
http://www.omg.org/docs/formal/08-04-03.pdf,
2008.

[18] openArchitectureWare.org. Official openArchitectureWare
Homepage.
http://www.openarchitectureware.org/.

80 80

Evolution of a Domain Specific Language and its
engineering environment - Lehman’s laws revisited

Mika Karaila
Metso Automation Inc.

Lentokentänkatu 11
33101 Tampere, FINLAND

+358407612563

mika.karaila@metso.com

ABSTRACT
Automation domain is under continuous change with new
requirements. Metso Automation has been one of the first vendors
of digital automation systems (1978 Damatic). The last 20 years
of development and maintenance of system architecture and a
dynamic, flexible engineering environment has enabled us to
successfully live with the changes. In this paper, evolution of a
domain specific visual system configuration language called
Function Block Language (FBL) and a supporting environment is
discussed. The evolution is reflected to Lehman's laws. Metso
Automation’s solutions for surviving with the implications of the
laws are also discussed.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Specialized application
languages – domain specific language, visual language.

General Terms
Design, Reliability, Experimentation, Languages.

Keywords
Visual Domain Specific Language, Evolution, Software Laws,
Software Patterns.

1. INTRODUCTION
A distributed control system (DCS) refers to a control system
usually of a manufacturing system, process or any kind of
dynamic system, in which the controller elements are not central
in location but are distributed throughout the system with each
component sub-system controlled by one or more controllers. The
entire system of controllers is connected by networks for
communication and monitoring.
For building DCSs at Metso Automation, a multi-level
architecture is used in MetsoDNA DCS. Controllers use hardware
units such as input/output cards (I/O) to connect field devices into
a system. Software is located in controllers, I/O cards and field
devices. There are different kinds of firmware programs, bus
protocol stacks, operating systems and different kinds of tools and
databases. An automation system executes programs in real-time
in a distributed environment. It can control a small process just
some devices or a huge factory with several paper machines, stock
preparation and own power plant. One key element is
communication between the units. Communication must be
deterministic, real-time, robust and scalable.
Function Block Language (FBL), developed at Metso
Automation, is a visual programming language for writing real-

time control programs for distributed environments. FBL
programs are represented as diagrams that will implement
application programs. Each diagram typically contains 5-10
smaller application programs, which are loaded into a distributed
system. A typical paper manufacturing plant automation is built
from 5000 to 10000 FBL programs. They control 15000
input/output connections (I/O). Total amount of small application
programs is over 100000.
FBL is part of a bigger product family that has a long life cycle.
We will show how in automation domain both FBL and
supporting programming environments such as FBL editor and
other tools will need effort for their controlled and successful
maintenance.
Section 2 introduces FBL and its history in brief. Section 3 briefly
introduces Lehman's laws of software evolution [12]. They
characterize the ways large software systems tend to evolve. In
each subsection, Lehman's laws are discussed with respect to the
automation domain, FBL and its programming environment. This
section also explains the methods that we use to survive with the
evolution. It will explain Metso Automation’s maintenance
process and its benefits. The process has been developed to
manage the challenges software evolving according to Lehman's
laws creates. The key idea is to manage the main principles like
working methods and product features and keep the system and
domain specific language in balance during evolution. Section 4
will discuss and summarize items introduced

2. Domain Specific Languages
The term domain-specific language (DSL) [2] has become popular
in recent years in software development to indicate a
programming language or specification language dedicated to a
particular problem domain, a particular problem representation
technique, and/or a particular solution technique [11]. The concept
is not new. Special-purpose programming languages and all kinds
of modeling/specification languages have existed, but the term has
become more popular due to the rise of domain-specific modeling
(DSM) [10]. Domain-specific languages are 4GL programming
languages. Examples include spreadsheet formulas and macros,
YACC [5] grammars for creating parsers, regular expressions,
Generic Eclipse Modeling System [21] for creating diagramming
languages, advanced DSM tool MetaEdit+ [18], Csound [19], a
language used to create audio files, and the input language of
GraphViz [3], a software package used for graph layout. The
opposite of a domain-specific language is a general-purpose
programming language, such as C or Java, or a general-purpose
modeling language such as UML.

8181

There are advantages in using DSLs. Domain-specific languages
allow solutions to be expressed in the idiom and at the level of
abstraction of the problem domain. Consequently, programs
written using domain experts themselves can understand, validate,
modify, and often even develop domain-specific languages. Also,
the code is self-documenting in an optimal case. Furthermore,
domain-specific languages enhance quality, productivity,
reliability, maintainability, portability and reusability [10].
Finally, they allow validation at the domain level.
There are also disadvantages in using domain-specific languages.
The cost of designing, implementing, and maintaining a domain-
specific language can be very high. Also finding, setting, and
maintaining proper scopes can be difficult. There can be a lack of
processing capacity compared with hand-coded software. Finally,
code can be hard or impossible to debug.
2.1 An overview of FBL
 Metso Automation has created its own visual domain-specific
language with a supporting FBL framework, i.e. a development
environment that supports FBL and its usage.
FBL drawing is a visual program that can be compiled and
downloaded into a real-time system. In real-time, the program
will, for example, measure a tank's level and control a valve so
that tank level will remain at the desired level. An FBL program is
a signal flow diagram that contains multiple symbols that are
connected by lines. Symbols represent variables or variable
references and functions. An FBL diagram is self-documenting,
because it is a graphical program that explains the code
functionality visually. The generated textual code is multiple
pages of text and connections are just text references in multiple
places of text. An overview of connections is very hard to
understand from the textual format. The visual notation of FBL
consists of symbols and lines connecting them. In FBL, symbols
represent advanced functions. The core elements of FBL, function
blocks, are sub-routines running specific functions to control a

process. As an example, measuring the water level in a water tank
could be implemented as a function block.
In addition to function blocks, FBL programs may contain port
symbols (ports publish access names) for other programs to access
function blocks and their values. Function block values are stored
in parameters. As an analogy, the role of a function block in FBL
is comparable to the role of an object in an object-oriented
language. The parameters which can be internal (private) or
public, can, in turn, be compared to member variables. An internal
parameter has its own local name that cannot be accessed outside
the program. A public parameter can be an interface port with a
local name or a direct access port with a globally unique name.
FBL programs may also contain external data point symbols for
subscribing data published by ports, external module symbols to
represent external program modules, and I/O module symbols to
represent physical input and output connections. An external data
point is a reference to data that is located somewhere else. In
distributed control systems, calculations are distributed to multiple
calculation units. Therefore, if a parameter value is needed from
another module, the engineer has to add an external data point
symbol to the program. By using this symbol, data is actually
transferred (if needed) from another calculation unit to local
memory. An example of an FBL program is depicted in Figure 1.
This program is for detecting binary signal change; it will read the
state 0 or 1 from the field using the I/O-input symbol BIU8 (A) on
the left side. Then the signal is connected to a copy function block
(B) and after it to a delay function block (C) that will filter out
short time (under 5 second) changes. After the delay filtering, the
signal is copied to a port (D) that can be connected to the user
interface (E) to show the state in the actual real-time user
interface. The state is also stored in the history database (F) that
keeps all the state changes for a long time (months or years). The
interface port (G) is for the interlocking usage. The signal can be
used in other diagrams for interlocking. If the state is for example
1 it can prevent a motor from starting.

Figure 1 FBL overview.

8282

2.2 Development history of FBL
In 1988, the first release of FBL was introduced to customers. It
included all the basic elements: ports, externals, function blocks
and I/O modules of the language itself. The code generator was
hand written and the implementation contained a pattern based
text generator [9] that used output templates. Currently, there are
framework tools available for that purpose [17].
The Automation Language is a simple domain specific textual
language. The FBL code generator produces Automation
Language. FBL has been used from the year 1988. The FBL
programming IDE, editor is FbCAD (product name for the
Function Block CAD). The Function Test tool was introduced in
1990. It allows the user to debug run-time values in the FbCAD
(visual debugging mode). This is not always trivial with DSL
because generated code may need its own IDE that can be hard to
implement. Function Explorer is a tool for multiple users in a
client-server environment. It allows concurrent programming and
is an easy way to change parameters for the FBL programs saved
in the database. The last major development step was support for
"Templates" in the year 2003. Visual templates are domain
specific models that can be used to create new FBL program
instances efficiently [8]. Another way to support reuse relies on
patterns. In the last years, we have detected patterns from visual
programs. They are solutions to small problems that can be solved
with few symbols.
The development of FBL has had various goals. One of them is to
aim at a visual language to make programs understandable and the
programming environment easy to use and learn. The user can
always add both textual and graphical comments to the program.
The initial setup for developing FBL was the fact that the
automation language was too hard to understand and the
connection network was impossible to figure from the textual
code. The basic architecture separates user interface to its own
part and the code generator to its own. In the beginning, the basic
user interface was static and very simple. It was then extended,
and more dynamics were added, like the visual testing tool. Now
the focus of user interface development is on usability issues.
Also a lot of new dynamics have been added to fulfill new
requirements. Programming effectiveness is one major target. We
always try to make programming faster. There are small
improvements in the user interface level and in the language level,
but the biggest improvement has been the introduction of
templates [8]. Templates are reusable domain models that can be
instantiated. An instance will need only a set of parameters to
work. It has significantly reduced engineering work and made
large modifications easy to make. Adding new elements to it have
also extended the FBL language itself. Finally, improving the
code generation in FBL has raised the quality of the programs. It
is more accurate and detects more errors and also gives warnings
to users.
If we compare FBL programs created in 1988 and now, the major
difference is that they are now bigger and more complex. This is
due to the new requirements for higher automation levels.
3. Lehman's laws and evolution of FBL and
its supporting engineering environment
In this section, Lehman's laws are revisited in the context of the
automation industry domain and in particular the evolution of
FBL and its programming environment. Each of eight laws is
discussed and the name of the law is the title of the subsection.
These results are collected and formed based on 20 years of
development history. The connections and network between

Metso Automation's own people and customers have given a lot of
feedback on FBL and its programming environment. The
maintenance process of FBL itself is an iterative process that
relies on the feedback system. These processes and methods can
be used to gain better results and to manage the evolution FBL.

3.1 Law I: Continuing change

E-type systems must be continually adapted else they become
progressively less satisfactory.

The automation domain itself is under change. In addition, also
the environment that is used for FBL and its editor and other tools
are under change. For instance, the operating system has changed
multiple times from UNIX (Xenix, SCO, Ultrix, and HP) to DOS
and Windows (NT, XP, Vista) and also the compiler is under
change all the time. The CAD platform that is the base of the FBL
editor has been changed according to the operating system and
needed compiler. The selected CAD platform (AutoCAD) was a
market leader. The use of a commercial platform helped a lot,
because its development and maintenance was carried out by
others. The only major work was to port the FBL user interface
(editor) always into the selected release. The selection process
was guided by a technology roadmap. This kind of preplanning
gave development teams time to prepare for new things in
advance.
This does not directly affect FBL itself, but the editor and the
code generator both require major maintenance work. There is a
compatibility requirement; life-time cycles are demanding in
automation domain. FBL editor changes according to the style of
the CAD platform and operating system. The change in the visual
appearance is significant if we compare the very first 640 x 480
resolution to the current 1024 x 768 one. Outlook is also improved
by new better fonts and more colors that are used today. Actual
FBL improvements have been mostly visual.
As Lehman's first law indicates, resisting changes is not a fruitful
solution in the long run. Instead, we have chosen to live with the
changes and upgrade environment. The software environment
changes in the domain create needs for changes in FBL and its
tools: the domain specific language must evolve with the
environment.

3.2 Law II: Increased complexity

As an E-type system evolves, its complexity increases unless work
is done to maintain or reduce it.

Metso Automation DCS size grows both hardware & software.
Also other additional functions make the system more complex.
As an example, new I/O-cards are needed and they include new
features and more channels. FBL language supports changes, e.g.
new symbols can be created into FBL. Some of these are typically
similar to existing ones, like new function blocks. New function
blocks do not extend FBL, but give new features for
programming. This was seen already 20 years ago. The internal
architecture of the code generator was built to be generic and the
variation point was built into symbol level.
There are intelligent devices with new communication protocols
evolving which will require support. The Foundation Fieldbus
(FF) [4] integration, for instance, needed its own FBL symbols.
The code generation was extended to support FF configuration.
This required new semantics. This was mainly solved by the

8383

generic part, only the connection solver needed a special
algorithm and the 'output-printer' was extended for FF domain
with new C++ classes. Other integrated protocols are Profibus DP
[16] and OLE [13] for Process Control (OPC) [15]. They,
however, did not need such big integration work for FBL.
In the FBL language level complexity is isolated to its own
symbols. The code generator architecture does not need in a
typical case any changes. The increased complexity is isolated
into FBL editor and code generation as configurable extensions.
In this way new protocol specific variations can be integrated by
settings and they will not need code changes into the FBL tools
every time. A typical way to reduce complexity is abstraction and
capsulation, but in cases where this is not possible it is good to
first identify variation points and then locate them to selected
places in architecture.
3.3 Law III: Self regulation

E-type system evolution process is self regulating with distribution
of product and process measures close to normal.

In the automation domain we cannot release a new build each
week or month. Customers cannot shut down factories so often. A
normal case is to have one planned shutdown each year,
sometimes perhaps only twice a year.
In distributed automation system architecture allows that parts can
be turned off and on. In this way non-critical parts can be
updated/upgraded or even replaced while the process is running.
Usually it is a broken device or I/O-card that must be replaced.
Same modularity can be seen in FBL language level. An FBL
program can be downloaded into the system in runtime without
any disturbance. The modularity makes it possible to download
small application programs into the running factory without
interruptions.
The evolution process that requires new technologies works
according to Moore's law [14]. But in automation domain a new
technology, for example a new operating system, is taken into use
after careful consideration and after other industry experiences.
Technological steps are taken in 2-3 year intervals. As an
example, FBL editor and operating system are upgraded with that
interval. A conservative attitude and caution normalize
technological evolution.
3.4 Law IV: Conservation of organizational
stability

The average effective global activity rate in an evolving E-type
system is invariant over product lifetime.

In the automation domain you have to know something about field
devices, process, and electronics. The automation system
architecture and teams are formed in the same way (logical
structures are similar, c.f. Conway's law [1]). Development and
project organizations have been structured in the same way for
about the last 20 years. The team cannot change many persons at
the same time because the learning process takes time. Nobody
can have all the knowledge but a good programmer must
understand the domain. It usually takes months to start to
understand the whole automation domain from the controller level
to the device level.
A small core team is an example of good practice that allows
smooth FBL development and maintenance. A challenging

environment and continuous learning keep these people pleased.
The needed domain knowledge that requires multi-talented people
will help in keeping organizational stability.
3.5 Law V: Conservation of familiarity

As an E-type system evolves all associated with it, developers,
sales personnel, users, for example, must maintain mastery of its
content and behavior to achieve satisfactory evolution. Excessive
growth diminishes that mastery. Hence the average incremental
growth remains invariant as the system evolves.

The principles, namely business rules in the domain, are very old
in distributed systems. As new communication protocols are
integrated into the system, they will have the following typical
characteristics like determinism and robustness. These kinds of
facts always keep architectural solutions very stable. There are
architectural level design patterns that give good solutions to these
problems.
The abstraction level in the FBL language is selected to hide
unnecessary parts from the end user. The needed parameters are
asked from the user and the semantics and the basic layout of
communication symbols have remained the same since 1989. In
the FBL language the basic symbols are still almost identical.
We have to keep all new extensions somehow similar to existing
ones. FBL symbol editor and FBL editor are integrated and
mainly old symbols are handmade. The FBL editor has same
logical operations for all similar symbols. In this way, the learning
process is easier and more logical for an engineer who will use
FBL. As people are conservative and do not like very big changes
it helps to keep things familiar.

3.6 Law VI: Continuing growth

The functional content of E-type systems must be continually
increased to maintain user satisfaction over their lifetime.

Automation systems are typically growing. The application
programs that we have delivered to factories are growing. In the
hardware architecture the old hardware was VME based Motorola
68030 processors with 2 Mb Memory. Now we use Intel based
Pentium with 256 Mb Memory. Also the communication bus
speeds have improved from 2 Mb/s to 100 Mb/s. In the hardware
level the growth is seen clearly.
We have a reuse library that contains most of the delivered
projects. We have measured from the library statistics that the
average amount of function blocks in the FBL program has
increased from 20 to 30 in the last 10 years (cf. Table 1).

Table 1 Project Function Blocks and Complexity growth.
Project Average number of

Function Blocks
Complexity

A 1999 15 8
B 1999 27 3
C 1999 15 5
D 1999 7 2
E 1999 28 9
F 2008 34 19
G 2008 25 10
H 2008 30 12
I 2008 28 15

8484

The project size has grown from 1000 to 5000 application
programs. This is partly due to the technology change. Field
devices are more intelligent and they are connected by bus into
the system. Instead of having signals connected by traditional
wires there are multiple software signals coming from one
physical connection. But each software signal still needs its own
handling, which causes growth. This all means that the total
amount of program code is five times more than 10 years earlier
(1999 --> 2008).
We can get these statistics of FBL usage easily because the same
working methods are used in each customer project. One part of
the customer project process is to archive it.
The engineering tools are also growing. We can measure from the
version control system statistics that will show the FBL code
generator & DB-adapter growth from 2000 to the current year.
2008 has been about 10 kLOC, which is in average 1 kLOC/year
(numbers shown in Table 2). The statistics show that FBL itself
has grown during 2000-2008 with about 600 new function blocks
and other symbols, the average being 75 new symbols per year.
We have thus observed also growth in the FBL language itself,
not only in its programming environment. The author of this paper
is not aware that Lehman’s laws have been earlier discussed in the
context of programming languages. They are, however, widely
discussed in the context of large software systems. Continuous
growth of FBL itself is interesting and due to its increasingly
broad use in different contexts and by different customers.
Moreover, we assume that such growth is not typical for general
purpose languages, but can be more natural for domain-specific
ones.

Table 2 Code generator and DB adapter size and growth.
Program Code and Lines in

Year 2000
Codes and Lines
in Year 2008

Code
Generator

35999 44304

DB adapter 20642 31986

These numbers show that increased functionality increases the
code in the application layer (not in the system core). In the
system core, the increase comes from the supported hardware,
operating systems and new communication protocols. We can
manage the growth because it is isolated into selected places. The
variation points are designed and the solution is to use data centric
generation (usually more symbols needed). The code generator
core part is very stable. The initial number of symbols was
approx. 500 and now it is over 1600 symbols. A good
architecture helps in managing the growth. The amount of code is
not growing, instead, the growth is at data level.
A very long life-cycle and evolution has not yet affected to the
meta-model. The original meta-model is still used. The
architecture separates extensions into symbols, and the code
generator is still quite compact. The language rules and semantics
are fine-tuned by the code generator.
3.7 Law VII: Declining quality

The quality of E-type systems will appear to be declining unless
they are rigorously maintained and adapted to operational
environment changes.

The previous laws, like continuous change, increased complexity
and continuing growth, are easily causing problems in quality

control. Also all new features, operating system/hardware changes
and new protocols can cause new bugs.
The basic architecture isolates modifications. It will also keep the
system robust because a bug in one part will not crash the whole
system. In the language level, FBL helps in regression testing
because it can be used in different environments and different
versions. All old FBL programs should be compatible upwards.
This kind of FBL interoperability helps in testing. The same FBL
program can be used and code generator results can be used for
comparing and validating that the system is still working in the
same way. Interoperability and compatibility can be used in
regression testing to help in quality assurance.

3.8 Law VIII: Feedback system

E-type evolution processes constitute multi-level, multi-loop,
multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base.

New communication methods like the internet and email allow
customers to contact vendors much easier. The information
collecting process uses data from multiple sources. The feedback
process is shown in Figure 2. Wishes for new features and minor
changes come from the testing and support contacts. All the
testing defects are reported and stored in a database. This database
is actually a huge diary that contains events that are caused by
programmers or designers. The support contacts from the
customers or own personnel are also stored in the database. These
tools are now integrated so that the user can link and create cards
just by one click. So for the development and maintenance all the
defects are collected into one database. In this way, it is much
easier to prioritize errors and decide who should fix and test the
error and when. Information processing is now easier and project
managers can focus on those errors in priority order. This makes
the focus setting easier and the error handling is up to date all the
time.
The process is now organized and made formal. It allows us to
have the feedback system running 24/7 and also check that each
case is handled. We archive and analyze all the feedback so that it
helps us to improve the quality of the products. The amount of
feedback issues have grown from some hundreds to over three
thousand during the last 20 years. The actual reason comes from
the fact that earlier issues were handled more freely. Formalized
feedback entering was started at the end of the year 2004. This
made it more visible and easier to statistically handle all issues. In
numbers this means: bug reports over 1300/year, support cases
1800/year, dissatisfactions over 100/year and ideas 200/year.
These issues concern engineering, user interface, controls and
hardware parts. Most of the issues are not critical, but they are
focusing mostly on user interface and usability issues today. We
formalize, control and analyze all collected feedback to really
improve both product quality and product features.
The whole feedback framework is made to help, link and reuse
information more easily. Also tracking and testing is managed
through the process. The process is more transparent and tracking
from initiator, coder, and tester to final version report is possible.
Each bug report or feature request has its own number and those
can be selected to a version report. This makes the quality of the
process better. Different views into bug records make it possible
to filter and find not handled records. One way to first categorize
a bug is to use architecture. The component level can be used to

8585

assign a bug for fixing. In the same way, the project manager and
project number can be found and used in the process.

P ro je c t
M a n a g e r

P ro d u c t
M a n a g e r

C u s to m e rs
E x te rn a l u s e rs

P ro je c t p e rs o n e l
In te rn a l u s e rs

T ig h t c o -o p e ra t io n

U s e r
c lu b s

M e e t in g s

P ro je c ts to g e th e r F e a tu re s :
R e q u e s t
D e m a n d

D o m a in c h a n g e s :
F u n c tio n a l ity : s a fe ty s y s te m s

In te g ra tio n
H a rd w a re : C P U / m e m o ry

B u g re p o r ts

T e s tin g p e rs o n e l
In te rn a l u s e rs

M a n a g e s : p r io r ity e tc .

R e p o r ts , te s ts

T e c h n ic a l , m is s in g fe a tu re
F a s t fe e d b a c k , d i re c t b y c a s e #

S lo w e r fe e d b a c k , p ro d u c t le v e l fe a tu re s

Figure 2 FBL development processes and feedback channels.
The feedback process is a multi-level, multi-feedback system and
making it formal will help in tuning it.
FBL improvements that are collected are currently focused on
symbols. The symbols´ size is too big or some feature is missing
from the function block. Another found improvement comes from
the size of the FBL programs. New navigation and intelligent find
actions are needed in the FBL editor. Also a more context
sensitive user interface is required. These kinds of features exist
for example in Microsoft Visual Studio.

3.9 Patterns & idioms in Domain Specific
Language
As discussed above, Lehman’s laws for software evolution apply
for the FBL environment, and partly to the FBL language itself. In
addition, certain patterns / idioms seem to occur in FBL programs
and eventually turn into common practices. FBL template models
form patterns that are heavily reused. In the same way smaller
coding patterns (idioms) exist in FBL. For instance, idioms in
FBL can solve a problem that can be seen in runtime behavior.
Next two small function block level examples are presented,
identified from the FBL programs.
The first idiom is negation. A binary signal with a value 1 or 0 can
be converted with one function block “NOT”, but more common
is to use “XOR” for that because if negation is not needed, XOR
can be turned off by setting the input to 0. This can be done at
run-time which is a very good feature in a real-time environment.
The original use of NOT function block is thus not any longer so
common because if the logic is designed first in the wrong way,
the designer must remove the symbol and connect the signals
again.

The second pattern is alarm masking. In many cases the FBL
program contains function blocks that will generate an alarm. In
process control there are abnormal situations like starting the
process or shutting it down. In these cases there can be off limit
values in the measurements. It is typical to suppress these by
masking the alarm signals for a certain time like 10 to 30 seconds.
A time alarm is needed because there is most probably some real
problems in the process.
As design patterns are identified in traditional programming
languages and there are architectural level patterns, it is natural to
also find them in DSL. Besides supporting FBL programmers,
they can partly support the maintenance and evolution process of
the language.

4. SUMMARY
In this paper, the evolutionary history of FBL, a language used for
implementing automation control programs, and its programming
environment has been discussed.
The use of FBL is growing. Interestingly, we have observed that
the projects that are using visual programming are very well on
schedule. Component reuse is the first step in efficient
programming [6, 7, 8 and 20]. Metso Automation’s future work
will concentrate on patterns and template maintenance and we
will look for extending FBL to integrate more advanced functions.
Development agility is the part of the process that has modified
FBL and the tools to be flexible. According to our experiences at
Metso Automation, language development is a fascinating and
dynamic challenge but it requires a well-managed maintenance
and evolution process. We have also noticed that the key to such a
successful and controlled evolution process is in collecting
feedback from different stakeholders and in storing, managing,
and using it to further enhance the language. The management

8686

must have a very large product view and good knowledge about
used techniques.
These experiences are limited to the automation industry and in
particular to FBL and our experiences at Metso Automation.
Therefore, we do not claim all the results can be directly
generalize to e.g. general purpose programming languages.
However, we feel that the process improvement and methods to
live with Lehman’s laws can be adapted to other cases and
software maintenance. In a dynamic environment, it is very
important to manage the maintenance and evolution processes.
One success factor has been that we control the maintenance and
evolution process with iteration. An essential factor for the
success has been a feedback handling mechanism that gives us
priorities and new ideas for further development. Another success
factor is architecture that is still dynamic and flexible.
The management of development and maintenance processes help
in evolution. Both processes have gone through improvements
and generations.

ACKNOWLEDGMENTS
The author would like to thank Tarja Systä for her comments and
support in writing. This article was written at Tampere University
of Technology.

5. REFERENCES
[1] Conway, M.E. 1968 How do Committee's Invent,

Datamation, 14 (5): 28-31.
[2] Deursen, A. , Klint, P. and Visser, J. 2000 Domain-

Specific Languages: An Annotated Bibliography, ACM
SIGPLAN.

[3] Ellson, J. and Gansner, E. and Koutsofios, E. and North,
S.C. and Woodhull, G. 2002, Graphviz— Open Source
Graph Drawing Tools Springer Berlin / Heidelberg,
Volume 2265/2002, 594-597.

[4] Foundation Fieldbus http://www.fieldbus.org/
[5] Johnson, S. C. 1975 Yacc: Yet Another Compiler-

Compiler. Compiler, Computing Science Technical Report
No. 32, , Bell Laboratories, Murray Hill, NJ 07974

[6] Karaila, M. and Leppäniemi, A.2004 Multi-Agent Based
Framework for Large Scale Visual Program Reuse, IFIP,
Volume 159/2005, 91-98.

[7] Karaila M., Systä T. 2005 On the Role of Metadata in
Visual Language Reuse and Reverse Engineering – An
Industrial Case Electronic Notes in Theoretical Computer
Science, 2005, Volume 137, Issue 3, 29-41.

[8] Karaila, M. and Systä, T. 2007 Applying Template Meta-
Programming Techniques for a Domain-Specific Visual
Language--An Industrial Experience Report, ICSE 2007.

[9] Kastens, U. PTG: Pattern-based Text Generator. v1.1
[10] Kelly, S. and Tolvanen, J-P.2008 Domain-Specific

Modeling Wiley-IEEE Computer Society Press, 448.
[11] Korhonen, K. 2002 A case study on reusability of a DSL in

a dynamic domain, 2nd OOPSLA Workshop on Domain
Specific Visual Languages.

[12] Lehman, M.M. ,Ramil, J F. ,Wernick, P D. ,Perry, D E.
and Turski, W M. 1997 Metrics and laws of software
evolution -The Nineties View Software, Proc. of the 4th
International Symposium on Software Metrics.

[13] Microsoft OLE. http://support.microsoft.com/kb/86008
[14] Moore, G. 1965 Moore's law.
[15] OPC communication http://www.opcfoundation.org/
[16] Profibus http://www.profibus.com/
[17] Schmidt, C. and Kastens, U. and Cramer, B. Using DEViL

for Implementation of Domain-Specific Visual Languages.
University of Paderborn.

[18] Tolvanen, J-P and Pohjonen, R. and Kelly, S. 2007
Advanced Tooling for Domain-Specific Modeling:
MetaEdit+., Computer Science and Information System
Reports, Technical Reports, TR-38, University of
Jyväskylä, Finland 2007, ISBN 978-951-39-2915-2.

[19] Vercoe, B. 1992 A Manual for the Audio Processing
System and Supporting Programs with Tutorials.

[20] Vyatkin, V. and Hanish, H-M. 2005 Reuse of Components
in Formal Modeling and Verification of Distributed
Control Systems ETFA 2005. 10th IEEE Conference on
Publication Date: 19-22 Sept. 2005 Volume: 1 On page(s):
129 - 134, 2005, Volume 1, 129-13.

[21] White, J. and Douglas C. Schmidt, 2007 A. N. E. W.
Introduction to the Generic Eclipse Modeling System,
Eclipse Magazine, Vol. 6, 11-19.

8787

Automatic Domain Model Migration to Manage Metamodel
Evolution

Daniel Balasubramanian, Tihamer Levendovszky,
Anantha Narayanan and Gabor Karsai

Institute for Software Integrated Systems
2015 Terrace Place
Nashville, TN 37203

{daniel,tihamer,ananth,gabor}@isis.vanderbilt.edu

ABSTRACT
Metamodel evolution is becoming an inevitable part of soft-
ware projects that use domain-specific modeling. Domain-
specific modeling languages (DSMLs) evolve more frequently
than traditional programming languages, resulting in a large
number of invalid instance models that are no longer compli-
ant with the metamodel. The key to addressing this prob-
lem is to provide a solution that focuses on the specification
of typical metamodel changes and automatically deduces
the corresponding instance model migration. Additionally,
a solution must be usable by domain experts not familiar
with low level programming issues. This paper presents the
Model Change Language (MCL), a language and supporting
framework aimed at fulfilling these requirements.

1. INTRODUCTION
Model based software engineering has been especially suc-
cessful in specific application domains, such as automotive
software and mobile phones, where software could be con-
structed, possibly generated from models. A crucial reason
for this has been the tool support available for easily defin-
ing and using domain specific modeling languages (DSMLs).
However, the quick turnover times required by such applica-
tions can force development to begin before the metamodel
is complete. Additionally, the metamodel often undergoes
changes when development is well underway and several in-
stance models have already been created. When a meta-
model changes in this way, it is said to have evolved. Without
supporting tools to handle metamodel evolution, existing in-
stance models are either lost or must be manually migrated
to conform to the new metamodel.

The problem of evolution is not new to software engineer-
ing. In particular, databases have been dealing with schema
evolution for several years. While there have been attempts
to extend these techniques to model-based software [4], two
characteristics of DSMLs suggest that a dedicated solution
is more appropriate. First, metamodels tend to evolve in
small, incremental steps, implying that a model evolution
tool should focus on making these simple changes easy to
specify. This also means that a large portion of the language
is unaffected between versions: an ideal solution should lever-
age this knowledge and require only a specification for the
portion that changes and automatically handle the remain-
ing elements. On the other hand, complex changes do some-
times occur, so a mechanism for these migrations must also
be available. The second point in favor of a dedicated model

migration tool is that domain designers and modelers are of-
ten not software experts, which means a solution should use
abstractions that are familiar to these users and avoid low
level issues, such as persistence formats. Ideally, the mod-
eler should be able to use the same abstractions to build
models, metamodels and evolution specifications.

Our previous work with sequenced graph rewriting [1] pro-
vided some insight into the balance between expressiveness
and ease of use. We have found that a general purpose trans-
formation language tends to be cumbersome for the mostly
minor changes present during metamodel evolution. Thus,
we have designed a dedicated language called the Model
Change Language (MCL) used to specify metamodel evo-
lution in DSLs and migrate domain models. The rest of this
paper describes MCL and is structured as follows. Section
2 presents further motivation and background terminology.
Section 3 describes the overall design of MCL, while the
implementation is presented in Section 4. Related work is
found in Section 5, and we conclude in Section 6.

2. MOTIVATION AND BACKGROUND
Our primary motivation was drawn from experience with
several medium and large DSMLs that continually evolved.
The large number of existing instance models made manual
migration impractical. For very simple language changes,
such as element renamings, we found that XSLT was an ac-
ceptable solution. [11] describes a language capable of gen-
erating XSL transforms that are applied sequentially, which
increases the expressiveness of the evolution, but requires
the user to define the control structure and order of eval-
uation explicitly. Additionally, we occasionally faced more
complex changes, for which XSLT was not sufficient. For
these changes, our graph transformation language, GReAT
[1], provided a powerful alternative, but its model migra-
tion specifications were too verbose for two primary rea-
sons. First, when a metamodel element changes, the migra-
tion rule should be applied to all instance model elements of
that type, regardless of where they are located in the model
hierarchy. Second, metamodels tend to evolve in small, in-
cremental steps, in which the majority of the elements stay
the same. Together, these two points imply that a model
migration tool should:

1. Contain a default traversal algorithm.

2. Automatically handle non-changed elements.

88 88

We incorporated both of these ideas into our design. Our es-
sential hypothesis is that evolutionary changes on the model-
ing language will be reflected as changes on the metamodel.
When the modeling language is evolved, the language de-
signer has to modify the metamodel that will now define
the new version of the language. The key observation here is
that metamodel changes are explicit, and these changes are
used to automatically derive the algorithm to migrate the
models in the old modeling paradigm to the models com-
patible with the new version of the paradigm. We make
an essential assumption: changes performed on the meta-
model are known and well-defined, and all these changes are
expressed in an appropriate language. We designed such a
language, which we call the Model Change Language (MCL).
We now briefly describe relevant background terminology.

A metamodel ML defines a modeling language L by defining
its abstract syntax, concrete syntax, well-formedness rules,
and dynamic semantics [1]. Here, we are focusing on the ab-
stract syntax of the modeling paradigm. There are various
techniques for specifying the abstract syntax for modeling
languages, and the most widely used is the Meta-object Fa-
cility (MOF) [10], but for clarity here we will use UML class
diagrams. The examples in this paper use UML class dia-
grams with stereotypes indicative of the role of the element,
such as Model (a container), Atom (an atomic model ele-
ment) or Connection (an association class) - but they may
be understood as simple UML classes. Note that the actual
models can be viewed as object diagrams that are compliant
with the UML class diagram of the metamodel.

3. THE MODEL CHANGE LANGUAGE
The Model Change Language (MCL) defines a set of id-
ioms and a composition approach for the specification of
the migration rules. The MCL also includes the UML class
diagrams describing both the versions of the metamodel be-
ing evolved, and the migration rules may directly include
classes and relations in these metamodels. MCL was de-
fined using a MOF-compliant metamodel. For space reasons
we cannot show the entire metamodel, rather we introduce
the language through examples. Note that MCL uses the
metamodel of the base metamodeling language, and MCL
diagrams model relationships between metamodel elements.
For a more in-depth look at MCL, please see [2].

The basic pattern that describes a metamodel change, and
the required model migration, consists of an LHS element
from the old metamodel, an RHS element from the new
metamodel, and a MapsTo relation between them (stating
that the LHS type has “evolved” into the RHS type). The
pattern may be extended by including other node types and
edges into the migration rule. The node at the left of the
MapsTo forms the context, which is fixed by a depth first
traversal explained in Section 4. The rest of the pattern
is matched based on this context. The WasMappedTo link
in the pattern is used to match a node that was previously
migrated by an earlier migration rule. For the sake of flexi-
bility, it is possible to specify additional mapping conditions
or imperative commands along with the mapping. This ba-
sic pattern is extended based on various evolution criteria,
as explained below.

The MCL rules can be used to specify most of the common

(a) Adding a new element

(b) Deleting an element

Figure 1: MCL rules for adding and deleting ele-
ments

metamodel evolution cases, and automate the migration of
instance models necessitated by the evolution of the meta-
model. The core syntax and semantics is rather simple, but
for pragmatic purposes higher-level constructs were needed
to describe the migration. We have identified a number of
categories for metamodel changes based on how metamod-
els are likely to evolve and created a set of MCL idioms to
address these cases. These idioms may also be composed
together to address more complex migration cases. We will
describe a number of these idioms next. We first introduce
the representative patterns.

3.1 Adding Elements
A metamodel may be extended by adding a new concept into
the language, such as a new class, a new association, or a new
attribute. In most cases, old models are not affected by the
new addition, and will continue to be conformal to the new
language, except in certain cases. If the newly added element
holds some model information within a different element in
the old version of the metamodel, the information must be
appropriately preserved in the migrated models. In fact, this
falls under the category of “modification” of representation,
and is described further below.

If the newly added element plays a role in the well-formedness
requirements, then the old models will no longer be well
formed. The migration language must allow the migration
of such models to make them well formed in the new meta-
model. For instance, suppose that the domain designer adds
a new model element called Thread within a Component -
and adds a constraint that every Component must contain
at least one Thread. The old models can then be migrated
by creating a new Thread within each Component, as shown
in Fig. 1(a). The LHS or ‘old’ portion of the MCL rule is
shown in a greyed rectangle for clarity in this and all subse-
quent figures.

3.2 Deleting Elements
Another typical metamodel change is the removal of an ele-
ment. If a type is removed and replaced by a different type,
it implies a modification in the representation of existing
information and is handled further below. On certain occa-
sions, elements may be removed completely, if that informa-
tion is no longer relevant in the domain. In this case, their
representations in the instance models must be removed.
The removal of an element is specified by using a “NULL-
Class” primitive in MCL, as shown in Fig. 1(b). This rule
states that all instances of ClassA in the model are to be

89 89

(a) MCL rule for subclasses

(b) Changing containment hierarchy

Figure 2: MCL Rules for Subclasses and Hierarchy

removed. Removal of an object may also result in the loss
of some other associations or contained objects.

3.3 Modifying Elements
The most common change to a metamodel is the modifica-
tion of certain entities, such as the names of classes or their
attributes. The basic MapsTo relation suffices to specify this
change. The mapping of related objects is not affected by
this rule. If other related items have also changed in the
metamodel, their migration must be specified using addi-
tional rules.

Another type of modification in the metamodel is adding
new sub-types to a class. In this case, we may want to
migrate the class’s instances to an instance of one of its
sub-types. Fig. 2(a) shows an MCL rule that specifies this
migration. The subtype to be instantiated may depend on
certain conditions, such as the value of certain attributes
in the instance (this is encoded within the migration rule
using a Boolean condition for each possible mapping). The
rule in Fig. 2(a) states that an instance of srcClass in the
original model is replaced by an instance of dstSubclass1 or
dstSubclass2 in the migrated model, or deleted altogether.

3.4 Local Structural Modifications
Some more complex evolution cases occur when changes in
the metamodel require a change in the structure of the old
models to make them conformant to the new metamodel.
Consider a metamodel with a three level containment hier-
archy, with a type Class contained in Parent, and Parent
contained in ParentParent. Suppose that this metamodel
is changed by moving Class to be directly contained under
ParentParent. The intent of the migration may be to move
all instances of Class up the hierarchy. The MCL rule to ac-
complish this is shown in Fig. 2(b) (the WasMappedTo link
is used to identify a previously mapped parent instance).

Note that this rule only affects Class instances. The other
entities remain as they are in the model. Any Parent in-

stances within ParentParent remain unaffected. If Class
contained other entities, they continue to remain within
Class, unless modified by other MCL rules.

(a) Rerouting associations

(b) Migrating attributes

Figure 3: MCL Rules for Associations and At-
tributes

3.5 Idioms and Complex Rules
Based on the descriptions given above, we created a set of
idioms that capture the most commonly encountered migra-
tion cases. Fig. 3(a) shows a more complex idiom for rerout-
ing associations. The specific case shown here is rerout-
ing associations through ports that are contained model
elements under some container. In the old language we
had inAssociationClass-es between inSrcModel-s and inD-
stModel-s, and the new language the same association is
present between the Port-s of the outSrcModel and outD-
stModel classes that were derived from the corresponding
classes in the old model. The WasMappedTo link is used to
find the node corresponding to the old association end. For
the correct results, the new association ends must be created
before the MapsTo can be processed for the association, and
this is enforced by the use of the WasMappedTo link.

The MCL also provides primitives to specify the migration
of attributes of classes in the metamodel. Attributes may
be mapped just like classes, and the mapping can perform
type conversions or other operations to obtain the new value
of the attribute in the migrated model. Fig. 3(b) shows an
MCL rule for migrating attributes.

In addition to the idioms listed so far, the tool suite for
model migration supports additional idioms to handle other
common migration cases. Fig. 4 shows the idiom for adding
a new attribute to some class in the metamodel. If the newly
added attribute is mandatory, then it must be set in old
models that did not have the attribute. A default value can
be added for the attribute in the idiom, or a function may
be added to calculate a value for the new attribute based on
the values of other attributes in the instances. The idiom for
deleting an attribute is similar to the case of deleting classes
and is not shown due to space constraints. Fig. 5(a) shows
an idiom for the case when an inheritance relationship has
been removed from the metamodel (the portion above the

90 90

dashed line is not part of the rule, but shown for clarity).
If the derived class had an inherited attribute, this will no
longer be present in the migrated model, and must therefore
be deleted.

Fig. 5(b) shows an idiom for changing a containment rela-
tionship in the metamodel. This is a variation of the idiom
shown earlier in Fig. 2(b), for a more generic case. This
idiom also introduces a generic primitive called “Navigate”.
It can be used to locate objects in the instance model by
following a navigation condition, which is an iterator over
the graph. Starting from the object on the left end of the
Navigate link, this object is used to determine the new par-
ent in the migrated model. Fig. 6(a) shows an idiom for
merging two classes in the metamodel into a single class,
possibly adding an attribute to record its old type. This
is effected using two migration rules (shown separated by
a dashed line). The migration rule can encode a command
that will set the value of the attribute based on its original
type. Fig. 6(b) shows an idiom for the case where an asso-
ciation in the metamodel is replaced by an attribute on the
source side of the metamodel. This is accomplished by map-
ping the association to a “null” class (similar to the ‘delete
class’ case) and adding a new attribute on the destination
side.

Figure 4: MCL Rule for Attribute Addition

(a) Delete inheritance relationship

(b) Change containment relationship

Figure 5: MCL Rules for Inheritance and Contain-
ment

These idioms may also be composed together to accomplish
more complex evolutions. The following section presents the
details of the MCL implementation.

4. IMPLEMENTATION OF MCL
Our model migration approach consists of three aspects.
The first is a complete tree rewrite based on the depth-first
traversal of the input model. The second aspect consists of a

(a) Merge classes

(b) Replace association with attribute

Figure 6: MCL Rules for Merging Classes and Re-
placing Associations

Depth-first traversal algorithm
ModelMigrate(oldModel)

call TraverseTree(oldModel.RootFolder)
if delayQueue.length != 0 then call ProcessQueue

TraverseTree(node)
call MigrateNode(node)
foreach childnode in node.children do
call TraverseTree(childnode)

set of migration rules that specify the rewriting of the model
elements (nodes) whose type has changed in the metamodel.
The third aspect is a delayed rewrite approach that uses lazy
evaluation for the rewriting of nodes that cannot be imme-
diately processed. These are explained in detail below. The
migration algorithm maintains a map of the node instances
migrated so far (mapping a node in the old version model
to its corresponding node in the migrated model), which we
call the ImageTable, allowing the use of previously mapped
nodes in other migration rules. We found that this approach
best suited our needs for model evolution, as it simplified the
specification and execution of the migration rules. The pat-
tern matching effort required by these rules is limited, while
allowing the co-existence of different versions of the model.

Depth-first traversal and rewrite. The tree rewrite
starts at the root node (RootFolder) of the input model, cre-
ating a corresponding root node for the migrated (output)
model. It follows a depth-first traversal of the input model
based on its containment relationships, while creating the
output model in the same order. Each node is migrated ei-
ther by (1) a default migration which creates a ‘copy’ in the
output model, or by (2) executing the migration rule speci-
fied for its type. Some migration rules may not be executed
immediately and are queued and handled later.

Migration Rules. Typically, when a metamodel evolves,
only a small number of the types and relations defined in
the metamodel are changed. For the unchanged types, the

91 91

default ‘copy’ operation suffices in the tree rewrite described
above. For the cases where the type has changed, a migra-
tion rule is used to specify the actions necessary to migrate
an instance of that type into the output model.

Migration rules are specified using MCL as described above
in section 3. An MCL rule is specified for a particular (node)
type in the metamodel, and consists of a pattern which may
involve other node types, a MapsTo relation that specifies
how the node type is migrated, optional WasMappedTo re-
lation(s), and additional imperative commands and condi-
tions to control node creation. The commands are impera-
tive actions executed during node creation, and conditions
are Boolean expressions that control whether the migration
is allowed to happen. The WasMappedTo relation specifies
a node instance in the output model that was previously
migrated corresponding to a certain node instance in the in-
put model (maintained in the ImageTable). The migration
of a node begins by finding a migration rule for that node
type. With the node instance as context, the rest of the rule
elements are matched by matching the appropriate nodes
in the input model. If the match is not successful because
the WasMappedTo relation is not satisfied (yet), the node
is added to a queue to be processed later. Otherwise, the
specified node is created in the migrated (output) model,
and the depth-first traversal continues.

Migration algorithm for a Node
MigrateNode(node)

let rule = FindMigrationRule(node.type)
if rule == null then call DefaultMigrate(node)
else call ExecuteRule(rule, node)

FindMigrationRule(nodetype)
find rule in ruleSet where mapsTo.LHS.type = nodetype
if found return rule else return null

DefaultMigrate(node)
let newtype = node.type
if newtype not in newMeta.types
then throw TypeNotFoundError

let oldParent = node.parent
let newParent = ImageTable.findNewNode(oldParent)
if newParent == null then
call delayQueue.addNode(node)
return

let newnode = CreateNode(newtype, newParent)
call CopyAttributes(node, newnode)
call ImageTable.addImage(node, newnode)

ExecuteRule(rule, node)
let matchResult = MatchRulePattern(rule, node)
if matchResult == true then //Match succeeded
if Eval(rule.condition) == false then return //Can’t apply
let newtype = rule.mapsTo.RHS.type
if rule.newParent == null then
let oldParent = node.parent
let newParent = ImageTable.findNewNode(oldParent)

let newnode = CreateNode(newtype, newParent)
call CopyAttributes(node, newnode)
call Eval(rule.command)
call ImageTable.addImage(node, newnode)

else // Match failed, queue node
call delayQueue.addNode(node)

Queuing and Delayed Rewrite. In certain cases, such
as a migration rule that depends on a mapping for another
node which has not yet been migrated, the migration for
that node cannot be executed. But it may be possible to
execute the migration after some other migration rules have
been executed. We use a delayed rewrite approach to handle
these cases, by queuing the nodes for which the migration

Delayed rewrite algorithm
ProcessQueue()

let qLength = delayQueue.length
if qLength == 0 return
for index = 1 to qLength
let node = delayQueue.removeTopNode
call MigrateNode(node)

if delayQueue.length < qLength then call ProcessQueue

cannot be immediately effected. The listing below describes
this algorithm. After completing the first pass of the depth-
first traversal, the queued nodes are processed by calling
ProcessQueue. Nodes are removed from the queue (in FIFO
order), and migration is attempted again. If MigrateNode
fails, the node is added back at the end of the queue. If
the length of the queue has changed after one pass, Pro-
cessQueue is called again. The algorithm terminates when
the queue is empty, or when a complete pass of the queue
has not changed the queue.

5. RELATED WORK
Our work on model-migration has its origins in techniques
for database schema evolution. More recently, though, even
traditional programming language evolution has been shown
to share many features with model migration. Drawing from
experience in very large scale software evolution, [6] uses
several examples to draw analogies between tradition pro-
gramming language evolution and meta-model and model
co-evolution. [3] also outlines parallels between meta-model
and model co-evolution with several other research areas,
including API versioning.

Using two industrial meta-models to analyze the types of
common changes that occur during meta-model evolution,
[9] gives a list of four major requirements that a model mi-
gration tool must fulfill in order to be considered effective:
(1) Reuse of migration knowledge, (2) Expressive, custom
migrations, (3) Modularity, and (4) Maintaining migration
history. The first, reusing migration knowledge, is accom-
plished by the main MCL algorithm: meta-model indepen-
dent changes are automatically deduced and migration code
is automatically generated. Expressive, custom migrations
are accomplished in MCL by (1) using the meta-models di-
rectly to describe the changes, and (2) allowing the user
to write domain-specific code with a well-defined API. Our
MCL tool also meets the last two requirements of [9]: MCL
is modular in the sense that the specification of one migra-
tion rule does not affect other migration rules, and the his-
tory of the meta-model changes in persistent and available
to migrate models at any point in time.

[5] performs model migration by first examining a differ-
ence model that records the evolution of the meta-model,
and then producing ATL code that performs the model mi-
gration. Their tool uses the difference model to derive two
model transformations in ATL: one for automatically resolv-
able changes, and one for unresolvable changes. MCL uses
a difference model explicitly defined by the user, and uses
its core algorithm to automatically deduce and resolve the
breaking resolvable changes. Changes classified as break-
ing and unresolvable are also specified directly in the differ-
ence model, which makes dealing with unresolvable changes
straightforward: the user defines a migration rule using a
graphical notation that incorporates the two versions of the
meta-model and uses a domain-specific C++ API for tasks
such as querying and setting attribute values. In [5], the user

92 92

has to refine ATL transformation rules directly in order to
deal with unresolvable changes.

[7] describes the benefits of using a comparison algorithm for
automatically detecting the changes between two versions of
a meta-model, but says they cannot use this approach be-
cause they use Ecore-based meta-models, which do not sup-
port unique identifiers, a feature needed by their approach.
Rather than have the changes between meta-model versions
defined explicitly by the user, they slightly modify the Chan-
geRecorder facility in the EMF tool set and use this to cap-
ture the changes as the user edits the meta-model. Their
migration tool then generates a model migration in the Ep-
silon Transformation Language (ETL). In the case that there
are meta-model changes other than renamings, user written
code in ETL to facilitate these changes cannot currently be
linked with the ETL code generated by their migration tool.
In contrast to this, MCL allows the user to define complex
migration rules with a straightforward graphical syntax, and
then generates migration code to handle these rules and links
it with the code produced by the main MCL algorithm.

[8] presents a language called COPE that allows a model mi-
gration to be decomposed into modular pieces. They note
that because meta-model changes are often small, using en-
dogenous model transformation techniques (i.e., the meta-
models of the input and output models of the transforma-
tion are exactly the same) can be beneficial, even though
the two meta-models are not identical in the general model
migration problem. This use of endogenous techniques to
provide a default migration rule for elements that do not
change between meta-model versions is exactly what is done
in the core MCL algorithm. However, in [8], the meta-model
changes must be specified programmatically, as opposed to
MCL, in which the meta-model changes are defined using a
straightforward graphical syntax.

Rather than manually changing meta-models, the work in
[13] proposes the use of QVT relations for evolving meta-
models and raises the issue of combining this with a method
for co-adapting models. While this is an interesting idea, our
MCL language uses an explicit change language to describe
meta-model changes rather than model transformations.

Although not focused on meta-model or model evolution, the
work in [12] is similar to our approach. The authors perform
the automatic generation of a semantic analysis model from
a domain-specific visual language using a special “correspon-
dence” model called a meta-model triple. The connections
provided by the meta-model triple perform a similar role as
the MapsTo and WasMappedTo links in MCL.

6. CONCLUSIONS
We have presented the Model Change Language (MCL), our
language for specifying metamodel evolution and automat-
ically generating the corresponding model migration. MCL
requires the specification of only the evolved parts of a meta-
model and automatically handles the persistent parts. The
specification is done using the metamodels of the original
and evolved language, which allows domain experts to use
the same abstractions for specifying both metamodels and
their evolution. Our implementation produces executable
code to perform model migration from the evolution speci-

fication and has been integrated with our Model-Integrated
Computing (MIC) metaprogrammable toolsuite and tested
on a number DSML evolution examples of medium complex-
ity. These test metamodels typically consisted of 50-100 ele-
ments, and the number of migration rules were on the order
of 5-10. The examples were used in proof-of-concept demon-
strations where savings in development effort were measured
with promising results.

The model migration problem is an essential one for model-
driven development and tooling, and there are several chal-
lenging problems remaining in this area. Efficiency of the
migration code is of paramount importance, especially on
large-scale models. The migration idioms that we have tar-
geted were based on our past experience, but it appears that
this should be an evolving set, to be extended and refined by
other developers. Thus, a continuation of this work would
need to address the problem of supporting such an extensible
migration idiom set.

Acknowledgment. This work was sponsored by DARPA,
under its Software Producibility Program. The views and
conclusions presented are those of the authors and should
not be interpreted as representing official policies or endorse-
ments of DARPA or the US government.

7. REFERENCES
[1] A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, and

G. Karsai. Generative programming via graph
transformations in the model-driven architecture. In
OOPSLA, 2002: Workshop on Generative Techniques
in the Context of Model Driven Architecture, 2002.

[2] D. Balasubramanian, C. vanBuskirk, G. Karsai,
A. Narayanan, S. Neema, B. Ness, and F. Shi.
Evolving paradigms and models in multi-paradigm
modeling. Technical report, Institute for Software
Integrated Systems, 2008.

[3] P. Bell. Automated transformation of statements
within evolving domain specific languages. In 7th
OOPSLA Workshop on Domain-Specific Modeling,
2007.

[4] P. A. Bernstein and S. Melnik. Model Management
2.0: Manipulating Richer Mappings. In SIGMOD 07,
2007.

[5] A. Cicchetti, D. D. Ruscio, R. Eramo, and
A. Pierantonio. Automating Co-evolution in
Model-Driven Engineering. In 12th International
IEEE Enterprise Distributed Object Computing
Conference, ECOC, pages 222–231, 2008.

[6] J.-M. Favre. Meta-models and Models Co-Evolution in
the 3D Software Space. In Proceedings of the
International Workshop on Evolution of Large-scale
Industrial Software Applications (ELISA) at ICSM,
2003.

[7] B. Gruschko, D. S. Kolovos, and R. F. Paige. Towards
Synchronizing Models with Evolving Metamodels. In
Proceedings of the International Workshop on
Model-Driven Software Evolution (MODSE), 2007.

[8] M. Herrmannsdoerfer, S. Benz, and E. Juergens.
COPE: A Language for the Coupled Evolution of
Metamodels and Models. In MCCM Workshop at
MoDELS, 2009.

[9] M. Herrmannsdoerfer, S. Benz, and E. Jürgens.

93 93

Automatability of Coupled Evolution of Metamodels
and Models in Practice. In Model Driven Engineering
Languages and Systems, 11th International
Conference, MoDELS, pages 645–659, 2008.

[10] MOF. Meta-Object Facility: Standards available from
Object Management Group.

[11] J. Sprinkle and G. Karsai. A domain-specific visual
language for domain model evolution. Journal of
Visual Languages and Computing, 15(3-4):291 – 307,
2004. Domain-Specific Modeling with Visual
Languages.

[12] H. Vangheluwe and J. de Lara. Automatic generation
of model-to-model transformations from rule-based
specifications of operational semantics. In 7th
OOPSLA Workshop on Domain-Specific Modeling,
2007.

[13] G. Wachsmuth. Metamodel Adaptation and Model
Co-adaptation. In ECOOP 2007 - Object-Oriented
Programming, 21st European Conference, pages
600–624, 2007.

94 94

Using Model-Based Testing for Testing Application
Models in the Context of Domain-Specific Modelling

Janne Merilinna
VTT Technical Research Centre of Finland

P.O. Box 1000,
02044 Espoo, Finland
+358 442 788 501

janne.merilinna@vtt.fi

Olli-Pekka Puolitaival
VTT Technical Research Centre of Finland

P.O. Box 1100,
90571 Oulu, Finland
+358 400 606 293

olli-pekka.puolitaival@vtt.fi

ABSTRACT
Domain-Specific Modelling (DSM) has evidently increased
productivity and quality in software development. Although
productivity and quality gains are remarkable, the modelled
applications still need to be tested prior to release. Although
traditional testing approaches can be applied also in the context of
DSM for testing generated applications, maintaining a
comprehensive test suite for all developed applications is tedious.
In this paper, the feasibility of utilizing Model-Based Testing
(MBT) to generate a test suite for application models is studied.
The MBT is seen as a prominent approach for automatically
generating comprehensive test cases from models describing
externally visible behaviour of a system under testing (SUT). We
study the feasibility by developing a domain-specific modelling
language and a code generator for a coffee machine laboratorial
case and apply MBT to generate a test suite for the application
models. The gathered experiences indicate that there are no
technical obstacles but the feasibility of the testing approach in
large-scale models and languages is still questionable.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Experimentation and Verification

Keywords
Model-driven development; Verification; Test generation

1. INTRODUCTION
Quite often Domain-Specific Languages (DSL) and Domain-
Specific Modelling Languages (DSML) are mentioned to attain 5-
10 fold productivity gains compared to traditional software
development practices [1]. The productivity increase is primarily
caused by the Domain-Specific Modelling (DSM) basic
architecture, i.e. DSML, a code generator and a domain-specific
software framework. It is also often argued that utilization of
DSM increases software quality by decreasing programs errors
among other things [1].

While well-defined DSML promotes modelling of correctly
defined applications and in this way decreases program errors, the
ultimate reason for productivity gains and the decrease of program
errors is achieved via automation. Code generators are responsible
for systematically transforming application models to source code
on the target platform. While code generators systematically
transform application models to source code, they also
systematically produce program errors. The difference between

code generation and manually transforming software specification
to implementation is when program errors produced in code
generation look the same and there are many of the same kinds of
errors, manually transforming software specifications to
implementation results in various kinds of errors.

From a testing point of view, the difference is that it is
always easier to pinpoint an error which emerges frequently and
systematically compared to errors emerging in various parts and
in various shapes in the source code. This has a direct impact on
source code quality. While applications produced without code
generation need to be corrected one at a time, all errors found and
corrected in code generators contributes to the overall quality of
the whole product family.

Although it should be easier to find errors produced by code
generators, locating all errors in code generators is not a trivial
process. It is highly unlikely that all paths in code generators are
traversed every time the source code is generated therefore errors
do not reveal themselves easily. Similar to traditional application
testing, improving the level of quality of code generators requires
extensive test suite. In the case of code generators the test suite is
a set of application models similar to compilers in traditional
software development where source code is an input to the
compiler. Thus, to improve the quality of code generators requires
an extensive set of application models. In [1], iterative and
incremental DSM, the development approach is argued to produce
DSMLs with code generators of good enough quality. In our
earlier work [2] it was argued that a more systematic approach is
required as the iterative and incremental development approach
may not produce an extensive enough test suite for code
generators. Therefore an approach to produce an extensive set of
application models as a test suite is required.

In [2], we presented a concept for testing the whole DSM
basic architecture. The approach consists of two phases: 1)
generating application models from a metamodel with an
approach of Model-Based Testing (MBT) [3], and 2) generating a
test suite for generated application models with MBT. In this
paper, we further elaborate the second phase and demonstrate the
approach in a laboratorial case study. We gather the experiences
in testing application models with MBT in a laboratory case for a
coffee machine for which a DSML and Python source code
generator were developed.

This paper is structured as follows. First, the principles of
DSM and MBT are discussed to set a background and baseline for
our work. Second, utilizing MBT as a means for testing
application models is presented. Third, the application testing
approach is demonstrated in a laboratory case involving a coffee
machine. Discussion and conclusions close the paper.

9595

2. BACKGROUND
To get an understanding of the DSM testing approach under
scrutiny, the background of DSM basic architecture and MBT
needs to be known. Next, in this section, the background of DSM
and MBT are discussed.

2.1 Domain-Specific Modelling
Increasing productivity in software development is largely
dependent on software reuse and automation. Often the work
required to increase productivity follows the same pattern as
Roberts et al. present in [4] when reusability is considered. First, a
couple of example applications are developed according to
traditional means. The applications of same product family share a
set of components that can be reused in the product family. When
the amount of reusable components increases, white-box and
black-box frameworks begin to emerge. While the frameworks
mature, the application development increasingly shifts from low-
level programming to utilization of the developed framework.
Ultimately, the development of applications may be about
choosing different alternative features from a pre-defined feature
tree. In the case where there is a considerable number of variation
and neither feature-trees nor wizards can be utilized, domain-
specific languages (DSL) and DSMLs start to emerge.

A DSM solution consists of three main parts, often described
as DSM basic architecture [1]:

A metamodel defines the syntax of a modelling
language. In the case of DSMLs, a metamodel mirrors
the problem-space by providing modelling elements
found directly from the problem domain. In practice, the
metamodel also includes elements and restrictions of the
target platform.

Code generators define the transformation rules on how
to transform application models that are based on a
metamodel to a source code representation.

The software framework abstracts low-level details of
the target platform and functions as a platform on which
a code generator generates source code. Sometimes no
framework is required and the generated code directly
accesses the services and functions of the target
platform.

Actual applications are modelled based on the model
elements and constraints of the developed metamodel. The models
can be transformed into source code or any given representation
with generators.

2.2 Model-Based Testing
The MBT is a black-box software testing method in which test
cases are automatically generated from a model describing the
behaviour of a system under testing (SUT) [3]. The MBT consists
of three phases, i.e. modelling, test generation and test execution.

In the modelling phase, behaviour of the SUT is modelled
according to specifications of the SUT where functional
requirements are the primary source for developing the MBT
models [3]. The MBT being a black-box testing method, the MBT
models are required to embody the externally visible behaviour of
the SUT, i.e. input and output data of the SUT. The input data is
used for executing the tests and output data for verifying the tests.
The notation of the models can be graphical, textual or mixed
where the notation varies from general purpose to domain-specific
[5].

Test generation is based on model traversal where several
test design algorithms are utilized for generating test cases from
the model. For offline testing [6], i.e. generating a test suite first
and then executing it, there are two categories of test design
algorithms i.e. requirement-based criteria and coverage criteria
[7]. Requirement-based criteria test design algorithms are based
on model traversal algorithms that traverse the MBT models until
all required parts of the model are visited. Coverage criteria test
design algorithms aim to traverse the MBT models until a
required coverage criteria is fulfilled. For online testing [6]
walking test design algorithms are utilized [7]. In the walking test
design algorithm approach, each subsequent test step is decided
after executing a preceding test step. It must be noticed, that the
coverage of the test suite can only be as extensive as the model
describes, i.e. parts of the program behaviour not described in
models are not tested.

In the test execution phase, the generated test suite is
executed against the SUT. As the software implementation is
developed from the same specification as the MBT models, two
opinions regarding the behaviour exist. The difference between
these opinions is seen as errors during test execution.

The main benefits of the MBT are the facilitation of test suite
maintenance and the coverage of the test suites. The facilitation of
the test suite is based on the supposition that only MBT models
are required to be kept up-to-date when the SUT evolves and the
test suite can always be updated via test generation. The increased
coverage is based on sophisticated test design algorithms that are
the result of long time research. [3]

3. TERMS OF UTILIZING MBT FOR
TESTING APPLICATIONS

Testing of applications in the context of DSM can mean the
following aspects when the utilized metamodel restricts modelling
of incorrect application models:

Does the modelled application satisfy its functional and
quality requirements, i.e. is the application modelled
correctly and according to specifications?

Does the correctly modelled application model
transform to a source code representation correctly?

Does the correctly-modelled generated application
function as modelled when executed?

In this paper, we concentrate on the two latter aspects. Thus
we assume that the application models are always correctly
defined and the reason for failure is always caused by either:

1. failure in code generation alone,

2. platform failure alone, or

3. a combination of the preceding.

Considering 1), we do not strive for white-box testing and we
do not consider source code inspection but rather strive for black-
box testing. Thus in this paper we solely concentrate on testing
how the generated code integrated with the software platform
function as a combination, i.e. black-box testing.

Such as presented in Section 2.2 the failure of a test is caused
by an incorrectly implemented application or MBT model.
Considering DSM, the application model is always correct
(according to our terms) therefore the failure can be caused by F1)

9696

failure in code generation, F2) platform, F3) a combination of the
preceding or F4) incorrectly defined MBT models.

If we apply MBT out of its initial purpose and generate the
test suite directly from a formal specification (see illustration in
Figure 1, see also [2]), i.e. an application model from which
source code is also generated, we no longer compare during test
execution whether the modelled application is performing
according to the specifications as we take the application model as
a fact. This in no way contradicts our initial terms.

Figure 1. Using MBT for testing application models.
Now, as the same model is used as an input for code

generation and test generation, we can rule out failure in F4 thus
only F1-3 remain. F2 is also ruled out from discussion in this
paper as it can be done using traditional testing approaches.
Therefore a failure in code generation is the only thing remaining
when the following terms are true:

The application model is defined according to software
specifications,

The application model is correctly defined considering
the utilized metamodel, and

The test suite generated from application models is
always correct.

4. A COFFEE MACHINE AS A
LABORATORY CASE

To gather experiences and the technical limitations of utilizing the
MBT in testing code generators in the context of DSM, a
laboratory case example involving a coffee machine is utilized.
The purpose of such machines is to take coffee orders as an input
and deliver coffee as an output. There are also different kinds of
machines where some are equipped with displays of various types
and some machines require a different amount of money as an
input whereas some make coffee for free. Nowadays there are also
various blends of coffees available in addition to the basic
combination of coffee and cream. Some of the most special
coffees even have a very delicate preparation procedure thus
producing a cup of coffee might be more than just the simplest
procedure.

4.1 Tools for the Laboratory Case
As a language workbench for developing DSMLs, code
generators and application models, MetaCase MetaEdit+1 was

1 www.metacase.com

chosen. MetaEdit+ includes tools to define DSMLs with
GOPPRR (Graph-Object-Property-Port-Role-Relationship)
metamodelling language and generators with MetaEdit+
Reporting Language (MERL) in addition to providing basic
modelling facilities.

For the MBT of application models, there are two different
approaches:

develop test design algorithms within MetaEdit+
environment and generate a test suite by applying the
developed generator, or

take advantage of existing MBT tools.

The first approach requires implementing test design
algorithms with MERL. The second approach requires exporting
application models developed with MetaEdit+ to an external MBT
tool. Exporting an application model requires implementing a
model transformation specific to a metamodel with MERL. We
chose the latter approach as developing a set of test design
algorithms was anticipated as non-trivial and troublesome and we
have had good experiences with MBT tools such as Conformiq
Qtronic2 (CQ), which was also chosen based on our evaluation
presented in [7].

CQ expects the Qtronic Modelling Language (QML) as an
input. QML is a variant of the Unified Modeling Language
(UML) State Machine Diagram where as an action language a
variant of Java is utilized. The action language is utilized for
describing expected input and output values. From QML, CQ is
able to generate test cases by applying a few coverage algorithms.
CQ provides two pre-developed test scripters, which are used for
generating Testing and Test Control Notation version 3 (TTCN-3)
and Hypertext Markup Language (HTML). The TTCN-3 scripter
produces a test suite described in TTCN-3 which can be used in
test execution platforms. HTML scripter produces a UML
Sequence Diagram as an illustration of the test cases. In addition,
CQ provides a plug-in interface for the development of custom
scripters.

4.2 Coffee Machine Modelling Language
For the coffee machine in question, Coffee Machine Modelling
Language (CMML) was implemented with MetaEdit+. The
CMML consists of two sub-languages where the first (see left
hand side of Figure 2) is a User Interface Modelling Language
(UIML) and the second language is a Coffee Making Process
Modelling Language (CMPML) (see right hand side of Figure 2).
The UIML enables testers to model the users interface (UI) of the
coffee machine where the following aspects can be modelled:
available sorts of coffee, the cost of a cup of coffee of a chosen
sort, and textual information which is displayed to the user. The
CMPML includes concepts for modelling e.g., heating a certain
amount of water that is poured through a certain amount and
blend of coffee to a cup of various sizes. Milk, cream, sugar etc.
can be added when desired and foaming can be applied when
required.

2 www.conformiq.com

9797

Figure 2. Simple coffee machine modelled with Coffee
Machine Modelling Language.

For CMML, a Python source code generator was developed
which produces complete code from models in the sense that there
is no need to modify the generated code. The generated code
enables simulation of the coffee machine behaviour in a desktop
computer environment. The code generator is also able to produce
a debug version of the modelled application in addition a stand-
alone version. The debug version utilizes Simple Object Access
Protocol (SOAP) Application Programming Interface (API) of
MetaEdit+ to report a change of a state during the application
execution back to the model where the application was generated.
The change of a state is shown as a red rectangle highlighting the
currently active state in the application models. This feature
enables graphical debugging of the application.

4.3 Testing the Coffee Machine by Using
MBT

The generated code follows an architectural division of UI,
control logic (CL) and cooking machine interface (CMI). The UI
is responsible for taking coffee orders and money as an input, and
displaying information to the customer. The UI provides orders
for CL to start making the ordered coffee. The CL is responsible
for controlling the preparation process and it closely collaborates
with CMI which simulates the physical hardware responsible for
performing various preparation- related tasks. All components are
implemented as Python threads to simulate concurrent processing
and asynchronous events that are common to embedded devices.
The preceding components have clearly defined interfaces to
promote testability. No separate domain-specific framework exists
because of the simplicity of the application domain.

In this laboratory case study, testing the behaviour of the CL
is demonstrated. As discussed above, the CL has an interface to
the UI and CMI. The provided interface of CL towards the UI
consists of two kinds of signals i.e. pressing the coffee ordering
button with the value of an ordered blend of drink, and the value

of coin. The required interface towards the UI consists of text to
the display signal. The required interface of CL towards CMI
consists of the order signal with a value either to add water, add
coffee, add milk, add cocoa, add cream, add sugar, warm water,
and serve the coffee signal. The provided interface consists of a
response signal with an ok/fail value as a parameter.
From an implementation perspective, i.e. after code generation,
the signal exchange between the components in this example
application is as follows when a customer orders a hot water
product:

CL receives a selected blend of a drink from UI.

CL sends an add water order to CMI which immediately
starts pouring the water to a heater.
After CMI has finished pouring the water, it notifies the
CL about the finished task.

After receiving the pouring complete message from
CMI, the CL notifies CMI to heat the water to 95
degrees.

After CMI finishes heating the water, it notifies the CL.
After receiving the heating complete message from
CMI, the CL notifies CMI to serve the coffee.

4.3.1 Model Transformation
CQ expects QML as an input. As the metamodel of the CMML
and the QML are different, a model transformation from CMML
to QML is required. The model transformation can be divided into
two main steps, i.e. transformation of the CMML objects and
relationships into the QML state machine, and transformations of
the information contained by CMML objects into QML input and
output signals.

In the case of transforming the coffee machine application
model to QML where CL is the SUT, the transformation is as
follows. First, the QML state machine is initiated by generating
QML Start, End and Idle states. The Start state has a transition to
the Idle state. The Coffee Pressing Button objects (see the topmost
entities in Figure 2) transform into QML transitions between the
Idle and the Coffee decomposition states (see below). Serving the
Coffee objects (see the lowest entity in Figure 2) transform into
QML states and transitions to the End state. The Coin Input object
transforms into a looping state which loops until the correct
amount of coins is received. Transformation of Coffee objects
depends on their decomposition. Transition to Coffee objects
transform to a transition to the first object in a decomposition
graph, and the transition from the Coffee object transforms to a
transition leaving from the last object in a decomposition graph.

Objects of CMPML transform to QML states. Transitions
entering to objects in CMPML transform to QML action
transitions i.e. transitions that trigger an action represented by the
connected object. Transitions leaving the CMPML objects
transform to QML triggering transitions. Input and output values
for QML action and triggering transitions are generated by
considering values and types of CMML objects.

After the model transformation, the model is in the required
format. The state machine part of QML is described in XML
Metadata Interchange (XMI) format and action language for input
and output transitions in QML. The result of the transformation
does not include graphical presentation, however, for illustration
purposes the transformed model can be manually visualized as
shown in Figure 3.

9898

Figure 3. Qtronic model.
In Figure 3, the state machine part of the externally visible

behaviour of the CL is presented. Input and output QML code is
omitted in the figure for the sake of clarity. The left side of the
figure represents ordering the coffee product and the right side
represents ordering the hot water product.
4.3.2 Test Suite Generation
After the model transformation, a test engineer can choose which
test design algorithms are to be utilized from the algorithms
provided by the CQ. In this laboratorial example, transition and
state coverage test design algorithms were chosen. The transition
coverage test design algorithm generates a test suite in which each
state of the model is visited at least once. The state coverage test
design algorithm is similar to the transition coverage test design
algorithm but visits all states. As an output format, HTML was
chosen which is one the pre-made scripters provided by CQ. Now,
CQ generates three test cases where one of the test cases is
depicted in HTML format as in Figure 4.

Figure 4. An illustration of a generated test case.
In Figure 4 a message exchange between the CL and the

Tester is illustrated. As shown, CL receives Button pressing event
with “hot water” parameter as an input from Tester, to which the
CL reacts by sending Order with parameters “addWater” and
“190” to Tester. The Tester reacts by sending Response with “ok”.
After that, the CL sends Order with parameters “warmWater” and
“95” to Tester which again replies with “ok”. After the CL
receives the “ok” signal, it sends “serveDrink” with value “0”
Order to the Tester which closes the test case. Now, if an error
occurs when this test is executed, it is shown as a discrepancy of
the expected output values.

5. DISCUSSION
For the feasibility study in utilizing MBT for testing applications
developed with DSML for a coffee machine, MetaCase
MetaEdit+ was chosen as a DSM environment whereas
Conformiq Qtronic was chosen as an MBT tool. To enable the test
generation, application models export from MetaEdit+ to QC was
required. As the metamodels between MetaEdit+ and QC are
different, a model transformation was required to transform
CMML to QML, which is the format required by QC.

In the coffee machine laboratory case, the model
transformation was trivial to implement as the mapping between
CMML and the QML is straightforward. However, this might not
be the case in real and perhaps more complex languages than the

9999

CMML. As the MBT is completely dependent on the accuracy of
the source model, even the slightest variation between the
modelled behaviour of the application models and the MBT
models ruins the test accuracy. In the case of CMML, model
transformation was able to be validated by visualizing the MBT
model but this again might not be possible when more complex
languages are considered. It might be so that the chosen approach
to utilize an external MBT tool might not be the perfect choice as
the verification might just shift from testing the generated
applications to testing the model transformations from the DSM to
MBT environment. However, it must be noticed that such
transformation has to be developed only once per language.

Another approach to utilize MBT is to replace an external
MBT tool with test design algorithms developed directly in the
DSM environment. This removes the need for model
transformation but requires implementing the test design
algorithms. Whereas by utilizing existing MBT tools that provide
extensively-verified test design algorithms, now the test design
algorithms have to be implemented for every language and a
question about the quality of custom algorithm emerges.
Currently, a trade-off when to utilize an external MBT tool
compared to developing the test design algorithms by itself is a
matter of debate and should be scrutinized before attempting to
use MBT for testing a complete DSML, which is our ultimate
target.

6. CONCLUSION
Industry cases constantly attain 5-10 fold productivity gains
compared to traditional software development practices when
DSMLs with full code generation is applied in software
development. Not only are productivity gains witnessed but also
quality is increased in the sense of decreased program errors. The
increase of quality is partially explainable by well-developed
modelling languages which prohibit the design of incorrect
models but also because code generation has a remarkable impact
on quality.

Although the quality increase is evident, software products
cannot be released without proper testing without knowing that
the modelling infrastructure, i.e. metamodels and code generators,
is flawless. Iterative and incremental development of the
modelling infrastructure is a state of the practice approach means
to produce quality languages but still there is uncertainty about the
quality without systematic and extensive testing of the whole
infrastructure. Without such systematic and extensive testing
methodology the resulting applications still need to be tested.

The contribution of this paper is a feasibility study of
applying MBT to test the generated applications. While
traditionally MBT models are developed from software
specification parallel to implementation, we strive for applying
the MBT to generate a test suite directly from domain-specific
application models. In this way, the test suites are always up-to-
date with the application models. In this paper, we demonstrated
the utilization of MBT to generate test suites from application
models in a laboratorial case study of a coffee machine for which
DSML and Python code generator were developed. As a
conclusion, the test generation seems to be technically feasible but
it is still unknown if the approach is also feasible with more
complex modelling languages.

7. REFERENCES

[1] Kelly, S. and Tolvanen, J-P. 2008. Domain-Specific
Modeling: Enabling full code generation, John Wiley &
Sons, ISBN 978-0-0470-03666, 427p.

[2] Merilinna, J., Puolitaival, O.-P. and Pärssinen, J. 2008.
Towards Model-Based Testing of Domain-Specific
Modelling Languages, The 8th OOPSLA Workshop on
Domain-Specific Modeling, Nashville, TN, USA.

[3] Utting, M. and Legeard, B. 2006. Practical Model Based
Testing: A Tools Approach, Morgan Kaufmann 1st ed.,
ISBN: 978-0123725011, 456p.

[4] Roberts, D., Johnson, R. 1996. Evolving Frameworks: A
Pattern Language for Developing Object-Oriented
Frameworks, Proceedings of Pattern Languages of Programs
Vol. 3 (1996).

[5] Hartman, A., Katara, M. and Olvovsky, S. 2006. Choosing a
test modeling language: A survey, Haifa Verification
Conference, pp. 204-218.

[6] Utting, M., Pretschner, A. and Legeard, B. 2006. A
taxonomy of model-based testing, Working papers series.
University of Waikato, Department of Computer Science,
Hamilton, New Zealand, University of Waitako.

[7] Puolitaival, O.-P., Luo, M. and Kanstren, T. 2008. On the
Properties and Selection of Model-Based Testing tool and
Technique, 1st Workshop on Model-based Testing in
Practice (MoTiP 2008), Berlin, Germany.

100100

Right or Wrong? – Verification of Model Transformations
using Colored Petri Nets∗

M. Wimmer
TU Vienna

wimmer@big.tuwien.ac.at

G. Kappel
TU Vienna

gerti@big.tuwien.ac.at

A. Kusel
JKU Linz

kusel@bioinf.jku.at
W. Retschitzegger
University of Vienna

werner@bioinf.jku.at

J. Schoenboeck
TU Vienna

schoenboeck@bioinf.jku.at

W. Schwinger
JKU Linz

wieland@schwinger.at

ABSTRACT
Model-Driven Engineering (MDE) places models as first-
class artifacts throughout the software lifecycle requiring the
availability of proper transformation languages. Most of to-
day’s approaches use declarative rules to specify a mapping
between source and target models which is then executed
by a transformation engine. Transformation engines, how-
ever, most often hide the operational semantics of the map-
ping and operate on a considerable lower level of abstraction,
thus hampering debugging. To tackle these limitations we
propose a framework called TROPIC (Transformations on
Petri Nets in Color) providing a DSL on top of Colored Petri
Nets (CPNs) to specify, simulate, and formally verify model
transformations. The formal underpinnings of CPNs en-
ables simulation and verification of model transformations.
By exploring the constructed state space of CPNs we show
how predefined behavioral properties as well as custom state
space functions can be applied for observing and tracking
origins of errors during debugging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Model Transformation, CPN, Verification, Debugging

1. INTRODUCTION
MDE places models as first-class artifacts throughout the

software life cycle, whereby model transformation languages
play a vital role [5]. Several kinds of dedicated transforma-
tion languages are available (see [2] for an overview), the
majority of them favoring declarative, rule based specifica-
tions to express mappings between source and target models,
as is the case with the QVT Relations standard [1].

To execute the specified mapping, transformation engines
are used, hiding the operational semantics and operating on
a considerable lower level of abstraction. On the one hand
this relieves transformation designers from burdens, like the
necessity to specify a certain execution order. On the other
hand, as transformation specifications grow larger, requiring
numerous rules working together, this considerably hampers

∗This work has been funded by the Austrian Science Fund
(FWF) under grant P21374-N13.

observing, tracking origins, and fixing of possible errors, be-
ing the main phases of debugging. As the correctness of
the automatically generated target model fully depends on
the correctness of the specified model transformation [13],
formal underpinnings are required to enable verification of
model transformations by proving certain properties like
confluence and termination, to ease debugging [11].

To alleviate the above mentioned problems we propose
TROPIC (TRansformations On Petri Nets In Color) [17,
18, 19], a framework providing declarative, reusable map-
ping operators based on a DSL on top of Colored Petri
Nets (CPNs) [6] called Transformation Nets (TNs) to spec-
ify model transformations. TNs provide a homogenous rep-
resentation of declarative mapping operators and their op-
erational semantics, both in terms of CPN concepts. The
formal underpinning of CPNs enables simulation of model
transformations and exploration of the state space, which
shows all possible firing sequences of a CPN. This allows
applying generally accepted behavioral properties, charac-
terizing the nature of a certain CPN, e.g., with respect
to confluence or termination, as well as custom functions,
e.g., to check if a certain target model can be created with
the given transformation logic, during the observation and
tracking origin phase of debugging.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the main concepts of TROPIC. In Section
3, we show how properties of CPNs can be used to formally
verify model transformations. Section 4 provides a taxon-
omy of possible transformation errors and related CPN prop-
erties, whereas Section 5 reports on lessons learned. Related
work is discussed in Section 6, and finally, Section 7 provides
an outlook on future work.

2. TROPIC IN A NUTSHELL
In the following, we shortly introduce TROPIC, a frame-

work for model transformations applying CPN concepts.
The use of Petri Nets in general enables a process oriented
view on transformations. The abstraction from control flow
prevalent in declarative transformation approaches is achieved
as transitions can fire autonomously depending on the mark-
ings contained in the places only, although the statefulness
of imperative approaches is preserved. CPNs, being a well-
known class of Petri Nets, are most suited for model trans-
formations, since every token carries a value of a certain
type called token color, used to represent model elements
accordingly. Thus CPNs provide a runtime model allowing
transformation designers to gain an explicit, integrated rep-

101101

Figure 1: Conceptual Architecture of TROPIC.

resentation of the operational semantics of model transfor-
mations, which particularly favors debugging. To profit from
these benefits of CPNs while hiding low-level details and cir-
cumventing restrictions thereof with respect to model trans-
formations (cf. below), the TROPIC framework introduces
a DSL for model transformations called Transformation Net
(TN). TNs operate on two different levels of abstraction,
providing a high-level mapping view and a more detailed
transformation view (see Fig. 1).

Mapping View. The mapping view (upper part of Fig.
1) is used to declaratively define the correspondences be-
tween source (LHS) and target metamodel elements (RHS)
using mapping operators (MOPs) encapsulating recurring
transformation logic. MOPs are represented by means of
Hiearchical CPN concepts [6], providing a packaging mech-
anism allowing a black-box view hiding the operational se-
mantics of a transformation and a white-box view making
the operational semantics explicitly (cf. below). In addition,
a MOP’s interface is only typed by classes, attributes and
references being the main constituents of the Ecore meta-
metamodel. This “weak typing” mechanism based on Ecore
concepts allows to abstract from concrete metamodels, thus
enabling reuse. For example in Fig. 1, showing a very sim-
ple transformation of classes to relations, the C2C MOP is
used to simply map a class of the source model (Class) to
a class in the target model (Table).

Transformation View. Every MOP of the mapping
view requires a well defined operational semantics (i.e., the
white-box view) in the form of some executable piece of
transformation logic realized by an independent set of tran-
sitions and places. In particular, places are derived from
elements of metamodels, creating a place for every class, at-
tribute and reference thereof (see middle part of Fig. 1).
Tokens are created from elements of models and then put

into the according places. Finally, transitions represent the
actual transformation logic. The existence of certain model
elements (i.e., tokens) allows transitions to fire and thus
stream these tokens from source places to target places to
set up an unidirectional transformation. Tokens in target
places finally represent instances of the target metamodel to
be created and additional trace information is hold in terms
of tokens within trace places. Note that the tokens in the
target and trace places in Fig. 1 represent a successfully ex-
ecuted transformation. The LHS of a transtion representing
the pre-conditions as well as the RHS depicting the post-
conditions are visualized by means of color patterns (called
MetaTokens). If a transition is enabled, the colors of the
input tokens are bound to the input pattern. The produc-
tion of output tokens is typically dependent on the matched
input tokens. For instance, if a transition simply streams a
certain token indicated by the same color pattern of Meta-

Tokens on LHS and RHS, exact the same token is produced
as output that was matched at the LHS. For example, the
C2C operator is realized by such a transition taking a class
(cf. arc from the place Class to LHS MetaToken) and pro-
ducing an according table (cf. arc from RHS MetaToken to
place Table) and additional trace information. For further
details on TNs we refer to [17].

DSL on top of CPNs. TNs can be fully translated
into existing CPN concepts, although, as already mentioned,
adaptions have been made in order to better suit the do-
main of model transformations. These adaptions comprise,
most importantly, a specific consumption behavior in order
to deal with 1:n relationships and means to represent certain
modeling concepts like multiplicity, ordered references and
inheritance, accordingly.

First of all, the necessity of a specific consumption behav-
ior is motivated in Fig. 2 by means of an example, depicting
a simple TN generating a table for every class contained in
a package. If token P1 would be consumed (which is the de-
fault in CPNs), the transition could only fire once and the
1:n relationship between package and class would not be cor-
rectly resolved. Therefore, TNs provide a specific consump-
tion behavior where tokens are not consumed per default.
Rather the combinations of tokens fulfilling the precondi-
tion are held as trace information by every transition which
allows firing for all possible combinations, which is typically
desired in transformation scenarios. To represent the con-
sumption behavior in CPNs we use an additional History
place storing the already fired combinations in a sorted list
together with an according guard condition, ensuring that
the transition only fires if the current tokens of the precon-
dition are not already contained in the history (see History
Concept in Fig. 2b).

Regarding multiplicities of references, we provide restric-
tions of places in TNs represented by so called anti-places
in CPNs. E.g., if the multiplicity of a reference in a target
model is set to one, an anti-place holds exactly one token
which is consumed if the reference is transformed, prohibit-
ing repeated firings, cf. [9] for details. To cope with ordered
references in a metamodel TNs introduce ordered places rep-
resented by lists in combination with anti-places in CPNs as
they do not predefine a certain matching order for tokens.
Inheritance between classes in a metamodel is depicted by
means of nested places in TNs (place of superclass contains
places of subclasses) and are represented by one place per
class whereby places of superclasses additionally aggregate

102102

Package Arc Inscription

Tokens

1`(1,(“P1“)
1`[[1,1,2,2],[1,1,3,3]]

ID35

Datatype Definitions
colset Class =

product INT * STRING;
colset Reference =

MetaTokens
encoding CPN
Arc Inscriptions

P1

Package_class

Table 1`(1,“P1“,2,“C1“)++ 1`(2,“C1“)++

Package
ID35

Class
History(col1,val1) InsertSorted

[col1,col1,
col2,col2] h

h

product INT * STRING *
INT * STRING

colset Values= list INT;
colset History =list Values;

Arc Inscriptions

TwoColoredToken encoding
CPN type Reference

Class

C1 C2

Table

C1 C2

1 (1, P1 ,2, C1)
1`(1,“P1“,3,“C2“)

1 (2, C1)
1`(3,“C2“)

Package_class Table

ClassReference

tr1
(col1,val1,col2,val2) (col2,val2)

[not(List.exists(fn x=>
Contains(x,[col1,col1,

l2 l2] 4))h)]

Guard
ConditionCPN type Reference

D t t

1`(2,“C1“)++
1`(3,“C2“)

Class

Class

(col2,val2)

col2,col2],4))h)]

History Concept
OneColoredToken

encoding CPN type Class

Colored Petri NetTransformation Neta b
DatatypeClass

(col1 val1)
nil1`(1,"P1")1`(1,"P1") 1`[[1,1,2,2],[1,1,3,3]]

(col1,val1)

h

Package

OneColoredPlace
History

InsertSorted
[col1,col1,col2,
col2] h1`(1,"P1",2,"C1") ++

1`(1 "P1" 3 "C2")

ID35

1`(1,"P1",2,"C1")++
1`(1 "P1" 3 "C2")

1`(2,"C1")++
1`(3,"C2")

(col2,val2)
tr1Package_class

TwoColoredPlace

Table

OneColoredPlace[not (List.exists(fn x=>
Contains(x,[col1,col1,
col2,col2],4))h)]

1 (1, P1 ,3, C2)
(col1,val1,col2,val2)

1`(2 "C1") ++

1 (1, P1 ,3, C2) 1 (3, C2)

1`(2 "C1")++
History concept

Class

OneColoredPlace

(col2,val2)

col2,col2],4))h)]1 (2,"C1") ++
 1`(3,"C2")
1 (2, C1)++
1`(3,"C2")

Figure 2: Translation of the Transformation Net Consumption Behavior to CPNs.

tokens of subclasses in CPNs. Additionally, to allow testing
the absence of tokens, e.g., to create a class only if no link
exists to a parent class (see transition c in Fig. 4a), TNs
provide explicit concepts to represent inhibitor arcs hiding
the CPN pattern presented in [9]. In contrast to metamodel
specific concepts the translation of places, tokens and tran-
sitions itself is straightforward (places in TNs get converted
to places with an according data type in CPNs, tokens in
TNs remain tokens in CPNs, color patterns of transitions
get converted to equivalent arc inscriptions, cf. Fig. 2).

3. PETRI NET-BASED VERIFICATION BY
EXAMPLE

In the previous section we presented the foundations of
TNs and their translation to CPNs which allows for the
use of existing CPN execution engines to simulate TNs and,
most importantly, the formal exploration of CPN proper-
ties. In the following subsections we present how properties
of CPNs can be applied to verify model transformation spec-
ifications by means of an example.

3.1 UML2Relational Example
The example depicted in Fig. 3 and Fig. 4 is based on

the Class2Relational case study1, which became the de-facto
standard example for model transformations. Due to rea-
sons of brevity, only the most challenging part of this case
study is described in this paper, namely how to represent in-
heritance hierarchies of classes within relational schemas fol-
lowing a simple one-table-per-hierarchy approach. As shown
in Fig. 3 our example comprises three classes (cf. tokens in
place Class in Fig 4a) whereby class C2 inherits from class
C1 and class C3 inherits from class C2 (cf. tokens in place
Class_par in Fig 4a). Therefore the desired output model
should contain one Table, aggregating four Columns (all at-
tributes of the three classes).

) Source Target

M
M

s
(M

2

AttributeClasspar
*

*attr

A1 : Attribute
attr

Table Column*cols

C1 : Table A1 : Column

M
od

el
s

(M
1) C1: Class

A2 : Attribute
attrpar

attr

C2 : Class A3 : Attribute
attr

A3 : ColumnA2 C l

A4 : Column
cols

cols

cols
cols

C3 : Class A4 : Attribute
attrpar

A3 : ColumnA2 : Column

FIG 2: Transformation Net - Static Part

Figure 3: Metamodel and Model of UML2Relational
Example.1http://sosym.dcs.kcl.ac.uk/events/mtip05

At a first glance the generated target model in Fig. 4a
seems to be correct, but on a closer look it can be detected,
that a link from table C1 to column A4 is missing, compared
to the desired target model depicted in Fig. 3. Even in
this small example the error is hard to observe, but it is
even more difficult to track the origin of the error. In the
following we show how predefined formal properties of CPNs
(cf. [10] for an overview) in combination with custom state
space functions can ease these debugging phases using our
current prototype.

3.2 Transformation Verification Prototype
As shown in Fig. 4, the created TN is translated to an ac-

cording CPN, which allows the use of existing Petri Net ex-
ecution engines, e.g., CPN Tools 2, enabling the simulation
of model transformations. Although simulation can be used
to get a first insight into the transformation specification,
i.e., to investigate the operational semantics of the speci-
fied transformation, it is impossible to obtain a complete
proof of behavioral properties, which require formal analysis
methods of CPNs. Therefore the state space is constructed
(see Fig. 4e), used on the hand to obtain predefined prop-
erties (see Fig. 4f), and on the other hand to analyze the
transformation specification using custom functions, e.g., to
check if a certain marking is reachable. The Transforma-
tion Analyzer component (see Fig. 4b) processes the anal-
ysis results, thereby verifying the specified transformation.
Additionally to a source model and the specified transfor-
mation logic needed to calculate the state space, we assume
that the expected target model is known, which is loaded
by the Transformation Analyzer to derive the desired target
markings in CPNs, which is then used for testing the trans-
formation logic by applying custom state space functions.

3.3 Verification of Model Transformations
In the following we show, how formal properties can be

applied to detect errors in the transformation specification.
Model comparison using Boundedness Properties.

Typically the first step in verifying the correctness of a trans-
formation specification is to compare the target model gen-
erated by the transformation to the expected, manually cre-
ated target model. To identify wrong or missing target ele-
ments in terms of tokens automatically, Boundedness prop-
erties (Integer bounds and Multiset Bounds) can be applied.
In our example (cf. Fig. 4f), the upper integer bound of the
Table_cols place is set to three whereas the desired target
model requires four tokens, as every column has to belong

2http://wiki.daimi.au.dk/cpntools/cpntools.wiki

103103

a

verify

Integer Bounds Upper Lower

Transformation
Analyzer

y

load expected
target model

b
c

translate simulate

Integer Bounds Upper Lower
…
Table_cols 3 0
…..
Upper Multi-Set Bounds
…
Table cols 1`(1200 "Person" 1 "name")++

predefined
state
space

functions
(properties)

custom
state
space

functions

d

f

Table_cols 1 (1200, Person ,1, name)++
1`(1200,"Person",2,"addr")++
1`(1200,"Person",6,"custID")

…
Home Markings

[1320]
D d M kiexportconstruct Dead Markings

[1320]
Dead Transition Instances
TransitiveClosureLinker

pconstruct

e

Figure 4: Transformation Verification Prototype
showing the UML2Relational example

to a certain table. By inspecting the multiset bounds one
recognizes that a link to the column A4 originating from an
attribute of class C3 is missing. If such erroneous parts of
the target model are detected, the owning target place (see
error sign besides the Table_cols place in Fig. 4a) as well
as the transitions that produce tokens in these places are
highlighted in the TN. Unfortunately, numerous transitions
are involved in creating the Table_cols link in our example,
which hampers finding the actual origin of the error.

Transition Error Detection using Liveness Prop-
erties. Errors in the transformation specification occur if
either a transition is specified incorrectly or the source model
is incorrect. Both cases might lead to transitions which are
never enabled during execution, so called Dead Transition
Instances or L0-Liveness. The state space report in Fig. 4f
shows that transition b in the TN is a Dead Transition In-
stance, which is therefore marked with an error sign. The
intention of transition b in our example is to calculate the
transitive closure, thus there should be an additional link
from class C to class A as class C also inherits from class A

(see Fig 3). On investigating the LHS of transition b in Fig.
4 we see that the inheritance hierarchy is faulty; the pattern
specifies that class X (white color) is parent of class Y (black
color) and class Z (gray color). To fix the color pattern we
need to change outer and inner color of the second Meta-
Token; now class X (white color) is parent of class Y (black
color), and X is again parent of class Z (gray color). After
fixing the error, the state space can be constructed again
and will not contain dead transitions anymore.

Termination and Confluence Verification using Dead
and Home Markings. A transformation specification must
always be able to terminate, thus the state space has to con-
tain at least one Dead Marking. This is typically ensured by

the history concept of TNs, which prevents firing for recur-
ring combinations. Finally it has to be ensured that a dead
marking is always reachable, meaning that a transformation
specification is confluent, which can be checked by the Home
Marking property requiring that a marking M can be reached
from any other reachable marking.

The generated report in Fig. 4f shows that in our exam-
ple a single Home Marking is available which is equal to the
single Dead Marking (both identified by the marking 1320),
meaning that the transformation specification always termi-
nates. To achieve a correct transformation result, an equal
Home Marking and Dead Marking is a necessary but not a
sufficient condition, as it cannot be ensured that this mark-
ing represents the desired target model. By exploring the
constructed state space using custom functions it is possible
to detect if a certain marking is reachable with the specified
transformation logic, i.e., the target marking derived from
the desired target model. If it is, and the marking is equal to
both, Home Marking and Dead Marking, it is ensured that
the desired target model can be created with the specified
transformation logic in any case.

4. CPN PROPERTIES FOR MODEL TRANS-
FORMATIONS

By applying and analyzing behavioral properties of CPNs
in different case studies we tried to figure out which proper-
ties are useful in the context of model transformation veri-
fication and which kind of errors can be detected. The pro-
posed taxonomy (see Fig. 5) investigates possible locations
of errors, classifies typical model transformations errors and
shows which properties are useful for their detection. The
taxonomy extends our taxonomy presented in [8], focusing
on how common QVT pitfalls can be detected in TROPIC.

Location Granularity Type Transformation Net CPN Property

Metamodel

Syntax Error
(non conformance to MMM)

Semantic Error
(e g missing constraints)

Model

(e.g. missing constraints)

Syntax Error
(non conformance to MM)

LivenessSemantic Error
wrong tokens (e.g. , two
colored token with equal

Boundedness(e.g. , self links, inheritance)

wrong source MM element Liveness
Boundedness

colored token with equal
inner/outer color)

wrong arc from place to
transition

Intra
‐Rule

wrong/too strong/too weak
matching pattern

non‐satisfiable matching
pattern

Boundedness
Reachability

Liveness

LHS wrong/incomplete color
pattern in LHS of transition

non‐satisfiable color pattern
with respect to MM

Transformation

Rule

RHS
wrong target MM element

wrong instantiation of target
elements

Reachability
Boundedness

wrong arc from transition to
target place

wrong/incomplete color
pattern in RHS of transition

Logic Source
MM

coverage

missing/redundant source
MM elements

wrong intermediate Reachability

elements pattern in RHS of transition

missing/redundant arcs from
source place to transition

wrong tokens in/wrong

Inter
‐Rule

Target
MM

coverage
missing/redundant target

MM elements

results/dependencies Boundedness

hungry transitions sharing Home Statenon‐determinism/non‐

connection to trace place

missing/redundant arcs from
transition to target place

non‐termination Dead State

hungry transitions sharing
same source place

Home State
Persistence

non determinism/non
confluence

loops producing new colored
tokens

Runtime
behavior

Figure 5: Taxonomy of Transformation Errors and
CPN Properties.

During specification of model transformations there are
three possible locations of errors, either in (i) the meta-
model, (ii) the model, or (iii) the transformation logic. The
detection of errors in the metamodel is in general out of
scope of transformation languages. As we explicitly repre-
sent model elements—in contrast to other transformation
languages—as tokens in TNs, semantic errors in the model
can be detected by the liveness or boundedness property.
For example, an incorrect source model (e.g., self links rep-

104104

resented by two colored tokens with same inner and outer
color) might lead to dead transition instances or an incor-
rect firing behavior of a transition and thus to an incorrect
number of tokens in the target place.

Errors in the transformation logic itself can be divided
into errors local to a single transition (Intra-Rule Error)
or errors which can only be detected by examining the in-
terrelations between several transitions (Inter-Rule Error).
Intra-rule errors can be divided into errors occurring at the
LHS or RHS of a transition. Common errors on both sides
(e.g., a wrong matching pattern or a wrong instantiation of
target models) can be detected by examining the bounded-
ness properties in comparison to an expected target model or
by custom state space functions checking if a certain mark-
ing is reachable. Due to the fact that these two properties
can be applied in various scenarios we provide special tool
support. If an expected target model is loaded, bounded-
ness properties are automatically checked. Additionally, by
selecting individual tokens of the desired target model (vi-
sualized in the TN editor by the Transformation Analyzer
component), custom state space functions are created check-
ing if the desired marking is reachable or not with the given
transformation specification and the given source model. Fi-
nally, dead transition instances point out that the a given
LHS specification of a transition cannot be fulfilled by the
given source model.

Inter-rule errors occur if transitions depend on other, er-
roneous transitions or if we miss to cover the whole source or
target metamodel. Although these errors can easily be de-
tected by checking for source places that have no arc to any
transition or target places which are not target of any tran-
sitions, it is also possible to apply boundedness and reacha-
bility properties to detect these kind of errors. To verify if
several transitions in a model transformation specifications
interact correctly, the confluence and the termination prop-
erty can be applied. The creation of non-confluent transfor-
mation specifications in TNs might only occur if several tran-
sitions explicitly consume tokens from one place. If, in this
case, the Persistence property is violated (the firing of one
transition disables the firing of another one enabled before),
which would lead to non-confluent model transformations,
an error notification would be given to the transformation
designer. As already stated and detailed in Section 5 the
specific firing behavior of TNs ensures termination.

5. LESSONS LEARNED
This section presents lessons learned from the running ex-

ample and thereby discusses key features of our approach.
History ensures termination. As mentioned above,

TNs introduce a specific consumption behavior in that tran-
sitions do not consume the source tokens satisfying the pre-
condition but hold them in a history. Thus, a transition
can only fire once for a specific combination of input tokens
prohibiting infinite loops, even for test arcs or cycles in the
net. Only if a transition occurs in a cycle and if it produces
new objects every time it fires, the history concept can not
ensure termination. Such cycles, however, can be detected
at design time and are automatically prevented for TNs. In
contrast to model transformation languages based on graph
grammars, where termination is undecidable in general [12],
TNs ensure termination already at design time.

Visual syntax and live programming fosters de-
bugging. TNs represent a visual formalism for defining

model transformations which is, in combination with the ex-
ploration of formal properties, favorable for debugging pur-
poses. This is not least since the flow of model elements
undergoing certain transformations can be directly followed
by observing the flow of tokens, allowing to detect undesired
results easily. Another characteristic of TNs, that fosters
debuggability, is live programming, i.e., some piece of trans-
formation logic can be executed and thus tested immediately
after definition without any further compilation step.

Concurreny in Petri Nets allows parallel execu-
tion of model transformations. As Petri Nets in general
are especially suitable to specify concurrent operations, par-
allel execution of transformation logic is possible, thereby
increasing efficiency of the transformation execution. In the
UML2Relational example shown in Fig. 4a we can concur-
rently transform attributes to columns (cf. transition h) and
calculate the transitive closure (cf. transition a). The prop-
erties Home State and Dead Markings can ensure confluence,
even in case of parallel execution. The chosen representation
of models by TNs let attributes as well as references become
first-class citizens, resulting in a fine-grained decomposition
of models allowing for extensive use of parallel execution.

State Space Explosion limits model size. A known
problem of formal verification by Petri Nets is that the state
space might become very large. Currently, the full occur-
rence graph is constructed to calculate properties leading to
memory and performance problems for large source models
and transformation specifications. Often a marking M has n
concurrently enabled, different binding elements leading all
to the same marking. Nevertheless, the enabled markings
can be sorted in n! ways, resulting in an explosion of the
state space. As model transformations typically do not care
about the order how certain elements are bound, Stubborn
Sets [7] could be applied to reduce the state space nearly to
half size, thus enhancing scalability of our approach.

6. RELATED WORK
The main objective of this paper is to provide formal ver-

ification methods for finding common transformation prob-
lems by employing CPNs. We consider two orthogonal threads
of related work. First, we discuss other approaches which
provide formal verification methods for model transforma-
tions. Second, we relate our proposed taxonomy to other
error taxonomies in the domain of model transformations.

Formal verification of model transformations. Es-
pecially in the area of graph transformations some work has
been conducted that uses Petri Nets to check formal proper-
ties of graph production rules. Thereby, the approach pro-
posed in [15] translates individual graph rules into a Place/-
Transition Net and checks for its termination. Another ap-
proach is described in [4], where the operational semantics
of a visual language in the domain of production systems is
described with graph transformations. The production sys-
tem models as well as the graph transformations are trans-
formed into Petri Nets in order to make use of the formal
verification techniques for checking properties of the pro-
duction system models. Varró presents in [14] a translation
of graph transformation rules to transition systems (TS),
serving as the mathematical specification formalism of var-
ious different model checkers to achieve formal verification
of model transformation. Thereby, only the dynamic parts
of the graph transformation systems are transformed to TS
in order to reduce the state space.

105105

These mentioned approaches only check for confluence and
termination of the specified graph transformation rules, but
compared to our approach, make no use of additional prop-
erties which might be helpful to e.g., point out the origin
of an error. Additionally, these approaches are using Petri
Nets only as a back-end for automatically analyzing proper-
ties of transformations, whereas we are using a DSL on top
of CPNs as a front-end for fostering debuggability.

Error Taxonomies. In [13], a simple error taxonomy
for model transformations is presented which is then used
to automatically generate test cases for model transforma-
tions. A very similar approach is presented by Darabos et.
al. in [3], focusing on common errors in graph transforma-
tion languages in general and on errors in the graph pattern
matching phase in particular.

Both taxonomies are, however, rather general and de-
scribe possible errors in graph transformation specifications,
only. Neither suggestions are presented how the findings of
the generated test cases can be mapped back to the transfor-
mation specification in order to fix possible errors nor formal
validation methods are presented.

7. FUTURE WORK
Up to now, we focused on small model transformation

scenarios only, not least due to the state space explosion
problem. The main disadvantage of the state space algo-
rithms included in CPN Tools is that only full occurrence
graphs can be constructed. The ASCoVeCO State space
Analysis Platform (ASAP) [16], however, provides a tool to
perform state space analysis on CPNs which tackles these
shortcomings by allowing the specification of own, complex
algorithms to construct and to explore the state space. We
plan to integrate the ASAP tool into our prototype for eval-
uating different methods for their suitability in the domain
of model transformations. Additionally, as the transforma-
tion logic by means of color patterns can easily become hard
to comprehend when domain patterns grow larger, we plan
to employ alternative visualization techniques, e.g., object
diagrams or arc inscriptions known from CPNs.

8. REFERENCES
[1] Object Management Group (OMG). Meta Object

Facility (MOF) 2.0 Query/View/Transformation
Specification, Final Adopted Specification, 2007.

[2] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems
Journal, 45(3), 2006.

[3] A. Darabos, A. Pataricza, and D. Varró. Towards
Testing the Implementation of Graph
Transformations. Electronic Notes in Theoretical
Computer Science, 211, April 2008.

[4] J. de Lara and H. Vangheluwe. Automating the
Transformation-Based Analysis of Visual Languages.
Formal Aspects of Computing, 21, Mai 2009.

[5] R. France and B. Rumpe. Model-driven Development
of Complex Software: A Research Roadmap. 29th Int.
Conf. on Software Engineering, 2007.

[6] K. Jensen and L. M. Kristensen. Coloured Petri Nets -
Modeling and Validation of Concurrent Systems.
Springer, 2009.

[7] L. Kristensen and A. Valmari. Finding Stubborn Sets
of Coloured Petri Nets without Unfolding. In Poc. of

Int. Conf. on Application and Theory of Petri Nets.
London, 1998.

[8] A. Kusel, W. Schwinger, M. Wimmer, and
W. Retschitzegger. Common Pitfalls of Using QVT
Relations - Graphical Debugging as Remedy. Int.
Workshop on UML and AADL @ ICECCS’09,
Potsdam, 2009.

[9] N. A. Mulyar and W. M. P. van der Aalst. Patterns in
Colored Petri Nets. Beta, Research School for
Operations Management and Logistics, 2005.

[10] T. Murata. Petri nets: Properties, analysis and
applications. Proc. of the IEEE, 77(4), 1989.

[11] F. Orjeas, E. Guerra, J. de Lara, and H. Ehrig.
Correctness, completeness and termination of
pattern-based model-to-model transformation. In
Proc. of 3rd Conf. on Algebra and Coalgebra in
Computer Science, Udine, 2009.

[12] D. Plump. Termination of graph rewriting is
undecidable. Fundamental Informatics, 33(2), 1998.

[13] J. Uster, J. M. Küster, and M. A. el razik. Validation
of Model Transformations - First Experiences using a
White Box Approach. In Proc. of MoDeVa’06 at
MoDELS’06, Genova, 2006.

[14] D. Varró. Automated Formal Verification of Visual
Modeling Languages by Model Checking. Journal of
Software and Systems Modelling, 3(2), 2003.

[15] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and
G. Taentzer. Termination Analysis of Model
Transformations by Petri Nets. In Proc. of 3rd ICGT,
Natal, 2006.

[16] M. Westergaard, S. Evangelista, and L. M. Kristensen.
ASAP: An Extensible Platform for State Space
Analysis. In Proc. of 30th Int. Conf. on Application
and Theory of Petri Nets and Other Models of
Concurrency, Paris, 2009.

[17] M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger,
W. Schwinger, and G. Kappel. Lost in translation?
transformation nets to the rescue! In Proc. of 3rd Int.
United Information Systems Conf. (UNISCON’09),
Sydney, 2009.

[18] M. Wimmer, A. Kusel, J. Schoenboeck, G. Kappel,
W. Retschitzegger, and W. Schwinger. Reviving QVT
Relations: Model-based Debugging using Colored
Petri Nets. In MoDELS ’09: Proceedings of the 12th
international conference on Model Driven Engineering
Languages and Systems, Denver, 2009.

[19] M. Wimmer, A. Kusel, J. Schoenboeck, T. Reiter,
W. Retschitzegger, and W. Schwinger. Let’s Play the
Token Game – Model Transformations Powered By
Transformation Nets. In Proc. of Int. Workshop on
Petri Nets and Software Engineering, Paris, 2009.

106106

A Tooling Environment for Quality-Driven Domain-Specific
Modelling

Janne Merilinna
VTT Technical Research Centre of Finland

P.O. Box 1000
02044 Espoo, Finland

janne.merilinna@vtt.fi

Tomi Räty
VTT Technical Research Centre of Finland

P.O. Box 1100
90571 Oulu, Finland

tomi.raty@vtt.fi

ABSTRACT
There is an increasing need for reducing costs and improving
quality in software development. One of the means to reduce costs
is to increase productivity by utilizing Domain-Specific
Modelling (DSM). Industry cases consistently show a 5-10 fold
increase in productivity when DSM is applied, in addition to a
decrease of errors in generated code. In order to improve quality
and especially desired quality attributes, e.g., performance and
reliability, quality requirements must be considered in every
development phase. Also a trace link from quality requirements
definitions to implementation and tests has to be maintained to
assure that the resulting application truly satisfies the
requirements. As Model-Driven Development is heavily
dependent on provided tool support, a tooling environment that
enables quality-driven DSM would be useful. Thus in this paper,
we study if MetaCase MetaEdit+ language workbench can be
utilized as such by developing a code generator and a domain-
specific modelling language for a laboratory case of stream-
oriented computing systems. We found that the chosen
environment is appropriate for an industrial application of quality-
driven DSM.

Keywords
Model-Driven Development, quality attributes, traceability

1. INTRODUCTION
Whereas development costs must be abated in software
development, at the same time customers demand products of ever
higher quality. Today, it is not enough for software applications to
satisfy demanding functional requirements. Rather, quality
attributes such as the performance and reliability of an application
also have to be planned, predicted, implemented and upon
delivery it must attain its satisfactory and planned level of quality.
Productivity must also be improved in software development to
decrease development costs while achieving the desired quality.

One of the means to increase productivity is to apply
modelling in software development. Model-Driven Development
(MDD) treats models as first class design entities in which
modelling is argued to provide a view to a complex problem and
its solutions, an approach which is less risky, cheaper to develop,
and easier to understand than the implementation of the actual
target system [1]. In particular, the application of Domain-
Specific Modelling (DSM) often results in a 5- to 10-fold increase
in productivity in industrial cases in comparison to traditional
practices [2].

To achieve products of desired quality, quality requirements
have to be taken into account in software design and ultimately in
an implementation. Much effort has been placed in developing
methods and techniques that take quality requirements into

account in software architecture development [3][4][5] and
respectively to evaluate software quality from architectural
models [6][7][8]. Whichever method is applied in architecture
development where quality is of the importance, the following
pieces must be employed for quality-driven development: 1)
precise definitions of quality requirements, 2) a list of alternative
design solutions to achieve such requirements, 3) linkage of the
requirements and the design fragments that promote certain
qualities, and 4) a method for utilizing such fragments in software
design [9]. The preceding pieces must be accompanied with
tracing of quality requirements. This is an activity of identifying
requirements in the following work products through the entire
development process [10]. The tracing improves all kinds of
impact analysis from the measurable acceptance criteria of each
quality requirement to the release of a software application [10].

To maintain a trace link all the way from quality
requirements through architecture models to implementation, a
link should not be broken at the model level. The models should
also be automatically transformed into implementation to avoid an
unnecessary phase of manually transforming models into source
code. Considering the preceding statement, the subsequent
requirements can be formulated for quality-driven DSM (QDSM):
1) quality requirements have to be explicitly expressed in models,
2) there must be a means to affect the quality attributes and their
impact on quality should be observable in models, 3) there should
be methods and techniques available to evaluate and test the
models and the result of the evaluation and measurements should
be presented in models to facilitate traceability of quality
requirements. Finally, 4) full code generation from models has to
be possible to enable testing of the models and to produce the
release version of a modelled application.

Success of QDSM extensively lies in the provided tool
support. Although there are tools to support quality requirements
descriptions in architecture models [11], support for quality-
driven development of architectures [12] and even support for
architecture evaluation [11], we have not found a mature industry-
ready integrated DSM tooling environment that demonstrates
QDSM. Thus in this paper, we study if MetaCase MetaEdit+,
which is a language workbench for developing code generators
and domain-specific modelling languages (DSMLs) with a
metamodelling approach, can be utilized as such an environment
by developing a demonstration.

With MetaEdit+, we have developed a DSML and Python
code generator which enables full code generation for simulating
stream-oriented computing systems. The tool environment and the
developed language provides: 1) a means to define quality
requirements and to connect the requirements to corresponding
model entities, 2) automated pattern recognition to provide a
design rationale from the quality perspective, 3) measurement
mechanisms for testing execution-time quality attributes [13] such

107107

as performance and reliability, 4) linkage between the
measurement mechanisms and quality requirements to explicitly
express if the quality requirements are satisfied, and 5) an
optimization assistant that guides the modeller in achieving the
desired qualities. We demonstrate the tool environment for
modelling a system that initially does not satisfy its quality
requirements, but with the help of the provided facilities of
QDSM, is refined to fulfil the requirements.

This paper is structured as follows. First, requirements for
QDSM including a state-of-the-art means for supporting quality-
driven software development are discussed in Section 2. Second, a
laboratory case including its modelling language and a code
generator are introduced in Section 3. After that, in Section 4 the
tool environment is demonstrated by transforming a model that
does not satisfy its quality requirements into a system that
completely satisfies the requirements. Discussion and conclusions
close the paper.

2. Requirements for Quality-Driven Domain-
Specific Modelling
The goal of QDSM is to entail in a single model the 1) quality
requirements, 2) what has been done to satisfy the requirements,
and 3) an evaluation and test results. By enabling this, tracing of
quality requirements to implementation including test results is
facilitated. Next, requirements and a state-of-the-art means for
QDSM are more precisely discussed.

2.1 Expressing Quality Requirements
Quality requirements must explicitly be identified, divided and
formalized to enable the designation of what parts of the
application models are responsible for them and what are the
means to validate the satisfaction of requirements. Considering
MDD, quality requirements have to be declared not only in
standalone requirements engineering tools but also in the
modelling environment. Quality requirements have to be
connectable to the modelling entities to maintain the explicit link
between the requirements and the corresponding model entities.

There are several languages for the modelling of functional
and quality requirements. These are evaluated in [14] and [15].
Also there are ontologies [16] and experimental visualization
techniques [17] as well as existing tool support for requirements
description, such as with IBM Rational RequisitePro and IBM
Rational DOORS. Despite the format, it is of importance that the
quality requirements should be defined in such way that their
achievement can be verified, i.e. requirements should be
measurable and they should include qualification requirements
and acceptance criteria [10]. Such a template for describing
quality requirements has been introduced by Ebert [10] for
documenting quality goals.

2.2 Means to Affect the Quality Attributes
The utilized modelling language should have mechanisms to
affect the quality attributes and there should be an enumeration of
design approaches which enable to have an impact on quality
attributes. It is also important that the impact of these mechanisms
on the quality attributes should be made explicit to bridge the
discrepancy between the quality requirements and the promoted
quality attributes [18].

Patterns are considered as one of the means to express and
affect the qualities of a software system. This argument is based
on the definition of patterns. Alexander [19] defines patterns as
“…a rule which establishes a relationship between context, a

system of forces which arises in that context, and a configuration
which allows these forces to resolve themselves in that context.”
Thus, patterns can also be seen as a solution for balancing forces
related to qualities in a certain context. Currently, there is no
extensive list of qualities that patterns promote. Nevertheless,
some preliminary categorizations can be found from [3]. There are
techniques, such as the goal-driven model transformation
technique, that strives to provide a bridge between user
requirements and design models [20] in which utilized patterns
are based on scrutinizing the intent of patterns and dividing their
intents into functional and quality parts. Then the most
appropriate pattern is chosen for the situation at hand [21].

In addition to explicitly expressing the design rationale from
the quality perspective, support for the modeller for the QDSM is
recommended. Such support should include a model evaluation
assistant that generates hints to optimize the system according to
the quality requirements. Such hints can be based on e.g.,
architectural tactics [9] and patterns that promote the required
quality requirements [3][12].

2.3 Evaluation and Testing
Models ultimately need to be evaluated and tested. There are a
few software architecture evaluation methods that focus on certain
quality attributes. The AEM method [7] concentrates on
adaptability evaluation, whereas the IEE method [8] focuses on
integrability and extensibility. There are also methods such as
ATAM [6] that consider a set of quality attributes in the
evaluation. While most of the evaluation methods are scenario-
based or prediction methods, it is argued that quality can also be
evaluated by inspecting what patterns are applied in models [12].

After evaluation, the models have to be tested by executing
them to verify if the evaluation is tenable. Testing can only be
performed for execution-time qualities [13] based on sheer
definition. The generated implementation has to be monitored and
measured from those parts in which quality requirements are
connected to find out whether the execution-time quality
requirements are satisfied. To support QDSM, the results of the
tests need to be reported back to models. This enables the
modeller to see measured values of quality attributes, and whether
the quality requirements have been satisfied.

3. Domain-Specific Modelling Language for
M-Net Laboratory Case
To demonstrate QDSM in MetaCase MetaEdit+, a laboratory case
is utilized. The laboratory case is a stream-oriented computing
system. For the laboratory case M-Net modelling language
including a complete Python code generator was developed which
enables complete code generation from domain-specific models. It
must be noticed that the utilized laboratory case is only a
laboratorial example of real stream-oriented computing system
and is utilized only to simulate such a system.

3.1 The Domain
Stream-oriented computing systems are characterized by parallel
computing components that process potentially infinite sequences
of data [22]. The purpose of such a system is to read data from a
data source, manipulate the data and store or forward the
computed data. Briefly, the system forms a pipes- and filters-
based system which enables parallel processing of data. Similar
systems are common, e.g., in video and image processing.

The domain of the laboratory case includes the following
concepts (concepts in italic). Filters manipulate the input data and

108108

forward the filtered data to the next entity. The manipulation
consumes time which is adjustable by the modeller. Computation
can fail with a probability that the modeller can adjust to simulate
e.g., insufficient resources during computation, program errors, or
corrupted data units (DUs). If the computation fails, the modeller-
definable penalty delay is endured. Database represents input and
output pipes for the filter chain. Switch enables forwarding the
data according to predefined principles. Comparator enables
comparing the input data and based on predefined judgement
policies, forward the input data to the next entities. Pipes connect
various entities together.

The most relevant quality attributes are performance and
reliability. Performance is the average throughput of DUs per
second. Reliability is the average probability of computing and
forwarding the data correctly. Reliability does have a direct
impact on performance as when a filter fails to compute a DU, it
suffers a penalty delay which has an impact on its performance.

Figure 1 represents an example of a stream-oriented
computing system which consists of two databases and filters.
The purpose of the application is to read a stream of colour
bitmaps (from ImageStream) and transform the input into black
and white (by B&W_converter) JPG images (by JPG_converter)
and store the stream to a hard disc (to OutputStream).

Figure 1. Initial application model.

3.2 Modelling Language and Code Generators
for M-Net
For the laboratory case, an M-Net modelling language was
developed with MetaEdit+. In addition to the basic metamodel
and model manipulation mechanisms, MetaEdit+ also provides
the possibility to alter the notation of the model entities during
runtime, i.e. the notation of model entities may alter depending
on, e.g., properties of the entities and/or relationships between the
entities. This feature becomes useful when one wants to
implement runtime model validation engines. Rules for altering
the notation are defined with the same language as code
generators and therefore the rules can be complex as necessary.

MetaEdit+ provides a domain-specific language called
MERL for developing generators. Because generators have to be
developed by self, the generated code will always be as desired
which might not be the case with pre-made generators provided
by tool vendors. This enables complete generation in the sense
that the generated output is not required to be modified
afterwards. MetaEdit+ also provides an Application Programming
Interface (API) which is implemented as a Web Service interface
with Simple Object Access Protocol (SOAP).

3.2.1 M-Net Modelling Language
The developed metamodel for M-Net includes all concepts
existing in the domain. Filters, databases, switches and
comparators are the main building blocks which are connectable
with pipes. M-Net also includes additional concepts that promote
QDSM. The quality requirements are described structurally in a
requirements model entity which can be connected to the model to
cover parts that are responsible for satisfying the requirement. The
template for describing quality requirements is adapted from [10].
M-Net also includes measurement mechanisms that enable
monitoring throughput and reliability of the modelled application.
The measurement mechanisms are connected to pipes in the
model, i.e. similar to using probes in electrical engineering, to
measure parts of the model located between the probes. The
optimization assistant model entity masks parts of the model and
generates optimization hints for the modeller based on quality
requirements.
3.2.2 Support for Quality-Driven Domain-Specific
Modelling
The developed metamodel includes a pattern recognition
mechanism which evaluates the model at modelling time and
automatically recognizes if the modeller has successfully
modelled any known predefined pattern that promotes certain
quality attributes. To render the promoted quality attributes
explicitly, entities in the pattern are automatically tagged by the
pattern recognition feature with a text that informs what quality
attributes the pattern promotes (see text on top of filters in Figure
2). The modeller can instantly experience if she has managed to
model an application that manifests any patterns that promote
certain quality attributes.

Requirements in M-Net language utilize MetaEdit+’s
notation altering mechanisms to automatically inform the
modeller if the requirement is satisfied (see tags on the right hand
side of requirement entities located bottom left in Figure 1
indicating that the requirements are not satisfied and in Figure 2
where the requirements are satisfied thus there are no such tags).
The automation is enabled if requirement entities are connected to
corresponding measurement mechanisms that enable measuring
throughput and reliability. Values for measurement mechanisms
are reported to model during application runtime if an application
is generated in debug mode (see details in Section 3.2.3.1).

The developed language also includes a model optimization
assistant that can be utilized for guiding the optimization of the
model according to the quality requirements (see two boxes that
contain the filters in Figure 1). The optimization assistant
considers only entities that it contains. This enables optimizing
only the required parts of the model. The model optimization
assistant utilizes a generator that traverses the entities it contains
and generates optimization report on that basis.
3.2.3 The Generators
Two generators that transform the models to text were developed:
1) the Python source code generator and 2) the optimization report
generator. The Python code generator is utilized for transforming
the model into Python source code which is not required to be
modified after code generation. The optimization report generator
is utilized to generate textual hints for the modeller on how to
optimize parts of the system according to the desired quality
requirements.

109109

3.2.3.1 Python Source Code Generator
Filters, comparators, switches and databases are generated as
threads thus enabling parallel processing of data. The developed
M-Net Python code generator also provides the option to produce
additional code for the generated application that accesses
MetaEdit+’s API to animate the entities in the models when the
application is executed. When this option is selected, the
preceding model entities are highlighted in models when they are
active during the execution. This enables the modeller to see how
the system functions in real-time and also at the model level.

Measurement mechanisms are generated with the application
code only when the modeller chooses to generate a debug version
of the application. The value for average throughput, i.e.
performance, is disclosed in the execution of the application by
counting DUs passing through parts of the application that the
measurements mechanism monitor and by dividing the count by
the time that elapsed to pass the DUs forward. The value for
average reliability is calculated by counting the ratio between
correctly computed DUs and corrupted DUs. Counted values are
reported at real-time to the corresponding measurement
mechanisms of the model by utilizing MetaEdit+’s API.
3.2.3.2 Optimization Report Generator
The optimization report generator finds all optimization assistants
in the currently active diagram and generates optimization hints
textually according to the desired quality requirements by
considering the model entities it contains. The rules for such
optimizations can be very complex in real-life domains but in this
simple system the rules remain straightforward and simplified. An
example of a trigger for performance optimization can be
formulated in natural language as follows: “Calculate average
throughput of this entity. Find all entities forwarding data to this
entity and compute the sum of the throughput. If the throughput
sum is more than the throughput of this entity, performance
optimization for this entity should be applied.” If a trigger for
optimization is fired, a textual hint is generated that guides the
modeller in refining the application design. An example hint for
performance optimization can be as follows: “B&W_converter
can be optimized for "Performance" by: duplicating this element
and adding switches before and after these entities. See pattern:
performance optimization by duplication.” As presented, a hint
always contains a link to a domain-specific pattern that promotes
the desired quality attributes. The pattern catalogue is included
with the modelling language as pre-made example models. This
enables the modeller to discover what solutions are behind the
optimization and provides additional information to the modeller
for him/her to make the ultimate decision whether to apply the
suggested optimization. The architectural knowledge is manually
coded in the optimization hint generator.

4. Model Optimization According to Desired
Qualities
QDSM is demonstrated by modelling an application that satisfies
its functional requirements but not quality requirements. The first
attempt to model an application is then transformed into a model
that satisfies both the functional and quality requirements with the
aid of the provided techniques for QDSM. The purpose of the
example application is to convert a stream of bitmap images to
black and white JPG images. The average performance
requirement is >0.5 DUs per second. The average reliability
requirement, i.e. correctness of the output, is >90%. In Figure 1,
the first attempt to model such an application is presented.

4.1 First Iteration
ImageStream in Figure 1 contains DUs, i.e. colour bitmaps, which
are required to be computed. The time to read data from
ImageStream is 0.1s which is defined by the modeller to mimic
real-life filters. The B&W_converter reads DUs into its buffer and
immediately after receiving the first DU it starts computing the
data. Time to compute the data of the B&W_converter is defined
by the modeller to be 2s with 100% reliability. After computing
each DU one at a time it forwards the DUs to a JPG_converter
which stores the DUs into its buffer. The JPG_converter
consumes 1s for each DU with an average of 50% reliability. If
the JPG_converter fails to compute the DU correctly, it is defined
by the modeller to suffer a penalty of 1s. It should be noted here
that the values are artificial and are only for simulation purposes.

Performance characteristics of the initial version of the
application are as follows. The throughput of the system can be
calculated by considering the slowest part of the system. The
throughput of the B&W_converter is 0.5DU/s as it takes 2s to
compute each DU. Throughput of the JPG_converter can be
calculated as follows. P(JPG_converter) = 1/(T(JPG_converter) +
T(JPG_converter_penalty)*R(JPG_converter)) where P is
throughput, T is time and R is reliability. Thus P(JPG_converter)
is 1/(1s+0.5*1s) = 2/3DU/s ~= 0.66DU/s. Therefore the average
throughput of the system is 0.5DU/s after the first DU is
computed. Reliability of the system can be calculated as follows.
R(system)=R(B&W_converter)*R(JPG_converter), where R is
reliability. If R(B&W_converter) is 1 and R(JPG_converter) is 0.5
then R(system) is 0.5, i.e. 50% thus the system fails to meet its
reliability requirement.

The performance characteristics can also be measured by
connecting the requirements and measurement mechanisms to the
model and by generating a debug version of the modelled
application. The requirements and measurement mechanisms are
connected to the application model to cover the whole
computation part of the system such as Figure 1 illustrates. By
doing so the modeller can see which requirements are meant to be
satisfied and which entities are responsible for the requirements.

After code generation, the generated system can be executed.
During run-time the system reports measurements back to the
model and the requirements satisfaction indicators explicitly
express if the requirements are satisfied. In this case, the system
fails to meet both quality requirements (see tags on the right side
of both requirement entities) as the average throughput is
~0.49DU/s and reliability 47%. The test was run by computing
100 DUs.
4.2 Second Iteration
The first attempt fails to satisfy the quality requirements resulting
in the refinement of the application. The B&W_converter is the
slowest part of the system and it has to be optimized for
performance to increase the throughput of the application.
Optimization assistants guide the optimization.

The optimization assistant enables the generation of
optimization hints for the filters (see Section 3.2.3.2). Applying
the hinted performance optimization pattern for the
B&W_converter doubles the throughput of the optimized filter in
an optimal case by enabling parallel processing of the data. The
idea of this pattern is to forward the first input DU to the first
filter which immediately starts processing the DU. The second
DU is then forwarded to the second filter which starts computing
the DU parallel to the first filter. In this way the filters receive
every other DU and therefore halve the amount of DUs to be

110110

handled per filter. Thus, when the un-optimized B&W_converter
produces 0.5DU/s, the throughput of the optimized filter
combination is 1DU/s with 100% reliability. Now, the average
throughput of the application is 0.66DU/s where the
JPG_converter is the slowest part. The throughput requirement
should be now satisfied.

Reliability of the application is still unsatisfactory therefore
the JPG_converter has to be optimized for reliability. The
optimization assistant produces the following hint for the
JPG_converter: “The JPG_converter can be optimized for
"Reliability" by: duplicating this element and inputting the same
data to both, and adding a comparator with the option "Error
filter" after these elements. See pattern: reliability optimization by
duplication.” The idea of this pattern is to compute the same data
twice and forward the result to a comparator that forwards the
corrupted DU only if both filters produce erroneous data.
Otherwise the comparator forwards the first successfully
computed DU. By applying this pattern the average reliability of
the optimized filter increases, i.e. in this case reliability is
increased to 75%. Applying this pattern twice results in an
average of ~94% reliability. Figure 2 represents the optimized
application model.

Figure 2. Application model that satisfies the requirements.
In Figure 2, the application model that satisfies the both

quality requirements is modelled. As can be seen, the developed
pattern recognition engine automatically identifies the utilized
patterns by tagging the corresponding filters with the promoted
quality attributes. On top of the B&W_converters there is a
<<Performance>> tag which ensures that these two filters
participate in a pattern that promotes performance whereas in the
JPG_converters there is <<Reliability>> tag. The tags should help
the modeller to establish a design rationale for the application.

The calculated performance characteristics can be verified by
generating an implementation from the model in debug mode and
by executing the application. As requirements entities in Figure 2
does not have the tags on the right side, the application now
satisfies the requirements. The average throughput measured by
computing 100DUs is 0.58DU/s where reliability is 94%.

5. Discussion
We demonstrated QDSM with a laboratory-based case study of a
stream-oriented computing system. For the system, an M-Net
DSML and a code generator that enables full Python code
generation from models was developed with MetaCase
MetaEdit+. The most important means to support QDSM are
based on 1) a quality requirements definition in models, 2) an

automated model evaluation with pattern recognition, and 3)
testing and reporting mechanisms.

Whereas a quality requirements definition technique is
independent of the domain, model evaluation and testing can be
considered domain-specific. In different domains, testing of
execution-time quality requirements are largely dependent on
what is measured and how. In this manner reusing the presented
mechanisms between different domains is not possible. However,
the concept remains. It is surprisingly useful to see the test results
of an executed application also at the model-level. It is also useful
to explicitly discover what quality requirements are satisfied. This
enables to easily find out what requirements are satisfied and what
parts of the model do not satisfy their quality requirements.

Design-time model evaluation for execution-time qualities
was implemented in the laboratory case by identifying what
patterns are utilized in the application model. As shown via the
laboratory case, tentative design rationale can be obtained by
utilizing pattern recognition. The evaluation could, however, also
have included prediction of the performance characteristics as was
done manually in the examples to provide more explicit values for
quality attributes. Although evolution-time qualities such as
modifiability and extensibility were not discussed in this paper,
pattern recognition could also be utilized to provide some
knowledge about the promoted evolution-time qualities. However,
automation for quality evaluation except in the case of pattern
recognition, which can provide tentative design rationale about
the promoted qualities, might be a challenge for evolution-time
qualities since scenario-based evaluation methods still need neural
processing.

As discussed, it seems that pattern recognition can only
provide tentative design rationale from quality perspective. Thus,
it is questionable whether pattern recognition is sufficient for
identifying the design rationale even in such a restricted area as
DSM. In addition, different patterns promote different qualities
and the utilized patterns might be overlapping in the application
models. Therefore, finding out the design rationale by applying
pattern recognition is not straightforward. In addition, sometimes
it is not patterns that promote different qualities but more like
functional blocks that are responsible for affecting a certain
quality attribute. For instance, decreasing image resolution in
image processing application certainly increases further image
manipulation performance compared to utilizing high-resolution
images. Decreasing image resolution might be a reason for
optimizing the performance but sometimes the only reason for this
is to satisfy a certain functional requirement.

As shown, by only identifying the utilized patterns it is not
possible to discover the performance characteristics. Only a
tentative design rationale can be obtained which, however, is still
useful. Therefore to overcome the limitations with pattern
recognition, next we will concentrate on manual approaches in
describing design rationale by connecting requirements
engineering side, where different techniques to affect the quality
and their interrelated dependencies and impact to qualities are
described, to the application development side. We already have
developed a technique with tool support to provide measured
performance characteristics from application models to
requirements engineering side in order to ease the quality analysis
in requirements engineering [23]. Next, we will connect the
different design alternatives identified in requirements
engineering to application development in a way that the impact
of the utilized design alternatives to quality is automatically
shown in application models. Thus, we rather strive for semi-

111111

automated approach than automated as it seems that humans
cannot really be replaced by computers, yet.
6. Conclusion
There is a constant need for decreasing development costs in
software development while at the same time increasing the
quality of software applications. Increasing productivity can be
achieved by utilizing MDD and especially DSM in software
development. Nevertheless to increase the desired qualities of
applications requires that not only the quality requirements must
be considered at every development phase but that a continuous
link from quality requirements to application design, testing and
release must also be maintained. Maintaining such a link is crucial
to reveal whether all the requirements set for software
applications have been satisfied.

As the success of MDD extensively lies in the provided tool
support, in this paper we demonstrated that there currently are
mature integrated tooling environments, such as MetaCase
MetaEdit+, that can be utilized as a platform for quality-driven
DSM where the quality is traceable from quality requirements to
application release. We demonstrated the tooling environment
with a laboratory-conducted case study of a stream-oriented
computing system.

7. ACKNOWLEDGMENTS
The work presented here has been developed within the MoSiS
project ITEA 2 – ip06035. MoSiS is a project within the ITEA 2 –
Eureka framework.

8. REFERENCES
[1] Selic, B. The Pragmatics of Model-Driven Development.

IEEE Computer Society. IEEE Software, 2003, pp. 19-25.
[2] Kelly, S. and Tolvanen, J-P, Domain-Specific Modeling –

Enabling full code generation, John Wiley & Sons, New
Jersey, 2008, 427p., ISBN: 978-0-470-03666-2.

[3] Niemelä, E., Kalaoja, J. and Lago, P. 2005. Toward an
architectural knowledge base for wireless service
engineering, IEEE Transactions on Software Engineering,
Vol. 31, No. 5, pp. 361-379. ISSN 0098-5589.

[4] Chung, L., Gross, D. and Yu, E., Architectural design to
meet stakeholder requirements, The 1st Working IFIP
Conference on Software Architecture, Kluwer Academic
Publishers, San Antonio, TX, USA, 1999.

[5] Chung, L., Nixon, B.A., Yu, E. and Mylopoulus, J., Non-
Functional Requirements in Software Engineering, Kluwer
Academic Publishers, Boston, 2000.

[6] Kazman, R., Klein, M. and Clements, P., ATAM: Method for
architecture evaluation, Carnegie Mellon University,
Software Engineering Institute, Tech. Rep. CMU/SEI-2000-
TR-004 ESC-TR-2000-004, 2000, 83 p.

[7] Tarvainen, P., Adaptability Evaluation at Software
Architecture Level. The Open Software Engineering Journal,
vol. 2, Bentham Science Publishers Ltd., 2008, pp. 1-30,
ISSN: 1874-107X,
http://www.bentham.org/open/tosej/openaccess2.htm

[8] Henttonen, K, Matinlassi, M., Niemelä, E., Kanstren, T.
Integrability and Extensibility Evaluation from Software
Architecture Models – A Case Study, 2007, Open Software
Engineering. Vol. 1 No. 1, pp.1-20.

[9] Bachmann, F., Bass, L., Klein, M., Moving from quality
attribute requirements to architectural decisions, In: Second
International Software Requirements to Architectures,
STRAW’03, 2003, Portland, USA.

[10] Ebert, C., Putting requirement management into praxis:
dealing with nonfunctional requirements, Information &
Software Technology 40(3): 175-185, 1998.

[11] Evesti, A. 2007 Quality-oriented software architecture
development, VTT Publications 636, VTT, Espoo, 2007,
79p., URL:
http://www.vtt.fi/inf/pdf/publications/2007/P636.pdf

[12] Merilinna, J., Niemelä, E., A stylebase as a tool for
modelling of quality-driven software architecture, In
Proceedings of the Estonian Academy of Sciences
Engineering. Special issue on Programming Languages and
Software Tools., vol. 11, No. 4, 2005, pp. 296–312.

[13] Matinlassi, M. and Niemelä, E., The Impact of
Maintainability on Component-based Software Systems. In:
29th Euromicro Conference (EUROMICRO’03), Turkey,
2003, pp. 25-32.

[14] Carimo, R. A., Evaluation of UML Profile for Quality of
Service from the User Perspective, Master’s Thesis, Software
Engineering, Thesis no: MSE-2007-03, August 2006.

[15] Etxeberria, L., Sagardui, G., Belategi, L., Modelling
Variation in Quality Attributes, First International Workshop
on Variability Modelling of Software-intensive Systems
Limerick, Ireland — January 16–18, 2007.

[16] Savolainen, P., Niemelä, E., Savola, R., A Taxonomy of
Information Security for Service-Centric Systems,
Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications, 2007.

[17] Ernst N., Yu Y., Mylopoulos J., Visualizing non-functional
requirements, In First International Workshop on
Requirements Engineering Visualization (REV'06),
Minneapolis, Minnesota, USA, 2006.

[18] Merilinna, J. and Räty, T., Bridging the Gap between the
Quality Requirements and Implementation, The Fourth
International Conference on Software Engineering Advances
(ICSEA 2009), September 20-25, 2009 - Porto, Portugal, 6p.

[19] Alexander, C., The Timeless Way of Building, Oxford
University Press, 1979.

[20] Lee, J. and Xue, N.L, Analyzing user requirements by use
cases: A goal-driven approach. IEEE Software, 16 (4):92-
101, July/August 1999.

[21] Fanjiang, Y-Y. and Kuo, J.Y., A Pattern-based Model
Transformation Approach to Enhance Design Quality, In
Proceedings of the 9th Joint Conference on Information
Sciences (JCIS), 2006.

[22] StreamIt, Research overview page, URL:
http://www.cag.lcs.mit.edu/streamit/shtml/research.shtml
[Visited at 3.6.2009].

[23] Yrjönen, A. and Merilinna, J., Extending the NFR
Framework with Measurable Non-Functional Requirements,
2nd International Workshop on Non-functional System
Properties in Domain Specific Modeling Languages, Denver,
Colorado, USA, Oct 4-9, 2009.

112112

Towards a Generic Layout Composition Framework for
Domain Specific Models

Jendrik Johannes
∗

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
jendrik.johannes@tu-dresden.de

Karsten Gaul
Technische Universität Dresden

Institut für Software- und Multimediatechnik
D-01062, Dresden, Germany
karsten.gaul@gmx.net

ABSTRACT
Domain Specific Models with graphical syntax play a big
role in Model-Driven Software Development, as do model
composition tools. Those tools however, often ignore or de-
stroy layout information which is vital for graphical models.
We believe that one reason for the insufficient support for
layout information in model composition tools is the lack
of generic solutions that are easy to adapt for new graph-
ical modelling languages. Therefore, this paper proposes
a language-independent framework for layout preservation
and composition as an extension to existing model composi-
tion frameworks. We describe the single components of the
framework and evaluate it in combination with the Reuse-
ware Composition Framework for layout compositions in two
different industrial used languages. We discuss the results
of this evaluation and the next steps to be taken.

1. INTRODUCTION
In Model-Driven Software Development (MDSD) different
graphical Domain Specific Models defined in different Do-
main Specific Modelling Languages (DSMLs) are used in
combination. MDSD approaches promise high flexibility
with regard to the DSMLs that are used and how these
are combined. Using metamodelling tools, developers can
create new DSMLs when required and integrate them into
their MDSD process by defining model transformations and
compositions. Different technologies are available for model
transformation and composition which are language inde-
pendent. That is, they can be used with any DSML that is
defined by a metamodel they understand.

A drawback of such language-independent approaches is that
they handle the semantic models, but rarely support the
preservation and composition of layout information. This,
however, is an important issue, because the outcome of a
model composition is seldom the final system which is (like a
compiled piece of code) processed by machines, but another
model to be viewed and edited by developers. Thus, we ar-
gue that layout preservation and composition is crucial for
the acceptance of MDSD. Currently, however, approaches
that are easy to adapt for new DSMLs are missing.

This paper proposes such an approach for compositions of
models within arbitrary graphical DSMLs (Section 2). It

∗This research has been co-funded by the European Com-
mission in the 6th Framework Programme project Mod-
elplex contract no. 034081 (www.modelplex.org).

provides an implementation of the approach in an extensi-
ble framework that is based on the Eclipse Modeling Frame-
work (EMF) [18]. Our framework can be used with arbitrary
graphical DSMLs defined in EMF’s metalanguage Ecore [18].
It can be connected to arbitrary EMF-based model com-
position engines that fulfill a number of properties we will
discuss. One example of such an engine is the Reuseware
Composition Framework [8] with which we evaluated our
approach. We performed an evaluation of our framework
with two different DSMLs (Section 3) used in industry. Af-
terwards, in Section 4, we discuss lessons learned and future
extensions to broaden the scope of our framework. We look
at related work in Section 5 and conclude in Section 6.

2. LAYOUT COMPOSITION
In this section we introduce the concepts behind our frame-
work and, based on that, the different components of it.
First (Section 2.1), we specify the scope of our work by
defining criteria for the DSMLs and the model composition
frameworks we support. Second (Section 2.2), we introduce
the Mental Map concept on which we base our approach.
Third (Section 2.3), we describe the different steps of our
layout preservation and composition process and show vari-
ability within the different steps which can be implemented
in individual components in our framework. Fourth (Sec-
tion 2.4), we introduce the components we implemented.

2.1 Criteria for Supported DSMLs and Model
Composition Frameworks

A DSML has to fulfill the following properties to work with
our approach:
Requirement 1 The DSML has to have a graphical (dia-
grammatical) syntax.1

Requirement 2 The DSML has to be defined in Ecore.2

The following is required of a model composition framework
to interoperate with our layout composition framework.
Requirement 3 The composition scripts for models have
to have a graphical (diagrammatical) syntax.1

Requirement 4 The composition framework needs to be
able to expose which item in a composition script refers to
which input model.1

1Section 4 discusses how these restrictions can be loosened
2This restriction applies if our implementation is reused di-
rectly. Conceptually, our framework can be ported to an-
other modelling environment.

113113

Layout Composit ion (LC)

Layout Information
Gathering (LC1)

Overlap
Elimination (LC3)

Layout
Merge (LC2)

Layout
Persisting (LC4)

Source Information
Provider

Target Information
Provider

Comparator Arranger Materialiser

(a)

(b)

Figure 2: (a) Model and layout composition process and (b) Layout composition components of our framework

2.2 Mental Map
Naturally, when different diagrams are composed some ad-
justment of the layout is required because in many cases
nodes of the former separated diagrams will overlap in the
composed diagram. A naive solution would be to perform
a complete relayout of the diagram using a layouting algo-
rithm such as planarity [17] as shown in Figure 1.

This however, destroys the original neighborhood relation-
ships between nodes. The literature calls these relationships
the user’s Mental Map [4] of the diagram. The importance
of the Mental Map in MDSD is also stressed in [20]. One
can think of the Mental Map as a road map, where the scale
might vary, but the relations between elements do not. A
user subconsciously creates his Mental Map of a diagram
when arranging the icons in a certain way. Thus, when
the layout is adjusted to eliminate overlaps the Mental Map
should be preserved. There are three rules to be met in order
to preserve the Mental Map [4]:

Goal 1: disjointness of nodes
Goal 2: keep the neighborhood relationship of the nodes
Goal 3: compact design

Naively applying layouting algorithms often violates one or
more of these goals. In Figure 1, for example, the neigh-
borhood relationship is not kept and, therefore, the result
leaves the user disoriented.

2.3 Layout Composition Process
Figure 2a illustrates the model and layout composition pro-
cess. The input to the process consists of one or more graphi-
cal models and one graphical composition script (Figure 3a).
In the first step, the model composition engine—in our case
Reuseware—interprets the composition script to perform the
semantic model composition (MC). After that, our frame-
work performs the layout composition (LC) with adjustment
in four major steps. First (LC1), it collects the layout infor-
mation from the input models and the composition script.
Second (LC2), this information is merged in a Mental Map
preserving fashion. For this, our framework needs to gather
information from the underlying modelling and model com-
position frameworks (Requirement 4). Third (LC3), the

D C

A B

D

C

A
B

Figure 1: An application of the planarity algorithm
that destroys the developer’s Mental Map

merged layout data has to be adjusted to remove overlaps in
a way that preserves the Mental Map (Goals 1–3). Fourth
(LC4), the adjusted layout information has to be connected
to the composed model, which again requires access to the
underlying modelling technology.

In the first layout composition step (LC1) we collect all lay-
out information. The collected information consists of (1)
the layout information of each input diagram, (2) the layout
information of the composition script and (3) the relation
between nodes in the composition script and the input dia-
grams (Requirement 4).

The merging process (LC2) is steered by the layout of the
composition script. The developer expects the composed
model to be laid out according to his Mental Map of the
composition script (cf. Figures 3a and 3b). Thus, using the
information about how the nodes of the composition script
relate to input diagrams, we move all the nodes of each single
input diagram in correspondence to the node representing
that diagram in the composition script. This is illustrated
in Figure 3b where the element sets are arranged according
to the composition script in Figure 3a. Because all nodes
of one diagram are moved with the same vector, the Men-
tal Map of the individual diagrams is preserved. Therefore,
Goal 2 is reached. Since the positioning is based on the
composition script, Goal 3 is also reached. The composed
diagram however, may contain overlaps since the nodes rep-
resenting models in the composition script are much smaller
than the models themselves, which violates Goal 1.

To meet Goal 1, layout adjustment is performed in the next
step (LC3). Here, we can make use of existing layout algo-
rithms, where we treat all nodes that belong to one input
model as a whole rather than adjusting each node individ-
ually (cf. adjustment from Figure 3b to Figure 3c). This
is similar to the scaling of node clusters presented in [20].

Input Model

Composition
Script

Node Representing
Model in Script

(b)

(c)(a)

1 2

3

3

1 2

Figure 3: (a) Input of a model composition: 3 input
models and 1 composition script (b) Composition
result without overlay elimination (c) Composition
result after the application of Horizontal Sorting

114114

While a number of algorithms could be used (e.g., the ones
discussed in [4]) we implement Horizontal Sorting [11] and
Uniform Scaling [4] so far. Horizontal Sorting, as its name
implies, starts at the left side of the diagram and moves
overlapping fragments in x direction until they do not over-
lap anymore (Figure 3c). Uniform Scaling is based on the
following equation: (a+s*(x-a), b+s*(y-b)). The point (a,b)
is the center point and (x,y) is the location of the model el-
ement set that needs to be moved. The factor s is a scale
factor used to define the distance the model elements are
moved by. For automatisation purposes, (a,b) should not
be chosen by the user—it can be computed from the merged
diagram before adjustment (outcome of LC2, cf. Figure 3b).

In the last step (LC4) the computed layout information has
to be materialised in the diagram of the composed model.
Here, access for modifying this diagram has to be provided
by the modelling technology that was used.

2.4 Framework Components
The previous section described the steps our layout com-
position framework performs. These steps can be imple-
mented in individual components, which could be exchanged
depending on specific demands of one composition. The dif-
ferent components are illustrated in Figure 2b. In the follow-
ing, we give details of the functionality of these components
and present what we have implemented so far.

Different component combinations can be used to achieve
different results. We summarize possible combinations at
the end of this section. In Section 3 we then evaluate what
the benefits and drawbacks of certain combinations are.

2.4.1 Source Information Provider (LC1)
An input model consists of an arbitrary number of nodes
and, for a user friendly layout algorithm that obeys the rules
of the Mental Map, we have to know about the width and
height of these nodes. More precisely, width and height of
the bounding box of the whole input model is needed (x and
y values are not important here). An Information Provider
walks through the diagram structure and gathers the re-
quired data. The Source Information Provider depends on
the layout format used for the input diagrams.

We implemented two Source Information Providers for two
layout formats commonly used in EMF, which are the GMF
Notation Model [7] and the TOPCASED Diagram Inter-
change format [19]. The GMF Notation Model is widely
spread, because it is used by all DSMLs created with the
GMF—a generative DSML development framework. TOP-
CASED is an alternative framework with similar functional-
ity which currently offers a set of high quality UML editors.
There are efforts to align both frameworks to obtain a com-
mon layout format in the EMF (possibly aligned with an up-
graded version of the Diagram Interchange OMG standard
[15]). In general, the Information Providers implemented by
us already cover a huge amount of diagram syntaxes used in
EMF. Our experience showed that an Information Provider
can be implemented within hours.

2.4.2 Target Information Provider (LC1 and LC2)
Another Information Provider is required to obtain the lay-
out information of the nodes in a composition script that

represent input models. We call this a Target Information
Provider because it determines the main structure of the
composed diagram (cf. Figures 3a and 3b). It gathers the x
and y values of the geometrical shapes that represent the in-
put models in the graphical script. Height and width are not
that important here. This Information Provider depends on
the layout format used for composition scripts in the sup-
ported composition engine.

In Reuseware, composition scripts (called composition pro-
grams) are created in a graphical editor which was developed
with GMF. Consequently, we implemented one Target Infor-
mation Provider that depends on the GMF Notation Model
for layout information and on Reuseware to obtain the re-
lationship information (Requirement 4) between nodes in a
composition script and input models.

2.4.3 Comparator (LC3)
A Comparator ensures that layout composition is performed
in a deterministic order. It is required when the semantic
model composition does not depend on a deterministic order,
but the layout adjustment does.

We implemented one Comparator that sorts input models
according to their x position in the composition script (i.e.,
the one given by the Target Information Provider). This is
needed for the Horizontal Sorting algorithm but was also
used for the Uniform Scaling algorithm to have a determin-
istic order (although any other deterministic Comparator
could be used here).

2.4.4 Arranger (LC3)
An Arranger does the actual layout adjustment if overlaps
exist. Therefore, it first checks for overlaps and decides if ad-
ditional adjustment is required. An Arranger could do these
steps repetitively, depending on the adjustment algorithm.
That is, if after one adjustment overlaps do still exist, it can
do another algorithm run.

As mentioned in Section 2.3, we implement Horizontal Sort-
ing and Uniform Scaling as two different Arrangers. De-
pending on the concrete composition, both algorithms yield
results of different quality, as we will discuss in Section 3.

2.4.5 Materialiser (LC4)
The last step is materializing the computed layout in an
actual diagram. This is realized by a Materialiser.

Materialisers also have to be implemented for each layout
format that should be supported. Thus, we implemented
one for GMF and one for TOPCASED.

In the next section we evaluate our framework in combina-
tion with Reuseware using two graphical DSMLs, where one
is utilising GMF and one TOPCASED as layout format.
For that, different combinations of the mentioned compo-
nent implementations are used. We call such a combina-
tion a layout composition strategy. The Source Information
Provider and the Materialiser are always determined by the
format used by the corresponding DSML. As Target Infor-
mation Provider and Comparator we always use the only
implementation we provided so far. The Arrangers however

115115

Figure 4: (a) A CIM model (b) The same model
represented in a Reuseware composition script

can be varied (no Arranger, Horizontal Sorting, Uniform
Scaling). We compare the different possible combinations
and discuss the results.

3. EVALUATION
In this section we evaluate our layout composition frame-
work on two different model compositions that were real-
ized with the Reuseware Composition Framework in earlier
works: [8] in Section 3.1 and [10] in Section 3.2. We ap-
ply different configurations of our layout composition frame-
work and compare the results. Afterwards we discuss what
we have achieved so far and what the next steps towards a
generic layout composition framework are in Section 4.

3.1 Common Information Model DSML
The first model composition uses models from the telecomu-
nications domain defined with a DSML that implements the
Common Information Model (CIM) standard [3]. A meta-
model defined in Ecore and a graphical GMF-based editor
for the language were developed by Telefonica R&D and
Xactium in the MODELPLEX research project [5]. In the
following we concentrate on the layouting aspects of the
model compositions. More details of the semantic model
composition can be found in [10] and online1.

Figure 4 shows (a) the CIM model BuiltInEthernetHub in
the CIM GMF editor and (b) the representation of that
input model in a composition script in Reuseware’s com-
position script editor. The node in the composition script
has different circles attached to it which are called Ports
in Reuseware. Each Port points at a number of model el-
ements in the input models that are modified during the
model composition. For more details please consult [8] and
the Reuseware website2.

CIM models are composed in different stages, where each
stage represents a different level of abstraction. The origi-
nal input models (e.g., Figure 4a) developed with the men-
tioned GMF editor reside on Level 1. A composition script
that composes these models defines a Level 2 composition.
A composition script, that uses the results of Level 2 com-
positions as input models is located on Level 3 and so on.

The BuiltInEthernetHub (Figure 4a) is a model of Level 1.
To compose the network model EthernetIPInterface, a
composition script on Level 2 was created which is depicted

1http://reuseware.org/index.php/Abstract CIM DSLs
2http://reuseware.org

Figure 5: (a) Composition script for the EthernetIP-

Interface model (b) Composed model

in Figure 5a. In addition to the BuiltInEthernetHub the
script contains the input models Core and IP. The Core is
an empty model into which CIM model elements are com-
posed. Thus, it holds no graphical representation and layout
information. The IP contains only one model element and
consequently one graphical node.

We execute the composition defined in Figure 5a with three
different layout composition strategies. Each strategy uses
the Source Information Provider and Materialiser developed
for GMF, the Target Information Provider that works for
Reuseware’s composition scripts and the Comparator. The
first strategy applies no layout adjustment, the second uses
Horizontal Sorting and the third Uniform Scaling.

No layout adjustment Figure 5b shows the diagram that
results from the composition of Figure 5a without layout
adjustment. We observe that the elements overlap (Goal 1)
since the diagrams are bigger than the icons in the composi-
tion script (Figure 5a). This destroys the positioning in the
developer’s Mental Map (Goal 2) and only Goal 3 is reached.

Horizontal Sorting In Figure 6a Horizontal Sorting is used
for layout adjustment. We observe, that the overlap has
been removed. The overlapping nodes have been moved
along the x-axis. While Goal 1 is reached here, Goal 2 is
not completely satisfied. The IP model which is located be-
low the BuiltInEthernetHub in Figure 5a is now located on
the right of it.

Uniform Scaling In Figure 6b we utilise Uniform Scaling
(with a scale factor s=2). Here, the mental map is well
preserved and all three Goals are satisfied.

Figure 6: Adjusted layout: (a) Horizontal Sorting
(b) Uniform Scaling

116116

Figure 7: Level 3 composition script

We have seen that the layout adjustment is necessary even
for a small model to avoid overlaps while preserving the
Mental Map. While Horizontal Sorting performs worse than
Uniform Scaling concerning the exactness of neighborhood
relations, it yields a more compact design. Thus, it could
still be an acceptable option here.

A more complex composition is shown in Figure 7. It is a
Level 3 CIM abstraction that reuses results of earlier com-
positions on Level 2 which are the EthernetIPInterface

from above as well as the models ADSLStaticIPInterface

and System. We apply two different layout strategies using
the two different algorithms to examine how they behave for
larger models and how our framework behaves in a staged
model composition.

Figure 8a (Horizontal Sorting) and Figure 8b (Uniform Scal-
ing) show the different composition results. In principle,
the same observations as above can be made, but the men-
tioned issues become more obvious. In the case of Horizontal
Sorting, everything is aligned along the x-axis, while it was
aligned along the y-axis in Figure 7. In the case of Uni-
form Scaling, the problem of less compact design increases.
Although we used only a small scale factor (s=2), the dia-
gram is getting relatively large. This is due to the fact that
all element sets are moved uniformly in different directions,
resulting into unused spaces between smaller element sets.

In Figures 8a and 8b we can also observe that a layout com-
posed in an earlier step (i.e., the layout of EthernetIPInter-
face which is composed by Figure 5a) is not modfied any-
more. Thus, different strategies can be applied at different
stages of a composition. In Figures 8b, Horizontal Sorting
was applied to compose EthernetIPInterface which keeps

Figure 8: Composed Level 3 diagram: (a) Horizontal
Sorting (b) Uniform Scaling

Figure 9: A business process extension modelled as
UML activity in TOPCASED [19]

the overall layout more compact compared to the case where
Uniform Scaling is applied everywhere (not shown).

3.2 UML Activities for Business Processes
Business processes as presented in [6] can be modelled as
UML activity models. A core process can be extended with
new sub-processes by composing those models with Reuse-
ware as we did in [8]. An example of a sub-process is shown
in Figure 9. When it is composed into a larger core activity,
the initial and final nodes (black circles) are replaced with
other nodes in the core—integrating both activities.

We tested our layout composition framework with the mod-
els of [8]. This time, we had to use the TOPCASED specific
components, since the diagrams were created with the TOP-
CASED UML editor. The adjustment worked in the same
manner as for the CIM models confirming the results about
strength and weaknesses of the algorithms and demonstrat-
ing that the framework can be used with other DSMLs.

4. NEXT STEPS
This section discusses the results of the last section and
points out future work to improve our layout composition
framework. We have seen throughout the evaluation that
there is not one best strategy for layout adjustment. Which
is the best strategy rather depends on many factors from
the sizes of the input models up to the personal taste of the
developer and how he uses the DSML at hand. A possibil-
ity is to make the developer aware of the different strategies
and let him experiment with different ones—as we did in the
evaluation. However, if many compositions are defined, this
extra work of evaluating (and re-evaluating) all strategies
each time a composition or one of its input models changes
can become a tedious task. It should be possible to select
strategies automatically based on further analysis of the in-
put models or by allowing the developer to specify criteria
for this selection. This requires analysis of a broader exam-
ple space in the future.

Since we made certain assumptions about the models and
the model compositions when we decided how to preserve the
Mental Map, there are cases that are not so well supported
by our framework at the moment. Consider the UML activ-
ity example (Figure 9). Here the nodes Start, Success and
Failure are replaced by others during a composition. Cur-
rently, the layout information about these replaced nodes is
always discarded. However, there are also examples where
it seems to be more intuitive to position the replacing node
at the position of the replaced node—for instance, if only
one node is inserted and not a whole diagram. This however
highly depends on the concrete kinds of compositions that
are performed. If and how the best strategy can be deter-
mined automatically will have to be explored by evaluating
different kinds of compositions. In addition, if a replacing

117117

node should take the position of the replaced node, the com-
position framework needs to reveal the relationship between
such nodes (extension of Requirement 4).

Another thing we have not considered yet are diagrams that
do not follow the simple node and edge paradigm but are
more restrictive (e.g., UML sequence charts). In such cases,
the layout adjustment possibilities are limited on the one
hand, but might also not be necessary on the other hand
(because a “good” layout is enforced by the nature of the
graphical formalism). More investigations are required here.

A point that might hinder the combination with other model
composition engines is the requirement for a graphical com-
position script (Requirement 3), since many such tools come
with textual specification languages. In principle, such lan-
guages could also be handled by translating text positions
(e.g., the order in which input models are referenced) into
graphical layout information (by a specific Target Informa-
tion Provider). Consequently, to support a textual language,
a useful translation has to be found.

5. RELATED WORK
Many modelling tools do not pay proper attention to layout
information today. Graphical modelling tools and frame-
works such as GMF [7], TOPCASED [19], Rational Soft-
ware Architect [9], Borland Together [2], MagicDraw [13]
or Fujaba [12] offer facilities which apply layout algorithms
to whole or partial diagrams. Despite the fact that these
algorithms do not consider the Mental Map of the existing
layout and often fail to produce viable results for large di-
agrams, the tools also do not offer facilities to preserve or
transfer layouts from one diagram to another. MDSD pro-
cess tools such as openArchitectureWare [14] or AndroMDA
[1] completely ignore layout information when composing or
transforming models.

Our work focuses on model compositions that are performed
between models defined in one DSML. Another important
discipline is model transformation between different DSMLs.
Here, layout information is also seldom handled and also
not considered in standardization efforts such as QVT [16].
Pilgrim et al. [20, 21] used trace links created during a model
transformation to obtain layout information from the source
diagram to layout the target diagram. They however do not
discuss what the limitations for the model transformation
are they support and only considered Uniform Scaling to
remove overlaps so far.

6. CONCLUSION
We presented a generic layout composition framework to im-
prove layout preservation in MDSD. The architecture of the
framework and the components we implemented were intro-
duced and utilised in several examples. These experiments
showed that the provided solutions are a great improvement
over current practice. They also showed, however, weak-
nesses and limitations of our work so far. Based on this, we
identified challenges as a base for further work to improve
the quality and genericity of the presented layout compo-
sition framework. In the future, we will tackle these chal-
lenges and perform more experiments on different DSMLs
with distinct graphical syntaxes.

7. REFERENCES
[1] AndroMDA Development Team. AndroMDA.

http://www.andromda.org/, 2009.

[2] Borland. Borland Together. http://www.borland.com/
us/products/together/, 2009.

[3] Distributed Management Task Force Inc. (DMTF).
Common Information Model Standards.
http://www.dmtf.org/standards/cim/, 2008.

[4] P. Eades, W. Lai, K. Misue, and K. Sugiyama.
Preserving the mental map of a diagram. Research
Report IIAS-RR-91-16E, 1991.

[5] A. Evans, M. A. Fernández, and P. Mohagheghi.
Experiences of Developing a Network Modeling Tool
Using the Eclipse Environment. In Proc. of
ECMDA-FA’09, volume 5562 of LNCS. Springer, 2009.

[6] M. Fritzsche, W. Gilani, C. Fritzsche, I. T. A. Spence,
P. Kilpatrick, and T. J. Brown. Towards Utilizing
Model-Driven Engineering of Composite Applications
for Business Performance Analysis. In Proc.
ECMDA-FA’08, volume 5095 of LNCS. Springer, 2008.

[7] GMF Development Team. Graphical Modeling
Framework. http://www.eclipse.org/gmf/, 2009.

[8] F. Heidenreich, J. Henriksson, J. Johannes, and
S. Zschaler. On Language-Independent Model
Modularisation. In Transactions on Aspect-Oriented
Development, LNCS. Springer, 2009. To Appear.

[9] IBM. Rational Software Architect. http://ibm.com/
software/awdtools/architect/swarchitect/, 2009.

[10] J. Johannes, S. Zschaler, M. A. Fernández, A. Castillo,
D. S. Kolovos, and R. F. Paige. Abstracting Complex
Languages through Transformation and Composition.
In Proc. of MoDELS’09, LNCS. Springer, 2009.

[11] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout
adjustment and the mental map. Research Report
ISAS-RR-94-6E, 1991.

[12] U. Nickel, J. Niere, and A. Zündorf. The FUJABA
Environment. In Proc. of ICSE’00. IEEE, 2000.

[13] No Magic, Inc. MagicDraw.
http://www.magicdraw.com/, 2009.

[14] oAW Development Team. openArchitectureWare.
http://www.openarchitectureware.org/, 2009.

[15] Object Management Group. Diagram Interchange
Specification, v1.0, 2006.
http://www.omg.org/cgi-bin/doc?formal/06-04-04.

[16] Object Management Group. Meta Object Facility
(MOF) 2.0 Query/View/Transformation, 2008.
http://www.omg.org/cgi-bin/doc?formal/08-04-03.

[17] R. C. Read. A New Method for Drawing a Planar
Graph Given the Cyclic Order of the Edges at Each
Vertex. Congressus Numerantium 56, 1987.

[18] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. Eclipse Modeling Framework, 2nd Edition.
Pearson Education, 2008.

[19] TOPCASED Development Team. TOPCASED
Environment. http://www.topcased.org, 2009.

[20] J. von Pilgrim. Mental Map and Model Driven
Development. In Proc. of LED’07. EASST, 2007.

[21] J. von Pilgrim, B. Vanhooff, I. Schulz-Gerlach, and
Y. Berbers. Constructing and Visualizing
Transformation Chains. In Proc. of ECMDA-FA’08,
volume 5095 of LNCS. Springer, 2008.

118118

Model-Based Autosynthesis of Time-Triggered Buffers for
Event-Based Middleware Systems ∗

Jonathan Sprinkle
University of Arizona

sprinkle@ECE.Arizona.Edu

Brandon Eames
Utah State University

beames@engineering.usu.edu

ABSTRACT
Application developers utilizing event-based middleware have
sought to leverage domain-specific modeling for the advan-
tages of intuitive specification, code synthesis, and support
for design evolution, among other benefits. For cyber-physical
systems, the use of event-based middleware may result, for
some applications, in a need for additional time-based blocks
that were not initially considered during system design. An
advantage of domain-specific modeling is the ability to refac-
tor an application to include time-triggered, event-based
schedulers. In this paper we present an application in need
of such modification, and discuss how these additional blocks
must be synthesized in order to conform to the input/output
constraints of the existing diagram.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Prog. Environments—In-
tegrated environments

Keywords
Metamodeling, software synthesis, graph rewriting

1. INTRODUCTION
Cyber-physical systems involve algorithms and design tech-
niques from the disciplines of control, real-time systems,
robotics, software, communications, and many other appli-
cation domains. Experience spanning multiple disciplines is
required when developing these kinds of systems in order to
manage the various subtleties of each domain, in addition to
the subtleties of their integration.

In existing implementations of today’s cyber-physical sys-
tems, designers commonly employ one of many discrete event-
based computational models [25, 6, 11, 26]. In these mod-
els, components execute based on the exchange of tokens
with other discrete event components. On execution, com-
ponents acquire input tokens from their associated input
queues, perform computation and submit their results to any
consumers via output queues. A common event-based execu-
tion approach is realized through the application of event-
based middleware, where (potentially) distributed compo-
nents communicate through message passing in order to ex-
change data. The receipt of data typically triggers compo-
nent execution.

∗This work supported by the Air Force Research Labs, un-
der award #FA8750-08-1-0024, titled “MultiCore Hardware
Experiments in Software Producibility.”

Generally, components for such systems are developed by
algorithm experts who understand well their computational
behavior. Occasionally when a system is composed from
components whose execution triggering rules are determined
in an ad hoc manner by each developer, the behavior of
the system is emergent in nature, as opposed to being en-
gineered by design. A more principled system design could
consider the semantics of the composition of the components
(as discussed in [7]). However, such integration is difficult
to enforce in a programming styleguide since the semantics
are at a higher level.

In this paper, we discuss how to enforce a time-triggered,
as opposed to purely event driven, behavior through the in-
sertion of data buffers whose contents are read and released
on the receipt of time-triggered tokens. We provide some
examples of how existing domain-specific models of event-
based middleware can be rewritten in order to produce new
component graphs that now implement this kind of scalable
behavior.

2. BACKGROUND
2.1 Middleware
The growth in the number of middleware technologies, and
their widespread adoption in large scale system design is
a testament to their utility in mitigating low-level program-
ming complexity in distributed system development. CORBA
offers a middleware platform for supporting distributed com-
puting. Real-Time Object Request Brokers (ORBS) [19]
have been developed, e.g. TAO [22], which integrate op-
erating system services and network protocols to offer pre-
dictable quality of service, including real-time or near real
time response. TAO allows distributed applications to be
specified as a set of interacting components. The middleware
services manage data communication between components,
including marshalling and demarshalling, allowing compo-
nents to be written location-unaware. A variety of compet-
ing middleware technologies and platforms have been devel-
oped for supporting component-based distributed comput-
ing, including Ice [8], Enterprise Java Beans (EJB) [15], the
Microsoft Component Object Model (COM) [3] and .NET
framework [17], and Java RMI [24].

A key goal with middleware is the development of Quality of
Service guarantees (QoS) for supporting application execu-
tion. Certain metrics are critical to distributed application
development, e.g. bandwidth, latency and jitter. Different
studies have been conducted to evaluate and improve the

119
119

t0

t1

t2

t→ ∞

τe

ωc1

x1 y1
c1

x1 y1
c1

x1 y1
c1

(a) Event-Based Execution, τe ≤ τx1

x1 y1
c1

x1 y1
c1

x1 y1
c1

t0

t1

t2

t→ ∞

τe

ωc1

x1 y1
c1

x1 y1
c1

t3

t4

ωc1

τx1

(b) Timeout Execution, τe > τx1

Figure 1: Alternative execution of a component with timeout on a blocking read. (a) A token is received before, or at, the
timeout of the blocking read. (b) No token is received by time t1, so a timeout event occurs, and the output token is based
on the previous input to the component. Receipt of later events occurs as in (a).

ability of middleware to offer predictable quality of service
[21, 20]

2.2 Publish/Subscribe Methods
Publish/Subscribe is a common model of communication
used for data interchange between components. A compo-
nent c1 will subscribe to another component’s production of
a particular data value, using services offered by the middle-
ware. Then, the middleware will ensure that all subscribers
receive the value once it is produced. This can be considered
to be closely related to the producer/consumer model, how-
ever the producer/consumer model typically only involves a
single consumer for a given producer. The publish/subscribe
model offers explicit support for a controlled broadcast com-
munication.

Several middleware technologies support variants of the pub-
lish/subscribe communication model, including Ice [8] and
DDS [16]. Further, different approaches for implementing
the model exist, including having the consumer task poll
the producer for data availability, or having the producer
perform a remote invocation on the consumer when data is
available.

2.3 Time-Triggered Methods
Different techniques and infrastructures have been devel-
oped to support distributed/embedded computing which ex-
ecutes cognizant of time. Giotto [9, 10] offers a framework
for capturing and executing time triggered software. Ap-
plications are captured as a set of interacting tasks, each
of which is assigned to a mode with an associated execu-
tion period. Scheduling and inter-task communications are
managed by Giotto’s runtime infrastructure, called the E-
machine.

Farcas et al. [5] have developed a component model to sup-
port the development of distributed real time systems. Com-
ponents are decoupled from the platform and from each
other, both temporally and functionally. The component
model is based on the logical execution time (LET) model
introduced with Giotto. Auerbach et al. [1] describe a Java-
based approach for scheduling real-time control tasks on a
quad-rotor model helicopter by making use of exotasks and
the LET model to guarantee deterministic execution.

The Time Triggered Architecture (TTA) [12] and Time Trig-
gered Protocol (TTP) [13] have been developed to support
the time-based execution of components in hard real-time
systems. Components are allowed to access shared commu-
nication hardware based only on the clock, rather than need.
Design time scheduling determines a priori the allocation of
access windows to shared busses. The goal of time triggered
execution is to isolate the impact of component or subsystem
failures on the system as a whole.

3. DOMAIN SEMANTICS
The domain of event-driven component-based systems pro-
vides significant freedom in the implementation of execution
semantics. This freedom, in part, motivates the need to con-
strain execution across implementation platforms.

Our purpose in this section is to underscore the seman-
tic reasons for which components specified in our language
could execute differently on machines with different network
latencies, or processing power. This understanding moti-
vates why we undertake this transformation process, and
additionally provides the semantics necessary for the com-
ponents which we synthesize using the model transforma-
tions in the next section. We provide here several examples

120
120

that demonstrate the subtle behavior anomalies that are a
result of a purely event-driven model of computation. We
continue with a concise description of the execution seman-
tics of a time trigger component, which will be integrated
into the system to eliminate these anomalies.

3.1 Single Input/Single Output
Consider a component, c1, with a single input, x1, and sin-
gle output, y1. We use subscripts to denote the component,
input, and output index, respectively, in order to provide
consistent labeling for multi-component, multi-input/output
systems that we will describe in future sections. The value
y1 is obtained as the output of the functional behavior of the
component, which may also be written in difference equation
form as y1(k+1) = f(x1(k)), demonstrating the discrete no-
tion of the software component, and our ability to encode
y, x as signals in time (specifically, discrete time)1. The ex-
ecution time of c1 is not necessarily a constant, though we
represent it by the variable ωc1 for simplicity of specifica-
tion, and leave open the potential that ωc1 may be a ran-
dom variable. In hard real-time systems ωc1 (the execution
time of the function) can be determined through worst-case
execution time (WCET) analysis [18], and perhaps even be
validated at the hardware level [4]. This component also has
associated with it a time, τx1 , which is a timeout constant.

An example execution based on events received is shown in
Figure 1a. At t0, the logical beginning of this cycle, the
system has just produced an output on y1. At time t1 =
t0 + τe, an event occurs where a token is received on the
input port, x1. The component executes, and at time t =
t2 = t1 +ωc1 a token is produced on the output port, y1, i.e.,
y1(t2) = f(x1(t1)). This execution is valid for any system
execution where τe ≤ τx1 , or where the component does not
utilize a timeout.

In order to see how tokens flow in an execution where time-
out is a factor, examine Figure 1b. At t0, the system has
just produced some token. At some time, t1 = t0 + τx1 ,
a timeout event occurs, so the output port produces an-
other token, namely y1(t2) = y1(t0). That is to say, the
output at t0 + τx1 + ωc1 is equivalent to that produced at
t0. This equivalency ignores metadata such as send/receive
timestamps, packet size, etc. Another remark is that the
duplicative behavior of this component need not be the only
behavior in terms of timeout. Many components may opt to
produce a special timeout token, or no token at all, in the
case of timeout. This is also a valid option, though in our
case we aim to address systems that integrate tightly with
physical systems, and inaction may be inappropriate in this
domain.

An activity diagram that considers each of the cases pre-
sented in Figure 1a and Figure 1b is shown in Figure 2. In
this diagram, the mutually exclusive case of receiving data,
or timing out, is clearly shown. However, designs such as
this (if already fielded) will satisfy these observations: (1)
algorithms to discard “stale” data must already exist; and
(2) timeouts, τxi , will be appropriate for the execution time
ωci of this component, as well as the frequency of execution

1Of course, the internal state of an object can affect this
outcome, but externally the interface is as presented.

after(τx1)
e(x1)

last1 = x1 x1 = last1

y1 = f (x1)

block(x1)

bc(x1,τx1)

Figure 2: Activity Diagram that incorporates behaviors seen
in Figure 1a and Figure 1b. The notation e(x1) indicates
that an event was received indicating new data on input x1;
these events are cached if not being blocked upon, but the
number of data values cached is application dependent.

for all providing components.

For brevity, we mention that the approach, and issues, for
SISO systems can be generalized for MIMO systems. Due to
the scope of the workshop, we leave this discussion to future
papers in the domain, rather than the language elements of
our work.

3.2 Trigger Generator
We provide the semantics for a particular component called
a trigger generator. This component produces, at specific
times or rates, a special token whose data is the time at
which the token was generated. The default internal struc-
ture of the trigger generator component is a single output
port. Tokens are produced on the port according to some
internal parameters specified for the component, which in-
clude wait time, w, start modulus, m, and period, T . Usu-
ally, either w or m is specified, and once that time arrives a
token is produced, and another token is produced every T
seconds.

As a matter of implementation, empirical results from our
work shows that using a pthreads [14] enabled operating
system2 (but not a real-time OS) results in a variance in
expected time generation of approximately 2-3 milliseconds.
On a real-time OS3, the variance is less than 1 ms.

3.3 Buffer Semantics
A buffer component, Cb provides an integer number of out-
puts, j, with inputs k = j+ 1. The j output ports match to
the j inputs of some existing component being buffered, Ca.
Values, when received by an input, are queued by Cb. One
particular input, the time trigger input, subscribes to the
single output port of a trigger generator component. When

2Linux flavors Kubuntu and Gentoo were used.
3QNX was used for the RTOS.

121
121

a token is received on the time trigger port, the queued data
values are sent to the output ports such that they can be
received by Ca.

In future work, we may provide a special semantics for buffers
where the most recent value received (only) on each input
port is passed to the output port. Our current semantics
requires that if more than one value (or no value at all) is
received by the buffer between triggers, then Ca is respon-
sible for determining whether to use all, or only the most
recent, values.

4. TRANSFORMATION AND EXAMPLE
Given the advantages of a system whose timing character-
istics are explicitly expressed, we describe now a transfor-
mation from a purely event-driven model to one with time-
triggered execution. This transformation modifies an exist-
ing graph, and permits existing components to execute with
no behavioral changes: the only change to the system is the
topological rewrite, and the insertion of new buffered com-
ponents along with their time-based triggers. Our method-
ology is as follows: (1) examine an existing component inter-
connection graph; (2) insert, before each component of the
graph, a time-triggered buffer; (3) insert, after each com-
ponent of the graph, a time-triggered buffer; and (4) in-
sert, somewhere in the graph, a timed event-generator for
each buffer, which sends events at the appropriate time The
rewriting rules for this methodology are trivial, when speci-
fied using the GReAT rewriting language [2]. In this section,
we provide a subset of the transformations required.

4.1 Domain-specific Modeling Language
Our systems are defined using a domain-specific language,
capable of synthesizing experiments based on component in-
terconnections. This work is explained thoroughly in [23].
The metamodel is shown in Figure 3.

Figure 3: Relevant subset of the metamodel of our DSML
(a screen capture from the GME tool).

Our system is built mainly of Component objects, connected
to one another through provided and required Interface

objects. The language provides several constraints (outside
the scope of this paper) to prevent ill-formed models. We use

this metamodel as the source and destination metamodel in
the GReAT transformations.

4.2 Transformation Rules
The first task of the rewriting algorithm is to create new
buffer components, whose job it is to implement the seman-
tics described in Section 3. The precise semantics are gen-
erally decided for the entire graph, not piecemeal, and can
be a value selected when the graph transformation is exe-
cuted. For brevity, we have provided an abbreviated algo-
rithm, that only inserts buffers for the input of each graph
component. The algorithm to insert for component outputs
is similar. An overall description of the rewrite is summa-
rized by the rules shown in Figure 4.

NewBlock
Paradigm: UMLModelTransformer Project: Root Folder Model: Block Aspect: Transform Time: Fri Aug 07 05:53:11 PM

In Out

FindScenarioComponents

Sce
Com
In

CreateBufferPorts

In
Sce
Com
Buf

CreateInputBuffers
In

Figure 4: The order of rule execution for rewriting.

Buffers are added as Component objects, and the executable
for this object can be generically synthesized based on the
number of input/output ports, and the semantics chosen.
We leave this detailed discussion to future papers, and con-
centrate instead on their insertion based on context. In Fig-
ure 5 the rule details are shown.

The rule can be read as follows: for each Component that
contains a RequiredInterface object, create a new Input-

Buffer:Component, with a RequiredInterface to accept
time triggers, that will become its input buffer. Create also
a new Trigger:Component with a ProvidedInterface that
will provide time triggered events, and connect that pro-
vided port to the required trigger in the new buffer. Various
objects are renamed for clarity in the final model.

We must also replace existing connections between two Com-

ponent objects by routing those connections between the
new InputBuffer:Compoment that we created above. A sim-
ilar rule (not shown for brevity) removes the existing Con-

nection and creates two new ones, such that the Input-

Buffer:Component maps the data through to the Component.

Other rules not shown insert the necessary configuration
items for each trigger component, as discussed in Section 3.
These include the frequency of execution (based on the WCET
of the component), and the time modulus at which to start
running.

Executing all of the rules gives the transformation result
shown in Figure 6.

5. ANALYSIS AND DISCUSSION
What role does Domain-Specific Modeling play in this appli-
cation of transformations? In fact, why is modeling useful as
a design concept here, rather than just using “old-fashioned”
programming to solve the problem? What is the particular
advantage that model transformations give to enable this
migration from event-based to time-based behaviors?

122
122

CreateInputBuffers
Paradigm: UMLModelTransformer Project: Root Folder Model: Rule Aspect: Transform Time: Sun Aug 09 03:45:37 PM

SetNames
In

Buffer

Component

Scenario

Required
Simulation::RequiredInterface

RequiredTriggerPort
Simulation::RequiredInterface

InputBuffer
Simulation::Component

Platform : String="local"
COMP_TAG : String
OrcaCall : String
Endpoints : String="tcp -t 5000"

Scenario
Simulation::Scenairo

Name : String

Component
Simulation::Component

Platform : String="local"
COMP_TAG : String
OrcaCall : String
Endpoints : String="tcp -t 5000"

Trigger
Simulation::Component

Platform : String="local"
COMP_TAG : String
OrcaCall : String
Endpoints : String="tcp -t 5000"

ProvidedTrigger
Simulation::ProvidedInterface

Name : String
Connection

Simulation::Connection

dstConnection
0..*

srcConnection
0..*

Figure 5: GReAT rule to create buffer components for triggered input reading based on time-triggered events. Note that the
trigger scheduler is generated at the same step.

NewScenairo
Paradigm: Simulation Project: Root Folder Model: Scenairo Aspect: Model Time: Sun Aug 09 05:25:03 PM

Req

C3

Req Pro

C2Pro
Pro

C1

(a) Original model.

NewScenairo

Paradigm: Simulation Project: Root Folder Model: Scenairo Aspect: Model Time: Sun Aug 09 05:23:43 PM

Req

C3InB

Tim
Out

C3IPBuf

Pro

Pro

C1

InB

Tim
Out

C2IPBuf

Pro

C2InputTrigger

Pro

C3InputTrigger

Req Pro

C2

(b) Transformed model.

Figure 6: (a) An original model, with only event-based triggering. (b) The result of transforming (a) with the rules discussed
in Section 4.2.

With response to the relation to DSM, the application re-
quires a domain-specific encoding of existing solution. The
language we designed places particular emphasis on event-
based behaviors, and the simple interfaces defined between
components of production and consumption enable the di-
rection of data to be well understood. Thus, such a lan-
guage is able to capture existing systems, and run them [23].
This is an important distinction: a design that concentrated
mainly on how the new system, with its new semantics,
should be represented would be unable to validate that an
existing model accurately represents the system as is.

So, why not use just clever programming techniques to mi-
grate systems to the new semantics? Certainly this approach
could be taken, but at the usual risk of requiring experts in
the system design to become experts in new semantics, and
new techniques for execution. Our approach permits exist-
ing system components to continue to work using their old
semantics. Thus, not one line of code needs to be changed in
the existing software to conform to the new time-triggered
behaviors.

Additionally, system experts know how their systems are
currently organized, and implemented. These experts can
take our language and represent the models both as they
are, and (perhaps) as they should be in the future. The
model transformation approach to creating the new buffers

is advantageous in that it reuses the investment in the en-
coding of the system into our DSML.

The model transformation approach (through GReAT) reuses
the metamodel-based specification of the DSM in a way that
language designers can discuss how types are used, and new
components are generated, with the system experts. We
again point out that this permits reuse of existing code-
bases. Approaches that do not use the strong typing and
constraint-based organization that DSMLs provide to the
end user run the risk that some corner cases may not be
covered, or that assumptions made by the migration soft-
ware are invalid according to the metamodel.

6. CONCLUSION AND FUTURE WORK
We have described how event-driven component-based sys-
tems can experience differences of execution based on subtle
timing changes. We presented the notion of inserting time-
triggered buffers as a way to reuse existing component code,
while increasing the timing accuracy of component execu-
tion. We showed how, with an existing DSML to model
such component-based systems, we can use model transfor-
mation techniques to enforce our time-triggered semantics
on an existing model. We provided a semantics for these
buffers, as well as the time triggers that control how long
buffers hold their data tokens.

123
123

Our future work includes various autogeneration of the buffer
code for various component-based middleware frameworks.
We can also become more sophisticated in the synthesis of
time trigger components, to attempt to consolidate the nec-
essary scheduling into a single component, rather than a dis-
tributed set of components, thus increasing the scalability of
the system without increasing the number of components in
the system linearly.

Acknowledgments
This work is supported by the Air Force Research Labo-
ratory, under award #FA8750-08-1-0024, titled “MultiCore
Hardware Experiments in Software Producibility.”

7. REFERENCES
[1] J. Auerbach, D. F. Bacon, D. T. Iercan, C. M. Kirsch,

V. T. Rajan, H. Roeck, and R. Trummer. Java takes
flight: time-portable real-time programming with
exotasks. SIGPLAN Not., 42(7):51–62, 2007.

[2] D. Balasubramanian, A. Narayanan, C. van Buskirk,
and G. Karsai. The graph rewriting and
transformation language: GReAT. Electronic
Communications of the EASST, 1, 2006.

[3] D. Box. Essential COM. Addison-Wesley, Reading,
MA, 1997.

[4] A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction.
Real-Time Systems, 18(2-3):249–274, May 2000.

[5] E. Farcas, C. Farcas, W. Pree, and J. Templ.
Transparent distribution of real-time components
based on logical execution time. In LCTES ’05:
Proceedings of the 2005 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for
embedded systems, pages 31–39, New York, NY, USA,
2005. ACM.

[6] G.Kahn. The semantics of a simple language for
parallel programming. In Proceedings of the IFIP
Congress. North-Holland Publishing Co., 1974.

[7] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and
C. Goble. Heterogeneous composition of models of
computation. Technical Report UCB/EECS-2007-139,
EECS Department, University of California, Berkeley,
Nov 2007.

[8] M. Henning and M. Spruiell. Distributed Programming
with Ice. 3.3.1b edition, July 2009.

[9] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: a
time-triggered language for embedded programming.
Proceedings of the IEEE, 91(1):84–99, Jan 2003.

[10] T. A. Henzinger, C. M. Kirsch, and S. Matic.
Composable code generation for distributed Giotto.
SIGPLAN Not., 40(7):21–30, 2005.

[11] G. Kahn and D. B. MacQueen. Coroutines and
networks of parallel processes. Information Processing,
1977.

[12] H. Kopetz and G. Bauer. The time-triggered
architecture. Proceedings of the IEEE, Special Issue on
Modeling and Design of Embedded Software, Oct. 2001.

[13] H. Kopetz and G. Grunsteidl. Ttp - a time-triggered
protocol for fault-tolerant real-time systems. In
Proceedings of The Twenty-Third International
Symposium on Fault-Tolderant Computing, volume
FTCS-23, 1993.

[14] B. Lewis and D. J. Berg. Multithreaded Programming
With PThreads. Prentice Hall PTR, 1997.

[15] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly,
3rd edition, 2001.

[16] Object Modeling Group. Data Distribution Service for
Real-Time Systems, Version 1.2, formal/07-01-01
edition, January 2007.

[17] J. Prosise. Programming Microsoft .NET. Microsoft
Press, June 15 2002.

[18] P. Puschner and C. Koza. Calculating the maximum,
execution time of real-time programs. Real-Time Syst.,
1(2):159–176, 1989.

[19] I. Pyarali, C. O’Ryan, D. Schmidt, N. Wang,
A. Gokhale, and V. Kachroo. Using principle patterns
to optimize real-time ORBs. Concurrency, IEEE,
8(1):16–25, Jan-Mar 2000.

[20] I. Pyarali, D. Schmidt, and R. Cytron. Techniques for
enhancing real-time CORBA quality of service.
Proceedings of the IEEE, 91(7):1070–1085, July 2003.

[21] R. E. Schantz, J. P. Loyall, D. C. Schmidt,
C. Rodrigues, Y. Kirishnamurthy, and I. Pyarali.
Flexible and adaptive QoS control for distributed
real-time and embedded middleware. In Proceedings of
Middleware 2003, Rio de Janeiro, Brazil, June 16-20
2003. 4th IFIP/ACM/USENIX International
Conference on Distrubted Systems Platforms.

[22] D. Schmidt, D. Levine, and S. Mungee. The design
and performance of real-time object request brokers.
Computer Communications, April 1998.

[23] A. Schuster and J. Sprinkle. Synthesizing executable
simulations from structural models of
component-based systems. In 3rd International
Workshop on Multi-Paradigm Modeling, October 2009.

[24] A. Wollrath, R. Riggs, and J. Waldo. A distributed
object model for the java system. USENIX Computing
Systems, MIT Press, 9(4), Nov/Dec 1996.

[25] K. Wong and C. Wang. Push-Pull Messaging: a
high-performance communication mechanism for
commodity SMP clusters. In Parallel Processing,
1999. Proceedings. 1999 International Conference on,
pages 12–19, 1999.

[26] B. Zeigler, H. Praehofer, and T. Kim. Theory of
modeling and simulation. Academic Press, 2000.

124
124

HELSINGIN KAUPPAKORKEAKOULUN JULKAISUJA
Publications of the Helsinki School of Economics

A-SARJA: VÄITÖSKIRJOJA - DOCTORAL DISSERTATIONS. ISSN 1237-556X.

A:287. TImO JÄRVENSIVU: Values-driven management in strategic networks: A case study of
the influence of organizational values on cooperation. 2007.

 ISBN-10: 952-488-081-4, ISBN-13: 978-952-488-081-7.

A:288. PETRI HILLI: Riskinhallinta yksityisen sektorin työeläkkeiden rahoituksessa. 2007.
 ISBN-10: 952-488-085-7, ISBN-13: 978-952-488-085-5.

E-version: ISBN 978-952-488-110-4.

A:289. ULLA KRUHSE-LEHTONEN: Empirical Studies on the Returns to Education in Finland.
2007. ISBN 978-952-488-089-3, E-version ISBN 978-952-488-091-6.

A:290. IRJA HyVÄRI: Project management Effectiveness in Different Organizational Conditions.
2007. ISBN 978-952-488-092-3, E-version: 978-952-488-093-0.

A:291. mIKKO mÄKINEN: Essays on Stock Option Schemes and CEO Compensation. 2007.
 ISBN 978-952-488-095-4.

A:292. JAAKKO ASPARA: Emergence and Translations of management Interests in Corporate
Branding in the Finnish Pulp and Paper Corporations. A Study with an Actor-Network
Theory Approach. 2007. ISBN 978-952-488-096-1, E-version: 978-952-488-107-4.

A:293. SAmI J. SARPOLA: Information Systems in Buyer-supplier Collaboration. 2007.
 ISBN 978-952-488-098-5.

A:294. SANNA K. LAUKKANEN: On the Integrative Role of Information Systems in
Organizations: Observations and a Proposal for Assessment in the Broader Context of
Integrative Devices. 2006. ISBN 978-952-488-099-2.

A:295. CHUNyANG HUANG: Essays on Corporate Governance Issues in China. 2007.
 ISBN 978-952-488-106-7, E-version: 978-952-488-125-8.

A:296. ALEKSI HORSTI: Essays on Electronic Business models and Their Evaluation. 2007.
 ISBN 978-952-488-117-3, E-version: 978-952-488-118-0.

A:297. SARI STENFORS: Strategy tools and strategy toys: management tools in strategy work.
 2007. ISBN 978-952-488-120-3, E-version: 978-952-488-130-2.

A:298. PÄIVI KARHUNEN: Field-Level Change in Institutional Transformation: Strategic
Responses to Post-Socialism in St. Petersburg Hotel Enterprises. 2007.

 ISBN 978-952-488-122-7, E-version: 978-952-488-123-4.

A:299. EEVA-KATRI AHOLA: Producing Experience in marketplace Encounters: A Study of
 Consumption Experiences in Art Exhibitions and Trade Fairs. 2007.

ISBN 978-952-488-126-5.

A:300. HANNU HÄNNINEN: Negotiated Risks: The Estonia Accident and the Stream of Bow
Visor Failures in the Baltic Ferry Traffic. 2007. ISBN 978-952-499-127-2.

A-301. mARIANNE KIVELÄ: Dynamic Capabilities in Small Software Firms. 2007.
 ISBN 978-952-488-128-9.

A:302. OSmO T.A. SORONEN: A Transaction Cost Based Comparison of Consumers’ Choice
between Conventional and Electronic markets. 2007. ISBN 978-952-488-131-9.

A:303. mATTI NOJONEN: Guanxi – The Chinese Third Arm. 2007. ISBN 978-952-488-132-6.

A:304. HANNU OJALA: Essays on the Value Relevance of Goodwill Accounting. 2007.
 ISBN 978-952-488-133-3, E-version: 978-952-488-135-7.

A:305. ANTTI KAUHANEN: Essays on Empirical Personnel Economics. 2007.
 ISBN 978-952-488-139-5.

A:306. HANS mÄNTyLÄ: On ”Good” Academic Work – Practicing Respect at Close Range.
2007. ISBN 978,952-488-1421-8, E-version: 978-952-488-142-5.

A:307. mILLA HUURROS: The Emergence and Scope of Complex System/Service Innovation.
The Case of the mobile Payment Services market in Finland. 2007.

 ISBN 978-952-488-143-2

A:308. PEKKA mALO: Higher Order moments in Distribution modelling with Applications to
Risk management. 2007. ISBN 978-952-488-155-5, E-version: 978-952-488-156-2.

A:309. TANJA TANAyAmA: Allocation and Effects of R&D Subsidies: Selection, Screening, and
Strategic Behavior. 2007. ISBN 978-952-488-157-9, E-version: 978-952-488-158-6.

A:310. JARI PAULAmÄKI: Kauppiasyrittäjän toimintavapaus ketjuyrityksessä. Haastattelututkimus
K-kauppiaan kokemasta toimintavapaudesta agenttiteorian näkökulmasta.

 2008. Korjattu painos. ISBN 978-952-488-246-0, E-version: 978-952-488-247-7.

A:311. JANNE VIHINEN: Supply and Demand Perspectives on mobile Products and Content
Services. ISBN 978-952-488-168-5.

A:312. SAmULI KNüPFER: Essays on Household Finance. 2007. ISBN 978-952-488-178-4.

A:313. mARI NyRHINEN: The Success of Firm-wide IT Infrastructure Outsourcing: an Integrated
Approach. 2007. ISBN 978-952-488-179-1.

A:314. ESKO PENTTINEN: Transition from Products to Services within the manufacturing
Business. 2007. ISBN 978-952-488-181-4, E-version: 978-952-488-182-1.

A:315. JARKKO VESA: A Comparison of the Finnish and the Japanese mobile Services markets:
Observations and Possible Implications. 2007. ISBN 978-952-488-184-5.

A:316. ANTTI RUOTOISTENmÄKI: Condition Data in Road maintenance management. 2007.
 ISBN 978-952-488-185-2, E-version: 978-952-488-186-9.

A:317. NINA GRANqVIST: Nanotechnology and Nanolabeling. Essays on the Emergence of
New Technological Fields. 2007. ISBN 978-952-488-187-6, E-version: 978-952-488-188-3.

A:318. GERARD L. DANFORD: INTERNATIONALIZATION: An Information-Processing
Perspective. A Study of the Level of ICT Use During Internationalization. 2007.

 ISBN 978-952-488-190-6.

A:319. TIINA RITVALA: Actors and Institutions in the Emergence of a New Field: A Study of the
Cholesterol-Lowering Functional Foods market. 2007. ISBN 978-952-488-195-1.

A:320. JUHA LAAKSONEN: managing Radical Business Innovations. A Study of Internal
Corporate Venturing at Sonera Corporation. 2007.

 ISBN 978-952-488-201-9, E-version: 978-952-488-202-6.

A:321. BRETT FIFIELD: A Project Network: An Approach to Creating Emergent Business. 2008.
 ISBN 978-952-488-206-4, E-version: 978-952-488-207-1.

A:322. ANTTI NURmI: Essays on management of Complex Information Systems Development
Projects. 2008. ISBN 978-952-488-226-2.

A:323. SAmI RELANDER: Towards Approximate Reasoning on New Software Product Company
Success Potential Estimation. A Design Science Based Fuzzy Logic Expert System.

 2008. ISBN 978-952-488-227-9.

A:324. SEPPO KINKKI: Essays on minority Protection and Dividend Policy. 2008.
ISBN 978-952-488-229-3.

A:325. TEEmU mOILANEN: Network Brand management: Study of Competencies of Place
Branding Ski Destinations. 2008. ISBN 978-952-488-236-1.

A:326. JyRKI ALI-yRKKÖ: Essays on the Impacts of Technology Development and R&D
Subsidies. 2008. ISBN 978-952-488-237-8.

A:327. mARKUS m. mÄKELÄ: Essays on software product development. A Strategic
management viewpoint. 2008. ISBN 978-952-488-238-5.

A:328. SAmI NAPARI: Essays on the gender wage gap in Finland. 2008.
ISBN 978-952-488-243-9.

A:329. PAULA KIVImAA: The innovation effects of environmental policies. Linking policies,
 companies and innovations in the Nordic pulp and paper industry.
 2008. ISBN 978-952-488-244-6.

A:330. HELI VIRTA: Essays on Institutions and the Other Deep Determinants of Economic
Development. 2008. ISBN 978-952-488-267-5.

A:331. JUKKA RUOTINEN: Essays in trade in services difficulties and possibilities.
 2008. ISBN 978-952-488-271-2, E-version: ISBN 978-952-488-272-9.

A:332. IIKKA KORHONEN: Essays on commitment and government debt structure.
 2008. ISBN 978-952-488-273-6, E-version: ISBN 978-952-488-274-3.

A:333. mARKO mERISAVO: The interaction between digital marketing communication and
customer loyalty. 2008. ISBN 978-952-488-277-4, E-version 978-952-488-278-1.

A:334. PETRI ESKELINEN: Reference point based decision support tools for interactive
multiobjective optimization. 2008. ISBN 978-952-488-282-8.

A:335. SARI yLI-KAUHALUOmA: Working on technology: a study on collaborative R&D work
in industrial chemistry. 2008. ISBN 978-952-488-284-2

A:336. JANI KILPI: Sourcing of availability services - case aircraft component support. 2008.
 ISBN 978-952-488-284-2, 978-952-488-286-6 (e-version).

A:337. HEIDI SILVENNOINEN: Essays on household time allocation decisions in a collective
household model. 2008. ISBN 978-952-488-290-3, ISBN 978-952-488-291-0 (e-version).

A:338. JUKKA PARTANEN: Pk-yrityksen verkostokyvykkyydet ja nopea kasvu - case: Tiede- ja
teknologiavetoiset yritykset. 2008. ISBN 978-952-488-295-8.

A:339. PETRUS KAUTTO: Who holds the reins in Integrated Product Policy? An individual
 company as a target of regulation and as a policy maker. 2008. ISBN 978-952-488-300-9,
 978-952-488-301-6 (e-version).

A:340. KATJA AHONIEmI: modeling and Forecasting Implied Volatility. 2009.
ISBN 978-952-488-303-0, E-version: 978-952-488-304-7.

A:341. mATTI SARVImÄKI: Essays on migration. 2009.
ISBN 978-952-488-305-4, 978-952-488-306-1 (e-version).

A:342. LEENA KERKELÄ: Essays on Globalization – Policies in Trade, Development, Resources
and Climate Change. 2009. ISBN 978-952-488-307-8, E-version: 978-952-488-308-5.

A:343. ANNELI NORDBERG: Pienyrityksen dynaaminen kyvykkyys - Empiirinen tutkimus
graafisen alan pienpainoyrityksistä. 2009. ISBN 978-952-488-318-4.

A:344. KATRI KARJALAINEN: Challenges of Purchasing Centralization – Empirical Evidence
from Public Procurement. 2009. ISBN 978-952-488-322-1, E-version: 978-952-488-323-8.

A:345. JOUNI H. LEINONEN: Organizational Learning in High-Velocity markets. Case Study in
The mobile Communications Industry. 2009. ISBN 978-952-488-325-2.

A:346. JOHANNA VESTERINEN: Equity markets and Firm Innovation in Interaction.
- A Study of a Telecommunications Firm in Radical Industry Transformation. 2009.
ISBN 978-952-488-327-6.

A:347. JARI HUIKKU: Post-Completion Auditing of Capital Investments and Organizational
Learning. 2009. ISBN 978-952-488-334-4, E-version: 978-952-488-335-1.

A:348. TANJA KIRJAVAINEN: Essays on the Efficiency of Schools and Student Achievement.
2009. ISBN 978-952-488-336-8, E-version: 978-952-488-337-5.

A:349. ANTTI PIRJETÄ: Evaluation of Executive Stock Options in Continuous and Discrete Time.
 2009. ISBN 978-952-488-338-2, E-version: 978-952-488-339-9.

A:350. OLLI KAUPPI: A model of Imperfect Dynamic Competition in the Nordic Power market.
2009. ISBN 978-952-488-340-5, E-version: 978-952-488-341-2.

A:351. TUIJA NIKKO: Dialogic Construction of Understanding in Cross-border Corporate
meetings. 2009. ISBN 978-952-488-342-9, E-version: 978-952-488-343-6.

A:352. mIKKO KORIA: Investigating Innovation in Projects: Issues for International Development
Cooperation. 2009. ISBN 978-952-488-344-3, E-version: 978-952-488-345-0.

A:353. mINNA mUSTONEN: Strategiaviestinnän vastaanottokäytännöt - Henkilöstö strategia-
viestinnän yleisönä. 2009. ISBN 978-952-488-348-1, E-versio: 978-952-488-349-8.

A:354. mIRELLA LÄHTEENmÄKI: Henkilötietojen hyödyntäminen markkinoinnissa kuluttajien
tulkitsemana. Diskurssianalyyttinen tutkimus kuluttajan tietosuojasta. 2009.

 ISBN 978-952-488-351-1, E-versio: 978-952-488-352-8.

A:355. ARNO KOURULA: Company Engagement with Nongovernmental Organizations from a
Corporate Responsibility Perspective. 2009. ISBN 978-952-488-353-5,
E-version: 978-952-488-354-2.

A:356. mIKA WESTERLUND: managing Networked Business models: Essays in the Software
Industry. 2009. ISBN 978-952-488-363-4

A:357. RISTO RAJALA: Determinants of Business model Performance in Software Firms. 2009.
 ISBN 978-952-488-369-6. E-version: 978-952-488-370-2.

B-SARJA: TUTKImUKSIA - RESEARCH REPORTS. ISSN 0356-889X.

B:77. mATTI KAUTTO – ARTO LINDBLOm – LASSE mITRONEN: Kaupan liiketoiminta-
osaaminen. 2007. ISBN 978-952-488-109-8.

B:78. NIILO HOmE: Kauppiasyrittäjyys. Empiirinen tutkimus K-ruokakauppiaiden
yrittäjyysasenteista. Entrepreneurial Orientation of Grocery Retailers – A Summary.

 ISBN 978-952-488-113-5, E-versio: ISBN 978-952-488-114-2.

B:79. PÄIVI KARHUNEN – OLENA LESyK – KRISTO OVASKA: Ukraina suomalaisyritysten
toimintaympäristönä. 2007. ISBN 978-952-488-150-0, E-versio: 978-952-488-151-7.

B:80. mARIA NOKKONEN: Näkemyksiä pörssiyhtiöiden hallitusten sukupuolikiintiöistä.
Retorinen diskurssianalyysi Helsingin Sanomien verkkokeskusteluista. Nasta-projekti.

 2007. ISBN 978-952-488-166-1, E-versio: 978-952-488-167-8.

B:81. PIIA HELISTE – RIITTA KOSONEN – mARJA mATTILA: Suomalaisyritykset Baltiassa
tänään ja huomenna: Liiketoimintanormien ja -käytäntöjen kehityksestä.

 2007. ISBN 978-952-488-177-7, E-versio: 978-952-488-183-8.

B:82. OLGA mASHKINA – PIIA HELISTE – RIITTA KOSONEN: The Emerging mortgage market
in Russia: An Overview with Local and Foreign Perspectives. 2007.

 ISBN 978-952-488-193-7, E-version: 978-952-488-194-4.

B:83. PIIA HELISTE – mARJA mATTILA – KRZySZTOF STACHOWIAK: Puola suomalais-
yritysten toimintaympäristönä. 2007.
ISBN 978-952-488-198-2, E-versio: 978-952-488-199-9.

B:84. PÄIVI KARHUNEN – RIITTA KOSONEN – JOHANNA LOGRéN – KRISTO OVASKA:
 Suomalaisyritysten strategiat Venäjän muuttuvassa liiketoimintaympäristössä.
 2008. ISBN 978-953-488-212-5, E-versio: 978-952-488-241-5.

B:85. mARJA mATTILA – EEVA KEROLA – RIITTA KOSONEN: Unkari suomalaisyritysten
toimintaympäristönä. 2008. ISBN 978-952-488-213-2, E-versio: 978-952-488-222-4.

B:86. KRISTIINA KORHONEN – ANU PENTTILÄ – mAyUmI SHImIZU – EEVA KEROLA –
RIITTA KOSONEN: Intia suomalaisyritysten toimintaympäristönä.2008.
ISBN 978-952-488-214-9, E-versio: 978-952-488-283-5

B:87. SINIKKA VANHALA – SINIKKA PESONEN: Työstä nauttien. SEFE:en kuuluvien nais- ja
miesjohtajien näkemyksiä työstään ja urastaan. 2008.
ISBN 978-952-488-224-8, E-versio: 978-952-488-225-5.

B:88. POLINA HEININEN – OLGA mASHKINA – PÄIVI KARHUNEN – RIITTA KOSONEN:
 Leningradin lääni yritysten toimintaympäristönä: pk-sektorin näkökulma. 2008.

ISBN 978-952-488-231-6, E-versio: 978-952-488-235-4.

B:89. Ольга Машкина – Полина Хейнинен: Влияние государственного сектора на
развитие малого и среднего предпринимательства в Ленинградской области:
взгляд предприятий.2008.
ISBN 978-952-488-233-0, E-version: 978-952-488-240-8.

B:90. mAI ANTTILA – ARTO RAJALA (Editors): Fishing with business nets – keeping thoughts
on the horizon Professor Kristian möller. 2008.
ISBN 978-952-488-249-1, E-version: 978-952-488-250-7.

B:91. RENé DE KOSTER – WERNER DELFmANN (Editors): Recent developments in supply
chain management. 2008. ISBN 978-952-488-251-4, E-version: 978-952-488-252-1.

B:92. KATARIINA RASILAINEN: Valta orkesterissa. Narratiivinen tutkimus soittajien
kokemuksista ja näkemyksistä. 2008.
ISBN 978-952-488-254-5, E-versio: 978-952-488-256-9.

B:93. SUSANNA KANTELINEN: Opiskelen, siis koen. Kohti kokevan subjektin tunnistavaa
korkeakoulututkimusta. 2008. ISBN 978-952-488-257-6, E-versio: 978-952-488-258.

B:94. KATRI KARJALAINEN – TUOmO KIVIOJA – SANNA PELLAVA: yhteishankintojen
kustannusvaikutus. Valtion hankintatoimen kustannussäästöjen selvittäminen. 2008.

 ISBN 978-952-488-263-7, E-versio: ISBN 978-952-488-264-4.

B:95. ESKO PENTTINEN: Electronic Invoicing Initiatives in Finland and in the European Union
– Taking the Steps towards the Real-Time Economy. 2008.

 ISBN 978-952-488-268-2, E-versio: ISBN 978-952-488-270-5.

B:96. LIISA UUSITALO (Editor): museum and visual art markets. 2008.
 ISBN 978-952-488-287-3, E-version: ISBN 978-952-488-288-0.

B:97. EEVA-LIISA LEHTONEN: Pohjoismaiden ensimmäinen kauppatieteiden tohtori Vilho
Paavo Nurmilahti 1899-1943. 2008. ISBN 978-952-488-292-7,

 E-versio: ISBN 978-952-488-293-4.

B:98. ERJA KETTUNEN – JyRI LINTUNEN – WEI LU – RIITTA KOSONEN: Suomalaisyritysten
 strategiat Kiinan muuttuvassa toimintaympäristössä. 2008 ISBN 978-952-488-234-7,
 E-versio: ISBN 978-952-488-297-2.

B:99. SUSANNA VIRKKULA – EEVA-KATRI AHOLA – JOHANNA mOISANDER – JAAKKO
ASPARA – HENRIKKI TIKKANEN: messut kuluttajia osallistavan markkinakulttuurin
fasilitaattorina: messukokemuksen rakentuminen Venemessuilla. 2008.
ISBN 978-952-488-298-9, E-versio: ISBN 978-952-488-299-6.

B:100. PEER HULL KRISTENSEN – KARI LILJA (Eds): New modes of Globalization:
Experimentalist Forms of Economics Organization and Enabling Welfare Institutions
– Lessons from The Nordic Countries and Slovenia. 2009. ISBN 978-952-488-309-2,
E-version: 978-952-488-310-8.

B:101. VIRPI SERITA – ERIK PÖNTISKOSKI (eds.)
SEPPO mALLENIUS – VESA LEIKOS – KATARIINA VILLBERG – TUUA RINNE –
NINA yPPÄRILÄ – SUSANNA HURmE: marketing Finnish Design in Japan. 2009.
ISBN 978-952-488-320-7. E-version: ISBN 978-952-488-321-4.

B:102. POLINA HEININEN – OLLI-mATTI mIKKOLA – PÄIVI KARHUNEN – RIITTA KOSONEN:
yritysrahoitusmarkkinoiden kehitys Venäjällä. Pk-yritysten tilanne Pietarissa. 2009.
ISBN 978-952-488-329-0. E-version: ISBN 978-952-488-331-3.

B:103. ARTO LAHTI: Liiketoimintaosaamisen ja yrittäjyyden pioneeri Suomessa. 2009.
ISBN 978-952-488-330-6.

B:104. KEIJO RÄSÄNEN: Tutkija kirjoittaa - esseitä kirjoittamisesta ja kirjoittajista akateemisessa
työssä. 2009. ISBN 978-952-488-332-0. E-versio: ISBN 978-952-488-333-7.

B:105. TImO EKLUND – PETRI JÄRVIKUONA – TUOmAS mÄKELÄ – PÄIVI KARHUNEN:
Kazakstan suomalaisyritysten toimintaympäristönä. 2009. ISBN 978-952-488-355-9.

B:106. ARTO LINDBLOm – RAmI OLKKONEN – VILJA mÄKELÄ (TOIm.): Liiketoimintamallit,
innovaatiotoiminta ja yritysten yhteistyön luonne kaupan arvoketjussa.2009.
ISBN 978-952-488-356-6. E-versio: ISBN 978-952-488-357-3.

B:107. mIKA GABRIELSSON – ANNA SALONEN – PAULA KILPINEN – mARKUS PAUKKU
– TERHI VAPOLA – JODy WREN – LAURA ILONEN – KATRIINA JUNTUNEN: Respon-
ding to Globalization: Strategies and management for Competitiveness. Final Report of a
TEKES-project 1.8.2006-30.4.2009. 2009. ISBN 978-952-488-362-7.

B:108. mATTI ROSSI – JONATHAN SPRINKLE – JEFF GRAy – JUHA-PEKKA TOLVANEN (EDS.)
 Proceedings of the 9th OOPSLA Workshop on Domain-Specific modeling (DSm’09).

2009. ISBN 978-952-488-371-9. E--version: ISBN 978-952-488-372-6.

B:109. LEENA LOUHIALA-SALmINEN – ANNE KANKAANRANTA (Editors): The Ascent of
International Business Communication. 2009. ISBN 978-952-488-373-3.

N-SARJA: HELSINKI SCHOOL OF ECONOmICS. mIKKELI BUSINESS CAmPUS PUBLICATIONS.
ISSN 1458-5383

N:63. SOILE mUSTONEN – ANNE GUSTAFSSON-PESONEN: Oppilaitosten yrittäjyys-
koulutuksen kehittämishanke 2004–2006 Etelä-Savon alueella. Tavoitteiden, toimen-
piteiden ja vaikuttavuuden arviointi. 2007. ISBN: 978-952-488-086-2.

N:64. JOHANNA LOGRéN – VESA KOKKONEN: Pietarissa toteutettujen yrittäjäkoulutus-
ohjelmien vaikuttavuus. 2007. ISBN 978-952-488-111-1.

N:65. VESA KOKKONEN: Kehity esimiehenä – koulutusohjelman vaikuttavuus. 2007.
 ISBN 978-952-488-116-6.

N:66. VESA KOKKONEN – JOHANNA LOGRéN: Kaupallisten avustajien – koulutusohjelman
vaikuttavuus. 2007. ISBN 978-952-488-116-6.

N:67. mARKKU VIRTANEN: Summary and Declaration. Of the Conference on Public Support
Systems of SmE’s in Russia and Other North European Countries. may 18 – 19, 2006,
mikkeli, Finland. 2007. ISBN 978-952-488-140-1.

N:68. ALEKSANDER PANFILO – PÄIVI KARHUNEN: Pietarin ja Leningradin läänin potentiaali
kaakkoissuomalaisille metallialan yrityksille. 2007. ISBN 978-952-488-163-0.

N:69. ALEKSANDER PANFILO – PÄIVI KARHUNEN – VISA mIETTINEN: Pietarin innovaatio-
järjestelmä jayhteistyöpotentiaali suomalaisille innovaatiotoimijoille. 2007.

 ISBN 978-952-488-164-7.

N:70. VESA KOKKONEN: Perusta Oma yritys – koulutusohjelman vaikuttavuus. 2007.
 ISBN 978-952-488-165-4.

N:71. JARI HANDELBERG – mIKKO SAARIKIVI: Tutkimus miktech yrityshautomon yritysten
näkemyksistä ja kokemuksista hautomon toiminnasta ja sen edelleen kehittämisestä.
2007. ISBN 978-952-488-175-3.

N:72. SINIKKA myNTTINEN – mIKKO SAARIKIVI – ERKKI HÄmÄLÄINEN: mikkelin Seudun
yrityspalvelujen henkilökunnan sekä alueen yrittäjien näkemykset ja suhtautuminen
mentorointiin. 2007. ISBN 978-952-488-176-0.

N:73. SINIKKA myNTTINEN: Katsaus K-päivittäistavarakauppaan ja sen merkitykseen
Itä-Suomessa. 2007. ISBN 978-952-488-196-8.

N:74. mIKKO SAARIKIVI: Pk-yritysten kansainvälistymisen sopimukset.
 2008. ISBN 978-952-488-210-1.

N:75. LAURA TUUTTI: Uutta naisjohtajuutta Delfoi Akatemiasta – hankkeen vaikuttavuus.
 2008. ISBN 978-952-488-211-8.

N:76. LAURA KEHUSmAA – JUSSI KÄmÄ – ANNE GUSTAFSSON-PESONEN (ohjaaja):
StuNet -Business Possibilities and Education - hankkeen arviointi.

 2008. ISBN 978-952-488-215-6.

N:77. PÄIVI KARHUNEN – ERJA KETTUNEN – VISA mIETTINEN – TIINAmARI SIVONEN:
Determinants of knowledge-intensive entrepreneurship in Southeast Finland and
Northwest Russia. 2008. ISBN 978-952-488-223-1.

N:78. ALEKSANDER PANFILO – PÄIVI KARHUNEN – VISA mIETTINEN: Suomalais-venäläisen
innovaatioyhteistyön haasteet toimijanäkökulmasta. 2008. ISBN 978-952-488-232-3.

N:79. VESA KOKKONEN: Kasva yrittäjäksi – koulutusohjelman vaikuttavuus.
 2008. ISBN 978-952-488-248-4.

N:80. VESA KOKKONEN: Johtamisen taidot - hankkeessa järjestettyjen koulutusohjelmien
vaikuttavuus. 2008. ISBN 978-952-488-259-0.

N:81. mIKKO SAARIKIVI: Raportti suomalaisten ja brittiläisten pk-yritysten yhteistyön
 kehittämisestä uusiutuvan energian sektorilla. 2008. ISBN 978-952-488-260-6.

N:82. mIKKO SAARIKIVI – JARI HANDELBERG – TImO HOLmBERG – ARI mATILAINEN:
 Selvitys lujitemuovikomposiittituotteiden mahdollisuuksista rakennusteollisuudessa.
 2008. ISBN 978-952-488-262-0.

N:83. PÄIVI KARHUNEN – SVETLANA LEDyAEVA – ANNE GUSTAFSSON-PESONEN –
 ELENA mOCHNIKOVA – DmITRy VASILENKO: Russian students’ perceptions of

entrepreneurship. Results of a survey in three St. Petersburg universities.
Entrepreneurship development –project 2. 2008. ISBN 978-952-488-280-4.

N:84. PIIA NIKULA – ANU PENTTILÄ – OTTO KUPI – JUHANA URmAS –
KIRSI KOmmONEN: Sirpaleisuudesta kilpailukyvyn keskiöön Asiantuntijoiden
näkemyksiä luovien alojen kansainvälistymisestä. 2009. ISBN 978-952-488-346-7.

N:85 JUHANA URmAS – OTTO KUPI – PIIA NIKULA – ANU PENTTILÄ –
KIRSI KOmmONEN: ” Kannattaa ottaa pienikin siivu” – Luovien alojen yritysten
näkemyksiä kansainvälistymisestä. 2009. ISBN 978-952-488-347-4.

W-SARJA: TyÖPAPEREITA - WORKING PAPERS . ISSN 1235-5674.
ELECTRONIC WORKING PAPERS, ISSN 1795-1828.

W:412. LOTHAR THIELE – KAISA mIETTINEN – PEKKA J. KORHONEN – JULIAN mOLINA:
 A Preference-Based Interactive Evolutionary Algorithm for multiobjective Optimization.

2007. ISBN 978-952-488-094-7.

W:413. JAN-ERIK ANTIPIN – JANI LUOTO: Are There Asymmetric Price Responses in the Euro
Area? 2007. ISBN 978-952-488-097-8.

W:414. SAmI SARPOLA: Evaluation Framework for VmL Systems.
 2007. ISBN 978-952-488-097-8.

W:415. SAmI SARPOLA: Focus of Information Systems in Collaborative Supply Chain
Relationships. 2007. ISBN 978-952-488-101-2.

W:416. SANNA LAUKKANEN: Information Systems as Integrative Infrastructures. Information
Integration and the Broader Context of Integrative and Coordinative Devices. 2007.
ISBN 978-952-488-102-9.

W:417. SAmULI SKURNIK – DANIEL PASTERNACK: Uusi näkökulma 1900-luvun alun
murroskauteen ja talouden murrosvaiheiden dynamiikkaan. Liikemies moses Skurnik
osakesijoittajana ja -välittäjänä. 2007. ISBN 978-952-488-104-3.

W:418. JOHANNA LOGRéN – PIIA HELISTE: Kymenlaakson pienten ja keskisuurten
yritysten Venäjä-yhteistyöpotentiaali. 2001. ISBN 978-952-488-112-8.

W:419. SARI STENFORS – LEENA TANNER: Evaluating Strategy Tools through Activity Lens.
2007. ISBN 978-952-488-120-3.

W:420. RAImO LOVIO: Suomalaisten monikansallisten yritysten kotimaisen sidoksen
heikkeneminen 2000-luvulla. 2007. ISBN 978-952-488-121-0.

W:421. PEKKA J. KORHONEN – PyRy-ANTTI SIITARI: A Dimensional Decomposition Approach
to Identifying Efficient Units in Large-Scale DEA models. 2007. ISBN 978-952-488-124-1.

W:422. IRyNA yEVSEyEVA – KAISA mIETTINEN – PEKKA SALmINEN – RISTO LAHDELmA:
SmAA-Classification - A New method for Nominal Classification. 2007.

 ISBN 978-952-488-129-6.

W:423. ELINA HILTUNEN: The Futures Window – A medium for Presenting Visual Weak Signals
to Trigger Employees’ Futures Thinking in Organizations. 2007.

 ISBN 978-952-488-134-0.

W:424. TOmI SEPPÄLÄ – ANTTI RUOTOISTENmÄKI – FRIDTJOF THOmAS: Optimal Selection
and Routing of Road Surface measurements. 2007. ISBN 978-952-488-137-1.

W:425. ANTTI RUOTOISTENmÄKI: Road maintenance management System. A Simplified
Approach. 2007. ISBN 978-952-488-1389-8.

W:426. ANTTI PIRJETÄ – VESA PUTTONEN: Style migration in the European markets 2007.
ISBN 978-952-488-145-6.

W:427. mARKKU KALLIO – ANTTI PIRJETÄ: Incentive Option Valuation under Imperfect
market and Risky Private Endowment. 2007. ISBN 978-952-488-146-3.

W:428. ANTTI PIRJETÄ – SEPPO IKÄHEImO – VESA PUTTONEN: Semiparametric Risk
Preferences Implied by Executive Stock Options. 2007. ISBN 978-952-488-147-0.

W:429. OLLI-PEKKA KAUPPILA: Towards a Network model of Ambidexterity. 2007.
 ISBN 978-952-488-148-7.

W:430. TIINA RITVALA – BIRGIT KLEymANN: Scientists as midwives to Cluster Emergence.
An Interpretative Case Study of Functional Foods. 2007. ISBN 978-952-488-149-4.

W:431. JUKKA ALA-mUTKA: Johtamiskyvykkyyden mittaaminen kasvuyrityksissä. 2007.
 ISBN 978-952-488-153-1.

W:432. mARIANO LUqUE – FRANCISCO RUIZ – KAISA mIETTINEN: GLIDE – General
Formulation for Interactive multiobjective Optimization. 2007. ISBN 978-952-488-154-8.

W:433. SEPPO KINKKI: minority Protection and Information Content of Dividends in Finland.
2007. ISBN 978-952-488-170-8.

W:434. TAPIO LAAKSO: Characteristics of the Process Supersede Characteristics of the Debtor
Explaining Failure to Recover by Legal Reorganization Proceedings.

 2007. ISBN 978-952-488-171-5.

W:435. mINNA HALmE: Something Good for Everyone? Investigation of Three Corporate
Responsibility Approaches. 2007. ISBN 978-952-488-189.

W:436. ARTO LAHTI: Globalization, International Trade, Entrepreneurship and Dynamic Theory
of Economics.The Nordic Resource Based View. Part One. 2007.
ISBN 978-952-488-191-3.

W:437. ARTO LAHTI: Globalization, International Trade, Entrepreneurship and Dynamic Theory
of Economics.The Nordic Resource Based View. Part Two. 2007

 ISBN 978-952-488-192-0.

W:438. JANI KILPI: Valuation of Rotable Spare Parts. 2007. ISBN 978-952-488-197-5.

W:439. PETRI ESKELINEN – KAISA mIETTINEN – KATHRIN KLAmROTH – JUSSI HAKANEN:
 Interactive Learning-oriented Decision Support Tool for Nonlinear multiobjective

Optimization: Pareto Navigator. 2007. ISBN 978-952-488-200-2.

W:440. KALyANmOy DEB – KAISA mIETTINEN – SHAmIK CHAUDHURI: Estimating Nadir
Objective Vector: Hybrid of Evolutionary and Local Search. 2008.
ISBN 978-952-488-209-5.

W:441. ARTO LAHTI: Globalisaatio haastaa pohjoismaisen palkkatalousmallin. Onko löydettä-
vissä uusia aktiivisia toimintamalleja, joissa Suomi olisi edelleen globalisaation voittaja?

 2008. ISBN 978-952-488-216-3.

W:442. ARTO LAHTI: Semanttinen Web – tulevaisuuden internet. yrittäjien uudet liiketoiminta-
mahdollisuudet. 2008. ISBN 978-952-488-217-0.

W:443. ARTO LAHTI: Ohjelmistoteollisuuden globaali kasvustrategia ja immateriaalioikeudet.
2008. ISBN 978-952-488-218-7.

W:444. ARTO LAHTI: yrittäjän oikeusvarmuus globaalisaation ja byrokratisoitumisen pyörteissä.
 Onko löydettävissä uusia ja aktiivisia toimintamalleja yrittäjien syrjäytymisen estämiseksi?

2008. ISBN 978-952-488-219-4.

W:445. PETRI ESKELINEN: Objective trade-off rate information in interactive multiobjective
optimization methods – A survey of theory and applications. 2008.
ISBN 978-952-488-220-0.

W:446. DEREK C. JONES – PANU KALmI: Trust, inequality and the size of co-operative sector –
Cross-country evidence. 2008. ISBN 978-951-488-221-7.

W:447. KRISTIINA KORHONEN – RIITTA KOSONEN – TIINAmARI SIVONEN –
PASI SAUKKONEN: Pohjoiskarjalaisten pienten ja keskisuurten yritysten Venäjä-
yhteistyöpotentiaali ja tukitarpeet. 2008. ISBN 978-952-488-228-6.

W:448. TImO JÄRVENSIVU – KRISTIAN mÖLLER: metatheory of Network management:
A Contingency Perspective. 2008. ISBN 978-952-488-231-6.

W:449. PEKKA KORHONEN: Setting “condition of order preservation” requirements for the
 priority vector estimate in AHP is not justified. 2008. ISBN 978-952-488-242-2.

W:450. LASSE NIEmI – HANNU OJALA – TOmI SEPPÄLÄ: misvaluation of takeover targets and
auditor quality. 2008. ISBN 978-952-488-255-2.

W:451. JAN-ERIK ANTIPIN – JANI LUOTO: Forecasting performance of the small-scale hybrid
New Keynesian model. 2008. ISBN 978-952-488-261-3.

W:452. mARKO mERISAVO: The Interaction between Digital marketing
 Communication and Customer Loyalty. 2008. ISBN 978-952-488-266-8.

W:453. PETRI ESKELINEN – KAISA mIETTINEN: Trade-off Analysis Tool with Applicability
 Study for Interactive Nonlinear multiobjective Optimization.
 2008. ISBN 978-952-488-269-9.

W:454. SEPPO IKÄHEImO – VESA PUTTONEN – TUOmAS RATILAINEN: Antitakeover
provisions and performance – Evidence from the Nordic countries. 2008.
ISBN 978-952-488-275-0.

W:455. JAN-ERIK ANTIPIN: Dynamics of inflation responses to monetary policy in the EmU area.
2008. ISBN 978-952-488-276-7.

W:456. KIRSI KOmmONEN: Narratives on Chinese colour culture in business contexts. The yin
yang Wu Xing of Chinese values. 2008. ISBN 978-952-488-279-8.

W:457. mARKKU ANTTONEN – mIKA KUISmA – mINNA HALmE – PETRUS KAUTTO:
 materiaalitehokkuuden palveluista ympäristömyötäistä liiketoimintaa (mASCO2). 2008.

ISBN 978-952-488-279-8.

W:458. PANU KALmI – DEREK C. JONES – ANTTI KAUHANEN: Econometric case studies:
 overview and evidence from recent finnish studies. 2008. ISBN 978-952-488-289-7.

W:459. PETRI JyLHÄ – mATTI SUOmINEN – JUSSI-PEKKA LyyTINEN: Arbitrage Capital and
 Currency Carry Trade Returns. 2008. ISBN 978-952-488-294-1.

W:460. OLLI-mATTI mIKKOLA – KATIA BLOIGU – PÄIVI KARHUNEN: Venäjä-osaamisen
 luonne ja merkitys kansainvälisissä suomalaisyrityksissä. 2009. ISBN 978-952-488-302-3.

W:461. ANTTI KAUHANEN – SATU ROPONEN: Productivity Dispersion: A Case in the Finnish
Retail Trade. 2009. ISBN 978-952-488-311-5.

W:462. JARI HUIKKU: Design of a Post-Completion Auditing System for Organizational Learning.
2009. ISBN 978-952-488-312-2.

W:463. PyRy-ANTTI SIITARI: Identifying Efficient Units in Large-Scale Dea models Using
Efficient Frontier Approximation. 2009. ISBN 978-952-488-313-9.

W:464. mARKKU KALLIO – mERJA HALmE: Conditions for Loss Averse and Gain Seeking
Consumer Price Behavior. 2009. ISBN 978-952-488-314-6.

W:465. mERJA HALmE – OUTI SOmERVUORI: Study of Internet material Use in Education in
Finland. 2009. ISBN 978-952-488-315-3.

W:466. RAImO LOVIO: Näkökulmia innovaatiotoiminnan ja –politiikan muutoksiin 2000-luvulla.
2009. ISBN 978-952-488-316-0.

W:467. mERJA HALmE – OUTI SOmERVUORI: Revisiting Demand Reactions to Price Changes.
2009. ISBN 978-952-488-317-7.

W:468. SAmULI SKURNIK: SSJS Strategiabarometri – kehitystyö ja nykyvaihe. 2009.
ISBN 978-952-488-319-1.

W:469. TOm RAILIO: A Brief Description of The Transdisciplinary Jurionomics and The
Scandinavian Institutional Sources of Law Framework. 2009. ISBN 978-952-488-324-5.

W:470. KALyANmOy DEB – KAISA mIETTINEN – SHAmIK CHAUDHURI: An Estimation of
Nadir Objective Vector Using a Hybrid Evolutionary-Cum-Local-Search Procedure. 2009.
ISBN 978-952-488-326-9.

W:471. JENNI AHONEN – mARI ANTTONEN – ANTTI HEIKKINEN – JANI HÄTÄLÄ – JASmI
LEHTOLA – LAURI NURmILAUKAS – TEEmU PELTOKALLIO – ANNINA PIEKKARI –
mARJO REEN – SEBASTIAN SmART: Doing Business in Hungary. 2009.

 ISBN 978-952-488-350-4.

W:472. mIKA WESTERLUND: The role of Network Governance in Business model Performance.
 2009. ISBN 978-952-488-361-0.

W:473. DmITRy FILATOV – SINIKKA PARVIAINEN – PÄIVI KARHUNEN: The St. Petersburg
Insurance market: Current Challenges and Future Opportunities. 2009.

 ISBN 978-952-488-365-8.

W:474. mARKKU KALLIO – mERJA HALmE: Redefining Loss Averse and Gain Seeking Consumer
 Price Behavior Based on Demand Response. 2009. ISBN 978-952-488-366-5.

W:475. JOHANNA BRAGGE – TUURE TUUNANEN – PENTTI mARTTIIN: Inviting Lead Users
from Virtual Communities to Co-create Innovative IS Services in a Structured Groupware
Environment. 2009. ISBN 978-952-488-367-2.

W:476. RISTO RAJALA: Antecedents to and Performance Effects of Software Firms’ Business
models. 2009. ISBN 978-952-488-368-9.

Z-SARJA: HELSINKI SCHOOL OF ECONOmICS.
CENTRE FOR INTERNATIONAL BUSINESS RESEARCH. CIBR WORKING PAPERS. ISSN 1235-3931.

Z:16. PETER GABRIELSSON – mIKA GABRIELSSON: marketing Strategies for Global
Expansion in the ICT Field. 2007. ISBN 978-952-488-105-0.

Z:17. mIKA GABRIELSSON – JARmO ERONEN – JORmA PIETALA: Internationalization and
Globalization as a Spatial Process. 2007. ISBN 978-952-488-136-4.

Kaikkia Helsingin kauppakorkeakoulun julkaisusarjassa ilmestyneitä julkaisuja voi tilata osoitteella:

Ky-Palvelu Oy Helsingin kauppakorkeakoulu
Kirjakauppa Julkaisutoimittaja
Runeberginkatu 14-16 PL 1210
00100 Helsinki 00101 Helsinki
Puh. (09) 4313 8310, fax (09) 495 617 Puh. (09) 4313 8579, fax (09) 4313 8305
Sähköposti: kykirja@ky.hse.fi Sähköposti: julkaisu@hse.fi

All the publications can be ordered from

Helsinki School of Economics
Publications officer
P.O.Box 1210
FIN-00101 Helsinki
Phone +358-9-4313 8579, fax +358-9-4313 8305
E-mail: julkaisu@hse.fi

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend right edge by 13.61 points
 Shift: none
 Normalise (advanced option): 'original'

 80

 D:20081118082401
 708.6614
 B5
 Blank
 498.8976

 Tall
 1
 0
 No
 1194
 357
 None
 Right
 21.2598
 0.0000

 Both
 89
 AllDoc
 91

 CurrentAVDoc

 Bigger
 13.6063
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 7
 6
 7

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Scale by 97.00 %
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 1
 1
 0.9700
 0
 0
 1
 0.0000
 0

 D:20091130100005
 841.8898
 a4
 Blank
 595.2756

 Tall
 1206
 192
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Sheet orientation: tall
 Scale by 97.00 %
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 1
 1
 0.9700
 0
 0
 1
 0.0000
 0

 D:20091130103852
 708.6614
 B5
 Blank
 498.8976

 Tall
 1206
 192
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 230.55, 23.20 Width 43.33 Height 18.57 points
 Mask co-ordinates: Horizontal, vertical offset 224.36, 32.48 Width 46.42 Height 13.93 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 AllDoc
 2

 CurrentAVDoc

 230.5508 23.1982 43.325 18.5679 224.3615 32.4822 46.4196 13.9259

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 0
 118
 117
 118

 1

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 10.0 point
 Origin: bottom centre
 Offset: horizontal 4.82 points, vertical 28.35 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 7
 TR
 1
 0
 854
 279

 0
 10.0000

 Both
 118
 1
 AllDoc

 CurrentAVDoc

 4.8189
 28.3465

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 0
 118
 117
 118

 1

 HistoryList_V1
 qi2base

