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Abstract

In this paper, we consider a non-singular linear transformation of the input- and output-
variables in the Data Envelopment Analysis (DEA). The transformation is useful in selecting
variables and dealing, for instance, with interval scale variables. We will develop a general
theory and show that the results are invariant due to a non-singular linear transformation
provided the concept of “dominance” is defined accordingly. The invariance property is valid
only for a non-singular linear transformation. Finally, we briefly discuss in a singular linear
transformation and illustrate some pitfalls, which may lead to wrong results.

Keywords: Data Envelopment Analysis, Variable Reduction, Linear Transformation.

1 Introduction

Performance - especially to improve performance - is one of the key issues of management
in organizations. The ‘goodness’ of operations, or performance is clearly multidimensional of
its nature. Several indicators (outputs) are required to capture all essential aspects of the
performance. Factors (inputs) needed to produce performance are multidimensional as well.
In the sequel, we call them outputs/inputs or output-/input-variables. In practice, to find
relevant variables is one of the key problems.

If the essential outputs and inputs can be presented in a quantitative form (on a ratio scale)
and if there are available comparative data, then Data Envelopment Analysis (DEA) developed
by Charnes et al. (1978, 1979) provides a commonly used way to do performance analysis.
Performance evaluation is carried out relatively by comparing Decision Making Units (DMUs)
essentially performing the same task. In DEA, there is no need to explicitly know relationships
between inputs and outputs. The values of the inputs and outputs of the units - in addition to
background assumptions - is the only requisite information needed for the analysis. That’s
why the choice of variables deserves special attention.
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Data Envelopment Analysis reveals the units which are supposed to be able to improve
their performance and the units which cannot be recognized as poor-performers. Because we
use multidimensional indicators to measure performance, ‘goodness’ is not fully defined. DEA
identifies so-called technically efficient units, but it is value-free in the sense that it does not
take into account importance of various aspects.

In the use of Data Envelopment Analysis, there exists the same problem as in performance
analysis generally: which are relevant outputs and inputs, and how to choose them. How the
outputs and inputs are chosen has a significant impact on the results of the analysis. In this
paper, we will first consider the choice of outputs and inputs. For instance, if we would like to
compare the performance of students with two output-variables, it is important to recognize
how to use either the outputs “the number of excellent grades” and “the number of good
grades” or “the number of excellent grades” and “the number of total grades” in such a way
that the results are the same. ! That is a natural requirement, because any pair of those
variables carries the same information.

Another example of the need of a linear transformation is a simplified problem, in which
we assume that the performance of units is evaluated with one input (Cost) and one output
(Profit). However, Profit is measured on the interval scale, and therefore it causes a problem
in DEA. If Profit = Sales - Cost, we may use the variables Cost and Sales instead of Cost and
Profit. However, the problem is not the same if we simply replace Cost and Profit by Cost and
Sales. Instead, we have to re-define the whole problem, because e.g. the efficient frontier is not
the same if we only replace the old variables by the new ones.

Furthermore, we establish the foundation of the linear transformations of input/output
variables in DEA by introducing the relevant mathematical formulation. The proposed
formulation is the natural extension of the DEA problem into the transformed spaces such
that the transformed problem is equivalent to the original DEA problem. We show that non-
singular transformed variables do not have an effect on the optimal solution of the problem.

The paper is presented in four sections. In section 2, some basic notation and definitions
are given, and in section 3, we consider a non-singular linear transformation, present some
theory and motivate theoretical considerations with two examples. Singular linear
transformation is discussed in section 4 and concluding remarks and given in section 5.

2 Some Theory

2.1 Basics

In this sub-section, we introduce the basic definitions and concepts. Denote the index set of
n decision-making units N = {1, 2, ..., n}. Each unit consumes m inputs and produces s outputs.

1 “The number of total grades” refers here to the sum of excellent and good grades.
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Let x € R} and y e K3 stand for the (column) vector of inputs and outputs, respectively. We
define the production possibility set (PPS) as follows:

T = {(y,x) | y can be produced from x} c R5™, (2.1)

where T consists of all feasible inputs and outputs. As usual, we assume more is better in
outputs and less is better in inputs. We denote by Y = (y,, ...,y,) and X = (x4, ..., x,,) the
matrices with the output- and input-values of the units on columns. Furthermore, we denote
1 =11,...,1].

The traditional definitions for efficient and weakly efficient points in set T are given as
follows:

Definition 1. Point (y*, x*) € T is efficient (non-dominated) iff (if and only if) there does not
exist another (y,x) € T suchthaty > y*, x < x* and (y, x) # (y*, x*).

If point (y*,x*) € T is not efficient, then it is said to be inefficient or dominated. However, if
an inefficient point is not an interior point in T, it may still be weakly efficient:

Definition 2. Point (y*, x*) € T is weakly efficient (weakly non-dominated) iff there does not
exist another (y,x) € T such that y > y*and x < x*.

To simplify notation, we occasionally refer to vector Bc’] € RS by z € RP and write

p = s + m. Correspondingly, we denote z = [ﬂ

As the transformation will change the numerical values of the original input- and output-
variables, definitions 1 and 2 for efficiency and weak efficiency are too restrictive, because the
new variables are not necessarily anymore maximized or minimized after a linear
transformation. In order to be able to define the dominance relationships in a linearly
transformed problem we use the pointed polyhedral cones in DEA.

Definition 3. Given a set of non-zero vectors ¢y, €2, ..., ¢k € RP, k 2 1, a pointed polyhedral cone
C is defined as a convex set which consists of all nonnegative linear combinations of vectors c1,
c2, ..., Ck.

C={Zk meilw 20,i=12k (2.2)
and for which € n (-C) = {0}. 2

Directions ¢y, ¢z, ..., ¢k are called the generators of cone C. Note that C contains the origin
and the directions ¢; i = 1, 2, ..., k, emanating from the origin. When it is necessary, we use
notation C{0} to emphasize that the origin is the cone’s vertex. We may also shift the cone C to

Zz Notation -C refers to the cone which consists of all nonnegative linear combinations of vectors -cy, -c3, ..., -Ck.
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start from any point z € Rp. Then we write alternatively z + C, z + C{0} or C{z}. We
occasionally use the notation -C{z} to refer the cone z - C.

Non-dominance (efficiency) and weak non-dominance (weak efficiency) is now defined as
follows:

Definition 4. A pointed polyhedral cone D c RP generated by a set of non-zero vectors d1, d>,
.. dr € RP, k 2 1, is called a dominating cone if point z, € R? is said to be dominated by z iff z
€ D{ zo} and z # zo.

Using the definition of pointed cones, the dominating cone D can be written as D =
{T¢ pdi |y 20,i=1,2,..,k} and correspondingly —D = {¥k  u; (—d)) |y =0,i=
1,2, ..., k}.

Definition 5. A vector z, € T c ‘RP is non-dominated in set T with respect to the dominating
cone D iff the set T N D{ zo}= {zo}.

Definition 6. A vector z, € T c RP is weakly non-dominated with respect to the dominating
cone D iff the set T N(zo + int D) = {zo}, where int D refers to the interior of cone D that is
defined formally

intD={Y wd|u>0i=12.,k} (2.3)

If point zo € T is not weakly non-dominated (weakly efficient), then it is said to be strongly
dominated (strongly inefficient) with respect to cone D. If point zo € T is dominated
(inefficient), but weakly non-dominated, then it is said to be weakly dominated with respect to
cone D.

Lemma 1. Assume 21, 22 € R?, z1 # 22, are two points for which z1 € D{z2}. Then z; ¢ D{z1}.

Proof. Because z1 € D{z;} = 3 420 (atleastone 4; >0 ),i=1, 2, .., k, such that z; = z; +
K Aid;= z2=2z1+XF , 1; (—d;), which means that z; € -D{z1}. We defined the dominating
cone such that D{z1} N (- D{z1}) = {z1}. Because z1 # z, hence z; ¢ D{z1}.1

Corollary 1. The assumption that cone D is pointed is necessary. Otherwise, for each point z
e R, 3 z1 € R’ such that zo dominates point z; and is dominated by point z1, simultaneously.

Proof. Assume that D is not pointed, i.e. D{zy,} N (—=D{z,}) — {z,} # @.. Then 3 z1 # 2zo such
that z1 € D{zo} and z1 € (- D{zo}). Hence, z1 dominates zo. On the other hand, z1 = zo +
K Ai(—d) =>z0=2z1+Y5 , A d; = zo dominates z;. B

Remark. The assumption that cone D is pointed makes dominance well-defined in the sense
that it is asymmetric.



2.2 Linear Transformation

In this sub-section, we introduce some notation and present theoretical results, when a
non-singular linear transformation is applied to the original data set. The main point in the
considerations is that it is not enough to only transform the original variables (inputs and
outputs), but it is also necessary to transform the dominating cone provided we would like to
preserve the original dominance information.

Initially, we introduce some notation. The h X p (1 < h < p, p = 2) linear transformation
matrix is generally denoted by F and the production possibility set after transformation is
T(F) ={z(F) | z(F) = Fz,z € T} c R*™. Occasionally, we may denote T(F) = FT, where T (with
bold letter) is defined as T = B’] where (y,x) € T. We assume that F is of full row rank. Thus

the non-singular F is p X p and the determinant |F| # 0. The dominating cone after
transformation is denoted by D(F) = { kK wFd |y =0,i=1,2, ...,k}. We use notation D to
refer to the cone and D the matrix with the generators as columns. Thus we may write D(F) =
FD.

Next, we will prove that applying a non-singular transformation does not change the
dominance relationship between points.

Lemma 2. If a point zo € T is non-dominated, weakly non-dominated, or strongly dominated
in set T, its role preserves in a non-singular linear transformation.

Proof. Let F be a non-singular linear transformation, and zo € T an arbitrary non-dominated
point, i.e. T N D{ zo}= {20}, where D is a dominating cone. Assume that Fzo € T(F) is dominated
in set T(F) after a non-singular transformation. Hence it follows that 3z € T(F), z # Fzo, such
that z € (T(F) n FD{ Fzo}), where FD{ Fzo} represents the transformed dominance cone D
starting from the point Fzo. Because F is a non-singular linear transformation, F~'z € T, F~!z
€ D{zo}, and F~1z # z,. This is in conflict with the assumption that zo € T is non-dominated.

In the corresponding way, we may prove the results for weakly non-dominated and strongly
dominated points. B

Lemma 2 proves that in applying non-singular transformations the status of DMU will be
preserved. This result shows that efficient DMUs should be evaluated as efficient as long as
the transformation on the variables is non-singular. We use this result to show that various
linear combinations of variables can be constructed from original variables.

3 Non-Singular Transformation and Selection of Variables

Typically, the aim of a DEA problem is to estimate the efficient frontier of the given data,
and also to compute the efficiency scores of DMUs relative to the frontier. Efficient DMUs
build the frame of the efficient frontier and they have the property that there is no
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combination3 of DMUs that can dominate them. If the number of inputs and outputs are
relatively large, then many of DMUs escape from being dominated by other DMUs and will be
recognized efficient, and thus the discrimination power of the analysis is weak. This effect is
sometimes called the curse of dimensionality. The problem is the same as in regression
analysis. The increasing of the number of independent variables never decreases the
coefficient of multiple determination, but the prediction (explanation) power of the model is
not necessarily improves.

In real applications of DEA, one of the key tasks of the decision maker (DM) is to choose
the minimal set of inputs and outputs such that all relevant information is taken into account,
and no essential information is lost. The DM may follow the basic approaches of aggregation
and elimination of inputs and outputs, which are commonly used methods for improving the
discrimination power of a DEA problem (Podinovski & Thanassoulis, 2007).

The aggregation and elimination of variables makes the problem different in DEA. Clearly,
the transformation is very critical and changes the final scores of DMUs. By eliminating some
variables, we lose their information, but the aggregated variables still carry the information of
original variables. If the DM does not remove any of variables but carry out a non-singular
linear transformation of those ones, the new variables contain the same information as the
original variables and thus we expect to get the same results from both problems. However,
usually the results differ, because a common practice is just to replace the old variables by the
new ones and assume that outputs are maximized and inputs are minimized such as in the
original problem.

Depending on the context of the problem, the decision maker often subjectively selects an
acceptable set of variables, but if there are two different sets of variables with the same
information but different representation, should the DM prefer one to another? In other
words, if two datasets are, basically, the same, should we have different performance scores
for the DMUs? The justification over variables should be dependent on the amount and type
of information rather than the way they display the data? We discuss the issue in an example
below.

Throughout this paper, we try to keep DEA considerations as simple as possible. That’s
why we deal with an output-oriented Variable Returns to Scale (VRS) model (3.1) which is
defined in R5*™ space and given in a slightly modified form (see, Banker et al. 1984). Even
though in the following example we use a VRS DEA model, since there is a single constant
input, the model is equivalent to the corresponding CRS DEA model (Knox Lovell & Pastor,
1999), thus both models can be used, but in order to keep the same model in the discussions
of the paper, we present it as a VRS DEA formulation.

3 The allowed combination of other DMUs are defined by the returns to scale assumption of a model and what
is assumed about the production possibility set.



In our formulation ¢ = 0, if the unit is efficient or weakly efficient and ¢ > 0, if it is strongly
inefficient.

max@ + e(Xys; + X5 5Y)

S.t.
4
TeidiYrj =S¢ — @Yro = Yro, T=1,2,...,5,
Toa X s =X, 1 =1,2,..,m, (3.1a)

n — + -
j=1lj —1, Aj,Sr,Si 20,

where >0 (“Non-Archimedean”) 5.

Note that the dominating cone of (original) model (3.1) is of the form: D = [(l) i)l]’ where

I is a unity matrix. The first I matrix is s X s and stands for s outputs and the latter one is
m X m and to stands for m inputs.

The model (3.1a) in the matrix form is as follows:

max @ + &s'l

s.t.

ZA—Ds — gD [3(')"] = z,,

r1=1, (3.1b)
A=>0s>0,

where &> 0 ("Non-Archimedean”) and z, = [x

Yo _[s*

0] and s = [S_].
Thus we see the role of the dominating cone in the original (not transformed) DEA problem.
In the next sub-section we present an example explaining how selecting input- and output-

variables can lead to applying a non-singular transformation on the variables.
3.1 How to select variables?

Let’s first consider the situation in which the variables (inputs and/or outputs) are linearly
dependent in such a way that each variable out of p variables can be presented as a linear
combination of any other k variables. In this case, any set of k variables carry the same
information as all p variables. These types of variables do not cause any problem in some
techniques like as in regression analysis. If those p variables are potential independent
variables, we may use any k variables in the analysis and the coefficient of determination (R?)
is always the same. However, the situation is not the same in DEA. Even if any set of k different
variables forms a basis on k dimensional space and carry in the identical information,
different k variables produce different results (efficiency scores) provided that efficiency is

4In formula (3.1) subscript “0” refers to the unit under consideration.

5 For more details on “Non-Archimedean”, see Arnold et al. (1998).
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defined for each set in a traditional way (see, Definition 1). Practical problems are not so
simple, but considerations are applicable to the problems in which the assumption is
approximately true.

Because each set of k variables can be defined as a linear transformation from any other set
of k variables, we show that each set will define the same efficient frontier provided that we
apply the same transformation to the dominating cone (Definition 3) as well. We will first
illustrate the problem and its solution by using a simple example. We explain the problem
with some examples and then in sub-section 3.3 we present the requisite theory.

Example 1. Assume that a DM would like to evaluate the performance of students by using
the outputs “the number of excellent grades” (EG), “the number of good grades” (GG), and “the
number of total grades” (TG). Those variables are clearly linearly dependent, because we
assume TG = EG+GG. Thus two of them carry necessary information we need. Consider the
sets {EG, TG} and {EG, GG}. The data of the example is shown in Table 1. We assume single
constant input, and the output oriented variable returns to scale DEA model (3.1).

Table 1. Data set with one input and two outputs

Variables

Input EG GG TG
DMUs (EG+GG)
A 1 10 0 10
B 1 10 1 11
C 1 9 3 12
D 1 8 4 12
E 1 6 5 11

Despite the fact that the two sets of outputs (EG and TG or EG and GG) have the same
information about students, if the DM chooses 0, = {EG, TG} as the output variables, the
results differ from the case 0, = {EG, GG} provided the traditional efficiency definition is
used.

We name the problems corresponding to the set of outputs O, and O, as P; and P,,
respectively. Figure 1 shows the position of DMUs in P; and P, in panels (a) and (b),
respectively. Since the input value of all DMUs is unity, we can illustrate DMUs and
corresponding production possibility sets in a two dimensional space using only the output
values (in Figure 1). The shaded areas are the production possibility sets and the shown cones
are the dominating cones (defining a traditional dominance). Using the interpretation of the
variables, we understand that the traditional shape of the production possibility set contains
an infeasible region (the region specified by gray dots). To understand this change in the
production possibility set, consider that TG=EG+GG (all are positive) and thus TG cannot be
less than EG.



@ P,

=
N W
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| Production Possibility Set

-
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(b) P,
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]

Production Possibility Set
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I
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—,—,
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Figure 1. DMUs in different settings of outputs. In panel (a) with EG and TG as outputs and in panel
(b) with EG and GG as outputs. The frontiers are determined by DEA model.



The solid lines in Figure 1 are standing for the efficient frontiers and the dashed lines for
weakly efficient frontiers. As it can be seen from Figure 1, clearly by changing the set of
outputs the status of DMUs change. For example, DMU D is weakly efficient in P; while it is
efficient in P,, and DMU E is inefficient in P; but efficient in P,. Considering the fact that both
problems have the same information about the students, we expect to have the same results
for P, as for P;. Traditionally, the analysis is carried out with one set of variables and different
results are considered acceptable.

There is a reason to believe that a DM prefers set 0, = {EG, TG} for the analysis, because
point D (EG=8, GG=4, TG=12) is clearly better than point E (6, 5, 11). Two excellent grades
more it is better than one good grade more. Moreover, point C (9, 3, 12) is clearly better than
point D (8, 4, 12). We will demonstrate that the choice of 0, = {EG, TG} will lead to the same
results as using set 0, = {EG,GG} provided that the relationship between variables
(TG=EG+GG) is defined and applied on the mathematical programming of the problem,
therefore transformation {EG, TG} — {EG, GG} should be taken into account in the definition of
the dominating cone.

Let’s denote the data matrix as a matrix consisting of the values of EG and TG on the first
two rows, and the constant input 1 on the third row of matrix Z:

10 11 12 12 11

10 10 9 8 6
Z-= .
1 1 1 1 1

The dominating cone for the problem is

1 0 O
D=|0 1 O
0 0 -1

Let’s consider the efficiency of unit E, i.e. the values in the last column (z5) in matrix Z. We
present the model for E in the following form:

max¢@ + é&s'l

s.t.
6 6
ZA—Ds —¢D|11] = [11],
0 1
A1=1, (3.2)
A=>20,s=>0,

€ > 0 ("Non-Archimedean”).

The solution of problem 3.2 is¢@ = 0.091,A; = 1,1, = A5 = A, = 4z = 0,sf = 2.45, and
s§ = s; = 0. It means that the unit E has to improve proportionally its output values with
9.1% and in addition to improve the excellent grades with 2.45 to become efficient. The
reference point is unit C (not D, which is only weakly efficient, but not efficient) (Figure 1a).
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Let’s now analyze the effect of the linear transformation {EG, TG} — {EG, GG}. If we only
replace the variables EG and TG by EG and GG, the problem to be solved is

max¢@ + &s'l

s.t.
6 6
Z*'A—Ds—@D|5]| = [5],
0 1
A1=1, (3.33)
A=>0 s=0,

€ > 0 ("Non-Archimedean”),

10 10 9 8 6 1 0 0
whereZ*=FZ =10 1 3 4 5|landF=]|—-1 1 0]

1 1 1 11 0 0 1

The solution of the model isp = 0,1, =1, 44y = A5 = A, =1z =0, ands] =s5 =s7 =0.
Thus unit E is diagnosed efficient (see, Figure 1b). The result is not clearly reasonable as we
explained before. To see how the weights are affected using the dominating cone we write the
multiplier form of the problem 3.3a below:

min [6,5,1]w + w,

s.t.

Z'w+w, =0,

—D'w > ¢, (3.3b)
—[6,5,0]D'w =1

w,wy: free,

Wy
wherew = [Wzl, and w; and w, refer to EG and TG, respectively. The last weight w; refers to
w3

the weight of the input variable.

In problem 3.3b we see that the weights in the constraint Z*'w + w, > 0 are affected by the
transformation, but the transformation is not appeared in the objective function and the
constraint —[6,5,0]D’'w = 1. Thus the result of this problem is not acceptable as the
productions possibility set is transformed, but the DMU under assessment is not.

Consider now the model, in which the dominating cone is also transformed in addition to
the variables. The transformation matrix F is as defined above. Thus we have the transformed

1 0 O
data matrix Z* = FZ,the transformed dominating coneD*=FD=(-1 1 0 ], and the
0O 0 -1

transformed problem is

max¢@ +é&s'l
s.t.
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6 6
Z*'2—D*s — oD*|11| =F|11| = zZ,
0 1
A1=1, (3.4a)
A20, =0,
€ > 0 (¢ "Non-Archimedean”).
6 6
and in this case D* |11| = [5].
0 0
The solution of problem (3.4) is exactly the same as problem (3.2). Figure 2 illustrates the
situation.
13 1 O
12 '\O
N
N
11 -+ N
N
10 - N
N
N A Y
N
N

Dominating
Cone

N w e 62 ] (o)} N o] O
i i i i

R D
4 ,
Production Possibility Set s~ C
B
1 4
0 A O L224

Figure 2. DMUs and frontier with EG and GG as outputs, considering the transformed dominating
cone.

Note we show the effect of applying the transformation by writing the dual model
(multiplier model) of model (3.4a)

min[6,11,1]F'w + w,

s.t.

Z'w+w, =0,

—D*w > ¢, (3.4b)
—[6,11,0]D*w =1
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w,w,: free.

The constraints for the multipliers are: w; < w, — ¢, w, < —eand w; > ¢%. Thus the
multiplier of EG is required to be higher than GG in absolute values. It means that the
variables {EG, GG} can be used in the DEA-model as well provided that the multiplier of EG is
required to be higher than that of GG, which sounds quite reasonable.

We may use in the analysis either output variables EG and TG or EG and GG, but in the
latter case, in the multiplier model the multiplier of EG is greater than that of GG. More
general considerations are given in sub-section 3.3

3.2 Dealing with Interval Scale Variables

In some problems, a non-singular transformation is a practical way to deal with interval
scale variables (Halme et al., 2002; Dehnokhalaji et al., 2010). A transformation may be used
to replace interval variables by ratio scale variables. As we have demonstrated in the previous
sub-section, the efficient frontier does not change provided the dominating cone is
transformed accordingly. We use an example to illustrate the technique.

Example 2. Let’s consider the problem consisting of six units which are evaluated with one
input (Cost) and one output (Profit) (Table 2 and Figure 3a). Sales is assumed to be Cost +
Profit.

Table 2. Data set for interval scale example

Variables
DMUs Cost Profit Sales
A 1 -0.5 0.5
B 2.5 2.5 5
C 3.5 2.5 6
D 4 4 8
E 5 -2 3
F 6 4 10

Profit is measured on an interval scale. It means that there is no theoretical basis to
compute efficiency scores based on radial measurements (see, Figure 3a). Points A, B, and D
are efficient and F is only weakly efficient, and thus they cause no problem. The efficiency
score may be defined to them to equal one. Technically, we may compute the efficiency score
for point C as well, but its interpretation is not clear. Instead, for point E we may compute the

61t is important to note that since we need to incorporate the dominating cone in the formulation of
problems, the weights of outputs are represented as negative values. This does not have any effect on the
optimum results of the problems. The absolute values of the weights are corresponding to the weights in the
traditional formulation of DEA problems.
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distance from the efficient frontier and even the reference value on the efficiency frontier (not
radial), but not an efficiency score as usually.

(a) 5 «

Profit

Dominating
Cone

Cost

S o Production Possibility Set

(b) 12 -
11 -
10 - o

Sales

©
\

(o)}
—
ow}

o

C

51 Production Possibility Set
Dominating
4 - Cone
3 - (®)
E
2
1 A
Cost
0 L] L] L] L] L] L] Ll
’ 1 2 3 -+ 5 6 7
-1

Figure 3. DMUs, dominating cones and production sets in panel (a) Cost-Profit space, and in panel
(b) Cost-Sales space.
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However, we may simply carry out a non-singular linear transformation. Profit is replaced
by Sales (see, Figure 3b), but in addition to that we have to transform the dominating cone. If
we present our data matrix in the form, which has the input (Cost) in the first row, and the
output (Profit) in the second row:

z=[ 1 25354 _52 2]’

05 25 25 4

then the transformation matrix is simply F = [1 2] The dominating cone for the original

.. ~_[-1 0 _o+_[1 25 35 4 5 6 N —
problem isD = [ 0 1], and henceFZ = Z* = [0.5 c 6 8 3 10 and FD = D* =
[—1 0
-1 1

Our VRS-model” for measuring the efficiency of unit E is now as follows:
max @ + &s'1
s.t.
Z°A—D"s — oD [3]_[3],
Al1=1, (3.5)
A>0,5s=>0,

€ >0, ("Non-Archimedean”).

The solution of the modelisp = 2,1, =1,1;, =0,i =A,B,C,EF,s” =1,ands™ = 0. Note
that the reference unit is D, not a virtual unit on the line segment starting from D and passing
through unit F, because the line segment is only weakly efficient. Because Sales is measured
on the ratio scale, we may compute its efficiency score: 1/(1+2) = 0.33. We may also compute

an inefficiency score for Profit by replacing vector [g] by vector [g] The model is called a

combined model (See, Joro et al. (1998)) The solution of this model is ¢ = 0.528, 1, = 0.093,
Ag =0.907, andA; =0,i =C,D,E,F,s* =s~ = 0. The solution means that unit E has to
increase Sales and decrease Cost by 52.8% for becoming efficient. Thus a feasible reference
value for Profit is 4.58 - 2.36 = 2.22 and the corresponding value for Cost is 2.36.

Hereby we have obtained a measure for Profit and found a reasonable reference value and
interpretation for it.

There are also available other techniques to deal with interval variables. For instance
Halme et al. (2002) proposed a method to replace an original interval scale variable by the
difference of two ratio scale variables. However, this approach may make an inefficient or
weakly efficient (not efficient) unit efficient. We can demonstrate this feature with the
following example (see, a data set in Table 3). Assume that we have initially one interval scale
output and one ratio scale input, and our aim is to consider efficiency of the units by using an

7 Variable Returns to Scale
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output-oriented VRS-model. We split the output variable into two parts such that the original
output is the difference of two ratio scale variables. The old variable is replaced by the first
new variable and the second one is defined to be a new input. Thus e.g. the old output of unit
A is received as a difference 4-3. By the original model, we obtain that units A and B are
efficient, and C weakly efficient (not efficient) and D is inefficient. With the new model, we
obtain that all units are efficient. We assume that we know that the new ouput and input are
measured on a ratio scale.

Table 3. Splitting an interval scale output variable into one ratio scale output and one ratio
scale input variable

Original Variables New Variables
DMUs|Output Input Current Status |Output New InputNew InputOrig. New Status
A 1 1 Eff. 4 3 1 Eff.
B 2 2 Eff. 5 3 2 Eff.
C 2 3  Weak Eff. 4 2 3 Eff.
D 0 2 Ineff. 6 6 2 Eff.

Dehnokhalaji et al. 2010 proposed another way to measure efficiency, when variables are
measured on either interval or ordinal variables. The method is based on the idea to locate a
linear value function passing through the unit under consideration such that the number of
better units is minimal. The method recognize efficient, weakly efficient, and strongly
inefficient unit. The only problem is that the efficiency measure is not a standard one.

3.3 Some Theory

In this section we prove that the original problem and the transformed problem have the
same solution. Let’s consider closer the formulation (3.1b):

Theorem 1. The problem (3.6) has a finite solution iff the problem (3.1b) has a finite
solution, where matrix F is a non-singular p X p-matrix. In case the solution is finite, they are
identical.

max ¢ + es'1

s.t.

FZ1 - FDs — oFD || = Fz, (3.6)
A1=1,

A>0,s=>0,

€ >0, ("Non-Archimedean”).

Proof. If {¢*, 2%, s*} is the finite optimal solution of problem (3.1b), then it is also a feasible
solution to problem (3.6). Thus ¢* = ¢*, where {(ﬁ*,/_l*j*} is the optimal solution of problem

(3.6). By multiplying the constraints FZA — FDs — ¢FD [3:)0] =F [ig] by the inverse F~! of a

non-singular matrix F, we obtain the corresponding constraints of (3.1). Hence it follows that
16



@* > @*, and further ¢* = $*. Moreover, A* = 1* and s* = 5*. The both solutions are finite or
the both ones are unbounded. ®

The result of Theorem 1 shows that applying a non-singular transformation does not
change the efficiency scores of DMUS. This is stronger than the Lemma 2 which considers only
the status of DMUs.

As a result from this theorem we see that if two sets of variables can be obtained from each
other by applying a non-singular transformation, then the results of the efficiency evaluations
are the same. This result is in accordance with the common sense that if two sets of variables
convey the exactly the same information, the result of the evaluations should be the same.

4 Singular Linear Transformation of the Variables

So far we discussed the case of applying a non-singular transformation, which does not
change the number of variables in the problem. In other words, the dimension of the problem
does not change under a non-singular transformation. But if the transformation is singular, it
means that some information will be lost after the transformation, and the dimension of the
problem will decrease. Despite the fact that the amount of information will be smaller,
singular transformations build a useful technique for reducing the number of variables to
overcome the curse of dimensionality.

When the problem consists of too many variables, then the number of variables has to be
reduced. They are two techniques which are usually used for this purpose:

1. Selecting a subset of variables either objectively or subjectively

2. Constructing the linear combinations of the variables either subjectively or objectively.

There are many ways to carry out those selections. However, some of them lead to wrong
results. Next we consider closer those two different main techniques. The both cases can be
considered as a singular linear transformation.

4.1 Selecting a subset of variables from among potential variables

Let’s consider our students’ performance example. We noticed that the variables EG and TG
best describe the performance of the students (Figure 1a). Students B and C were diagnosed
efficient, students A and D weakly inefficient, and student E was strongly inefficient. If we
have decided to use only one observed output variable, we have to choose either EG or TG.
The data can be read from Table 1 from columns EG and TG. Quite many of the changes will
happen. For instance, on variable EG a weakly inefficient student will become efficient (A), a
weakly inefficient student (D) and an efficient unit (C) become strongly inefficient, an efficient
student (B) remains efficient, and finally, strongly inefficient student (E) will stay strongly
inefficient. The corresponding changes can be observed on variable TG as well.
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To drop variables is technically a correct method, because the dominating cone remains a
pointed cone in a sub-space, and thus it is a feasible dominating cone. Which variables are the
best ones to carry on the best performance is an open question. Jenkins & Anderson (2003)
proposed a method to omit the variables that are highly correlated. The method provides a
systematic and objective method to choose variables. It based on the statistical properties of
the variables and thus it is not perhaps to best way to choose variables for Data Envelopment
Analysis. However, it is technically correct and thus does not cause completely wrong results
such as that a strongly inefficient unit becomes efficient. This may happen, when for the
reduction of variables are used Principal Component Analysis, which we will consider in the
next sub-section.

4.2 Reducing dimensions by using principal component analysis

Another commonly used technique to reduce the number of variables in DEA is Principal
Component Analysis (PCA) (see, e.g. Adler & Golany 2001, 2002). Principal Component
Analysis is a statistical multivariate method and it seeks the best standardized linear
combinations of the original variables in the sense that “best” is defined by maximizing
variance. A large variance “separates out” the units in DEA, but not necessarily on the basis of
efficiency. Actually, the purpose of PCA is suitable to DEA as well: “PCA looks a few linear
combinations which can be used to summarize the data, losing in the process as little
information as possible. The attempt to reduce dimensionality can be described as
parsinomous summarization of the data.“ (Mardia et al. 1988, p. 213). However, “to lose
information” does not mean in DEA the same as in statistics.

The problem of using PCA to reduce the dimension is illustrated by Figure 4. In panels (a)
and (b) of Figure 4, two different random DEA problems are illustrated and principle
components are shown as arrows. The first and the second PCs are shows as PC1 and PC2. If
we use the first principle component in the analysis, the results are quite satisfactory in panel
(b) and completely useless in panel (a). In panel (a), some efficient units are diagnosed “very
inefficient”. Instead, in panel (b) efficient units are “almost efficient” and inefficient units “
inefficient”.
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Figure 4. lllustration of PCA of two different settings.

Thus we see that since the basic foundations of applying singular transformations on DEA
problem is not laid mathematically, the available approaches may lead to unacceptable
results. How to make a singular linear transformation in such a way that the results are
reasonable is the topic of our ongoing research project.

5 Conclusions

In this paper, we have studied the use of the linear transformation of variables in DEA
problems. We have introduced a dominating cone concept, which plays an essential role in
transforming variables. The dominating cone is required to be pointed. If this property will
lose in transformation, the results may be completely misleading. A non-singular
transformation does not change the status of a unit. Hence, choosing any linear combination
of variables does not change the result of problem, as long as the decision maker keeps the
transformation non-singular.

An interesting topic for future research is study which kind of the projection of the
dominating cone causes the loss of pointed property in singular transformation. Another
interesting research question is: how to reduce the dimensions of the problem with losing as
little information as possible. What is a good measure for this information:
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e The rank order of efficiency scores?
e The number efficiency units?
e etc

Even though reducing the dimension of a DEA problem is essentially interesting and useful,
there is a very little mathematical foundation for approaches. We presented this issue in a
simple example demonstrating a risk to have useless results when used a single linear
transformation. As one interesting future research topic, the properties of a singular linear
transformation and its effects on the dominating cone must be studied and the conditions for
acceptable singular transformations should be established.
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