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A Note on Calculation of CVaR for Student’s

Distribution

Andriy Andreev∗and Antti Kanto†

26th May 2004

Abstract

This study provides an analytical formula for CVaR, calculated for
t-type distributions with non-integer degrees of freedom. We general-
ize standard formulas, calculated in assumption of normal log-returns
(see, e.g. Jorion, 2000) without compromising on difficulty of the
calculation procedure involved. We also extend results of Heikkinen
and Kanto (2002) to show the impact of kurtosis on values of CVaR.
Results are summarized in a closed-form formula which can be effort-
lessly used by risk managers in evaluation risk exposures for a family
of heavy tailed distributions. Examples of calculations are included.

1 Introduction

Risk managers and regulators need measures for risk. There are two com-
mon measures of risk: Value at Risk (V aR) and Conditional Value at Risk
(CV aR) (Jorion, 2000; Artzner et al., 1999). The former is the lower bound
that is reached with given probability, usually 95%, 97,5%, 99% or 99,5%.
The latter gives the expected loss assuming that the lower bound is reached.
The traditional way is to assume returns to be Normal. However, in practice
this assumption seldom holds, because the tails are heavier than in the Nor-
mal case. One possible alternative would be Student’s t-distribution (Stu-
dent, 1908), which has light heavy tails. Student, in his seminal article
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considered distributions with integer degrees of freedom, but mathematic-
ally this is not necessary. In this paper, we allow degrees of freedom be
non-integer. A nice property of this class of distributions is that kurtosis and
degrees of freedom have a simple relationship. Therefore, degrees of freedom
can easily be estimated using the moment method. In practice, the kurtosis
is often larger than six leading to non-integer degrees of freedom between
four and five.

The critical values of Student’s t-distribution with integer values are well
reported in standard textbooks. Recently, Heikkinen and Kanto (2002) re-
ported them with several non-integer values. In this paper a compact formula
for CVaR with non-integer degrees of freedom is presented. It shows that if
the data is heavy tailed, i.e. has large kurtosis, the CVaR calculated using
the Normal assumption may differ significantly from the t-distributed one,
which takes high kurtosis in account.

Section 2 provides proofs and formulas. In Section 3 we examplify the
findings. Section 4 concludes.

2 Calculation of VaR and CVaR for Student’s

t-distributions

VaR literature (see e.g. Alexander, 1998; Jorion, 2000) often assumes logar-
ithmic returns to be normally distributed, implying excess kurtosis to be zero.
This condition is too restricitve and does not get empirical support. Standard
statistical tests suggest heavy tails for most of financial time series. Student’s
t-distributions constitute a family that allows for modelling of non-zero excess
returns. Density (see Abramowitxand Stegun, 1971) of non-central Student
t-distribution has the following form

f(x) =
Γ(ν+1

2
)

Γ(ν
2
)
√

πβν
(1 +

(x − µ)2

βν
)−(1+ν)/2, (1)

where µ is a location parameter, β is a dispersion parameter, and ν is a shape
parameter, or degrees of freedom. Standard t-distribution assumes µ = 0,
β = 1, and ν to be an integer. We follow Heikkinen and Kanto (2002) by
assuming non-integer degrees of freedom and applying method of moments
for estimation of parameters.

Calculation of CVaR for normal random variables boils down to hazard
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rate evaluation at significance level quantile, i.e.

CV aRn = − f(q)

F (−q)
(2)

By construction CVaR should be always larger than VaR. Simple check shows
that classical CV aRn formula for normal random variable produces mis-
leading results if applied directly to t-distributions, i.e. one can easily find
quantiles of t-distribution for which this survival intensity is smaller than the
estimate value for V aRt.

We calculate analytically the correction term which fixes the classical
formula for t-distributions. CVaR of t-distribution (see 1) as follows

CV aRt =

∫ q

−∞

xf(x)dx =

∫ q

−∞

x
Γ(ν+1

2
)

Γ(ν
2
)
√

πβν
(1 +

x2

βν
)−

1+ν

2 dx

Let ν > 1. Straightforward integration by substitution y = x2/βν results in

q∫

−∞

xf(x)dx = − βν

ν − 1

(
1 +

q2

βν

)
f(q)

Furthermore, since
q∫

−∞

f(x)dx = F (−q) by symmetry of t-distribution, we

have

CV aRt = − βν

ν − 1

(
1 +

q2

βν

)
f(q)

F (−q)

The second moment of the t-distribution can be estimated as m2 = βν
ν−2

.

Assuming ν > 2, we get the moment estimator β = ν−2
ν

m2, yielding

CV aRt = −
(
(1 − ω)m2 + ωq2

) f(q)

F (−q)

where ω = 1
ν−1

.
Let ν > 4. Simple calculation yields ω = kur/(6+3kur), as ν = 4+6/kur.

Using moment estimators s2 , k̂ur and ω̂ = k̂ur/(6 + 3k̂ur), we finally get
the estimator

̂CV aRt = −
(
(1 − ω̂)s2 + ω̂q2

) f(q)

F (−q)
, (3)
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that can be thought of as a weighted sum of sampled variance and squared
quantile.

Figure 1 The weights as a function of kurtosis in formula (3)

Figure 1 demonstrates that the impact of the “quantile” term is growing
with growth of excess kurtosis but this growth is bounded by weight of 1/3.
One can see that kurtosis value of 40 is already big enough to use formula 3
in the limiting form

̂CV aRt = −(
2

3
s2 +

1

3
q2)

f(q)

F (−q)
(4)

Another limiting case arises when excess kurtosis iz zero. Formula (3) can
be rewritten as a function of kurtosis

̂CV aRt = −(
2k̂ur + 6

6 + 3k̂ur
s2 +

k̂ur

6 + 3k̂ur
q2)

f(q)

F (−q)
, (5)

and k̂ur = 0 suggests no impact of “quantile” term. The resulting formula
is a classical CVaR formula 2 for normal log-returns, i.e. hazard evaluated
at the appropriate quantile.

Formulae 3 and 4 are non-biased estimates. They play the same role

for calculation of conditional value at risk as V aRt = tνα

√
β̂, where β̂ =

( 3+ ˆkur

3+2 ˆkur
)s2 (see Heikkinen and Kanto, 2002) for calculation of value at risk.
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3 Simulation Results

Results of numerical integration for non-integer degrees of freedom and cor-
recting coefficient values for calculation of V aRt have been summarized by
Table 2 in Heikkinen and Kanto (2002) . The effect of kurtosis on V aRt at
different probability levels has been presented in Figure 1 of the same paper.

Our first objective is to report effect of excess kurtosis on CV aRt at
different probability levels and compare these findings with results one would
get in assumption of normal log-returns. Formula 3 is the key for producing
Figure 2.

Figure 2 The effect of excess kurtosis on CVaR t, s=1

Heikkinen and Kanto (2002) have found that effect of kurtosis on value
of V aRt is almost insignificant for level 97.5%, while it has a somewhat
decreasing effect at lower levels, and increasing effect for higher levels. In
contrast to their findings, higher kurtosis increases CV aRt at all levels, with
a mild exception for 0.9 significance level, when CV aRt slightly decreases
for small values of kurtosis in order to recover its level for higher ones. This
increasing behaviour CV aRt manifests itself stronger as significance level
approaches 1. For levels above 97.5%, increasing effect becomes very strong
in comparison to V aRt calculations.

Figure 2 provides a clear way to see the differences between CV aRt and
CV aRn. Since the excess kurtosis is zero for normal random variables, the
corresponding values of CV aRn are points on the graph. They are obviously
ordered in the way that the higher point corresponds to higher level. By
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definition of Student’s t-distribution, when excess kurtosis tends to zero, the
whole distribution tends to normal distribution. Surprisingly, one can see
that CV aRt < CV aRn for 90% level. This effect is mild but present. As one
increases the level, graphs match intuition better: effect of excess kurtosis
increases the risk value.

Figure 3: The effect of kurtosis on ratio of (C)VaR t to (C)VaR n

Figure 3 scales effect of the excess kurtosis on (C)V aRt

(C)V aRn

. Intuitive hypo-

thesis that higher kurtosis implies higher (C)V aRt surprisingly fails for both
ratios with more pronounced effect observed for V aRt

V aRn

.
All lines of Figures 3a, 3b are ordered as functions of p-values: larger

p-value corresponds to larger value for (C)V aRt

(C)V aRn

. This observation makes ana-

lysis simple. Another important observation is that for all p-values CV aRt

CV aRn

>
V aRt

V aRn

.
The most interesting question to answer is when the ratio equals to one,

i.e. when (C)V aRt = (C)V aRn. Answers are different for CVaR and VaR.
In line with Heikkinen and Kanto (2002), Figure 3b suggests p = 0.975 to
be the level at which V aRt ≈ V aRn for all values of kurtosis. Alternatively,
V aRt > V aRn for p > 0.975, while V aRt < V aRn for p < 0.975.

Somewhat surprisingly, similar effect is observed for the ratio CV aRt

CV aRn

(see

Figure 3a). It is not that straightforward as for V aRt

V aRn

: the threshold level
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depends upon value of kurtosis and belongs to p-value interval [0.9, 0.95].
CV aRt

CV aRn

takes values on both sides of 1 for the same p-level. For instance, at

0.9 level, CV aRt

CV aRn

<1 for all levels but if p = 0.95, CV aRt

CV aRn

> 1 for kur > 1, while
CV aRt

CV aRn

= 0.99 for kur = 1.
Finally, we also demonstrate our findings using the same Nokia stock

which has been used to illustrate effect of excess kurtosis on calculation of
VaR (see Heikkinen and Kanto (2002)). The stock has been followed for four
and a half year with history of large fluctuations on monthly scale. We apply
formula 5 with s = 20% and kur = 10, indicating a Student’s t-distribution
with 4.6 degrees of freedom.

Table 1: Monthly estimates for Nokia stock

Confidence level 90% 95% 97.5% 99% 99.5%

CVaR (Normal) 38.6% 45.4% 51.4% 58.6% 63.6%
CVaR(Student, kur=10) 36.8% 50.7% 66.4% 90.1% 110.7%

Table 1 summarizes the results. It indicates rapidly growing difference in
value of CV aR for higher p-values, contrasting with much smoother beha-
viour for the V aR estimates.

4 Concluding Remarks

This article presents a simple closed form formula for calculation of con-
ditional value at risk (CVaR) for Student’s t-distribution. Formula 3 is a
weighted average of the estimated variance and the square of the allowed
critical point. It contains a classical formula for calculation of CVaR for nor-
mal distributions as a partial case. Since financial data usually has a feature
of heavy tails, it is of interest for practicians. Assuming finite kurtosis, the
weights are easy to estimate from the data and therefore formula 3 provides
a quick and useful tool in risk management.
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