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Abstract 
 
In the strategic level decision-making of road network maintenance, the condition of the 
network plays a central role, both as an input to the evaluation process and an outcome of 
the proposed maintenance works. The condition is perceived by the road users and affects 
the costs of the traffic flow on the network. Without maintenance the condition of the network 
deteriorates. The current or future condition and the deterioration rate of the road network 
can be estimated using measurements or statistical models. The resulting estimates of both 
methods exhibit variation to some degree. But how accurate is the condition information 
when based on current measurements as opposed to predicting the condition based on 
previous years' measurements? How does the time interval between the measurements (1 to 
3 years) affect the accuracy of the condition information?  
 
A data set of International roughness index (IRI) measurements over three years (2000 – 
2002) was drawn from the road condition data base of the Finnish Road Administration 
(Finnra). The data was randomly partitioned into two sets of equal size and one of these sets 
was used for developing regression models that predict the deterioration of roughness over 
one and two years. The models were validated using the other half of the data set not used 
for fitting the models.  
 
Since the IRI-values were found to be approximately log-normally distributed, the models 
were developed for the natural logarithms of IRI. The comparison of the residual distribution 
in the logarithmic model and measuring accuracy in logarithmic terms facilitates direct 
consideration of the relative accuracies. The results indicated an increase of 2.5 – 4.6 %-
units in the standard deviation involved in the prediction of the logarithmic IRI of a road 
section compared to measuring it. The benefits from measuring instead of predicting the 
current condition from previous measurement have to be compared with the cost of data 
collection. The results of this study emphasise the importance of the accuracy of the 
measured data.  
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1 Introduction and objectives 
 
The purpose of strategic level decision-making is to justify the funding needed for road 
network maintenance and to allocate these funds effectively between different sub-networks 
and maintenance actions. The condition of the road network is an essential input in the 
decision-making process, and it enables the quantification of benefits from maintenance, 
both to the road user and the agency.  
 
Road condition, or rather its decay, is manifested in the change of the surface profile and 
cracking of the surface layer. The surface profile, usually considered as the longitudinal and 
transversal unevenness of the road, is measured for example using a road surface 
monitoring vehicle based on laser technology. The cracking of the surface layer can be 
monitored visually or using a high-speed data collection of digital images connected with 
automated image processing.  
 
Longitudinal unevenness has the greatest impact on the driving comfort and the road user 
costs (Sayers et al. 1986). The most widely used measure of longitudinal unevenness is the 
International Roughness Index, IRI (see e.g. UMTRI 2004). Several variables are calculated 
from the transverse profile of the road, the most obvious of them being the rut depth. The 
extent and severity of cracking of the surface layer can be expressed for individual types of 
cracking, or a combined damage index can be used. However, in this paper, we use data for 
longitudinal unevenness in terms of IRI [mm/m] to demonstrate our methodology that is 
applicable to any condition variable measured and modelled for a road network.  
 
Often it is not reasonable to measure the entire road network in consideration each year. 
Various performance models have been proposed, that can be used for predicting either 
future or current road condition based on previous measurements (European Commission 
1999, Jämsä 2000, Odoki & Kerali 2000). From this ground, the question arises how 
accurate the condition information is in such a case. It is known that certain variation in the 
measured condition variables exists and that this variation affects the estimated deterioration 
of the road and the accuracy of the predicted condition information.  
 
The focus of this paper is on how to collect the road network condition data for strategic level 
economic analysis. The objective of the research was to provide answers to the following 
questions:  

1. How does predicting road network condition based on previous years' measurements, 
instead of measuring the condition, affect the accuracy of the condition distribution?  

2. How does the time interval between the measurements (1 to 3 years) affect the 
accuracy of the condition information?  

 
In section 2 of this paper, the data set used in the analysis, and the procedures of choosing it 
are described. The methodology used in modelling and in the estimation of the accuracy of 
both measured and modelled values is described in section 3. In section 4 the results are 
shown and discussed, and in section 5, the summary and conclusions of this study are 
presented.  
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2 Data 
 
2.1 Description of the data 
 
A data set was drawn from the road condition data base (Kurre) of the Finnish Road 
Administration (Finnra). For the purposes of this study, only data for roughness 
measurements (IRI, mm/m) was considered (Sayers et al. 1986, Sayers 1995). A similar 
analysis can, and indeed should, be made for any of the various road condition variables 
included in the condition data base.  
 
The condition data in the data base is stored in 100-meter sections. For the data set used in 
this paper, three consecutive years 2000-2002 were considered. All 100-meter sections with 
a roughness measurement on all three years 2000, 2001 and 2002 were selected for the 
analysis. Sections with recorded maintenance activities between the two measurements 
were excluded. Further reduction of data is described in section 2.2. The data base covers 
the whole network of paved public roads in Finland, which is approximately 50 000 km. With 
these selection criteria a data set of 65 592 observations (6 559 km) was considered.  
 
The distribution of IRI-values and the values of the natural logarithm of IRI for the data from 
year 2002 are shown in Figure 1 and the statistics that describe the entire data set are 
shown in Table 1. The mean value increases slightly in time which indicates deterioration of 
the road network. It can be noted that also the standard deviation slightly increases in time. 
The minimum and maximum values together with several percentile points are shown in 
Table 1 as well. 
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Figure 1 Distribution of IRI (left diagram) and the natural logarithm of IRI (right diagram) in 
2002. Fitted normal curves are superimposed on the histograms in order to facilitate 
comparison of the distributions.  
 
It is clearly seen, that the distribution of IRI is by no means normal, whereas the distribution 
of the logarithmic IRI is fairly close to normal. Our experience is that many road condition 
variables exhibit similar behaviour. They are, by definition, assigned positive values only, and 
extremely high values are not restricted. Even if some of the high values are caused by 
errors, some of them depict actual road condition. As a consequence, the resulting 
distributions are right skewed like the one for IRI shown in the left diagram in Figure 1. The 
skewness of the distribution is also illustrated by the skewness coefficient of IRI far greater 
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than 0 (see Table 1). The skewness values for the logarithmic IRI range from 0.404 to 0.428. 
The excess kurtosis is close to 0 for logarithmic values which also indicates normality of the 
distribution. We conclude that the logarithmic values of IRI can be described as being 
approximately normally distributed, i.e. IRI values can be considered log-normally distributed. 
As will be shown later, the use of logarithmic values also allows direct consideration of the 
relative accuracies of the measured and modelled values.  
 
 
Table 1 Statistics of the data set used in the analysis 
 
  IRI2000 IRI2001 IRI2002 ln(IRI2000) ln(IRI2001) ln(IRI2002)
N  65592 65592 65592 65592 65592 65592 
Mean  1.50 1.55 1.62 0.335 0.365 0.404 
Std. Deviation  0.615 0.656 0.693 0.366 0.373 0.380 
Skewness  1.892 2.052 1.932 0.404 0.428 0.415 
Excess 
kurtosis  7.47 9.22 7.43 0.18 0.22 0.14 
Minimum  0.47 0.44 0.47 -0.755 -0.821 -0.755 
Percentiles 1 0.67 0.69 0.70 -0.400 -0.371 -0.357 
 5 0.80 0.82 0.85 -0.223 -0.198 -0.163 
 10 0.89 0.91 0.94 -0.117 -0.094 -0.062 
 20 1.02 1.04 1.08 0.020 0.039 0.077 
 30 1.13 1.16 1.20 0.122 0.148 0.182 
 40 1.24 1.28 1.32 0.215 0.247 0.278 
 50 1.36 1.40 1.46 0.307 0.336 0.378 
 60 1.49 1.54 1.61 0.399 0.432 0.476 
 70 1.66 1.72 1.79 0.507 0.542 0.582 
 80 1.89 1.96 2.05 0.637 0.673 0.718 
 90 2.27 2.36 2.49 0.820 0.859 0.912 
 95 2.66 2.78 2.93 0.978 1.022 1.075 
 99 3.61 3.80 3.98 1.284 1.335 1.381 
Maximum  9.99 11.77 11.02 2.302 2.466 2.400 

 
 
2.2 Variation in the data and exclusion of odd observations 
 
The roughness is measured using vehicles that are part of the normal traffic flow. A number 
of factors are known to affect the variation in the obtained data from any single year:  

• The accuracy of the measurement equipment. 
• The variability between different equipment of the same kind. 
• The variation in the lateral position of the measurement vehicle with the same 

operator. 
• The variation in the lateral position between the operators. 
• The conditions prevailing at the time of measurement.  
• The seasonal variation of the profile.  

 
In addition to that, variation of the data in consecutive years is caused by:  

• The variation of the profile from year to year (deterioration).  
• Maintenance works that are not recorded.  

 
Each vehicle has certain measurement accuracy, which is the variation of measured values 
between repeated runs along the same profile. This variation can be considered random and 
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is due to the mechanics of the measuring apparatus. A random error also exists between 
vehicles driving along exactly the same longitudinal profile. In practice, comparison of results 
from repeated runs using either the same or different vehicles in practically the same 
conditions (weather, etc.) is hampered by variation in the actually measured profile due to 
unavoidable lateral wander of the vehicle. In this study, the effect of variation in the lateral 
position both due to each operator and among several operators is assumed to be random.  
 
The seasonal variation of the profile causes additional variation in the IRI values. The 
measurements for this data set were carried out between April and November. The effect of 
the seasonal variation has not been quantified. The effects of different sources of variation 
have been studied in detail by Karamihas et al. (1999).  
 
Deterioration is the trend we are trying to capture using the logarithmic regression model. 
The other factors of variation mentioned above cause random variation around this trend. In 
our data set, we cannot explicitly determine the contribution of each factor to the total 
variation. Every year, quality control measurements covering some 1-4 % of the measuring 
program have been done. In the quality control measurements done in 2001 and 2002 
(Hätälä and Ruotoistenmäki 2002), it was required that in 90 % of the cases, the absolute 
value of the difference in the measured IRI-value between any two vehicles (and operators) 
within the same year is less than 0.5 mm/m. The deterioration of IRI between two years' 
measurements should in principle be non-negative, but in the presence of measurement 
errors an improvement of 0.5 mm/m in the measured IRI due to random variation could be 
allowed.  
 
The roughness of a road section can also be improved because maintenance works are 
actually carried out between any two measurements, but not recorded in the data base. The 
length of the works can be very short (<100 meters), or they can extend to several hundred 
meters. The works can be of any kind, but typically they are either light maintenance 
(correcting ruts) or localised reconstruction work. In a large data set, such as the one used in 
this study, sections with improved IRI with no recorded maintenance work do exist, even 
though the distribution of IRI shows that deterioration generally takes place (Figure 1 and 
Table 1).  
 
We wanted to eliminate the most obvious errors due to unrecorded maintenance works from 
the data set. However, exclusion of single outliers, i.e. any single observations that show an 
improvement of IRI greater than 0.5 mm/m would cause a serious truncation bias in the data, 
see Figure 2a. This is undesirable and results in data that does not conform to basic 
requirements of regression analysis. We have therefore chosen to exclude only those 
measurements for which any two or more consecutive 100-meter sections have a change in 
the measured IRI less than -0.5 mm/m between any two years: IRI2002 – IRI2001< -0.5, 
IRI2001 – IRI2000< -0.5, or IRI2002 – IRI2000< -0.5. Figure 2b shows the remaining data 
after this operation. Obviously, the data is much less distorted by this procedure as 
compared to the procedure shown in Figure 2a.  
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a) b) 

 
Figure 2 Scatter plots based on the data from 2001 and 2002: a) The disregarded method of 
excluding any single observation with IRI2002 – IRI2001 < -0.5; b) The adopted method of 
excluding observations only when measurements from two or more consecutive 100-meter 
sections exhibit IRI2002 – IRI2001 < -0.5.  
 
 
3 Methods 
 
3.1 Modelling 
 
To compare the accuracy of current measurements and forecasted values based on previous 
years' measurements, cross-validation methods were used: The data set was randomly 
divided into two parts of approximately equal size (Figure 3). One half of the data set was 
used for developing regression models that predict the condition of a 100-meter section in 
the year 2002 based on its measured condition in the year 2000, 2001 or both. The identified 
models were then tested using the other half of the data set, which was not used for model 
determination. The residuals between the measured and predicted values were calculated to 
determine modelling accuracy which was then compared with the accuracy of the 
measurement.  
 

2000 2001

Distribution of the
model residuals

• randomly draw half of the data set for modelling
• use other half of the data set for calculating modelling error
• compare modelling error over 1 and 2 years with measurement error

2002

Model for the logaritmic IRI
over 1 and 2 years

 
 
Figure 3 Illustration of the modelling and validation methodology 
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The form of the linear regression model that predicts the logarithmic IRI value in a particular 
year (lnY), based on the previous years’ logarithmic measurements (lnXj, j = 1, 2, ..., k) is  
 

εββββ +++++= kk22110 Xln...XlnXlnYln ,    (1) 
 
where β0 is the regression constant; 
 βj the regression coefficients of the independent variables, j = 1, 2, ..., k; 
 ε the error term.  
 
In this study, the following regression models were considered:  
 

εββ ++= 210 XlnYln         (2a) 
εββ ++= 110 XlnYln         (2b) 

εβββ +++= 22110 XlnXlnYln ,      (2c) 
 
where lnY is the logarithmic IRI in year 2002 and lnX1 and lnX2 are one and two year old 
logarithmic IRI-measurements, respectively.  
 
 
3.2 Comparing the accuracy of the modelled and measured values 
 
When using any of the equations (2a), (2b) or (2c) to predict the logarithmic IRI of a 100-
meter section based on previous years’ measurements, uncertainty is associated with each 
individual prediction. This uncertainty can be described by the standard deviation estimate sY 
of the predicted values, which in the case of one independent variable (equations 2a and 2b) 
is (see e.g. Pindyck & Rubinfeld 1997):  
 

x

2
0

Y SS
)xlnx(ln

n
11ss −
++= ,      (3) 

 
where s is the standard deviation estimate of the error term (ε) in the regression 

equation;  
 n the number of observations;  
 lnx0 the value of the independent variable;  
 xln  the mean of the independent variable; and  
 SSx the sum of squares of the independent variable lnx indicating the total 

variation of that variable, ∑
=

−=
n

1i

2
ix )xlnx(lnSS .  

 
In this case, the number of observations is so large (n = 32796) that both of the latter terms 
under the square root are close to zero. Therefore, the value of the square root is close to 
unity and the standard deviation of the predicted values can be estimated directly based on 
s, the standard deviation estimate of the error. We found this approximation to be correct to 
the fourth decimal.  
 
The standard deviation estimate of the error (s in equation 3) is calculated from the residuals 
between the measured and predicted values of the logarithmic IRI in year 2002. The 
residuals ei; i = 1, 2, ..., n, are calculated from the other half of the data set not used for fitting 
the models as follows:  
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)2002IRI(̂ln)2002IRIln(ei −= ,      (4) 
 
where )2002IRIln(  is  the measured logarithmic IRI-value in 2002; and 
 )2002IRI(̂nl   the predicted logarithmic IRI-value for 2002.  
 
In short, the accuracy of modelling is considered based on the standard deviation estimate of 
the predicted values (i.e. sY given by equation 3), and is approximated by the standard 
deviation s of residuals ei from equation (4). It is then compared with the standard deviation 
of the measured values of logarithmic IRI, calculated as explained in the remaining part of 
this section. An analogous analysis is performed in the case when there are two independent 
variables (equation 2c), i.e. when the logarithmic IRI value in the year 2002 is predicted 
based on the measured logarithmic IRI from both of the previous two years.  
 
Due to the extent of the whole measurement program (approximately 30000 km annually) 
several (4 or 5, depending on the year) measurement vehicles have been used for 
production measurements, so that each 100-meter section is measured by one vehicle. The 
measurement accuracy is here understood as the standard deviation of the measured 
logarithmic IRI values. Since there is only one measurement per each 100-meter section and 
each vehicle, the accuracy of a single measurement is not known. However, an estimate was 
developed based on the standard deviation of the difference between the logarithms of the 
measured IRI values using two vehicles that measure the same 100-meter sections.  
 
In addition to the production measurements, separate quality control measurements were 
taken using another vehicle for 3148 selected 100-meter sections. Each vehicle used for 
production measurements has also been used as a control vehicle for another one of the 
vehicles (Hätälä and Ruotoistenmäki 2002). The logarithmic difference d of the measured 
values from any two vehicles is given by  
 

d = ln(IRI1) – ln(IRI2),        (5) 
 
where IRI1 is the measured IRI value from production vehicle; and 

IRI2  the measured IRI value from control vehicle. 
 
In this analysis, the logarithmic differences from all pairs of vehicles have been combined 
into one data set. This was done by appending the measurement sequences from different 
roads so that the original order of 100-meter sections was retained. In this data set, the 
autocorrelation of the logarithmic differences d is slightly negative (r= –0.10; excluding those 
pairs where the successive 100-meter sections come from non-adjacent road sections), so 
that it has only a minor effect on the variance estimate of the logarithmic difference between 
measured values from any two vehicles, which is given by  
 

Var [ln(IRI1) – ln(IRI2)] = Var[ln(IRI1)] + Var[ln(IRI2)] – 2Cov[ln(IRI1), ln(IRI2)], (6) 
 
where Var denotes variance and Cov denotes covariance.  
 
In the following it is assumed that 1) the variances of the logarithmic IRI are the same for all 
vehicles, i.e. Var[ln(IRI1)] = Var[ln(IRI2)] for each individual 100-meter section, and that 2) the 
covariance term disappears for each individual 100-meter section, i.e. measurement errors of 
two vehicles are uncorrelated. In addition, it is assumed that 3) the difference 
d = ln(IRI1) – ln(IRI2) is stationary across different 100-meter sections, i.e. it has constant 
mean and variance. In our data set these assumptions are approximately fulfilled, and thus 
the variance of the logarithmic IRI for a single measurement can be calculated as  
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[ ] [ ]
2

)IRIln()IRIln(Var)IRIln(Var 21 −
= .      (7) 

 
As the standard deviation is calculated as the square root of variance, the standard deviation 
of the logarithmic IRI for a single measurement is given by  
 

[ ] [ ]
2

)IRIln()IRIln(Stdev)IRIln(Stdev 21 −
= .     (8) 

 
 
4 Results and discussion 
 
The accuracy of the different models (equations 3 and 4) and the measuring accuracy 
(equation 8) are presented in Table 2.  
 
Table 2 The accuracy of modelling and measuring roughness 
 

Regression model 
Independent 
variable 

Dependent 
variable(s) 

Modelling 
accuracy Measurement Measuring 

accuracy 

ln(IRI2000) 0.1677 
ln(IRI2001) 0.1560 ln(IRI2002) 
ln(IRI2000) & 
ln(IRI2001) 0.1466 

Quality control 
measurements in 2002 0.1213 

 
 
The results show that the standard deviation of error is increased from 0.1213 when the 
logarithmic IRI is measured, to 0.1677 when a prediction model based on two-year old 
measurements is used. The logarithmic differences and the corresponding standard 
deviations can be interpreted as percentages. Thus the change is 4.6 %-units (0.1677 –
 0.1213 = 0.0464). Similarly, the standard deviation of error is increased to 0.1560 (by 3.5 %-
units) when a prediction model over one year is used and to 0.1466 (by 2.5 %-units) when 
the model predicting the logarithmic IRI is based on the measured logarithmic IRI from both 
of the previous two years.  
 
The practical consequences of these results should be evaluated by considering how the 
increased uncertainty in the input affects the output of the decision-making process. The cost 
of measuring the IRI for the data set used in this study was in the neighbourhood of 
17 € / km. Thus the cost of measuring the data set of 65 592 observations was approximately 
111 500 €.  
 
The effect of measuring can also be expressed as € / %-unit savings per kilometre. By 
measuring one kilometre of road, an improvement of 4.6 %-units in the accuracy of the 
logarithmic IRI is achieved, compared to modelling the logarithmic IRI value based on two-
year old measurements. The cost of measurements (17 € / km) divided by the improvement 
in accuracy leads to a range of 3.7 - 6.7 € / %-unit savings per kilometre, depending on the 
model.  
 
The benefits of the investment in the measurements should exceed the cost in order to justify 
the investment. The benefits may include improved accuracy of fund allocation and the use 
of data for other purposes such as design and quality control of procured maintenance 
works. The costs of wrong decisions due to the inaccuracy of the condition data could also 
be quantified, and used as lost or negative benefits in the analysis.  
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The time interval between the measurements has a slight but clear effect on the accuracy of 
the condition data. The results indicate that the condition of the road network should be 
predicted using as new measurements as possible. Also, if measurements from several 
years are available, they should be considered for prediction.  
 
The modelling error includes the measurement error. Both the measurement error (each 
year) and the modelling error (from year to year) are far greater than the rate of deterioration 
of IRI. The following model illustrates this:  
 

IRI2001)ln(9277.00656.0)ln(IRI2002 +=      (9) 
 
If the IRI of a road section is, for example, the median value 1.4 mm/m in year 2001, then 
according to equation (9), it is 1.46 mm/m in year 2002, which shows an increase of only 
0.06 mm/m per year, or only 0.041 (=4.1 %) in logarithmic values. The standard deviation of 
the logarithmic IRI values based on the control measurements in 2002 is 0.1213, which is 
approximately three times the rate of deterioration! This demonstrates the continuing need to 
improve the measuring accuracy, as also noted, among others, by Virtala et al. (2004).  
 
It has to be noted, that the numerical results depend on the data set that was used and more 
specifically, on the measurement equipment used for collecting the data. Therefore the 
estimates of the accuracy of the measured and predicted values or the models themselves 
cannot be generalised to other networks measured using other equipment. The method, 
however, can be transferred for use on any road network and any kind of equipment.  
 
 
5 Summary and conclusions 
 
The condition of a road network is an essential input to maintenance planning. The current or 
future condition and the deterioration rate of the road network are estimated using 
measurements and statistical models, both of which include variation. In this paper, these 
effects were studied using a data set of IRI-measurements from three years (2000-2002) 
drawn from the road condition data base of the Finnish Road Administration (Finnra). Two 
particular questions were addressed: How does predicting road network condition based on 
previous years' measurements, instead of measuring the condition, affect the accuracy of the 
condition distribution? How does the time interval between the measurements (1 to 3 years) 
affect the accuracy of the condition distribution? The main results of this study are the 
following:  

• The standard deviation of the error in the logarithmic IRI value is increased 
by 2.5 – 4.6 %-units, when a model is used for predicting the current condition from 
previous years’ measurements instead of measuring it. The amount of increase in the 
standard deviation depends on the age of the previous measurement and the 
corresponding model used.  

• The practical consequences should be evaluated by considering how the increased 
uncertainty in the input affects the output of the decision-making process. A cost-
benefit analysis of the condition measurements is recommended.  

• The benefit from measurements can be expressed as € / %-unit savings per 
kilometre. The cost of measurements (17 € / km) divided by the improvement in 
accuracy leads to a range of 3.7 - 6.7 € / %-unit savings per kilometre, depending on 
the model.  

• The results indicate that the condition of the road network should be predicted based 
on as new measurements as possible. Also, if measurements from several years are 
available, they should be considered for prediction.  
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• When determining the measurement error, one needs to consider the accuracy of the 
equipment, differences between several pieces of equipment and operators and 
conditions prevailing at the time of the measurement. This total variation in the 
measured data can be quantified from control measurements.  

• The modelling error includes the measurement error. Both the measurement error 
(each year) and the modelling error (from year to year) are far greater than the rate of 
deterioration of IRI. Therefore, the greatest need still is to improve the quality of the 
measured data.  
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