
HELSINKI SCHOOL OF ECONOMICS

WORKING PAPERS

W-381

Pekka J. Korhonen – Pyry-Antti Siitari

USING LEXICOGRAPHIC PARAMETRIC PROGRAMMING

FOR IDENTIFYING EFFICIENT UNITS IN DEA

W-381
ISSN 1235-5674

ISBN 951-791-902-6 (Electronic working paper)
2005

Pekka J. Korhonen – Pyry-Antti Siitari

USING LEXICOGRAPHIC PARAMETRIC PROGRAMMING

FOR IDENTIFYING EFFICIENT UNITS IN DEA

Quantitative Methods in Economics and
Management Science

December
2004

HELSINGIN KAUPPAKORKEAKOULU
HELSINKI SCHOOL OF ECONOMICS

WORKING PAPERS
W-381

© Pekka Korhonen, Pyry-Antti Siitari and
Helsinki School of Economics

ISSN 1235-5674
ISBN 951-791-902-6 (Electronic working paper)

Helsinki School of Economics -
HeSE print 2005

HELSINGIN KAUPPAKORKEAKOULU
HELSINKI SCHOOL OF ECONOMICS
PL 1210
FIN-00101 HELSINKI
FINLAND

Pekka Korhonen
Helsinki School of Economics
Runeberginkatu 14-16, 00100 Helsinki, Finland
Email: pekka.korhonen@hkkk.fi

The research was supported by the Academy of Finland.

All rights reserved. This study may not be reproduced in whole or in part without
the authors’ permission.

Acknowledgements: We would like to thank Prof. Jose Dulá for useful discussions
and providing us with the data files we used in our performance tests.

 2

ABSTRACT

In this paper, we propose the use of lexicographic parametric programming to

recognize efficient units in Data Envelopment Analysis (DEA). By using the
parameterization of the rhs - vector of the envelopment problem, we obtain the
efficiency curve which is traversing through the efficient frontier from unit to unit.
The units in the basis with any parameter value are efficient and the unit dominated
by a point on an efficient facet is inefficient. The second objective is needed to check
that efficient curve on the boundary of the efficient frontier stays on the boundary.

Keywords: Efficiency Analysis, Data Envelopment Analysis, Lexicographic,
Parametric Programming, Computational Aspects

1 Introduction

Charnes, Cooper and Rhodes [1978] developed Data Envelopment Analysis (DEA)
for evaluating the relative efficiency of comparable units called Decision Making
Units (DMUs) essentially performing the same task using similar multiple inputs to
produce similar multiple outputs. The units are assumed to operate under similar
conditions. Based on information about existing data on the performance of the units
and some preliminary assumptions, DEA forms an empirical efficient surface
(frontier). If a DMU lies on the surface, it is a referred to as an efficient unit,
otherwise inefficient. DEA also provides efficiency scores and reference set for
inefficient DMUs. The efficiency scores are used in practical applications as
performance indicators of the DMUs. The reference set for inefficient units consists
of efficient units and determines a virtual unit on the efficient surface. The virtual unit
can be regarded as a target unit for the inefficient unit.

The target unit is found in DEA by projecting an inefficient DMU radially1 to the
efficient surface. To check the efficiency of a unit, and to find the reference set and
the efficiency score for inefficient units requires the solving of an LP-model. The
“standard” basic algorithm solves iteratively an LP-model for each unit separately. At
each iteration, the rhs - vector and one column (direction vector) in the coefficient
matrix has to be updated. The optimal basis of the previous iteration is not valid for
the next iteration as such. Actually, it is not necessary to solve an LP – model for each
unit, because all units in an optimal basis for some unit are efficient, and those units
are not needed further investigation. The approach is usable in small problems2, but is
computationally ineffective in large scale problems.

Additional problems are caused by the weakly efficient solutions. The original
problem formulation (Charnes et al. [1978]) sometimes led to weakly efficient
solutions, but the authors recognized the problem and reformulated the model in
Charnes et al. [1979] by using a so-called non-Archimedean infinitesimal in the
model. There are two ways to deal with the infinitesimal in the model: 1) to replace it
by a small number or 2) to use a lexicographic approach. When a small number is

1) Term "radial" means that an efficient frontier is tried to reach by increasing the values of the current
outputs or decreasing the values of the current inputs, or doing the both ones simultaneously in the
same proportion.
2) Dulá and Lόpez [2002] called small problems the ones consisted of less than 500 units.

 3

used, it is important that it is properly chosen. If it is too big, some efficient units are
diagnosed inefficient. If it is too small, weakly efficient units are recognized efficient.
The lexicographic approach is a better way. When the optimal solution of an LP-
model is not unique, the second objective is used to check whether the unit is efficient
or not (see, e.g. Steuer [1986], p. 445).

When the number of the units is large, let us say many ten thousands or even
hundreds of thousands, computational aspects are important. Such problems appear
when, for example, all high-schools or hospitals in Europe are evaluated, or when the
efficiency analysis is made at an individual level. The straightforward approach to
formulate an LP-model for each unit with an unknown status does not work. It is too
time-consuming. Fortunately, the structure of the DEA-model makes it possible to
develop special techniques for large-scale problems.

There are only few authors who have studied computational problems in DEA. In
the paper by Ali [1993], the main idea was to restrict the basis entry. The basis always
consists of a set of existing (efficient) units. When a unit is diagnosed inefficient, the
corresponding column can be dropped from the set of potential basic vectors. In most
cases, the technique clearly reduced computation time. Dulá and Helgason [1996]
proposed the solving of the problem in two phases. In phase I, the extreme point
solutions of the polytope consisting of all units in the data set are defined. The
efficiency scores of the other vectors are computed in phase II by using the minimal
set of potential basic vectors, i.e. efficient extreme units. The idea was further
developed in the paper by Dulá et al. [1997]. The most recent developments by Dulá
and his associates are presented in Dulá and Lόpez [2002]. Because the computing
time as the function of the units increases more than linearly, Barr and Durchholz
[1997] proposed the partition of the problem. The idea makes it possible to first
identify the set of the efficient units in a small data set, and then to use those units to
build a set of potential basic vectors. The union of those sets consists of all efficient
units, but usually also inefficient units.

In this paper, we propose the use of lexicographic parametric programming
(Korhonen and Halme [1996]) to classify the units efficient and inefficient. Using that
technique, we may move from unit to unit along an efficiency curve. The units
entering the basis are recognized efficient and all units dominated by an efficient facet
are inefficient. The move on the curve is terminated, when the end unit is diagnosed.
The lexicographic parametric programming is needed to guarantee that the curve will
stay on the efficient frontier also in case when it reaches the boundary.

 After recognizing all efficient units, we may compute the scores of the inefficient
units in the second phase like proposed by Barr and Durchholz [1997] and Dulá et al.
[1997]. The number of the columns in these LP-problems is usually much smaller
than in the original problem.

The paper is given in six sections. In the next section, we review the main ideas of
lexicographic parametric linear programming. In Section 3, the basic DEA models
and necessary theory are represented and Section 4 consists of the main principles of
the procedure and illustrated with a numerical example. Computational results are
given and discussed in Section 5. Section 6 concludes the paper with some remarks.

 4

2 Lexicographic Parametric Programming

Consider the following problem (p > 1):

 lex max {c1x, ..., cpx }

 s.t. (2.1)

Ax = b
 x ≥ 0

where ck , k = 1, 2, …, p, are (1 × n) -vectors of the coefficients of the objective
functions , A is an (m × n) – matrix of coefficients, and the rhs-vector b is an (m × 1)
– vector.

For simplicity, we assume rank(A) = m. Notation “lex” refers to lexicographic
optimization. The solution of the lexicographic optimization problem has to be
optimal for each of the following models.

The model for the objective function c1x:

 max c1x

 s.t. (2.2a)
 Ax = b

 x ≥ 0,

The model for the objective functions ckx, k = 2, 3, …, p:

max ckx

 s.t. (2.2b)
 cix = qi*, i = 1, 2, …, k-1

Ax = b
 x ≥ 0,

where qi* is the optimal value of the lexicographic optimization problem of the
objective function cix, i = 1,2, …, k-1.

Consider the optimal solution x* of the lexicographic optimization problem. Let A
= [a1, a2, …, an] = [B, N], where B is an optimal basis corresponding to the optimal
solution x*, and N consists of the non-basic columns of A. We denote z k

j = c k
B B-1aj.

Definition 1. The solution x* is the optimal solution of lexicographic optimization
problem (2.1) if it is feasible and the following optimal conditions are fulfilled:

 z1
j - c1

j ≥ 0, j ∈ R and (2.3)

zk
j - ck

j ≥ 0, for all k ∈ {2, …, p} and j∈ R for which zi
j - c

i
j = 0 for i = 1, …, k-1,

 5

where R is the index set of all non-basic variables.

For instance, Steuer [1986, pp. 292-296] has further discussed the use of the
optimality conditions with respect to lexicographic goal programming. He also
described a lexicographic simplex method, which leads to the optimal solution of the
lexicographic model. See, also Sawaragi et al. [1985, p. 276].

Korhonen and Halme [1996] formulated a lexicographic parametric programming
approach for searching non-dominated solutions in Multiple Objective Linear
Programming (MOLP) problems:

 lex max {c1x, ..., cpx}

 s.t. (2.4)

Ax = b + t∆b
 x ≥ 0

where ∆b is a reference direction vector and t a parameter.

In lexicographic parametric programming, the leaving variable xr is chosen as
usually in parametrizing the rhs-vector in LP. The entering variable xs is chosen using
the following procedure which guarantees that the basis remains optimal (see,
Korhonen and Halme [1996]):

 Choose s ∈ Lu, u =

 max
 k≤p

 {k Lk ≠ ∅ }, where the index sets Lk, k = 0, 2, …, p,

are defined as

 L0 = {j  xj is non-basic and yrj < 0} (2.5)

 ∅ , if  Lk-1 = 1 and k ≥ 1

Lk =

 {h (zk
h - ck

h)/ yrh =

 max
 j∈ Lk-1

[(zk
j - ck

j)/yrj]}, if  Lk-1 > 1 and k ≥ 1

where yj = [y1j,y2j,…,ynj]T = B-1aj.

In lexicographic parametric programming, we proceed as usually in parametric
linear programming until the choice of the entering variable is not uniquely defined.
In this case, the second objective is chosen so that the solution remains
lexicographically optimal (see, for more details in Korhonen and Halme [1996]).

3 Theoretical Considerations

3.1 Basic Data Envelopment Models
Assume we have n DMUs each consuming m inputs and producing p outputs. Let X

be an (m × n) - matrix and Y be a (p × n) - matrix consisting of non-negative

 6

elements, containing observed input and output measures for the DMUs, respectively.
We denote by xj (the jth column of X) the vector of inputs consumed by DMUj, and
by xij the quantity of input i consumed by DMUj. A similar notation is used for
outputs. We further assume that xj ≠ 0 and yj ≠ 0, j = 1, 2, …, n, and that every unit in
the data set is unique; there are no duplicates. Furthermore, we denote 1 = [1, ..., 1]T.

The traditional CCR-models, as introduced by Charnes et al. [1978] are fractional
linear programs which can easily be formulated and solved as linear programs. Those
models are so-called constant returns to scale models. Later Banker, Charnes and
Cooper [1984] developed the so-called BCC models with variable returns to scale.
The CCR and BCC models are the basic model types in DEA. Those basic models can
be presented in a primal or dual form. Which one is primal or dual varies. It is better
to call them multiplier and envelopment models accordingly. The multiplier model
provides information on the weights of inputs and outputs which are interpreted as
prices in many applications. Instead, the envelopment models provide the user with
information on the lacks of outputs and the surplus of inputs of a unit. Moreover, the
envelopment model characterizes the reference set for inefficient units.

Without losing generality, we will consider a DEA-model by using a general

directional vector w = 



 wy

 wx ≥ 0, w ≠ 0 (discussion on directional distance functions,

see Chambers et al. [1998]). Halme et al. [1999] called the model a general
combined model. Input- and output-oriented models are the special cases of that
model.

Consider the following general DEA - formulation in the so-called envelopment
form:

max Z = σ + ε(1Ts+ + 1Ts-)
s.t. (3.1)

 Yλ - σ wy - s+ = y0
 Xλ + σ wx + s-

 = x0
 λ ∈ Λ
 λ, s- , s+ ≥ 0
 ε > 0 ("Non-Archimedean"),
where x0 is the input-vector and y0 is the output-vector of a DMU under consideration
and

The epsilon constraint (ε > 0) was not in the original formulation by Charnes et al.
[1978]. One year later the authors published the revised model (Charnes et al. [1978]),
in which the importance of the ε - constraint was recognized. Without that constraint,
the solution of model (3.2) may be a weakly-efficient.

 {λ  1’λ = 1, λ ≥ 0} for variable returns to scale model (Banker et al. [1984])

{λ  1’λ ≤ 1, λ ≥ 0} for non-increasing returns to scale model
Λ =

{λ  1’λ ≥ 1, λ ≥ 0} for non-decreasing returns to scale model

 {λ  λ ≥ 0} for constant returns to scale model (Charnes et al. [1978])

 7

In the combined model, wy = y0 and wx = x0. In the input-oriented wy = 0 and wx = x0
model, and wx = 0 and wy = y0 in the output-oriented model. A DMU is efficient if
and only if (iff) the optimal value Z* of model (2.1) equals 0. All slack variables s-, s+
equal zero, too. Otherwise, the DMU is inefficient (Charnes et al. 1994). The value of
σ - called an inefficiency score - at the optimum is denoted by σ *. When the unit is
efficient, σ* = 0; otherwise σ* > 0. Note that Z* is not necessarily equal to σ *. For
weakly-efficient solutions, Z* > 0, but σ* = 0.

In this paper there is no need to emphasize the different roles of inputs and outputs.

Therefore, we simply denote u = 



 y

-x and U = 



 Y

-X . We call u an input/output-

vector, although to be precise an input/output-vector is 



 y

 x . In order to avoid

specifying a value of ε > 0, we use the lexicographic formulation for model (3.1)
(see, e.g. Cooper et al. [2000, p. 44]:

lex max {σ, 1Ts}
s.t. (3.2)

 Uλ - σ w - s = u0
 λ ∈ Λ

 λ, s ≥ 0

where u0 is the input/output-vector of a DMU and s = 



 s+

 s- .

Notation “lex max” means that we first solve (3.2) using σ as an objective function.
In case, the optimal solution σ* is not unique, we formulate a new model by adding
the constraint σ = σ* into the model (3.2) and solve it by using 1Ts as the objective
function.

We denote r = m + p, and define the set K = {u  u = Uλ, λ ∈ Λ}.

The definition of efficiency and weak efficiency together with the related definition
for extreme efficiency can be given in the following form:

Definition 2. A point u* ∈ K is efficient iff (if and only if) there does not exist
another u ∈ K such that u ≥ u*, and u ≠ u*.

Definition 3. A point u* ∈ K is weakly efficient iff there does not exist another u ∈ K
such that u > u*.

Definition 4. A point u* ∈ K is efficient extreme iff there does not exist other points
u1 ∈ K, u* ≠ u1, and u2 ∈ K, u* ≠ u2, such that u* ≤ λu1 + (1- λ)u2 for some λ ∈ [0,
1].

The set of efficient points is denoted by KE, the set of weakly efficient points by KW
and the set of efficient extreme points by KEE.

3.2 Checking Efficiency of Next Point
For simplicity, but without loosing generality, we assume u0 ∈ KE. We may use the

same procedure, but for conceptual reasons we start from an efficient point. Consider

 8

the efficiency of a unit DMUj, j ∈ {1, 2, …, n}, We formulate the following
lexicographic parametric problem:

lex max {σ , 1Ts}

s.t. (3.3)
 Uλ - σ w - s = u0 + t(uj - u0)

 λ ∈ Λ
 λ, s ≥ 0
 t: 0 → b,

where uj is an input/output-vector corresponding to DMUj and b ≤ 1 is the value of t at
which the status of uj is diagnosed.

The search may be stopped at the moment when u1 is entering the optimal basis
with (t ≤ 1). DMU1 can be recognized efficient. The search terminates in sure, when t
= 1. If DMU1 may be selected to the optimal basis at latest when t = 1, it is a
sufficient condition that DMU1 is efficient. 3

In lexicographic parametric programming, we proceed as usually in parametric
programming until the choice of the entering variable is not uniquely defined. In this
case, we use the second objective to keep the basis lexicographically optimal. The
method is developed in Korhonen and Halme [1996].

Figure 1: Illustration of Parameterization

We illustrate how the efficiency of units A, B, C, D, E, and F in Figure 1 will be
checked. We assume three outputs and one identical input. Numerical computations
are shown in Section 4.2 (In this example, for simplicity we use these capital letters to
refer to units.)

3) Unfortunately, it is not a necessary condition. If the unit lies on an efficient facet, but is not an
extreme point solution, it is efficient, but not in any optimal basis. This special case is easy to check. If
the current basis is lexicographically optimal, σ* = 0 and 1Ts* = 0, the unit is efficient (but non-
extreme).

Output 1

Output 2

Output 3

A B

C

E

E’

D
F

F’

 9

We start the search from A. Because the optimal basis consists of A, we know that
it is efficient. Consider next unit C. From point A we start to move on line AC. The
projection of this vector is called an efficiency curve and initially it goes along facet
ABD. Units B and D enter the optimal basis with some t ∈ [0, 1] (actually t = 0), and
thus they are recognized efficient. When we are crossing an edge BD, unit A leaves
the basis and unit C enters. We may stop the search on the edge BD, because C can
now diagnosed efficient.

There is no need to perform a special search for unit E, because its projection E’
lies on facet BCD, indicating that E is inefficient. No special computation is needed.
Information is available in the simplex tableau (see, for a numerical example in
Section 4.2).

To investigate the efficiency of unit F, we start the search from the point on the
edge at which we stopped the search for C. When this direction is projected onto the
efficient frontier it goes along the facet BCD, until it reaches the edge DC. At this
point, we have to use a lexicographic rule to stay on the efficient frontier, i.e. on the
edge DC. Unit B leaves the basis, and Output 3 enters. From this new optimal tableau,
we may see that F is inefficient (weakly efficient) in the same way as E from the
previous basis.

4 Development of the Procedure

4.1 Description of the Procedure
In this section, we describe the procedure and illustrate it with a numerical example.

Step 0: Initialization

Choose the projection vector w ≥ 0 and w ≠ 0. We recommend that the vector w > 0
is used, because a need to apply a lexicographic rule is not so likely. To avoid
computational difficulties, it is important that each element of w is of the same
magnitude as the corresponding inputs/outputs. A simple rule to choose wi =

∑
j=1

n

 uij

n .

Choose an initial unit DMUk, k ∈ {1, 2, …, n}, set u0 := uk and project u0 onto the
efficient frontier by using the formula (3.2):

Define the following index sets:

• KEE is the index set of the units diagnosed efficient extreme. Set KEE := {the
indices of the units in the current optimal basis}

• KEN is the index set of the units diagnosed efficient but non-extreme (KE = KEE

∪ KEN). Set KEN := ∅ .

• KW is the index set of the units diagnosed weakly efficient. Set KW := ∅ .

• KI is the index set of the units diagnosed inefficient. Set KI := ∅ .

 10

• KU is the ordered index set of the units with an unknown status. Set KU := {1,
2, …, n} ∩ – {KEE ∪ {k}}

If k ∈ KEE then go to Step 1.

Else diagnose the unit k:

If the value σ in the optimal basis is positive (σ > 0), the unit k is inefficient.

Define KI := {k}.

If the value σ is zero but any of the slack-variables s has a positive value (σ =
0 and 1Ts ≠ 0), the unit k is weakly efficient.

Define KW := {k}.

If the value σ is zero and all of the slack-variables s are also zero (σ = 0 and
1Ts = 0), the unit k is efficient but non-extreme.

Define KEN := {k}.

Drop the column corresponding to unit k from the matrix U. Go to Step 1.

Step 1: Model Formulation for the Checking Efficiency of a Unit

If KU = ∅ then Stop.

Choose a new unit DMUk, k ∈ KU, for consideration4. Set t0 := 0.

Consider the parametric programming formulation:

lex max {σ , 1Ts}

s.t. (3.4)
 Uλ - σ w - s = u0 + tδ
 λ ∈ Λ
 λ, s ≥ 0
 t: 0 → 1,

where δ = uk – u0. (Actually, the updating of the parameter vector in the simplex table
is very easy. We pick from the tableau the column corresponding to uk and subtract
the current rhs (u0) from uk.)

Step 2: Selecting the Leaving Variable

Increase t: t0 → min{1, tB}, where tB corresponds to the value of t, where the next
basis change happens.

If t < 1

Go to Step 3

Else

 Define u0 := u0 + δ

If σ > 0 (the unit k is inefficient)

4) The sequence of the units to be checked has an effect on the performance of the procedure. In this
paper, we do not deal with that problem.

 11

Define KI := KI ∪ {k}.

 If σ = 0 and 1Ts ≠ 0 (the unit k is weakly efficient)

Define KW := KW ∪ {k}.

 If σ = 0 and 1Ts = 0 (the unit k is efficient but non-extreme)

Define KEN := KEN ∪ {k}.

 Define KU := KU ∩ -{k}. Drop the column corresponding to unit k from the
matrix U. Go to Step 1.

Step 3: Selecting the Entering Variable

If the entering variable is not uniquely defined, use the lexicographic rule (2.5) to
check the optimality conditions to find an entering variable keeping the basis
lexicographically optimal.

If the entering variable is one of the slack variables

Set t0 := tB, make a basis change and go to Step 2 (or to Step 4 in the case the
extra efficiency checking is made for non-basic units with unknown status).

Else

Assume that the index of the entering variable h corresponds to unit DMUh
(unit h is efficient extreme).

Define KU := KU ∩ -{h} and KEE := KEE ∪ {h}.

If h = k

Define u0 := u0 + t0δ and go to Step 1.

Else

 Set t0 := tB , make a basis change and go to Step 2 (or Step 4).

Step 4: Checking Inefficient Units

Check all (non-basic) units with status unknown. If all the values are non-negative
in the column of the simplex tableau corresponding to unit i ∈ KU, then:

• unit i is inefficient, if the value in row “σ” is strictly positive,

• unit i is weakly efficient, if the value in row “σ” is zero, but any of the slack-
variables s has a strictly positive value,

• otherwise the unit is not efficient extreme. (It locates on an efficient facet
defined by the current basis units.)

If any of the units is diagnosed inefficient, weakly efficient or not efficient extreme
update the sets KI, KW, KEN and KU accordingly. Drop the columns corresponding
to inefficient, weakly efficient and not efficient extreme units from the matrix U.

If one of the units diagnosed is DMUk (= the unit under consideration) or DMUk is
already classified, go to Step 1; otherwise go to Step 2.

 12

4.2 Illustrative Numerical Example
Our numerical example is illustrated in Figure 1. Assume that we have six units

which are evaluated with three outputs and one identical input as shown in Table 1.

Table 1: Illustrative Example

 A B C D E F
Output 1 1 0.9 1.5 4 1.5 2.75
Output 2 0 2 3 1 2.5 2
Output 3 3 2.5 1.5 2 1.6 0.45
Input 1 1 1 1 1 1

In the illustration of the numerical example, we use the capital letters A, B, …, F to
refer to the units, the input/output-vectors, the indices of the units, and the columns in
the simplex-tableau. Correspondingly, we use the terms Input, Output 1, …, Output 3
to refer to slack- and surplus-variables in the same way.

Step 0:

In this example we choose wOutput 1 = wOutput 2 = wOutput3 = 1 and wInput = 0.

Start the procedure by investigating the efficiency of unit A. Define the rhs-vector
u0 of the problem (3.1): u0 := uA and solve it. (We use the symbol u0 to refer to the
rhs in the tableau as well.)

An optimal tableau is given in Table 1. Unit A is one of the basic variables in the
optimal basis, thus it is efficient extreme. It is the only basic variable associated with
a unit. The optimal tableau is not uniquely defined, because A is the only basic
variable with value greater than zero. Any of those alternative optimal bases can be
used as a starting basis. Because all values in row “σ” are strictly positive, the second
objective is not needed.

Table 2: An optimal tableau for unit A

 Output 3 B C D E F Input u0

Output 1 -1 -0.4 -2 -4 -1.9 -4.3 -2 0
Output 2 -1 -2.5 -4.5 -2 -3.9 -4.55 -3 0
A 0 1 1 1 1 1 1 1
σ 1 0.5 1.5 1 1.4 2.55 3 0

Define KEE := {A}, KEN := ∅ , KW := ∅ , KI := ∅ , and KU := {B, C, D, E, F}.

Step 1:

Choose unit C next, and define the parameter vector δ := uC – uA. (In the tableau, we
subtract column u0 from the column C. The problem formulation is displayed in
Table 3.

 13

Table 3: The problem formulation for moving from A to C

 Output 3 B C D E F Input u0
 δ

Output 1 -1 -0.4 -2 -4 -1.9 -4.3 -2 0 -2
Output 2 -1 -2.5 -4.5 -2 -3.9 -4.55 -3 0 -4.5
A 0 1 1 1 1 1 1 1 0
σ 1 0.5 1.5 1 1.4 2.55 3 0 1.5

Step 2:

We cannot increase parameter t before we have the basis in which the positive values
of the element of the parameter vector correspond to zeroes in the rhs. Select as the
basis leaving variable the variable (Output 2) which has the biggest negative value in
the parameter vector corresponding to the zero value of the rhs in the same row.

Step 3:

Variable B enters the basis (See, Table 4), and it is diagnosed efficient extreme.
Redefine KU := {C, D, E, F} and KEE := {A, B}.

Table 4: Variable Output 2 is replaced by variable B in the basis

 Output 3 Output 2 C D E F Input U0
 δ

Output 1 -0.84 -0.16 -1.28 -3.68 -1.276 -3.572 -1.52 0 -1.28
B 0.4 -0.4 1.8 0.8 1.56 1.82 1.2 0 1.8
A -0.4 0.4 -0.8 0.2 -0.56 -0.82 -0.2 1 -1.8
σ 0.8 0.2 0.6 0.6 0.62 1.64 2.4 0 0.6

Next we visit Step 2 and notice that we cannot increase t before we return back to
Step 3 to remove also variable Output 1 out of the basis. Variable D enters the basis;
it is diagnosed efficient extreme. The tableau is shown in Table 5. Redefine KU := {C,
E, F} and KEE := {A, B, D}, and return to Step 2.

Table 5: Starting the moving from A to C

 Output 3 Output 2 C Output 1 E F Input u0
 δ

D 0.228 0.043 0.348 -0.272 0.347 0.971 0.413 0.000 0.348
B 0.217 -0.435 1.522 0.217 1.283 1.043 0.870 0.000 1.522
A -0.446 0.391 -0.870 0.054 -0.629 -1.014 -0.283 1.000 -1.870
σ 0.663 0.174 0.391 0.163 0.412 1.058 2.152 0.000 0.391

Step 2:

The current basis is feasible until t reaches tB = 0.535. Because t = tB is less than 1, we
set t0:= 0.535, and go to Step 3.

Step 3:

Unit A is the basis leaving variable and unit C is the basis entering variable. Unit C is
diagnosed efficient extreme. We redefine KU := {E, F} and KEE := {A, B, C, D}.
Because the entering unit corresponds the unit under consideration (h = k in Step 3)
we also need to redefine u0. In this example, we go to Step 4 to check if any of the

 14

non-basic variables can be diagnosed. Redefine u0 := u0 + 0.535*δ (See, Table 6) and
make a basis change.

Table 6: Unit A is replaced by unit C in the basis

 Output 3 Output 2 A Output 1 E F Input u0
 δ

D 0.050 0.200 0.400 -0.250 0.095 0.565 0.300 0.186 -0.400
B -0.563 0.250 1.750 0.313 0.181 -0.731 0.375 0.814 -1.750
C 0.513 -0.450 -1.150 -0.063 0.724 1.166 0.325 0.000 2.150
σ 0.463 0.350 0.450 0.188 0.129 0.601 2.025 0.209 -0.450

Step 4:

All values in the column corresponding to unit E in Table 6 are strictly positive. We
may diagnose unit E inefficient. Thus redefine KU := {F}, KI := {E}, and KEE := {A,
B, C, D}. Drop column E from the tableau and go to Step 1.

Step 1:

We start to study the efficiency of a new unit using the current rhs-vector (See, Table
6). Unit F is the only unit with an unknown status. We formulate the problem for F.
The parameter vector is δ := uF – u0 (See, Table 7). Go to Step 2.

Table 7: The entering variable is not uniquely defined

 Output 3 Output 2 A Output 1 F Input u0
 δ

D 0.050 0.200 0.400 -0.250 0.565 0.300 0.186 0.379
B -0.563 0.250 1.750 0.313 -0.731 0.375 0.814 -1.545
C 0.513 -0.450 -1.150 -0.063 1.166 0.325 0.000 1.166
σ 0.463 0.350 0.450 0.188 0.601 2.025 0.209 0.392

Step 2:

We may increase t: 0 → 0.527. Update the rhs-vector and go to Step 3.

Step 3:

The leaving variable is B, but the entering variable is not uniquely defined. We have
to use the lexicographic rule to choose the right one.

Table 8: The current reduced costs for alternative entering variables

 Output 3 Output 2 A Output 1 F Input u0
 δ

D 0.050 0.200 0.400 -0.250 0.565 0.300 0.386 0.379
B -0.563 0.250 1.750 0.313 -0.731 0.375 0.000 -1.545
C 0.513 -0.450 -1.150 -0.063 1.166 0.325 0.614 1.166
σ 0.463 0.350 0.450 0.188 0.601 2.025 0.416 0.392
1Ts -1 * * * 0 *

The alternative entering variables are Output 3 and F. For the both variables, the ratio
is 0.463/-0.563 = 0.601/-0.731 = -0.822. When we use the second objective, we get
(z2

Output 3- c2
Output 3)/yB,Output 3 = (c2

BB-1aj - c
2
Output 3)/ yB,Output 3 = 1/-0.563 = 1.778 >

 15

(z2
F- c2

F)/yB,F = (c2
BB-1aj - c

2
F)/ yB,F = 0/-0731 = 0.

Thus the correct entering variable guaranteeing the efficient basis is Output 3.

After the basis change, we get the final tableau (Table 9), which is lexicographically
optimal.

Table 9: A lexicographically optimal basis

 B Output 2 A Output 1 F Input u0
 δ

D 0.089 0.222 0.556 -0.222 0.500 0.333 0.386 0.242
Output 3 -1.778 -0.444 -3.111 -0.556 1.300 -0.667 0.000 2.747
C 0.911 -0.222 0.444 0.222 0.500 0.667 0.614 -0.242
σ 0.822 0.556 1.889 0.444 0.000 2.333 0.416 -0.879
1Ts -1.778 * * * 1.300 * * *

We continue to Step 4.

Step 4:

We see that all values in column F are strictly positive. F is inefficient. We update KU

:= ∅ , KI := {E, F}, and KEE := {A, B, C, D}. Because F was the unit under
consideration, we go to Step 1 to stop the search.

5 Computational Results

To test the performance of our procedure, we made some computational tests with
simulated models, which we received from Prof. Jose Dulá who has also used these
models in his own tests. The parameters of the problems are the number of units, the
number of inputs/outputs, and the density of the efficient units. The categories for the
number of units we used 5000, 10000, 15000, 20000, 25000, and 50000. The number
of inputs/outputs was 5, 10, 15, and 20. As the density categories we used 1%, 10%,
and 25%.

The test results are reported in Table 10 and Table 11 in each combination of the
parameters except some missing results for 50000 units. The tests are run with the
PC-computer with one 2.4 Ghz processor. In Table 10, we have reported the
procedure in which the efficiency of each unit is checked at a time. No extra
information available in the simplex tableau is used to check the efficiency of other
units with unknown status, i.e. excluding the use of Step 4. In Table 11, this
information is used.

We can see from the Tables that the procedure with Step 4 is more efficient, when
the number of the inputs/outputs is 5 in all other categories, and it is also more
efficient, when the number of inputs/outputs is 10, the density is 10% and the number
of units is less than 20000. In other cases, it is slower. It is understandable, because
extra checking is costly, and the benefit of it’s use decreases, when the efficiency
density and/or the number of inputs/outputs increase.

 16

Table 10: Computing Times (s) when Step 4 is Not Included

 # of Inputs/Outputs

Density
of
Alternatives 5 10 15 20

 5 000 12 64 176 354
 10 000 60 310 743 1686

1 % 15 000 164 897 2003 3559
 20 000 275 1643 4266 8589
 25 000 588 2946 5309 12342
 50 000 2226 14633 26623
 5 000 24 86 294 555
 10 000 119 628 1484 2935

10 % 15 000 325 1718 4147 6864
 20 000 691 3590 9154 11425
 25 000 1213 5264 9961 19209
 50 000 5839 22240
 5 000 34 116 381 675
 10 000 189 844 1895 3264

25 % 15 000 530 1965 4394 8053
 20 000 1126 4503 8245 15756
 25 000 2055 6874 13263 25089
 50 000 9006 30454

Table 11: Computing Times (s) when Step 4 is Included

 # of Inputs/Outputs

Density
of
Alternatives 5 10 15 20

 5 000 0.2 25 176 394
 10 000 0.5 169 870 1904

1 % 15 000 1.6 553 2369 4159
 20 000 2.5 1091 5236 8759
 25 000 5.3 2398 7499 14716
 50 000 14.1 10110
 5 000 1 72 335 623
 10 000 4 604 1762 3288

10 % 15 000 9 1646 4542 7847
 20 000 23 3948 8297 13193
 25 000 37 6141 12384 22225
 50 000 143
 5 000 2 120 411 776
 10 000 11 938 2155 3588

25 % 15 000 32 2273 4893 9571
 20 000 66 5220 9465 17828
 25 000 107 8591 15471 27857
 50 000 442

The complexity of the procedure depends on n, p, d. Thus we may assume that the

complexity is O(napbdc), where d the density of the efficiency units. To find the values

 17

for a, b¸and c. We used the data in the tables above to fit a regression function to the
data. We used the following model:

t = knapbdcε,

where ε is an error term assumed normally distributed, and k is also the parameter
to be estimated. We took the logarithm of the model and used a linear regression
model to estimate the parameters.

For the basic procedure (Table 10), we obtained the following estimates.

Table 12: The estimates of the regression coefficients for the model of the basic
procedure (R2 = 0.994)

 Coefficients Standard Error Lower 95% Upper 95%
log(k) -9.044 0.134 -9.312 -8.775
a 2.165 0.035 2.096 2.235
b 2.343 0.030 2.284 2.403
c 0.282 0.014 0.255 0.309

The model fitted very well with the data. The estimates of the parameters are
consistent with our expectations. When p is rather small, obviously we will find quite
quickly the potential basic vectors (efficient units). In case of two input/output-
vectors, we may diagnose all efficient units with one iteration. Interestingly, the
estimate of the power of the density is low. It means that the density has not so high
impact on the performance as we expected.

Instead our model for the computing times of the modified procedure resulted in a
little bit strange results (Table 13). The estimate of parameter a is about 5. The reason
is that the procedure works very well with a small number of the inputs/outputs and
the small efficiency density, but the computing time increases very rapidly, when the
values of those parameters increase.

Table 13: The estimates of the regression coefficients for the model of the modified
procedure (R2 = 0.929)

 Coefficients Standard Error Lower 95% Upper 95%
log(k) -12.162 0.763 -13.690 -10.635
a 5.023 0.198 4.627 5.419
b 2.241 0.170 1.902 2.581
c 0.485 0.077 0.330 0.640

The estimates of parameters of the model were very much the same as the model for
the basic procedure, when considered the large models by restricting our
considerations into the following values of parameters: when p = 10, we picked the
models with n ≥ 15000 and d ≥ 10, and then we picked all models with p ≥ 15 (Table
14). It means that the use of extra information is not beneficial, when the number of
the units and the efficiency density is big.

 18

Table 14: The estimates of the regression coefficients for the model of the modified
procedure, when n, p and d are big (R2 = 0.994)

 Coefficients Standard Error Lower 95% Upper 95%
log(k) -8.722 0.162 -9.051 -8.392
a 2.057 0.070 1.914 2.200
b 2.321 0.031 2.258 2.384
c 0.230 0.014 0.201 0.258

The performance of the modified procedure especially for the small models not
included in the previous analysis is interesting. In Table 15, we see log(k) is very
small indicating a good performance, when the number of inputs/outputs (p) is small.
However, the time increases rapidly, when p increases. When p (and n) is large the
performance of the modified procedure is of the same magnitude as the basic one.

Table 15: The estimates of the regression coefficients for the model of the modified
procedure, when n, p and d are small. (R2 = 0.978)

 Coefficients Standard Error Lower 95% Upper 95%
log(a) -15.065 0.598 -16.309 -13.821
b 7.806 0.287 7.209 8.403
c 2.355 0.116 2.113 2.597
d 0.824 0.063 0.694 0.954

6 Concluding Remarks

We have developed a procedure for the classification of efficient and inefficient
units in the Data Envelopment Analysis (DEA). This classification is important,
because the algorithms currently developed for large-scale problems are based on a
two-phase procedure. In the first phase, the efficient units are recognized, and in the
second phase those units are used as potential basic vectors in computation of the
efficiency scores for inefficient units. Because the proportion of the efficient units in
practical problems is usually quite small, the size of the LP-models in the second
phase is much smaller than in the first phase.

Our classification procedure is based on the lexicographic parametric programming.
The procedure makes it possible to move from unit to unit along an efficient curve.
On the way, it is possible to use information available in the simplex tableau to check
the efficiency of the other units with status unknown. This modified procedure is very
fast for small number of inputs/outputs, but its performance is getting worse rapidly,
when the number of inputs/outputs increases. With a large number of inputs/outputs,
its performance is of the same magnitude as the basic procedure.

In the future, our purpose is to develop various decomposition techniques, which
make it possible to take a full benefit from the good performance of our modified
procedure for small number of inputs/outputs and units.

 19

References

Ali, A.I. (1993), “Streamlined Computation for Data Envelopment Analysis”,

European Journal of Operational Research 64, 61-67.

Banker, R.D., Charnes, A. and Cooper, W.W. (1984), “Some Models for
Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis”,
Management Science 30, 1078-1092.

Barr, R.S. and Durchholz, M.L. (1997). “Parallel and Hierarchical Decomposition
Approaches for Solving Large-Scale Data Envelopment Analysis Models”, Annals of
Operations Research 73, 339-372.

Chambers R. G., Y. Chung, and R. Färe (1998), “Profit, Directional Distance
Functions, and Nerlovian Efficiency”, Journal of Optimization Theory and
Applications 98, 351-364.

Charnes, A., Cooper, W.W. and Rhodes, E. (1978), “Measuring Efficiency of
Decision Making Units”, European Journal of Operational Research 2, 429-444.

Charnes, A., Cooper, W.W. and Rhodes, E. (1979), “Short Communication:
Measuring Efficiency of Decision Making Units”, European Journal of Operational
Research 3, 339.

Charnes, A., Cooper, W., Lewin, A.Y. and Seiford, L.M. (1994), Data
Envelopment Analysis: Theory, Methodology and Applications, Kluwer Academic
Publishers, Norwell.

Dulá, J.H., and Helgason, R.V. (1996), “A New Procedure for Identifying the Frame of
the Convex Hull of a Finite Collection of Points in Multidimensional Space”, European
Journal of Operational Research 92, 352-367.

Dulá, J.H., Helgason, R.V., and Venugopal, N. (1997). “An Algorithm for Identifying
the Frame of a Pointed Finite Conical Hull”, Journal of Computing 10, 323-330.

Dulá, J. H., and Lόpez, F. J. (2002), “Data Envelopment Analysis (DEA) in Massive
Data Sets”, in Abello, J. , Pardalos, P., and Resende, M. (Eds.): Handbook of Massive
Data Sets, Kluwer Academic Publisher, pp. 419-437.

Halme, M., Joro, T., Korhonen, P., Salo, S. and Wallenius J. (1999), "A Value
Efficiency Approach to Incorporating Preference Information in Data Envelopment
Analysis", Management Science 45, pp. 103-115.

Korhonen, P. and Halme, M. (1996), "Using Lexicographic Parametric
Programming for Searching a Nondominated Set in Multiple Objective Linear
Programming", Journal of Multi-Criteria Decision Analysis 5, 291-300.

Sawaragi, Y., Nakayama, H. and Tanino, T. (1985), "Theory of Multiobjective
Obtimization", Academic Press, Inc.

Steuer, R. E. (1986), Multiple Criteria Optimization: Theory, Computation, and
Application, Wiley.

