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Abstract

This paper considers a variety of specification tests for multivariate GARCH models
that are used in dynamic hedging in the electricity markets. The test statistics include
the robust conditional moments tests for sign-size bias along with the recently intro-
duced copula tests for an appropriate dependence structure. We consider this effort
worthwhile, since quite often the tests of multivariate GARCH models are easily omit-
ted and the models become selected ad-hoc depending on the results they generate.
Hedging performance comparisons, in terms of unconditional and conditional ex-post
variance portfolio reduction, are conducted.

1 Introduction

Electricity markets continue to confound international financial economists. With the
rapid growth of derivative securities in deregulated electricity markets, the modelling
and management of price risk have become important topics for researchers and practi-
tioners. Until early 90’s the electricity sector has been a vertically integrated industry,
where prices where fixed by regulators as a function of generation and distribution
costs. Today there is an increasing number of operating electricity exchanges over the
world, where electricity providers compete to sell into the electricity market pools and
the distributors purchase electricity from the pool at prices set by the intersection of
aggregated demand and supply on an hourly basis.

The deregulation of electricity markets has introduced new elements of uncertainty
making understanding and modelling of the electricity price behavior a very challenging
task. An important complication that makes the markets difficult to model is the
unique nature of electricity as a non-storable commodity [29; 2]. The production and
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consumption of electricity have to be continuously balanced so as to prevent the electric
power networks from collapsing. Every action taken by a player in the electricity system
can affect all other activities on the grid. Failure of a single element can, if not managed
properly, cause the subsequent rapid failure of many additional elements, disrupting
the entire transmission system. Thus, combined with the characteristics of inelastic
supply and demand, the non-storability creates conditions for large price jumps and
spikes, that cannot be smoothed out using inventories [11; 28]. Intuitively the jumpy
behavior in electricity spot prices is mainly attributed to the fact that a typical regional
aggregate supply cost curve for electricity has almost always a kink at certain capacity
level and the curve has a steep upward slope beyond that capacity level. A forced
outage of a major power plant or a sudden surge in demand will make the regional
electricity demand curve to cross the regional supply cost curve at its steep-rise portion
thus causing a jump in the price process.

Given this setting the competitive power markets exhibit a level of price volatility
unparalleled by traditional commodity markets. Therefore one of the main reasons for
electricity generators and producers to trade in futures market is to monitor the volatil-
ity of their power portfolios and to minimize the negative impact of adverse fluctuations
in electricity markets. However, the fact that the traditional convenience-yield type
arbitrage arguments are not applicable in electricity markets, makes pricing of futures
contracts and design of hedging strategies particularly challenging. In incomplete mar-
kets the starting point for non-arbitrage pricing is that the futures price is the expected
value of the future spot price contaminated by some additional noise, and adjusted by
a factor, which accounts for the risk preferences of the market [22; 39; 5]. Thus, a
speculative component arises in the optimal hedging decision. The traditional assump-
tion that the minimum risk hedge ratio will be the same irrespective of when hedging
is undertaken has been often found to be in a sharp contrast with reality [8; 32; 46].
The non-storability of electricity only makes the need to consider time-varying risk-
minimizing hedge ratios even more pronounced.

The existence of time-varying risk premia is strongly linked to the hedging strate-
gies. A continuously varying premium impairs the effectiveness of futures market facil-
ities in providing cover from the risk associated with futures trading [50]. For long time
many authors [48; 44; 45] have argued that the storability of assets affects the perfor-
mance of futures markets. Yang and Awokuse [50] have examined risk minimization
hedging effectiveness for major storable and non-storable agricultural commodity fu-
tures markets. Their findings illustrate the great difference between commodities with
different storability characteristics in terms of hedging. They argued that the hedg-
ing effectiveness is strong for all storable commodities but weak for all nonstorable
commodities under consideration.

Currently there is, however, very little research available on dynamic hedging in
the electricity markets. Byström’s [9] study is perhaps the only one, where multi-
variate GARCH models have been applied to analyze short term hedging performance
at the Nord Pool. The main thrust of the paper was in comparison of unconditional
hedges against conditional hedges estimated using Orthogonal GARCH and Constant
Correlation GARCH. His main findings were that hedging appears to provide some
benefits, even though no straightforward arbitrage possibilities exist in the electricity
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markets. Further he found that the performance of different hedge models depends
significantly on whether unconditional or conditional portfolio variances are studied.
The simple OLS hedge and the GARCH models managed to reduce both the condi-
tional and unconditional variance, whereas the naive hedge successfully reduced only
the unconditional variance. The findings are well in line with the mainstream as the
studies of optimal hedging strategies have for long recognized the limits of the conven-
tional hedging, which assumes perfect correlation between the spot and futures price
changes [25; 26; 35]. One of the reasons why multivariate GARCH models are increas-
ingly used has been the existence of time-varying risk premia, which effectively drive
a wedge between the spot and the futures prices. Thus in a framework of rational
agents, the simple hedge strategies can be proved to be highly inefficient if the perfect
correlation assumption is removed.

Our study will differ from that of Byström [9] by considering a broader variety
of MGARCH models and the primary focus will be more the tests of the different
MGARCH model specifications. In particular, in the spirit of Kroner and Ng [31]
we aim to consider different sign-size bias and parameter stability tests in order to
check the robustness of the selected models. We consider this effort worthwhile, since
quite often the tests of multivariate GARCH models are easily omitted and the models
become selected ad-hoc depending on the results they generate. Specifically we want to
demonstrate that the choice of a multivariate volatility model can lead to substantially
different conclusions in estimating the optimal hedge ratio. As argued by Kroner and
Ng [31], one should not place too much confidence in only statistically insignificant
Ljung-Box statistics when evaluating GARCH models. Since even badly misspecified
models can capture the serial correlation in the second moments and give insignificant
Ljung-Box test statistics.

Our findings implied that all of the models studied in the paper appeared to be
particularly bad at capturing between futures variance and shocks to the spot returns.
However, given that the problems were limited to unaccounted asymmetries with the
futures variance only, the need to incorporate asymmetric responses to the models is
not too acute. Overall, we were surprised by how well all of the models performed
as measured by conditional moments tests, even though the models produce quite
different estimates for the conditional covariance matrix as indicated by preliminary
comparisons. The results from the conditional and unconditional hedging performance
tests were well inline with the previous findings of Byström, who has documented that
the GARCH hedges outperform the other hedges when evaluated using conditional
variances. However, the more interesting findings of the study concerned the selection
of the underlying marginal distributions and their dependence structure. Although,
we have clearly rejected the assumption of normality of the marginal distributions and
found that a Student’s t-distribution would be a more appropriate model, the copula
statistics performed on the dependence structure provide mixed evidence suggesting
that a normal dependence structure would fit better than t-copula. Thus, the problem
we have faced in the use of the multivariate GARCH models selected for this study, is
that all of them are misspecified in some respect: when using CCORR and diagonal
BEKK we have misspecified the marginal distributions by assuming them to be normal,
but when using diagonal T-BEKK, T-BEKK or asymmetric T-BEKK we might have
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problems with the dependence structure.
The disposition of the paper is following. In the second section we provide a general

overview of the most applied multivariate GARCH models that are to be used in the
study. The next chapter continues from this by outlining the different test statistics for
the model specifications. The fourth chapter presents the data and gives preliminary
statistics. The empirical results from the estimation of the models and test results
are presented and discussed in the fifth chapter. We conclude this paper in the sixth
chapter and propose issues for further research.

2 Multivariate GARCH models in hedging

Based on portfolio theory, hedging with futures contracts can be considered as a port-
folio allocation problem in which the investor uses futures as an additional asset to
be included into the financial asset space of the economy with the purpose of maxi-
mizing his utility function [24; 40]. Assuming that the parameter of risk aversion is
large enough and expecting no return on the futures position, we obtain the mini-
mum variance hedge as an optimal hedge ratio for the producer. Therefore, when we
will further discuss the minimum-variance ratio we are essentially talking about the
risk-minimizing hedge. The optimal hedge ratio (OHR) is defined by

OHRt =
σt,sf

σ2
t,f

(1)

where σt,sf denotes the covariance between the spot position and futures position and
σ2

t,f is the variance of the spot position [32].
Over time various methods have been used to estimate the OHR. One of the earliest

techniques has been the OLS based estimation. However, many authors have criticized
OLS by drawing attention to the inefficiency of the residuals. Among others Herbst,
Kare and Marshall [23] argue that the estimation of the minimum variance hedge ratio
suffers from serial correlation problem. One of the techniques to solve for the problem
of serial correlation and to account for the important role of cointegration between
spot and futures prices has been the use of ECM in the estimation of hedge ratios. In
particular Ghosh [19; 18], Lien and Luo [34], and Lien [33] have recognized that ignoring
error correction mechanisms yields downward biased estimates for hedge ratios.

In addition to the need of ECM to account for cointegration, Park and Bera [43]
have pointed out that the simple regression model is inappropriate to estimate hedge
ratios because it ignores the heteroscedasticity often encountered in spot and futures
price data. Further Myers and Thompson [41] have argued that the hedge ratio should
be modelled through conditional moments that depend on information set available at
the time of the hedging decision. In practice, this implies that the hedge ratio should
be adjusted continuously based on conditional information. In order to account for the
volatility dependencies between spot and futures markets, Autoregressive Conditional
Heteroscedasticity (ARCH) and generalized (GARCH) models have been applied [13;
7]. As argued by Sim and Zurbruegg [47], the importance of the time-varying nature
of the second moment properties cannot be ignored if a serious attempt is to be made
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when examining effective hedge ratios over time. Research that has used cointegration
and the GARCH framework includes Koutmos and Tucker [30], Kroner and Sultan
[32], Kroner and Ng [31].

In this section we will present the most applied GARCH models in hedging. These
include the VECH model of Bollerslev, Engle and Wooldridge [6], the constant corre-
lation model of Bollerslev [8], the factor ARCH model of Engle, Ng, and Rothschild
[12], and the BEKK model of Engle and Kroner [14]. One of the latest developments in
the era is the dynamic correlation GARCH proposed by Engle and Sheppard [16]. In
this study four different GARCH models are described and estimated to calculate the
optimal hedge ratios. The models chosen for this purpose include the diagonal BEKK,
T-BEKK and Asymmetric T-BEKK models, CCORR and its extension DCC-GARCH.
The DCC specification will be used only, if the tests against constant correlation rec-
ommend it. Given that the spot and futures prices are cointegrated, the estimation is
done using bivariate ECM-GARCH setups.

2.1 Diagonal BEKK and T-BEKK

A general multivariate GARCH model for a k-dimensional process εt = (ε1t, ..., εkt) is
given by

εt = ztH
1/2
t (2)

where zt is a k-dimensional iid process with mean zero and identity covariance matrix
equal. From these properties of z and (2) it follows that E[εε′|Ωt] = Ht. To complete
the model, a parametrization for the conditional covariance matrix Ht needs to be
specified.

Bollerslev, Engle, and Wooldridge (1988) suggested a multivariate GARCH model,
where matrices A1 and B1 are diagonal

Ht = CC′ + A1(εt−1ε′t−1)A′
1 + B1Ht−1B′

1 (3)

The number of parameters in the diagonal GARCH(1,1) model equals 3(k(k +
1)/2). For the bivariate case, setting all off-diagonal elemets to zero, it is seen that 9
parameters remain to be estimated. An additional advantage of the diagonal model is
that conditions which ensure that the conditional covariance matrix is positive definite
are quite easy to check [1]. The model specification is similar both in diagonal BEKK
and diagonal T-BEKK. The only difference being that in T-BEKK the estimation is
done assuming a t-distribution instead of normal.

The full BEKK model differs from the diagonal representation in that no diagonality
constraints are imposed on the matrices A and B. and the number of parameters is
2k2 + k/2. The key advantage of this model is that no checks are needed to ensure
positive definiteness of the covariance matrix.
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2.2 CCORR and DCC-GARCH

Bollerslev [8] put forward an alternative way to simplify GARCH-model, by assuming
that the conditional correlations between the elements of εt are time-invariant. The
model is given by

Ht = DtRDt (4)

where Dt is a (k × k) matrix with the conditional standard deviations on the diag-
onal, and R is a (k × k) matrix containing the correlations. The advantage of this
model is that it requires only one matrix inversion for each iteration of the non-linear
optimization routine, while others require an inversion for each observation.

Engle and Sheppard [16] proposed a new model that both preserves the ease of
estimation of Bollerslev’s constant correlation model yet allows for non-constant cor-
relations. This class of MGARCH models differs from the other specifications in that
univariate GARCH models are estimated for each asset series, and then, using the
standardized residuals resulting from the first step, a time-varying correlation matrix
is estimated using a simple specification. The proposed dynamic correlation structure
is

Rt = Q−1/2
t QtQ∗−1

t (5)

Qt = (1−
M∑

m=1

αm −
N∑

n=1

βn)Q̄ +
M∑

m=1

αm(εt−mε′t−m) +
N∑

n=1

βn)Qt−n (6)

where Q̄ is the unconditional covariance of the standardized residuals resulting from
the first stage of estimation and Q∗

t is diagonal and each element is equal to the square
root of the corresponding element of Qt. The coefficients α and β are also obtained
from the univariate GARCH models.

2.3 Asymmetric T-BEKK

Detection of asymmetries in the test results has called for the ability of models to
capture the asymmetric effects explicitly. One of the basic specifications that are
nested within the General Dynamic Covariance Model of Kroner and Ng [31] is the
Asymmetric T-BEKK. The model is obtained from the standard BEKK by having
an additional quadratic form that is dependent on the outer product of the vector of
negative return shocks.

By letting ηit = max[0,−εit] and ηt = [η1t, ..., ηNt] the Asymmetric BEKK model
is defined as

Ht = CC′ + A(εt−1ε′t−1)A′ + BHt−1B′ + Gηt−1η′t−1G
′ (7)

where the A, B, C, and G are (k × k) matrices. Shocks on the downside increase
the variance, as well as the covariance through the asymmetric term in Ht. Similar
MGARCH models are estimated by Bekaert and Harvey [3], and Bekaert and Wu [4],
among others.
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3 Tests of MGARCH specifications

This section is divided into two parts. First we will outline some preliminary test
statistics that will help in choosing the underlying distributions. Then, in the second
part we will consider the tests available for multivariate models. As argued by Kroner
and Ng [31], one should not place too much confidence in only statistically insignificant
Ljung-Box statistics when evaluating GARCH models, since even badly misspecified
models can capture the serial correlation in the second moments and give insignificant
Ljung-Box test statistics. In order to test the models, we will use a set of robust
conditional moments tests to detect misspecifications introduced by Wooldridge [49].
In particular they will allow us to study whether there are asymmetric effects that
should be taken into account. In addition to the conditional moment tests we will
consider the DCC-test proposed by Engle and Sheppard [16], which tests the null of
constant correlation against the need for dynamic conditional correlation coefficients
when modelling dependencies between the series.

3.1 Preliminary checks

In order to evaluate different underlying distributions we consider goodness of fit tests
for the marginal distributions and the copulas. The main focus is on the two most
applied distribution models: the normal (gaussian) copula and t-distribution. However,
before performing these tests, it must be pointed out that the goodness of fit should
not be interpreted so that returns are iid with a given probability density function.
Rather, it gives that the tested model provides a reasonably good description of the
true return distribution and, therefore, its use is not likely to bias the inference about
the shape of the asset return distribution.

In this paper, we will perform the tests against normal distribution, Student’s t-
distribution and the general error distribution (GED). Given the presence of fat tails,
the residuals are standardized by estimating GARCH models using the theoretical
distribution under null hypothesis. The algorithm to compute the goodness of fit test
is well presented by Harris and Stocker [21].

Having tested the marginal distributions for spot and futures returns, the next step
is to evaluate the dependence structures. The most widely used dependence structure
is that of multivariate normality or multivariate t-distribution. However, as different
parametric copulas lead to models that may have completely different dependence
properties, it is important in any empirical application to check whether the chosen
parametric copula correctly specifies the dependence structure of the multivariate time
series regardless of the marginal distributions of individual assets [10]. Therefore, we
will apply the consistent test statistics introduced by Chen, Fan, and Patton [10], which
test the null of

H0 : P (g(z1, ..., zd) = 1) = 1
where g(z1, ..., zd) is the joint density function of the probability integral transformed
random variables z1, ..., zd.

Given that the time series {Zt} ≡ (Z1t, ..., Zdt)is not observable, since the true
distribution functions are unknown, Chen et. al. propose construction of pseudo
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observations on Zt as follows:

Ẑ1t = F̂1(Y1t), Ẑjt = C0j(F̂j(Yjt); α̂ | F̂j(Y1t), ..., F̂j−1(Yj−1,t)),

where j = 2, ..., d, t = 1, ..., n, C0j denotes the conditional distribution function of
Ẑjt given (Ẑ1t, ..., Ẑj−1,t) under H0, and F̂j(Y ) is the rescaled empirical distribution
function of Fj(Y ):

F̂j(Yj) = 1
n+1

∑n
t=1 ](Yjt ≤ Yj)

The test is based on

În =
∫ 1
0 . . .

∫ 1
0 (ĝ(z1, ..., zd)− 1)2dz1 . . . dzd

ĝ(z1, ..., zd) = 1
nhd

∑n
t=1(

∏d
j=1 Kh(zj , Ẑjt))

where ĝ(z1, ..., zd) is the kernel estimator of g(z1, ..., zd) constructed from the pseudo
observations Ẑjt using boundary kernel Kh defined in Hong and Ling [27]. From these
Chen et. al construct their N(0, 1) distributed test statistic as

Tnd =
nhd/2În − cdn

cd
(8)

where

cdn = hd/2((h−1 − 2)
∫ 1
−1 k2(w)dw + 2

∫ 1
0

∫ x
−1 k2

x(y)dydz)d)

σ2
d = 2σ1−1(

∫ 1
−1 k(u + v)k(v)dv)2ddu

d

kx(y) = k(y)/
∫ x
−1 k(u)du.

3.2 Robust conditional moments tests

Already Engle and Ng [15] have proposed tests to check whether positive and negative
shocks have a different impact on the conditional variance. Then the set of tests
has been extended specifically for multivariate GARCH models by Kroner and Ng
[31]. Recognizing that a major difference between the models is their asymmetric
property a beneficial approach is to partition the (εit−1εjt−1) into first four quadrants
corresponding to the following sign combinations of (εit−1εjt−1) : (−,−), (−, +), (+,−),
and (+,+).

Letting I(·) be an indicator function, we get the following set of misspecification
indicators that allow us to test for asymmetry in the shocks

s1t−1 = I(εit−1 > 0|εjt−1 > 0)
s2t−1 = I(εit−1 < 0|εjt−1 > 0) (9)
s3t−1 = I(εit−1 < 0|εjt−1 < 0)
s4t−1 = I(εit−1 > 0|εjt−1 < 0)
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In addition to these, we can consider the ’sign indicators’ as pointed out by Engle
and Ng [15] and the heteroskedastic asymmetry indicators of Kroner and Ng [31].

s5t−1 = I(εit−1 < 0)
s6t−1 = I(εjt−1 < 0) (10)
s7t−1 = ε2

it−1I(εit−1 < 0)
s8t−1 = ε2

it−1I(εjt−1 < 0)
s9t−1 = ε2

jt−1I(εit−1 < 0)

s10t−1 = ε2
jt−1I(εjt−1 < 0)

The indicators 5 and 6 denote the ’sign indicators’ of Engle and Ng [15] and the
indicators from 7 to 10 test for heteroskedastic asymmetry. The reason to include these
indicators is that the effect of the size of a shock on the variances and covariances might
also depend on the sign of the shock and possibly the sign of other shocks [31].

When only one time series is being tested, only indicators from 5 to 10 are used. To
complete the test, the generalized residuals ẑ2

t are taken as the dependent variable in the
regressions, while the partial derivatives of the conditional variance with respect to the
parameters in the original GARCH model along with the misspecification indicators are
added as regressors. The generalized residual uijt is defined to be the (i,j)th element
of εtε

′
t − Ht, which are further standardized by hijt to obtain zijt. The generalized

residuals can be interpreted as the distance between the news impact surface and the
points on the scatter plot of εitεjt. If the model is correctly specified, the expected
value of the generalized residuals is zero.

The robust test statistic used by Kroner and Ng [31] is constructed as

Crcm = [(1/T )
T∑

t=1

uijtλgt−1]2[(1/T )
T∑

t=1

u2
ijtλ

2
gt−1]

−1 (11)

where λgt−1 is the residual from a regression of the misspecification indicator sgt−1

on the derivatives of hijt with respect to the parameters of the model. The resulting
statistic has an asymptotic χ2(1) distribution [49].

3.3 DCC-GARCH test for dynamic correlations

As discussed by Engle and Sheppard [16] testing data for constant correlations has
proven to be a difficult problem. In particular, testing for dynamic correlation with data
that have time-varying volatilities can result in misleading conclusions and rejection of
constant correlation when it is true due to misspecified volatility models.

The test proposed by Engle and Sheppard [16] is the following
H0 : Rt = R̄
H1 : vechu(Rt) = vechu(R̄) + β1vechu(Rt−1) + · · ·+ βpvechu(Rt−p).

where vechu is a modified vech which selects only elements above the diagonal. The
testing procedure is following. First the univariate GARCH processes are estimated,
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and then the residuals are standardized. Once this is done, the correlation of the
standardized residuals is estimated, and the vector of univariate standardized residuals
is jointly standardized by the symmetric square root decomposition of the R̄. Under
the null of constant correlation, these residuals should be iid with a variance-covariance
matrix given by Ik. The artificial regressions will be a regression of the outer products
of the residuals on a constant and lagged outer products. The vector autoregression is

Yt = α + β1Yt−1 + · · ·+ βsYt−s + ηt (12)

where Yt = vechu[(R̄−1/2D−1
t εt)(R̄−1/2D−1

t εt)− Ik] and R̄−1/2D−1
t εt is a k×1 vec-

tor of residuals jointly standardized under the null. Under the null the intercept and
all of the lag parameters in the model is zero.

4 Data

The data set used in this paper consists of 1699 daily Nord Pool closing prices for spots
and futures contracts between Jan-1996 and Nov-2002. The insample period for which
the estimation and the specifications tests are done covers the first 1400 observations
from Jan-1996 to Aug-2001. In order to achieve some comparability with previous
studies, we follow the example of Byström [9] by estimating and performing the tests
using only one futures strategy. Since the short-term future contracts are more liquid
as well as more correlated with the underlying spot, we will select to use futures with
three weeks left to maturity. In order to avoid inclusion of thin market and expiration
effects, the futures contract is rolled over one week prior to its expiration.

Table 1 reports some descriptive statistics of the price levels and returns on the
spot price and the futures strategy (see fig.1). As reflected by the high Jarque-Bera
statistics, the returns series are characterized by strong skewness and kurtosis. Quite
expectedly also the null hypothesis of no GARCH effect is readily rejected by the
Ljung-Box tests on squared returns. Further, we recognize that the two series are
cointegrated, which suggests that an ECM specification is appropriate for modelling.
For the Johansen procedure, the trace and the maximum eigenvalue test statistics are
considered: the first row gives the statistic for the null hypothesis of no cointegrating
vectors r = 0 for both tests while the second row shows the values associated with
the hypothesis r ≤ 1 for the trace test and r = 1 for the maximum eigenvalue test.
The Johansen’s tests point out that there is a cointegrating vector at 1% significance
level. Visual inspection of the sample autocorrelation functions suggests slight serial
correlation (fig. 2). The Ljung-Box statistics support this finding.

5 Results

The estimation is done in two steps. First, we estimate the mean equation to get the
residuals, and then we estimate the conditional covariance matrix parameters using
maximum likelihood, treating the residuals as observable data. The block diagonality
of the information matrix under this setup guarantees that consistency and efficiency
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are not lost. This follows the two-step approach of Pagan and Schwert [42], Gallant,
Rossi, and Tauchen [17], and Engle and Ng [15].

5.1 Error correction model

Using a sequence of LR-ratio tests for different VAR orders, it appears that a 2-lag
ECM specification whitens effectively most of the serial correlation in the returns series.
This seemed to be the case even though the second lag autocorrelation is negligible.
The remaining 12th order autocorrelation in the futures returns series is generated by
the roll over strategy used in construction of the futures price series. As the contract is
rolled over every two weeks it is likely to generate high order autocorrelation. Therefore
we will consider this as a technical effect rather than something we should hunt down by
including higher lag orders. Otherwise the test statistics show no surprises and the null
of no GARCH effect can be rejected based on Portmanteau test for squared residuals.
The estimated model coefficients and descriptive statistics of the non-standardized
residuals are presented in Table 2. The order selection matches with previous studies
as Byström [9] used a VAR(2) model for the estimation. The inclusion of an ECM
term, however, deviates from the approach chosen by Bystrm, who excluded the error
correction mechanism and rather estimated the system as a plain vector autoregression.
However, given the highly significant error correction term, it is well justified to use
the ECM model in order to avoid downward bias in hedge ratios.

5.2 Univariate diagnostics and goodness-of-fit

The standard way to model conditional variances is to use GARCH(1,1)-filter with
different underlying distributions, which provides an easy way for preliminary evalua-
tion. In Table 4. we have computed standard diagnostics for the univariate GARCH
specifications obtained from CCORR. The statistics indicate that the null of no asym-
metric effects in the conditional variance is rejected based on the sign and size bias
tests proposed by Engle and Ng [15]. But overall the simple GARCH(1,1) specifica-
tion appears to be quite good, since the rest of the statistics are insignificant and the
model parameters are relatively stable. Although, a word of caution is necessary. As
often with many tests, the power of the statistics is not very high and rejection of the
null hypothesis by one or several of the tests does not give much information concern-
ing which nonlinear GARCH model might be the appropriate alternative. The same
problem concerns the direct tests against QGARCH and LSTGARCH.

As a next step, we have tested the goodness-of-fit of different underlying distri-
butions for both marginal distributions and their dependence structure. The results
are furnished in Table 5. The panel A provides Kolmogorov-Smirnov tests using t-
distribution, GED-distribution and normal distribution to estimate GARCH(1,1) for
the spot and futures returns separately. The tests indicate that the null hypothesis of
normal distribution is strongly rejected, whereas the null of Student’s t-distribution or
GED-distribution appears to be a more appropriate choice as a marginal distribution.
However, when we move on to test the dependence structure between the two series
the findings are somewhat different. As represented in panel B, the copula statistics
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proposed by Chen et. al [10] suggest that the normal copula or normal-DCC cop-
ula, where the correlation structure is dynamic, would be more appropriate than the
Student’s t-copula. This finding is quite interesting from the practitioner’s point of
view, since although we would reject joint normality of returns based on Kolmogorov-
Smirnov tests, the bivariate normal copula is still a reasonably good model for the
dependence structure. Therefore the choice between using exclusively normal distribu-
tion or t-distribution is not clear cut in our case. This is one of the reasons why we have
estimated the range of multivariate GARCH models using both normal and Student’s
t-distribution. However, the finding that a normal copula can be still a viable model
for dependence structure even though the marginal distributions would be non-normal,
is well documented especially in the case of bivariate models. Recently Malevergne and
Sornette [37], among others, have presented evidence that the bivariate normal copula
hypothesis cannot be rejected for many pairs of equity returns, but when moving to
a larger collections of financial assets Mashal and Zeevi [38] find that a multivariate
normal copula is more easily rejected in favor of a multivariate Student’s t-copula.

5.3 Comparison of MGARCH models

Having tested the univariate GARCH model, we are ready to compare the range of
MGARCH models selected for the study. This section is outlined as follows. First we
will shortly present the estimation results of the four models specified in the previous
section. Then we will consider the summary statistics of the variance and covariance
series obtained from the different models.

In the first MGARCH model the spot and futures returns are modelled within
the bivariate conditional correlation (CCORR) framework. The conditional variance
equations are specified as GARCH(1,1) for the two series. The estimation results for
the model are presented in Table 3. The left hand side of the table presents the
parameters for the spot variance and on the right for the futures variance. Judging
from the highly significant correlation coefficient the spot and futures returns are highly
correlated. The correlation is also quite stable, since the DCC-statistics in panel B do
not seem to lend much support for a dynamic correlation coefficient. The residual
statistics in the lower part of the table show that the first order GARCH model has
been sufficient to remove the serial correlation from the squared residuals. However, the
fact that we observe high kurtosis in standardized residuals, suggests that a different
distributional hypothesis could prove useful.

Having changed the underlying distribution, we have estimated the diagonal T-
BEKK, the full T-BEKK and also Asymmetric T-BEKK to consider the potential
asymmetric effects. The estimation results of these models are furnished in Table 6.
The descriptive statistics below the table confirm that the assumption of GARCH
disturbances removes effectively the autocorrelation in the squared residuals as in the
CCORR case. The estimated variance, covariance and hedge ratio series are shown in
figures 4 to 6. As a next step we will consider the summary statistics of the variance
and covariance series obtained from these models. These summary statistics, including
the mean, standard deviation, minimum, and maximum, are reported in Table 7. For
further intuition, we have reported the correlations between the estimates in Table 8.
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The findings from Tables 7. and 8 are aligned with the argument of Kroner and Ng
[31] that the multivariate GARCH models give quite different variance and covariance
estimates. For futures variances the CCORR estimates are considerably more volatile
than the BEKK estimates, but the situation is reversed, when we consider the covari-
ances; the BEKK models produce a broader range of covariance estimates, as evidenced
by the large maximum-minimum range. The effect of the t-distribution is pronounced
as higher spot variances and lower futures variances when benchmarked against the
models using normal distribution. When considering the estimated hedge ratios from
different models, we find that the use of t-distribution appears to lead to smaller hedge
ratios and higher standard deviation than the normal distribution. Also the full BEKK
models give smaller hedge ratios than the diagonal models. The correlations reported
in table 8 evidence the differences between normal and t-distribution quite expectedly,
but in addition we find that the covariance estimates from the asymmetric T-BEKK
and hence also the hedge ratios are negatively correlated with the rest of the models.
This is a somewhat odd finding, as it is difficult to design any good explanation why
this should be the case.

The results from robust conditional moments tests as suggested by Kroner and Ng
[31] are displayed in Table 9. When taking a look at the broader picture, we could
say that from a practitioner’s point of view the findings are quite good as only a
few misspecifications are detected. Further, in terms of these tests there are no ma-
jor differences between the various models as judged by the statistics computed for
spot variance and covariance series. The spot variance statistics furnished in panel A
indicate some heteroskedastic asymmetry problems in CCORR, diagonal BEKK and
diagonal T-BEKK as they all appear to suffer from the combination, where a negative
futures shock occurs with a large spot shock. The covariance statistics in panel B are
even better, as all the other models clear out completely except CCORR, which has
heteroskedastic asymmetry problem with negative spot shock combined with large fu-
tures innovation. Only futures variance seems to suffer from broader misspecifications.
All of the models are misspecified with respect to negative spot returns shocks and
combination of positive spot and positive futures returns shocks. CCORR has also
the heteroskedastic asymmetry problem as in the case with covariances. Additionally
the diagonal models and asymmetric T-BEKK suffer from combination, where positive
spot return shock occurs with a negative futures shock. Overall, if we were to rank
the models by these test statistics, T-BEKK would be the best candidate for further
modelling and CCORR the worst. The greatest problem is that all of the models are
bad at capturing the asymmetric relationship between futures and shocks to the spot
returns.

5.4 Evaluation of hedging performance

Additionally, following the example of Byström [9] we have compared the hedging
performance of the different models using both unconditional and conditional measures.
The models selected for the outsample tests are CCORR, Diag-BEKK, Diag T-BEKK,
and T-BEKK. Given that the robust conditional moments tests that were performed in
the previous section indicated no substantial need for inclusion of asymmetric terms,
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we have decided to leave out Asym T-BEKK due to the large computational costs
involved in the estimation of the model and the apparent lack of benefits over the
traditional models as measured by the conditional moments tests.

In the unconditional method the mean and variance of the returns of the hedged
portfolios and the percentage reduction in the variance of the hedged portfolio relative
to the unhedged portfolio are calculated as

ru = St+1 − St

rh = ru − ht(Ft+1 − Ft)
V R = 1− σ2

rh
/σ2

ru

where St, Ft, ru, rh, and VR denote the logarithmic spot price, logarithmic futures
price, return of unhedged portfolio, return of hedged portfolio, and variance reduction,
respectively. The conditional variance method proposed by Byström is based on a sim-
ilar idea. However, we start by assuming that the true return and variances processes
are generated by one of the GARCH models under consideration. This gives us the
possibility to compare the relative performance of the data generating GARCH and the
other models in minimizing the conditional variance. Hedging the spot portfolio each
day and then taking the average of the conditional variance of the spot and the hedge
portfolio yields us a measure for each portfolio that should be as small as possible.

The test results are summarized in table 10. Starting with the unconditional vari-
ances reported in panel A, we find that all the different hedges, except naive hedge
reduce the portfolio variance compared to the spot variance. Somewhat surprisingly,
the best hedge in both in-sample and out-of-sample seems to be the ECM-hedge. At
this point, it would appear that there is not much point in using the elaborate multi-
variate models as the simple ECM readily achieves equal or even better results. The
findings are quite similar to those made by Byström [9]who studied weekly portfolio
returns. However, unlike Byström we do not find the naive hedge better than other
hedges - on the contrary it appears to consistently increase the portfolio variances.
Further we find a clear difference between the in-sample and out-of-sample perfor-
mance. The models using Student’s t-distribution appear to perform better in the
out-of-sample than in-sample.

But once we move to inspect the reduction of the conditional instead of the uncon-
ditional variances, the obtained messages are quite different. In panel B, the average
conditional variance and the variance reductions (both in-sample and out-of-sample)
of the different hedges compared to the open spot position are presented for the four
different choices of the underlying covariance matrix. As anticipated, we find that
the ECM-hedge and naive hedge both increase the portfolio variance in the in-sample
and out-of-sample comparisons as they are not able to account for the time varia-
tions. Further, it is a stylized fact that those models that are assumed to generate
the underlying covariance matrix perform well. For example, when considering the
variance reduction achieved by T-BEKK model and assuming that it also generates
the covariance matrix, we are not surprised to find that the model also gives the best
results as benchmarked against its competitors. Yet, there are some exceptions. An
interesting finding is that the diagonal BEKK appears to perform well throughout the
comparisons, whereas CCORR is successful only in case we assume that it is the matrix
generating model. Generally also Diag T-BEKK and T-BEKK perform well, yet the
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Diag BEKK is even better in the outsample tests. However, none of these models was
able to achieve conditional variance reductions greater than 4.97%.

Overall, in the performance of these hedge ratios, the in-sample and out-of-sample
comparisons tell a similar story. It is evident that the non-hedged spot position is more
volatile than the hedged portfolios. Also use of an appropriate hedging model instead
of a naive hedge or no hedge at all is important from variance minimizer’s perspec-
tive. This finding is well inline with Byström’s study, who finds that the inclusion of
heteroskedasticity and volatility clustering in calculating the hedge ratio clearly con-
tributes towards an optimal hedge when looking at the conditional variance. However,
the selection of the model to be used in daily hedging, depends on whether we want
to minimize the conditional or unconditional portfolio variance. Based on these hedg-
ing performance evaluations only, it is difficult to discriminate between the different
MGARCH models. Unconditional tests would recommend the use of either ECM-hedge
or T-BEKK based on the out-of-sample tests, whereas the conditional tests suggest that
Diagonal BEKK, Diagonal T-BEKK, and T-BEKK are almost equally good candidates
for daily hedging. In the light of the robust conditional moments tests and other statis-
tics computed in the previous section, these findings are something that could have well
been expected. Given, that all of the models appeared to be relatively well specified
in terms of the conditional moments tests, it would have been somewhat surprising to
find major differences in the hedging performance tests.

6 Conclusions

The selection of appropriate hedging models has been historically a perennial source
of debates. Particularly the electricity markets due to asset non-storability and time-
varying risk premia, have struggled with the problem of finding a correctly specified
model for dynamic hedging. Thus, in order to get a more thorough insight into the
model selection, we have chosen to perform a range of tests to evaluate the most
commonly applied MGARCH models - including the robust conditional moments tests
along with the recently introduced copula statistics of Chen et al. [10]. The first
part of the study is concerned with the goodness-of-fit tests and robust conditional
moments tests, where the purpose is to examine whether the models are appropriately
specified by testing them against the presence of different kinds of asymmetric effects.
The second part of the study focuses more on the hedging performance of the different
models based on conditional and unconditional immunized portfolio variances. The
purpose is to inspect the sensitivity of hedging results to model selection.

Starting with the goodness-of-fit tests for different underlying distribution candi-
dates and copula statistics, we made a few interesting findings that could guide further
studies in the area. These were issues concerned with the choice of underlying marginal
distributions and their dependence structure. The problem with the traditional mul-
tivariate GARCH models that we have studied so far is that they compel us to use
exclusively one distribution to model the whole covariance matrix even though a com-
binatorial approach could be preferable. In this study we have many times rejected
the assumption of normality of the spot and futures series, yet still accepted the use
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of normal copula to be a more appropriate choice for the dependence structure than
the Student’s t-copula. Although, also a t-copula appeared to be adequately good for
modelling the dependence structure. Thus, the problem we have faced in the use of the
multivariate GARCH models selected for this study, is that all of them are misspeci-
fied in some respect: when using CCORR and diagonal BEKK we have misspecified
the marginal distributions by assuming them to be normal, but when using diagonal
T-BEKK, T-BEKK or asymmetric T-BEKK we have problems with the dependence
structure. The model that could prove more effective would be one that combines the
best of the both sides: marginal Student’s t-distributions with normal copula as the
dependence structure. However, having made the decision to focus on the commonly
applied MGARCH models, we decided to continue with a collection of models using
both gaussian and Student’s t-copulas.

The second step was to evaluate the models in the spirit of Kroner and Ng [31]
using the robust conditional moments tests for potential asymmetries. In general the
findings were good from a practitioner’s point of view, since all of the models studied
appeared to be relatively well specified. Only futures variance specifications suffered
from some asymmetric effects. All of the models appeared to be misspecified with
respect to negative spot return shocks and a combination of positive spot and positive
futures return shocks. T-BEKK appeared to have the least number of rejections.
The diagonal models suffered from the combination where positive spot return shocks
occur with negative futures return shocks, and CCORR had heteroskedastic asymmetry
problems also with the covariance specification. Overall the tests implied surprisingly
weak evidence on unaccounted asymmetries, which suggests that although the models
fail to capture some asymmetric responses to shocks the need to incorporate these
effects into models is not too acute.

The third step of the study, was to consider the hedging performance differences
by comparing the conditional and unconditional immunized portfolio variances. As
Byström [9], we find that when comparing the results from the conditional evaluation
with the results from the unconditional evaluation, there are both similarities and
differences. In both cases, it is quite obvious how hedging in the electricity markets
can reduce the variance, but when conditional metrics are used the inclusion of the
ARCH effects in calculating the optimal hedge ratio clearly suggests that GARCH
models contribute towards the optimal hedge ratios. The evidence was stacked against
the naive hedge strategy throughout the comparison and also the simple ECM-hedge
and CCORR achieved weaker results than the Diagonal BEKK models and T-BEKK.
However, the selection between MGARCH and ECM-hedges depends on whether we
want to minimize the conditional or unconditional variance. If conditional variance is
considered, the MGARCH approach should be preferred - but if only unconditional
variance is considered then the simple ECM-hedge would best out all the rest of the
models. Overall, it has shown to be quite difficult to say whether any particular
MGARCH model should be preferred. Rather we have been surprised by how little
differences the tests have managed to reveal between the models. For a practitioner
the message is positive: one just needs to choose the simplest model that is not too
badly specified in terms of the conditional moments tests. In this case the choice would
be between the Diagonal specifications and the full T-BEKK - each of them yielding
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relatively similar hedging benefits.
Yet, for a researcher there is still a lot of work to do in the area. One major issue is

the problem of finding an appropriate underlying distribution. The tests performed in
this study have readily indicated that neither the gaussian or Student’s t-distribution
appear to provide full fit. Rather than being a problem of a technical model specifica-
tion as studied by the robust conditional moments tests, the bigger problem is in the
selection of the marginal distributions and their dependence structure. Finally, given
that the whole study was flooded with different specifications tests and diagnostics,
it became quite clear that a perennial source of new research issues is the design and
comparison of new techniques. In particular, the analysis of multivariate non-linear
models has been taken up only very recently, and currently there are no generally
accepted ideas on how to construct and test such models in the first place. Thus, it
seems that much further research is needed on issues as representation, specification,
estimation, inference and forecasting for these models.
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Table 1: Descriptive statistics.
The panel A reports summary statistics and unit root tests of the logarithmic spot and
futures prices for the full sample period between Jan-1996 and Nov-2002. ADF and KPSS
denote the Augmented Dickey-Fuller test and Kwiatkowski-Phillips-Schmidt-Shin test,
respectively. The trend is included in the tests. ADF tests the null hypothesis of a unit
root, whereas KPSS tests the null of stationarity. The critical values for ADF are -4.0
and -3.5 at 1% and 5% levels. The corresponding critical values for KPSS are 0.216 and
0.146 for 1% and 5% levels. Q(k) is the Ljung-Box test for autocorrelation. 99% critical
value for Jarque-Bera is 9.21. The panel B reports the Johansen cointegration test for
spots and futures. For the Johansen’s trace test and the eigenvalue test, the first row tests
the null of no cointegration and the second row tests the null of one cointegrating vector.
The lag orders used in the unit root and cointegration tests were selected using a sequence
of Lagrange ratio tests for VARs of different orders. Italic-bold denotes rejection at 1%
significance level.

Panel A: Descriptive statistics and unit root tests
Spot Futures

Price levels Returns Price levels Returns
Mean 5.973 0.000 4.974 0.000
Standard deviation 0.397 0.082 0.038 0.038
Skewness -0.159 1.216 0.092 1.154
Excess kurtosis 0.153 37.176 -0.551 11.425
Jarque-Bera Test 8.839 98200.630 23.884 9612.183
Q(4) − 32.456 − 7.094
Q2(4) − 289.409 − 6.136
Q(12) − 40.328 − 54.663
Q2(12) − 289.877 − 268.687
ADF -3.907 -48.734 -1.507 -47.975
KPSS 4.063 0.014 6.869 0.047

Panel B: Cointegration tests
Eigenvalue test Trace test

r=0 113.337 116.621
r=1 3.284 3.284

21



1996 1997 1998 1999 2000 2001 2002 2003
−0.4

−0.2

0

0.2

0.4
Spot returns

1996 1997 1998 1999 2000 2001 2002 2003
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Futures returns

1996 1997 1998 1999 2000 2001 2002 2003
0

0.05

0.1

0.15

0.2
Squared spot returns

1996 1997 1998 1999 2000 2001 2002 2003
0

0.02

0.04

0.06

0.08

0.1

0.12
Squared futures returns

Figure 1: Spot and futures returns
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Table 2: ECM model estimates
The table reports the estimates of the ECM(2) for the mean in daily spot and futures prices
(the first 1400 observations: between Jan-1996 and Aug-2001). The futures strategy is
based on buying contracts with three weeks left to maturity and rolling over one week prior
to expiration. Q(k) denotes the Ljung-Box test for the first k lags. The model order was
selected using a series of Lagrange ratio tests. Q2(k) is the Ljung-Box test for the squared
residuals. 99% critical value for Jarque-Bera normality test is 9.21. Italic-bold denotes
rejection at 1% significance level.

Spot Futures
Variable Estimates t statist. Estimates t statist.
∆ ln St−1 -0.052 -1.894 -0.014 -1.064
∆ ln St−2 -0.042 -1.613 -0.003 -0.227
∆ ln Ft−1 0.372 6.400 0.029 1.023
∆ ln Ft−2 0.019 0.329 -0.033 -1.147
EC term −0.021 -9.757 -0.002 -2.196
Constant 0.002 0.900 0.000 0.285

Mean 0.000 0.000
Stand.dev 0.082 0.040
Skewness 2.313 1.136
Excess kurtosis 39.115 10.292
Jarque-Bera Test 90301.857 6465.328
Q(4) 2.730 4.495
Q2(4) 121.390 5.730
Q(12) 7.531 57.212
Q2(12) 121.685 213.697
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Table 3: CCORR and DCC-MGARCH test
The table presents the maximum likelihood parameter estimates for the constant correlation
model. The lower part of the table gives standardized residual statistics. Log L denotes the
loglikelihood value and Q2

k denotes the Ljung-Box test for the remaining serial correlation
in the squared residuals. 99% critical value for Ljung-Box is 16.8 and for the Lilliefors
normality test 0.0276. The DCC-MGARCH test statistic is χ2 distributed with nlags+1
degrees of freedom. The pval denotes the probability that the correlation is constant.

Panel A: CCORR
Spot Futures

Estimates t statist. Estimates t statist.
ωii 0.003 15.962 0.000 5096.327
αii 0.307 0.530 0.100 159.916
βii 0.335 0.074 0.867 546.339
ρij 0.172 54.691 0.172 54.691
LogL 4315.76

Mean 0.019 -0.010
Skewness 4.980 0.912
Excess Kurtosis 79.242 9.300
Lilliefors Test 0.12 0.09
Q(6) 0.06 4.57
Q2(6) 0.01 0.16

Panel B: Test against DCC-MGARCH
Number of lags Statistic P-value

1 0.252 0.882
3 1.087 0.896
6 3.472 0.838
9 16.792 0.079
12 17.352 0.184
15 19.843 0.227
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Table 4: Univariate GARCH diagnostics
The table gives diagnostic tests for the univariate GARCH specifications obtained from
CCORR. The ARCH and GARCH tests denote the LM-test proposed by Lundbergh and
Terasvirta [36]. The sign and size bias tests of standardized residuals are based on Engle
and Ng [15]. QGARCH and LSTGARCH denote the direct tests against these alternatives
as proposed by Hagerud [20]. The parameters constancy tests denote the Lundbergh and
Terasvirta [36] tests against ANST-GARCH.

Spot Futures
Statistic P-value Statistic P-value

No remaining ARCH 0.022 0.883 1.505 0.220
Higher order GARCH 0.043 0.835 1.347 0.246
GARCH vs. QGARCH 0.221 0.638 2.089 0.148
GARCH vs. LSTGARCH 0.078 0.780 2.147 0.143
Intercept stability 2.292 0.130 1.673 0.196
ARCH parameter stability 0.890 0.346 0.926 0.336
All parameters stability 2.418 0.490 1.955 0.582
Sign Bias -1.775 0.038 -1.587 0.056
Positive Size Bias 44.434 0.000 31.919 0.000
Negative Size Bias -2.554 0.005 -13.036 0.000
Sign and Size Bias 960.106 0.000 1018.965 0.000

Table 5: Goodness-of-fit tests for distributions
K-S T-dist, K-S GED-dist and K-S Normal-dist statistics represent the Kolmogorov-Smirnov
tests the null that the errors are from the given distribution. The N(0,1) distributed copula
statistics are based on the work of Chen et. al. [10].

Panel A: Marginal distribution
Spot Futures

K-S T-dist 0.035 (0.059) 0.030 (0.173)
K-S GED-dist 0.037 (0.047) 0.032 (0.106)
K-S Normal-dist 0.118 (0.000) 0.093 (0.000)

Panel B: Copulas
Raw errors GARCH-filter

Normal copula 0.427 (0.335) -0.716 (0.237)
Student’s t-copula -1.785 (0.037) -1.218 (0.112)
Normal-DCC copula 0.601 (0.274) -0.445 (0.328)
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Table 6: BEKK models

Panel A: Parameter estimates of alternative models
Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

ω11 0.050 (0.000) 0.030 (0.005) 0.031 (0.003) 0.029 (0.000)
ω21 0.003 (0.000) 0.003 (0.000) 0.000 (0.000) -0.001 (0.000)
ω22 0.006 (0.000) 0.005 (0.000) 0.006 (0.000) 0.007 (0.000)
α11 0.524 (0.008) 0.636 (1.970) 0.682 (1.069) 0.640 (0.003)
α12 - - - - -0.343 (0.431) -0.599 (0.006)
α21 - - - - 0.002 (0.002) -0.021 (0.000)
α22 0.253 (0.001) 0.188 (0.134) 0.177 (0.059) -0.141 (0.000)
β11 0.596 (0.009) 0.717 (0.020) 0.683 (0.009) 0.683 (0.000)
β12 - - - - 0.095 (0.004) 0.080 (0.001)
β21 - - - - 0.002 (0.001) 0.012 (0.000)
β22 0.953 (0.000) 0.973 (0.000) 0.975 (0.000) 0.965 (0.000)
g11 - - - - - - 0.286 (0.002)
g12 - - - - - - -0.286 (0.004)
g21 - - - - - - -0.008 (0.000)
g22 - - - - - - 0.170 (0.000)
ν - - 3.176 (98.975) 12.261 (51.115) 3.168 (15.885)
LogL 4305.276 4911.540 4916.935 4924.494

Panel B: Diagnostics
Spot Futures Spot Futures Spot Futures Spot Futures

Q(1) 0.000 0.749 0.015 0.207 0.013 0.151 0.006 0.150
Q(2) 0.018 0.827 0.048 1.166 0.042 1.330 0.033 0.667
Q(5) 0.051 3.601 0.091 4.644 0.079 5.027 0.070 3.803
Q(10) 0.125 51.544 0.193 73.431 0.166 76.937 0.154 66.161
Q2(1) 0.001 0.037 0.001 0.033 0.001 0.031 0.001 0.027
Q2(2) 0.003 0.044 0.002 0.033 0.002 0.031 0.002 0.030
Q2(5) 0.006 0.118 0.005 0.109 0.005 0.106 0.004 0.091
Q2(10) 0.013 2.614 0.010 7.077 0.009 8.061 0.009 5.368

AIC -8596.551 -9807.079 -9809.871 -9816.987
SIC -8559.856 -9765.143 -9746.966 -9733.114

AIC = -2 logL+2K, where K is the number of estimated parameters and log L is the
log-likelihood function.

SIC = -2 logL + K log(T), where T = 1517 is the sample size and K is the number
of estimated parameters and logL is the log-likelihood function
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Table 7: Summary statistics of variances, covariances and hedge ratios
This table gives summary statistics for the variance, covariance and hedge ratio series esti-
mated from the different MGARCH models discussed in the article. All models have been
applied to the same dataset between Jan-1996 and Aug-2001. ε1t is the spot return innova-
tion and ε2t is the innovation to the futures return. h11t, h22t, and h12t denote the estimated
spot variance, futures variance and their covariance, respectively.

Model Variable Mean SD Minimum Maximum

Spot variance
ε2
1t

CCORR h11t 0.007 0.015 0.004 0.395
Diag BEKK h11t 0.007 0.014 0.004 0.354
Diag T-BEKK h11t 0.007 0.023 0.002 0.518
T-BEKK h11t 0.008 0.025 0.002 0.582
Asym T-BEKK h11t 0.008 0.025 0.002 0.505

Futures variance
ε2
2t

CCORR h22t 0.002 0.002 0.001 0.035
Diag BEKK h22t 0.002 0.001 0.001 0.010
Diag T-BEKK h22t 0.002 0.001 0.001 0.006
T-BEKK h22t 0.002 0.001 0.001 0.006
Asym T-BEKK h22t 0.002 0.001 0.001 0.008

Covariance
ε12t

CCORR h12t 0.001 0.000 0.000 0.006
Diag BEKK h12t 0.001 0.001 -0.005 0.010
Diag T-BEKK h12t 0.001 0.001 -0.005 0.010
T-BEKK h12t 0.001 0.001 -0.009 0.007
Asym T-BEKK h12t 0.001 0.001 -0.018 0.010

Hedge ratios
ε12t/ε2t

CCORR h12t/h2t 0.352 0.165 0.080 3.342
Diag BEKK h12t/h2t 0.379 0.318 -2.042 3.898
Diag T-BEKK h12t/h2t 0.315 0.314 -1.901 2.981
T-BEKK h12t/h2t 0.297 0.349 -2.330 4.267
Asym T-BEKK h12t/h2t 0.268 0.499 -10.296 3.553
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Table 8: Correlations
This table gives correlations between the variance, covariance and hedge ratio series esti-
mated from the different MGARCH models discussed in the article. All models have been
applied to the same dataset between Jan-1996 and Aug-2001.

Spot variance
CCORR Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

CCORR 1.000 0.999 0.977 0.983 0.955
Diag BEKK 0.999 1.000 0.982 0.987 0.961
Diag T-BEKK 0.977 0.982 1.000 0.995 0.983
T-BEKK 0.983 0.987 0.995 1.000 0.990
Asym T-BEKK 0.955 0.961 0.983 0.990 1.000

Futures variance
CCORR Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

CCORR 1.000 0.586 0.538 0.527 0.527
Diag BEKK 0.586 1.000 0.968 0.955 0.949
Diag T-BEKK 0.537 0.968 1.000 0.998 0.978
T-BEKK 0.527 0.955 0.998 1.000 0.976
Asym T-BEKK 0.527 0.949 0.978 0.976 1.000

Covariance
CCORR Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

CCORR 1.000 0.307 0.322 0.218 -0.192
Diag BEKK 0.307 1.000 0.977 0.803 -0.353
Diag T-BEKK 0.322 0.977 1.000 0.815 -0.321
T-BEKK 0.218 0.803 0.815 1.000 -0.604
Asym T-BEKK -0.192 -0.353 -0.321 -0.604 1.000

Hedge ratios
CCORR Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

CCORR 1.000 0.349 0.247 0.470 -0.783
Diag BEKK 0.349 1.000 0.937 0.847 -0.565
Diag T-BEKK 0.247 0.937 1.000 0.864 -0.552
T-BEKK 0.470 0.847 0.864 1.000 -0.780
Asym T-BEKK -0.783 -0.565 -0.552 -0.780 1.000
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Table 9: Robust Conditional Moments tests

Panel A: Spot variance
CCORR Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

I(ε1t−1 < 0) 0.546 0.524 0.794 0.774 0.830
I(ε2t−1 < 0) 1.866 1.913 1.517 1.204 1.039
I(ε1t−1 < 0; ε2t−1 < 0) 2.110 2.141 1.955 1.119 1.121
I(ε1t−1 < 0; ε2t−1 > 0) 0.015 0.024 0.053 0.253 0.238
I(ε1t−1 > 0; ε2t−1 < 0) 1.367 1.421 0.920 1.218 0.752
I(ε1t−1 > 0; ε2t−1 > 0) 0.818 0.813 0.877 0.931 0.854
ε2
1t−1I(ε1t−1 < 0) 0.024 0.015 0.732 0.398 0.189

ε2
1t−1I(ε2t−1 < 0) 3.359 3.005 3.116 1.326 0.558

ε2
2t−1I(ε1t−1 < 0) 2.082 2.107 0.367 0.076 0.023

ε2
2t−1I(ε2t−1 < 0) 0.004 0.012 0.132 1.466 0.514

Panel B: Covariance
CCORR Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

I(ε1t−1 < 0) 0.104 0.771 0.002 1.026 1.081
I(ε2t−1 < 0) 0.210 1.132 0.305 1.088 1.219
I(ε1t−1 < 0; ε2t−1 < 0) 0.009 2.266 1.102 0.837 1.244
I(ε1t−1 < 0; ε2t−1 > 0) 0.168 1.116 0.319 1.060 0.288
I(ε1t−1 > 0; ε2t−1 < 0) 0.286 0.784 0.001 1.011 1.281
I(ε1t−1 > 0; ε2t−1 > 0) 0.027 0.022 0.000 0.112 0.992
ε2
1t−1I(ε1t−1 < 0) 0.007 1.534 0.705 0.002 0.865

ε2
1t−1I(ε2t−1 < 0) 0.272 1.437 0.323 0.095 0.172

ε2
2t−1I(ε1t−1 < 0) 3.362 0.617 1.504 0.120 0.423

ε2
2t−1I(ε2t−1 < 0) 0.195 0.826 1.189 0.846 0.402

Panel C: Futures variance
CCORR Diag BEKK Diag T-BEKK T-BEKK Asym T-BEKK

I(ε1t−1 < 0) 5.524 5.708 6.492 6.379 6.870
I(ε2t−1 < 0) 0.000 0.013 0.010 0.006 0.000
I(ε1t−1 < 0; ε2t−1 < 0) 1.058 1.034 1.397 1.293 1.525
I(ε1t−1 < 0; ε2t−1 > 0) 1.343 1.503 1.640 2.056 1.541
I(ε1t−1 > 0; ε2t−1 < 0) 2.574 3.108 4.007 2.566 5.259
I(ε1t−1 > 0; ε2t−1 > 0) 3.746 3.185 2.911 3.735 2.942
ε2
1t−1I(ε1t−1 < 0) 0.464 0.310 0.367 0.123 0.240

ε2
1t−1I(ε2t−1 < 0) 1.977 1.627 1.752 1.817 2.233

ε2
2t−1I(ε1t−1 < 0) 6.382 1.418 1.165 1.573 3.862

ε2
2t−1I(ε2t−1 < 0) 0.126 0.954 0.168 0.001 0.000
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Figure 3: Spot variances

31



1996 1997 1998 1999 2000 2001 2002
0

0.005

0.01

0.015
CCORR

1996 1997 1998 1999 2000 2001 2002
0

0.005

0.01

0.015
Diagonal BEKK

1996 1997 1998 1999 2000 2001 2002
0

0.005

0.01

0.015
Diagonal T−BEKK

1996 1997 1998 1999 2000 2001 2002
0

0.005

0.01

0.015
T−BEKK

1996 1997 1998 1999 2000 2001 2002
0

0.005

0.01

0.015
Asym T−BEKK

Figure 4: Futures variances
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Figure 5: Covariances
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Figure 6: Hedge ratios
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