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Abstract. A considerable problem in statistics and risk management is finding distributions that capture
the complex behavior exhibited by financial data. The importance of higher order moments in decision
making has been well recognized and there is increasing interest to modelling with distributions that are
able to account for these effects. The Pearson system can be used to model a wide scale of distributions with
various skewness and kurtosis. This paper provides computational examples of a new easily implemented
method for selecting probability density functions from the Pearson family of distributions. We apply this
method to daily, monthly, and annual series using a range of data from commodity markets to macroeconomic
variables.

Key Words: Pearson system, block bootstrap, selection criteria.

1. Introduction

Deciding on which distribution to use for modelling asset prices or macroeconomic variables such as infla-
tion is a common problem for econometricians and risk professionals. Currently there exists a considerable
amount of literature on evaluating density forecast models, but being able to choose a suitable distribution
even for preliminary analysis has remained as a considerable problem. Traditionally modelling has been
based on the mean-variance analysis assuming a symmetric distribution, but since the research by Arditti
(1967); Levy (1969); McEnally (1974), and Francis (1975), it has been well documented that return distri-
butions are not fully captured by the first two moments of the distribution. The motivation for modelling
skewness and kurtosis, especially in asset pricing, has followed from attempts to understand investor be-
havior and their different preferences for moments. Scott and Horvath (1980), among others, have argued
that investors prefer odd moments (mean and skewness) and dislike even moments (variance and kurtosis).
The evidence for various skewness and kurtosis preferences is still, however, rather inconclusive, but it has
nevertheless stimulated a line of research attempting to incorporate the higher moment effects into the asset
pricing frameworks such as CAPM (Hwang and Satchell, 1999).

Given the needs to allow for fat tails, skewness, and even multimodality, it has become interesting to study
frameworks that are flexible enough to accommodate distributions with broad range of properties. In this
paper we provide examples of a new technique for selecting distributions from the Pearson family. The reason
for considering this particular approach is that the Pearson System is a parametric family of distributions
with easily expressible density functions, which can be used to model a wide scale of distributions with various
skewness and kurtosis. These features make the family amenable to both theoretical and empirical problems
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2 SIMPLE APPROACH FOR DISTRIBUTION SELECTION IN THE PEARSON SYSTEM

where density functions must be expressed explicitly. The selection approach, we are proposing in this paper,
is based on the use of two criteria, which are able to discriminate between the main types of distributions
and the interesting subtypes of the system with various restrictions on the support of the variable. What
makes this approach useful for modelling is that the criteria are quickly computed as functions of the first
four central moments, thus making the technique applicable to filtering and Bayesian modelling problems,
where ability to choose a convenient distribution quickly is of great importance.

The disposition of the paper is following. In the second section we present the Pearson system and
consider the method of moments estimation of the parameters. In the third section we consider how the
Pearson parameters can be used to construct selection criteria and outline the steps required for distribution
selection. Further, we discuss how simple bootstrapping techniques can be used to robustify the selection
by testing the signs of the selection criteria. Both stationary and non-stationary bootstraps for dependent
data are considered. In the fourth section we provide numerical examples of the approach using various time
series ranging from commodity markets to macroeconomic variables. We conclude in the fifth section.

2. The Pearson System

Several well known distributions belong to the Pearson family; for example Gaussian, Gamma, Beta and
Student’s t-distributions. The system was introduced by Karl Pearson (1895), who worked out a set of
four-parameter probability density functions as solutions to the differential equation

(1)
f ′(x)
f(x)

=
P (x)
Q(x)

=
x− a

b0 + b1x + b2x2

where f is a density function and a, b0, b1 and b2 are the parameters of the distribution.
What makes the Pearson’s four-parameter system particularly appealing is the direct correspondence

between the parameters and the central moments (µ1, ..., µ4) of the distribution (Stuart and Ord, 1994)

b1 = a = −µ3(µ4 + 3µ2
2)

A
= −µ

1/2
2 β1(β2 + 3)

A′

b0 = −µ2(4µ2µ4 − 3µ2
3)

A
= −µ2(4β2 − 3β2

1)
A′

(2)

b2 = − (2µ2µ4 − 3µ2
3 − 6µ3

2)
A

= − (2β2 − 3β2
1 − 6)

A′

where the two moment ratios β2
1 = µ2

3/µ3
2 and β2 = µ4/µ2

2 denote skewness and kurtosis, respectively. The
scaling parameters A and A′ are obtained from

A = 10µ4µ2 − 18µ3
2 − 12µ2

3(3)
A′ = 10β2 − 18− 12β2

1

When the theoretical central moments are replaced by their sample estimates, the above equations define
the moment estimators for the Pearson parameters a, b0, b1 and b2.

As alternatives to the basic four-parameter systems various extensions have been proposed using higher-
order polynomials or restrictions on the parameters. Typical extension modifies (1) by setting P (x) = a0+a1x

(4)
f ′(x)
f(x)

=
P (x)
Q(x)

=
a0 + a1x

b0 + b1x + b2x2

This parametrization characterizes the same distributions but has the advantage that a1 can be zero and the
values of the parameters are bound when the fourth cumulant exists (Karvanen, 2002). Several attempts to
parametrize the model using cubic and quartic curves have been made already by Pearson and his coworkers,
but these systems proved too cumbersome for general use. Instead the simpler scheme with linear numerator
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and quadratic denominator has gained broad acceptance. Thus, we prefer to use either parametrization (4)
or its restricted version (1) for this study.

3. Classification and selection of distributions

There are different ways to classify the distributions generated by the roots of the polynomials in (1)
and (4). Pearson himself organized the solution to his equation in a system of twelve classes identified by
a number. The numbering criterion has no systematic basis and it has varied depending on the source. A
convenient approach to illustrate the main types in the system is a simple moment ratio diagram as in Fig.
1. Although the classical moment ratio approach provides a description of the main types of the system,
it is not easy to select between individual members of the system especially if we are to consider also the
interesting subtypes in the system.

3.1. Alternative approach for distribution selection. In order to simplify the distribution selection,
we propose another classification of distributions including transitional types, were each class is identified
using two statistics that are functions of the four Pearson parameters. The scheme is presented in Tables 1
and 2, where D and λ denote the selection criteria (see Appendix A).

D = b0b2 − b2
1(5)

λ =
b2
1

b0b2
(6)

What makes this approach useful for statistical modelling in the Pearson framework is its simplicity.
Implementation is done in the following steps:

(1) Estimate moments from data.
(2) Calculate the Pearson parameters a, b0, b1 and b2 using (2).
(3) Use the parameters to compute the selection criteria D and λ.
(4) Select an appropriate distribution from Tables 1 and 2 based on the criteria.

In case, one needs to robustify the selection it is easy to use bootstrapping to test the assumptions con-
cerning the signs of selection criteria before selecting the distribution. Efron’s bootstrap is a powerful tool
for estimating various properties of a given statistic, most commonly its bias and variance. The idea of
bootstrapping is to replicate the initial sample many times and then draw with replacement from this large
sample set. If we can assume that the initial sample is representative of the population, the bootstrapped
sample will be a larger representative sample of the population.

3.2. Bootstrap statistics. In this section we explain how bootstrap techniques can be used to test the
signs of the selection criteria, but before doing so we need to discuss the limitations of this approach. The
main issue we have to resolve is how to handle dependent data, since the standard bootstrap procedure fails
when the observed sample points are not independent. One remedy is to use block bootstrap methods, which
are able to reproduce the different aspects of the dependence structure of the observed data in the resampled
data. Therefore, in this paper we have used two block bootstraps methods depending on the strength of
autocorrelation in the data. For asset returns data, which are commonly autocorrelated, we use stationary
bootstrap (Politis and Romano, 1994). While for levels data we use the continuous-path block bootstrap in
order to account for unit roots (Paparoditis and Politis, 2001).

3.2.1. Stationary Bootstrap. The stationary bootstrap algorithm proposed by Politis and Romano (1994)
can be defined as follows (Lahiri, 1999). Let {X1, ..., Xn} be a stationary sequence of the observed random
variables. Assume for simplicity that the number of blocks k = kn (≥ 1) and the block length l = ln
(1 < l < n) are integers. Now the procedure begins by wrapping the data X1, ..., Xn around a circle to obtain
a periodic extension {X0i}i≥1 where for i ≥ 1, X0i = Xj if i = mn+j for some integers m ≥ 0 and 1 ≤ j ≤ n.
The collection of blocks with length k ≥ 1 is defined by {B(i, k) = (X0i, ..., X0i+k−1) : i ≥ 1, k ≥ 1}.

In stationary bootstrap Politis and Romano (1994) use a random block length to generate the bootstrap
sample. Let Lni ≡ Li, i ≥ 1 be conditionally iid random variables having the geometric distribution with
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parameter p = l−1 ∈]0, 1[, that is, P?(L1 = k) = p(1 − p)k−1, k = 1, 2, . . . . Then, we obtain the stationary
bootstrap resamples K ≡ inf {k ≥ 1 :

∑k
i=1 Li ≥ n} by setting B(I1, L1), . . . , B(IK , LK), where I1, . . . , In

denote conditionally iid random variables drawn from discrete uniform distribution on 1, . . . , n. The idea
behind this approach is that by resampling blocks rather than original observations we preserve the original
short-term dependence structure. The block lengths are chosen using the novel technique based on the notion
of spectral estimation via the flat-top lag-windows as proposed by Politis and White (2004) (see Appendix
B).

3.2.2. Continuous-Path Block Bootstrap. However, if the data is nonstationary such as asset prices commonly
are, we need to take the unit roots into account in bootstrapping. For this purpose, we have used the
continous-path block bootstrap introduced by Paparoditis and Politis (2001). As before, the algorithm is
carried out conditionally on the original data and implicitly defines a bootstrap probability that is capable
of generating bootstrap pseudo-series of the type {X?

t , t = 1, 2, ...}. First we calculate the centered residuals
for t=2,3,...,n

Ût = Xt −Xt−1 − 1
n−1

∑n
t=1(Xt −Xt−1)

and construct the new variables X̃t as follows:

X̃t =
{

X1 t = 1
X1 +

∑t
j=2 Ûj t = 2, 3, ..., n

Having chosen block length l, we take integer k = [(n− 1)/l] as the number of blocks and draw I1, ..., Ik

i.i.d. from uniform distribution on the set {1, 2, ..., n− l}. Now construction of the first bootstrap block of l
observations is as follows. Set X?

1 := X1 and

X?
j := X1 + [X̃I1+j−1 − X̃I1 ]

for j = 2, ..., l. The rest of the bootstrap-pseudo series {X?} is obtained by setting

X?
ml+1+j := X?

ml+1 + [X̃Im+j − X̃Im ],
where j = 1, ..., l and m = 1, 2, ..., k.

3.2.3. Test statistics. For the two-sided test H0 : D = D0 and H0 : λ = λ0 against H1 : D 6= D0 and
H1 : λ 6= λ0, the test statistics are defined as

TD = |D̂−D0|
σ̂D̂

Tλ = |λ̂−λ0|
σ̂λ̂

where λ̂ and D̂ denote estimators of D and λ derived from the observations and σ̂λ and σ̂D are their standard
deviations, respectively.

If the test is one-sided, the corresponding test statistics are obtained from

TD = D̂−D0
σ̂D̂

Tλ = λ̂−λ0
σ̂λ̂

Now the bootstrap is used to calculate the critical values for Tλ and TD. Having generated the bootstrap
resamples X?

b as defined above, we use them to find bootstrap statistics T ?
λ,n,b and T ?

D,n,b for b = 1, ..., k.
Next we rank the collections T ?

λ,n,1, T
?
λ,n,2, ..., T

?
λ,n,k and T ?

D,n,1, T
?
D,n,2, ..., T

?
D,n,k into increasing order and

use the 1−α quantiles of the test statistics as critical values. (Brown and Zoubir, 2001; Zoubir and Boashash,
1998)

4. Examples

In this section we consider an application of bootstrap techniques to estimating the proposed Pearson
system selection criteria. Our data set consists of 18 time series, which were randomly chosen from five
categories: commodities, US macroeconomic variables, exchange rates, equity indices, and interest rates (see
Table 3 for details and Datastream symbols). In order to illustrate various types of time series the observation
frequencies were allowed to vary from daily to quarterly and annual data. The only selection criterion
was to ensure that the time series are of adequate length. This is important especially when considering
macroeconomic variables with annual observations. Given the large number of samples necessary to evaluate
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a distribution, it is difficult to measure the distribution of annual, or even monthly, data. Therefore, we
restricted the study to US only, where various macroeconomic indicators are available from 1960’s onwards.

4.1. Commodities. Preliminary statistics for studentized commodity returns are furnished in Table 4.
Since there is no reason to assume that the distribution would remain unchanged with different observation
frequencies, we have considered both daily and weekly returns to pick up the potential aggregation effects.
Starting with the daily returns reported in Panel A, we find that all of the series deviate from normal in
terms of the traditional Kolmogorov-Smirnov statistics. Also the skewness and kurtosis estimates support
these findings. The weekly returns presented in Panel B are, on the contrary, considerably closer to the
standard log-normal distribution. These findings are inline with the aggregation effect, although many of
the skewness and kurtosis test statistics are still significant at 5 percent level.

As a next step, we estimated the bootstrap test statistics for the selection criteria. The results are
reported in Table 5. In order to illustrate the types of distributions associated with the estimated selection
criteria, we have provided gaussian kernel densities for GS Commodity index and GSCI Excess Energy
Returns for daily and weekly returns in Figures 2 and 3, respectively. Given that the null hypotheses of
nonstationarity were rejected by Augmented Dickey-Fuller tests given in Table 4, we applied the stationary
block bootstrap for all of the commodity returns. The optimal block lengths, which were estimated using
flat-top lag windows method proposed by Politis and White (2004), varied from 1 to 8 observations. When
considering the estimates for selection criteria D and λ, we found one major similarity between the different
commodity index returns: in most of the cases D is consistently larger than λ. The findings are supported
by the bootstrap sign tests, which indicate that D is significantly greater than zero at 5% level, whereas the
null of λ = 0 is accepted throughout the table. This implies that class 10 or 11 distributions would provide
the best fit within the Pearson system based on the classification provided in Tables 1 and 2. The findings
are somewhat expected, since distributions in classes 10 to 11 allow for a combination of skewness and excess
kurtosis, which is typically exhibited by financial data. These classes are rather general, but they include
several well known distributions such as the Student’s t-distribution and Pearson Type IV distribution. Of
the asymmetric distributions particularly the Type IV distribution has recently gained increasing attention
due to its flexible shape and ability to cover a large area of the moment ratio diagram (Figure 1).

For weekly returns, the distributions appear to be closer to log-normal, but the effects of combined
skewness and excess kurtosis are still strongly manifested and we end-up often choosing a distribution from
classes 10 or 11. For example in the case of GSCI Energy Excess Return the distribution shifted from class
10 to the asymmetric distribution in class 11 when moving from daily returns to weekly. As implied by the
increased skewness statistics in Table 4, one potential explanation for these shifts is that the role of skewness
has become more pronounced than kurtosis. Therefore accommodating asymmetry could improve the fit
for these distributions considerably. For GS Commodity index and London Brent it is, however, difficult to
say whether class 10 or 11 should be used: the sample estimates for D and λ point for class 11, but the
bootstrap sign statistics favor class 6 or 10. These discrepancies could be explained by a large variance in
λ or skewness in its distribution. Thus, although the sample estimate for λ gets a positive value between 0
and 1, a fat negative tail in its bootstrap distribution can lead us to reject the null of non-negativity even
though the values would be positive on average.

These findings have important implications for estimation of standard econometric models such as GARCH.
Given that some of the underlying distributions are asymmetric, the consistency of QMLE estimators is no
longer guaranteed if symmetric distributions are applied in estimation. Newey and Steigerwald (1996) show
that the identification condition holds if both the assumed and true density functions are unimodal and
conditionally symmetric about zero. However, if these conditions fail, even the correct specification of the
conditional mean and variance is not sufficient to ensure consistency.

4.2. Macroeconomic variables and other series. The summary statistics and bootstrap estimates for
macroeconomic data and exchange rates are provided in Tables 6 and 7, respectively. The gaussian kernel
estimates for US unemployment rate, monetary velocity, real private consumption, household savings rate,
Euro to USD exchange rate and SP500 are displayed in Figures 4 to 7. Motivation for considering this broad
range of variables and allowing some of the time series to be nonstationary is to illustrate the amenability
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of our approach to data that exhibits completely different characteristics from standard financial data such
as multimodality and heavy skewness. These issues are important if we are to propose application of the
technique to support non-gaussian filtering or blind source signal separation.

A typical difference between the macroeconomic variables and returns data discussed in previous section
is the lower kurtosis of macroeconomic data combined with still significant skewness as highlighted in Table
6. This is, of course, well expected as the observation frequencies of macroeconomic data range from monthly
to quarterly and annual data, whereas asset returns are commonly daily. Furthermore, the macroeconomic
data can be often nonstationary especially, if we want to model data without taking the necessary transfor-
mations to achieve stationarity. This is the main reason why we have considered it worthwhile to apply the
continuous-path block bootstrap proposed by Paparoditis and Politis (2001) to estimate the bootstrap sign
tests. Although the algorithm is slightly slower than standard block bootstrap methods, it has the advantage
of being designed particularly to account for unit roots and thereby it allows us to work with a broad range
time series.

Based on the bootstrap sign tests reported in Table 7, it appears that majority of the series in Panel A falls
into classes 4 or 8. This is quite an interesting finding as the best known distributions that characterize these
classes are Beta I and Beta II type distributions. The key advantages of Beta distributions are that they are
able to capture multimodality and establish limits on the support of the variable. This could be of interest
for example when modelling the household savings rate or non-accelerating inflation rate of unemployment.
The Beta distributions can also accommodate a wide variety of tail-thickness and permit skewness as well.
Recently income distributions have been often modelled by Beta I and II type densities (Bordley et al., 1996)
and sometimes also asset returns, but with less success. Also in the case of exchange rates and interest rates
we find that the distribution categories 10 to 11 are more applicable than Beta densities.

However, before we move to conclusions, there is one important issue that demands attention: in a number
of cases we find that not only the bootstrap tests but also the critical values are close to zero. This implies
that the variance associated with the selection criteria in these cases is really large compared to the statistic
itself. Why this should be the case is, however, a puzzle. The large variances could follow from a number of
sources. One potential explanation is distribution uncertainty, which could be manifested both as parameter
uncertainty and variability of the whole functional form. If the higher moments, skewness and kurtosis,
vary strongly over time we may expect also the distribution parameters to change. However, we could also
find that not only the parameters change but the whole structure shifts from one class to another. One
interesting working paper by Kacperczyk (2003) has discussed distribution uncertainty in the context of
asset allocations, where he defined the concepts of distribution and parameter uncertainty as follows. Under
distribution uncertainty, new information may add uncertainty regarding the values of the parameters of a
new distribution and the type of distribution. Whereas, under parameter uncertainty each additional piece
of information adds uncertainty only about the parameters.

So far, we have focused on the static framework, where only overall fit of distributions matters for the
selection process. The naive sample moment estimates ignore completely the potential dynamic effects,
which could be now reflected as unstable selection criteria. Therefore, it must be noted that the proposed
distribution selection approach depends strongly on the accuracy at which we are able to model the first four
moments. Allowing for time-varying higher moments would lead to time-varying selection criteria, which
would permit us to account for possible structural breaks. To our knowledge, however, there are not many
papers where the problem of distribution uncertainty is discussed.

5. Conclusions

In this paper, we introduced an alternative methodology for selecting candidate distributions from the
finite set of density functions defined by the Pearson’s differential equation. The framework is fast to
implement and requires little memory. Once the values for the first four sample moments and selection
criteria have been obtained, a glance at the distribution classification table is enough to provide the functional
form for the density that fits the data best within the Pearson system. The main appeal of this approach
is in its simplicity and applicability to support filtering algorithms and source signal separation techniques
(Karvanen, 2002). The approach is particularly well fitted for Bayesian modelling paradigm as it readily
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treats both parameters and distributions as random quantities. Thus, since we do not know the true density
function we propose a technique to approximate it by choosing among a set of candidates, which at most
can estimate its best approximation.

In order to illustrate how the framework can be implemented we have provided several computational
examples with randomly selected time series ranging from commodity markets to macroeconomic variables.
While doing so, we made a few interesting findings, which provide challenges for future research. The most
important issue concerns distribution uncertainty. In some cases we found the selection criteria to exhibit
considerable variability, which was reflected as bootstrap test statistics getting values close to zero. One
plausible theory is to consider the high variances as a consequence of parameter instability or uncertainty
about the functional form of the distribution. In our approach these issues are strongly related to the
accuracy at which we can approximate the first four moments. However, so far we have ignored the higher
moment dynamics completely by focusing only on the static framework, which aims at selecting a candidate
distribution to describe the whole time series. Therefore, as an issue for future research we would propose
search for techniques to model the time-varying third and fourth moments. Taking these dynamics into
account would enable analysis of time-varying selection criteria. Another intriguing challenge would be to
gauge whether the approach can be extended to the multivariate context.
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APPENDIX A: Note on Pearson equation

Pearson equation (1) defines a separable first order differential equation with solution

f(x) = C exp
{∫

P (x)
Q(x)

dx

}

where C is a scaling constant.
For example, assuming P (x) = a0 + a1x and Q(x) = b2x

2 + b1x + b0 = b2(x − α)(x − β), b2 = 1. By
writing

P (x)
Q(x)

=
a0 + a1x

(x− α)(x− β)
=

m

x− α
+

n

x− β

where
m =

−a0 − a1α

β − α
, n =

a0 + a1β

β − α
we get

f(x) = C|x− α|m|x− β|n.

Since f(x) has discontinuities at α and β, the only possible supports of x are [−∞, α], [α, β] and [β,∞]. Due
to symmetry, the first and third cases lead to the same type of a distribution.

The selection criteria are given by

D = b0b2 − b2
1 = αβ − (α + β)2, λ =

b2
1

b0b2
=

(α + β)2

αβ

where the signs of D and λ are obtained for different supports of x as follows: (1) If x ∈ [α, β] and α < 0 < β,
then αβ < 0 leading to λ < 0 and D < 0, (2) If x ∈ [−∞, α], α < β < 0 or x ∈ [β,∞], 0 < α < β, then
0 < αβ < (α + β)2 causing λ > 0 and D < 0.

APPENDIX B: Block length selection

Politis and White (2004) have proposed the following spectral estimation technique for automatic block-
length selection for stationary bootstrap.

Suppose X1, . . . , XN are strictly stationary with mean µ = EXt and autocovariance R(s) = E(Xt −
µ)(Xt+|s| − µ). Then, the estimator for the expected block size choice bopt is given by:

b̂opt,SB = (
2Ĝ2

D̂SB

)1/3N1/3

where Ĝ =
∑M

k=−M λ(k/M)|k|R̂(k) is the sample estimator of the infinite sum
∑∞

k=−∞ |k|R(k) and R̂ is the
sample estimator of autocovariance. The smoothing function λ(t) has a trapezoidal shape symmetric around
zero, i.e.,

λ(t) =





1 if |t| ∈ [0, 1/2]
2(1− |t|) if |t| ∈ [1/2, 1]
0 otherwise.

The quantity D̂SB is obtained from

D̂SB = 4ĝ2(0) +
2
π

∫ π

−π

(1 + cos w)ĝ2(w)dw

where ĝ(w) =
∑M

k=−M λ(k/M)R̂(k) cos(wk) is the sample estimate of spectral density.
The bandwith M for the flat-top lag window is chosen based on inspection of the correlogram, i.e., the

plot of R̂(k) vs. k. First we look for the smallest integer m̂ such that R̂(k) ' 0 for k > m̂. After identifying
m̂ on the correlogram, the recommendation is to set M = 2m̂.



10 SIMPLE APPROACH FOR DISTRIBUTION SELECTION IN THE PEARSON SYSTEM

Table 1. Pearson distributions. The table provides a classification of the Pearson distribu-
tions f(x) satisfying the differential equation (1/f)df/dx = P (x)/Q(x) := (a0 + a1x)/(b0 +
b1x + b2x

2). The signs and values for selection criteria, D := b0b2 − b2
1 and λ := b2

1/(b0b2),
are given in columns three and four.

P (x) = a0, Q(x) = 1

Restrictions D λ Support Density

1. a0 < 0 0 0/0 R+ γe−γx

γ > 0

P (x) = a0, Q(x) = b2x(x + α)

Restrictions D λ Support Density

2(a). α > 0 < 0 ∞ [−α, 0] m+1
αm+1 (x + α)m

m < −1

2(b). α > 0 < 0 ∞ [−α, 0] m+1
αm+1 (x + α)m

−1 < m < 0

P (x) = a0, Q(x) = b0 + 2b1x + x2 = (x− α)(x− β), α < β

Restrictions D λ Support Density

3(a). a0 6= 0 < 0 > 1 [β,∞]
(β−α)−(m+n+1)

B(−m−n−1,n+1)
(x− α)m(x− β)n

0 < α < β m > −1, n > −1, m 6= 0, n 6= 0, m = −n

3(b). a0 6= 0 < 0 > 1 [−∞, α]
(β−α)−(m+n+1)

B(−m−n−1,m+1)
(x− α)m(x− β)n

α < β < 0 m > −1, n > −1, m 6= 0, n 6= 0, m = −n

4. a0 6= 0 < 0 < 0 [α, β] α2mβ2n

(α+β)m+n+1B(m+1,n+1)
(x− α)m(x− β)n

α < 0 < β m > −1, n > −1, m 6= 0, n 6= 0, m = −n

P (x) = a0 + a1x, Q(x) = 1

Restrictions D λ Support Density

5. a1 6= 0 0 0/0 R 1√
2πσ

e−(x−µ)2/2σ2

P (x) = a0 + a1x, Q(x) = x− α

Restrictions D λ Support Density

6. a1 6= 0 < 0 ∞ [α,∞] km+1

Γ(m+1)
(x− α)−me−k(x−α)

k > 0
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Table 2. Pearson distributions (continued).

P (x) = a0 + a1x, Q(x) = b0 + 2b1x + x2 = (x− α)(x− β), α 6= β

Restrictions D λ Support Density

7(a). a1 6= 0 < 0 > 1 [β,∞]
(β−α)−(m+n+1)

B(−m−n−1,n+1)
(x− α)m(x− β)n

0 < α < β m > −1, n > −1, m 6= 0, n 6= 0,m 6= −n

7(b). a1 6= 0 < 0 > 1 [−∞, α]
(β−α)−(m+n+1)

B(−m−n−1,m+1)
(x− α)m(x− β)n

α < β < 0 m > −1, n > −1, m 6= 0, n 6= 0,m 6= −n

8. a1 6= 0 < 0 < 0 [α, β] α2mβ2n

(α+β)m+n+1B(m+1,n+1)
(x− α)m(x− β)n

α < 0 < β m > −1, n > −1, m 6= 0, n 6= 0,m 6= −n

P (x) = a0 + a1x, Q(x) = b0 + 2b1x + x2 = (x− α)(x− β), α = β

Restrictions D λ Support Density

9. a1 > 0 0 1 [α,∞] γm−1

Γ(m−1)
(x− α)−me−γ/x

α = β γ > 0, m > 1

P (x) = a0 + a1x, Q(x) = b0 + 2b1x + x2, complex roots

Restrictions D λ Support Density

10. a0 = 0, a1 < 0 > 0 0 R α2m−1

B(m−1/2,1/2)
(x2 + β2)−m

b1 = 0, b0 = β2 m > 1/2
β 6= 0

11. a0 6= 0, a1 < 0 > 0 0 > R c(b0 + 2b1x + x2)−me−ν arctan ((x+b1)/β)

b1 6= a0/a1 < 1 m > 1/2, β =
√

b0 − b21

Table 3. Data

Commodities

Symbol Name Frequency Period

CGSYSPT Goldman Sachs commodity price index Daily 2/8/1995-2/8/2005
RECMDTY Reuter’s commodity price index Daily 2/8/1995-2/8/2005
CRBPRMI Reuter’s CRB Precious metals index Daily 2/8/1995-2/8/2005
GSENEXR GSCI Energy excess return index Daily 2/8/1995-2/8/2005
LCRINDX London Brent crude oil index Daily 2/8/1995-2/8/2005
NPXAVRF Nordpool - electricity spot price Daily 1/5/1996-11/14/2005

US macroeconomic variables

USUN%TOTQ Unemployment rate Quarterly 9/15/1954-8/15/2004
USOCFNUN NAIRU Annual 1965-2005
USCNFBUSQ ISM purchasing managers index Quarterly 9/15/1954-8/15/2004
USOCFMVL Monetary velocity Annual 1960-2005
USOCFHRB Average hours worked per year Annual 1960-2005
USOCFPCN Real private consumption Annual 1960-2005
USOCFSVR Household savings rate Annual 1960-2005

Other series

USOCFIST US short rate Annual 1960-2005
JAPAYE$ Japanese Yen to USD Daily 12/31/1993-2/8/2005
EUDOLLR Euro to USD Daily 12/31/1998-2/8/2005
USDOLLR USD to UK pound Daily 2/8/1990-2/8/2005
S&PCOMP SP500 price index Daily 9/23/1994-9/23/2004
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Table 4. Summary statistics for commodity returns. The table reports 2-tailed skewness
and kurtosis tests along with Kolmogorov-Smirnov statistics for the null hypotheses of nor-
mal (KSn) and t-distributions (KSt). Degrees of freedom used in KSt tests are given in
parenthesis. Bold denotes rejection at 5% level. See Table 3 for data symbols.

Panel A: Studentized daily returns

Symbol Skew. Kurt. Skew-test Kurt-test ADF KSn KSt

Goldman Sachs commodity index -0.245 5.258 -5.055 11.913 -72.839 0.053 0.037 (7)
Reuter’s commodity index 0.172 8.732 3.572 18.041 -73.725 0.067 0.034 (5)
Precious metals index 0.243 11.613 5.008 20.649 -73.947 0.068 0.042 (5)
GSCI Energy excess ret. -0.226 5.444 -4.672 12.407 -73.010 0.045 0.029 (7)
London Brent index -0.308 6.390 -6.304 14.391 -52.993 0.054 0.049 (5)
Electricity spot 1.217 40.224 16.446 23.189 -50.151 0.137 0.105 (5)

Panel B: Studentized weekly returns

Symbol Skew. Kurt. Skew-test Kurt-test ADF KSn KSt

Goldman Sachs commodity index -0.702 5.243 6.030 5.593 -32.233 0.034 0.028 (7)
Reuter’s commodity index -0.006 3.350 -0.054 1.585 -26.257 0.030 0.025 (20)
Precious metals index 0.221 5.587 2.067 6.022 -34.572 0.044 0.023 (7)
GSCI Energy excess ret. -0.592 4.505 5.210 4.460 -31.934 0.041 0.049 (9)
London Brent index -0.559 4.893 -4.954 5.098 -32.558 0.052 0.044 (10)
Electricity spot 0.176 15.704 1.337 9.025 -26.888 0.097 0.064 (5)
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Table 5. Selection criteria and bootstrap tests for commodity returns. The table reports
one-tailed and two-tailed bootstrap test statistics for D and λ with 1000 resamplings. The
chosen block lengths are denoted by b and Class gives the selected distribution category
using the classification presented in Tables 1 and 2. Critical values for test statistics are
given in parenthesis. Bold denotes rejection of null hypothesis at 5% level. See Table 3 for
data symbols.

Panel A: Studentized daily returns

Estimates Bootstrap tests for D Bootstrap tests for λ

D λ D = 0 D ≤ 0 λ = 0 λ ≥ 0 b Class

Goldman Sachs commodity price index 0.075 0.045 11.539 13.351 0.679 0.723 1 10
[2.463] [1.005] [1.236] [1.533]

Reuter’s commodity index 0.082 0.010 13.072 12.914 0.218 0.219 2 10
[2.169] [0.923] [2.896] [1.536]

Precious metals index 0.082 0.016 11.531 9.882 0.179 0.219 2 10
[1.930] [1.053] [2.191] [1.973]

GSCI Energy excess ret. 0.077 0.036 9.794 9.557 0.724 0.480 2 10
[2.309] [0.677] [1.964] [2.469]

London Brent index 0.078 0.052 5.529 5.074 0.658 0.400 3 10
[2.497] [0.935] [2.028] [3.649]

Electricity spot 0.061 0.253 1.227 1.313 0.432 0.466 8 10;11
[2.473] [0.552] [1.713] [2.020]

Panel B: Studentized weekly returns

Estimates Bootstrap tests for D Bootstrap tests for λ

D λ D = 0 D ≤ 0 λ = 0 λ ≥ 0 b Class

Goldman Sachs commodity price index 0.031 0.570 0.418 0.492 0.831 0.013 1 5
[3.917] [0.215] [0.036] [2.416]

Reuter’s commodity index 0.039 0.000 0.819 1.104 0.000 0.000 1 10
[0.428] [0.332] [0.176] [0.501]

Precious metals index 0.078 0.032 3.659 3.888 0.018 0.133 2 10
[1.793] [0.447] [1.830] [1.603]

GSCI Energy excess ret. 0.026 0.593 0.518 0.255 0.089 0.026 1 11
[1.851] [0.873] [0.089] [0.023]

London Brent index 0.045 0.367 0.619 0.943 0.222 0.002 1 5;10
[0.939] [0.369] [0.442] [0.759]

Electricity spot 0.082 0.007 2.617 2.636 0.022 0.015 6 10
[1.884] [1.221] [2.084] [1.898]
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Table 6. Summary statistics for macroeconomic series. The table reports 2-tailed skew-
ness and kurtosis tests along with Kolmogorov-Smirnov statistics for the null hypotheses of
normal (KSn) and t-distributions (KSt). Degrees of freedom used in KSt tests are given
in parenthesis. Bold denotes rejection at 5% level. L, D, and R denote levels, differences,
and relative changes, respectively.

Panel A: US macroeconomic variables

Skew. Kurt. Skew-test Kurt-test ADF KSn KSt

Unemployment rate(D) 0.548 4.724 5.207 5.134 -25.924 0.15 0.15 (8)
NAIRU(L) -0.607 1.972 -1.710 1.363 -1.178 0.120 0.119 (100)
ISM index(R) 0.092 5.532 0.930 6.330 -29.685 0.055 0.038 (7)
Monetary velocity(R) -0.165 2.448 -0.505 0.858 -6.531 0.083 0.084 (100)
Aver. work hours(R) -0.334 2.876 -1.010 0.243 -5.615 0.051 0.052 (100)
Aver. work hours(L) 0.962 2.472 2.662 0.405 -0.849 0.281 0.281
Real consumption(R) -0.628 3.225 -1.830 0.769 -5.392 0.054 0.054 (64)
Savings rate(L) -0.873 3.087 -2.353 0.584 -2.609 0.129 0.128 (100)

Panel B: Interest rates, exchange rates, and equity indices

US short rate(D) -0.121 2.617 -0.373 0.624 -5.594 0.058 0.058 (100)
YEN/USD(R) -0.599 8.372 -12.236 18.528 -74.216 0.065 0.039 (6)
EUR/USD(R) -0.204 3.922 -3.303 5.387 -55.642 0.035 0.033 (11)
USD/GBP(R) -0.156 5.695 -3.973 15.894 -81.670 0.054 0.034 (7)
S&P500(R) -0.109 6.320 -2.281 14.412 -72.398 0.061 0.046 (8)
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Table 7. Selection criteria and bootstrap tests for macroeconomic series. The table reports
one-tailed and two-tailed bootstrap test statistics for D and λ with 1000 resamplings. The
chosen block lengths are denoted by b and Class gives the selected distribution category
using the classification presented in Tables 1 and 2. Critical values for test statistics are
given in parenthesis. Bold denotes rejection of null hypothesis at 5% level. L, D, and R
denote levels, differences, and relative changes, respectively.

Panel A: US macroeconomic variables

Estimates Bootstrap tests for D Bootstrap tests for λ

D λ D = 0 D ≤ 0 λ = 0 λ ≥ 0 b Class

Unemployment rate(D) 0.042 0.392 0.572 0.163 0.001 0.068 11 5;10
[1.229] [-0.043] [0.551] [0.183]

ISM index(R) 0.080 0.006 4.116 2.894 0.014 0.022 4 10
[1.247] [0.615] [1.853] [2.732]

NAIRU(L) -1.176 -0.425 0.000 -0.004 0.848 -0.211 4 5;4;8
[0.000] [0.000] [1.035] [0.759]

Monetary velocity(R) -0.319 -0.070 0.000 -0.000 0.020 -0.028 1 5;4;8
[0.087] [0.000] [1.186] [0.066]

Aver. work hours(L) -10579.873 -1.017 0.022 -0.984 2.575 -0.314 4 4;8
[0.000] [0.000] [1.176] [1.791]

Aver. work hours(R) -0.122 -0.557 0.000 -0.000 0.432 -0.160 2 4;8
[0.097] [-0.000] [0.172] [0.053]

Real consumption(R) -0.259 -1.777 0.000 -0.000 0.159 -0.223 2 4;8
[0.000] [0.000] [0.155] [0.530]

Savings rate(L) -18.395 -1.329 0.003 -0.014 0.261 -0.019 4 4;8
[0.005] [0.000] [0.048] [0.239]

Panel B: Interest rates, exchange rates, and equity indices

Estimates Bootstrap tests for D Bootstrap tests for λ

D λ D = 0 D ≤ 0 λ = 0 λ ≥ 0 b Class

US short rate(D) -0.136 -0.055 0.000 -0.000 0.014 -0.072 1 5
[0.029] [-0.000] [2.360] [0.042]

YEN/USD 0.071 0.148 6.409 6.370 0.958 0.920 2 10
[2.586] [0.743] [2.768] [3.805]

EUR/USD(R) 0.058 0.074 5.040 3.692 0.325 0.704 1 10
[3.676] [0.978] [1.852] [2.077]

USD/GBP(R) 0.080 0.015 19.125 19.989 0.460 0.497 2 10
[2.384] [1.092] [1.879] [4.941]

SP500(R) 0.082 0.006 14.647 15.611 0.159 0.200 1 10
[2.242] [0.854] [2.861] [2.278]
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Figure 1. Moment ratio diagram for the Pearson curves. Skewness and kurtosis are de-
noted by β2

1 = µ2
3/µ3

2 and β2 = µ4/µ2
2 respectively. Limit for all distributions is line

β2 − β2
1 − 1 = 0. The Latin numbers refer to the traditional classification of Pearson

distributions. Types I and II are beta distributions of first kind. Notation I(J,U) refers
to J- and U-shaped distributions and I(M) to unimodal. The boundary of I(J,U) is line
4(4β2 − 3β2

1)(5β2 − 6β2
1 − 9)2 = β2

1(β2 + 3)2(8β2 − 9β2
1 − 12). Type III (Gamma distribu-

tions) limit is β2 − 3/2β2
1 − 3 = 0. Type VI denotes the beta distributions of the second

kind. Type V is defined by β2
1(β2 + 3)2 = 4(4β2 − 3β2

1)(2β2 − 3β2
1 − 6) = 0. Type IV is

obtained when b0 + b1 + b2x
2 = 0 has complex roots and Type VII includes Student’s

t-distribution.
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Figure 2. Normal kernel estimates of daily returns for GS Commodity Index and Energy
Excess Ret.
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Figure 3. Normal kernel estimates of weekly returns for GS Commodity Index and Energy
Excess Ret.
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Figure 4. Normal kernel estimate of changes in US unemployment rate
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Figure 5. Normal kernel estimate of relative changes in US monetary velocity and real
private consumption
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Figure 6. Normal kernel estimate of US household savings rate
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Figure 7. Normal kernel estimate of returns for Euro to US exchange rate and SP500 equity index
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