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Abstract. Although Conditional Value-at-Risk has significant advantages
over traditional risk measures such as Value-at-Risk, it has not been adopted
by practitioners as quickly as expected. One of the reasons slowing down its
progress has been the lack of simple tools for its computation. In this paper
we consider calculating CVaR when the underlying asset is modelled using a
diffusion process with a linear drift and prespecified marginal density. The
results are summarized in two closed-form formulas which can be effortlessly
applied by risk managers to calculate CVaR for a number of commonly used
probability distributions. Example of calculations is included.
KEY WORDS: conditional value-at-risk, coherence, risk measure, expected
shortfall

1. Introduction

The problem of finding risk measures that appropriately penalize the tails has
received considerable attention in the last few years. Although Value-at-Risk (VaR)
is still widely used for measuring extreme events and integrating disparate sources
of risk, its limitations are increasingly recognized (Szegö (2002), Dańıelsson (2002)).
The main caveat of VaR is that it is not a convex functional when non-elliptical dis-
tributions are considered, which makes it inappropriate for portfolio-optimization
problems. Further the lack of sub-additivity implies that portfolio diversification
may lead to an increase in risk and prevent to add up the VaR of different risk
sources. Thus VaR is not coherent in Artzner et al. (1999) sense and regulatory
agencies should be careful about insisting its use. As discussed by Rockafellar and
Uryasev (2002) a serious shortcoming of VaR is that it merely provides a lowest
bound for losses without being able to distinguish between their degrees. Therefore
VaR has a bias toward optimism instead of conservatism that ought to prevail in
risk management.

In response an alternative risk measure, Conditional Value-at-Risk (CVaR), has
been proposed to replace VaR. The definition of CVaR is relatively intuitive: for
general distributions CVaR is defined as the weighted average of VaR and the
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expected losses that are strictly greater than VaR, which in the special case of
continuous random variables equals the expected loss given that the loss is greater
than or equal to the VaR (Szegö (2002)). Thus CVaR provides an upper bound for
VaR. But unlike VaR, CVaR is a coherent risk measure and suitable for stochastic
optimization and convex analysis (Rockafellar and Uryasev (2002)). Further Rock-
afellar and Uryasev (2000) have shown that CVaR can be minimized using linear
programming techniques, which makes CVaR an appealing tool for fund managers
especially as it is able to account for asymmetric return distributions.

However, despite CVaR’s significant advantages over VaR machine, its adoption
by practitioners of risk management has not progressed as expected. One of the
reasons could be the lack of simple formulas to evaluate CVaR. To alleviate this
dilemma, we provide analytical solutions for a large number of commonly used
continuous probability distributions. In particular we consider the problem of com-
puting CVaR when the underlying asset has a diffusion process with a linear drift
and hence an exponentially decreasing autocorrelation function. While doing so
we will draw on the findings of Bibby et al. (2005) and Aı̈t-Sahalia (1996), who
have studied the construction and estimation of diffusion processes with exponential
autocorrelation functions.

The structure of this paper is as follows. In Section 2 we discuss the definition
of CVaR as a coherent risk measure in Artzner et al. (1999) sense. In Section 3
we present proofs and formulas. In Section 4 we provide examples of our findings.
Section 5 concludes the paper.

2. CVaR as a coherent risk measure

In their seminal paper Artzner et al. (1999) outline the desirable properties
that an ideal coherent measure should have: sub-additivity, translation invariance,
positive homogeneity and monotonicity.

Definition 2.1 (Coherence). Functional ρ : X −→ R is a coherent risk measure if
it has the following properties:

(1) Subadditivity: ρ(x + y) ≤ ρ(x) + ρ(y) for all x,y ∈ X.
(2) Positive homogeneity: ρ(λx) = λx for all x ∈ X and λ > 0, λ ∈ R.
(3) Monotonicity: if x ≤ y then ρ(x) ≤ ρ(y) for all x,y ∈ X.
(4) Transitional invariance: ρ(x + αr0) = ρ(x) − α for all x ∈ X, α ∈ R, and

all risk-free interest rates r0.

If ρ satisfies the first two conditions, it is convex. If ρ is convex, transitionally
invariant and monotonous it can be called weakly coherent. Any risk measure
violating these conditions could lead to serious inconsistencies. To understand
their importance, we can interpret them in the light of traditional portfolio theory.

The first condition, subadditivity, is equivalent to portfolio diversification. If it
failed, we would be better off by splitting our portfolio in order to decrease risks.
As noted by Szegö (2002), measuring risk without subadditivity is like measuring
the distance between two points using a rubber band instead of a ruler. The
second property, positive homogeneity, is related to liquidity considerations: a large
investment λx could be less liquid than the total λx of λ smaller investments in
x, which implies ρ(λx) ≥ λρ(x) (Artzner et al. (1999)). This combined with
subadditivity leads to equality in the second condition. Monotonicity, then again,
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rules out all semi-variance based risk measures. Finally, transitional invariance
implies that adding a riskless return of αr0 to our portfolio reduces risk by α.

Whereas VaR is not even weakly coherent (Szegö (2002), Dańıelsson et al.
(2001)), CVaR has all properties of definition (2.1). However, we must be careful
when defining CVaR, since all of the different definitions are not consistent. The
definition depends on whether continuous or general distributions are considered.
As pointed out by Rockafellar and Uryasev (2002), the case of general distributions
with possible discontinuities requires a more subtle definition. This is an important
point to keep in mind, but given that our paper is restricted to continuous marginal
densities it is sufficient to define CVaR as the expected loss given that the loss is
greater or equal to the VaR. Traditionally CVaR is calculated only for the negative
tail. However, as in the case of interest rate risks we might be more interested
in calculating the risks of the positive tail. Therefore we extend the definition of
CVaR as follows.

Definition 2.2 (CVaR). For a continuous random variable X, CVaRq is given by
the expected value

(2.1) CV aRq = E[X|A],

where A denotes sets X ≤ q or X ≥ q for negative and positive tails, respectively.

3. The main result

In this section we derive exact formulas for CVaR given a wide set of prespec-
ified marginal distributions. The derivation of the analytical formulas builds on
the findings by Bibby et al. (2005) and Aı̈t-Sahalia (1996), who have considered
construction and estimation of diffusions with given exponential autocorrelations
and marginal densities.

Following Bibby et al. (2005) let us construct the diffusion process X such that
the marginal distribution is concentrated on the set (l, u) ⊂ R∪{+∞}∪{−∞}, and
has a prespecified density f with respect to the Lebesgue measure on the support
(l, u) satisfying the following condition. We further require that the density is
continuous, bounded, and strictly positive on the support, zero outside, and has a
finite variance.

Now consider Xt as a solution to a mean reverting process

(3.1) dXt = −θ(Xt − µ)dt +
√

v(Xt)dWt, t ≥ 0, θ > 0

where µ ∈ (l, u) and v is a non-negative function defined on the set (l, u) such that
following conditions hold

Condition 3.1.

(3.2)
∫ u

l

v(x)f(x)dx < ∞

where

(3.3) v(x) =
2θ

∫ x

l
(µ− y)f(y)dy

f(x)
=

2θµF (x)− 2θ
∫ x

l
yf(y)dy

f(x)
,

l < x < u and F is the distribution function associated with the density f .

Then the following theorem guarantees that the time series X is stationary and
ergodic with invariant density f and autocorrelation function exp{−θt}.
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Theorem 3.2 (Bibby-Skovgaard-Sørensen). Suppose the probability density f has
expectation µ and satisfies Condition 3.1. Then the following holds.

(1) The stochastic differential equation given by (3.1) and (3.3) has a unique
Markovian weak solution. The diffusion coefficient is strictly positive for
all l < x < u.

(2) The diffusion process X that solves (3.1) and (3.3) is ergodic with invariant
density f .

(3) Equation (3.2) is satisfied. If X0 ∼ f , then X is stationary, E[Xs+t|Xs =
x] = x exp{−θt}, and the autocorrelation function for X is given by

Corr(Xs+t, Xs) = exp{−θt}, s, t ≥ 0.

(4) If −∞ < l or u < ∞, then the diffusion given by (3.1) and (3.3) is the
only ergodic diffusion with drift −θ(x− µ) and invariant density f . If the
state space is R, it is the only ergodic diffusion with drift −θ(x − µ) and
invariant density f for which (3.2) is satisfied.

Under the postulates of ergodicity and density invariance the long-term averages
of the original process are equal to the corresponding state-space averages and the
density of Xt does not depend on t. A necessary condition for a stationary process
to be ergodic for the mean is that its autocovariance function decays sufficiently
quickly.

By accepting the above conditions we get access to the following analytical for-
mulas which can be used to calculate CVaR for negative and positive tails in a
straightforward manner.

Proposition 3.3. If a time series X is generated by (3.1) such that (3.2) and (3.3)
hold, then CVaRq is obtained from

(3.4) CV aRq,d = µ− v(q)
2θ

f(q)
F (q)

for the negative tail, X ≤ q. Similarly for the positive tail, X ≥ q, we have

(3.5) CV aRq,u = µ +
v(q)
2θ

f(q)
1− F (q)

.

Proof. Consider the case X ≥ q. By construction

CV aRq,u =
1

P (X ≥ q)

∫

{X≥q}
xf(x)dx.

From (3.3) we have
∫

{X≤q}
xf(x)dx = µF (q)− v(q)f(q)

2θ
.

Then ∫

{X≥q}
xf(x)dx = µ− µF (q) +

v(q)f(q)
2θ

and the result follows by direct substitution. The case X ≤ q is similar. ¤

This result implies that given a prespecified marginal density we can easily com-
pute CVaR, if it has drift and diffusion functions expressible in closed form. The
reason why this approach is worthwhile to consider is that the assumptions we had
to make to get this far were not overly restrictive. Indeed many commonly used
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probability distribution functions satisfy them. A number of probability densities
satisfying weak regularity conditions can be obtained as marginal distribution by
choosing the diffusion function v suitably even in the case of a linear drift coeffi-
cient. This is particularly useful when considering parametrized classes of diffusion
coefficients. In order to demonstrate how easily this framework can be applied, we
present formulas to calculate CVaR for a number of distributions in Table 1.

4. Numerical example

We illustrate our approach in the context of interest rate modelling. The most
famous and computationally simple example is the term structure model introduced
by Cox, Ingersoll, and Ross (1985; hereafter CIR), which is based on a mean-
reverting short-term interest rate:

drt = (θ − κrt)dt + σ
√

rtdWt

Although this specification is rejected by many studies, it has been found to
model the short rate quite reasonably. The idea of modelling short rates with mean
reversion is well justified when assuming the interest rates to follow capital stock
adjustments. Furthermore, interest rates are not traded which means that the
arbitrage relationships do not impose many restrictions against a mean-reverting
model. This makes CIR a convenient example given the linear drift requirement of
Proposition (3.3).

When κ, θ, and σ are all strictly positive and σ2 ≤ 2θ, the square root pro-
cess has a unique fundamental solution and its marginal density is Gamma and its
transition density is a type I Bessel function distribution or non-central χ2 (Car-
rasco et al. (2002)). Thus in order to have an empirically reasonable process,
we consider the parameter estimates obtained from Gallant and Tauchen (1998):
drt = (0.02491 − 0.00285rt)dt + 0.0275

√
rtdWt. With this parametrization we get

an invariant marginal Gamma density with α = 65.8777 and λ = 7.5372:

f(r) =
λα

Γ(α)
rα−1e−λr =

7.537265.8777

Γ(65.8777)
r64.8777e−7.5372r.

The obtained distribution is almost Gaussian with expected value at µ = α/λ =
8.7404 (see Figure 1). The cumulative density function is given by

F (r) =
Γ(λr; α)

Γ(α)
,

where Γ(r;α) =
∫ r

0
yα−1e−ydy is an incomplete gamma function.

Now we can compute CVaR for each quantile level q > 0 using the following
formula (see Table 1)

CV aRq =
α

λ
+

1
λ

q
f(q)

1− F (q)
= 8.7404 + 0.1327

qf(q)
1− F (q)

The estimates for CVaR using several confidence levels are furnished in Table 3.
Acknowledging the fact that the above parametrization produces a Gamma density,
which is considerably close to the normal distribution, it is not surprising to find
that the difference between quantiles and CVaR estimates narrows down as the risk
level increases. In the case of distributions with heavier tails, such as the Student’s
t-distribution, the converse is true. These effects along with analytical formulas for
Student’s t-distribution are discussed by Andreev and Kanto (2005).
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Figure 1. Marginal gamma density (α = 65.8777, λ = 7.5372)
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Table 3. CVaR estimates for CIR term structure model

Confidence level 90% 95% 97.5% 99% 99.9%
Quantile 10.15% 10.58% 10.97% 11.44% 12.45%

CVaR (Gamma) 10.73% 11.11% 11.46% 11.89% 12.83%

5. Concluding Remarks

This article presents simple analytical formulas for calculation of conditional
value at risk (CVaR) for diffusions with a linear drift and a given marginal density.
The results are summarized in Tables 1 and 2 for the most common probability
density functions ranging from Student’s t-distribution to variety of fat tailed dis-
tributions such as Weibull and Laplace distributions. Since financial data usually
has a feature of heavy tails, these formulas are of interest for practitioners. So far,
we have restricted our study for diffusions with linear drift only, but as an issue for
future research it will be of interest to consider more complicated autocorrelation
structures than the exponential case.
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