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Abstract

We present a new interactive approach for solving multicriteria opti-
mization problems. We produce rough approximations of the nondomi-
nated set and let the decision maker indicate with the help of reference
points where to refine the approximation. In this way, (s)he iteratively
directs the search towards the best nondominated solution. After the deci-
sion maker has identified the most interesting region of the nondominated
set, the final solution can be fine-tuned with existing interactive methods.
We suggest different ways of updating the reference point as well as dis-
cuss visualizations that can be used in comparing different nondominated
solutions. The new method is computationally inexpensive and easy to use
for the decision maker.
Keywords: multiple objective programming, multiobjective optimization,
approximation, interactive methods, reference point, hybrid

1 Introduction

In multicriteria optimization, the problem is to find the best compromise solution
in the presence of several conflicting criteria, see, for example, Ballestero and
Romero (1998), Chankong and Haimes (1983), Cohon (1978), Hwang and Masud
(1979), Miettinen (1999), Sawaragi et al. (1985), Statnikov and Matusov (1995),
Steuer (1986) and Szidarovszky et al. (1986). In such problems, there is no single
well-defined optimal solution but several mathematically equally good solutions,
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so-called nondominated, noninferior or Pareto optimal solutions can be identified.
To be able to find the best among them, we need additional preference information
from a human decision maker who knows the problem domain.

Methods developed for solving multicriteria optimization problems can be
classified according to the role of the decision maker in four classes, see, for ex-
ample, Hwang and Masud (1979) and Miettinen (1999). In so-called no-preference
methods there is no decision maker available and the final solution is some neutral
compromise. In a priori methods, the decision maker first specifies preferences
and hopes and after that a solution satisfying these hopes as well as possible is
identified. The drawback with this kind of methods is that the decision maker
may have too optimistic hopes and the final outcome may be a disappointment or
it may be otherwise difficult for the decision maker to specify hopes in advance.
On the other hand, in a posteriori methods a representation of the set of non-
dominated solution is first generated and then the decision maker is supposed
to select the most satisfactory solution. The difficulty here is how to display
the large amount of data to the decision maker and how to support her/him in
finding the best of them. Furthermore, generating a large set of nondominated
solutions may be computationally expensive for complicated real-life problems.
A possibility to overcome the above-mentioned weaknesses is to use interactive
methods, where the decision maker actively takes part in the iterative solution
process and specifies preference information gradually. In this way, the decision
maker can learn about the problem, its possibilities and limitations as well as the
interdependencies among the criteria and possibly even change one’s mind about
what is desirable. Because only such nondominated solutions are generated that
are interesting to the decision maker, interactive methods are computationally
much less expensive than, for example, a posteriori methods.

When the decision maker iteratively directs the search for the most satisfac-
tory solution in interactive methods, it may be advisable to first get a rough
overview of what the nondominated set looks like, in other words, what kind
of compromises are feasible. After that, it is easier to specify preferences. An
example of such an approach where a visualization tool based on interactive
decision maps (see Lotov et al. (2004)) and an interactive classification-based
NIMBUS method (see Miettinen and Mäkelä (1999), Miettinen (1999), Mietti-
nen and Mäkelä (2000) and Miettinen and Mäkelä (2006)) are hybridized is given
in Miettinen et al. (2003). However, that kind of an approach is best suited for
problems with less than five criteria.

In this paper, we present a new interactive hybrid approach for solving mul-
ticriteria optimization problems. First we produce a rough approximation of the
nondominated set and then we let the decision maker indicate where to refine the
approximation. In this way, (s)he iteratively directs the search towards the best
nondominated solution. Piecewise linear approximations that we use provide a
powerful and efficient tool to give an overview of what the set of nondominated
solutions looks like. When the decision maker specifies least acceptable values
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for different criteria in the form of a reference point, (s)he can zoom in or out
in the nondominated set and locate the most satisfactory region. Finally, the
selected solution can be given as a starting point to some interactive method for
fine-tuning, if desired.

The rest of this paper is organized as follows. In Section 2 we give a problem
formulation and introduce the main concepts used. Piecewise linear approxima-
tions of the nondominated set are briefly introduced in Section 3 and Section
4 is devoted to the new interactive approach as well as discussion related to it.
The issue of updating the reference point is considered in Section 5. Finally, the
paper is concluded in Section 6.

2 Problem Formulation

The following notation is used throughout the paper.
We denote components of vectors by subscripts and enumerate vectors by

superscripts. Let u,w ∈ Rn be two vectors. The notation u > w means that
ui > wi for all i = 1, . . . , n whereas u ≥ w denotes that ui ≥ wi for all i = 1, . . . , n,
but u 6= w. On the other hand, the notation u = w allows equality. The
symbols <,≤,5 are used accordingly. We denote the non-positive orthant by
Rn

5 := {x ∈ Rn : x 5 0}. The set Rn
= is defined accordingly and the set {u}+Rn

=,

where u ∈ Rn, is referred to as a dominating cone.
We consider the following general multicriteria optimization problem

max {z1 = z1(x)}
...

max {zn = zn(x)}
s.t. x ∈ X,

(1)

where X ⊆ Rm is the feasible set and zi(x), i = 1, . . . , n, are real-valued func-
tions. We define the set of all feasible criterion vectors Z, the set of all (globally)
nondominated criterion vectors N and the set of all efficient points E of (1) as
follows

Z = {z ∈ Rn : z = z(x), x ∈ X} = z(X)

N = {z ∈ Z : there exists no z̃ ∈ Z such that z̃ ≥ z}
E = {x ∈ X : z(x) ∈ N},

where z(x) =
(
z1(x), . . . , zn(x)

)T
. We assume that the set Z is Rn

5-closed, that

is, the set Z + Rn
5 is closed. In what follows, we use the notation Z5 = Z + Rn

5.

The set of properly nondominated solutions is defined according to Geoffrion
(1968): A point z̄ ∈ N is called properly nondominated, if there exists M > 0

3



such that for each i = 1, . . . , n and each z ∈ Z satisfying zi > z̄i there exists a
j 6= i with zj < z̄j and

z̄i − zi

zj − z̄j

≤ M.

Otherwise z̄ ∈ N is called improperly nondominated. Moreover, a point z̄ ∈ Z is
called weakly nondominated if there does not exist z ∈ Z with z < z̄.

The point z∗ ∈ Rn with

z∗i = max{zi(x) : x ∈ X}+ εi i = 1, . . . , n

is called the ideal (utopia) criterion vector, where the components of
ε = (ε1, . . . , εn) ∈ Rn are small positive numbers. We assume that we can find
u ∈ Rn such that u+Z ⊆ Rn

5 and, thus, an ideal criterion vector exists. Without

loss of generality we assume that z∗ = 0. For bicriteria problems, the point in R2

with components

max
{

zi(x̄) : zj(x̄) = max
x∈X

zj(x), j 6= i
}

i = 1, 2

is called the nadir point. Note that this definition cannot be directly generalized
to multicriteria problems with n > 2.

By a reference point we mean a point in the criterion space Rn. Note that it
does not have to be in Z. Typically, it consists of desirable or acceptable criterion
values for each criterion and is specified by a decision maker, a person who knows
the problem considered well and is able to specify preference information related
to it.

3 Approximation of the Nondominated Set

Iteratively improved piecewise linear approximations of the nondominated set
can be a powerful tool to simultaneously obtain an overview of the alternatives
available and a representation of candidate solutions of a multicriteria optimiza-
tion problem (1) in an efficient way. A recent survey of different approximation
approaches in multicriteria optimization is given in Ruzika and Wiecek (2005).

In the next section we shall show that a piecewise linear approximation can
serve as the basis for a further refinement of the decision maker’s preferences,
which can then be used to identify preference regions in which the approximation
has to be refined. We suggest the application of an adaptive approximation
procedure as described in Klamroth et al. (2002) since it is particularly well-
suited for guided refinements based on shifting and moving reference points, and
can thus be nicely embedded in interactive algorithms.

Let us next describe the global approximation procedure in brief for convex
problems. The method suggested in Klamroth et al. (2002) generates piecewise
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linear approximations in a problem-dependent way, utilizing polyhedral distance
functions to construct the approximation and evaluate its quality. The functions
automatically adapt to the problem structure and scaling, and thus quickly adapt
to the currently investigated region of the nondominated set. This makes the
approximation phase unbiased and self-driven.

Let Z be Rn
5 -convex (i.e., Z + Rn

5 is convex) with int Z 6= ∅, and first

suppose that a reference point ẑ0 is given that satisfies N ⊆ ẑ0 + Rn
=. This

assumption implies that the complete nondominated set N can be generated
with the suggested method, starting with this reference point. For a polyhedral
gauge γ : Rn → R, consider the problem

max γ(z(x)− ẑ0)
s.t. z(x) ∈ ẑ0 + Rn

=
x ∈ X.

(2)

If γ is defined by a symmetrical unit ball B (i.e., γ(x) := inf{λ ∈ R : x ∈ λB})
centered at the origin (which can be assumed to coincide with the reference
point), that is obtained by symmetrically extending a given piecewise linear inner
approximation of N in the criterion space (see Figure 1 for an example), problem
(2) finds a feasible point z(x̄) ∈ Z that maximizes the problem-dependent γ-
distance from the current approximation in the criterion space. Schandl et al.
(2002a) showed that such norms γ are oblique norms, that is, they are absolute
(in other words, γ(w) = γ(u) for all w ∈ R(u) := {w ∈ Rn : |wi| = |ui| for all i =
1, . . . , n}) and they satisfy (z − Rn

=) ∩ Rn
= ∩ ∂B = {z} for all z ∈ (∂B)=.

Z∩(z0+R2
=)

ẑ0

z2(x)

z1(x)

z(x̄)

Figure 1: Illustration of an oblique norm applied in problem (2) to an example
problem with two criteria

According to the following theorem we know that the solution of problem (2)
always gives nondominated solutions, and any properly nondominated solution
can be found for convex problems.
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Theorem 1 (Schandl et al. (2002b)).

(i) If γ is an oblique norm with reference point ẑ0 satisfying N ⊆ ẑ0 +Rn
=, then

every optimal solution x̄ of (2) is an efficient solution of the multicriteria
optimization problem (1).

(ii) If Z is Rn
5 -convex and if x̄ is a properly efficient solution of (1), then there

exists an oblique norm γ with reference point ẑ0 satisfying N ⊆ ẑ0 + Rn
=

such that x̄ solves (2).

Note that while part (i) of Theorem 1 remains true for any reference point
ẑ0 ∈ Z5, statement (ii) must be weakened in this case. In general, only those
parts of N located in ẑ0 + Rn

= can be generated from a fixed reference point by

varying the unit ball B of the oblique norm γ:

Corollary 1.

(i) If γ is an oblique norm with reference point ẑ0 ∈ Z5, then every optimal
solution x̄ of (2) is an efficient solution of (1).

(ii) If Z is Rn
5 -convex and if x̄ is a properly efficient solution of (1) in ẑ0 +Rn

=,

then there exists an oblique norm γ with reference point ẑ0 such that x̄ solves
(2).

Let d1, . . . , ds ∈ Rn be the normal vectors of the facets of the unit ball B of
a polyhedral gauge γ such that {z = 0 : djz ≤ 1, j = 1, . . . , s} = B ∩ Rn

= and

{z = 0 : dj(z − ẑ0) ≤ 1, j = 1, . . . , s} ⊆ Z5 = Z + Rn
5. Then problem (2) can

be formulated as the following disjunctive programming problem:

max λ
s.t.

∨s
j=1 (dj(z(x)− ẑ0) ≥ λ ∧ x ∈ X)

λ ∈ R.
(3)

Figure 2 shows an example with two facets represented by the normal vectors d1

and d2. The point z(x̄) corresponds to an optimal λ in (3).
Problem (3) can be decomposed into multiple subproblems, each of a partic-

ularly simple structure. For this purpose, let B be the unit ball of γ and denote
by C1, . . . , Cs the fundamental cones of B ∩Rn

=. If dj is the normal vector of the

facet of the cone Cj, j = 1, . . . , s, then (2) can be decomposed into s subproblems
(P j), j = 1, . . . , s, of the form

λj = max dj(z(x)− ẑ0) =
∑n

i=1 dj
i (zi(x)− ẑ0

i )
s.t. x ∈ X

(4)
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ẑ0 f1(x)

f2(x)

d1(z−ẑ0)≤1

d2(z−ẑ0)≤1

z(x̄)

Figure 2: Illustration of problem (3) in a case with two criteria

from which the maximum value of λj, j = 1, . . . , s must be selected to obtain
an overall optimal solution of (3). Note that each subproblem (4) corresponds to
a weighted-sums scalarization of the multicriteria optimization problem (1) and
contains only the problem dependent constraints x ∈ X.

The approximation algorithm suggested in Klamroth et al. (2002) now itera-
tively solves problem (2) by computing optimal solutions of all newly generated
subproblems of the form (4), starting from an initial approximation that can be
generated, for example, by solving min{zi(x) : x ∈ X} for all i = 1, . . . , n.

ẑ0

(a)
ẑ0

z(x1)

z(x2)

(b)
ẑ0

z(x1)

z(x3)

z(x2)

(c)

ẑ0
z(x1)

z(x3)

z(x2)

(d)
ẑ0

z(x1)

z(x3)

z(x2) z(x4)

(e)
ẑ0

z(x1)

z(x3)
z(x4)

z(x2)

(f)

Figure 3: Inner approximation algorithm

In each iteration, the point of “worst” approximation is added to the current
approximation which leads to an adaptive update of the polyhedral gauge γ and
thus to the generation of a new set of “active” subproblems (4) in the updated
cones. Figure 3 illustrates the procedure with an example of the inner approx-
imation for a convex problem. Outer approximations can be constructed in a
similar way.

Note that in the bicriteria case each iteration of the approximation algorithm
involves the solution of only two weighted-sums scalarizations (4) of problem (1).
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Even though the number of active subproblems per iteration may theoretically
be larger for n ≥ 3, it can be expected not to have a considerable impact on the
average time needed to find the next iterate.

General convergence results based on previous work on the approximation of
convex bodies by Rote (1992), Kamenev (1992), Kamenev (1994) and Lotov et al.
(2004) yield:

Theorem 2 (Klamroth and Tind (2005)). Consider a multicriteria optimi-
zation problem (1) with n criteria, n ≥ 2. Then the approximation error after
m iterations of the approximation algorithm described above, measured by the
adaptive polyhedral gauge γ, and started from a reference point ẑ0 such that N ⊆
ẑ0 + Rn

=, decreases by the order of O(m− 2
n−1 ) which is optimal.

4 Interactive Approach with Reference Points

In Section 3, we assumed that the reference point ẑ0 ∈ Rn was fixed and satisfied
the assumption N ⊆ ẑ0 + Rn

=. But if we allow the reference point to change,

for example, by moving the reference point closer to a region of interest for the
decision maker, the approximation can be refined in specific areas identified by
the decision maker. In this way we get an interactive procedure. It is important
that we can decrease computational costs because the approximation is made
more accurate only in those regions the decision maker is interested in.

4.1 The Impact of the Reference Point

By allowing the decision maker to specify the reference point, it can be used to

• capture preference information of the decision maker in the form of minimal
criterion values that should be attained,

• and zoom the approximation in the region of interest to the decision maker.

Since the reference point has an immediate impact on the relative size of the
unit ball of the approximating gauge γ, moving ẑ0 closer to the nondominated
set will lead to a relative increase of the distance of the approximation from the
nondominated set in this area.

In order to obtain meaningful problem formulations (2), the choice of the
reference point should be restricted to the set Z5. We can distinguish three
different situations, where we denote the reference point of the current iteration
of the decision process by ẑi, and that of the next iteration by ẑi+1:

• ẑi 5 ẑi+1: In this case the decision maker has identified a region of interest
from the previous approximation and wishes to refine the approximation in
the area defined by (ẑi+1 + Rn

=) ∩ Z5 (zooming in).
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• ẑi = ẑi+1: The decision maker wishes to explore a larger region surrounding
the previously approximated part of the nondominated set (zooming out).

• Otherwise, the decision maker prefers to explore a (partially) different re-
gion of the nondominated set without using the information gathered in the
previous iterations.

Because the decision maker can freely study different nondominated solutions
and get to know the problem, it may be useful to save interesting solutions for
later consideration during the search process. This may be particularly useful if
the decision maker wants to explore different regions of the nondominated set as
mentioned above in the third item.

4.2 Interactive Algorithm

Let us denote the set of saved solutions by A. The main steps of the interactive
algorithm can be given as follows:

1. Set i = 0 and A = ∅. Ask the decision maker to specify the number of
solutions P to be shown to her/him at each iteration.

2. Ask the decision maker to select a reference point ẑi ∈ Z5.

3. Construct a (rough) approximation of (ẑi +Rn
=)∩Z5 consisting of P solu-

tions, that is, criterion vectors.

4. Show the approximation to the decision maker. If the decision maker wishes
to save some of the solutions, add them in A.

5. If some of the points in the approximation or in A is acceptable and de-
sirable for the decision maker as a final solution, stop. Otherwise, if the
decision maker would like to continue with a reference point or classification
based interactive method in the current neighborhood, take the current ref-
erence point as bounds for the criteria and continue with another method.
Otherwise, go to step (2) and let the decision maker update P if so desired.

Let us next discuss some of the steps in the algorithm. In the first iteration,
it is possible to use the worst possible criterion values as the components of the
reference point so that the decision maker gets a rough approximation of the
whole nondominated set to start with. For this purpose, the criterion values
calculated as min{zi(x) : x ∈ X}, for all i = 1, . . . , n, can be given to her/him.
Alternatively, the nadir point can be used if it is available.

It is up to the decision maker how many solutions the approximation should
contain. The more solutions there are, the more accurate the approximation
gets but, on the other hand, the more difficult it is for the decision maker to

9



study them. The decision maker can also change the number of solutions to
be calculated in the approximation during the solution process if so desired.
Alternatively, if the decision maker does not want to set the number of solutions
in the approximation, another condition based on the relative approximation
error can be specified as well. (Note that, according to Theorem 2, the number
of solutions in the approximation also induces a bound on the approximation
error.)

Different visualization tools can be used to help the decision maker in com-
paring the different solutions in the approximation. Examples of visualizations
for four nondominated solutions involving three criteria are given in Figure 4.
This figure illustrates bars charts, bars in three dimensions, value paths, whisker
plots, spider web charts and petal diagrams (see, for example, Miettinen (1999),
Miettinen (2003) and Trinkaus and Hanne (2005)). By having different options
available the decision maker may choose which types of visualizations (s)he finds
most informative.

Figure 4: Different visualization possibilities
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It is also possible to arrange the solutions in a decreasing order according
to some of the criteria in order to help the decision maker to find the most
interesting ones. When studying the different solutions, the decision maker can
drop uninteresting solutions and filter out some of the solutions by specifying
upper or lower bounds or interesting intervals for criterion values. With the
same visualization tools the decision maker can also study the set A where (s)he
has saved interesting solutions.

After the decision maker has identified a desirable region in the set of non-
dominated solutions, (s)he can select one of the points in the last approximation
as the final solution. Alternatively, (s)he can start an interactive reference point
or classification based method so that the bounds specified in the reference point
of the last approximation are included as constraints in the problem. In this case,
the decision maker can work with the real problem and not the approximation
to fine-tune the solution by specifying her/his hopes in the form of a reference
point consisting of desirable values for each criterion or in the form of a classifica-
tion indicating what kind of changes would make the current solution even better.
Thanks to the extra constraints set on the criterion values, the consideration now
concentrates on the region found interesting in the preceding phase done with ap-
proximations. Note that in this phase, the reference point can be any point in the
criterion space. Examples of reference point based methods include the reference
point method by Wierzbicki (1986) and reference direction approach by Korho-
nen and Laakso (1986) whereas classification based method include the satisficing
trade-off method by Nakayama (1995) and NIMBUS method by Miettinen (1999)
and Miettinen and Mäkelä (2006).

5 Updating the Reference Point

After having studied the current approximation, the decision maker may have in
mind values of the different criteria (s)he wants to use as the components of the
next reference point. If the decision maker wants to zoom in, in other words,
wants to specify a reference point closer to the nondominated set, it is possible
to show the current reference point to the decision maker and then (s)he can
indicate for which criteria and how much higher new values would be acceptable
to form the next reference point. Correspondingly, zooming out can be carried
out by specifying lower values than in the current reference point. Naturally,
the decision maker can specify any criterion values as the components of the
next reference point irrespectively what the current reference point is. But if the
decision maker wants to zoom in or zoom out in the nondominated set, there are
different possibilities how to support the decision maker in specifying the next
reference point, that is, new minimal acceptable values for the criteria.
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5.1 Guiding the Search by Selecting Nondominated Solu-
tions

One possible way to help the decision maker in specifying a new reference point
is to present to her/him a reasonably small set of candidate points as a new
reference point. For this purpose, suppose that the current approximation with
the reference point ẑi ∈ Z5 is defined by its normal vectors d1, . . . , ds ∈ Rn, and

the approximation consists of the solutions z(x1), . . . , z(xP ) ∈ N . Appropriate
candidates for the next reference point ẑi+1 ∈ Z5 would then, for example, be
the points

z(i+1),j := ẑi + β · (z(xj)− ẑi), j = 1, . . . , P (5)

with a refinement parameter β ∈ (0, 1) that may also be selected by the decision
maker. Note that by setting β to be positive, we move closer to the nondominated
set, that is, zoom in. On the other hand, we can zoom out by using a negative
value.

Let us assume that the decision maker has identified the most satisfactory so-
lution z(xj) among the ones in the current approximation, that is, z(x1), . . . , z(xP )
∈ N . Then, in order to further explore the (variable-size) neighborhood of this
solution, the point z(i+1),j could be selected to serve as the reference point ẑi+1

for the next iteration of the procedure.
Let us next assume that the decision maker wants to zoom in. Once the

new reference point has been chosen, the approximation is filtered to leave in the
approximation only the solutions located in the new approximation area given
by (ẑi+1 +Rn

=)∩Z5 such that the respective extremal solutions (maximizing the

individual criteria in the reduced feasible set) become a part of the approximation.
This can be realized, for example, by performing a direction search according to
Pascoletti and Serafini (1984) along the coordinate directions ej, j = 1, . . . , n,
starting at the new reference point ẑi+1:

lexmax (α,

n∑
j=1

qj)

s.t. z(x) = ẑi+1 + αej + q
q ∈ Rn

=
x ∈ X,

(6)

where the lexicographic maximization includes the term
∑n

j=1 qi as a second
function to be optimized to avoid weakly nondominated solutions.

If necessary, that is, if the number of solutions in the resulting approximation
is below the pre-specified number P , the approximation is then refined by calcu-
lating a new approximation with reference point ẑi+1. In this case, the solutions
of the existing approximation are not deleted but new solutions are just included
in it to get a new approximation. Given the next approximation, the refinement
process is continued as described in the interactive algorithm in Subsection 4.2.
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On the other hand, if the decision maker wants to zoom out by specifying a
negative β in (5) and wants to keep the number of solutions in the approximation
equal to pre-specified P , then (s)he has to delete some of the solutions in the
existing approximation, for example, with the help of the visualization tools.
After that, as many new solutions are added to the approximation with the new
reference point. On the other hand, the decision maker can increase P and then
as many new points are added to the approximation as needed. If so desired, the
individually maximized solutions can be added in the approximation as in the
case of zooming in.

The search may be diversified by storing all candidates for possible reference
points from the previous iterations and allowing the decision maker to select one
of them (at certain stages of the procedure) as the next reference point.

Figure 5 shows an example of the above-described ideas of generating a new
reference point. This zooming in process is related to the problem introduced in
Figure 3. We set P = 4, in other words, we assume that the approximation is
sufficiently fine as soon as it has four solutions. Given the initial approximation
of Figure 3(f) obtained with the nadir point ẑ0 used as a reference point, suppose
that the point z(x3) is chosen by the decision maker as the most preferred solution
among the generated nondominated points z(x1), . . . , z(x4) ∈ N . Setting β = 1

2
,

the reference point for the next stage of the procedure is ẑ1 = ẑ0 + 1
2
(z(x3)− ẑ0),

see Figure 5(b). The approximation is updated in the resulting approximation
area (see Figure 5(c)), and since it still has four solutions and is thus sufficiently
fine, a new reference point is requested from the decision maker. Selecting again
z(x3) as the most preferred solution and setting β = 1

2
leads to the next reference

point ẑ2 = ẑ1 + 1
2
(z(x3)− ẑ1) (see Figure 5(d)), from which the approximation is

again updated (see Figure 5(e)) and refined (see Figure 5(f)).

ẑ0
z(x1)

z(x3)
z(x4)

z(x2)

(a)
ẑ0

ẑ1

(b)

ẑ1

(c)

ẑ2

ẑ1

(d)

ẑ2

(e)

ẑ2

(f)

Figure 5: Updating the reference point using candidate reference points

The final approximation obtained in Figure 5(f) is shown in Figure 6 without
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the nondominated set (which is actually unknown in real problems).

ẑ2

Figure 6: Obtained approximation after two iterations

5.2 Guiding the Search by Selecting Lower Bounds

Using bounds to refine the search for a most preferred solutions was already sug-
gested by Fandel (1972) and will here be embedded into a sequential refinement
of approximations as described in Subsection 4.2.

If the decision maker wants to zoom in, as an alternative to the approach
described in the previous subsection, the decision maker could be asked to give
an order for the criteria, for example, according to how interesting they are (which
may differ from iteration to iteration). Then the components of the next reference
point are specified in this order.

Let us assume that the ranking corresponds to the numbering of the criteria.
Then the solutions z(x1), . . . , z(xP ) forming the current approximation are pre-
sented to the decision maker, and (s)he selects from these points some solution
z(xj), j ∈ {1, . . . , P} to fix the lower bound as b1 := z1(x

j) for the first crite-
rion. The next bound (for the second criterion) is selected using a subset of the
solutions in the current approximation. This subset is of the form

{z(xk) : z1(x
k) ≥ b1, k = 1, . . . , P}, (7)

and after having a look at it the decision maker selects the lower bound for the
second criterion. This procedure is repeated until lower bounds bi have been
obtained for all i = 1, . . . , n. Smaller and smaller subsets corresponding to (7)
are shown to the decision maker in order to ensure that the obtained bounds are
feasible in the sense that the vector b = (b1, . . . , bn)T lies in Z5. If the subset to
be shown decreases too fast, the decision maker can take a step backward and
select a looser value for the previous criterion.

Consequently, the new reference point from which the approximation is recom-
puted and refined (c.f. Subsection 5.1) is now given by ẑi+1 := (b1, . . . , bn)T ∈ Z5.
Figure 7 illustrates the selection of a new reference point and consecutive refine-
ments of the approximation when the current approximation and its subsets are
used to get bounds for the new reference point.

The obtained approximation (without the nondominated set in the back-
ground) is depicted in Figure 8.
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ẑ0
z(x1)

z(x3)
z(x4)

z(x2)

(a)
ẑ0

ẑ1

(b)

ẑ1

(c)

ẑ1

(d)

Figure 7: Updating the reference point based on bounds

ẑ1

Figure 8: Obtained approximation after one iteration

5.3 Guiding the Search Using Classification

One more possibility to support the decision maker in specifying the next refer-
ence point is to use classification. This means that the current reference point is
shown to the decision maker and (s)he is asked to classify the criteria into those
where the current minimal acceptable level should be

• increased from the current one,

• decreased from the current one or

• kept the same.

Besides classification, the decision maker is also supposed to set the new lev-
els in the first two classes. In order to avoid infeasibility, this choice should be
constrained such that the new reference point still satisfies ẑi+1 ∈ Z5. For ex-
ample, the desired improvement in the respective criteria could be approximated
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by moving a steplength λ towards the corresponding criteria values of a feasible
solution of the current approximation (c.f. Subection 5.1). At the same time, the
reference point may be moved away by a step length of λ̄ from another feasible
solution.

The next reference point is then formed using the new as well as the current
values (if the last class is also used) for the appropriate criteria. This resembles
the classification used in interactive methods for directing the search for the most
satisfactory solution see, for example, Miettinen (1999) and Miettinen and Mäkelä
(2006).

When the new reference point has been found, the current approximation
is once again filtered so that only the solutions in the new approximation area
(ẑi+1 + Rn

=) ∩ Z5 are retained. Using only the first and the last class means

zooming in and using the last two classes means zooming out and in those cases
recomputing and refining the approximation can be done as described in Subsec-
tion 5.1. Otherwise, if the new approximation area does not contain any of the
solutions of the current approximation the whole approximation is to be recom-
puted (with the new reference point). Figures 9 and 10 show an example of the
application of this approach.

ẑ1

(a)

ẑ2

ẑ1

(b)

ẑ2

(c)

Figure 9: Updating the reference point based on classification
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ẑ2

Figure 10: Obtained approximation after one iteration

6 Conclusions

We have introduced a new interactive multicriteria optimization method for con-
vex problems where rough approximations of the nondominated set and reference
points specified by a decision maker are combined. In this new approach we hy-
bridize ideas of a posteriori and interactive methods. The advantage of this new
interactive learning-oriented method is that the decision maker gets an impression
of the behavior of the problem with the help of approximations and can iden-
tify the most interesting region of criterion values conveniently. The calculations
involved with approximations are fast and efficient. After the desirable region
has been identified, the decision maker can fine-tune the solution with exist-
ing interactive methods that operate with the original multicriteria optimization
problem (and not the approximation) so that consideration is restricted to the
interesting region found. In this way, the decision maker can find any desirable
nondominated solution faster.

In the suggested new interactive algorithm, the number of optimization prob-
lems to be solved during the whole solution process can stay relatively small em-
phasizing the computational efficiency of the approach. This is explained both
by the fact that only such parts of the nondominated set are studied more closely
that the decision maker is interested in and because the current approximation
can be utilized in many cases and it is then only augmented by new solutions. In
other words, the approximation does not have to be calculated from scratch but
the existing one can be taken as a part of the new approximation. The usabil-
ity aspect is also important with interactive methods and here the information
given to and asked from the decision maker is easily understandable in the form
of criterion values. In other words, not too much cognitive burden is set on the
decision maker.

Even though the new method has here been formulated for convex problems,
it can be generalized for nonconvex problems in a corresponding way. In this
case, the weighted-sums scalarization cannot be used as a part of the approxi-
mation procedure but, for example, modifications of the weighted Tchebycheff
scalarization, as suggested in Klamroth et al. (2002), can be adopted.
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