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MULTIFRACTALITY IN NORDIC ELECTRICITY MARKETS

Pekka Malo
Helsinki School of Economics, P.O. Box 1210, FIN-00101

pekka.malo@hse.fi

Abstract. The recent research of turbulent cascades in hydrodynamics has
inspired the newly emerged field of econophysics to develop multifractal pro-
cesses as a competitive alternative to the standard models of continuous time
finance. The essential new features of these models are their scale invariance,

multiscaling, and clustering in volatility. In this paper we perform multifractal
analysis of the NordPool electricity spot prices and compare the results with
GARCH line of research. The approach is based on the wavelet transforma-

tion of the scaling process. We find that electricity prices are consistent with
the multifractal framework and it appears that a simulated Infinitely Divis-
ible Cascading (IDC) process is a reasonably good choice for replicating the
empirical scaling properties and the wavelet scalogram of the original signal.

1. Introduction

During the last decade electricity market has experienced a rapid deregulation
from a vertically integrated industry into a commodity market, where trading and
risk management play key roles. As a result several power exchanges have emerged,
where transmission capacity and energy are coupled and traded simultaneously to
ensure allocation of capacity according to the bids and offers. The first interna-
tional power exchange is Nord Pool, which was established 1993 with an intention
to improve cost efficiency and competition. Currently Nord Pool spans Norway,
Sweden, Finland, and Denmark and over 30 percent of the total Nordic electricity
consumption is now exchange traded. At Nord Pool the system price is determined
by the intersection of aggregated supply and demand curves, which are constructed
from the bids and offers for each hour of the following day. The market is di-
vided into separate bidding areas and Nord Pool manages transmission capacity to
conduct power out of low price areas and into high price areas.

However, in addition to improved efficiency, the opening of markets has exposed
energy producers and consumers to new forms of market and price risks thus call-
ing for models that are able to capture the dynamics in electricity prices. Given
that electricity is expensive and difficult to store at a reasonable cost, this task is
particularly challenging and has inspired a variety of different lines of models. The
prices are not only seasonal but exhibit levels of volatility and spikes unparalleled
by the traditional commodity markets. The fact that production and consump-
tion of electricity must always balance makes the grid vulnerable to transmission
failures or generation outages. Combined with inelastic supply and demand, also
weather conditions can cause tenfold changes within a single hour. Since Nord Pool
is essentially a hydroelectric exchange, the weather is an important factor affecting
both demand load and supply. Hydrounits are heavily dependent on availability
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2 MULTIFRACTALITY IN NORDIC ELECTRICITY MARKETS

of water reservoirs, which vary on a seasonal basis according to precipitation and
factors such as snow melting.

As a consequence of the complex characteristics of electricity markets, a consid-
erable number of models ranging from GARCH and jump diffusions to stochastic
volatility have been proposed to tackle the problem of modelling the price dynam-
ics. So far, there does not seem to be much concensus on which line of modelling
to prefer as they tend to focus on different aspects electricity prices. In the last
few years also a completely new family of models has emerged, generally referred
to as multifractals, and are currently widely applied in a number of fields including
nonlinear physics, geophysics, biology, and computer networking. In economics the
concept of multifractal processes was first introduced by Mandelbrot, Fisher and
Calvet [28] as an alternative to GARCH and its variants with ability to incorporate
long-tailed asset returns and long memory in volatility. Since then multifractal
information processes have started to gain popularity as a convenient framework
to analyze signals and process that exhibit scaling properties in terms of sample
moments. By the term, scaling, we refer to a specific relationship between data
samples of different time scales (intra-day, daily, weekly, or monthly).

The idea of multifractal modelling has typically been sold with the following
arguments, which have been well recognized in empirical finance [27]: 1) clustering
in volatility, 2) compatibility with the martingale property of returns, 3) scale-
consistency, and 4) multiscaling. Recently especially scale-consistency and multi-
scaling have received increasing attention, since quite often the traditional models
are not able to provide consistent representations at different time-scales. For ex-
ample Drost and Nijman [17] have studied this problem for GARCH by aggregating
log returns of various processes. The property, that aggregated processes belong to
the same class as the original processes, has become known as scale-consistency as
it implies that the models have equivalent representations at different time scales.
Generally GARCH family models are not always scale consistent. The other prop-
erty, multiscaling, then again refers to the fact that a price process can not be
always described by a single characteristic scale exponent or Hurst exponent. This
is a central issue in defining a multifractal process and separates them from Frac-
tional Brownian Motion. Especially when no a priori scale preference is given, the
multifractal framework makes a competitive alternative.

The purpose of this paper is to consider an application of the multifractal frame-
work to the case of Nordic electricity markets. First of all we are interested in
analysing the scaling behaviour associated with electricity spot prices, that is the
strength of multifractality as given by the curvature of the empirical scaling func-
tion. The second step is to propose a simple multifractal model for electricity, where
the seasonal component is combined with an infinitely divisible cascade which is
consistent with the observed scaling function. The third, and perhaps the most
interesting issue, is to benchmark the multifractal approach against GARCH fam-
ily models by comparing their abilities to capture the underlying scaling behaviour
of electricity spot prices. Since no well established statistical tests exist, the com-
parison is done using a simulation based analysis, where we study the properties
of synthesized time paths of each model and try to discriminate between different
models by considering the obtained scaling exponents and wavelet scalograms.

The main finding of this paper is that electricity prices exhibit multiscaling prop-
erties and can be quite successfully modelled using an Infinitely Divisible Scaling
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(IDC) process. It appeared that on average the IDC-process was able to replicate
the empirical scaling function of spot prices quite closely, whereas GARCH-models
had increading deviations in scaling exponents for higher moments. When wavelet
scalograms computed for the simulated processes were considered, it seemed that
the IDC-process managed to produce similar magnitude patterns as the original sig-
nal. Also Skew-t-GARCH did §rather well in this respect. The general impression
was that IDC-model can be considered as an interesting alternative for modelling
spot price dynamics. However, also this method has its drawbacks. One funda-
mental problem of multifractal models is that there are no established methods
of comparison against other models. Furthermore the estimation of parameters for
these models is a delicate issue, since we often find it difficult to tell anything about
the signicance of the obtained parameters except in some special cases. Another
important point to remember is that multifractal models are mostly simulation
tools rather than forecasting models. This of course limits their range of applicabil-
ity in traditional econometric analysis, yet they can be powerful tools in analysing
and predicting risks. Thus these processes become interesting in cases such as elec-
tricity price modelling, where no previously established models have found to give
satisfactory results.

The paper is organized as follows. In the next section, we define multifractality
and explain the concept of infinitely divisible cascading (IDC) random walk as a
building block for various multifractal processes [13]. The third section proposes a
simple multifractal model for electricity spot prices and considers GARCH-family
as benchmark models. The fourth section discusses the estimation tools for the
IDC random walk. Since the approach is based on wavelet techniques, we provide
a short general introduction to the multiresolution analysis with wavelets. The
next section continues by presenting empirical results on estimation of the different
models and discusses their ability to capture the scaling behaviour in electricity
spot prices using simulation. The sixth section concludes the paper.

2. Multiscaling of asset returns

In order to make the idea of multifractality and scaling behaviour more precise
and accessible, we begin this paper by defining the concepts of power law scaling
which we then extend to the framework of infinitely divisible scaling. As a next step,
we introduce infinitely divisible cascading noise with its extensions to associated
cascading motion and finally into random walk. Throughout this introduction we
refer to Chainais et al. [10, 12, 13], who have done considerable effort to make these
processes accessible for modelling.

2.1. Power law and multiscaling. Multifractality is a form of generalized scal-
ing, which emphasizes both extreme variations and long-memory. The concept was
first introduced by Mandelbrot [25, 26] in the context of turbulent dissipations,
which he later extended from measures to stochastic processes [27] by defining the
framework of power law scaling.

Definition 2.1 (Power law). We say that a stochastic process {X(t)} has power
law scaling if it has stationary increments δτX(t) = X(t + τ) − X(t) and satisfies

(2.1) E(|δτX(t)|q) = Cq(τ)τ ζ(q) as τ → 0

where Cq(τ) is either assumed to be bounded between positive constants, or to be a
more general function depending on the context such that lim infτ→0 logτ Cq(τ) = 0.
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Here the scaling function ζ(q) contains all information about the rate of growth
of the multifractal process. If the scaling function is linear and fully determined
by its slope, the corresponding process is self-affine or monofractal. This means
that the shape of the return distribution should be the same when the time scale is
changed. Typical example of such a process is the fractional Brownian motion. If
the process has finite second moments with stationary increments, we can use the
value of H to describe the autocorrelation structure of the increment sequence. For
H ∈ (1/2, 1), the increments have slowly decaying serial correlations i.e. it exhibits
long-range dependence. For H ∈ (0, 1/2) the increments decay rapidly and sum to
zero. In the special case of Wiener process, H = 1/2, the increments are serially
uncorrelated.

However, in modelling, we can rarely assume that the scaling function is com-
pletely characterized by a single exponent. For this purpose, we need multifractal
models to allow for more flexible scaling structures. In order to appreciate the
geometric intuition one defines the local Hölder exponent as α(t) = sup{γ ≥ 0 :
|X(t + δt) − X(t)| = O(|δt|γ) as δt → 0}, which provides a measure of local regu-
larity of the price path at each time instant t. Whereas the standard Itô diffusions
have always local variation proportional to (δt)1/2, the multifractal processes can
generate a variety of local scales filling the gaps between (δt)1/2 and jump process
behaviour (δt)0. The higher the Hölder exponent, the smoother the process. For
example, the fractional Brownian motion with self-affinity index H is characterized
by a unique Hölder exponent α(t) = H. Such a process has a modification with
Hölder continuous sample paths of order γ ∈ [0,H).

Recently, the multifractal framework has been extended to infinitely divisible
cascades (IDC). The concept was originally used to analyse fluid dynamics with a
limited range of scales. The idea is to integrate the contribution of all scales in a
range of interest:

Definition 2.2 (Infinitely divisible scaling). We say that a stochastic process
{X(t)} has infinitely divisible scaling if it has stationary increments δτX(t) =
X(t + τ) − X(t) and satisfies

(2.2) E(|δτX(t)|q) = Cq(τ) exp [−ζ(q)n(τ)] for τmin ≤ τ ≤ τmax,

where the function n(τ) is assumed monotonous and can be interpreted as the depth
of the cascade.

This is consistent with power law scaling when we set n(τ) = − ln(τ). An
essential difference to the power law scaling definition is, however, to limit the
range of scales considered to the ones we can actually observe from the data. This
is quite useful, since in practice we cannot observe infinitely small scales as required
by 2.1. Another good point to choose this definition is the supply of algorithms for
synthesis of infinitely divisible cascades [13]. Therefore, throughout this paper we
prefer to work with definition 2.2 when referring to multifractal processes. By the
term multiscaling we emphasize the fact that the scaling laws are meant to hold
within the limited scales obtained from actual data.

2.2. Infinitely divisible cascading noise. Inspired by the ideas of Barral and
Mandelbrot [3, 4] infinitely divisible cascading processes were introduced in [12, 11,
39] as an attempt to design process with controllable scaling with their associated
random walks. The best known example of a cascading process, which illustrates the
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underlying multiplicative construction, is the canonical binomial cascade proposed
by Mandelbrot [26]

Qr(t) =
∏

{(j,k):1≤j≤n,k2−j≤t<(k+1)2−j}

Wj,k,

where Wj,k denote i.i.d. positive random variables with mean one. Thus from a
time-scale view, the binomial cascade is obtained by dividing the time-scale plane
R × (0, 1] using a dyadic grid, which gives the process as the limit of densities
Qr(t) when r → 0. Later on binomial cascades have been improved by replacing
the dyadic grid based arrangement of multipliers with compound Poisson cascades
(CPC) in order to get rid of non-stationarity and time-shift problems with binomial
framework. Now, as discussed by Chainais et al. [13], the idea of infinitely divisible
cascades is to generalize the CPC framework of Barral and Mandelbrot [4] one step
further.

Let G be an infinitely divisible distribution with moment generating function

G̃(q) = exp [−ρ(q)] =

∫

exp[qx]dG(x).

Typical choices for G range from Normal and Poisson distributions to Stable laws.
In this paper we will use lognormal distribution as it leads to a process with a
simple parabolic scaling function, which corresponds to our empirical observations.

Let dm(t, r) = g(r)dtdr define a positive measure on the half-plane S+ = {(t, r) :
t ∈ R, r ∈ R

+}. Let M denote an infinitely divisible, independently scattered
random measure distributed by G in S+ such that for any Borel set ξ we have
E[exp[qM(ξ)]] = exp[−ρ(q)m(ξ)]. If subsets ξ1 and ξ2 are disjoint their measures
M(ξ1) and M(ξ2) are independent random variables and M(ξ1 ∪ ξ2) = M(ξ1) +
M(ξ2). We also define a cone of influence for each time instant as

(2.3) Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t − r′/2 ≤ t′ < t + r′/2)},

where the choice of large scale equal to 1 is arbitrary as it amounts to choice of
time and scale units. Thus by using cones rather than dyadic grids we obtain a
considerably more flexible framework, which still allows us to recover the classical
cascades by an appropriate choice of control measure m (see for example Muzy and
Bacry [32]). It is also interesting to notice that while distribution G controls the
structure function through ρ, the control measure m and the shape of the cone Cr(t)
determine the speed of the cascade. By choosing g(r) = 1/r2 for 0 < r ≤ 1 and
g(r) = 0 for 1 ≤ r, that is m(Cr(t)) = − ln(r), we have exact power law behaviour
within the given range of scales.

As proposed by Chainais et al. [13] we now define an infinitely divisible cascading
noise (IDC-noise) as follows

Definition 2.3 (IDC-noise). An infinitely divisible cascading noise is a family of
processes Qr(t) parametrized by r of the form

(2.4) Qr(t) =
exp[M(Cr(t))]

E[exp[M(Cr(t))]]

where Cr(t) is the cone of influence given by (2.3).

Assuming time-invariance of the control measure and the cone of influence, the
process {Qr(t)}r>0 is a positive, left-continuous martingale with log-infinitely divis-
ible distribution. Thus the process converges almost surely as r → 0. Furthermore,
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the limit degenerates to zero for almost all t as a consequence of the Law of Large
Numbers. This is an essential feature to motivate the definition of IDC-motion in
the next section. Another interesting property of the IDC-noise is that the correla-
tion structure of the process has a nice interpretation through the intersections of
cones in S+

E[Qr(t)Qr(s)] = exp[−ϕ(2)m(Cr(t) ∩ Cr(s))]

where ϕ(q) = ρ(q) − qρ(1) for all q for which ρ(q) = − ln(G̃(q)).

2.3. IDC random walk. Having defined the fundamental building block, IDC-
noise, we are now ready to extend it to an IDC motion and IDC random walk.
The problem with using IDC-noise directly is that it is always positive, which
makes it necessary to take a couple of additional steps to overcome this restriction.
Following Chainais et al. [13] we first define an infinitely divisible cascading motion
(IDC-motion) as the limiting integral of an IDC-noise Qr(t)

(2.5) A(t) = lim
r→0

∫ t

0

Qr(s)ds.

Denoting Ar(t) =
∫ t

0
Qr(t)dt, we have an increment process

δτAr(t) = Ar(t + τ) − Ar(t) =

∫ t+τ

t

Qr(s)ds,

which inherits its stationarity directly from from Qr as insured by time invariance of
both the control measure m and the shape of the cone Cr. The obtained cascading
motion A is a non-decreasing cadlag-process with stationary increments.

This gives us the following definition of a multifractal random walk in IDC time
[13]

Definition 2.4 (IDC Random Walk). Let A be an infinitely divisible cascading
motion, and BH the fractional Brownian motion with Hölder exponent H. The
compound process

(2.6) VH(t) = BH(A(t)), t ∈ R
+

is an Infinitely Divisible Cascading Random Walk.

The idea behind this definition is essentially the same as in the MMAR model
proposed by Mandelbrot, Calvet and Fisher [28], where they combine the concept
of trading time with a multifractal measure. In this case we could interpret the
IDC-motion A as a stochastic trading time process, which adjusts time according
to different levels of trading activity. Thus the trading time will be highly variable
and potentially of long memory. Since the fractional Brownian motion is a self-affine
process with a constant Hölder exponent, we find that the scaling properties of the
IDC-motion are passed on to the compound process. From A(0) = 0, VH(0) = 0,
and the fact that A is nondecreasing with E[δτAq] = Cq(τ)τ q exp [−ϕ(q)m(Cτ )],
we find that VH must satisfy

(2.7) E|δτVH |q = C ′
q(τ)τ qH exp [−ϕ(q)m(Cτ )]

where C ′
q(τ) is bounded and close to constant for τ << 1.

The significance of compounding is simply to allow direct modelling of process
variablity without affecting the direction of increments or their correlations. We
also assume that the trading time is independent from the fractional Brownian
motion.
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3. Models

Once we have introduced the concept of infinitely divisible scaling and multi-
fractality, we are now ready to propose a simple multifractal model for electricity
spot prices along with benchmark models. However, before doing so, we begin this
section with a brief summary of the stylized facts of Nordic power markets. For a
more detailed discussion see for example Weron [41].

3.1. Stylized facts. In order to have an empirically plausible model, we need to
take into account the following key features of electricity prices:

(1) Price spikes: One of the most salient features of the power markets are
the unanticipated extreme changes in spot prices caused by severe weather
conditions, generation outages, and transmission failures. Although the
spikes are usually short lived they account for a large part of the observed
total price variation and as such are a key motivator for designing hedging
strategies. The spikes are particularly powerful during high demand periods
such as winter in Scandinavia, when electricity consumption is heavy due
to excess heating.

(2) Seasonality: Electricity is highly dependent on weather conditions, con-
sumption pattern and economic activities. In Scandinavia the weather ef-
fects are a major factor, because a considerable amount of energy is gener-
ated by hydrounits which are strongly dependent on fluctuations in water
reservoirs. Combined with inelasticities in demand and supply, the weather
effects lead to highly volatile electricity spot prices. For more discussion on
deterministic patterns see for example Lucia and Schwartz [24] and Bhanot
[5].

(3) Mean-reversion: Generally electricity prices have been found to exhibit
considerable mean-reversion. As such electricity is perhaps one of the best
known examples of anti-persistent data. Various explanations for mean
reversion have been proposed. For example Knittel and Roberts [23], who
consider this as a consequence of weather cycles and the tendency of weather
to revert to its mean level (possibly time-varying).

3.2. IDC model for electricity spot price. Based on the above criteria, we
formulate the following simple multifractal as starting point.

(3.1) X(t) = f(t) + VH(t), f(t) =
6

∑

i=1

βixi(t)

Here X(t) = lnP (t) denotes the logarithm of the spot price and VH(t) is an IDC
random walk with Hölder exponent H. To define a simple seasonal component f(t)
we can choose for example x1(t) = 1, x2(t) = t, x3(t) = sin(λt), x4(t) = cos(λt),
x5(t) = sin(2λt), and x6(t) = cos(2λt)(see e.g. Carnero [9]).

When proposing this model our main interest is to capture the wildly random
component of the electricity price. By incorporating VH(t) we can generate con-
tinuous anti-persistent price paths, which are spiky enough to resemble a jump
diffusion. The specification of the seasonal part is of course important for fore-
casting purposes, but it is not that much of an issue as various well established
techniques for modelling seasonal behaviour exist. Furthermore, the estimation of
the IDC model is not sensitive to different specifications of the seasonal component,
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since the wavelet techniques are quite robust against various trends. By choosing
the number of vanishing moments high enough, when applying the wavelets, we
can eliminate the effect of complex sinusoidal trends. The issues concerning the
estimation methodology are discussed more closely in the next section.

3.3. Traditional modelling. In order to get a few comparisons with traditional
models we consider standard ARMAX-GARCH models, which have become com-
mon tools in analyzing financial time series. In addition to the standard GARCH
model introduced by Bollerslev [6], we include GJR-GARCH of Glosten et al. [20],
and Skew-t-GARCH with Hansen [21] density function. The GARCH models are
estimated using maximum likelihood.

The estimation of the models is carried out in two steps. Given the seasonally
detrended time series X(t)− f(t), we first use ARMA-filter to remove the observed
autocorrelation structure and then calibrate the GARCH models to the residuals.
Let r(t) = d(X(t) − f(t)) denote differences of the deseasonalized time series, the
general model reads as follows

r(t) = µ +

m
∑

i=1

φir(t − i) +

n
∑

j=1

θjǫ(t − j) + ǫ(t)(3.2)

ǫ(t) = z(t)σ(t), z(t) ∼ iid(0, 1)(3.3)

The different specifications for σ(t) are listed below:

GARCH : σ2
t = ω +

p
∑

i=1

αiǫ
2
t−i +

q
∑

j=1

βjσ
2
t−j

GJR − GARCH : σ2
t = ω +

p
∑

i=1

(αi + γiI{ǫt−i<0})ǫ
2
t−i +

q
∑

j=1

βjσ
2
t−j

For Skew-t-GARCH the innovation density function, f , is the skewed t distribu-
tion defined as [21]

(3.4) f(z|ν, λ) =







bc(1 + 1
ν−2

(

bz+a
1−λ

2
)

)−
ν+1

2 , z < −a
b

bc(1 + 1
ν−2

(

bz+a
1+λ

2
)

)−
ν+1

2 , z ≥ −a
b

where 2 < ν < ∞ is the degrees of freedom and −1 < λ < 1 is the skewness
parameter. The coefficients a, b and c are given by

a = 4λc

(

ν − 2

ν − 1

)

, b2 = 1 + 3λ2 − a2,

c =
Γ

(

ν+1
2

)

√

π(ν − 2)Γ(ν
2 )

4. Wavelets and estimation

Given the preceeding definition of an IDC random walk, an interesting question
is how to calibrate models involving such components to data. For this purpose,
we need to estimate the Hölder exponent driving the fractional Brownian motion
and parametrize a random multifractal measure such that it is consistent with the
empirical scaling function estimated from the data.
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So far, there is no unified estimation framework, but wavelets have become an
increasingly popular choice due to the structural affinity which exists between the
mathematical framework they offer and the physical nature of fractal processes.
Wavelets are also quite robust against various trends and seasonalities found in
data, which is particularly useful in our case as the Nord pool electricity spots are
well known for strong seasonal patterns. In this section, we introduce the theory of
multiresolution analysis and wavelet representation as a tool for efficient analysis
of scaling processes. Then we consider the practical issues in detection of scaling,
interpreting the results and estimation of the scaling parameters.

4.1. Review on wavelets. Although wavelet theory was originally established for
deterministic finite energy processes, it has proven to be a useful tool for stochastic
processes as well [8, 29]. The term wavelets refers to a set of basis functions with a
very special structure, which allows a convenient series expansion of a function in
terms of the generating wavelets. The idea is related to Fourier analysis, but with a
notable distinction: in Fourier analysis the time evolution of the frequencies is not
directly reflected, whereas wavelets are well designed for time-dependent frequency
analysis.

In order to understand the idea of wavelet representation we introduce the con-
cept of multiresolution analysis (MRA), which can be used to generate an orthonor-
mal basis for L2(R). A multiresolution analysis consists of a collection of nested
closed linear subspaces {Vj : j ∈ Z} ⊂ L2(R) and a scaling function φ0 such that
the following conditions are satisfied

(1) Vj−1 ⊃ Vj , ∩Vj = {0}, and ∪Vj is dense in L2(R),
(2) X(t) ∈ Vj ⇔ X(2jt) ∈ V0

(3) A function φ ∈ V0 such that {φ(t − k) : k ∈ Z} is an orthonormal basis for
V0.

Thus by definition {φj,k(t) = 2−j/2φ(2−jt − k) : k ∈ Z} forms an orthonormal
basis for Vj . Since Vj ⊂ Vj−1, we can now define Wj = Vj ⊖ Vj−1. Then assuming
that the scaling function φ0 (father wavelet), is chosen well enough, there exists a
function ψ ∈ W0 (mother wavelet) such that {ψj,k(t) = 2−j/2ψ(2−jt − k) : k ∈ Z}

is an orthonormal basis for Wj . Here, the scaling coefficients 2−j/2 are needed for
normalization of L2(R) norm ‖ψj,k‖2 = 1. The mother wavelet should also satisfy
∫

ψ(t)dt = 0 to guarantee regularity and have N vanishing moments
∫

tkψ(t)dt = 0
for k = 1, .., N.

Now the idea of performing multiresolution analysis is to successively project
X(t) onto each of the subspaces Vj defined by ProjVj

(X(t)) =
∑

k aX(j, k)φj,k(t).
Since the projection at level j is coarser than projection at level j−1, we have a loss
of information at each stage equal to detailj(t) = ProjVj−1

(X(t)) − ProjVj
(X(t)).

These are equivalent to considering projections onto Wj in terms of mother wavelets:
detailj(t) = ProjWj

(X(t)) =
∑

k dX(j, k)ψj,k(t). This means that we can rewrite
the fine scale approximation for X(t) as a collection of details at different resolutions
together with a final low-resolution approximation which belongs to VJ

(4.1) X(t) =
∑

k∈Z

aX(J, k)φJ,k(t) +

J
∑

j=1

∑

k∈Z

dX(j, k)ψj,k(t)

where the coefficients are given by L2(R) inner products ax(J, k) = 〈x, φJ,k〉 and
dx(j, k) = 〈x, ψj,k〉. The coefficients dx(j, k) are often referred to as a subsample
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of the continuous wavelet transform {TX(a, t) = 〈X,ψa,t〉, a ∈ R
+, t ∈ R} located

on a dyadic grid. In this paper we use a fast pyramidal algorithm to compute the
coefficients, which has lower computational cost than the FFT [15]. For more details
on this approach see e.g [8, 29]. Although the above presentation is essentially
designed for functions in L2, it has been well documented that the approach can
be applied to stochastic processes when the wavelets satisfy some mild regularity
conditions [8, 29].

4.2. Estimation of scaling exponents and detection of multifractality. In
this part we explain how wavelets can be used to detect potential multifractality.
The actual multifractal model and its estimation procedure is presented in next
subsection.

The connection between fractal processes and wavelets arises from the fact that
the increments involved in the study of the local regularity of a sample path can
be seen as simple examples of wavelet coefficients [30]. In order to describe the
idea, we consider first a few fundamental properties of the second order processes
and then discuss how the approach can be extended to analyze the multifractal
processes (qth order processes). One major reason for this is that we will use these
techniques in preliminary analysis before considering multifractal models.

Now, let X be either a self-similar process with stationary increments with scaling
parameter H (H-sssi for short), or a long-range dependence (LRD) process, or
a second-order stationary 1/f-type process or a fractal process, then the wavelet
coefficients will, exhibit following properties which are fundamental for construction
of the estimators and analysis of scaling [2].

P1: The details {dX(j, k), k ∈ Z} is a stationary process if N ≥ (α−1)/2 and
the variance of the dX(j, k) reproduces the underlying scaling behavior of
data within a given range of octaves j1 ≤ j ≤ j2:

E
[

dX(j, k)2
]

= 2jαcfC(α,ψ)

Here N is the number of vanishing moments and the definitions of α, cf

and C(α,ψ) depend on the underlying process. For example in the case
of a H-sssi process, we have α = 2H + 1, C(α,ψ) is to be identified from
E

[

dX(j, k)2
]

= 2j(2H+1)
∫

|t|2H(
∫

ψ(u)ψ(u − t)du)dt, and j1 = −∞ and
j2 = +∞. Here it is worthwhile to note that the results extend for the
multifractal processes as well [2].

P2: The details {dX(j, k), k ∈ Z} are short-range dependent on condition
that N ≥ α/2. Furthermore the number of vanishing moments can be used
to control the correlation: E [dX(j, k)dX(j′, k′] ≈ |k−k′|α−1−2N , |k−k′| →
+∞.

Given these properties we find that the effectiveness of the wavelet approach
stems from the fact that the wavelet basis of functions possesses a scaling property
and thereby constitutes an optimal co-ordinate system to study such phenomena
[34]. The starting point for analysis is obtained from (P1) as it implies a re-
gression approach for estimating α and cf (Logscale diagram): log2(Edx(j, ·)2) =
jα+log2(cfC). The approach is feasible, since any kind of linear regression consti-
tutes an unbiased estimator due to Property 1. The lack of bias does not require
knowledge of their variances or distriubtions [2]. However, it can be shown that the
weighted regression is preferable as it is the minimum variance unbiased estimator.
This semiparametric wavelet estimator reads, see e.g. [1, 38, 2, 40]
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(4.2) α̂ =

∑

yj(jS − Sj)/σ2
j

SSjj − S2
j

=
∑

wjyj

where yj = log2(1/nj

∑

k dX(j, k)2)−gj with correction term gj = Ψ(nj/2)[ln(2)]−1−
log2(nj/2) to take into account the change of order in taking expectations and log-
arithms. Here Ψ is the digamma function and nj is the number of coefficients at
octave j ∈ [j1, j2]. The other terms are defined by

S =

j2
∑

j=j1

σ−2
j , Sj =

j2
∑

j=j1

jσ−2
j , Sjj =

j2
∑

j=j1

j2σ−2
j , σ2

j =
ζ(2, nj/2)

ln2(2)

where ζ(2, z) =
∑∞

n=0 1/(z + n)2 is Riemann’s zeta function.
As discussed by Chainais et al. [10, 2], the above procedure can be generalized

for the multifractal formalism, where E|dX(j, ·)|q ∼ 2jζ(q). That is, for the case
where relevant information for the analysis of scaling is beyond the reach of second
order statistics. The estimation of the ζ(q) is achieved via

(4.3) Sq(j) =
1

nj

nj
∑

k=1

|dX(j, k)|q

where nj is the number of coefficients at octave j. Here we can use the generalized
logscale diagrams (log2(Sq(j)) vs. log2(2

j) = j) to check for straight lines and
estimate ζ(q) through linear regression as the slope in those diagrams. Confidence
intervals are obtained for each log2(Sq(j)). The traditional Hurst or Hölder expo-
nent is recovered by considering the special second order case. Finally, an estimate
of the multifractal spectrum is given by the Legendre transform of the estimated
{ζ(q)}:

(4.4) f(α) = inf
q
{qα − ζ(q) + 1}.

An interesting question when studying the forms of ζ(q) is to check whether
it takes a simple linear form ζ(q) = qH or not. If ζ(q) is linear the process is
essentially a monofractal with a degenerate multifractal spectrum. A convenient
tool for this analysis has been designed by Abry et al. [2] referred to as multiscale
diagram, which will be discussed more in the results section.

4.3. Parametrizing IDC-noise. In the case of electricity markets, we find that
the empirical scaling function obtained using the above procedure is well approxi-
mated by a second order polynomial (see section 5). Thus, the choice of a random
measure with log-normal distribution N(µ, σ2) appears natural since it leads to
simple polynomial forms for ϕ. Using notation presented in section 2.2 we have
ρ(q) = −µq−σ2q/2. Then condition ϕ(1) = 0 requires that µ = −σ2/2 which gives
us

(4.5) ϕ(q) =
σ2

2
q(1 − q).

By setting m(Cτ ) = − ln(τ) in (2.7), we get E|δτVH |q = C ′
q(τ)τ qH(1+σ2/2)−σ2q2H2/2,

which implies that the theoretical scaling function of VH should the polynomial
given by

(4.6) ζVH
(q) = qH(1 + σ2/2) − σ2q2H2/2
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Thus we can recover the parameter σ2 by matching the second derivatives of the em-
pirical and theoretical scaling functions. The interpretation of σ2 is then associated
with the curvature of the scaling function or the strength of multifractality.

5. Experiments

The Nordpool data is extracted from Datastream International and consists of
system reference spot prices covering the period between 10-Mar-1998 and 12-Jan-
2006. A visual inspection of the price path (Figure 1) confirms the extremal be-
haviour with jumps and strong seasonal fluctuations. We find that several large
price spikes have occured during the sample range, and most of them have been in
January or February. Typically the spikes are short-lived and the overall price path
is driven by a sinusoidal pattern. In the nordic region demand for electricity is high
in winter due to heating and light, while prices decline in summer. Also seasonal
changes in water reservoirs add their effect on electricity generation. These factors
are particularly important when designing models for prediction purposes. How-
ever, given that our interest is more on the spiky behaviour and extreme volatility,
we have decided to take a rather crude approach to remove the seasonal component
by approximating it with a sinusoidal trend as defined in 3.1. The preprocessed
data is shown in Figure 2 along with the trend component. Descriptive statistics
for both original and preprocessed data are reported in Table 1.

5.1. Detecting multifractality. Given the peculiar nature of electricity as a com-
modity it is not too surprising to find that it appears to exhibit strong multifractal
characteristics. The evaluation was done using multiscale diagrams proposed by
Abry et al. [1]. The idea in this approach is to plot the empirical scaling func-

tion ζ̂(q) = α̂q − q/2 against q, together with confidence intervals, in order to see
whether it deviates significantly from a simple linear function over a range of mo-
ments. Thus a lack of alignment in the multiscale diagram strongly suggests scaling
behaviour, which cannot be explained by a linear scaling function ζ(q) = qH. For
curiosity we present also the linear multiscale diagram with hq = α̂q/q−1/2, where
linear forms appear as horizontal alignments. This is essentially the same as the
actual multiscale diagram, but visually more convenient.

Figure 3. shows the multiscale diagram for detrended electricity prices, where it
is confirmed that they do not obey any linear scaling function. Since no horizontal
regions are found in linear multiscale diagram, the results indicate that a multi-
fractal model might be appropriate. However, the test does not tell anything about
the model formulation, and therefore we should be careful when drawing these con-
clusions. In this paper we have considered an IDC-model, but there is a variety
of alternative scaling models which are left as an issue for future research. When
running the estimates, q ranged from -1 to 7, the number of vanishing moments
was set to 4, and L2 normalisation was used.

5.2. IDC-model calibration. Now we can take the first steps to calibrate an
IDC-model. Using the quadratic approximation α̂q = −0.052q2 + 0.92q − 0.11 and

ζ̂(q) = α̂q − q/2, we can match the second derivative of empirical scaling function

ζ̂ ′′(q) = −0.104 with the theoretical curvature of (4.6) to obtain σ2 = 0.104/H2.
The Hölder exponent can be computed from the second order statistic α2 by H =
(α2 − 1)/2 = 0.3380, which gives σ2 = 0.9103. One sample path generated with
these parameters is shown in Figure 4. The finding that Hölder or Hurst exponent is
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well below 0.5 is consistent with the stylized fact of fast mean-reversion in electricity
prices.

5.3. Comparisons. As benchmark models we have considered ARMA-GARCH(1,1),
ARMA-GJR-GARCH(1,1), and ARMA-Skew-t-GARCH(1,1) with Hansen [21] skew-
t density. The parameter estimates for these models are presented in Table 3. Al-
though all of the parameters were not significant, we decided to leave them in the
models as they appeared to improve the stability of the models.

Given the characteristics of the IDC-model and the lack of tests designed to
compare multifractals with the classical models, we decided to take a simulation
approach and produced 1000 series with 2000 observations for each process in order
to compare their empirical scaling properties. Table 2 presents the identified scaling
exponents αq for a range of moments between 0 and 7 including also some of the
fractional moments. The mean scaling exponents are calculated by averaging those
scaling exponents of the simulated series for each model.

Based on these results we make three interesting notions. First of all, we find that
IDC-process appears to outperform the rest in its ability to trace out the empirical
scaling function as it follows the observed parabolic shape most convincingly. This
becomes most visible when considering the range of moments above 4. The second
observation concerns the differences between the GARCH models. On average
GJR-GARCH yields better results than the standard GARCH, although they are
quite close. However, switching the error density from Gaussian to Hansen’s Skew-t
appears to have a considerable effect on scaling properties. The fact that the scaling
exponent estimates for higher moments have surprisingly large deviations from the
empirical exponents is perhaps best explained by having only 4.1 as the optimal
degrees of freedom for the density function. The third observation concerns the
large variation in the simulated scaling exponents as can be observed from the min-
max ranges given in Table 2. The variation was largest for the Skew-t-GARCH and
IDC-process, whereas GARCH and GJR-GARCH appeared to have considerably
smaller bounds. In all of the cases variation increased as we moved toward higher
moments. These are important points to keep in mind when trying to interpret
the results. Although we can discriminate between different models on average
and thereby claim that an IDC-process seems to the most appropriate choice for
capturing the empirical scaling properties, it remains a delicate issue to be able
to make a difference between genuine and apparent multiscaling. This is quite
problematic when trying to find reasonable criteria to separate multifractals from
other processes, but for the moment there are no clear solutions for this issue.

In addition to the comparision of scaling exponents, we have considered the
ability of the different models to replicate the empirical scalogram of detrended
spot prices. The results are presented in Figure 5. This idea is based on the
continuous wavelet multiresolution analysis (MRA), which gives us a graph with
time on the horizontal axis and different scales on the vertical axis. In a scalogram,
the absolute values of the localized wavelet resonance coefficients generated by
the transform at different scales and time are represented by a colour bar ranging
from blue (minimum) to red (maximum). Here the number of scales is 1-64. The
interpretation is that the scalogram traces the second moment, variance, or energy
of the spot price series over the given time period. The connection is easily verified
by considering the variation of price paths in Figures 1 and 2 with 5(a).
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The graphs (b)-(e) in Figure 5 show the scalograms for typical simulated path
computed for each model. The main conclusion is that the IDC-process and
Skew-t-GARCH generated the most compatible scalograms with the original sig-
nal, whereas GARCH and GJR-GARCH fail to generate the green-reddish patterns
observed between scales 40-60. It could be that Skew-t is perhaps too strong when
considering the colour patterns at scales 15-30, where we find more light blue-green
stripes than in the original signal. But in general the results are quite expected,
and it seems that IDC-model makes a reasonable alternative for modelling spot
price variations.

6. Conclusions

Given the stylized facts of electricity price spikes, seasonality, and anti-persistence
combined with empirically observed scaling behaviour, the task of modelling elec-
tricity price dynamics has posed a considerable challenge. In this paper we have
considered a novel approach for capturing these properties using Infinitely Divisible
Cascading (IDC) processes. The origin of these processes resides mostly in nonlinear
physics and hydrodynamics, but they have proven to be useful in various applica-
tions. Recently the multiscaling models have emerged as new risk management
tools in economics and motivation for their usage stems from the ability to capture
clustering effects and long memory in volatility, yet still remain scale-consistent and
compatible with the martingale property of returns.

However, the approach does not come without additional costs. The main dis-
advantage of the IDC-models is the lack statistical methods to test the robustness
of the specification and compare it with classical lines of modelling. Therefore we
considered a set of simulation based tests to compare the IDC-model with differ-
ent GARCH-models in terms of their ability to capture the empirically observed
scaling properties along with their ability to replicate the scalogram of electric-
ity spot prices. The overall impression based on these simple tests was that an
IDC-model appears to be a reasonably consistent alternative for modelling elec-
tricity spot prices as it did rather good job in reproducing the empirical scaling
behaviour and variance patterns. However, we recognize that the IDC-process does
not exhaust the set of possible scaling models and acknowledge the limitations of
simulation analysis when no robust statistical methods are available.

In general, when analysing empirical scaling functions, it is a rather delicate
issue to say anything about the reasons for departure from linearity as it appears
to be notoriously difficult to claim whether it is genuine multifractality or other
nonstationarities which lead to apparent multiscaling. For example Bouchaud et
al. [7] have shown that it is possible to design stochastic volatility models with
slow crossover effects which lead to multiscaling, although the processes themselves
are asymptotically monofractal. Thus although we will leave apparent multiscaling
as an issue for further research, it is good to keep in mind that the multiscaling
analysis is more likely a tool for pointing out behaviour which is important to take
into account without saying much about the applicable models. In our case the
IDC-model was quite successful in producing price paths with close resemblance to
the original signal, yet we feel that there is a considerable need for more accurate
tests and criteria to be able to distinguish between apparent and genuine scaling
behaviour. Another issue, which calls for development is the tools to evaluate and
test the significance of parameter estimates in multifractal models.
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Figure 1. NordPool spot price (1998-2006)
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Table 1. Descriptive statistics

Spot Detrended
Levels Returns Levels Returns

Mean 5.151 0.000 0.000 0.000
Standard deviation 0.467 0.085 0.306 0.085
Skewness -0.238 1.145 0.227 1.141
Excess kurtosis 0.157 29.554 2.284 29.524
Q(4) - 76.949 - 77.685

Q2(4) - 280.566 - 283.209

Q(12) - 97.500 - 99.131

Q2(12) - 280.864 - 283.516

KPSS (with trend) 0.676 0.018 0.792 0.019



18 MULTIFRACTALITY IN NORDIC ELECTRICITY MARKETS

Figure 2. Detrended process and seasonal trend
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Figure 3. Multiscale diagram
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Figure 4. IDC-process sample path
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Table 2. Comparison between scaling exponents of empirical de-
trended process and mean scaling exponents of corresponding sim-
ulated processes. The first left column provides the exponents
for the empirical series. The next columns provide the aver-
age scaling exponents from 1000 simulations for the IDC-model,
GARCH(1,1),GJR-GARCH(1,1,1), and respectively. The mini-
mum and maximum values are reported in parenthesis.

Scaling exponents α̂(q)
Moment (q) Emp. series IDC-model GARCH GJR-GARCH Skew-t-GARCH

0.25 0.2452 0.2314 0.1978 0.1988 0.2169
[0.1660, 0.2855] [0.1461, 0.2363] [0.1482, 0.2558] [0.1601, 0.3021]

0.50 0.4796 0.4450 0.3940 0.3957 0.4287
[0.3289, 0.5425] [0.2932, 0.4684] [0.2979, 0.5035] [0.3240, 0.6221]

1.00 0.9199 0.8497 0.7806 0.7829 0.8298
[0.6248, 1.0349] [0.5910, 0.9225] [0.5836, 0.9811] [0.6179, 1.3090]

1.50 1.3198 1.2290 1.1578 1.1592 1.1858
[0.8794, 1.5279] [0.8740, 1.3908] [0.8528, 1.5144] [0.6946, 1.8664]

2.00 1.6759 1.5832 1.5230 1.5206 1.4882
[1.0625, 2.0258] [1.1288, 1.8667] [1.0845, 2.0712] [0.5981, 2.3321]

3.00 2.2722 2.2166 2.2077 2.1847 1.9699
[1.2064, 2.9352] [1.5336, 2.8283] [1.3939, 3.0893] [0.2985, 3.2413]

4.00 2.7798 2.7713 2.8282 2.7706 2.3679
[1.2861, 3.7509] [1.7756 3.7694] [1.6121, 3.9573] [-0.0247, 4.0708]

4.50 3.0193 3.0300 3.1186 3.0417 2.5533
[1.3187, 4.1405] [1.8604, 4.2255] [1.7113, 4.3633] [-0.1855, 4.4724]

5.00 3.2536 3.2808 3.3992 3.3027 2.7339
[1.3490, 4.5232] [1.9357, 4.6757] [1.8067, 4.3633] [-0.3454, 4.8697]

5.50 3.4844 3.5261 3.6720 3.5565 2.9112
[1.3779, 4.9024] [2.0067, 5.1185] [1.8993, 5.1527] [-0.5043, 5.2643]

6.00 3.7125 3.7674 3.9390 3.8050 3.0865
[1.4060, 5.2898] [2.0756, 5.5544] [1.9897, 5.5415] [-0.6624, 5.6569]

6.50 3.9385 4.0058 4.2016 4.0496 3.2602
[1.4335, 5.6729] [2.1436, 5.4844] [2.0785, 5.9279] [-0.8201, 6.0482]

7.00 4.1628 4.2421 4.4607 4.2914 3.4328
[1.4607, 6.0529] [2.2113, 6.4092] [2.1661, 6.3128] [-0.9773, 6.4384]



22 MULTIFRACTALITY IN NORDIC ELECTRICITY MARKETS

Table 3. Estimates of benchmark model parameters. The signal
was prefiltered using ARMA(1,1) with AR-parameter φ1 = 0.6890
(0.0537), MA-parameter θ1 = −0.8334 (0.0416). L denotes log-
likelihood. The standard errors are reported in parenthesis. All of
GARCH-models were estimated using Quasi-Maximum likelihood.

ω α γ β ν λ L
GARCH 0.0021 0.3448 - 0.3833 - - 2455.9

(0.0015) (0.1018) - (0.2096) - -
GJR-GARCH 0.0028 0.2657 0.3595 0.2140 - - 2462.8

(0.0018) (0.0779) (0.2792) (0.2324) - -
Skew-t-GARCH 0.0003 0.4234 - 0.5766 4.1000 0.0688 3003.9

( 0.0002) (0.1565) - (0.1323) (1.0806) (0.0237)
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(a) Original signal (b) IDC-process

(c) GARCH (d) GJR-GARCH

(e) Skew-t-GARCH

Figure 5. Scalogram analysis


