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Abstract

In this paper, efficient optimization techniques are used to solve multi-objective
optimization problems arising from Simulated Moving Bed (SMB) processes. SMBs
are widely used in many industrial separations of chemical products and they are
very challenging from the optimization point of view. With the help of interactive
multi-objective optimization, several conflicting objectives can be considered simul-
taneously without making unnecessary simplifications as has been done in previous
studies. The optimization techniques used are the interactive NIMBUS R© method
and the IPOPT optimizer. To demonstrate the usefulness of these techniques, the
results of solving an SMB optimization problem with four objectives are reported.
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1 Introduction

Optimization of real-world industrial processes is often computationally demanding. It
may require considerable numbers of evaluations of the process model during the opti-
mization procedure, in order to obtain an optimal solution for a single objective function.
On the other hand, real-world optimization problems typically have several conflicting
objectives that need to be considered simultaneously, and it is important to have opti-
mization tools that require only few process model simulations in order to obtain optimal
or satisfactory solutions quickly.

In real-world problems, the problem is too often simplified by considering only a
single criterion as an objective function, although there usually are several criteria that
should be optimized at the same time. By considering different criteria simultaneously,
one can obtain better understanding of the whole problem and its interdependencies. In
multi-objective optimization (MOO) [11], we do not have a single well-defined optimal
solution but, instead, a set of mathematically equivalent compromise solutions called
Pareto optimal solutions where no objective can get better values without impairment
in at least one of the others. In order to obtain the best solution for the problem in
question, we often need a decision maker (DM), who can express preference information
about different Pareto optimal solutions. Some MOO methods try to approximate the
whole set of Pareto optimal solutions. For many real-world problems these methods can
be too slow because they need to generate a large number of Pareto optimal solutions.
Besides, with more than two objectives, displaying the solutions to the DM is not trivial
and it is not easy for the DM to select one of many alternatives as the final solution.
Instead, interactive MOO methods aim at decreasing the cognitive burden set on the DM
and let the DM to direct the solution process towards the most preferred solution.

In this study, we consider MOO of a challenging periodic adsorption process for the
separation of valuable chemical products. In particular, Simulated Moving Bed (SMB)
processes have been applied to many important separations in sugar, petrochemical, and
pharmaceutical industries. Because they operate dynamically, in periodic cycles, system-
atic optimization of SMBs remains a challenging problem. Prior to the application of
the full discretization approach where both spatial and temporal variables are discretized,
optimization of SMB processes was known to be an expensive and challenging problem.
In a recent paper on SMB (single-objective) optimization [18], required CPU times for
single-objective optimization problems were reported to be 13-26 hours on a Pentium II
machine. Moreover, Submarani, Hidajat and Ray [17] used a genetic algorithm to produce
the whole pareto set. Although they did not report the computational time, we believe
this method is also quite computationally expensive. Both of these papers above used
single-discretization method, where only the spatial domain is discretized. In addition,
there exist a number of conflicting objectives associated with these processes including
productivity, product quality, utilization of desorbent (solvent) and generation of waste
streams.

Several recent papers deal with single objective optimization of SMBs (see, for exam-
ple, [2, 7, 9, 18]). Recently, MOO algorithms have been applied for periodic separation
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processes by Ko and Moon [10], for the case of gas separation, and by Subramani et al.
[17], for SMB processes. Ko and Moon used a modified sum of weighted objective func-
tions to obtain a representation of the Pareto optimal set. Their approach is valid only
for two objective functions. On the other hand, Submarani et al. applied non-dominated
sorting genetic algorithm (NSGA) to a problem where they had two or three objective
functions. NSGA tries to approximate the set of Pareto optimal solutions, but it cannot
guarantee the Pareto optimality of the solutions obtained.

In order to accelerate the process optimization, Kawajiri and Biegler [9] have de-
veloped an efficient full discretization approach combined with a large-scale nonlinear
programming method for the optimization of SMBs. More recently, they extended this
approach to a superstructure SMB formulation and used an ε-constrained method to solve
the bi-objective problem, where throughput and desorbent consumption were considered
as objective functions [8].

To summarize, we can say that so far, SMB processes have been considered with 1, 2
or 3 objectives, only. In addition, all of the MOO approaches used have been based on the
idea of trying to approximate the whole Pareto optimal set and, thus, need to generate
lots of Pareto optimal solutions in order to get a good approximation. Therefore, they are
computationally inefficient in the sense Pareto optimal solutions generated since, usually,
the ultimate aim is to find a single best solution as the final solution to be implemented.

In this paper, we approach SMB problems in a completely new way and apply inter-
active MOO to problems arising from SMB processes. We consider the case with four
conflicting objective functions which brings new insight into the problem and avoids un-
necessary simplifications. Thus, we can obtain a better understanding of the whole process
than in previous studies. We are especially interested in efficient and user-friendly solution
methods for our computationally demanding problems. Therefore, we use an interactive
process design tool IND-NIMBUS, based on the interactive multi-objective optimization
method NIMBUS R© [11, 14], together with an interior point optimizer IPOPT [19] to
solve these problems. The reason for using IPOPT is that the optimizers currently im-
plemented in IND-NIMBUS [5] are not well suited for large-scale optimization problems
like SMBs.

This paper is organized as follows. First, we describe the optimization tools used, that
is, NIMBUS R© with IND-NIMBUS and IPOPT, in Section 2. Then, we give an overview
of SMBs and present the multi-objective SMB problem to be solved in Section 3. In
Section 4, we describe the interactive solution procedure as well as show and discuss the
results obtained. Finally, Section 5 is devoted to concluding remarks and future work.

2 Interactive process design tool

2.1 IND-NIMBUS

IND-NIMBUS is an interactive tool developed for solving MOO problems arising, for
example, in industry. It is based on the interactive MOO method NIMBUS R© [11, 12, 14],
in other words, IND-NIMBUS is an implementation of the NIMBUS R© method. The
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general idea of the NIMBUS R© method is to help the DM in finding the most satisfactory
compromise between conflicting objectives without generating too many Pareto optimal
solutions.

A benefit of interactive MOO methods is that the DM can guide the solution pro-
cedure and is able to learn about the behaviour of the problem. (S)he can study the
interrelationships of the objective functions and obtain a wider understanding of their ef-
fects on the whole problem. Therefore, as the DM gains more and more understanding of
the behaviour of the problem, (s)he can adjust her/his preferences accordingly. Another
benefit is that interactive methods are computationally efficient in the sense of Pareto
optimal solutions generated, because only a small number of Pareto optimal solutions
usually needs to be computed. Furthermore, the DM can concentrate only on those so-
lutions that are of interest to her/him. On the other hand, interactive methods require
the DM to take part in the solution procedure continuously and, thus, the DM has to
be willing to devote time in the solution procedure. One can expect the DM to find the
most preferred solution when (s)he can actively take part in the solution procedure. It is
important that the method is easy to use and that the DM can easily answer the questions
proposed to her/him and, therefore, we use the NIMBUS R© method. Other interactive
methods are described in [11] and references therein.

NIMBUS R© converts the original multiple objectives together with preference infor-
mation coming from the DM into a new problem with a single objective function. This
new problem can then be solved with appropriate solvers developed for scalar-valued
problems. NIMBUS R© is particularly well suited for problems involving more than two
objective functions. IND-NIMBUS has been previously applied to several industrial op-
timization problems, including the design of papermaking processes [4, 5].

We consider the following MOO problem. The vector-valued objective function fff =
(f1, . . . , fk)

T consists of k real-valued objective functions fi : Rn → R that are to be
optimized simultaneously. The decision variables xxx ∈ Rn belong to the feasible region
S. The objective vectors zzz = fff(xxx) are in the objective space Rk. We assume that the
objective functions are conflicting, that is, all of them do not attain their optima at the
same decision vector xxx. Thus, the MOO problem considered is of the form

minimize {f1(xxx), . . . , fk(xxx)}

subject to xxx ∈ S.
(1)

For the simplicity of presentation, we assume that all the objective functions in this section
are to be minimized. If some objective function fi is to be maximized, it is equivalent to
minimize −fi. Minimization of the vector-valued objective function fff is understood in
the sense of Pareto optimality: A feasible decision vector xxx∗ is called a Pareto optimal
solution if there does not exist another feasible decision vector xxx such that fi(xxx) ≤ fi(xxx

∗)
for all i = 1, . . . , k and fj(xxx) < fj(xxx

∗) for at least one j. Provided that the problem is
correctly specified, the final solution of a rational DM is always Pareto optimal and, thus,
we can restrict our consideration to Pareto optimal solutions.

We can summarize the interactive NIMBUS R© algorithm as follows: First, a Pareto
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optimal starting point is generated together with additional information regarding the
ranges of each objective function in the set of Pareto optimal solutions. The ranges are
defined by the ideal and nadir objective vectors. The ideal objective vector zzz∗ consists
of the minima of individual objective functions subject to constraints while the values
for the nadir objective function zzznad can be approximated by using the payoff table [11].
Note, that the payoff table can give a poor approximation for the nadir objective vector
[11]. We show the ideal and nadir objective vectors to the DM in order to inform her/him
what is possible to achieve in the problem in question.

As a starting point, we use the neutral compromise solution [21], which is approx-
imately in the middle of the Pareto optimal set. At every iteration, the DM is shown
the values of the objective functions in the current Pareto optimal solution (fff(xxxc)) and
(s)he is asked to indicate how the current solution should be improved. This is done with
the help of classifying the objective functions into up to five different classes, that is, the
functions fi whose value

- should be improved as much as possible (i ∈ I imp),

- should be improved until some specified aspiration level z̄i (i ∈ Iasp),

- is satisfactory at the moment (i ∈ Isat),

- can impair up to some specified bound εi (i ∈ Ibound) and

- can change freely (i ∈ Ifree).

Note, that I imp ∪ Iasp ∪ Isat ∪ Ibound ∪ Ifree = {1, . . . , k}. The aspiration levels and the
upper bounds are given by the DM. In order to be able to produce a new Pareto optimal
solution, the classification is acceptable if I imp ∪ Iasp 6= ∅ and Ibound ∪ Ifree 6= ∅, because
one must let some objective function to impair in order to improve some other objective
function. Note, that the definition of the classes does not take into account whether
individual objectives are to minimized or maximized.

Then, according to the classification information provided by the DM, several new
solutions are generated that try to follow the preferences of the DM as well as possible.
This is realized by forming several single objective subproblems in the synchronous NIM-
BUS [14]. The number of the new solutions to be generated can be between 1 and 4
as requested by the DM. Different subproblems can produce different solutions with the
same preference information and, therefore, it is better to let the DM select the most
preferred of them [13]. These subproblems are then solved with a suitable single objec-
tive optimizer. In this paper, for the first time we use the IPOPT optimizer [19]. Note,
that the solutions of the subproblems are always Pareto optimal (see [14] and references
therein). The solutions obtained and the current Pareto optimal solution are then shown
to the DM, who selects the most preferred one. In IND-NIMBUS, different types of vi-
sualizations of the Pareto optimal solutions are provided to the DM in order to aid the
comparison and selection. There is also a possibility to generate intermediate Pareto op-
timal solutions between any two Pareto optimal solutions obtained. Then, if the DM is
satisfied with the solution obtained, we terminate the solution procedure, otherwise we
ask the DM to make another classification in the solution (s)he selected.
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There are four different subproblems used in the NIMBUS R© method, the standard
subproblem formulated by the developers of NIMBUS R© and three subproblems based on
reference points. In all the subproblems, the latter part of the objective function is called
an augmentation term and it guarantees that the solution obtained is Pareto optimal (for
further details see [11] and [14]). The augmentation parameter ρ > 0 is a small coefficient.
The standard subproblem is of the form

minimize max
i∈Iimp, j∈Iasp

[
fi(xxx)−z∗i
znad
i −z∗∗i

,
fj(xxx)−z̄j

znad
j −z∗∗j

]
+ ρ

k∑
i=1

fi(xxx)

znad
i −z∗∗i

subject to fi(xxx) ≤ fi(xxx
c) for all i ∈ I imp ∪ Iasp ∪ Isat,

fi(xxx) ≤ εi, for all i ∈ Ibound,
xxx ∈ S,

(2)

where z∗∗i = z∗i − σ and σ > 0 is a small positive constant.
The additional subproblems are based on reference points. From the classification

information provided by the user, we can form a reference point ẑzz, where ẑi = z∗i for
i ∈ I imp, ẑi = z̄i for i ∈ Iasp, ẑi = fi(xxx

c) for i ∈ Isat, ẑi = εi for i ∈ Ibound and
ẑi = znad

i for i ∈ Ifree. These additional subproblems are very similar in structure but
in comparisons [13] they have proven to generate different enough solutions. Here, we
present only one of them. The mathematical formulation of the subproblem based on
achievement (scalarizing) functions [20] is

minimize max
i=1,...,k

[
fi(xxx)−ẑi

znad
i −z∗∗i

]
+ ρ

k∑
i=1

fi(xxx)

znad
i −z∗∗i

subject to xxx ∈ S.

(3)

Other subproblems are based on the satisficing trade-off method [15] and the GUESS
method [1].

All of the above-mentioned subproblems are nonsmooth regardless of the properties of
the original objective and constraint functions. Because all the functions in our application
are differentiable and in order to use the IPOPT optimizer to solve the subproblems above,
we reformulate them. Note, that we use IPOPT because it is well suited for large-scale
optimization problems like SMBs. Because our subproblems are all min-max type, we can
in a standard way introduce a new variable δ ∈ R and get corresponding smooth variants
of problems (2) and (3):

minimize
xxx,δ

δ + ρ
k∑

i=1

fi(xxx)

znad
i −z∗∗i

subject to
fi(xxx)−z∗i
znad
i −z∗∗i

≤ δ, i ∈ I imp,
fj(xxx)−z̄j

znad
j −z∗∗j

≤ δ, j ∈ Iasp,

fi(xxx) ≤ fi(xxx
c) for all i ∈ I imp ∪ Iasp ∪ Isat,

fi(xxx) ≤ εi, for all i ∈ Ibound,
xxx ∈ S, δ ∈ R

(4)
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and

minimize
xxx,δ

δ + ρ
k∑

i=1

fi(xxx)

znad
i −z∗∗i

subject to fi(xxx)−ẑi

znad
i −z∗∗i

≤ δ, i = 1, . . . , k

xxx ∈ S, δ ∈ R,

(5)

respectively.
The method for generating intermediate solutions is the following. If the DM wants

to generate P intermediate solutions between fff(xxx1) and fff(xxx2), we first set ddd = xxx2 − xxx1.
Then, we calculate P different vectors fff(xxx1 + tjddd), where tj = j/(P +1) and j = 1, . . . , P .
The vectors obtained are projected onto the Pareto optimal set by applying subproblem
(3) or (5) with fff(xxx1 + tjddd) as the reference point for j = 1, . . . , P .

There is also an implementation of the NIMBUS R© method operating on the In-
ternet since 1995 called WWW-NIMBUS. WWW-NIMBUS is freely available in http:

//nimbus.it.jyu.fi/ for academic purposes.

2.2 Interior point optimization

IPOPT is a large-scale nonlinear optimization package [19] based on a Newton-based in-
terior point (barrier) algorithm with filter line-search method. For a general optimization
problem

minimize
xxx

f(xxx)

subject to ccc(xxx) = 0,
xxxl ≤ xxx ≤ xxxu,

(6)

where xxx ∈ Rn, f : Rn → R, and ccc : Rn → Rm, IPOPT applies an interior penalty
formulation to convert and solve problem (6) as a sequence of barrier problems

minimize
xxx

ϕµ(xxx) := f(xxx)− µ
n∑

i=1

ln(xi − xl
i)− µ

n∑
i=1

ln(xu
i − xi)

subject to ccc(xxx) = 0,
(7)

for a decreasing sequence of barrier parameters µ > 0 converging to zero. We assume, that
the functions in problem (6) are twice continuously differentiable. It can be shown, that
under mild regularity assumptions the solutions of the barrier problems (7) will converge
to the solution of the original problem (6) as µ → 0. Note, that in IPOPT, all inequality
constraints are converted internally into equality constraints by using slack variables [3].

To solve the barrier problem (7) for a fixed parameter µ, a damped Newton’s method
is applied to primal-dual equations of problem (6) [19], that is,

∇f(xxx) +∇ccc(xxx)λT −W l + W u = 0
ccc(xxx) = 0

(X −X l)W leee− µeee = 0
(Xu −X)W ueee− µeee = 0,

(8)

7



where X = diag(xxx), W l = diag(wwwl), W u = diag(wwwu) and eee = (1, ..., 1)T . The vectors λ ∈
Rm, wwwl ∈ Rn and wwwu ∈ Rn are the Lagrange multipliers of the equality constraints, lower
bounds and upper bounds, respectively. After applying Newton’s method to equations
(8), the new search direction for variables and the Lagrange multipliers can be solved
from equations that result from linearizations of equations (8) at the current iterate.

Next, a suitable step size is determined along the new search direction using a filter line
search [19]. The filter line search uses a bi-criteria reduction, where either the objective
function value or constraint violation is reduced. Essentially, the step size is acceptable
if it leads to a sufficient reduction in either of these two criteria. In addition, the method
maintains a “filter” that defines a prohibited region for the line search and prevents the
algorithm from cycling. Further details of this method can be found in [19].

The IPOPT algorithm has been shown to be globally and superlinearly convergent
under weaker assumptions than other barrier methods. IPOPT has been applied to thou-
sands of test problems and applications and has been adopted by a widespread user
community. A key advantage is the ability to use second derivative information effi-
ciently. More information and background on IPOPT can be found on http://projects.

coin-or.org/Ipopt.

3 Simulated moving bed processes

3.1 Chromatographic separation and simulated moving beds

Efficient purification techniques are crucial in chemical process industries. In production
of pharmaceuticals, it is often necessary to purify a product to nearly 100% for regulatory
reasons. In food and sugar industries, removal of undesired components that degrade
product quality is essential. One of the most common separation techniques is distillation,
where the feed mixture is vaporized. However, this is not applicable to substances with
an extremely high boiling point, or thermally unstable products such as proteins. For
such products, liquid chromatographic separation has been widely used, where the feed
mixture is separated making use of the difference in the migration speed of components in
liquid. In liquid chromatographic processes, a small amount of feed mixture is supplied to
an end of a column which is packed with adsorbent particles, and then pushed toward the
other end with desorbent (water, organic solvent, or mixture of these). Unlike distillation,
this technique does not require heat. Instead, a slight difference in the affinity for the
adsorbent is necessary, which makes it a powerful method for separations of mixtures with
similar chemical structures.

Simulated Moving Bed (SMB) chromatography emerged from industry in the 1960s as
a realization of continuous and counter-current operation of chromatographic separation
[16]. An SMB unit consists of multiple columns which are packed with adsorbent particles.
The columns are connected to each other making a circulation loop, as shown in Figure
1. In the SMB process of Figure 1, there are altogether eight columns. The feed mixture
is inserted into the process in the upper left corner, while desorbent input is in the
lower right corner. The two products raffinate and extract are collected in the upper
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right corner and lower left corner, respectively. Feed mixture and desorbent are supplied
between columns continuously. At the same time, two products, raffinate and extract,
are withdrawn from the loop also continuously. The two inlet and two outlet streams are
switched in the direction of the liquid flow at a regular interval, or Steptime. Because
of the four inlet/outlet streams, there are four liquid velocity zones in the SMB loop as
shown in Figure 1. The operation of SMB is uniquely determined by the five parameters:
four zone velocities, uI , . . . , uIV , and Steptime tstep.

Figure 1: A Schematic diagram of a SMB process.

Due to such a sequence of switching, numerical methods based on steady-state as-
sumptions cannot be directly applied to SMB. Instead, from start-up to shut-down, the
four streams proceed around the SMB loop, repeating the same operation cycle. After
the start-up period, which typically takes 50 to 100 cycles, the chemical components in
the columns to be separated have profiles that repeat in every cycle, thus leading to a
Cyclic Steady State (CSS). Even at CSS, the concentration profiles of chemical compo-
nents still propagate through the columns. Therefore, treatment of CSS requires dynamic
simulation and optimization techniques.

3.2 Modeling of SMB

To model each chromatographic column, mass transfer and equilibrium of chemical com-
ponents are taken into an account. In this study, we assume that the equilibrium between
the components and adsorbent is described by a linear isotherm. For the mass transfer,
we employ the Linear Driving Force (LDF) model, where the mass transfer of components
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from liquid phase to adsorbent phase is described by a linear equation [9]:

εb
∂Cj

i (x, t)

∂t
+ (1− εb)

∂qj
i (x, t)

∂t
+ up ∂Cj

i (x, t)

∂x
= 0,

(1− εb)
∂qj

i (x, t)

∂t
= Kappl i(C

j
i (x, t)− Cj,eq

i (x, t)), (9)

qj
i (x, t) = KiC

j,eq
i (x, t),

Cj
i (0, t) = Cj,in

i (t),

i = 1, ..., Nc, j = 1, ..., NCol, p = I, II, III, IV,

where 0 ≤ x ≤ L, L is the length of each column, t > 0, εb is the void fraction, Cj
i (x, t) is

the concentration in the liquid phase of component i in column j, qj
i (x, t) is the concen-

tration in the solid phase, up is the superficial liquid velocity in zone p, Cj,in
i (t) is the inlet

concentration, Cj,eq
i (x, t) is the equilibrium concentration in the liquid phase, Kappl i is the

mass transfer coefficient, and Ki is the equilibrium constant . The subscripts i correspond
to chemical components, superscript j is the column index, and p the zone number, I,
II, III, and IV , as shown in Figure 1. Furthermore, Nc is the total number of chemical
components, NColumn is the number of columns, and Np is the number of columns in zone
p, with NI + NII + NIII + NIV = NColumn.

The connections between chromatographic columns are described by the following
equations:

Desorbent inlet port:

uIV + uD = uI , (10)

C1,in
i uI = CNColumn

i (L, t)uIV , (11)

Extract outlet port:

uI − uE = uII , (12)

CNI
i (L, t) = C

NI+1,in
i (t), (13)

Feed inlet port:

uII + uF = uIII , (14)

CNI+NII
i (L, t)uII + CF,iuF = uIIICNI+NII+1,in

i (t), (15)

Raffinate outlet port:

uIII − uR = uIV , (16)

CNI+NII+NIII
i (L, t) = CNI+NII+NIII+1,in

i (t), (17)

where CF,i is the feed concentration and uD, uE, uF and uR are the superficial velocities
(flow rates divided by cross sectional area of column) of the desorbent, extract, feed, and
raffinate, respectively.
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At the CSS, the concentration profiles of chemical components are identical at the
beginning and at the end of a cycle. Since SMB repeats the same operation for all of the
columns, the profiles at the beginning of a step are identical to those shifted by the length
of a column at the end of the step:

Cj
i (x, 0) = Cj+1

i (x, tstep), j = 1, ..., NColumn − 1,

qj
i (x, 0) = qj+1

i (x, tstep), j = 1, ..., NColumn − 1,

CNColumn
i (x, 0) = C1

i (x, tstep),

qNColumn
i (x, 0) = q1

i (x, tstep),

(18)

where tstep is the Steptime. The quality of the products can be measured by purities
PurEi of chemical component i for the extract product:

PurEi =

tstep∫
0

CNI
i (L, t)dt

Nc∑
k=1

tstep∫
0

CNI
k (L, t)dt

. (19)

Recoveries RecEi measure how much of component i goes from the feed stream to the
extract stream:

RecEi =

uE

tstep∫
0

CNI
i (L, t)dt

uF

tstep∫
0

CF,idt

=

uE

tstep∫
0

CNI
i (L, t)dt

tstepuF CF,i

. (20)

Finally, the zone velocities must be between upper and lower bounds, uu and ul,
respectively:

ul ≤ up ≤ uu, p = I, II, III, IV. (21)

The SMB model above is fully discretized both in spatial and temporal domains, that
is, the state variables (Cj

i (x, t), qj
i (x, t), etc) are fully-discretized in space and time and,

therefore, are converted into algebraic variables. The spatial domain is discretized via
a central difference method, thus converting the PDEs to ODEs. The resulting ODEs
are then discretized in the temporal domain using a Runge-Kutta discretization, Radau
collocation on finite elements. More information on this discretization can be found in
[9]. The multi-objective SMB problem considered in this paper is based on this model
and it is presented next.
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3.3 Multi-objective SMB problem

The SMB problem to be considered is for the separation of fructose and glucose. The
values for the parameters in the SMB model are from [6, 9] and they are shown in Table
1. The SMB optimization problem is large having 33 997 decision variables and 33 992
equality constraints. Thus, the degrees of freedom of the SMB problem is 5.

parameter value parameter value
εb 0.389
K1 0.518 Kapps 1 [1/s] 6.84× 10−3

K2 0.743 Kapps 2 [1/s] 6.84× 10−3

CF,1 [%] 50.0 CF,2 [%] 50.0
ul [m/h] 0.1 uu [m/h] 8.00
L [m] 2.0 NColumn 4
Nc 2

Table 1: Parameters of fructose/glucose separation

For the MOO of SMB, we use four different objective functions for this problem: max-
imize throughput, T, (uF in eq. (14)), minimize consumption of solvent in the desorbent
stream, D, (uD in eq. (10)), maximize product purity, P, (eq. (19) for the component
i = 2), and maximize recovery of the valuable component in the product, R, (eq. (20) for
the component i = 2). Thus, our vector-valued objective function is fff = (T,D, P, R)T

and the multi-objective SMB problem is of the form

maximize uF

minimize uD

maximize PurE2

maximize RecR2

subject to (9)− (21).

(22)

These objectives have a number of clear conflicts. For example, if throughput is increased,
the feed mixture is more likely to contaminate the products, that is, the purity decreases.
Moreover, with uncertain prices and raw material costs, a multi-objective approach can
be an extremely useful tool for SMB design.

By imposing upper bounds on objective functions, we eliminate part of feasible region
that gives impractical objective values; it is unlikely that the DM is satisfied with solutions
of extremely low throughput, high desorbent consumption, low purity, or low recovery.
Restricting the feasible region is also important for numerical stability. For example,
if throughput approaches zero, then concentrations of the chemical components in the
columns become zero, making the denominators of equations (19) and (20) very small
numbers. For the reasons above, we set the following bounds for the objective functions:
T ≥ 0.4, D ≤ 10.0, P ≥ 90.0 and R ≥ 70.0.
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The discretized multiobjective optimization problem (22) is constrained by bilinear
equality and bilinear inequality constraints. The different objective functions are either
linear (Throughput and Desorbent) or bilinear (Purity and Recovery). As a result, the
optimization problem is non-convex.

We use IND-NIMBUS coupled with IPOPT to solve this four objective SMB problem.
When we use the reformulated scalarizing functions for this SMB problem, the regularity
assumptions for IPOPT are fulfilled. The SMB model has been implemented in AMPL
modelling language. The multiple objectives are handled by the computationally efficient
NIMBUS R© method while the single objective subproblems are solved with the efficient
IPOPT optimizer. With this approach, we minimize the time used in generating new
solution candidates for the DM and maintain the interactive nature of the solution pro-
cedure. During the iterative solution procedure, the DM gets valuable information about
the interrelationships between the conflicting objectives.

4 Multi-objective optimization of SMBs

4.1 Solution procedure

Next, we describe the solution procedure. The interactive solution procedure described in
text does not fully correspond to the actual situation because the DM can continuously
utilize the visualizations provided by IND-NIMBUS. To illustrate this, a screenshot of the
classification window of IND-NIMBUS is shown in Figure 2. In IND-NIMBUS, the classi-
fication is made by clicking different parts of the bars representing the objective functions
in the current Pareto optimal solution (single solution in the left in Figure 2). The value
of each objective function is represented with a colored bar that originates from left and
right for the objectives to be minimized and maximized, respectively. In both cases, the
interpretation is the same: the less color, the better is the corresponding objective func-
tion value. All the solutions generated can be seen on the right and interesting solutions
can be taken in the set Best candidates at any time.

The decision maker involved in this solution procedure was an expert in the field of
SMBs. The ideal and nadir objective vectors were zzz∗ = (0.891, 0.369, 97.2, 90.0)T and
zzznad = (0.400, 2.21, 90.0, 70.0)T , respectively. In other words, those are the approximated
ranges for the Pareto optimal set. Note, that we are minimizing desorbent consumption
(the second objective function) and maximizing all the others, as mentioned previously.

As a starting point for MOO, we obtained a neutral compromise solution fff(xxx1) =
(0.569, 1.58, 92.5, 76.9)T . First, the DM wanted to improve purity and throughput and he
was willing to compromise desorbent consumption and recovery. Thus, he made the first
classification (I imp={P}, Iasp={T}, z̄T = 0.715, Ibound={D,R} with εD = 1.78 and εR =
74.5). The number of new solutions to be generated was set to four and we obtained four
different solutions (fff(xxx2) = (0.569, 1.56, 93.3, 74.5)T , fff(xxx3) = (0.553, 1.43, 94.8, 70.0)T ,
fff(xxx4) = (0.412, 1.07, 97.0, 70.0)T and fff(xxx5) = (0.570, 1.52, 93.9, 72.4)T ).

From the solutions obtained, the DM preferred fff(xxx3) because it had good values for
purity and throughput. Next, he wanted the values of purity and throughput to remain un-
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Figure 2: A screenshot of IND-NIMBUS.

changed and study whether recovery could be improved by compromising desorbent con-
sumption (Iasp={R}, z̄R = 0.796, Isat={P,T}, Ibound={D} with εD = 1.78). The number
of new solutions to be generated was again set to four and three different solutions were
obtained this time (fff(xxx7) = (0.497, 1.41, 93.9, 77.2)T , fff(xxx8) = (0.481, 1.36, 94.2, 77.3)T

and fff(xxx9) = (0.515, 1.46, 93.5, 77.1)T ).
In all of the three new solutions, recovery improved but the values for purity and

throughput impaired. This means, that recovery could not be improved while keeping the
values of purity and throughput in the levels they had in solution fff(xxx3). At this point, the
DM preferred the solution fff(xxx8) because it had better values for recovery and desorbent
consumption than fff(xxx3).

Next, he wanted to generate intermediate solutions between fff(xxx4) and fff(xxx8) in order
to study the effect of improving purity. The number of intermediate solutions was set to
3. The following intermediate solutions were obtained: fff(xxx10) = (0.426, 1.14, 96.3, 72.8)T ,
fff(xxx11) = (0.443, 1.21, 95.6, 74.8)T and fff(xxx12) = (0.461, 1.29, 95.0, 76.2)T . Within these
new solutions, the DM preferred fff(xxx12) over fff(xxx8) because it had better value for purity.

Finally, he wanted to study whether it would be possible to improve throughput
by compromising desorbent consumption. However, the classification could not produce
different solutions while keeping the values for purity and recovery which means that it is
a limitation of the process itself. Therefore, as the final solution the DM selected fff(xxx12)
which had throughput 0.461 m/h, desorbent consumption 1.29 m/h, purity 95.0% and
recovery 76.2%.
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4.2 Results and discussion

The solutions obtained during the solution process are shown in Table 2. The solutions
selected at each step of the solution procedure are shown in bold face, while the final
solution is shown in both bold face and italics. In addition, the action of the DM (clas-
sification or generating intermediate solutions) in each step of the solution procedure is
shown in the table.

Figure 3 shows examples of different visualizations provided by IND-NIMBUS. The
visualizations help the DM in the decision making procedure. The solutions visualized
in Figure 3 are the neutral compromise solution (1) and the solutions preferred at each
step of the solution procedure (3, 8 and 12). (In IND-NIMBUS, the DM can choose those
visualizations that seem most informative among 7 different types.)

The interactive solution procedure gave the DM wider understanding of the relation-
ships in the problem when he was able to consider all the four objective functions simul-
taneously. This problem could have been solved also by maximizing total profit which
is a scalar-valued function depending on all four objectives used here. However, defining
the total profit function is difficult and, therefore, our approach gives us a flexible way
to consider this problem without making any unnnecessary simplifications. In addition,
the DM found IND-NIMBUS easy to use and he considered the visualizations of IND-
NIMBUS to be very helpful in comparing different Pareto optimal solutions obtained.
The final solution obtained had good values for purity and recovery. On the other hand,
the value for throughput could have been better, but it was impossible to improve without
compromising purity and recovery.

The combination of IND-NIMBUS and IPOPT turned out to be robust when solving
the SMB problem. The SMB optimization problem is challenging with a large number of
variables and constraints and it could be difficult to solve. However, during the solution
procedure, IPOPT was able to solve all the subproblems produced by IND-NIMBUS. On
the other hand, we needed to compute only 13 Pareto optimal solutions which is a very
small number when compared to the methods that try to approximate the whole Pareto
optimal set. Producing a single Pareto optimal solution took 16.4 IPOPT iterations (27.6
objective function evaluations) and 65.8 CPU seconds on average.

5 Conclusions

For the first time, we have applied an interactive approach together with efficient optimiza-
tion techniques in solving multi-objective optimization problems arising from Simulated
Moving Bed processes. We used interactive NIMBUS R© method in multi-objective opti-
mization while single objective subproblems generated by the NIMBUS R© method were
solved with the interior point optimizer IPOPT. As an example of the efficiency of our
approach, we solved an SMB optimization problem having four conflicting objective func-
tions. Considering four conflicting objective functions in the SMB problem simultaneously
was a novel approach and we were able to get a better understanding of the SMB problem
when compared to previous studies where usually one or two objectives were considered.
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Solution T [m/h], max D [m/h], min P [%], max R [%], max

Ideal 0.891 0.369 97.2 90.0
Nadir 0.400 2.21 90.0 70.0

fff(xxx1) 0.569 1.58 92.5 76.9
Iasp, z̄T = 0.715 Ibound, εD = 1.78 I imp Ibound, εR = 74.5

fff(xxx2) 0.569 1.56 93.3 74.5
fff(xxx3) 0.5530.5530.553 1.431.431.43 94.894.894.8 70.070.070.0
fff(xxx4) 0.412 1.07 97.0 70.0
fff(xxx5) 0.570 1.52 93.9 72.4

Isat Ibound, εD = 1.78 Isat Iasp, z̄R = 0.796
fff(xxx7) 0.497 1.41 93.9 77.2
fff(xxx8) 0.4810.4810.481 1.361.361.36 94.294.294.2 77.377.377.3
fff(xxx9) 0.515 1.46 93.5 77.1

3 interm. solutions between fff(xxx4) fff(xxx8)
fff(xxx10) 0.426 1.14 96.3 72.8
fff(xxx11) 0.443 1.21 95.6 74.8
fff(xxx12) 0.4610.4610.461 1.291.291.29 95.095.095.0 76.276.276.2

Table 2: Pareto optimal objective function values for the SMB problem.

Figure 3: Different visualizations of solutions obtained by IND-NIMBUS.
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The results show that a number of interesting SMB designs can be obtained through
this approach. With our tools, this computationally very demanding SMB problem could
be succesfully handled and new insight obtained. We were able to combine independently
developed efficient optimizers (IND-NIMBUS and IPOPT) and obtain novel results for
SMB problems without unnecessary simplifications by restricting the number of objec-
tives. Therefore, this can be seen as a significant first step and a good starting point for
following studies.

For future work, we intend to apply IND-NIMBUS to the superstructure formulation
of SMB instead of the standard formulation studied in this paper. Kawajiri and Biegler
reported a better trade-off in the bi-objective optimization study (throughput and desor-
bent consumption as objectives) with the superstructure formulation than other formu-
lations [8]. In addition, a superstructure SMB formulation of this problem can generate
novel designs [8]. In particular, depending on the emphasis of different objectives (e.g.,
productivity vs. solvent consumption) the superstructure approach evolves from conven-
tional designs to complex designs with multiple feeds and operating profiles. Moreover,
the combination of IPOPT with IND-NIMBUS, allows these designs to be generated and
analyzed quickly by the DM. For these reasons, applying IND-NIMBUS to the superstruc-
ture SMB would be interesting idea. Using superstructure formulation, the total number
of variables is about the same in the standard formulation, but the degrees of freedom
will increase by one order of magnitude. In addition, the solution times for the single
objective optimization problems with the superstructure formulation increase [8].

Acknowledgements
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