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Abstract

In this paper, some ideas for utilizing trade-off information in supporting the
decision maker during the interactive solution procedure of reference point based
multiobjective optimization are proposed. The aim is to help the decision maker
in finding the most preferred solution by reducing the number of iterations of the
interactive solution procedure required. Two different visualizations of trade-off
information are presented being easy to understand for the decision maker. In
our examples we are considering partial trade-off rates obtained with the method
of Sakawa and Yano utilizing the KKT multipliers. In order to demonstrate the
ideas presented we solve a simple test problem in an automated test framework to
simulate the behavior of the decision maker. Promising results were obtained and
they show that this kind of approach can be useful in supporting the decision maker.

Keywords: Multiobjective optimization, interactive methods, trade-off rates, de-
cision maker, reference point, classification
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1 Introduction

Interactive multiobjective optimization methods aim at finding the most preferred solu-
tion for the multiobjective optimization problem in question with the help of iterative
interaction between the method and the decision maker (in abbreviation, DM), the user
of the method [3, 10, 20, 33, 34]. In multiobjective optimization, there is not necessar-
ily a unique optimal solution in the sense of single objective optimization, but a set of
mathematically equivalent compromise solutions called Pareto optimal solutions. To se-
lect the best compromise solution within all the Pareto optimal solutions, we need some
additional information. The DM is supposed to have some knowledge about the problem
in question and to be able to express preference information about the different Pareto
optimal solutions.

In this paper, the idea is to support the DM in finding the most preferred solution. In
practice, it has been found that DMs are not willing to use too much time (iterations) in
the interactive solution procedure although they prefer interactive methods [16]. There-
fore, we want to help the DM in the way that finding the most preferred solution will
not require too many iterations of an interactive solution procedure. In other words, we
do not want to take too much of DM’s time. By generating new solution(s) quickly and
reducing the number of iterations required, we can further improve the good properties
of interactive solution procedures.

There exist already some ways to support the DM during the solution procedure. For
example, the bounds for the Pareto optimal set in the objective space, namely the ideal
and the nadir objective vectors, can be shown to the DM so that (s)he gets some idea
what kind of solutions can be achieved. In addition, different kind of visualizations of the
Pareto optimal solutions already obtained can be shown to the DM in order to help in
comparing different solutions and in selecting the preferred ones. This kind of support
is available, for example, in WWW-NIMBUS [25, 27], that is an implementation of the
interactive NIMBUS R© method [20, 23, 24, 27], where the DM is able to choose from
several different type of visualizations when comparing Pareto optimal solutions obtained
[21, 22].

Another kind of approach to support the DM is to use trade-off information (see,
for example, [3, 33]). The concept of trade-off is used in the context of multiobjective
optimization because Pareto optimal solutions are mathematically incomparable and one
has to sacrifice in some objective in order to gain in some other objective, and this is called
trading-off. In this paper, we consider trade-off information related to the problem itself,
and it can be computed without using any preference information from the DM. In other
words, this kind of trade-off information describes interdependencies between objective
functions and how their values change locally with respect to others. Note that we do not
consider trade-off information coming from the DM that is usually called marginal rate
of substitution or subjective trade-off [3].

Previously, trade-offs have been mainly used as a part of some multiobjective op-
timization method (see, for example, [3, 7, 28, 31, 37, 41]). Our aim in this paper is
to consider trade-off information only as a supporting tool for the DM and not to use
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it in the solution method itself. Especially, our purpose is not to develop a new inter-
active method but to offer supporting tools for the DM who is using already available
interactive methods. Our aim is to present an approach which can be utilized with dif-
ferent kind of classification and reference point based interactive methods. In addition,
although the theoretical background of trade-off information has been widely studied
[1, 3, 6, 7, 9, 12, 13, 18, 19, 26, 30, 31, 32, 33, 38, 39], there have been only few numerical
examples how to utilize this kind of information in practice. Therefore, there is not much
evidence of practical usefulness of trade-off information as a decision support tool.

Another important issue is how to present trade-off information to the DM. It is not
desirable to increase the cognitive burden set on to the DM by showing him/her too
much, too detailed, too complicated or too unreliable information. Therefore, we do not
show any numerical trade-off information to the DM but, instead, only some directions
about how the values of different objective functions could change when moving away
from the current Pareto optimal solution. We realize this by describing two different ways
of presenting the trade-off information to the DM. These visualizations aim to present
trade-off information in a simple way that is easy to interpret and utilize during the
interactive soltion procedure.

In this paper, we have a few goals. First of all, we want to obtain supporting trade-off
information with as small additional computation as possible. In addition, we want to
help the DM getting convinced that at the end of the interactive solution procedure, (s)he
has obtained the best possible compromise solution. Furthermore, we want to present the
trade-off information to the DM as clearly as possible so that interpreting and utilizing it
becomes easier for the DM.

As trade-off information in this paper, we use partial trade-off rates where trade-off
between two objective functions is considered at a time. Here, partial trade-of rates
are obtained with the method of Sakawa and Yano [32] where they can be computed
with the help of the Karush–Kuhn–Tucker multipliers. Several gradient based single
objective optimizers produce these multipliers as a byproduct and, therefore, no additional
computation is required. To illustrate our ideas we use a reference point method based
on achievement scalarizing functions [36]. The reference point method used is a special
case of the hyperplane scalarization by Sakawa and Yano [32, 40].

For simplicity, we consider only unconstrained multiobjective optimization problems.
However, our approach can also be utilized with constrained problems and in this sense
it is possible to extend this study in the future.

This paper is organized as follows. First, in Section 2 some definitions and theory
related to trade-offs is presented, and we also describe how trade-off information can be
obtained without adding computational cost significantly. In Section 3 we describe the
usage of trade-off information in supporting the DM. Section 4 is devoted to numerical
examples. Finally, we give some concluding remarks and future research ideas in Section
5.
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2 Trade-offs in multiobjective optimization

2.1 Multiobjective optimization problem

In this paper, we consider nonlinear multiobjective optimization problems of the form

minimize {f1(xxx), . . . , fk(xxx)}

subject to xxx ∈ S.
(1)

Problem (1) contains k real-valued continuous objective functions fi : S → R to be
minimized with respect to the decision variables xxx belonging to the feasible set S ⊂
Rn. We assume, that the objective functions fi, i = 1, . . . , k are nonlinear and twice
continuously differentiable, that is, their derivatives and second derivatives with respect
to xxx are continuous functions. We denote objective function values at xxx by an objective
vector zzz = fff(xxx) = (f1(xxx), . . . , fk(xxx))T belonging to the objective space Rk. Note that if
the objective function fi is to be maximized then it is equivalent to minimize the function
−fi.

In multiobjective optimization there does not necessarily exist such a unique xxx ∈ S
that minimizes all the objective functions at the same time but, instead, we must consider
a set of optimal solutions. An optimal solution of problem (1) is called a Pareto optimal
(efficient, non-dominated) solution:

Definition 2.1
A solution x̂xx ∈ S is Pareto optimal if there exists no other solution xxx ∈ S such that
fi(xxx) ≤ fi(x̂xx) for all i = 1, . . . , k and at least one of the inequalities is strict. The
objective vector ẑzz is Pareto optimal if the corresponding solution x̂xx is Pareto optimal.

Definition 2.1 is for global Pareto optimality. The definition for local Pareto optimality
is the following:

Definition 2.2
A solution x̂xx ∈ S is locally Pareto optimal if there exists a neighborhood N(x̂xx) of x̂xx such
that x̂xx is Pareto optimal in N(x̂xx)∩S. The objective vector fff(x̂xx) is locally Pareto optimal
if the corresponding solution x̂xx is locally Pareto optimal.

In what follows we also use the concept of weak Pareto optimality:

Definition 2.3
A solution x̂xx ∈ S is weakly Pareto optimal if there exists no other solution xxx ∈ S such
that fi(xxx) < fi(x̂xx) for all i = 1, . . . , k. The objective vector ẑzz is weakly Pareto optimal if
the corresponding solution x̂xx is weakly Pareto optimal.

The set containing all the Pareto optimal solutions related to the problem (1) is
called the Pareto optimal set and it is denoted by E ⊂ S. If xxx∗,i is a solution of
problem minxxx∈Sfi(xxx) and xxxnad,i is a solution of problem maxxxx∈E fi(xxx) then vectors zzz∗ =
(f1(xxx

∗,1), . . . , fk(xxx
∗,k))T and zzznad = (f1(xxx

nad,1), . . . , fk(xxx
nad,k))T are called the ideal and
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nadir objective vectors, respectively. In other words, the ideal and the nadir objective
vectors are the lower and the upper bounds for objective function values in the Pareto op-
timal set E, respectively. The nadir objective vector can not usually be computed exactly
and, therefore, it needs to be approximated. A widely used though unreliable approxi-
mation can be obtained by using the payoff table [20]. In order to avoid computational
difficulties, a utopian objective vector zzz∗∗ is usually used instead of the ideal objective
vector. The utopian objective vector can be defined, for example, by z∗∗i = z∗i − ε for each
i = 1, . . . , k, where ε is a small strictly positive real number.

2.2 Simplified reference point method

There exist various interactive methods that can be used to solve the multiobjective op-
timization problem (1). In this paper, we concentrate on reference point based methods
and we use a simple variation of the achievement scalarizing function based on the refer-
ence point method proposed by Wierzbicki [36] for demonstration purposes. We use the
simplified reference point method as an interactive method and it proceeds as follows.

At each new iteration the DM defines desirable aspiration levels z̄i ∈ [z∗i , z
nad
i ] for

each objective function fi, i = 1, . . . , k. The aspiration levels constitute a reference point
z̄zz = (z̄1, . . . , z̄k)

T ∈ Rk and they represent the desirable values of the objective functions
for the DM. The given reference point z̄zz is then projected to the Pareto optimal set by
solving the following problem

minimize
xxx

max
i=1,...,k

[wi(fi(xxx)− z̄i)]

subject to xxx ∈ S,

(2)

where wi > 0, i = 1, . . . , k are the fixed weighting coefficients used for scaling. It can be
shown, that a solution of problem (2) is at least weakly Pareto optimal [20].

Note that problem (2) is in the general case nonsmooth independent of the properties
of the functions in the problem. However, if the functions in the problem are differentiable,
we can formulate a smooth variant of problem (2) which enables the usage of gradient
based optimizers:

minimize
xxx,δ

δ

subject to wi(fi(xxx)− z̄i) ≤ δ, i = 1, . . . , k,
xxx ∈ S, δ ∈ R.

(P (z̄zz))

In problem (P (z̄zz)), we have introduced an additional variable δ ∈ R as a new objective
function and converted the objective function of problem (2) into k inequality constraints.
Note that a solution of problem (P (z̄zz)) is also a solution of problem (2).

In our simplified method a new Pareto optimal solution is produced at every iteration
using the reference point given by the DM. The solution procedure is stopped when the
DM considers that the most preferred Pareto optimal solution is found. Let us note that
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even if the solutions obtained using the problem formulation (P (z̄zz)) are guaranteed to
be only weakly Pareto optimal, it does not actually matter in our presentation. In this
context, we use the formulation only to introduce our ideas. Later on it can be extended
and more complex formulations can be also considered.

The parameters of problem (P (z̄zz)) are the aspiration levels z̄i, i = 1, . . . , k, and differ-
ent (weakly) Pareto optimal solutions are obtained by changing the reference point. The
following theorem can be formulated for the solutions of problem P (z̄zz) [20]:

Theorem 2.4
Let z̄zz∗ ∈ Rk be a given reference point, then a solution xxx∗ of problem (P (z̄zz∗)) is weakly
Pareto optimal. If the solution xxx∗ is unique, then it is Pareto optimal.

Even if the feasible set is mentioned occasionally in this text we actually consider only
unconstrained problems. Everywhere in this presentation we can set S = Rn. Because
we are considering unconstrained problems we assume that all the objective functions
are bounded below so that for each objective function fi there exists at least one global
minimizer xxx∗ ∈ Rn of the objective function fi.

2.3 Definition of trade-off

Next, we present some concepts related to trade-offs and our presentation follows [6]. The
ratio of change between points xxx and x̂xx involving objective functions fi and fj is defined
by

Tij(xxx, x̂xx) =
fi(xxx)− fi(x̂xx)

fj(xxx)− fj(x̂xx)
, xxx, x̂xx ∈ S,

where fj(xxx) 6= fj(x̂xx). If fl(xxx) = fl(x̂xx) for all l 6= i, j we call Tij partial trade-off between
points xxx and x̂xx. If fl(xxx) 6= fl(x̂xx) for at least one l 6= i, j, then Tij is called total trade-off .

Using the ratio of change Tij(xxx, x̂xx) we can define total trade-off rate at the point xxx ∈ Rn

to direction ddd as a limit
tij(xxx,ddd) = lim

α↘0
Tij(xxx + αddd,xxx),

where we assume that ddd 6= 000 is a feasible direction, that is, there exists α0 > 0 such that
xxx + αddd ∈ S for all α ∈ [0, α0). If ddd is a feasible direction such that there exists ᾱ > 0
satisfying fl(xxx + αddd) = fl(xxx) for all l 6= i, j and for all 0 ≤ α < ᾱ, then the corresponding
tij is called a partial trade-off rate. Note that in continuously differentiable case the total
and partial trade-off rates can equivalently be formulated by (see [6, 20])

tij(xxx,ddd) =
∇fi(xxx)Tddd

∇fj(xxx)Tddd
(3)

and

tij(xxx) =
∂fi(xxx)

∂fj

,

respectively, where xxx ∈ S, ddd is a feasible direction and ∇fj(xxx)Tddd 6= 0. In this presentation,
trade-off rate tij(xxx) without a direction is considered to be a partial trade-off rate.
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Figure 1 illustrates the concept of trade-off in objective space in the case of two
objective functions. In this figure, the set Z = fff(S) denotes the image of the feasible set
and the bold line at its boundary indicates the set of Pareto optimal objective vectors
zzz ∈ fff(E), that is, the Pareto optimal set. The trade-off rate related to the objective vector
zzz is depicted by an arrow. This means that if we want to improve objective f2 by amount
∆f2 we can approximate the impairment in objective f1 by ∆f1. By looking at Figure 1,
it can be clearly seen that a trade-off rate at some point is only a linear approximation
and, therefore, can only be used in some finite neighborhood of the point considered. Let
us point out that, when two objectives are considered, the partial trade-off rate is always
equal to the total trade-off rate.

Figure 1: An illustration trade-off for two objectives.

In this paper, we consider only trade-off rates and by trade-off information we mean
trade-off rates. In addition, we are interested in trade-off rates only at the Pareto optimal
points so that in all the above trade-off definitions a feasible set S is replaced by the
Pareto optimal set E. At every point xxx ∈ E we can produce the trade-off rate matrix

M(xxx,ddd) =

t11(xxx,ddd) . . . tk1(xxx,ddd)
...

. . .
...

t1k(xxx,ddd) . . . tkk(xxx,ddd)


which reflects sensitivities between objectives when we are moving to the direction ddd from
the point xxx. A similar matrix M(xxx) can be defined also for partial trade-off rates. Then, it
has only xxx as a parameter and the elements of the matrix are Mij = tij(xxx), i, j = 1, . . . , k.
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2.4 Computing trade-off rates by definition

With the help of trade-off rate information tij(xxx
∗, ddd) at the Pareto optimal point xxx∗ we

can study what is the ratio of change involving the objective function fi and fj when we
move to a certain direction ddd. In other words, we can see how objective fi is going to
change if we, for example, want to improve the value of objective fj. If we, for instance,
select ddd = −∇fj(xxx

∗) in formula (3) we can compute a total trade-off rate that reflects
how the values of objectives fi (i = 1, . . . , k and i 6= j) are locally going to change if we
improve objective fj.

Next, we define a regular point which characterizes when partial trade-off rates can
be used.

Definition 2.5
A point (xxx∗, δ∗)T ∈ S×R of problem (P (z̄zz)) is regular if the gradients of active inequality
constraints, that is, {(wi∇fi(xxx

∗),−1)T | wi(fi(xxx
∗) − z̄i) = δ, i = 1, . . . ,m}, are linearly

independent.

Partial trade-off rate makes sense only in regular points. This can be very loosely
speaking elaborated in such a way that if our decision space is two dimensional and we
have three objectives, then all the Pareto optimal points are regular if gradients are in
pairwise comparison linearly independent. If we add one more objective, then regularity
is not in a general case fulfilled. This same extends to situations when the dimension
n of the decision space is three or more. In general, if we have more than n + 1 active
constraints, then there are no regular points because there can be only n + 1 linearly
independent vectors in an n + 1 dimensional space. Partial trade-off rate indicates how
much improvement in objective value fj is going to degrade value of objective fi, while
all the other objectives fl, l 6= i, j, remain at their current levels. In other words pairwise
trading-off of two objectives is possible only when there exist such a direction where other
objectives are not changing.

As proposed in [35], partial trade-off rate can be also computed from (3) using pro-
jection matrix PPP = III − JJJT (JJJJJJT )−1JJJ where JJJ is a Jacobian matrix of objectives fl

(l 6= i, j), that is, matrix which has vectors ∇fl(xxx)T as row vectors. If we now use
direction ddd = PPP (−∇fj(xxx)), where fl(xxx)Tddd = 0 for all l 6= i, j we obtain a partial trade-off
rate involving objectives fi and fj. In what follows, we will use this method to verify
partial trade-offs obtained with the method of Sakawa and Yano.

2.5 Computing trade-off rates using KKT multipliers

Problem (P (z̄zz)) is a special case of the hyperplane scalarization method proposed by
Sakawa and Yano [32, 40]. In [32], the authors presented a method to compute partial
trade-off rates for the hyperplane scalarization with the help of Karush–Kuhn–Tucker
(KKT) multipliers [14, 17]. In this paper, we utilize their approach in computing partial
trade-off rates. Next, we give some theoretical results connecting the trade-off rates and
the KKT multipliers of problem (P (z̄zz)). The presentation is based on [32].
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The feasible reference point set Y for problem (P (z̄zz)) is defined by Y = {z̄zz ∈
Rk | wi(fi(xxx) − z̄i) ≤ δ, i = 1, . . . , k, xxx ∈ Rn, δ ∈ R}. Next, we give second order
sufficient optimality conditions.

Theorem 2.6
If the functions defining problem (P (z̄zz)) are twice continuously differentiable in a neigh-
borhood of (xxx∗, δ∗)T , then (xxx∗, δ∗)T is a unique local optimal solution of problem P (z̄zz) if
there exist (KKT multiplier) vector λ∗ ∈ Rk such that

wi(fi(xxx
∗)− z̄i)− δ∗ ≤ 0, i = 1, . . . , k,

λ∗i (wi(fi(xxx
∗)− z̄i)− δ∗) = 0, i = 1, . . . , k,

λ∗i ≥ 0, i = 1, . . . , k,
k∑

i=1

λ∗i wi∇fi(xxx
∗) = 0

k∑
i=1

λ∗i = 1

and, further, if

yyyT F (xxx∗, λ∗)yyy > 0 for all 000 6= yyy ∈ Rn+1 such that
∇̄fi(xxx

∗)Tyyy ≥ 0 for all i, where fi(xxx
∗) = δ∗/wi + z̄i and

∇̄fi(xxx
∗)Tyyy = 0 for all i, where λ∗i > 0,

and, where F (xxx∗, λ∗) is the matrix k∑
i=1

λ∗i∇2fi(xxx
∗) 000

000T 0

 ,

000 is the vector with all n components equal to zero and ∇̄fi(xxx
∗) = (wi∇fi(xxx

∗),−1)T is
the gradient of fi with respect to both xxx and δ.

Proof. Follows directly from the general second order sufficient optimality conditions
(see, for example, [4]).

In the following, let us assume that (xxx∗, δ∗)T is a unique local optimal solution of
problem (P (z̄zz∗)) where z̄zz∗ is the corresponding reference point. Let us make the following
assumptions:

(i) (xxx∗, δ∗)T is a regular point of the constraints of problem (P (z̄zz∗)),

(ii) the second order sufficient conditions of Theorem 2.6 are satisfied at (xxx∗, δ∗)T and

(iii) there are no degenerate constraints, that is, if wi(fi(xxx)− z̄i) = δ, then λi > 0.

The connection between partial trade-off rates and the KKT multipliers of problem
(P (z̄zz)) arise from the following sensitivity theorem which can be found, for example, in
[4].
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Theorem 2.7
Let (xxx∗, δ∗)T be a unique local optimal solution of problem (P (z̄zz∗)) satisfying assumptions
(i)–(iii). Let λ∗ denote the KKT multipliers corresponding to the constraints of problem
(P (z̄zz∗)). Then, there exist continuously differentiable vector-valued functions xxx(z̄zz), δ(z̄zz)
and λ(z̄zz) defined on some neighborhood N(z̄zz∗) ∩ Y so that xxx(z̄zz∗) = xxx∗, δ(z̄zz∗) = δ∗ and
λ(z̄zz∗) = λ∗, where (xxx(z̄zz), δ(z̄zz))T is a unique local optimal solution of the problem (P (z̄zz))
for any z̄zz ∈ N(z̄zz∗) ∩ Y satisfying (i)–(iii) and λ(z̄zz) is the KKT-multiplier corresponding
the constraints of (P (z̄zz)). In addition,

∂δ(z̄zz)

∂z̄i

= −λi(z̄zz), i = 1, . . . , k,

on some neighborhood N(z̄zz∗) ∩ Y .

It can be shown [32] that there exists functions f̄j(z̄zz) = fj(xxx(z̄zz)) for all j = 1, . . . , k.
The functions f̄j are continuously differentiable because of the same property of the func-
tions fj. Furthermore, it follows from the sensitivity theorem and the continuous differ-
entiability of f̄j that

∂f̄i(z̄zz)

∂f̄j

∣∣∣∣
z̄zz∈N(z̄zz∗)

= −λj(z̄zz)

λi(z̄zz)
for all i, j = 1, . . . , k.

Let xxx∗ be a local Pareto optimal solution. It can be shown [32], that

tij(xxx
∗) =

∂fi(xxx
∗)

∂fj

=
∂f̄i(z̄zz

∗)

∂f̄j

= −
λ∗j
λ∗i

for all i, j = 1, . . . , k.

Thus, under the assumptions (i)–(iii) the partial trade-off rates can be calculated from the
KKT multipliers. Note that trade-offs do not explicitly depend on the aspiration levels
but implicitly through the KKT multipliers.

Furthermore, by selecting a suitable direction ddd∗ in (3), we can obtain a connection to
the KKT multipliers: For the optimal aspiration levels z̄∗i , i = 1, . . . , k, we get

1 =
∂f̄i(z̄zz)

∂f̄i

=
∂f̄i(z̄zz)

∂(δ/wi + z̄i)
=

∂f̄i(z̄zz)

∂z̄i

(4)

=
∂f̄i(z̄zz)

∂xl

∂xl(z̄zz)

∂z̄i

=
∂fi(xxx(z̄zz))

∂xl

∂xl(z̄zz)

∂z̄i

z̄zz=z̄zz∗
= ∇fi(xxx

∗)Tddd∗ (5)

and

−λi

λj

=
∂f̄j(z̄zz)

∂f̄i

=
∂f̄j(z̄zz)

∂(δ/wi + z̄i)
=

∂f̄j(z̄zz)

∂z̄i

(6)

=
∂f̄j(z̄zz)

∂xl

∂xl(z̄zz)

∂z̄i

=
∂fj(xxx(z̄zz))

∂xl

∂xl(z̄zz)

∂z̄i

z̄zz=z̄zz∗
= ∇fj(xxx

∗)Tddd∗, (7)
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where, ddd∗ = (d∗1, . . . , d
∗
k)

T , d∗l = ∂xl(z̄zz
∗)/∂z̄i. Therefore,

−λj

λi

=
∇fi(xxx

∗)Tddd∗

∇fj(xxx∗)Tddd∗
= tij(xxx

∗, ddd∗).

Let us point out that for the direction ddd∗ it holds that ∇fl(xxx
∗)Tddd∗ = 0 for all l = 1, . . . , k

and l 6= i, j.

3 Using trade-off information to support the decision

maker

Traditionally, trade-off information has been used as an essential part of some multiob-
jective optimization method in guiding the search towards the most preferred solution
(ISWT [7], method of Halme and Korhonen for linear problems [28], STOM [31], ISTM
[37], ZW [41]). Opposed to this, we use trade-off information as a supporting tool for the
DM, not as a part of the method itself as mentioned previously. In other words, our aim
is not to develop a new interactive method but to support using the existing ones without
concentrating on some particular method. As an example, we use the achievement scalar-
izing function approach in order to illustrate the ideas presented as already mentioned. In
a basic variation of achievement functions, the weights wi = 1/(znad

i − z∗∗i ), i = 1, . . . , k,
are used [36]. Examples of other methods utilizing reference points are the reference point
method by Wierzbicki [36], the visual interactive approach [15], the GUESS method [2]
and the light beam search [11].

In this paper, we demonstrate our ideas with a reference point based method, but
it is possible to use these ideas in classification based methods also. This is due the
fact that there is a connection between a classification and a reference point. Namely,
if the DM makes a classification in some Pareto optimal solution, a reference point can
be produced [27]. As an example of classification based methods we can mention the
NIMBUS R© method and the satisficing trade-off method [29, 31].

In interactive multiobjective optimization, preference information requested from the
DM is needed, for example, in specifying a reference point or classifying the objective
functions in different classes. Our aim is to support the DM in the selection of the next
reference point or making the next classification. Our hypothesis is, that if we are able
to obtain valid trade-off information, it can help the DM in selecting the next reference
point or making the next classification and, therefore, the number of iterations needed
can be reduced. Thus, with the help of the additional information shown to the DM, the
whole interactive solution procedure can be shortened which saves the time of the DM
and reduces the number of Pareto optimal solutions needed to be generated. The latter
reason can be especially advantageous in solving real-world multiobjective optimization
problems where a generation of one Pareto optimal solution might be computationally
expensive [8].

To compute trade-off rates we utilize the ideas of Sakawa and Yano where trade-off
rates can be obtained from the KKT multipliers as shown in Section 2. Note that if we
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are using a suitable optimizer this does not require any additional computation because
the KKT multipliers are already available, this is the case especially with some of widely
used SQP-based optimizers [5].

In addition to obtaining supporting information, it is crucial how it is presented to
the DM. We do not want to increase the cognitive burden set on the DM too much by
giving him/her too much detailed or potentially misleading information. Therefore, we
do not want to directly present any numerical trade-off information to the DM, but just
indication of the magnitude of change and on which direction the change can be predicted
to occur.

New reference point selection or classification can be made in several ways using trade-
off rate information. Because we are offering only supporting information at some Pareto
optimal solution, the DM is totally free to choose how to utilize this information. Because
of this, it is more convenient to offer partial instead of total trade-off rate information.
Total trade-off information is always related to some specified direction and that is why
it might be difficult to grasp an idea what kind of trade-offs there exist in some other
direction. By using partial trade-off rate information, it could be easier to consider trade-
off rates to different directions as a linear combination of partial trade-off rates.

3.1 Presenting trade-off information to the DM

In the previous section, we gave definitions for trade-off rates and also presented a couple
of methods to compute them. Now, we are going to present some ideas about how this
kind of trade-off information can be used in interactive reference point or classification
based methods. In what follows, we propose two different ways to visualize trade-off
information. On the one hand, our aim is to decrease cognitive load of the DM by hiding
possibly inaccurate numerical data. On the other hand, we also try to speed up the
process where the DM considers how a new reference point should be set.

Let us consider a setting where the DM is using, for example, our simplified interactive
reference point based method to solve some particular multiobjective optimization prob-
lem. At every iteration the DM must decide, whether to quit the interactive procedure
and consider the last solution as the most preferred, or how to set a new reference point
in such a way that it produces a more desirable solution. Let us point out that reference
point based methods have been criticized for their lack of ability to support the DM in
selecting a new reference point during the interactive solution procedure.

As an example, let us assume that the DM is solving a problem of three objective
functions and at iteration h some Pareto optimal solution xxxh is obtained, this solution is
depicted in Figure 2, where gray bars are related to the objectives f1, f2, and f3. The
black dots indicate objective function values of objective vector zh = (z1, z2, z3)

T at the
current Pareto optimal solution, and the circles stand for the aspiration levels in reference
point z̄h = (z̄1, z̄2, z̄3)

T given by the DM. The current objective vector zh is produced
using the reference point z̄h. The values of the ideal and the nadir objective vectors are
shown at the bottom and top of the box, respectively.

At this point, we assume that the DM is not completely satisfied with the current

12



ideal

nadir

f3f2f1

5.05

0.00

z-1=1.50
z1=1.74

13.95

0.00

z-2=5.00

z2=2.77

20.92

0.00
z-3=1.00
z3=2.01

Figure 2: Objective function values at current solution

solution and wants to set a new reference point. Now, at least two possible questions can
be considered “How should the reference point be changed in order to achieve maximal
gain in some objective(s) with minimal loss in others?” or “Is it possible to obtain a
solution where a certain objective is improved by relaxing the aspiration level of some
other objective while the rest of the objectives are staying close to their current values?”

Reference point methods do not typically offer answers to the above kind of questions.
Therefore, the only thing the DM can do is to vary the reference point around the current
solution and use trial and error. Especially in the case of problems that have a higher
number of objective functions, it might be very frustrating to probe around the objective
space with a reference point.

Let us assume that in the current Pareto optimal solution presented in Figure 2, the
DM is interested in slightly improving, for example, objective f2 by sacrificing in objective
values of f1 or f3. Here, we can support the DM by offering trade-off information related
to objective values at the current solution. A straightforward approach to this is, of
course, to show numerical trade-off rate information from the trade-off matrix. Let us
assume that at the current solution we have a partial trade-off rate matrix available as
presented in Table 1. From the partial trade-off rate matrix we see how the objective fi

at the column i is going to change if we want to improve the objective fj at the row j. For
example, if we want to improve objective f2 by one unit in such a way that objective f3

is to impair and objective f1 is remaining fixed then the trade-off rate is −0.0209, where
a negative value indicates increasing objective value.

Because Table 1 contains partial trade-off rates all the values are negative. The di-
agonal is empty because due to the Pareto optimality it is not possible to improve any
objective without sacrificing in some other objective. Exception is the case where the
considered point is weakly Pareto optimal, when some elements at diagonal might con-
tain the value 1. In a total trade-off rate matrix all diagonal values are equal to 1 and
off-diagonal values can be either negative or positive.
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f1 f2 f3

f1 -83.1412 -1.7341
f2 -0.0120 -0.0209
f3 -0.5767 -47.9445

Table 1: Matrix of partial trade-off rates

In general case for nonlinear problems, the values in the trade-off rate matrix are often
accurate approximations only in some finite neighborhood of the current solution. In this
sense, it might be misleading to show these values directly to the DM because a proper
neighborhood is problem dependent and it is difficult to characterize. Due to the local
nature of trade-off rate information, there is a close connection to sensitivity theory which
considers the effect of small perturbations in the problem data to the solutions obtained
(see, for example, [4]). A direct analysis of numerical trade-off rate matrices might cause
too much cognitive burden for the DM, especially, if this kind of analysis is carried out
for several Pareto optimal solutions. Therefore, we now consider another way to carry
out this analysis.

The numerical trade-off rates in Table 1 might be confusing to the DM. For example,
if we consider one unit improvement in objective f1 and are willing to impair objective
f2, according to the first row in Table 1, objective f2 is going to impair approximately
83 units. However this does not make much sense because by looking at Figure 2 we see
that objective f2 gets values in the Pareto optimal set within the range [0, 13.95]. This
leads to an idea that maybe it is enough to know that change will be in some sense “large
enough”.

One way to approach the above problem is to reduce accuracy of numerical trade-
off rate information. Sometimes, it might be enough for the DM just to know whether
the trade-off involving some objectives is below, equal, or above neutral rate of change.
In such a case, a so-called arrow matrix visualization can be used. The arrow matrix
in Figure 3 corresponds the partial trade-off rate matrix in Table 1. In this figure, the
downward pointing triangles indicate a negative trade-off rate. Different colors define the
magnitude of the trade-off rate; a white triangle denotes a small change, a gray triangle
denotes a neutral change while a black triangle stands for a significant change. In this
paper, we classify trade-off rates in such a way where the range (−1/2, 0] correspond to a
small change, the range [−2,−1/2] stands for a neutral change and the range (−∞,−2)
means a significant change. Note that by changing the limits −1/2 and −2, the division of
the values of trade-off rates can be altered. An upward pointing triangle can be elaborated
in the same way as a downward pointing one but it indicates positive trade-off rate values.
Positive trade-off values are possible if we are inspecting total trade-off rates.

Most of the time the information level of the arrow matrix might be enough, but it is
not always so helpful. If, for example, the DM wants to improve objective f2 by relaxing
either objective f1 or f3 but wants to choose the one which has better trade-off rate, then
according to the arrow matrix in Figure 3 it is impossible to say which objective should
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Figure 3: Arrow matrix visualization

be chosen. However, if both trade-off values are big enough it does not necessarily matter
what the DM chooses. The arrow matrix does not reveal these kind of relationships.

As already mentioned, if trade-off rates are large enough in practice, it does not
necessarily make any difference which objective really has the absolutely largest trade-off
rate. Instead, it is more fruitful to know which trade-offs are “large enough” and which
are close to a neutral trade-off rate. This leads to an idea where large trade-off rates are
compressed to the same class indicating large enough change. One possible way to do this
compression is to use a sigmoid function s : R → (−1, 1),

s(t) = tanh

(
t

2

)
=

et/2 − e−t/2

et/2 + e−t/2
. (8)

In Figure 4 we can see trade-off visualization where trade-off values are taken from
Table 1. Note that in all three boxes in the figure, the scale in the vertical axis is
compressed with the sigmoid function. Every box in this Figure is related to one row of
trade-off matrix. In the case of partial trade-off information, for example, the leftmost box
is, on the one hand, reflecting how objective f2 is going to change if we improve objective
f1 while f3 remains fixed. On the other hand, the leftmost box also reflects how objective
f3 is going to change if we improve objective f1 while f2 remains fixed. According to this
partial trade-off rate visualization we grasp an idea of how f2 and f3 are going to change
if we just improve objective f1 and let f2 and f3 change freely.

If in Figure 4 the black dot denoting the value of the trade-off rate for corresponding
function is near the bottom of the box, then the trade-of rate is significant, in our clas-
sification this means that trade-off rate is less than −2. On the other hand, if the black
dot is near the zero line, then the corresponding trade-off rate is small. In between, the
trade-off rate can be considered neutral, which means that it is ”close” to one. Due to the
presented classification of trade-off rates there is a connection between the compressed
trade-off rate visualization in Figure 4 and the arrow matrix visualization in Figure 3.
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Figure 4: Visualization of compressed trade-off rates

If information in the arrow matrix or the compressed trade-off visualization is not
accurate enough, the DM is of course always able to examine the numerical trade-off rate
matrix directly. The main idea with these different visualizations is to reduce the cognitive
burden of the DM by hiding the numerical information which can be inaccurate. Let us
point out that it might be convenient to show the DM only the trade-off rate information
when requested. Furthermore we can show, for instance, only one row at the time if the
DM is only interested in improving some specific objective. By this way it is possible to
reduce cognitive burden set on the DM even more. Finally, let us mention that utilizing
trade-off information becomes more advantageous near the area where the most preferred
solution could be obtained, in other words, when the DM has already found a promising
solution and wants to study whether it is possible still to obtain some improvement
without sacrificing too much in objective values at current solution.

4 Numerical example

In this section, we first demonstrate manually how the ideas presented in the previous
sections can be utilized. After that, we present a simple automated test framework which
we use to simulate the behavior of the DM, and try to reflect what kind of results can be
obtained if our methods for visualizing trade-offs are used to support the DM.

We assume that the DM is using the presented simplified reference point method and
during the interactive solution procedure is willing to see trade-off information to aid in
how the next reference point should be placed. At this point, we have a few questions
that we aim to answer: How useful is trade-off information in solving multiobjective
optimization problems with interactive reference point based method, is it convenient to
use the visualizations presented instead of numerical trade-off information and can we
obtain reliable trade-off rates with the approach of Sakawa and Yano in practice? In all
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our tests, we use the following very simple academic problem

minimize f1(xxx) = x2
1 + x2

2,
f2(xxx) = 2(x1 − 1)2 + (x2 − 2)2,
f3(xxx) = 3(x1 − 2)2 + (x2 − 1)2

subject to xxx ∈ R2.

(9)

For this problem, the ideal objective vector is zzz∗ = (0.0, 0.0, 0.0)T and the approxima-
tion for the nadir objective vector used is zzznad = (5.0512, 13.9499, 20.9186)T . In this case,
the approximation of the nadir objective vector is known before hand and it is assumed
to be accurate enough.

4.1 About implementation

In all our tests, we have used the SQP optimizer (E04UCF) of the NAG library. The
SQP optimizer was used in such a way that no initial KKT multipliers were set. At the
final solution, the KKT multipliers provided by the SQP optimizer were used to calculate
the partial trade-off rate matrix with the method of Sakawa and Yano. At every solution,
the partial trade-off matrix was also calculated directly from the definition by using the
projection matrix, where objective function gradients computed at the last iteration of
the SQP optimizer were used. In computing the projection matrix, the inverse matrix
was computed by using the DPOTRI procedure from the LAPACK library. All the
computational entities were implemented as independent programs by using a Fortran
compiler in the HP-UX environment.

In the general case, the SQP optimizer is able to produce only locally optimal solutions
for problem (P (z̄zz)), but because in this paper we have only used convex problems we do not
need to consider how to offer proper initial point for the SQP. Of course the visualization
ideas presented are working with nonconvex problems also, but in such a case, some
global optimizer could be needed in order to offer initial solutions to the SQP optimizer.
However, if we already have some global Pareto optimal solution for nonconvex problem
and are interested only in local improvements, then the SQP optimizer is enough, and no
computationally expensive global optimizers are needed.

4.2 Manual example

The following case study demonstrates how the presented trade-off rate visualization
methods can be used to support the DM in practice. Let us now take the role of the DM
and use the simplified interactive reference point method presented in Section 2 to solve
problem (9).

First, we define the aspiration levels z̄i ∈ [z∗i , z
nad
i ] for individual objectives fi, i =

1, . . . , k, constituting a reference point z̄zz. Let the initial reference point be, for ex-
ample, z̄zz1 = (1.5, 5.0, 1.0)T . By solving problem (P (z̄zz1)), we obtain a solution zzz1 =
(1.7433, 2.7710, 2.0073)T which is visualized in Figure 2.
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Let us now suppose that we want to improve objective f2. According to the arrow
matrix visualization in Figure 3, improvement in objective f2 should be possible without
affecting too much the current values of the objectives f1 and f3. In Figure 4, we can see
even more clearly that trade-off structure for objective f2 is very promising.

Now, we define a new reference point where the aspiration level for objective f2 is
improved by 1% in interval [z∗2 , z

nad
2 ] while the other aspiration levels remain at the same

level with the objective vector zzz1 related to the current solution. In other words, our
new reference point is z̄zz2 = (1.7433, 2.6315, 2.0073)T . Solving problem (P (z̄zz2)) produces
a Pareto optimal objective vector zzz2 = (1.7446, 2.6351, 2.0126)T . We can compare ob-
jective vector zzz1 to zzz2 through the difference zzz1 − zzz2 and if in addition each component
of this difference vector is scaled with the appropriate objective range (znad

i − z∗i ) we
get (−0.0003, 0.0097,−0, 0003)T . In other words, an improvement of 1% in objective f2

was achieved without affecting the other objectives too much. The example above demon-
strates a situation where the DM, for instance, has already found some promising solution
and wants to explore its surroundings without moving too far. Let us point out that this
example is only reflecting our idea and we do not expect that the DM is going to make
exactly 1% improvements. In real situation, the reference point can be of course set more
freely.

4.3 Automated tests

We have used a simple automated test setting to study what kind of results can be obtained
when the selection of a new reference point is based on our arrow matrix visualization. The
test was made with problem (9) and, at this point, our aim is only to give an idea of how
the visualizations of trade-offs presented can be used in order to define a new reference
point. There is not only one way to set a new reference point according to trade-off
information. In our tests, we have adopted very simple approach which simulates the one
we used in the manual example.

In the test setting, we generated 1000 random reference points z̄1
i ∈ [z∗i , z

nad
i ], i =

1, . . . , k, for problem (9). For each reference point, problem (P (z̄zz1)) was solved and
the partial trade-off rate matrices MSY and MP were computed by using the method of
Sakawa and Yano and the projection method, respectively, for the solutions obtained. A
new reference point was chosen by using the matrix MSY and the matrix MP is only used
to verify computations. The matrix MSY was used in such a way that the objective fj were
chosen to be improved if the corresponding trade-off rates indicated only small change for
the other objectives. If some objective had this kind of promising trade-off rate structure
at the current solution, then a new reference point was generated from the objective vector
zzz1 related to the current solution by improving the aspiration level of objective fj by 1%
in the interval [z∗j , z

nad
j ]. In other words, the improvement of the aspiration level for the

objective fj by 1% means that a new aspiration level z̄j
2 = z1

j − 0.01(znad
j − z∗j ) is chosen,

while the values of zzz1 are chosen as the other aspiration levels, that is, z̄i
2 = z1

i , where
i = 1, . . . , k and i 6= j. Let us point out that 889 solutions out of the 1000 generated
fulfilled the presented condition of promising trade-off structure. The remaining 111
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points were not considered at all in this test.
Next, problem (P (z̄zz2)) was solved by using the constructed reference point. To mea-

sure the goodness of the new solution zzz2 obtained we computed a normed difference
(z1

j − z2
j )/(z

nad
j − z∗j ) for objective fj selected to be improved. The normed average(∑k

i=1,i6=j(z
1
i − z2

i )/(z
nad
i − z∗i )

)
/(k − 1) was computed to reflect the average change in

the other objectives. In Figure 5, the black plot depicts the normed difference in the
improved objective fj over all 889 points, and the gray plot depicts the normed average
difference in the other objectives. It can be seen, that for all the generated reference
points, the improvement in the selected objective fj was quite close to 1%, while the
average was about 0.096. For the other objectives, the normed average difference was
quite close to zero.
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Figure 5: Normed changes using 1% step

An improvement of 1% is of course more or less arbitrary. For highly nonlinear prob-
lems the improvement should be quite small because trade-off rate is only a first order
approximation. Namely, if we increase the amount of improvement, for example, to 5%,
then results for our simple test problem start to behave in a more unpredictable way. This
kind of a behaviour can be clearly seen in Figure 6. The average of normed difference in
the improved objective fj is in this case better than the one with 1% improvement (in
Figure 5), but we must underline that our test problem is very simple and, in general case,
an improvement of 5% might be way too large and the results can be almost anything.
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Figure 6: Normed change using 5% step

4.4 On computational reliability of trade-off rates

Although the partial trade-off rate matrix M(xxx)SY was used in all the computations, in
our tests we always computed also the matrix M(xxx)P to verify numerical reliability. The
matrix M(xxx)P was computed using the objective function gradients computed at the last
iteration of the SQP optimizer. The difference of these two matrices was computed and
the standard Euclidean matrix norm ||A||2 =

√∑
diag(AT A) of the difference was used

to reflect the total error between these two matrices. In other words, at every Pareto
optimal solution xxx the total error between the trade-off matrices M(xxx)SY and M(xxx)P was
characterized with the norm ||M(xxx)SY −M(xxx)P ||2.

In Figure 7, this error measure is depicted for every solution computed in the test. In
Table 2, maximum, average, median, and minimum of the pairwise difference between the
components of the trade-off matrices obtained from |MSY,ij −MP,ij | are reported. These
results indicate that most of the time the matrices M(xxx)SY and M(xxx)P are equal and
if there is an error it is quite small. A closer examination of individual errors reveals
that in all the cases, the difference seems to be related to the accuracy of the KKT
multipliers produced by the SQP optimizer. Again, because our test problem is so simple
no conclusions can be made for a general behavior, but at least these results indicate that,
in this case, both of the methods are able to compute partial trade-offs similarly.
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Figure 7: Error between trade-off rate matrices

Maximum Average Median Minimum
0.023000 0.000040 0.000000 0.000000

Table 2: Trade-off matrix error analysis

5 Conclusions

We have presented some ideas for utilizing trade-off information in supporting the DM
in finding better solutions for the multiobjective optimization problem in question. More
precisely, we offer additional information in order to help the DM in selecting the next
reference point or making the next classification. Our aim has been to present trade-off
information directly to the DM and not to use it as a part of the interactive method itself
as has been done previously. In other words, we have not developed a new interactive
method, but supporting information can be used in connection with different interactive
methods already available. We have used partial trade-off rates to predict the changes of
the values of the objective functions.

Another target has been to study how trade-off information could be obtained without
any additional computational effort. The method of Sakawa and Yano enables compu-
tation of partial trade-off rates from the Karush–Kuhn–Tucker multipliers without any
additional computation. We are also interested in practical reliability of trade-off infor-
mation so that it is worthwhile to present it to the DM.
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Finally, we introduced two ways of visualizing the trade-off information. In our ap-
proach, no numerical information is shown to the DM because possibly inaccurate in-
formation can increase the cognitive burden set on to the DM and it can be difficult to
interpret. Instead, we show the DM the predicted directions of the changes of the func-
tions and the magnitude of the change. Related to these visualizations, we introduced a
categorization of the amount of change predicted by trade-off information. Three different
categories were identified, namely small, neutral and significant change.

We have studied these preliminary issues through a test problem and a set of reference
points. The preliminary results showed that reliable trade-off information can be obtained
for our problem. In addition, the results show that it can be useful in selecting the next
reference point during the interactive solution procedure for our problem. We found
that the reference points selected based on trade-off information and our visualizations
of trade-off information provided solutions where more was gained than lost. Therefore,
with this approach the most preferred solution can be found more quickly because the
DM has more information available.

6 Future directions

This research has been a promising start in studying supporting the DM with trade-off
information. Several ideas for future research have also been obtained. First of all, we need
to perform tests with more problems. Here, we considered only unconstrained problems, so
naturally we are interested in whether our approach is valid also for constrained problems.

Furthermore, in this paper we have only considered partial trade-off rates, but as
mentioned, depending on the problem structure it is not always possible to compute
them. In this sense, the total trade-off rates should be also considered. Especially if the
DM is able to specify some specific direction of interest, then total trade-off rates could
be more useful. The selection of proper direction is related to the way how the DM wants
to set a new reference point or make a new classification.

In addition, we would be interested in providing such a trade-off information to the
DM that could be useful also a little further from the current solution than the trade-off
rates based on gradient information. This leads us to study how we can possibly reflect the
reliability of linear trade-off approximation, in other words, in what kind of neighborhood
of current solution the approximation is reliable enough. Finally, when we have made
more tests and developed our ideas are further, some real-world problems could be solved
with real DMs involved.
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