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Abstract

In this paper, interactive multiobjective optimization for radiotherapy treatment
planning is studied. The aim of radiotherapy is to destroy a tumor without caus-
ing damage to healthy tissue and treatment planning is used to achieve an optimal
dose distribution. In intensity modulated radiotherapy (IMRT), the intensity of the
incoming radiation flux can be modulated using some aperture such as a multi-
leaf collimator. Radiotherapy goals are conflicting and it is impossible to satisfy
all the targets simultaneously. Therefore, an interactive multiobjective optimization
method for IMRT is used. With this method, the best compromise can be found
for all the conflicting targets. Results of numerical studies indicate that in this way
a radiotherapy expert, called as a decision maker, can conveniently utilize one’s
knowledge and expertize and direct the solution process interactively and itera-
tively in order to find the best feasible radiotherapy treatment plan. This approach
decreases the number of uninteresting solutions computed and the best solution can
be selected in a case specific way by using the decision maker’s expertize.
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1 Introduction

In radiotherapy treatment planning, a model is needed to compute the ab-
sorbed dose distribution within a patient to ensure a desired treatment out-
come. The dose calculation models are typically referred to as radiotherapy
forward problems. During the years, these mathematical models have improved
and physical and biological responses are better known (Smith 1995, Ahnesjö
and Aspradakis 1999). In external radiotherapy, so called pencil beam models
are typically used for photon dose calculation. Alternatively, one could use
Monte Carlo (Andreo 1991) or deterministic Boltzmann transport equation
based models (Boman et al.2005). In conformal radiotherapy, the aim of the
treatment planning is to achieve a dose distribution, that conforms the tumor
as closely as possible while healthy tissue does not receive too high a dose. For
these purposes the intensity modulated radiotherapy (IMRT) can be utilized
(Bortfeld 2006). In IMRT, the intensity of the incoming beam is modulated
using apertures such as multileaf collimators (MLC).

Radiotherapy treatment planning is in fact an inverse problem. The problem
is to find treatment settings such that the aims of the treatment planning
are met. The use of IMRT increases remarkably the number of different set-
tings and alternatives in treatment planning and some optimization algorithm
has to be used to find the best possible treatment plan (Brahme 2000, Bort-
feld 1999, Censor and Zenios 1997). Although optimization in the radiotherapy
treatment planning has been widely studied, see for example Palta and Mackie
2003 and Brahme 1995, still, clinical applications typically use a more or less
trial and error sequence, in which a radiotherapist seeks for the best treat-
ment plan based on his/her intuition and knowledge. In IMRT optimization,
the number and orientation of beams and/or flux intensities are usually the
decision variables which control the dose distribution during the optimization.
Traditionally, approaches used in radiotherapy are based on optimizing one
objective function and the objective function is often defined as a weighted
sum of quadratic penalties where the idea is to fulfill some predefined dose
limits specified for different organs and tumors, see e.g. Shepard et al.1999,
Tervo and Kolmonen 2000 and Carlsson and Forsgren 2006. However, let us
point out that the actual goal is to fulfill the given dose limits and minimize
the harmful dose, simultaneously. Then, in the methods widely used in the
literature, all the targets are scaled or summed as one objective, but it is typ-
ically hard to predefine priorities or weights of the optimization targets in an
optimal way. Furthermore, sometimes information about objectives and even
practical relevance of the objective functions can be lost because of mixing
the objectives as a sum. To avoid this, we present an alternative method for
radiotherapy optimization.

In this paper, we integrate a dose calculation model of IMRT with the inter-
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active multiobjective optimization method NIMBUS (Miettinen and Mäkelä
2006) and discuss the results of the studies. The aim of radiotherapy is to
destroy the tumor (or the planning target volume (PTV)) without causing
damage to healthy tissue (often divided to the dose sensitive volume organ at
risk (OAR), and normal tissue (NT)). Naturally, these targets are conflicting,
that is increasing the dose in the tumor also increases the unwanted dose in
the surrounding healthy tissue. Thus, it is impossible to satisfy these crite-
ria at the same time. When one target is optimized, some other will suffer.
This trade off is complex and optimization tools capable of handling multiple
and conflicting objectives are required. Traditional optimization is not enough.
Our approach is to use interactive multiobjective optimization for IMRT. Al-
though multiobjective optimization has already been applied in radiotherapy
treatment planning, see e.g. Küfer et al.2000, Cotrutz et al.2001, Lahanas et
al.2003 and Schreibmann et al.2004, the approach presented in this paper is
different since it does not use objective weights defined beforehand or evolu-
tionary algorithms. As mentioned above, there are some obvious difficulties in
defining the weighting coefficients. Furthermore, evolutionary algorithms have
their own drawbacks. For example, they are very time consuming because a
large set of uninteresting solutions together with the interesting ones need to
be generated before a desired solution can be found. In our iterative solution
process, the interactive role of the radiotherapy expert, called a decision maker,
and his/her knowledge is emphasized. The presented multiobjective optimiza-
tion approach is user friendly, intuitive and iterative when optimizing the
conflicting objectives simultaneously. It uses the decision maker’s knowledge
to direct the solution process in order to find the most preferred compromise,
so called Pareto optimal solution, between the conflicting criteria. As can be
seen from results of the numerical studies, the approach presented helps the
decision maker to understand and learn about the interrelationships between
the objectives and the decision maker can choose the best possible solution by
case according to his/her knowledge. In addition, the number of uninteresting
solutions calculated decreases. This makes the optimizing process very fast
and the desired solution is easy to choose.

This paper is organized as follows: In Section 2, we examine the radiotherapy
dose calculation model and define a feasible solution for radiotherapy. Section 3
introduces multiobjective optimization and presents the optimization method
used. We also give a short review of decision support aids. In Section 4, we
describe and discuss a numerical example of a C-shaped tumor case. We define
objective functions and also study and discuss our interactive multiobjective
optimization process. Finally, Section 5 is devoted to conclusions and future
directions and challenges.
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2 IMRT treatment planning problem and optimization

2.1 Dose calculation in a patient space and inverse problem

Optimization in IMRT treatment planning can be categorized into two areas.
On the one hand, in which the treatment settings are solved directly (Tervo et
al.2003), and on the other hand, in which the field intensities are solved and
the treatment settings are determined afterward from the solved intensities.
The direct method has some benefits, but for simplicity we concentrate here
on the latter case.

Let us assume that the treatment geometry consists of L different fields Sl (l =
1, . . . , L) with given gantry αl, couch βl and collimator θl angles. The treat-
ment space Ul of the field Sl is discretized into voxels ui,j,l := [ul

1,i−1
, ul

1,i] ×
[ul

2,j−1
, ul

2,j], where i = 1, . . . , Il and j = 1, . . . , Jl such that Ul =
∑

i,j ui,j,l.
Denote u = (u1, u2) to be a point in Ul.

For the forward problem, we use a pencil beam model, in which the dose
distribution D(x), where x = (x1, x2, x3) is a point in the patient space V ,
thus x ∈ V , for L different fields Ul is given as an integral (known as the first
kind of Fredholm integral equation)

D(x) =
L

∑

l=1

∫

Ul

hl(x, u)ψl(u)du, (1)

where hl(x, u) is a dose deposition kernel and ψl(u) is the intensity of the field
Sl. The treatment space Ul and the patient space V are illustrated in Figure
1.

For simplicity, the dose deposition kernel hl(x, u) for each field l = 1, . . . , L is
chosen to model a photon pencil beam in water equivalent media. The kernel
is given in Ulmer and Harder 1995 and 1996 as

hl(x, u) = I(x3)
3

∑

k=1

ck

πσk(x3)2
exp

[

−((x1 − u1)
2 + (x2 − u2)

2)

σk(x3)2

]

, (2)

where I(x3) is a function representing a relative depth dose and σk(x3) is a
depth dependent mean square radial displacement. These values and param-
eter ck are tabulated in Ulmer and Harder 1995. This kernel corresponds to
the situation where the origin of the patient coordinate system is at the point
Ol and the x3-axis is perpendicular to the plane Ul. Other directions Alx are
obtained using general coordinate transformations for the patient space V co-
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Figure 1. Coordinate systems in dose calculation. Plane Ul is the treatment space.
The radiation field comes to the patient space V and isocenter is Ol. The patient
space V includes regions PTV, OAR and NT.

ordinates, i.e., Alx = R1(θl)R2(βl)R3(αl)(x−Ol)
T , where T is the transpose of

a matrix and R1, R2 and R3 are appropriate rotation matrices. In the present
form, the kernel used does not take into account the tissue inhomogeneities
and the real patient geometry. These model simplifications are assumed to be
irrelevant to demonstrate the applicability of the optimization method pro-
posed.

Before optimizing dose delivery to the patient space V , a discrete inverse
problem needs to be formulated from equation (1). Function ψl(u) is assumed
to be a constant wi,j,l at each sub domain ui,j,l. Thus,

ψl(u) = wi,j,l, (3)

when u ∈ ui,j,l. Then equation (1) is of the form

D(x) = I((Alx)3)
3

∑

k=1

ck

πσk((Alx)3)2

∑

l

∑

i

∑

j

wi,j,l

·
∫

ui,j,l

exp

[

−(((Alx)1 − u1)
2 − ((Alx)2 − u2)

2)

σk((Alx)3)2

]

du (4)

=
∑

l

I((Alx)3)
3

∑

k=1

ck

πσk((Alx)3)2

∑

i

∑

j

wi,j,l
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·
ul
1,i

∫

ul
1,i−1

exp

[

−((Alx)1 − u1)
2

σk((Alx)3)2

]

du1

·
ul
2,j

∫

ul
2,j−1

exp

[

−((Alx)2 − u2)
2

σk((Alx)3)2

]

du2. (5)

The error function erfτ is defined by an integral

erfτ (x) =
1√
πτ

x
∫

−∞

exp

[

−s2

τ 2

]

ds, (6)

and one can find that

D(x) =
∑

l

I((Alx)3)
3

∑

k=1

ck
∑

i

∑

j

wi,j,l

·
[

erfσk
(−((Alx)1 − ul

1,i)
2) − erfσk

(−((Alx)1 − ul
1,i−1

)2)
]

·
[

erfσk
(−((Alx)2 − ul

2,j)
2) − erfσk

(−((Alx)2 − ul
2,j−1

)2)
]

. (7)

Let us denote w := (w1,1,1, . . . , wIl,Jl,L)T and thus, we have D(x,w) := D(x).

This model is used in our multiobjective optimization approach for IMRT in
dose calculations and the intensities wi,j,l needed in optimization can be solved
from equation (7) as an inverse problem.

2.2 A feasible solution for radiotherapy treatment planning

Our approach is based on the fact that the dose D(x,w) in the PTV, must be
as close as possible the desired dose DPTV , which is case specific depending on
the type of the tumor. Nevertheless, a few per cent deviation from the desired
dose DPTV is acceptable. At the same time the dose in the OAR and in NT
should be as low as possible. These regions are illustrated in Figure 1. In real
life, there is an upper bound for dose in the OAR and in NT that should not
be violated. We denote these limits DOAR and DNT , respectively. Our goal is
to find the intensities wi,j,l so that the above-mentioned criteria hold.

We divide the patient space V into separate regions Vp, p=1,2,3. Let xp ∈ Vp

and define the union I = I1 ∪ I2 ∪ I3 such that

I1 = {p ∈ I|xp ∈ PTV},
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I2 = {p ∈ I|xp ∈ OAR},
I3 = {p ∈ I|xp ∈ NT}.

Now we can define a feasible objective set, which is in fact know as a fea-
sible solution in radiotherapy treatment planning. Thus, we try to find the
intensities for which the inequalities

d% DPTV ≤ D(xp,w) ≤ D% DPTV , p ∈ I1,

D(xp,w) ≤ DOAR, p ∈ I2,

D(xp,w) ≤ DNT , p ∈ I3

are at least satisfied, but in optimization, we want to minimize the unwanted
dose at the same time. Coefficients d% and D% are the case specific accepted
deviation from the desired dose DPTV .

As one can easily understand, when optimizing the treatment plan, the targets
are conflicting. Thus, all the treatment planning targets can not reach their
minima at the same time. Achieving the wanted dose DPTV in the PTV is
not possible without affecting some dose to unwanted regions because the
radiation must travel through NT to reach the PTV, for example.

3 Optimization approach

3.1 Multiobjective optimization

In general, a multiobjective optimization problem can be defined as follows
(Miettinen 1999)

min {f1(w), f2(w), . . . , fk(w)}
subject to w ∈ S,

(8)

where w is a vector of decision variables from the feasible set S ⊂ Rn defined
by box, linear and nonlinear constraints. We can denote a vector of objective
function values or an objective vector f(w) = (f1(w), f2(w), . . . , fk(w))T .
We denote the image of the feasible set by f(S) = Z and call it as a feasible
objective set. If some objective function fi is to be maximized, it is equivalent
to consider minimization of −fi.

In multiobjective optimization, optimality is understood in the sense of Pareto
optimality (Miettinen 1999). A decision vector w∗ ∈ S is Pareto optimal, if
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there does not exist another decision vector w ∈ S such that fi(w) ≤ fi(w
∗)

for all i = 1, . . . , k and fj(w)<fj(w
∗) for at least one index j. These Pareto

optimal solutions constitute a Pareto optimal set. From a mathematical point
of view, all of them are equally good and they can be regarded as equally valid
compromise solutions of the problem considered. Because vectors cannot be
ordered completely, there exists no trivial mathematical tool in order to find
the most satisfactory solution in the Pareto optimal set.

Because all the solutions are equally good, an expert of the problem known as
a decision maker is typically needed in order to find the best or most satisfying
solution to be called the final one. The decision maker can participate in the
solution process and in one way or the other, determine which one of the
Pareto optimal solutions is the most desired to be the final solution. It is
often useful for the decision maker to know the ranges of objective function
values in the Pareto optimal set. An ideal objective vector gives lower bounds
for the objective functions in the Pareto optimal set and it is obtained by
minimizing each objective function individually subject to the constraints.
A nadir objective vector giving upper bounds of objective functions in the
Pareto optimal set is usually difficult to calculate, and, thus, its values are
usually only approximated, for example, by using pay-off tables, see for more
Miettinen 1999.

Sometimes, the many methods developed for multiobjective optimization are
divided into four classes according to role of the decision maker (Miettinen
1999). First, there are methods where no decision maker is available and where
the final solution is some neutral compromise solution. The three other classes
are a priori, a posteriori and interactive methods, where the decision maker
participates in the solution process before it, after it or iteratively, respectively.
We concentrate on the last-mentioned class in this paper, because an interac-
tive multiobjective optimization method is ideal for radiotherapy optimization.
It makes possible the decision maker to control the solution process iteratively
and learn about the conflicting radiotherapy targets during optimization. An
interactive approach also provides shorter computing times, because the deci-
sion maker directs the solution process the way he/she wants and only such
solutions he/she is interested in are generated.

3.2 NIMBUS - an interactive multiobjective optimization method

Our main idea is to integrate the radiotherapy model together with an in-
teractive multiobjective optimization method. The method we are using is
NIMBUS (Miettinen and Mäkelä 2006, Miettinen 1999) and so far we have
been able to prepare a preliminary integration. The NIMBUS method was
selected because it has been successfully used in other applications in optimal
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control and shape design, for example, in Miettinen et al.1998, Hämäläinen et
al.2003, Hakanen et al.2005 and Heikkola et al.2006.

In interactive multiobjective optimization methods, it is important that the
information given to and asked from the decision maker is easily understand-
able. The NIMBUS method is based on the idea of classification of objective
functions. From a cognitive point of view, classification can be considered as
an acceptable task for human decision makers (Larichev 1992). In NIMBUS,
the decision maker participates in the solution process continuously and iter-
atively. Finally, he/she decides, which one of the Pareto optimal solutions is
the most desired one. During the solution process, the decision maker classifies
objective functions at the current Pareto optimal point into up to five classes,
which are the following:

(1) Functions whose values should be improved,
(2) Functions whose values should be improved until a desired aspiration

level,
(3) Functions whose values are satisfactory at the moment,
(4) Functions whose values can be impaired until a given bound,
(5) Functions whose values can change freely.

Because the solutions obtained are Pareto optimal, the decision maker can
not make a classification where all the objective function values are improving
without allowing at least one of the objective functions to impair. While the
decision maker classifies the objective functions, he/she is asked to specify the
aspiration levels and the bounds if they are needed. By classifying the objec-
tive functions the decision maker gives preference information about how the
current solution should be improved and, based on that, a scalarized single
objective optimization problem, also know as a subproblem, can be formed.
The subproblem generates a new Pareto optimal solution that satisfies the
preferences given in the classification as well as possible. The decision maker
can use any solution obtained that far as a starting point for a new classi-
fication. Alternatively, the decision maker can generate a desired number of
intermediate solutions between any two Pareto optimal solutions. He/she can
also save interesting solutions in a database which enables him/her to return
later to these solutions and continue the solution process from any of them.

In the so-called synchronous NIMBUS method used here, there are four dif-
ferent subproblems available (see Miettinen and Mäkelä 2006, Miettinen and
Mäkelä 2002), and thus, the decision maker can choose if he/she wants to see
one to four new solutions after each classification. Each of the subproblems
generates a solution taking the classification information into account in a
slightly different way. The scalarized subproblems are solved with appropriate
single objective optimizers. For more about NIMBUS scalarizations used as
well as ways of aiding comparison with different visualizations, see Miettinen
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and Mäkelä 2006.

4 Numerical example and discussion

4.1 Objective functions and multiobjective optimization of a C-shaped tumor

case

In this multiobjective optimization example, a two dimensional simulation
was made in an artificial phantom geometry describing water. For dose com-
putations, the Fredholm integral equation with the 8 MV photon pencil beam
kernel in a two dimensional homogeneous water domain was used as described
in Section 2.1 (neglecting the third dimension in the patient space V and
the second dimension in the treatment space Ul). Five incoming radiation
fields were used at the angles 0o, 72o, 144o, 216o and 288o. The field in-
tensities ψl(u) (l=1,. . .,5) were divided into 10 subintervals and in each in-
terval the intensity was assumed to be constant wi,l ∈ [0, 1]. Thus, we had
w = (w1,1, . . . , w10,1, . . . , w1,5, . . . , w10,5)

T , and therefore, the number of the
decision variables was 50. The problem contained box constraints for the de-
cision variables, but it did not have any inequality or equality constraints.
Simulation were carried out with the mathematical software Matlab R© and
all the simulation and optimization calculations were made with a personal
computer (Pentium R© 4 CPU 3.00 GHz with 2 GB central memory).

In the simulation, the pentagonal phantom consists of three different structures
as presented in Section 2.2: a non-convex PTV area, an OAR area next to the
PTV and a surrounding NT. In this case, the decision maker defined three
objective functions characterizing an optimal solution. According to the hopes
of the the decision maker, three objective functions were defined as

f1(w) = max
p∈I1

(|D(xp,w) −DPTV |), (9)

f2(w) =
1

|I2|
∑

p∈I2

D(xp,w) (10)

and

f3(w) =
1

|I3|
∑

p∈I3

D(xp,w), (11)
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which were minimized simultaneously. The optimization problem followed

min {f1(w), f2(w), f3(w)}
subject to w ∈ [0, 1],

(12)

where w was a vector of decision variables.

The objective functions chosen describe how the dose behaves in separate
regions Vp in the presented patient space V . The objective function f1 describes
the maximum dose deviation from a desired dose DPTV in the PTV and we
want to minimize the maximum deviation from the desired dose DPTV . The
objective functions f2 and f3 are the averaged doses in the OAR and NT,
respectively, to be minimized, too. The desired dose DPTV was scaled to 100%.

Using his/her expertise and knowledge of radiotherapy, the decision maker
with an analyst (responsible for the mathematical and methodological side
of the solution process) can define as many interesting case specific objective
functions f1, ..., fk as he/she wants. The decision maker’s knowledge of ra-
diotherapy can be used to select an appropriate combination of the objective
functions to be used in solving the treatment planning problem. This is because
the decision maker is an expert on his/her field and the expert is assumed to
know best the interesting objective functions that suit the case considered.
The expert selects objective functions by case and he/she can learn about the
problem during the solution process. This enables the expert to modify the
case and define the objective functions better during the treatment planning
process if needed.

Problem formulation (12), with conflicting objectives, was used for the demon-
stration of the proposed interactive multiobjective optimization method for
IMRT. An implementation of the NIMBUS method, called IND-NIMBUS (Mi-
ettinen 2006), with a local optimizer based on the proximal bundle method
(Mäkelä and Neittaanmäki 1992, Miettinen and Mäkelä 2006), was used in
optimization.

4.2 Solution process

In this example, we consider the multiobjective optimization of the radio-
therapy treatment planning problem described. The aim of the planning is to
ensure the wanted dose DPTV and dose distribution in the PTV and minimize
the unwanted dose in the OAR and in NT.

In this optimization problem, the interactive solution process was guided by
preference information of a radiotherapy expert, who was acting as a de-
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cision maker. At the beginning, objective functions had the initial values
f1 = 37.66, f2 = 33.78 and f3 = 22.29, presented also in Table 1. The ini-
tial solution f(w1) was produced with typical values of the decision variables
and it was projected on the Pareto optimal set by NIMBUS. The initial so-
lution values are shown as contours describing the dose distribution in the
phantom area in Figure 2. As said, the decision maker had preference infor-
mation that the desired dose DPTV in the PTV is 100%, but 5% deviation
from the desired dose DPTV in the PTV is acceptable in this case. Thus, we
could set d% = 95% and D% = 105%. Also, according to the preferences of
the decision maker, in the OAR and in NT the average dose DOAR and DNT

should be under 60% and 40% of the DPTV , respectively.

50
60
70
70

70

70

70

70
80

60 60

50

50

Figure 2. The initial solution. The light grey circle is the OAR and the dark grey
C-shaped area is the PTV.

In brief, throughout the optimization process, the decision maker had the
following aims. He wanted to obtain such a solution in which the dose deviation
from the DPTV in the PTV is minimized. He found very important that the 5%
dose deviation from the DPTV should not be violated. At the same time the
dose in both areas, in the OAR and in NT, should be as low as can be reached,
but at least under the desired threshold values, DOAR and DNT , respectively.
As can be seen from the initial objective function values, the f1 value is now
certainly too high. This can be seen also in Figure 2. In the initial solution,
the objective functions f2 and f3 are in a good level, thus the harmful dose
in the OAR and in NT is low, but at the same time the deviation from the
DPTV in the PTV is high. In other words, the objective function f1 is not in a
good level, the dose in the PTV is too low and the tumor will not be treated
properly. Thus, the decision maker wanted to search for a better solution in
an iterative way. The decision maker was able to get 4 solutions for every
classification, and all the solutions obtained are presented in Table 1.

12



4.2.1 First classification

In the first classification, the decision maker wanted to improve the values of
f1 and f2: decrease the deviation from the desired dose DPTV in the PTV and
decrease the dose in the OAR. Simultaneously, he let the NT dose (f3), to
change freely. That is because he wanted to protect the OAR more efficiently
than NT. Therefore, the decision maker classified f1 and f2 to class (i) and f3

to class (v).

The decision maker obtained four new solutions. He obtained some improve-
ments, all the new solution had the objective function values f1 and f2 in a
better level than in the initial solution. At the same time, the objective func-
tion f3 got worse. The changes were in the right direction, but the changes
were minor. The best one of the solutions obtained according to the decision
maker’s knowledge was f(w2), where f1 = 20.41, f2 = 19.47 and f3 = 29.64
. The solution is shown in Figure 3. As can be seen, the dose in the PTV is
jagged and non-uniform and the deviation from the desired dose DPTV is too
high, although it is much better than in the initial solution. Because the solu-
tion was not yet in a desirable level, the decision maker wanted to classify the
objective functions again. He used the presented solution as a starting point
of a new classification.

50

50 50

80

80 80

105

105

105

105

95

95

Figure 3. The best solution obtained after the first classification.

4.2.2 Second classification

All the improvements gained after the first classification were fair, but the
changes were small. That is why the decision maker furthermore wanted to
improve the objective function f1. The decision maker did an almost the same
kind of classification than the first classification was. Now he classified the
objective function f1 to improve (class (i)), simultaneously he let the objective
function f2 to impair until a specific bound (class (iv)), that is 33.33. The
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objective function f3 was let to change freely (class (v)) just like in the first
classification.

After the second classification, the decision maker obtained four new solutions
in which the objective function values changed more dramatically. He obtained
solutions, in which the objective function f1, which he considered to be very
important, was in an acceptable level but also some solutions, where it was not
good enough. In other words, if the objective function f1 was in a good level,
the objective functions f2 and f3 were too poor and vice versa. Therefore,
the decision maker wanted to produce intermediate solutions between two
Pareto optimal solutions obtained after the second classification. He decided
to produce five intermediate solutions between solutions f(w6) (f1 = 9.95, f2 =
33.33 and f3 = 34.30) and f(w8) (f1 = 2.16, f2 = 83.81 and f3 = 42.22).
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Figure 4. Two different solutions obtained after the second classification. Left, solu-
tion f(x6), good f2 and f3 values and right, solution f(x8), good function f1 value.

4.2.3 Final solution and discussion

The decision maker was given five intermediate solutions. These intermedi-
ate solutions represented desired compromises between the conflicting targets.
Many of the new solutions generated were quite satisfactory compromises and
the decision maker felt he is able to make the final decision about which one
of the solutions generated was the most satisfying to be the final solution.
He was looking for a solution, in which the dose in the PTV is as uniform
as possible and the preference information about dose limitations are valid.
He achieved a solution in which the deviation from the desired dose DPTV in
the PTV was satisfactory (f1=4.91) and simultaneously, the unwanted dose in
the OAR (f2=57.56) and in NT (f3=37.72) was as small as it was reasonably
achieved in the time he had. As can be seen in Figure 5, the 5% dose devi-
ation from the DPTV in the PTV was not violated and the average doses in
the OAR and in NT were under the dose limits DOAR and DNT , respectively.
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This solution f(w12) was the most preferred one to be the final solution ac-
cording to the decision maker’s expertize. A summary of the solution process
is presented in Table 1 including actions made by the decision maker and so-
lutions selected at each iteration (denoted in bold face). In Table 1, we also
give approximated information about objective function ranges in the Pareto
optimal set as discussed in Section 3.1. The ranges of the Pareto optimal set
were produced by NIMBUS and their values were updated during the solu-
tion process, whenever smaller or higher Pareto optimal function values were
obtained during the solution process.
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Figure 5. The final solution selected by the decision maker where 100% of the PTV
gets the desired dose 95%-105% of the DPTV .

In Table 1, we can study how the solution process progressed and how the
new solution fulfills the decision maker’s requirements after every iteration
concerning the requirements of the radiotherapy process. This kind of addi-
tional information can be easily seen with the approach used and this enables
the decision maker to learn and analyze the interrelationships of the objectives
and compare solutions.

The solution process gave a new perspective to radiotherapy optimization.
The approach differs from those used in the literature earlier since it does
not use objective weights defined beforehand. The approach handles objec-
tives in an understandable manner and the decision maker’s interactive role
and knowledge is emphasized in the iterative solution process. The above de-
scribed optimization process did not only get the best radiotherapy treatment
plan, but can also gave new understanding of the radiotherapy process. The
interactive multiobjective optimization made possible for the decision maker
to learn about the conflicting dose distribution targets and their interrelation-
ships.

When the decision maker made his final decision and the best solution was
found, the method presented gives not only the objective function values but
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Table 1
Summary of solution process.

Solution f1[%] f2[%] f3[%]

Ideal 0.50 0 0

Nadir 100.00 97.35 59.92

Initial solution

f(w1) 37.66 33.78 22.29

1st classif. (i) (i) (v)

f(w2) 20.41 19.47 29.64

f(w3) 20.79 19.86 31.35

f(w4) 20.84 20.34 37.67

f(w5) 20.47 19.57 30.04

2nd classif. (i) (iv)bound=33.33 (v)

f(w6) 9.95 33.33 34.30

f(w7) 7.57 40.20 35.98

f(w8) 2.16 83.81 42.22

f(w9) 7.91 38.10 35.59

Intermediate sol. between f(w6) and f(w8)

f(w10) 7.69 40.83 35.11

f(w11) 6.31 49.18 36.34

f(w12) 4.91 57.56 37.72

f(w13) 3.65 65.93 39.01

f(w14) 2.42 74.58 40.49

also the decision variable values, which are in our case the field intensities.
With the mathematical software Matlab R© also the contour plots of the dose
distribution (isodose curve) and the dose volume histograms of the solutions
are easily available. Computing times were short, only a few minutes per clas-
sification were needed (with PC). The optimization in NIMBUS took only a
fraction of the total computing time. The Matlab R© simulation was the most
time consuming. With a faster dose calculation model this can be easily fixed,
and that is why the optimization method (NIMBUS) is not a bottleneck for
more complicated simulation models.
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5 Conclusions

In this paper, we have successfully applied the interactive multiobjective op-
timization method NIMBUS for radiotherapy treatment planning and the nu-
merical results obtained are promising. With this method, all the conflicting
radiotherapy targets can be considered and optimized simultaneously with-
out artificial simplifications. Results of the numerical studies indicate that the
radiotherapy expert’s knowledge and desires can be utilized to direct the so-
lution process interactively and iteratively in order to find the best possible
radiotherapy treatment plan. The most preferred treatment plan can be found
by generating only few solution candidates and employing the decision maker’s
expertize.

With an interactive approach, the decision maker can learn about the problem
and the interdependences between objective functions are clearly seen without
any need of defining bounds for doses, object weights or sum of the objective
functions beforehand. The decision maker can also select the interesting objec-
tive functions by case using his/her knowledge and if the decision maker feels
that the current problem setting is not ideal, he/she can modify the problem
setting considered. The method presented also gives an opportunity for the
decision maker to play with the system. A curious decision maker can watch
what happens if he/she directs the solution in different ways. Good, unique
solutions can be found to satisfy the therapy plan, which are hard to find
without this kind of a decision support aid. During and after the optimization
process the decision maker can visualize the solutions generated and plot con-
tour plots (isodose curves) or dose volume histograms for any Pareto optimal
solution he/she wants. This makes the solutions more understandable, illus-
trative and easy to compare. Currently, treatment planning optimization is
still rarely used at the clinics and trial and error procedure is dominating. The
presented iterative and interactive multiobjective optimization method offers
a slightly similar possibility for the radiotherapist to compare and choose the
final treatment plan, but compared to the trial and error procedure used it
enables the radiotherapist to select the optimal way to satisfy the treatment
plan for each specific case.

As one can easily understand, radiotherapy treatment planning is complex
for human mind and new, easy to use decision support aids are required.
Because every case and user is unique, the decision support aid should be
flexible for different types of usage and for different users. It should also be
adjustable by case or by user. It is very important, that the solution processes is
computationally efficient so that the interactive nature of the solution process
will not suffer from excessive waiting times. The approach presented in this
paper is a first step toward a decision support aid for the radiotherapy experts.
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In the numerical example discussed, a simple dose calculation model was used.
To take into account patient inhomogeneity and three dimensional geometry,
more accurate dose calculation models have to be used. However, this simple
example clearly shows that the system architecture presented is worth study-
ing more and in the future we plan to combine the method presented with
a more accurate dose calculation model or even with a treatment planning
software. In this paper, field intensities were used as decision variables. In
the actual treatment planning, this means that one should be able to form
these intensities with some apertures such as a multileaf collimator. This is
sometimes difficult and it can cause errors to the final dose distribution. Thus,
direct leaf parameter optimization is more preferable and that is why one
should use MLC parameters directly as decision variables in the optimization.
In the future, we plan to combine the theories given in Boman et al.2005 and
Tervo and Kolmonen 2000 with the presented method in order to use the MLC
parameters directly as decision variables.
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