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Abstract

In this paper, we introduce new ways of utilizing preference information specified by
the decision maker in interactive reference point based methods. A reference point con-
sists of desirable values for each objective function. The idea is to take the desires of the
decision maker into account more closely when projecting the reference point onto the
set of nondominated solutions. In this way we can support the decision maker in finding
the most satisfactory solutions faster. In practice, we adjust the weights in the achieve-
ment scalarizing function that projects the reference point. We identify different cases
depending on the amount of additional information available and demonstrate the cases
with examples. Finally, we summarize results of extensive computational tests that give
evidence of the efficiency of the ideas proposed.

Keywords: multiobjective programming, multiple objectives, interactive methods, ref-
erence point methods, preferences, weights

1 Introduction
In multiobjective optimization, several objective functions are to be optimized simultaneously.
Because the objective functions typically are conflicting, it is impossible to find a solution where
all the objectives can reach their individual optima. Instead, we can identify compromise solu-
tions, that is, so-called Pareto optimal or nondominated solutions, where none of the objectives
can get a better value without deterioration to at least one of the other objectives. Ultimately,
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the task of solving multiobjective optimization problems is to find the best nondominated so-
lutions to be called a final solution. This usually necessitates additional information from a
decision maker (DM), an expert in the domain of the problem in question. Preference infor-
mation coming from the DM can be expressed in many ways and in different phases of the
solution process. Typically, preference information plays an important role in multiobjective
optimization.

Many methods have been developed for solving multiobjective optimization problems during
the years. They can be classified in four classes according to the role of the DM in the solution
process (see, e.g., [4, 8]). If no preference information is available, the solution is just some
neutral compromise solutions. Alternatively, the DM can specify desires and hopes before the
solution process in so-called a priori methods. The drawback here is that it may be difficult
for the DM to set expectations on a realistic level before getting to know the problem. On
the other hand, in so-called a posteriori methods a representation of nondominated solutions
is first generated and displayed to the DM who then is supposed to select the best of them
as the final solution. The difficulty here is that it may be demanding for the DM to analyze
many solutions. In other words, it is not clear how the solutions should be shown to the DM
(when there are more than two objective functions) so that the cognitive burden set on the DM
would not be too high. Besides, it may be computationally expensive for complicated real-life
problems to generate many nondominated solutions. A way to overcome the above-mentioned
difficulties is to use interactive methods.

Interactive multiobjective optimization methods are widely used (see, e.g., [8] and references
therein). In them, a solution pattern is formed and iteratively repeated, and the DM takes
actively part in the solution process by specifying and refining preference information. In
this way, the DM can learn about the possibilities and limitations of the problem and about
the interdependencies among the objective functions. Furthermore, only such nondominated
solutions are generated that are interesting to the DM. Assuming the DM has time enough
to take part in an interactive solution process, the final solution can be expected to be more
satisfactory than with the other approaches because the DM can genuinely affect and direct
the solution process in order to find a desired final solution. (S)he can even change one’s mind
while learning.

There are many interactive methods and they differ basically from each other in what kind of
information is asked from and shown to the DM at each iteration, and in the way the successive
solution candidates are calculated. Examples of types of preference information asked from the
DM include marginal rates of substitution, surrogate values for trade-offs, classification of
objective functions and reference points. For further details, see, for example, [3, 4, 8, 15] and
references therein.

Among interactive approaches, methods using reference points (for the idea see, e.g., [8,
17]) have been popular (for some comparative studies, see, e.g., [10, 11]) because of their
straightforward nature. A reference point consists of desirable values for each objective function.
For DMs, reference points are a natural way of expressing desires in solutions because DMs do
not have to learn to use new, artificial concepts. Instead, objective function values are used that
as such are meaningful and understandable for DMs. Examples of methods utilizing reference
points include reference point method [17], visual interactive approach [6], STOM [14], GUESS
[2] and light beam search [5]. In addition, methods based on classification are closely related
to reference point methods because a reference point can be formed once a classification has
been made [12]. With a classification, the DM indicates what kind of changes are desirable
in the current objective function values. Methods based on classification can be found, for
example, in [1, 9, 10, 12, 14], among others. As an example of the close relationship between
the two types of methods we can mention STOM [14], where reference points are formed based
on classification and some additional information. What is common in these methods is that
the DM can evaluate the problem to be solved as well as one’s preferences in a flexible way.
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Furthermore, relationships between reference point techniques and local tradeoffs are ana-
lyzed in [7]. There, relations among different types of information requested from the DM (e.g.,
reference points and local tradeoffs) are studied and such preferences are found which would
produce the same solution, starting from the same previous solution. They can be regarded as
equivalent pieces of information in the sense that they produce the same solution.

In this paper, we concentrate on interactive reference point based methods where, as already
mentioned, the DM is at every iteration asked to specify a reference point consisting of aspiration
levels, that is, desirable or acceptable values for each objective function. The next solution
candidate is then generated by minimizing an achievement (scalarizing) function. In practice
this means that the reference point is projected to the set of nondominated solutions and the
idea is that any nondominated solution can be found by altering the reference point. In most of
the methods using achievement functions, while the reference point is changed at each iteration,
weights determining the projection direction are kept unaltered during the whole process and
their purpose is mainly to normalize different objectives. One of the few exceptions is STOM
[14], where weights are changed at each iteration using the new reference point given by the DM
and the point to be projected is kept unaltered consisting of ideal objective function values. In
all, in achievement functions widely used, the weights have no real preference meaning. Rather
than that, they are just instrumental.

There is no doubt about the fact that widely-used interactive reference point based methods
are comfortable and intuitive for DMs, and many real applications show that they perform well
and, eventually, are able to find a good solution. Nevertheless, sometimes it may be difficult
for the DM to find certain solutions. For example, if the DM has a greater interest in achieving
a certain level for a given objective function than for the others, the only way to do it may be
to provide much better values to the corresponding aspiration level. In some cases, it may even
be necessary to give an aspiration level better than the ideal value for this objective, in order
to push the solution towards the desired value. In these cases, the reference point may not
have a clear interpretation for the DM. The use of a greater weight for this particular objective
would make the process much easier. In our opinion, in general, the use of some kind of weights
reflecting preferences can ease and accelerate the solution process.

The main idea of this paper is related to the fact that the reference point can be projected
in many directions to become nondominated and some of the directions may be more desirable
to the DM than others (especially when aspiration levels are unachievable and the reference
point is far from the set of nondominated solutions). Because DMs do not usually want to
use too much time in the solution process, that is, not too many iterations of the interactive
method, it is important to help the DM in finding a satisfactory solution fast. With this
background, our goal is to reflect the DM’s preferences by means of changing the weights. Thus,
we incorporate preference information into weights in the achievement function, which should
result in a solution that is closer to the most preferred solution of the DM. We assume that
when changing from a previous reference point to the next one, the DM has different preference
intensities regarding the achievement of different aspiration levels. The main question is how
to ask for this preference information without too much increasing the cognitive burden set on
the DM. In this paper, we propose several schemes with an increasing amount of information
coming from the DM ranging from no extra information to more detailed information.

The rest of this paper is organized as follows. In Section 2, we introduce concepts and nota-
tions used as well as some achievement functions utilizing reference points. Then we introduce
several ways of taking preference information into account in the weights of achievement func-
tions in Section 3. We illustrate our ideas with examples in Section 4 and summarize results of
computational experiments in Section 5. Finally, we conclude in Section 6.
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2 Concepts and Notations
We consider multiobjective optimization problems of the form

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S

(1)

involving k (≥ 2) conflicting objective functions fi : S → R that we want to minimize si-
multaneously. The decision variables x = (x1, x2, . . . , xn)T belong to the nonempty compact
feasible region S ⊂ Rn. Objective vectors in objective space Rk consist of objective values
f(x) = (f1(x), f2(x), . . . , fk(x))T and the image of the feasible region is called a feasible objec-
tive region Z = f(S).

In multiobjective optimization, objective vectors are optimal if none of their components
can be improved without deteriorating at least one of the others. More precisely, a decision
vector x′ ∈ S is said to be efficient if there does not exist another x ∈ S such that fi(x) ≤ fi(x

′)
for all i = 1, . . . , k and fj(x) < fj(x

′) for at least one index j. On the other hand, a decision
vector x′ ∈ S is said to be weakly efficient for problem (1) if there does not exist another x ∈ S
such that fi(x) < fi(x

′) for all i = 1, . . . , k. The corresponding objective vectors f(x) are
called (weakly) nondominated objective vectors . Note that the set of nondominated solutions is
a subset of weakly nondominated solutions.

Let us assume that for problem (1) the set of nondominated objective vectors contains more
than one vector. Because it is often useful to know the ranges of objective vectors in the nondom-
inated set, we calculate the ideal objective vector z? = (z?

1 , z
?
2 , . . . , z

?
k)

T ∈ Rk by minimizing each
objective function individually in the feasible region, that is, z?

i = minx∈S fi(x) = minx∈E fi(x)
for all i = 1, . . . , k, where E is the set of efficient solutions. This gives lower bounds for the
objectives. The upper bounds, that is, the nadir objective vector znad = (znad

1 , znad
2 , . . . , znad

k )T ,
can be defined as znad

i = maxx∈E fi(x) for all i = 1, . . . , k. In practice, the nadir objective
vector is usually difficult to obtain. Its components can be approximated using a pay-off table
but in general this kind of an estimate is not necessarily too good (see, e.g., [8] and references
therein.)

Furthermore, sometimes a utopian objective vector z?? = (z??
1 , z??

2 , . . . , z??
k )T is defined as a

vector strictly better than the ideal objective vector. Then we set z??
i = z?

i−ε for all i = 1, . . . , k,
where ε > 0 is a small real number. This vector can be considered instead of an ideal objective
vector in order to avoid the case where ideal and nadir values are equal or very close to each
other. In what follows, we assume that the set of nondominated objective vectors is bounded
and that we have global estimates of the ranges of nondominated solutions available.

All nondominated solutions can be regarded as equally desirable in the mathematical sense
and we need a decision maker (DM) to identify the most preferred one among them. A DM
is a person who can express preference information related to the conflicting objectives and we
assume that less is preferred to more in each objective for her/him. Here we assume that the
DM specifies preferences in the form of reference points.

Typically, when solving multiobjective optimization problems, the multiple objective func-
tions and preferences specified by the DM are combined in real-valued scalarizing functions .
Scalarizing functions can be optimized with appropriate single objective optimization techniques
and they generate (weakly) nondominated solutions for the original problem.

The main scheme of interactive techniques based on reference points [18] is the following.
At each iteration h, the DM must provide desirable values, that is, aspiration levels qh

i for
every objective fi (i = 1, . . . , k), and these levels constitute a reference point qh = (qh

1 , . . . , qh
k )T

reflecting her/his hopes. Next, a scalarizing function known as an achievement (scalarizing)
function is minimized in order to find a solution that best satisfies the hopes expressed. The
DM can then give a new reference point and the iterative solution process continues until the
DM has found the most preferred solution as the final solution and wants to stop.
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An example of an achievement function is given in problem

minimize max
i=1,...,k

[
µh

i (fi(x)− qh
i )

]
subject to x ∈ S,

(2)

where µh
i is a weight assigned to the objective function fi. The solution of problem (2) at

iteration h is denoted by xh and the corresponding objective vector by fh = f(xh). The
solution is (weakly) efficient for any reference point (see, e.g. [8]).

Usually, in reference point based methods the reference point is changed at each iteration,
while the weights are kept unaltered during the whole interactive solution process. The weights
can be set for all i = 1, . . . , k, for example, as

µi =
1

znad
i − z??

i

. (3)

These weights normalize the values of each objective function fi to an approximately similar
magnitude with the other objectives. In what follows, we refer to weights specified in (3) as
basic weights . Another possible normalization is to set µi = 1

|z?
i |

for all i = 1, . . . , k. If here
some ideal objective value is equal or close to zero, we can, for example, set the corresponding
weight to one. Using the latter way instead of (3) avoids the need of calculating nadir objective
values, which may be difficult to approximate reliably.

One possible drawback of the achievement function in (2) is that it is generally nondiffer-
entiable even if the functions in the original problem (1) are all differentiable. However, this
drawback can be overcome if we introduce a new real-valued variable and new constraints and
use an equivalent differentiable formulation

minimize α
subject to µh

i (fi(x)− qh
i ) ≤ α for all i = 1, . . . , k

x ∈ S, α ∈ R.
(4)

There are also other kinds of achievement functions used frequently in the literature. For
example, problem (2) can be replaced by

minimize max
i=1,...,k

[
µh

i (fi(x)− qh
i )

]
+ ρ

k∑
i=1

µh
i (fi(x)− qh

i )

subject to x ∈ S,

(5)

where ρ > 0 is a so-called augmentation coefficient. Problem (5) produces nondominated solu-
tions with bounded trade-offs, which often in practice are more useful than weakly nondomi-
nated solutions (see, e.g., [8, 18] for more details). It has also been shown that augmentation
terms may improve computational efficiency [13].

No matter which achievement function formulation is used, the idea is the same: if the
reference point is feasible, or actually to be more exact, qh ∈ Z + Rk

+, then the minimization
of the achievement function subject to the feasible region allocates slack between the reference
point and nondominated solutions (qh− f(x) ∈ Rk

+) producing a nondominated solution. Here
Rk

+ stands for the nonnegative orthant of Rk
+, that is, Rk

+ = {q ∈ Rk | qi ≥ 0 for i =
1, . . . , k}. In other words, in this case the reference point is nondominated or it is dominated
by some nondominated solution. On the other hand, if the reference point is infeasible, that
is, qh /∈ Z + Rk

+, then the minimization must produce a solution that minimizes the distance
between qh + Rk

+ and Z, see [8, 17]. In what follows, we say that a reference point is feasible
if qh ∈ Z + Rk

+. Otherwise, we say that it is infeasible. We can easily judge the feasibility of
the reference point by studying the sign of the optimal achievement function value.
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Let us point out that even though we in the following sections refer to formulation (2), the
schemes presented do not depend on the form of the achievement function used and any other
formulation could be used as well.

3 Reflecting Preference Information in Weights in Achieve-
ment Functions

When in reference point based methods the DM provides at iteration h a new reference point qh,
(s)he may expect that there exists that kind of a nondominated objective vector, or a solution
very close to it. However, the expectations of the DM may be too optimistic (or pessimistic)
and the reference point given may actually be quite far from the set of nondominated objective
vectors. Let us illustrate this with an example. In Figure 1, we have a reference point qh

and if we use the basic weights, we get the solution fh. However, the reference point could
be projected to any nondominated solution between A and B by using different weights. The
question is, which solution between A and B is the most satisfactory to the DM?

A

B

nadz

*z

hq

hf

Z

1f

2f

Figure 1: Different nondominated solutions for one reference point.

In this section, we propose several schemes to incorporate the DM’s preference information
to weights in reference point based interactive procedures. We suggest the new schemes to be
used so that both the solutions calculated by minimizing the achievement function with the
basic weights and with the new weights proposed are shown to the DM. This is because we do
not claim that the new weights could in all possible situations give a more preferred solution
than the one produced with basic weights.

Depending on which kind of extra information is available from the DM, we define three
cases.

• Case 1: No extra information is available from the DM. Therefore, only information
obtained from the previous iterations about the DM’s choices is considered.

• Case 2: The DM is asked to give a local preference order regarding the achievement of
aspiration levels specified.

• Case 3: The DM is asked to indicate preferences by allocating improvement or relaxation
to current aspiration levels.

Before we concentrate in more detail in the three cases, we must say something about how
to start the interactive reference point based solution process. It is possible that we ask even
the first reference point q0 from the DM. In this case, it is typically useful to first show the
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ideal and the nadir objective values to her/him in order to give some understanding of what
kind of solutions are feasible. Alternatively, we can calculate a so-called neutral compromise
solution [19] as the first solution. This means that we set q0

i = (znad
i + z??

i )/2 as aspiration
levels for i = 1, . . . , k in problem (2). The result is a good starting point when no preference
information is yet available.

3.1 Case 1: No Extra Information Available from DM

If no extra information is available from the DM, the weights are set using preferences revealed
so far in previous iterations. When using interactive methods, it is practical to allow the DM
to save interesting solutions found during the solution process in a database (see, for example
[5, 12]). In other words, the DM can save solutions that seem good candidates as a final solution
although (s)he is not quite satisfied yet.

Here we assume that at least two solutions have been saved in a database and our idea is
to calculate mean values f̄h = (f̄h

1 , . . . , f̄h
k )T of the objective vectors in the database. We then

use these mean values in the weights in order to project the reference point qh in the set of
nondominated solutions in the direction given by the mean values.

At each iteration the DM specifies a reference point and if (s)he finds interesting solutions,
saves them in the database. (S)he can also delete solutions from the database if they become
uninteresting. The weights are set for all i = 1, . . . , k as

µh
i =

1

|qh
i − f̄h

i |
. (6)

After this, we can minimize the achievement function used, for example, by solving problem
(2) or (4). The solution obtained should reflect the hopes of the DM. (If the denominator in
(6) is too close to zero, we use only the basic weights.)

In order to calculate the mean values at iteration h, let us denote by Ah the set of indices
(i.e., iteration numbers) of the solutions saved in the database by the DM at iteration h − 1.
We calculate the arithmetical mean of these solutions as

f̄h
i =

1

nh
A

∑
j∈Ah

f j
i (7)

for each i = 1, . . . , k, where nh
A is the number of solutions in the database.

If the DM is able to specify additional information so that the solutions in the database
are classified, for example, in classes ’very good’, ’good’ and ’fair’, then it is possible to use an
arithmetical weighted mean of the solutions. This means that we consider different weights for
each class and give bigger weights for the better classes. More details of this scheme and other
further ideas are given in the Appendix.

3.2 Case 2: Using Local Preference Order of Aspiration Levels

Next we assume that the DM is able to rank the relative importance of achieving each aspiration
level every time a new aspiration level has been provided. It should be noted here that the DM
is not asked to give any global preference ranking of the objectives, but we are interested in
the local importance of achieving each of the aspiration levels. Let us point out that the DM
is allowed to assign the same importance to several aspiration levels.

After the DM has specified her/his reference point, (s)he assigns objective functions to
classes in an increasing order of importance for achieving corresponding aspiration level. This
importance evaluation allows us to allocate the k objective functions into index sets Jr which
represent the importance levels r = 1, . . . , s, where 1 ≤ s ≤ k. If r < t, then achieving the
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aspiration levels of objective functions in the index set Jr is less important than achieving
aspiration levels of the objectives in Jt. One objective function can only belong to one index
set but, as mentioned earlier, several objectives can be assigned to the same index set Jr. This
means that achieving their aspiration levels is equally important. Here we have different weights
depending on whether the reference point is feasible or not.

If the current reference point is infeasible, the weights for objectives fi with i ∈ Jr are set
as

µh
i =

r

znad
i − z??

i

(8)

for each r = 1, . . . , s. On the other hand, if the reference point is feasible, we set

µh
i =

1

r(znad
i − z??

i )

for i ∈ Jr and r = 1, . . . , s. This scheme allows us to turn ordinal information into cardinal
weights, which is expected to produce a solution that is closer to the DM’s preferences. Note
that the number of importance levels s may be different from one iteration to another.

In the formulas above, differing weights for infeasible and feasible reference points have an
intuitive justification. If the reference point is infeasible, the greater the weight is and the
greater is the importance assigned to achieve the aspiration level because the unachievement
is being penalized more. On the other hand, if the reference point is feasible, the smaller the
weight is and the more the corresponding value of the objective function can be improved,
because unachievement is now desirable.

The feasibility of the current reference point qh can be, for instance, determined by exam-
ining the sign of the achievement scalarization function (2) at the solution xh obtained using
the basic weights (3) and the reference point qh. If the sign of the achievement scalarization
function is strictly negative then the reference point qh is infeasible, otherwise it is feasible.
Because we are proposing that at each iteration the basic solution is also shown to the DM no
additional computation is needed to determine feasibility.

3.3 Case 3: Allowing Changes in Aspiration Levels

Finally, in the third case, we assume that more elaborated information can be obtained from
the DM. Obviously, in this case, the cognitive burden set on the DM is higher, but on the
other hand, the preference information is expected to be more accurate and, consequently, the
solution is expected to be better. We ask the DM to specify percentages how (s)he would
like the improve the current reference point once (s)he has specified it and (s)he has been told
whether it is feasible or not. Naturally, we need two different kinds of questions.

Let us assume that the DM has specified a reference point qh. If the reference point is
feasible, we ask the DM the following question: “Your reference point can be outperformed by
feasible solutions and you can tighten your aspiration levels. Assuming you have one hundred
points available, how would you distribute them among the aspiration levels so that the more
points you allocate, the more improvement on the corresponding objective function value you
wish to achieve?”

If the reference point is infeasible, we ask the DM the following question: “Your reference
point is unachievable and you must relax your aspiration levels. Assuming you have one hundred
points available to relax the aspiration levels, how would you distribute them so that the more
points you allocate, the more the corresponding aspiration level can be relaxed?”

Let us assume that the DM has given ph
i points to the aspiration level qh

i related to the
objective function fi. We set ∆qh

i = ph
i /100. Then we set the weight

µh
i =

1

∆qh
i (znad

i − z??
i )

(9)
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for all i = 1, . . . , k. Then we can minimize the achievement function used and get a solution
that reflects the preferences of the DM. Note that in order to avoid computational problems,
we assume that each objective function is given at least one of the hundred points, that is
1 ≤ ph

i ≤ 100 for i = 1, . . . , k.
Let us point out that here the same formula for weights can indeed be used irrespectively

of the question posed. This is because the points allocated in different questions have different
meanings standing either for improvement in case of a feasible reference point or relaxation in
case of an infeasible reference point.

Once the most appropriate scheme of the three cases introduced has been chosen, as men-
tioned in the beginning of this section, we propose to calculate the corresponding solution
together with the one obtained using basic weights. In this way, the DM is able to choose the
most preferred solution. Finally, let us remind that the preference schemes suggested can be
combined with any achievement function, because we only modify the weights used.

4 Example
In this section, we illustrate the behaviour of the three schemes introduced in Section 3 with a
nonlinear multiobjective optimization problem involving two objective functions of the form

minimize f1(x) = −4x1 − x2

f2(x) = x1 − 2x2

subject to 2x1 + x2 ≤ 6
x2

1 + x2
2 ≤ 9

x1, x2 ≥ 0.

(10)

For this problem, we have the ideal and nadir objective vectors as z? = (−12,−6)T and znad =
(−3, 3)T , respectively. The corresponding feasible objective region Z = {(z1, z2)

T ∈ R2 |
5
81

z2
1 + 17

81
z2
2 + 4

81
z1z2 ≤ 9, 5

9
z1 + 2

9
z2 ≤ 6,−2

9
z1 + 1

9
z2 ≤ 0, 1

9
z2 + 4

9
z2 ≥ 0} is illustrated in Figure

2.

-12 -10 -8 -6 -4 -2

-6

-4

-2

2

-12 -10 -8 -6 -4 -2

-6

-4

-2

2

Z

C

B

A

*z

nadz

Figure 2: Feasible objective region.

As it can be seen in Figure 2, the nondominated set is the curve ABC. Let us now demon-
strate how the three different cases behave in this example.

4.1 Case 1

Let us suppose that the DM has specified four reference points and obtained corresponding
solution as follows: q1 = (−11.5,−3)T and f1 = (−10.14,−1.64)T , q2 = (−5.4,−5.8)T and f2 =
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(−5.0,−5.4)T , q3 = (−6.75,−5.5)T and f3 = (−6.19,−4.94)T and finally q4 = (−10.0,−5.5)T

and f4 = (−8.35,−3.85)T . At the moment (s)he finds the first and the fourth solution the most
interesting and saves them in the database.

Their arithmetic mean as defined in (7) is f̄ = (−9.25,−2.75)T . If the DM wants to
improve the value of the first objective function from f4 and provides a new reference point
q5 = (−9.75,−5.75)T , after solving problem (4), we get the solution f5 = (−9.32,−3.21)T .
This is the projection of the reference point in the nondominated set. Let us mention that if we
had used basic weights (3), we would have obtained solution f5

b = (−8.03,−4.03)T , which does
not correspond to the DM’s wish of improving the first objective value so well. The solution
process is depicted in Figure 3.
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Figure 3: Case 1 with the example problem.

4.2 Case 2

Now we assume that the DM has provided an infeasible reference point q1 = (−8.5,−5.75)T and
the preference order ranking 2, 1 for achieving the aspiration levels, that is, it is more important
to achieve the aspiration level of the first objective function. Then the weights defined by (8)
are

µµµ1 =

(
2

9
,
1

9

)T

.

When problem (4) is solved with this information, we obtain f1 = (−7.73,−4.20)T . On the other
hand, if we had used the basic weights, we would have obtained solution f1

b = (−7.22,−4.47)T ,
which has a higher, that is, worse value for f1.

We can also demonstrate what happens if the DM specifies a feasible reference point. Let
us assume that the DM sets q2 = (−4.0,−4.0)T . In this case, the weights are µµµ2 =

(
1
18

, 1
9

)T

and the solution obtained is f2 = (−6.02,−5.01)T . If we had used basic weights, we would have
obtained solution f2

b = (−5.29,−5.29)T . The solutions are depicted in Figure 4.

4.3 Case 3

Finally, let us again assume that the DM has specified a reference point q1 = (−8.5,−5.75)T .
Because it is infeasible, we ask the DM: “Your reference point is unachievable and you must
relax your aspiration levels. Assuming you have one hundred points available to relax the aspi-
ration levels, how would you distribute them so that the more points you allocate, the more the
corresponding aspiration level can be relaxed?”
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Figure 4: Case 2 with the example problem.

Let us suppose that the DM distributes the points so that the first aspiration level gets
25 points and the second gets 75 points. In other words, it is more important for the DM to
achieve the aspiration level of the first objective function. Now we can get the weights (9) as

µµµ1 =

(
4

9
,

4

27

)T

.

After solving problem (4) with these weights and reference point q1, we get the solution f1 =
(−7.94,−4.08)T . On the other hand, with basic weights, we would have obtained the same
solution as mentioned in Case 2, that is, f1

b = (−7.22,−4.47)T , which again has a higher value
for f1. In other words, our weights could produce a better solution.

If the DM gives a feasible reference point q2 = (−4.0,−4.0)T as in Case 2 and distributes
the points for improving aspiration levels as 25 and 75 for the first and the second objective
respectively, we get weights µµµ2 =

(
4
9
, 4

27

)T and the solution is f2 = (−4.52,−5.56)T . With basic
weights, the solution would have been f2

b = (−5.29,−5.29)T as in Case 2.

5 Computational Tests
We have carried out several computational tests in order to compare the performances of
our three weighting schemes to the solutions generated by using basic weights. With four
multiobjective optimization problems we have tested all the three cases with real decision
makers and, in addition, Cases 2 and 3 with three different types of value functions. In other
words, in the latter type of tests, we have replaced the responses of the DM by value functions.
In each test, we compared the solution of the particular case to the solution obtained with basic
weights. We used two settings of tests, Test I and Test II. In the first setting, Test I, we used
several single reference points and the solution minimizing the achievement scalarizing function
was found using each weighting scheme. In this test setting, we assumed that our weighting
schemes would produce better solutions than basic weights. In the second test setting, Test
II, an interactive solution process was carried out with each weighting scheme and we assumed
that the number of solutions that had to be generated before finding the most preferred solution
should be smaller with our weighting schemes.

In the tests we used the four following problems:
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Problem caballeroreyruiz2:

minimize f1(x) = 50x4
1 + 10x4

2

f2(x) = 30(x1 − 5)4 + 100(x2 − 3)4

f3(x) = 70(x1 − 2)4 + 20(x2 − 4)4

subject to g1(x) = (x1 − 2)2 + (x2 − 2)2

1 ≤ x1 ≤ 3
1 ≤ x2 ≤ 3

Problem chankonghaimes:

minimize f1(x) = (x1 − 1)2 + (x2 − 1)2

f2(x) = (x1 − 2)2 + (x2 − 3)2

f3(x) = (x1 − 4)2 + (x2 − 2)2

subject to g1(x) = x1 + 2x2 − 10 ≤ 0
0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 4

Problem peakfunctions:

minimize f1(x) = φ(x1, x2)
f2(x) = φ(x1 − 1.2, x2 − 1.5)
f3(x) = φ(x1 + 0.3, x2 − 4.0)
f4(x) = φ(x1 − 1.0, x2 + 0.5)
f5(x) = φ(x1 − 0.5, x2 − 1.7)

subject to −4.9 ≤ x1 ≤ 3.2
−3.5 ≤ x2 ≤ 6.0

where

φ(x1, x2) = −3(1− x1)
2e−x2

1−(x2+1)2 + 10(
1

4
x1 − x3

1 − x5
2)e

−x2
1−x2

2 − 1

3
e−(x1+1)2−x2

2

Problem peakfunctions_mod:

minimize f1(x) = φ(x1, x2)
f2(x) = φ(x1 − 1.2, x2 − 1.5)

subject to −4.9 ≤ x1 ≤ 3.2
−3.5 ≤ x2 ≤ 6.0

where φ(x1, x2) is like in the peakfunctions problem.
Problems caballeroreyruiz2, chankonghaimes, and peakfunctions are described in [13], and

peakfunctions_mod is a reduced version of the peakfunctions problem.

5.1 Tests with human DMs

In Test I, each DM specified several different reference points for every problem and graded the
solution obtained (with achievement functions using weighting schemes in Cases 1–3 and basic
weights) using a scale 1–5 reflecting how well her/his expectations were satisfied (5 indicated
that (s)he was very satisfied with the solution obtained). In Test II, DMs solved each test
problem four times (one for each weighting scheme) but this time using an interactive reference
point method incorporating weighting schemes of Cases 1–3 or basic weights and in each test
the aim was to find the most preferred solution. They graded the final solutions obtained
using the scale 1–5. In addition, we recorded the number of iterations used, that is, how many
reference points were needed before the final solution was found.
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Test I Test II Test II
Grades Grades No. of iterations

mean differ. mean differ. mean differ.
Basic 2.75 4.13 6.79

caballeroreyruiz2 2.65 4.00 6.86
chankonghaimes 2.65 4.33 7.14
peakfunctions 2.75 3.61 6.86
peakfunctions_mod 2.95 4.56 6.29

Case 1 3.07 0.32 4.25 0.13 4.96 -1.83
caballeroreyruiz2 3.23 0.58 4.00 0.00 4.86 -2.00
chankonghaimes 3.28 0.63 4.50 0.17 5.29 -1.85
peakfunctions 2.78 0.08 3.50 -0.11 4.86 -2.18
peakfunctions_mod 3.00 0.05 5.00 0.44 4.86 -1.43

Case 2 3.76 1.01 4.67 0.54 5.56 -1.23
caballeroreyruiz2 3.83 1.18 5.00 1.00 5.75 -1.11
chankonghaimes 3.85 1.20 4.67 0.34 5.50 -1.64
peakfunctions 3.60 0.85 4.00 0.39 6.13 -0.73
peakfunctions_mod 3.75 0.80 5.00 0.44 4.88 -1.41

Case 3 3.78 1.03 4.67 0.54 5.44 -1.35
caballeroreyruiz2 3.78 1.13 5.00 1.00 5.50 -1.36
chankonghaimes 3.65 1.00 4.67 0.34 5.00 -2.14
peakfunctions 3.78 1.03 4.00 0.39 6.38 -0.48
peakfunctions_mod 3.90 0.95 5.00 0.44 4.88 -1.41

Table 1: Tests with human DMs, average values

In Table 1, we summarize average values for the grades given in Tests I and II and numbers
of iterations for Test II in columns ’mean’. For the convenience of the reader, we list the
differences between the average values related to basic weights and each case in the columns
’differ’. Each value marked in bold is an overall average value of mean values computed for a
particular problem. For instance, overall average grade of mean grades for Case 2 in column
’Test II, Grades’ is 4.67. In column ’Test II, No. of iterations, differ.’ negative values indicate
that when solving problem with Case 1, Case 2, or Case 3 the DMs used in average less
iterations than with the basic scheme. Let us point out that the separate negative value −0.11
at row ’Case 1, peakfunctions’ and column ’Test II, Grades, differ.’ means that the DMs have
in average experienced that in the case of peakfunction problem Case 1 produced less satisfying
results when compared to the basic scheme.

5.2 Automated tests without DMs

In addition to tests carried out with human DMs, we have designed a couple of automated tests
to study the behavior of weighting schemes proposed. In these tests, we simply replaced the
DM with a value function (see for instance [16]). Let us point out that designing a good general
automated testing procedure is not a trivial task and, therefore, we decided to use a relatively
simple approach where artificial parameters are avoided as far as possible. The automated tests
were carried out for Cases 2 and 3 as well as for basic weights for each test problem and each
value function. Case 1 was left out from the automated tests because it is more difficult to
design intuitive tests for it. The automated tests are based on Test I and Test II where the DM
is replaced with one of the following three (linear, quadratic and exponential) value functions:
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Case problem quad exp lin Avg
Case2 69%

caballeroreyruiz2 69% 81% 64% 71%
chankonghaimes 75% 81% 60% 72%
peakfunctions 55% 75% 67% 66%
peakfunctions_mod 74% 79% 46% 66%

Case3 73%
caballeroreyruiz2 79% 70% 74% 74%
chankonghaimes 83% 71% 59% 71%
peakfunctions 67% 87% 78% 77%
peakfunctions_mod 72% 81% 53% 69%

Table 2: Test I using randomized points and value functions

Uquad(f(x)) = 100

(
1−

∑k
i=1 ωi

(
fi−z?

i

znad
i −z?

i

)2
)

Uexp(f(x)) = 100
(
k −

∑k
i=1 exp

(
ωi

fi−z?
i

znad
i −z?

i

))
Ulin(f(x)) = 100

(
1−

∑k
i=1 ωi

fi−z?
i

znad
i −z?

i

)
where weights ωi>0,

∑k
i=1 ωi = 1, were used to simulate the DM’s preferences. A large weight

ωi, for some i = 1, . . . , k, reflects that the objective fi is important for the DM.
In Test I, 100 random reference points q = (q1, . . . , qk)

T were generated with qi ∈ [z?
i , z

nad
i ]

for all i = 1, . . . , k. Using each reference point q a solution was obtained by solving problem
(2). For Case 2 and 3 the weights were set using the gradient vector of the value function at the
reference point considered. In Case 2, the weights µi, i = 1, . . . , k, were set using formula (8)
where the ranking r was determined directly by the value of ∂U(q)

∂fi
, where a large value means a

more important objective. For Case 3, points ph
i in formula (9) were obtained using an integer

part of 100∂U(q)
∂fi

/
∑k

j=1
∂U(q)
∂fj

for every i = 1, . . . , k.
The results of Test I are summarized in Table 2 where values reported indicate how many

times the use of Case 2 or Case 3 produced a better solution than the basic scheme. Columns
’quad’, ’exp’, and ’lin’ show average results for individual value functions in the case of each
problem, and column ’Avg’ shows an average of all results. Values marked in bold are overall
averages for each particular weighting scheme. We can see that 69% of 100 randomly generated
reference points in Case 2 produced a solution with a better value function value when compared
to the solution obtained with the basic scheme using the same reference point. For Case 3, the
corresponding average was 73%.

Algorithm 1 describes the testing procedure that was used in the automated Test II. The al-
gorithm proceeds in such a way that on line 3 we first initialize the reference point q ∈ [z?, znad],
set parameters α ∈ (0, 1), and a limit for maximum iterations hmax. In our tests, these parame-
ters was set as α = 0.5 and hmax = 30. The function U : Rk → R is a value function used. It is
assumed that the value function was maximized. On line 10, the function SetWeight(∇U(qh))
means that the weights are set using the gradient of the value function at the reference point
qh considered (this was shortly explained in the description of automated Test I). The function
MinACH(qh, µh) on line 11 means that the achievement scalarizing function problem (2) is
solved using the reference point qh and weights µh.

Figure 5 demonstrates how Algorithm 1 works. At the first iteration (h = 1), a Pareto
optimal objective vector fh is obtained using the initial reference point qh by minimizing the
achievement scalarizing function (2). After the first iteration, every new reference point qh is
determined from the current objective vector fh−1 in direction ∇U(fh−1). A real number βh
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Algorithm 1 Automated testing procedure for Test II
1: h← 1
2: u2 ← −∞
3: Initialize(qh, α, hmax)
4: repeat
5: if h > 1 then
6: βh ← min

i=1,...,k
{βi : βi =

(z?
i −fi)

∂U
∂fi

(fh)
≥ 0}

7: qh ← fh + αβh∇U(fh)
8: u2 ← u1

9: end if
10: µh ← SetWeight(∇U(qh))
11: xh ← MinACH(qh, µh)
12: fh ← f(xh)
13: u1 ← U(fh)
14: h← h + 1
15: until u1 ≤ u2 or h ≥ hmax

is used to scale the vector ∇U(fh−1) in such a way that the vector bh = fh−1 + β∇U(fh−1) is
located on the hyperplane which contains the ideal objective vector z? and has a normal vector
ei ∈ Rk, where ei

i = 1, for some i = 1, . . . , k, and ei
j = 0 for all j = 1, . . . , k and j 6= i.
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Figure 5: An iteration of automated Test II

In Algorithm, 1 the formula on 6 is derived from a standard line–plane intersection formula.
The parameter α can be used to select how far each new generated reference point qh is from
the objective vector fh−1. The reference point qh generated is at each iteration used to obtain
the next Pareto optimal objective vector fh.

Algorithm 1 is stopped if the most recent solution has a lower value function value than
the previous solution, or if the maximum number of iterations hmax is reached. Let us point
out that if the first stopping condition in Algorithm 1 is fulfilled, the solution obtained at the
previous iteration is considered as the final solution. In Figure 5, objective vector f(xmax)
(marked with a rectangle) indicates the maximal value of the value function considered.
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Case problem quad exp lin Avg
Case2 60%

caballeroreyruiz2 80% 100% 40% 73%
chankonghaimes 100% 60% 40% 67%
peakfunctions 40% 80% 80% 67%
peakfunctions_mod 0% 20% 80% 33%

Case3 65%
caballeroreyruiz2 100% 100% 40% 80%
chankonghaimes 100% 60% 40% 67%
peakfunctions 40% 80% 60% 60%
peakfunctions_mod 0% 100% 60% 53%

Table 3: Test II using iterative procedure and value functions

In the automated tests related to Test II, we generated five reference points for each problem.
These random reference points were used as an initial reference points for Algorithm 1, and a
separate test runs were carried out for each value function. Table 3 contains the summary of
these test runs, and it summarizes the results in the situation where we compared solutions at
the last such iteration where both the schemes (basic and either Case 2 or Case 3) produced
a solution (the idea is to compare the schemes when they had used a comparable amount of
computation).

The test result summary in Table 3 can be interpret like Table 2 for the automated Test I.
In Case 2, for instance, 60% of all initial reference points, used in Algorithm 1, produced a final
solution with a better value function value than the basic scheme. The corresponding number
for Case 3 was 65%. One can say that the results of Test II are worse than those obtained
in Test I. The differences in the results of the automated Test I (Table 2) and Test II (Table
3) can be partly explained with limitations of Algorithm 1, and on the other hand, with the
small number of initial reference points used. If we, for instance, in Table 3 compare problem
’peakfunctions’ to ’peakfunctions_mod’ we notice that for the some reason the latter one seems
to be more difficult for Case 2 and Case 3. However, the problem ’peakfunctions_mod’ is a
reduced version of ’peakfunctions’ and intuitively it should be easier.

A summary of the results of automated tests is given in Table 4. In the first row, we compare
the solutions obtained using weighting scheme of Case 2 to basic weights and in the second
row we compare Case 3 and basic weights. The percentage values in the first two columns
indicate how often Case 2 or Case 3 produced a solution with a higher value function value
than when using basic weights. These values are taken directly from Tables 2 and 3. The
last two columns summarize the average improvements in the optimal value function values
in Case 2 or 3 when compared to basic weights. In the third column we, report the average
improvement for optimal value function values for Test I and in the fourth column the same
for Test II (when corresponding iterations were compared). For example, according to Table
4, in Test I when using weighting scheme Case 2 the average increase in the optimal value of
the value function was 224% for those solutions which had a better value function value when
compared to solutions with basic weights. We can notice that the percentage values in the last
two columns of Table 4 are rather high and this is mainly due the fact that differences in the
exponential value function values were quite large (even though values were normalized with
the maximal values).

Finally, let us point out that the automated test framework presented in Algorithm 1 for
Test II is in a general case working only a local sense and, furthermore, it is not guaranteed
to converge to a point where the value function value is close to the maximal obtainable value
function value. In other words, the test procedure might get stuck, for instance, in such a case
where the gradient vector of the value function at some solution is parallel (or very close) to
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Percentage of better solutions Mean percentage improvement
Test I Test II Test I Test II

Case 2 69% 60% 224% 625%
Case 3 73% 65% 345% 287%

Table 4: Average results of automated tests

the projection direction. This might happen especially when a linear value function is used. In
addition, the testing procedure presented may also get stuck when the Pareto optimal surface
in the objective space is disconnected or highly nonlinear. If the testing procedure gets stuck,
it does not necessarily simulate the behavior of any DM anymore. One more problem with this
testing procedure is related to a proper stopping condition, that is, how the stopping condition
should be set in such a way that the comparison of different weighting schemes is possible in a
meaningful way.

6 Discussion
As we mentioned earlier, the new weighting schemes suggested do not always produced better
solutions than basic weights. Their success depends, for example, on the problem in question
and the consistency of answers given by the DM. In any case, our tests reported indicate that
the new weights produce better solutions in the majority of tests. This confirms that the new
weighting schemes are useful.

As far as Case 1 is concerned, we can see in Table 1 that the number of iterations used was
smaller than the rest of cases (including basic weights) but the grades are worse in both Tests
I and II. A probable reason for this is that the DMs felt they could not find better solutions.

We must point out that Case 1 does not necessarily perform well if the DM has saved
very different kinds of objective vectors in the database. In particular, if the mean objective
vector of the solutions saved in the database is not located in the set qh + Rk

+, it may be
wise not to use the weight scheme proposed. This is because the projected reference point will
always be in the above-mentioned set, which may be undesirable in this case. Thus, our ideas
can be considered most fruitful once the DM has passed the first learning phase of the solution
process. Otherwise, the weighting used will hinder the DM from getting very different solutions
from the saved ones because the weights force the solution to be close to the saved solutions.
In other words, when the DM has learned to know the basic possibilities and limitations of
the problem, we can expect that the reference points do not necessarily change radically from
iteration to iteration but they rather converge toward the final solution and we can rely more
on the solutions saved in the database. This justifies our assumption that the DM updates
the set of solutions during the solution process and deletes solutions that become uninteresting
during the search.

In any case, we have suggested our weighting scheme to be used together with basic weights
so that the DM always gets to see both the solutions and has the possibility to select the most
preferred one to continue with. The joint use of the two weighting schemes can help the DM
to identify solutions that are not as interesting as (s)he may have thought.

Based on our experiments we can say that the weighting scheme in Case 2 seems to be the
most intuitive and least demanding approach for the DM. The results support our claim that it
outperforms the basic weight scheme in a majority of cases. However, the conversion used from
an ordinal scale into a cardinal scale is rather rough. This means that with more objectives
the ratio between different weights is not equal. It would naturally be possible to formulate
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weights with an equal ratio for all objectives, for example, for each i ∈ Jr as

µh
i =

pr−1

znad
i − z??

i

with p > 1 being the constant proportion. However, we want to keep our weighting schemes as
simple as possible and, thus, do not use this formulation.

According to our experiments, the questions posed in Case 3 allow the DM to give more
accurate information about her/his preferences and thus, it overcomes the drawbacks previously
described for Case 2. But, on the other hand, this information needs more cognitive effort to
be provided and, thus, the DM can make more inconsistencies than in Case 2. This idea is
supported by the fact that the results obtained for Case 3 in the automatic tests are better than
those of Case 2, but this is not the case with tests involving human DMs, specially if we take
into account the number of iterations taken. This means that DMs may find it more difficult
to iterate in Case 3. After the tests, we asked the human DMs to judge the relation involving
effort needed versus results obtained for each Case and for basic weights. The fact that the
DMs gave a higher rating to Case 2 than for others, supports the above-mentioned idea.

Let us point out that when we state in Case 3 that the reference point is not feasible, we
mean that all of its components cannot be achieved (or outperformed) simultaneously. But
still one or more components could be achievable. When asking the DM to relax the reference
point, we do not mean that all the components should actually be relaxed to obtain a solution.
Rather than that, the question is related to the relaxation amounts given by the DM as a
measure of importance in achieving each aspiration level.

7 Conclusions
We have suggested several new ways of taking preference information coming from the DM more
closely into account in interactive reference point based methods developed for multiobjective
optimization. Our goal is to be able to produce solutions that are more satisfactory to the
DM than the ones produced with standard approaches. In this way, the DM can find the final
solution with less iterations.

We have proposed three different weighting schemes depending on how much information
we have available from the DM. The treatment differs depending on whether the reference point
specified by the DM is feasible or not. We have also tested our schemes numerically and the
results support the usability of our ideas. Nevertheless, as it has also been reported, the basic
weighting scheme may produce better results in some cases. This is why we recommend to use
our weighting schemes together with the basic one in each case, and to let the DM choose the
best solution.
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Appendix
In Section 3, we mentioned in Case 1 some variants for the weighting scheme proposed. Because
we assume in Case 1 that no extra preference information is available from the DM, such infor-
mation must be inferred from the DM’s reactions during the previous iterations of the solution
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process. Obviously, the DM’s preferences can be misinterpreted when very little information is
available. Therefore, it may be useful to have some other schemes available. In what follows,
we suggest other possible approaches for Case 1.

Case 1.A

Let us suppose that the DM is able to classify the solution in the database into three classes,
like ’very good’, ’good’ and ’fair’. Let us denote the indices of the solutions assigned to these
classes by Ih

1 , Ih
2 and Ih

3 , respectively. Furthermore, the numbers of solutions in each class are
denoted by nh

1 , nh
2 and nh

3 , respectively. Now an arithmetical weighted mean can be calculated
for each i = 1, . . . , k as

f̄h
i =

1

C

3∑
l=1

∑
j∈Ih

l

(4− l)f j
i ,

where C is a normalizing constant, defined by

C = 3nh
1 + 2nh

2 + nh
3 .

If the DM provides different preference grades of the solutions saved in the database, by
using Case 1.A, we can reflect the DM’s preferences better in the calculated mean. Therefore,
the importance grade is calculated taking into account the dispersion of the objective vectors
of the database.

Case 1.B

Depending on the nature of the problem considered, two reference points located relatively
close to each other can produce significantly different solutions. This may be useful at initial
stages of the solution process, when the DM is exploring the nondominated set. But it may
be undesirable in later iterations when the DM wants to concentrate on some part of the
nondominated set. In this case, if aspiration levels of two consecutive iterations for a given
objective function are very close to each other, we can interpret that the DM is satisfied with
that value of the corresponding objective function. In order to take this possibility into account,
we can augment the scheme introduced in Case 1 by introducing a new constraint to problem
(2) at the current iteration h.

Let us suppose that the aspiration level qh
i is close enough to the aspiration level qh−1

i of
the previous iteration. We can measure closeness as

100

(
|qh

i − qh−1
i |

znad
i − z??

i

)
≤ Pmin, (11)

where Pmin is a minimum allowed percentage difference in aspiration levels (for example, Pmin =
5% or Pmin = 1%). Let Sh be the set of indices of objective functions for which their aspiration
levels satisfy (11). Then new constraints can be added to problem (1) for such objectives. To
be more precise, the problem to be solved is

minimize max
i=1,...,k

[
µh

i (fi(x)− qh
i )

]
subject to fi(x) ≤ fh−1

i + δh
i for all i ∈ Sh

x ∈ S,

(12)

where δh
i is a given tolerance, for example, δh

i = |qh
i − qh−1

i | for all i ∈ Sh. Note that the new
constraints are valid for one iteration only.
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Because the new constraints can be very restrictive in some cases, we propose to calculate
both the solution fh

c of (12) (where the weights are specified as in Case 1) and the solution fh

obtained without adding the new constraints, that is, by solving problem (2) with the weights
defined in Case 1. Then both the solutions, together with the basic one, are shown to the DM
who can choose the one (s)he prefers.

Let us point out that problem (12) always has feasible solutions because fh−1 is a feasible
objective vector. A graphical representation of Case 1.B is given in Figure 6, where qh

2 is very
close to qh−1

2 .
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Figure 6: Example where aspiration levels of consecutive iterations are close to each other.
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