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ABSTRACT 

In this paper, we discuss ideas of incorporating preference information into 
evolutionary multiobjective optimization and propose a preference-based evolutionary 
algorithm that can be used as an integral part of an interactive algorithm that we also 
introduce. At each iteration of the interactive algorithm, the DM is asked to give 
preference information in terms of his/her reference point consisting of desirable 
aspiration levels for objective functions. The information is used in an evolutionary 
algorithm that generates a new population by combining the fitness function with an 
achievement scalarizing function containing the reference point. In the field of 
multiple criteria decision making, achievement scalarizing functions are widely used 
for projecting the reference point into the Pareto optimal set. In our approach, the next 
population is more concentrated in the area where more preferred alternatives are 
assumed to lie and the whole Pareto optimal set does not have to be generated with 
equal accuracy. The approach is demonstrated by numerical examples.  

Keywords: Multiple objectives, multiple criteria decision making, preference 
information, reference point, achievement scalarizing function 

1 Introduction 

Most real-life decision and planning situations involve multiple conflicting criteria 
that should be considered simultaneously. The term multiple criteria decision making 
(MCDM) or multiobjective optimization refers to solving such problems. For them, it 
is characteristic that no unique solution exists but a set of mathematically equally 
good solutions can be identified. These solutions are known as efficient, 
nondominated, noninferior or Pareto optimal solutions. In the MCDM literature, they 
are often seen as synonyms.  

In the MCDM literature, the idea of solving multiobjective optimization problem is 
understood as helping a human decision maker (DM) in considering the multiple 
criteria simultaneously and in finding a Pareto optimal solution that pleases him/her 
the most. Thus, the solution process always requires the involvement of the DM and 
the final solution is determined by his/her preferences.  Usually, decision support 
systems operate iteratively generating Pareto optimal solutions based on some rules 
and the DM makes choices and specifies preference information. Those choices are 
used to lead the algorithm to generate more Pareto optimal solutions until the DM 
reaches the most satisfactory, that is, the final solution. In other words, not all Pareto 
optimal solutions are generated but only those ones the DM finds interesting. 

On the other hand, evolutionary multiobjective optimization (EMO) methods take a 
different approach to solving multiobjective optimization problems. It is also 
important to note that when compared to the MCDM literature, there is a difference in 
terminology. EMO approaches generate a set of nondominated solutions which is a 
representation approximating the Pareto optimal set (which remains unknown and, 
thus, Pareto optimal and nondominated solutions are not synonyms) and do not 
involve the DM in this. So far, rather little interest has been paid in the literature to 
choosing one of the nondominated solutions as the final one. However, there typically 
is a need to identify such a solution indicating which values the decision (or, e.g., 
design) variables should have in order to get the best possible values for the 
conflicting criteria. The difficulty of identifying the best nondominated solutions is 
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even more evident when there are more than two criteria and it, thus, is difficult to 
display the set of nondominated solutions. 

Helping DMs in solving multiobjective optimization problems has been the subject 
of intensive studies since the beginning of the 1970's (see, e.g., Benayoun et al. 1971, 
Geoffrion et al. 1972 and Zionts and Wallenius 1976). However, many theoretical 
concepts were defined much earlier (see, e.g., Koopmans 1971, Kuhn and Tucker 
1951 and Pareto 1906) and, actually, many ideas originated from the theory of 
mathematical programming.  

Surveys of methods developed for multiobjective optimization problems include 
Chankong and Haimes (1983), Hwang and Masud (1979), Miettinen (1999), Sawaragi 
et al. (1985) and Steuer (1986). For example, in Hwang and Masud (1979) and 
Miettinen (1999), multiobjective optimization methods are classified into four classes 
according to the role of the DM in the solution process. Sometimes, there is no DM 
available and in this case some neutral compromise solution is to be identified. Such 
no-preference methods must be used if no preference information is available. In a 
priori methods, the DM articulates preference information and one’s hopes before the 
solution process. The difficulty here is that the DM does not necessarily know the 
limitations of the problem and may have too optimistic hopes. Alternatively, a set of 
Pareto optimal solutions can be generated first and then the DM is supposed to select 
the most preferred one among them. Typically, evolutionary multiobjective 
optimization algorithms belong to this class of a posteriori methods. If there are more 
than two criteria in the problem, it may be difficult for the DM to analyze the large 
amount of information and, on the other hand, generating the set of Pareto optimal or 
nondominated alternatives may be computationally expensive.  

The drawbacks of both a priori and a posteriori methods can be overcome if there 
is a DM available who is willing to participate in the solution process and direct it 
according to her/his preferences. So-called interactive methods form a solution pattern 
which is iteratively repeated as long as the DM wants. After each iteration, the DM 
gets to see one or some Pareto optimal solutions that obey the preferences expressed 
as well as possible and (s)he can specify more preference information. This can be, 
for example, in the form of trade-offs, pairwise comparisons, aspiration levels, 
classification, etc. The responses are used to generate presumably improved solutions. 
In this way, the DM can learn about the problem and fine-tune one’s preferences if 
needed. The ultimate goal is to find the solution that satisfies her/him the most. 
Interactive methods are computationally inexpensive because only such Pareto 
optimal solutions are generated that are interesting to the DM.  

Besides using different types of preference information, interactive methods also 
differ from each other in the way the information is utilized in generating new, 
improved solutions and what is assumed about the behaviour of the DM. Typically, 
different methods convert the original multiple objectives as well as the preference 
information into an optimization problem with a single objective function using a so-
called scalarizing function. The resulting problem is then solved with some 
appropriate single objective solver. When dealing with real-life problems, there may 
be integer-valued variables or nonconvex or nondifferentiable functions involved, 
which sets requirements on the solvers used. 

As discussed above, including DM's preferences is important when dealing with 
multiobjective optimization problems, as the aim is to help the DM to find the most 
preferred solutions without exploring the whole set of Pareto optimal solution and 
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lead him/her to a better knowledge of the problem being solved. However, the number 
of EMO methods including DM's preferences is relatively small in contrast to the 
number of interactive approaches found in the MCDM literature. Only some works 
can be found combining EMO and interactive methods. Coello (2000) has presented a 
wide survey on including preferences when using a multiobjective evolutionary 
method. The most representative research reported in this survey is the following: 

Fonseca and Fleming (1993) probably suggested the earliest attempt to incorporate 
preferences, and the proposal was to use MOGA together with goal information as an 
additional criterion to assign ranks to the members of a population. Greenwood et al. 
(1997) used value functions to perform the ranking of attributes, and also incorporated 
preference information into the survival criteria. Cvetkovic and Parmee (1999, 2002) 
used binary preference relations (translated into weights) to narrow the search. These 
weights were used in some different ways to modify the concept of dominance. 
Rekiek et al. (2000) used the PROMETHEE method to generate weights for an EMO 
method. On the other hand, Massebeuf et al. (1999) used PROMETHEE II in an a 
posteriori form: an EMO generates nondominated solutions and PROMETHEE II 
selected some of them based on the DM’s preferences. Deb (1999a) used variations of 
compromise programming to bias the search of an EMO approach. Finally, in Deb 
(1999b) the DM was required to provide goals for each objective. 

More recently, some other approaches have been published, as in Phelps and 
Koksalan (2003), where pairwise comparisons were used to include DM’s preferences 
in the fitness function.  In the guided multi-objective evolutionary algorithm (G-
MOEA) proposed by Branke et al. (2001) user preferences were taken into account 
using trade-offs, supplied by the DM, to modify the definition of dominance. In 
Branke and Deb (2004), two schemes are proposed to include preference information 
when using an EMO (they used the NSGA-II for testing): modifying the definition of 
dominance (using the guided dominance principle of G-MOEA) and using a biased 
crowding distance based on weights.  

Finally, in Deb et al. (2005), preferences were included through the use of 
reference points. The main difference to our approach, as will be shown later, is that 
we directly use reference point information (in an achievement scalarization function 
that will also be defined later) in an indicator-based evolutionary algorithm IBEA 
(see, Zitzler and Kuenzli, 2004).  

In this paper, we suggest a new hybrid approach where we combine ideas from 
both evolutionary and interactive multiobjective optimization. The principle is to 
incorporate preference information coming from a DM in the evolutionary approach. 
Here, we are not interested in approximating the whole Pareto optimal set. Instead, we 
first give a rough approximation, and then generate a more accurate approximation of 
the area where the DM’s most satisfactory solution lies. In practice, the DM is asked 
to give preference information in terms of his/her reference point consisting of 
desirable aspiration levels for objective functions. This information is used in a 
preference-based evolutionary algorithm that generates a new population by 
combining the fitness function and a so-called achievement scalarizing function 
containing the reference point. The next population is more concentrated in the area 
where more preferred alternatives are assumed to lie. With the new evolutionary 
approach, the DM can direct the search towards the most satisfactory solution but still 
learn about the behaviour of the problem, which enables her/him to adjust one’s 
preferences. It is easier to specify the reference point after the DM has seen a rough 
approximation of Pareto optimal solutions available but the approximation only has to 
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be improved in quality in the interesting parts of the Pareto optimal set. Because 
evolutionary algorithms set no assumptions on the differentiability, convexity or 
continuity of the functions involved, the approach can be used in solving complicated 
real-life problems.  

The rest of this paper is organized as follows. In Section 2, we introduce the basic 
concepts and notations of multiobjective optimization. Section 3 is devoted to 
discussion on different ways of handling preference information. We pay special 
attention to reference point based methods and achievement scalarizing functions. We 
introduce our preference based interactive algorithm in Section 4 and demonstrate 
how it works with some examples in Section 5. Finally, we draw some conclusions in 
Section 6. 

2 Multiobjective optimization 

A multiobjective optimization problem can be written in the form 

minimize f(x) = (f1(x),..., fk(x))               (2.1) 

subject to x ∈ X, 

where X ⊂ ℜn is a feasible set of decision variables and f: ℜn → ℜk.  The space ℜn is 
called a variable space and the functions fi, i = 1, 2, …, k are objective functions or 
criteria. The k-dimensional space ℜk is the so-called criterion space and its subset, 
the image of the feasible set, called as a feasible criterion region, can now be written 
as Q = {q ⏐ q = f(x), x ∈ X}. The set Q is of special interest and most considerations 
in multiobjective optimization are made in the criterion space.  

Problem (2.1) has several mathematically equivalent solutions. They are called 
efficient, nondominated, noninferior or Pareto optimal (sometimes in the MCDM 
literature some of these concepts are associated with decision and the others with 
criterion spaces). Any choice from among the set of Pareto optimal solutions is 
impossible, unless we have additional information available about the DM's 
preference structure. To be more specific, we have the following definitions: 

Definition 1. In (2.1), a vector f(x), x ∈ X, is said to dominate another vector f(y), y ∈ 
X, if fi(x) ≤ fi(y) for all i = 1, 2, …, k, and the inequality is strict for at least one i.

Definition 2. In (2.1), f(x*), x* ∈ X, is nondominated if there does not exist another x 
∈ X such that f(x) dominates f(x*). 

Sometimes, we use the concept of weakly nondominated solutions. The set of 
nondominated solutions is a subset of weakly nondominated solutions. 

Definition 3. In (2.1), f(x*), x* ∈ X, is weakly nondominated if there does not exist 
another x ∈ X such that fi(x) < fi(x*) for all i = 1, 2, …, k. 

The set of all nondominated solutions is called the nondominated or Pareto optimal 
set. The final (“best”) solution of problem (2.1) is called the most preferred solution. 
It is a nondominated solution preferred by the DM to all other solutions.  
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3 On preference information in different methods 

Several dozens of methods have been developed during the last over 30 years to 
address multiobjective optimization problems see, for example, Chankong and 
Haimes (1983), Hwang and Masud (1979), Miettinen (1999), Sawaragi et al. (1985) 
and Steuer (1986). Typically, they always require the intervention of a DM at some 
stage in the solution process. A popular way to involve the DM in the solution process 
is to use interactive approaches as discussed in the introduction. Because the goal is to 
support the DM, we can refer to the tools used as decision support systems. The 
ultimate goal is to find the most preferred solution of the DM.  

There is no single criterion for evaluating multiple criteria decision support 
systems. Instead, several relevant criteria can be introduced: 

• the system recognizes and generates Pareto optimal solutions; 

• the system helps the DM feel convinced that the final solution is the most 
preferred one, or at least close enough to that; 

• the system helps the DM to get a “holistic” view of the Pareto optimal set; 

• the system does not require too much time from the DM to find the final 
solution; 

• the communication between the DM and the system is not too complicated; 

• the system provides reliable information about solutions available. 

Provided that the problem is correctly specified, the final solution of a rational DM 
is always Pareto optimal. Therefore, it is important that the system is able to 
recognize and generate Pareto optimal solutions. No system can provide a DM with a 
capability to compare all alternatives simultaneously. However, a good system can 
provide a holistic view over the alternatives and assist the DM in becoming convinced 
that his/her final choice is the best or at least close to the best solution. The user 
interface plays an important role in that aspect. 

3.1 Overview of some interactive methods 
An example of early interactive methods is the GDF method, see Geoffrion et al. 
(1972). It assumes that there exists an unknown value function that represents the 
preferences of the DM and (s)he wants to maximize this function. Even though the 
function is not explicitly know, information about it is asked from the DM in the form 
of responses to specific questions involving marginal rates of substitution of pairs of 
objective functions and, in this way, the DM guides the solution process towards the 
most preferred solution. This approach requires consistency on the DM’s part as well 
as some differentiability assumptions. 

Alternatively, a small sample of Pareto optimal solutions can be generated and the 
DM is supposed to select the most preferred one of them. Then, the next sample of 
Pareto optimal solutions is generated so that it concentrates on the neighbourhood of 
the selected one, see Steuer (1986).  

It has been shown in Larichev (1992) that for a DM, classification of objective 
functions is a cognitively valid way of expressing preference information. 
Classification means that the objective function values at the current Pareto optimal 
solution are shown to the DM and the DM is asked to classify the functions according 
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to whether their current values are acceptable, should be improved or could be 
impaired (in order to allow improvement in some others). In addition, desirable 
amounts of improvement or allowed amounts of impairments may be asked from the 
DM. Classification-based interactive multiobjective optimization methods include, for 
example, the Step method (STEM, Benayoun et al. 1971), the satisficing trade-off 
method (STOM, Nakayama and Sawaragi 1984) and the NIMBUS method (Miettinen 
1999 and Miettinen and Mäkelä 2006). The methods differ from each other, for 
example, in the number of classes available, the information asked from the DM and 
how this information is used to generate a new solution. 

Closely related to classification is the idea of expressing preference information 
using reference points. The difference is that while classification assumes that some 
objective function must be allowed to get worse values, a reference point can be 
selected more freely. Reference points consist of aspiration levels reflecting desirable 
values for the objective functions. This is a natural way of expressing preference 
information and in this straight-forward way the DM can express hopes about 
improved solutions and directly see and compare how well they could be attained 
when the next solution is generated. The reference point is projected onto the Pareto 
optimal set by minimizing a so-called achievement scalarizing function (Wierzbicki 
1980, 1986). Here, no specific behavioural assumptions like, for example, transitivity 
are necessary. Reference points play the main role also, for example, in the light beam 
search (Jaszkiewicz and Slowinski 1999), visual interactive approach (Korhonen and 
Laakso 1986) and Pareto Race (Korhonen and Wallenius 1988). Because of their 
intuitive nature, in what follows, we concentrate on reference point based approaches 
and introduce achievement scalarizing functions used with them. 

3.2 Achievement scalarizing functions 
Many MCDM methods are based on the use of achievement scalarizing functions first 
proposed by Wierzbicki (1980). The achievement (scalarizing) function projects any 
given (feasible or infeasible) point g ∈ ℜk onto the set of Pareto optimal solutions. 
The point g is called a reference point, and its components represent the desired 
values of the objective functions. These values specified by the DM are called 
aspiration levels. 

The simplest form of an achievement function to be minimized subject to the 
original constraints x ∈ X is: 

 sg(f(x)) = max i=1,…,k[wi (fi(x)- gi)] ,              (3.1) 

where wi > 0 for all i=1,…,k are fixed scaling factors and g ∈ ℜk is the reference 
point specified by the DM. It can be shown that the minimal solution of the 
achievement function is weakly Pareto optimal (see, e.g., Wierzbicki 1986) 
independently of how the reference point is chosen. Furthermore, if the solution is 
unique, it is Pareto optimal. If the reference point g ∈ ℜk is feasible for the original 
multiobjective optimization problem, that is, it belongs to the feasible criterion region, 
then for the solution f(x*) ∈ Q is valid fi(x*) ≤ gi for all i=1,…,k. To guarantee that 
only Pareto optimal (instead of weakly Pareto optimal) solutions are generated, a so-
called augmented form of the achievement function can be used:  

sg(f(x)) = max i=1,…,k[wi (fi(x)- gi)] + ρ Σk
i=1 (fi(x)- gi),            (3.2) 

where ρ > 0 is a small augmentation coefficient.   
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To illustrate the use of the achievement scalarizing function, let us consider a 
problem with two criteria to be minimized as shown in Figure 1. In the figure, the 
thick solid lines represent the set of Pareto optimal solutions in the criterion space. 
The points A and B in the criterion space are two different reference points and the 
resulting Pareto optimal solutions are A’ and B’, respectively. The cones stand for 
indifference curves when ρ = 0 in the achievement scalarizing function and the last 
point where the cone intersects the feasible criterion region is the solution obtained, 
that is, the projection of the reference point. As Figure 1 illustrates, different Pareto 
optimal solutions can be generated by varying the reference point and the method 
works well for both feasible and infeasible reference points. As a matter of fact, any 
Pareto optimal solution can be found (see, e.g., Wierzbicki 1986). More information 
about achievement functions is also given, for example, in Miettinen 1999. 

f2

 
Figure 1. Illustrating the projection of a feasible and infeasible reference point 
onto the Pareto optimal set. 

4 A new approach to incorporate preference information in 
EMO 

A common point in many EMO methods in the literature is the absence of preference 
information in the solution process. As mentioned earlier, EMO methods try to 
generate the whole nondominated frontier (approximating the real Pareto optimal set) 
assuming that any nondominated solution is desirable. But this is not always the case 
in a real situation where different areas of the nondominated frontier could be more 
preferred than some others, and some areas could not be interesting at all. From our 
point of view, this lack of preference information produces shortcomings in two ways: 

• Computational effort is wasted finding undesired solutions. 

• A huge number of solutions is presented to the DM who can be unable to find 
the most preferred one among them whenever the problem has more than two 

f1

B’ 
A 

A’ 
B 
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criteria and, in any case, a visual representation is not as illustrative as with two 
criteria.   

In order to avoid the above-mentioned shortcomings, preference information must 
be used in the resolution process. In this way, we avoid visiting undesired areas and 
the DM guides the search towards his/her most preferred solution.  

In the new approach to be introduced, we incorporate preference information given by 
the DM in the form of a reference point in the evolutionary multiobjective algorithm 
so that generations gradually concentrate in the neighborhood of those solutions that 
obey the preferences as well as possible. In contrast to Deb et. al. (2005), we directly 
use the above-defined achievement function in an indicator-based evolutionary 
algorithm IBEA (see, Zitzler and Kuenzli 2004). As the preference information is 
included into the indicator, the resulting algorithm does not require additional 
diversity preserving mechanisms, that is, fitness sharing. As a result, we can show that 
the consideration of preference information based on reference points is compliant 
with the Pareto dominance as given in Definitions 1 and 2.  

In what follows, we describe a preference-based evolutionary algorithm PBEA that 
incorporates preference information in IBEA. This algorithm can then be used as a 
part of an interactive solution method where the DM can iteratively study different 
solutions and specify different reference points. 

4.1 Preference-based evolutionary algorithm PBEA 
The basis of the preference-based evolutionary algorithm is the indicator-based 
evolutionary algorithm IBEA as described in Zitzler and Kuenzli (2004). The main 
concept of IBEA is to formalize preferences by a generalization of the dominance 
relation given in Definition 1. Based on a binary indicator I that describes the 
preference of the DM, a fitness F(x) is computed for each individual x in the current 
population. The fitness values of the individuals are used to drive the environmental 
and mating selection. The basic IBEA algorithm can be described as follows: 

 

Basic IBEA Algorithm 

Input: population size α; maximum number of generations N; fitness scaling factor κ; 

Output: approximation of Pareto optimal set A; 

Step 1 (Initialization): Generate an initial set of points P of size α; set the generation 
counter to m = 0; 

Step 2 (Fitness Assignment): Calculate fitness values of all points in P, i.e., for all x ∈ 
P set 

 ( )∑
∈

−−=
}\{

/),()F(
x

xx
Py

yIe κ        (4.1) 

Step 3 (Environmental Selection): Iterate the following three steps until the size of the 
population does no longer exceed α: 

1. Choose a point x* ∈ P with the smallest fitness value; 

2. Remove x* from the population 

3. Update the fitness values of the remaining individuals using (4.1). 
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Step 4 (Termination): If m ≥ N or another termination criterion is satisfied, then set A 
to the set of points in P that represent the nondominated solutions. Stop. 

Step 5 (Mating Selection): Perform binary tournament selection with replacement on 
P in order to fill the temporary mating pool P’. 

Step 6 (Variation): Apply recombination and mutation operators to the mating pool P’ 
and add the resulting offsprings to P. Increment the generation counter m and go to 
Step 2. 

 

In the numerical experiments we are using a slightly improved version of the above 
algorithm. It scales the objective and indicator values and has been called adaptive 
IBEA (see Zitzler and Kuenzli (2004)).  

Obviously, the calculation of the fitness according to (4.1) using a dominance 
preserving binary quality indicator I is one of the main concepts in the indicator-based 
evolutionary algorithm. 

Definition 4. A binary quality indicator I is called dominance preserving if   

f(x) dominates f(y) ⇒ I(y, x) > I(x, y) and   

f(x) dominates f(y)  ⇒ I(v, x) ≥ I(v, y) for all v ∈ X. 

According to the definition above, one can consider the quality indicator I to be a 
continuous version of the dominance relation given in Definition 1. As we will see, 
the degree of freedom available can be used to take into account the concept of an 
achievement function as discussed in Section 3.2.  

The environmental selection (Step 3) as well as the mating selection (Step 5) 
prefers solutions with a high fitness value. The fitness measure F(x) is a measure for 
the loss in quality if x is removed from the population P. To this end, a given variable 
x is compared to all other variables y in the current population P, whereas the 
exponent in expression (4.1) gives the highest influence to the variable y with the 
smallest indicator I(y, x). In Zitzler and Kuenzli (2004), it is shown that if the binary 
quality indicator used in (4.1) is dominance preserving, then we have  

f(x) dominates f(y) ⇒ F(x) > F(y) 

Therefore, the fitness computation is compliant with the Pareto dominance relation.  

In Zitzler and Kuenzli (2004), one of the dominance preserving indicators used is 
the additive epsilon indicator defined as 

{ }kiffI ii ,...,1for  )()(min),( =≤−= yxyx ε
εε .            (4.2) 

Its value is the minimal amount ε by which one needs to improve each objective, i.e., 
replace by )(xif ε−)(xif  such that it just dominates f(y), i.e., fi(x)- ε ≤ fi(y) for all i 
= 1, …, k. Using the additive epsilon indicator in (4.1) results in a diverse 
approximation of the Pareto optimal solutions. 

In order to take preference information into account, we use the achievement 
function defined in (3.2). At first, we normalize this function to positive values for a 
given set of points P 

))}(({min))(()),(,( yfxfxfg gyg sss
P∈

−+= δδ ,              (4.3) 
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where the specificity δ>0 gives the minimal value of the normalized function. The 
preference-based quality indicator can now be defined as 

)),(,(/),(),( δε xfgxyxy sII p =                (4.4) 

This quality indicator can now be used in place of (4.1) where the base set P used in 
the normalization (4.3) is the population P. Because we take preferences into account, 
we refer to this as a preference-based evolutionary algorithm (PBEA). The specificity 
δ>0 now allows to set how large the ‘amplification’ of the epsilon indicator for 
solutions close to the reference point should be. In other words, by increasing the 
value of specificity δ from zero gives us a wider set of solutions surrounding the 
solution where the reference point was projected and if we set a low value for δ, we 
get solutions in the close neighbourhood of the projected reference point.  

Figure 2 illustrates the effect of the specificity δ. As in Figure 1, we suppose that 
we have a reference point A, a Pareto optimal set and the projected reference point 
A’. The two additional graphs illustrate the functions  and 

. It can be seen that depending on the relative position to the projected 
reference point, the points of the Pareto optimal set get different weights. In addition, 
the smaller the specificity δ, the higher is the relative preference towards points close 
to the projected reference point.  

)),(,( δyfgs
)),(,(/1 δyfgs

 
Figure 2.  Illustrating the normalized achievement scalarization function 

)),(,( δyfgs  for preferring solutions that are close to a projected reference 
point. 

 

It remains to be shown that the new preference-based indicator defined in (4.4) is 
dominance preserving and, in this case, the resulting fitness evaluation is compliant 
with the Pareto dominance. 

Theorem 1. The binary quality indicator Ip as defined in (4.4) is dominance 
preserving. 

f1

f2
A 

A’ 

z 

z

sg(z
) δ 

A’ 

s(g, z, δ) 

A’ 



 12

Proof. It has been shown in Zitzler and Kuenzli (2004) that the additive epsilon 
indicator given in (4.2) is dominance preserving. Therefore, if f(x) dominates f(y), 
then we have Iε(y, x) > Iε (x, y). As the normalized scalarization function s(g, f(x),δ) is 
positive, if f(x) dominates f(y), then we also have Iε(y, x) > Iε (x, y) which implies Ip(y, 
x) > Ip (x, y). From the definition of the scalarizing function (3.2) and the dominance 
in Definition 1, we find that if f(x) dominates f(y), then sg(f(x)) ≤ sg(f(y)) which 
implies s(g,f(x), δ) ≤ s(g, f(y),δ). Therefore, we can conclude that if f(x) dominates 
f(y), then we have Iε (v, x) ≥ Iε (v, y) which means that Ip(v, x) ≥ Ip (v, y). 

In the next section, we show how the preference-based evolutionary algorithm 
PBEA can be incorporated into an interactive method for multiobjective search.  

4.2 Interactive method  
The above evolutionary algorithm PBEA can be used in an interactive fashion, for 
example in the following way:  

• Step 0 Initialization: Find a rough approximation of the Pareto optimal set with a 
small population using the PBEA algorithm without using a specific reference 
point, that is, with indicator . Select a small set of solutions to characterize the 
approximation and display the set to the DM for evaluation. 

εI

• Step 1 Reference Point: Ask the DM to specify desired aspiration level values 
for the objective functions, that is, a reference point. 

• Step 2 Local Approximation: Use the reference point information in the 
preference-based evolutionary algorithm PBEA as described in Section 4.1 to 
generate a local approximation of the Pareto optimal set.  

• Step 3 Projection of Reference Point: Among the solutions generated in Step 2, 
display to the DM the nondominated solution giving the smallest value for the 
achievement function.  

• Step 4: Termination: If the DM is willing to continue the search, go to Step 1; 
otherwise obviously the DM has found a good estimate as the most preferred 
solution and (s)he stops the search. 

In Step 0, the small set of solutions can be selected, for example, using clustering. 
This step can be also replaced by showing the DM only the best and the worst 
criterion values found among the nondominated solutions generated. This gives the 
DM some understanding about the feasible solutions in the problem and helps in 
specifying the reference point. In the algorithm, and in Step 3 in particular, the idea is 
to avoid overloading the DM with too much information when the problem in 
question has more than two objectives and a natural visualization of the solutions on a 
plane is not possible.  

The algorithm offers different possibilities to the DM in directing the search in a 
desired part of the Pareto optimal set. Some of them will be demonstrated in Section 5 
with computational tests. In Step 3, if the DM wants to consider several 
nondominated solutions, we can display solutions giving next best values for the 
achievement function or use clustering in the current population. Naturally, the DM 
can also use different projections and consider only some of the objectives at a time. 
In the next step, the DM can select the next reference point according to his/her 
hopes. Alternatively, the reference point can be selected in the current population. 
This means that the DM has found an interesting solution and wishes to explore its 
surroundings. In the examples in Section 5, we will demonstrate how the 
approximations of the Pareto optimal set get more accurate from iteration to iteration. 
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(Then, the next population will concentrate in the neighbourhood of the (projected) 
reference point.) 

If the DM wants to consider the current population or a part of it, a possibility worth 
consideration is to use some of the tools developed for discrete MCDM problems. By 
using them, the DM can find the most preferred solution of the current population. As 
an example we can mention VIMDA (Korhonen and Karaivanova 1999), which is a 
visualization-based system for decision support or knowCube, a visualization system 
based on spider web charts (Trinkaus and Hanne 2005). Further methods for discrete 
alternatives can be found, for example, in Olson (1996). 

Let us point out that our approach can be generalized for several reference points 
given at the same iteration. This is practical if the DM wishes to study several parts of 
the Pareto optimal set at the same time. If we have several reference points gi that 
should be taken into account simultaneously, we just replace the denominator in (4.4) 
by the minimum normalized scalarization for all reference points, i.e., 

)}),(,({min/),(),(
)(

δε yfgyxyx i

ip sII =  

5 Experimental results 

The following experimental results are based on an implementation of PBEA in the 
framework PISA (htpp://www.tik.ee.ethz.ch/pisa) that contains implementations of 
well-known evolutionary algorithms such as NSGA2, SPEA2 and IBEA as well as 
various test problems, see Bleuler et al. (2003).  At first, we give simulation results 
using well-known two-dimensional benchmark functions, namely ZDT1 and ZDT3, 
see Zitzler et al. (2000).  For simplicity, we use wi=1 for all i=1, …, k in the 
achievement functions. 

As can be seen in Figure 4, the run of the multiobjective optimizer IBEA without 
preference information yields a Pareto approximation that contains points that are 
almost equally spaced (denoted by triangles). When using the reference point (0.6, 
1.0) with a high specificity of δ=0.1, a run of PBEA (denoted by stars) results in an 
approximation that (a) dominates part of the previous run without preferences and (b) 
is concentrated around the projected reference point. If the specificity is decreased to 
δ=0.02, the concentration is even more visible (the points are denoted by boxes). The 
optimal front was not achieved as we here used a small population size of 20 in order 
to make the spacing of the solutions more visible. 
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Figure 4.  Results of three optimization runs for the benchmark problem 
ZDT1 with 100 decision variables, population size 20 and 500 generations. 
Bottom Curve: Approximation of the optimal Pareto set. Triangle: 
optimization without preference information. Star: reference point (0.6, 1.0) as 
indicated and specificity δ=0.1. Box: reference point (0.6, 1.0) as indicated and 
specificity δ=0.02. The circles point to solutions with the best achievement 
scalarizing function values. The black star stands for the reference point. 

 

Figure 5 represents a possible interaction with a DM using the preference based 
optimizer. At first, he performs a run without preference information and 300 
generations. He selects a point in the population as the reference point for the next 
iteration with specificity δ=0.05 and 400 generations. This process is repeated again 
with a new reference point and a new run is performed with 500 generations. Now, a 
preferred solution from the last run is chosen as a reference point for a final run with 
specificity δ=0.02 and 500 generations in order to focus the search even more. 
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Figure 5.  Possible interaction of a DM with the preference-based 
optimization tool. Triangle: Unbiased search using IBEA (300 generations, 
population size 20). Box: Preference-based search using reference point (see 
black star) from the first iteration (δ=0.05, 400 generations, population size 
20). Star: Preference-based search using reference point (see black star) from 
the second iteration (δ=0.05, 500 generations, population size 20). Triangle: 
Preference-based search using reference point from the third iteration (δ=0.03, 
500 generations, population size 20). The circle denotes the optimal result 
w.r.t. the reference point. 

The next three Figures 6, 7 and 8 show the effect of different locations of reference 
points, i.e., optimistic or pessimistic ones. To this end, we use another benchmark 
function ZDT3, see Zitzler et al. (2000), which is characterized by a discontinuous 
Pareto front. A run with IBEA without any preference information yields the set of 
points shown in Figure 6 as triangles. It can be guessed that the Pareto optimal set 
consists of 5 disconnected subsets. A PBEA optimization using the pessimistic 
reference point (0.7, 2.5) (denoted by a black star) with specificity δ=0.03 yields the 
points shown as boxes. Again, they dominate points that have been determined using 
an optimization without preference information and are concentrated around the 
projection of the reference point. Similar results are obtained if an optimistic 
reference point (0.4, 2.7) with specificity δ=0.02 is chosen, see Figure 7. The larger 
the distance between the reference point and the Pareto approximation, the smaller is 
the effect of concentrating the search around the projection of the reference point. 
This can clearly be seen in Figure 8 where the optimistic reference point (0.3, 2.6) 
with specificity δ=0.01 is chosen. In all the figures, circles denote solutions with the 
best achievement function value in the current population. 
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Figure 6.  Results of two optimization runs for the benchmark problem ZDT3 
(discontinuous Pareto front) with 100 decision variables, population size 20 
and 100 generations. Triangle: optimization without preference information. 
Box: pessimistic reference point (0.7, 2.5) as indicated and specificity δ=0.03.  
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Figure 7.  Results of two optimization runs for the benchmark problem ZDT3 
(discontinuous Pareto front) with 100 decision variables, population size 20 
and 100 generations. Triangle: optimization without preference information. 
Box: optimistic reference point (0.4, 2.7) as indicated and specificity δ=0.02. 
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Figure 8.  Results of two optimization runs for the benchmark problem ZDT3 
(discontinuous Pareto front) with 100 decision variables, population size 20 
and 100 generations. Triangle: optimization without preference information. 
Box: optimistic reference point (0.3, 2.6) as indicated and specificity δ=0.01. 

Figure 9 is again based on runs for the benchmark problem ZDT3. Here, we use 
two reference points (0.25, 3.3) and (0.85, 1.8) with δ=0.03 each. This example 
models a DM that intends to concentrate his search on two areas of the Pareto 
approximation simultaneously. As can be seen, the search concentrates on the 
projections of the two reference points as expected. 
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Figure 9.  Results of two optimization runs for the benchmark problem ZDT3 
with 100 decision variables, population size 20 and 100 generations. Triangle: 
optimization without preference information. Box: two reference points (0.25, 
3.3) and (0.85, 1.8) as indicated and specificity δ=0.03. 
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Finally, we consider a problem with five criteria, see Miettinen et al. (2003). The 
problem is related to locating a pollution monitoring station in a two-dimensional 
decision space. The five criteria correspond to the expected information loss as 
estimated by five different experts. Therefore, the DM needs to find a location that 
balances the five possible losses. The problem formulation is as follows: 

The decision variables have box constraints x1 ∈ [-4.9, 3.2], x2 ∈ [-3.5, 6]. The 
criteria are based on the function f(x1, x2) = - u1(x1, x2) - u2(x1, x2) - u3(x1, x2) + 10, 
where u1(x1, x2) = 3(1 - x1)2exp(-x1

2
 - (x2 + 1)2) 

u2(x1, x2) = -10((1/4)x1 - x1
3 – x2

5) exp(-x1
2

 - x2
2) 

u3(x1, x2) = (1/3)exp(-(x1 +1)2
 - x2

2). 

The actual criteria are  

 f1(x1, x2) = f(x1, x2), 

 f2(x1, x2) = f(x1- 1.2,  x2 – 1.5), 

 f3(x1, x2) = f(x1 + 0.3, x2 – 3.0), 

 f4(x1, x2) = f(x1 – 1.0, x2 + 0.5) and  

 f5(x1, x2) = f(x1 – 0.5,  x2 – 1.7). 

In order to get a rough overview about the complexity of the problem, the 
following two Figures 10 and 11 represent a projected scan of the Pareto optimal set. 
They have been produced simply by probing the decision variables on a regular 
equidistant mesh and selecting the Pareto optimal points from the set of solutions 
received.  
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Figure 10. Approximated Pareto optimal set of a multiobjective optimization 
problem with 2 decision variables and 5 objective functions, see Miettinen et 
al. (2003). The projection on objectives f2 and f3 is shown where the grey 
levels of the points correspond to f1. 

Figure 10 shows the received solutions projected onto the second and third dimension 
of the criterion space. The grey level of the points corresponds to the first criterion. In 
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a similar way, Figure 11 shows the projection on the fourth and fifth criterion. It can 
be observed that the optimization problem is highly non-linear and the Pareto optimal 
set is discontinuous.  

 
Figure 11.  For the same problem as in Figure 10, the projection on objectives 
f4 and f5 is shown where the grey levels of the points correspond to f1. 

Usually, in evolutionary approaches it is assumed that the graphical representation of 
the Pareto front is self-explanatory and the DM can easily select his/her most 
preferred solution from there. Figures 10 and 11 demonstrate very clearly that this is 
not necessarily always the case. When using the preference-based approach, we do 
not need to illustrate the whole Pareto front but it is enough to provide a rough 
approximation of it. The DM then directs the search by varying reference points. In 
Table 1, we illustrate how our approach finds a projection for different reference 
points. 

Table 1: Solutions giving minimal achievement function values for different 
reference points and values of achievement function (negative numbers). 

 Ref1 = (10,10,10,10,10) Ref2 = (12,11,10,9,8) 

IBEA 
 

(8.55, 7.54, 8,17, 9.61, 9.03)  

-0.39 

(9.72, 8.4, 9.94, 7.93, 6.83) 

-0.06 

PBEA  
(δ=0.1) 
 

(8.87, 8.99, 8,65, 8.84, 9.05) 

-0.95 

(9.21, 9.93, 9.29, 8.39, 7.64) 

-0.36 

PBEA  
(δ=0.02) 
 

 (8.95, 8.96, 8,60, 8.92, 8.96) 

-1.04 

(9.31, 10.0, 9.37, 8.39, 7.37) 

-0.61 

 

In Table 1, the rows correspond to different runs of the evolutionary 
multiobjective optimization algorithms, the columns correspond to the reference 
points that have been used to evaluate the achievement function. The objective 
vectors in the table give the best value for the achievement function in question (as 
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mentioned in Step 3 of the interactive method). For comparative reasons, also the 
corresponding achievement function values are recorded even though they are not 
normally shown to the DM (the smaller the value, the better the solution).  

The reference point ref1 = (10, 10, 10, 10, 10) represents preferring equal losses 
in the problem. If there is a solution with equal criterion values, it will become the 
projected reference point and the search can continue from there. The other reference 
point ref2 = (12, 11, 10, 9, 8) demonstrates how preferring decreasing values is 
reflected in the solutions produced.  

In Table 1 we can see that the preference-based evolutionary algorithm PBEA 
gives better approximations in terms of minimizing the achievement function than the 
basic evolutionary approach IBEA. For example, in case of the first reference point 
ref1 we find the achievement values -0.39 for IBEA and -1.04 for PBEA (with 
specificity 0.02). In addition, a lower specificity leads to a better approximation (-1.04 
< -0.95). Similar observations hold for the second reference point as well. The DM 
may continue by specifying a new reference point or by selecting the final solution as 
described in the interactive method in Section 4. 

Let us suppose, for example, that we look at the population optimized with 
respect to reference point ref1 and δ=0.02 and try to find in this population a point 
that is closest to reference point ref2. Then the best point has the achievement 
function value of -0.05 which is much worse than the best value of -0.61 as given in 
the table. As a result we can say that it makes a substantial difference whether we 
optimize with respect to one or the other reference point, as expected. 

This small illustrative example just demonstrates that the preference-based 
evolutionary approach is very helpful for the DM when (s)he wants to find the most 
preferred solution for his/her multiobjective optimization problem involving more 
than two objectives. The DM does not have to study different projections (if (s)he 
does not want to) because we can conveniently identify the best solution of the 
current population with the help of the achievement function. In all the runs, 
population size of 200 was used with 100 generations. 

If the DM wants to compare different solutions of the population, it is possible to 
use value paths as mentioned in Section 4.2. In Figure 12, we have 70 solutions of the 
last PBEA run with reference point ref1 and δ=0.02. Each criterion is represented by a 
path and vertical lines correspond to solutions. The solution denoted by a bold vertical 
line is the best solution listed in Table 1. As mentioned earlier, this solution is 
balanced in terms of objective function values as the corresponding reference point is 
and this fact can be easily seen in the figure. In Figure 12, lower criterion values are 
in the top part of the figure since they stand for more preferred values. 

We have here demonstrated how PBEA can be used in the first iterations of our 
interactive algorithm. From here, the DM can continue by specifying a reference point 
according to his/her preferences. Even from these examples one can see how 
concentration on a subspace of the Pareto optimal set means that the quality of the 
approximation improves and the population sizes can be kept relatively small. 

Let us point out that if computational cost is an important factor to consider, it is 
possible to include the nondominated solutions of the previous population into the 
temporary mating pool of the next iteration of the interactive algorithm. In this way, 
the search can benefit from them if the new reference point is in the same subspace of 
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the Pareto optimal set as the previous was. Otherwise, the old solutions will be 
removed in the environmental selection. 

6 Conclusions 

We have introduced a new preference-based evolutionary algorithm that incorporates 
preference information coming from a DM in the form of a reference point. By setting 
desirable values for objective functions as a reference point the DM can conveniently 
direct the search in such parts of the Pareto optimal set that (s)he finds interesting and 
the whole Pareto optimal set does not have to be generated with equal accuracy and 
population sizes can be kept rather small.  

 

 
 

Figure 12. Illustration of 70 solutions of the final population using value 
paths. 

In multiobjective optimization, reference points are projected onto the Pareto optimal 
set with the help of achievement functions. Our innovative idea is to include 
achievement function in the fitness evaluation of our evolutionary algorithm. Our 
preference-based evolutionary algorithm can be used as an integral part of an 
interactive multiobjective optimization algorithm. In this way, we get such solutions 
that are in the neighbourhood of the projected reference point. We can adjust how 
wide a neighbourhood we are interested in by setting a value for a specificity 
parameter. Adjusting the specificity parameter value is a topic for further research. 

Our computational experiments indicate that the approximations produced involving 
reference point information are more accurate than ordinary approximations which 
gives the DM more reliable information on the solutions available and the DM can 
find the most preferred solution as the final one conveniently. 
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