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Abstract:

A large body of empirical research has explored how monetary policy shocks affect consumer
prices in the individual countries of the Euro area. The purpose of this study is to take into account
major problems in existing literature. Our new empirical results show that the European Central
Bank’s monetary policy has asimilar impact on pricesin the individual countries.
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1. Introduction

The word ‘inflation’ appears to be the most commonly used economic term among the general
public. It seems that people are interested in inflation because most of them think that inflation hurts
their standard of living; see Shiller (1997). Consequently, the complicated challenge of modern
central banks is to practice low inflation policy to keep the consumption path of the general public
stable. This challenge may be even more complicated for the European Central Bank (ECB)
because the diversity in the economic and institutional structures across the member countries is
rationale for the expectation that a common monetary policy will have impacts of different
magnitudes in the economies in the Euro area. Thus, due to known wage rigiditiesin the Euro area,
possible asymmetric inflation responses may indeed cause undesired real income differences
between European Monetary Union (EMU) countries, at least in the short-run.

Not surprisingly, there exists a large body of vector autoregressive (VAR) studies' in which the
monetary policy shock in each of the individual countries of the EMU area is investigated and
cross-country comparisons are made. The differences in the results, presented in this literature, are
striking, since there is a host of theoretical, statistical, and data issues involved in empirical
analyses. We pinpoint the following major problems of this literature highlighted by Peersman
(2004):

i) Typically, the same model is estimated for each individual country. This tends to be
misleading since each country has a different economic sructure and has its own
monetary policy reaction function.

i) The size of the estimated monetary policy shock differs across countries. This tends to
complicate the comparability of the effect of the shocks.

iii) There is also an important difference between a domestic monetary policy shock and a
common monetary policy shock due to large trade linkages between the member
countries. These linkages may cause the effect of a common monetary policy shock to
be more similar across countries than the effects of adomestic monetary policy shock.

iv) It is not clear whether differences in monetary policy responses between countries are
statistically significant, given the relative wide confidence bands around the responses.

Peersman (2004) putsforth an effort into taking these dilemmas into account and finds that there are
statistically significant asymmetric price responses in the Euro area His approach is based on
synthetic Euro-area data for seven EMU countries and a large-scale near-VAR model; see also Sala
(2001) and Clements et al. (2001). The major problem in the Peersman (2004) analysis (this
problem relates most (all) of the existing literature) is that, while the autoregressive coefficients are
edimated consistently, standard bootstrapped error bands for impulse responses may be inconsistent
in a small sample size, especialy in the presence of non-stationary data; see e.g. Kilian (1998).

1 For more detailed surveys, see for example Mojon and Peersman (2001) and Peersman (2004). See
also Angeloni and Ehrmann (2004), who use quarterly EMU panel data over the period 01/1998-
02/2003 to track down the sources of the inflation differences among the EMU member countries. They
employ a similar but open economy version of the model as we use by letting the real exchange
variable exist in both the Phillips and IS equations. They estimate a structural 12-country model
consisting of all (original) EMU member countries with instrumental variable techniques and then
simulate the model. They also perform a sensitivity analysis, changing the values of interesting
parameter values inside their confidence intervals. They find that the magnitude of the inflation
persistence is the driving force generating the inflation divergence, not the monetary policy
transmission mechanism (via exchange rate), as has been suggested in the literature.



Additionally, the data-generating process of the synthetic Euro-area data is different than the data-
generating process of real Euro-area data, and hence the estimation results of the models based on
synthetic data may be unreliable.

Our paper addsto this literature as follows: firstly, thisis to our knowledge the first VAR study that
uses red EMU-area data. Empirical analysis based on the actual European Central Bank’ s monetary
policy, rather than individual central banks monetary policies, has some advantages. It enables us
to use a common reaction function across the EMU countries. It also guarantees that the size of the
monetary policy shock is the same across the economies. Furthermore, large trade linkages between
the member countries may cause the effect of a common monetary policy shock to be more similar
across countries than the effect of adomestic monetary policy shock.

Secondly, to fulfil our investigative purposes, we use a structural-form VAR model based on a 5-
equation open economy dynamic stochastic general equilibrium (DSGE) model. The model
describes the economic conditions of the jth individual country and the area-wide aggregate
(excluding the jth individual country). Discussion on DSGE models can be found in e.g. Hetzel
(2000), Clarida, Gali and Gertler (2000), Gerdesmaier and Roffia (2003), and Walsh (2003); see
also the survey of Sungbae and Shorfheide (2005).

Thirdly, we employ a posterior distribution of structural VAR parameters to caculate the impulse
responses of inflation in the individua country and the area-wide aggregate (excluding domestic
inflation) to a shock to a common monetary policy instrument. Given the posterior distributions of
inflation responses, we form the posterior distribution of the difference of the response of inflation
in the individual country with the area-wide inflation response. This alows us to make an exact
inference on the asymmetry of inflation regponses. Note also that using posterior-based error bands
rather than classical confidence bands allows us to report bands that characterise the true shape of
the likelihood. This leads to a more precise statistica analyss, especially in the case of finite
samples or nearly unit root series; see e.g. Sims and Zha (1999).

In contrast to Peersman (2004), we found that there is only very weak support for asymmetric price
responses between the individual country and the area-wide aggregate. Specifically, actua Euro-
area data is consistent with the difference of the response of inflation in the individual country with
the area-wide inflation response being different from zero only in the cases of Belgium, France, and
Finland. However, these responses vanish one month after the shock.

The paper is organised as follows: Chapter 2 presents the DSGE model and the density functions to
be simulated. Chapter 3 presents the EMU data and gives comments on the drawn impulse response
functions. Chapter 4 presents concluding remarks.

2.2 The Mode

We briefly review the open economy macro model and then elaborate on how we can use it to
generate impulse responses based on the actual ECB’s monetary policy insrument. We point that
the detailed derivations for the model equations can be found in Gali and Monacelli (1999)2. In the
model, we assume that the Euro area' s jth member country represents a small open economy. For
simplicity, we presume that rest of the Euro area represents the rest of the world.

2 See also Gali and Monacelli (2005).



A representative household in a small open economy seeks to maximise the following periodic
utility function

N M

where f is the discount factor and N; denotes hours of labour. Parameter o measures the elasticity of
intertempora substitution and 7 is the substitution elasticity between labour and leisure. Variable

C: isa composite consumption index defined by
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are indices for the consumption of domestic and foreign goods in a small open economy.
Parameters  (>0) and ¢ (>1) measure the elagticity of substitution between domestic and foreign
goods and the elagticity of substitution among goods within each category, respectively.

Households maximise periodic utility (1) subject to the intertemporal budget constraint

@l[PH )t (I )CH t (I ) + PF )t (I )CF,t (I )]dl + Et {Qt,t+l Dt+l} £ Dt +Vvt Nt + Tt '(3)

where Q1 is the stochastic discount factor, D; is nominal payoff, W; is nominal wage, and T;
contains periodic lump-sum taxes. The price of a riskless one-period bond is denominated

asR'=E {Qt M} ; hence, we can understand R: as a gross return. Since we assume that markets for

securities markets in the Euro area are complete, we can write that R = Rf, where, from now on,
the star in the superscript refers to the rest of the Euro area.

The optimal allocation of any given expenditure within each category of goods yields downward
sloping demand curves

. _aP, (i)8° y_ap (i)e”
C,. li)=¢2"2% ¢, and C. (i) =222 Cqy, (4
l)=g5 0 Cuand G, ()= Cey
foral il [01],
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where PH,tOE%PH,t(I) dit  and PFYt"@PH@) di? e price indices for domestic and

imported goods.

Throughout the presentation, we will assume that in the Euro area, the law of one price holds so that
P (i): P, (|) where P, (|) is the price of foreign good i in a foreign country. Doing the



derivations, we finally end up with the equations that describe the optima alocation of
expenditures between domestic and foreign goods
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where the consumer price index (CP!) is defined asP, © [(1 a)Pil +apt! ]ﬁ.

Production is assumed to be linear in labour, which can be hired by firms from households. Then
firm i will produce a differentiated good i using a technology represented by the following
production function

Y, (i)=2Z.N,(), (6)

whereZ, ° exp{z[}and z follows an AR(1) process, i.e. z, =rz_, +u,. The error term w can be

broadly interpreted as an i.i.d. technology shock that affects all firms in the same way. We assume
that the government subsidises employment at a constant rate 1/¢. Hence, the firm's nominal
marginal cost isgiven by

1oW
MC, =&- (7)
e e;aZ

As in Calvo (1983), we assume that in the beginning of any period t, producer i will be allowed to
set anew product price with probability 1 — 8, and keep the price unchanged with the probability 6.
It then follows that while setting a new pricein period t, firm j seeks to maximise

mind (ba)* EfQu e ()P - MC, ) ®

subject to the sequence of demand congtraints
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The estimation form of the model is obtained using optimality conditions for the maximisation
problems of agents. We assume that the economies in the small open economy and in the rest of the
Euro area are identical and the weight of goods produced in a smal economy is assumed to be
negligible in the area-wide aggregate. The real exchange rate between the individual country and

the rest of the Euro area is denoted as REX, =P’ /P, and the terms of trade (TOT) as
S =P, /B, . The consumption, output, and nominal wages are de-trended using the tota factor
productivity, Z;.. We define the percentage deviations of a variable x; = log X; from its trend >Zt as

X, =log X, - log >Zt. The log-linearised system can be reduced, after some algebra, to five
equations for large and small country outputs and inflations and terms of trade



p, = bE{p,..} - abE (D8, } +aDs +/ &+ f_W%t +1(f+s)y - 10+F)z, (10)
p; = bE{pL}+1(F +s)y; - 1(1+ f)z;e, (11)
5 =9+ 28, (12)

=Ef5i}- S - Efol) and (13)
8= bE{s} = /(1—;f)(a-i), (14)

where consumer price inflation is conveniently defined as p, °© Iog(Pt / PH). Additionally, we let
r, ° Iog(Rf/R*), w=1+a(sh-1)(2- a), m=@+b+/(1+fwis)),and I =(1- g)1- bq)/q.

Equations (10) and (11) are derived from the small economy’s and the Euro area’s firms optimal
price-setting problems and they govern inflation dynamics. Equation (12) determines the output as a
function of foreign output, where an ‘expenditure switching factor’ is proportiona to the terms of
trade. The percentage deviations of the real margina cost from its steady state values are

determined as m& =(f+s)y, - (f+1)Z in the ret of the Euro aea and
=(f +s)9 +(1+fw/s)5 - (f +1)zin the small open economy. Equation (13) in turn is the

Euler equation in the rest of the Euro area. This describes the demand side of the economy.
Equation (14) is the stochastic difference equation for the terms of trade and it is derived assuming
that the weight of the importsin the rest of the Euro-area’ s consumer price index can be considered

negligible, and at timet, foreign (th) and domestic (pH t) inflations are uncorrelated.

What it comes to choosing the statistical model, we could use e.g. asimple, empirical-based interest
rate rule and approach developed by e.g. Christiano, Eichenbaum, and Evans (2005) to generate
values for the impulse response function from the structural model presented above. However, we
find that the impulse responses based on the Kalman filter estimates of the above model can only
approximate impulse responses derived from the structural vector autoregressive (SVAR) model.
There is also a possibility that simple structural model cannot approximate the data generating
process of the true model satisfactorily. We therefore suggest the following strategy to generate
impulse responses from a SVAR model that uses the information of the log-linearised model above;
see discussion about the identification of SVAR models, e.g. Sims (1986), Gordon and Leeper
(1994), and Cushman and Zha (1996).

We agree that the form of the theoretical model structure may be unknown for households and
firms, but they may reasonably well assume that an endogenous variable depends linearly on the
vector of exogenous observable shocks. Households and firms use this available information and
form expectations like econometricians®. Since it seems that the prediction accuracy of the
univariate models are at least as good as the accuracy of the multivariate models, it is assumed that
households and firms in the Euro area use simple univariate autoregressive models in forming their
inflation, output gap, and/or terms of trade expectations, see Stock and Watson (1999) and
Marcellino, Stock and Watson (2003). Specifically these forecast functions are

3 These forecasts are intended to be a boundedly rational method fn the spirit "of rational
expectations; see more discussion in e.g. Sargent (1993), Evans and Honkapohja (2001) and Branch
(2004).



Pra = b (L)%, +b,(L)xmé,, (15)
pra =bs(L)>p; +b,(L)mé (16)
Yia =bs(L)x9; +by (L), and (17)
§.. =D, (L), (18)

where i, =1, - Et{pfﬂ} is the Euro area's real interest rate and bi(L) is the polynomial of lag
operator L with lag length p. Equations (15)-(16) are backward-looking Phillips curves, very
standard in the econometric literature, while Equations (17)-(18) are formed in the spirit of
equations of the log-linearised model above. The reader should note that we assume that learning
processes are converged, providing that decisions made by agents are optimal”. In addition, this
assumption allows us to use constant parameter values in the prediction functions above.

Given that the ECB uses an empirical-based Taylor rule with a smoothing term to conduct monetary
policy, we then combine Equations (10)-(18) and the equations for real marginal costs to get the
model into the form®

. . 104 .
I, = by +(L- r)[blpt +szt]+a riXe; T €. (19)
i=1
: o é J . & J
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" . . & - & . & . & .
(1' Co,s)yt =Coolt *Co0P *A Cg¥ei tA Cioli TA CiaoPri T A Gz and (22)
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i=1

An interested reader will find that the derivations of Equations (20)-(23) are given in the Appendix
(Section A).

Our empirical analysis is based on the above system of equations. We estimate the system of the
following form

A(L)y(t)+ D =h(t), (24)

4As Milani (2005) comments, introducing learning directly from the primitives of the DSGE model
would lead to a different law of motions for inflation and output gap. Moreover, Preston (2005b)
explains that decision rules that depend only on one-period-ahead expectations will generally not
provide optimal decision rules under adaptive learning for the corresponding infinite horizon decision
problems; see Sargent (1993), Evans and Honkapohja (2001), Preston (2005a,b), and Milani (2005).

5 We drop Equation (10) out of the system since domestic output has no influence on the rest of the
system.



where y(t) isan (M 1) vector of observations, A(L) isan (m" m) matrix polynomial of lag operator L
with lag length p and non-negative powers, D is a constant vector, A= AT, and #(t) = A*%(t) o
that

hltfy(s)s<t- Np. 1)

see e.g. Sims and Zha (1998, 1999). In Equation (24) we let

P9 Pou %y 0 0 00
cy, + Gl oz & O 0+
y(t) = gr: : and A(O) = gao,al Q3 33 0 0 :'
cp, — ¢ O ay 42 0 Q.44 aﬂv45?
¢s o €0 0 0 0 ag,

suggesting that A(0), where the zero restrictions are set using the system of equations (19)-(23), isa
non-singular matrix, so that the model provides a complete description of the p.d.f. for the data
conditional on the initial observations. This indicates that Equation (24) is of the same form as the
system of equations (19)-(23), except that the unobservable error vector ¢(t) gpproximates the

moving average of the productivity shocks u,and u; (except the third row of vector, that ise. ),

and there are zero restrictions only on the A(0) matrix. Let usrewrite model (24) in the matrix form

YA, - XA, =E, (25)
where the tth rows of Y(T" m), X(T" k), and E(T" m) are given by y(t), (1 y'(t-1) - y'(t-p))’, and #(t)
respectively. Thus, k = mp + 1 isthe number of coefficients corresponding to X, T isthe number of
observations, A(0)" = A, and A. is (K m) matrix of parameters of lagged variables.

We assume a Gaussian likelihood function

L(v|A)u |A|" expf- 05tr(vA, - XA J(vA, - XA )} (26)

Let us denote vec(Ao) = ap and vec(A.) = a.. Then, defining a = (a’p @'+)’, we can write the joint
prior p.d.f. of ain the form

p(a) = po(ay)N(@.; H), (27)

where po(ap) is the marginal distribution of a; and N(éL,H) is the standard multivariate normal
p.d.f. with a, mean and H covariance matrix. Thus, the posterior density of the parameters in vector
afollows
q(a) 1 |A(0)" exp{- 0.5[a, (1 AY'Y)a, - 2a, (1 A X'Y)a, +a, (1 A X' X)a, ]}
" PolaJH| **expl- 05(a, - & YH *(a. - &,)}. (28)



Although the posterior density (28) is non-standard in general, the exponent in (28) is quadratic in
a. for the given &, suggesting that the conditional distribution of a. given ay is Gaussian, making
possible easy Monte Carlo sampling and analytic integration along the a. dimension; see Sims and
Zha (1998).

We assume that the elements in vector a. are zero as a priori. To specify our prior variance for
parameters (a.) of lagged variables (we call the model of this prior specification Model 1), we let a.;
represent the regression parameters of lagged variables of the ith equation in linear multivariate
model (24). Then

i/,p™*, for non-zeroparametersin the system of equations(19) - (23)

Var(a,)=1{/,p", for zero'parametersin the system of equations(19) - (23)

11, , forconstant parameter

As usual, p denotes the lag length, and the hyperparameters /i (i = 1, 2, 3) control the tightness of
beliefs that we have. We set the hyperparameters A1 = A3 = 10000 and evaluate the posterior density
of hyper parameter A,. In our prior variance, we do not use typical scale factors, as e.g. Kadiyala
and Karlsson (1997) and Sims and Zha (1998), since we have no prior knowledge of these. One can
of course follow Litterman (1986) and choose these as the sample standard deviations of residuas
from univariate autoregressive models. We feel uncomfortable doing this since, at least in principle,
these should be chosen on the basis of a priori reasoning or knowledge.

The idea of our prior variance structure of Model 1 is that with a smaller value of A, our linear
multivariate model (24) is closer to the form of the system of equations (19)-(23), while high values
of A1 and A3 indicate the importance of lagged variables that the system of equations (19)-(23)
predicts to have influence on left-hand side variables. However, it is reasonable to assume that the
importance of the lagged variables decreases with the lag length; see e.g. Kadiyala and Karlsson
(1997).

One can show that, for posterior (28) with an exponential prior for hyper parameter 1,, the
conditional distribution of a. and the joint marginal distribution of 1, and ap can be derived as

ala a0, 1.) = Nlgoi (1 A x X +H(1,) ")) (29)
a3, /2) 1 po(ae ) AQ)|(1 A X X)H(7,)+1]™ expe- ;
“expl- 0.5a, (1 AY'Y)a, +3,'H(/,) 5, - &' AX X +H(/,) |1 (30)

where H is chosen to match the prior variance defined above, t isthe prior mean of hyper parameter
7\.2, and

a(/,)= (| A XX+ H(/Z)‘l)'l((l A X'Y)a, + H(lz)'léL).

In the estimation, we set 7 = 100 so that the prior variance of hyper parameter A, is 10,000. We use a
‘flat’” prior on A(0); see discussion for ‘flat’ priorsin this context in Sims and Zha (1998). In order
to satisfy the rank condition for identification, we decided to fix the Taylor rule parameters so that
b1 =15, f,=0.5, and p = 0.9; see motivation to use these parameter values of fi, f», and p in
Gerdesmaier and Roffia (2003). Specifically, we acquire posterior modes of parameter matrices



I'(0) and A in linear multivariate model (24) where diagonal elements of I'(0) are normalised to one
and A1, - and p remain fixed®. Then we transform the estimated modes of T'(0) and A back to the
A(0) parameter space using the following relation A(0) = I'(0)A™®°. We use these transformed
values to set the non-zero restrictions on the elements ag 3; and ag 32 in matrix A(0).

Since the sign of arow of A(0) can be reserved without changing the likelihood function, we follow
Waggoner and Zha (1997) and Sims and Zha (1999) in choosing a normaisation for each draw that
minimises the distance of A(0) from the posterior mode estimate of A(0). As Sims and Zha
comments, this method will tend to hold down spurious sign-switching of impulse responses and
thereby deliver sharper results than e.g. normdisation where diagonal elements of I'(0) are
normalised to one.

We will also modify the specification of Model 1 such that we assume that large-country variables
are block-exogenous with respect to small-country variables (let us call this Model 2). For Modd 2,
we use posterior density (28) with zero prior mean for a. and prior variance set as

i/,p*, forparameteronendogenousvariables
Var(a, )= : /,p™, for parameter on exogenousvariables
11, , for constant parameter

where A; = Az = 10000 and 2, = 0.005. Our exogenous prior restrictions for lagged variables are
determined using the assumption that the terms of trade and the small open economy’ s inflation has
zero effects on the Euro-area inflation, output, and interest rates series; see Cushman and Zha
(1996). The prior for A(0) is equal to the one above; thus, the conditional and marginal posterior
densities are

q(a+|a0):N(50;(lAX'X+H‘1)'1), (31)

alas) i [AO)[(1 A X X)H + 1]
“expf- 053, (1 AY'Y)a, +3,'H'&, - &'(1 A X'X +H *)g ]}, (32)

where H is chosen to match the (exogenous) prior variances defined above, and

3 =(1 A X X+H2) 1 AXY)a,+H,).
The joint marginal p.d.f. of Ap and A, for Modd 1 in Equation (30) and margina p.d.f. of Ay for
Model 2 in Equation (32) are not in the form of a standard p.d.f. We therefore have used a version
of the random walk Metropolis algorithm for Markov Chain Monte Carlo (MCMC) sampling to
generate a Monte Carlo sample from them.

2.3 Empirical Analyss

2.3.1. The Data

6 We use a flat *prior on A(0), which is transformed to the (T'(0), A) parameter space, including the
appropriate Jacobian term | A ]-(m+1)/2; see Sims and Zha (1999) and Waffoner and Zha (1997).



The aggregate data series and the series for each EMU member country’ are collected from two
sources. seasonally adjusted and construction activities excluded industrial production monthly
indices (11P) from the beginning of 1980 to the end of the 80s is from the OECD main economic
indicators. EuroStat provides the rest of the 1P series up to April 2006. The annual series for Gross
domestic product (GDP), population, and monthly series for Harmonized index of consumer price
(HICP) and Euro overnight index average (EONIA) interest rates are also downloaded from
EuroStat. The monthly series of the Producer Price Index (PPI) (without construction) over the
period of 1998 to April 2006 is seasonally unadjusted with base year 2000, and is as well provided
by EuroStat. The base year for the IIP index seriesis similarly year 2000; GDP is measured in year
2005 prices, and exchange rates and the base year for the HICP indices is 2005. Annual population
is a measure of total population at the end of the current year. GDP values are from years 19918 to
2005 and the population variable covers the period from 1980 to 2005. The monthly series for
HICP® are from January 1999 to April 2006, as are series for the EONIA interest rate depicting the
values of monetary policy ingruments.

Letting the statistical analysis be in line with the model, we assign each EMU member country in
turn to be the small country and let the rest of the member countries represent the large country.
Variables for a large country are marked with a *-superscript. We congtruct all 11'° different
datasets in a way that the values of the given small member country are neglected while calculating
the variable values for the large country. To do this, we assume that the annua GDP and the annual
population both have 50% weight in constructing the weight of the given country. In empirics, the
origina monthly series for the HICP and PPI series are used for the small member country j and the
values of the relevant variables for the large country are congtructed so that we first multiply the
variable values of the remaining member countries with the annua weight share and sum these
together to get the GDP and population weighted-averaged variables. Proceeding this way ensures
that the information content of the small-country variables is not included in the large-country
variables.

Figure A plots the actual EMU-area IIP aggregate and EONIA interest rate series, and Table 1
below Figure A contains the simple correlation coefficients between the log-differenced values for
the actual EMU-area |1P aggregate and log-differenced™ values for the above described large-
country 1P series. We see that the correlation coefficients are high.

Figures B-D draws the EMU-area annua HICP inflation series together with the annual HICP
inflation series for each EM U-member country together with the EONIA interest rate. In Figure B,
we see that in general, the annua HICP inflation series for the whole EMU area and Germany,
France, and Italy do show convergent behavior, while this is not the case for the rest of the EMU
member countries. Table 2 collects the correlation coefficients between the log-differenced values
of the constructed large-country HICP and the actual EM U-area HICP. In the table, we can see that

7 EMU member countries are Belgium, Germany, Spain, Austria, France, Italy, Ireland,
Luxembourg, The Netherlands, Portugal, Finland. VValues for Greece are taken into account from the
beginning of 2001.

8 GDP values of 1991 are used to replace the unavailable GDP values for the years 1980 to 1990.

9 However, values for 1998 are used in the calculation of annual and monthly changes.

10 The dataset for the case of Greece is not constructed since Greece has been an EMU member
country only from the beginning of 2001, and hence we would not have an equal amount of
observations.

11 To avoid the possibility of spurious regression (correlation), we use first differenced series of
variables in calculating the correlation coefficients.
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these coefficients are really high; the sample corrdation coefficients indicate near to perfect
correlation (excluding Germany).

Figure E shows how the producer price inflation in the EMU area and the EONIA interest rate both
have evolved under the common monetary policy era. Interestingly, while the EMU-area producer
prices have had an upward trend, the values of the monetary policy instrument have remained
practically on a constant level. The correlation coefficient between the log-differenced values of the
congructed large-country PPl and the actual EMU-area PPl are high, but not as high as the
correlation coefficients for the log-differenced HICP series.

Finally, since expectations play an important role in our macro model, we decided to use a one-
sided version of the Hodrick-Prescott (HP) filter to produce a trend estimate for the Euro area’s
IIP'? series. The one-sided trend estimate is constructed as the Kalman filter estimate of the Euro

area’ stota factor productivity Z; in the model
logY, =logZ; +Yv,
(1- LY logZ; =x,,

Whereﬁf is the unobserved trend component that approximatesZ, , and {vi} and {&}are mutualy

uncorrelated white noise sequences with relative variance & = var(&)/var(v); see Stock and Watson
(1999). We follow Stock and Watson (1999) and set & = 0.75" 10" ° that approximately matches the
spectrd gain for the HP-filter.

In the literature, Gali and Gertler (1999) for example, the labour’s share of output is also used as a
proxy for the marginal costs in spite of the output gap variable. Neiss and Nelson (2003), on the
contrary, report using data for the United States, the United Kingdom, and Australia, where labour
costs do not manage to explain inflation dynamics as well as the output gap.

2.3.2 Reaults

We start our anaysis by estimating proper lag length for Models 1 and 2 (we estimate in tota 22
different SVAR models). Our lag length estimates are based on the fractional marginal likelihoods
(FML) of the models; see Villani (2001).

To generate a Monte Carlo sample from the joint posterior of the elements of A(0) and A, in
Equation (30) and the posterior of the elements of A(0) in Equation (32), we use a version of the
random wak Metropolis algorithm for Markov Chain Monte Carlo (MM CMC). The agorithm uses
a multivariate normd distribution for the jump distribution on changes in the elements of A(0). In
the case of Model 1 (Finland), our smulation procedure is as follows (others are close variants of
this): We firgt simulate 20,000 draws using a diagonal covariance matrix with diagonal entries
0.00001 in the jump distribution. We then use the last 10,000 draws to estimate the posterior
covariance matrix of A, and the elements of A(0) and scale it by the factor (2.4)%2 to obtain an
optimal covariance matrix for the jump distribution; see e.g. Gelman et a (2004). If necessary, we
continue the simulation and use these new draws to calculate a more accurate covariance matrix for

12 Most of the methods that de-trend output variables use both future and past values of the series.
This makes these methods unsuitable for forecasting purposes because households and firms cannot
observe future observations when they form their expectations.
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A2 and the elements of A(0). Finaly, we run 250,000 draws, and after eliminating the burn-in
period, we pick up every 100" draw. In the other cases, the Markov Chains converged to stationary
digributions after 50,000-250,000 draws. The convergence diagnostics, numbers of draws, the

burn-in period, and the acceptance ratio are listed in Table 4 of the Appendix, Section C.

Figure 1 below shows the difference of the response of inflation in the individua country with the
area-wide inflation (excluding domestic) response. The shown impulse responses are based on
Models 1 and 2. The figures display a point estimate (median) of the impulse response and 68%
posterior intervals. The monetary policy shock has the size of one standard deviation for each

country.
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Model 1 and 2: Netherlands
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FIGURE 1. Impulse Responses for Structural VAR Modes (Thick lines are for Model 1 and thinner lines are for
Model 2.)

The impulse responses show that in general, the effects of inflation to a shock to a common
monetary policy are similar acrossthe EMU countries. That is, our datalends strong support for the
impulse responses being zero. This result contradicts the results of Peersman (2004). The major
reason for the difference between his and our results could be our standard treatment of unit root
price series; we use the difference series A In P;, while Peersman uses level series. Note also that
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standard bootstrapped confidence intervals may give a too optimistic view of precision due to the
assumption of stationary data generating processes, which does not hold in the case when the
variables are modelled in levels.

Taking a closer look at the drawn impulse responses, we see that immediate asymmetric inflation
responses exist in the cases of Belgium, France, and Finland. However, since these responses die
out during the first period, we should be very careful to state that the ECB’ s monetary policy causes
asymmetric price responses in the Euro area. One reason for the result that inflation responses are
similar across countries is of course the relatively wide error bands of the reported impulse
responses. However, in most of the cases, the point estimates (medians) are also quite close to the
zexo.

Finally, Table 4 in the Appendix (Section D) shows the point estimates (median) of hyperparameter
A2. In general, the hyperparameters are estimated relatively large, suggesting that prior restrictions
derived from the theoretical model should not be set too tight. Thus, our choice to use SVAR rather
than an alternative approach, where the parameters of the DSGE model are estimated directly,
seems to be supported by the data

2.3.3. Robustness of the Reaults

To control the robustness of the results we derive impulse responses from the reduced-form VAR
models. We identify the VAR models using recursive approach with different ordering of variables.
Estimated reduced form VAR is given by

B(L)y(t)+ D = v(t),

where y(t) isan (M 1) vector of observations, B(L) isan (m" m) matrix polynomial of lag operator L
with lag length p and non-negative powers, D is a congtant vector, B(0) = I, and a vector of error
terms v(t) is assumed to be normally distributed with zero mean and Q covariance matrix. In the
linear multivariate model above, we use normd likelihood, traditional Jeffreys priors for the
parameters, and lower triangular identification restrictions to generate identified impulse responses
from the model. Find more discussion on Jeffreys priors in multivariate regressions in Zellner
(1971).

Section B in the Appendix gives alternative orderings of variables of the estimated reduced form
VAR models. The lag lengths used in the reduced-form VAR models for different variable
orderings are listed in Table 5 in the Appendix (Section C).

Figure F reports the impulse responses of the Cholesky identified VAR models with different
ordering of variables. In general, we find moderate support in the data for symmetry of inflation
responses. To be more concrete, the differences of the response of inflation in the individual
country with the area-wide inflation (excluding domestic) response are flat except in the cases of
Spain, Portugal, the Netherlands, and France, for which the Cholesky identification yields
asymmetric behaviour of inflation responses. However, the Cholesky identification produces
spurious results for the ECB’s reaction function under Taylor rule based ordering of variables,
which we use. Specifically, Taylor rule parameter estimates indicate counterintuitive monetary
policy. That is, according to our estimation results (not reported here to save space), the ECB would
target for lower (higher) interest rates under a high (low) inflation and output period. Thus, in our
case we have to be very cautious about the results based on exactly identified VAR models.
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2.5. Conclusions

In this paper, we have used structural VAR models to caculate the impulse responses of the
difference of the response of inflation in the individual country with the area-wide inflation
(excluding domestic inflation) response. We modelled the actual EONIA interest rate with the
Taylor rule to describe the ECB’ s monetary policy. We acquired our prior knowledge of parameters
from the underlying New-Keynesian open economy macro model and applied it in the estimation.
We find that using economic theory to specify an econometric model is crucia since eg. a
traditiona exactly identified recursive approach produces spurious parameter estimates in our case.

To enable us to make an exact inference in a non-linear model environment we apply posterior
based analysis. Our new results, based on the posterior distribution of impulse responses, indicate
that the consumer price inflation responses to an unanticipated monetary policy shock are
symmetric in the Euro-area countries. Thus, it seems fair to say that responses of inflation in
individua countries to monetary policy conducted by the ECB do not cause undesired real income
differences between EMU countries.
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Fgure A: Industrial Production Index (11P) for the EMU areaand the EONIA interest rate series

Table 1: Correlations between constructed and actual |1P series

Correlations between log-differences of the constructed 11 P and actua 11P series for the EMU area.

BEL GER  SPA FRA IRE ITA LUX NETH AUST POR FIN
0.80 0.67 0.77 0.75 0.79 0.78 0.79 0.78 0.79 0.78 0.79
Sample 1980/m2 — 2006/m4

Germany
------- France

- - = .ltaly
EMU area
Eonia

Fgure B: Actua annual HICP inflations for Germany, France, Italy, the EMU area, and the EONIA interest rate
Series
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Fgure C: Actua annual HICP inflations for Belgium, Spain, the Netherlands, Austria, the EMU area, and the
EONIA interest rate series
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....... Luxembourg
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Fgure D: Actual annual HICP inflations for Ireland, Luxembourg, Portugal, Finland, the EMU area, and the
EONIA interest rate series

Table 2: Correlations between the constructed and actual HICP series

Correlations between log-differences of the constructed HICP and actual HICP series for the EMU
area

BEL GER  SPA FRA IRE ITA LUX NETH AUST POR FIN
0.98 0.88 0.98 0.97 0.98 0.96 0.98 0.98 0.98 0.98 0.98
Sample 1999/m1 — 2006/m4
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Fgure E: Annua Producer Priceinflation for the EMU area and the EONIA interest rate series (Left y-axisis for

annual PPl inflation values)

Table 3: Correlations between the constructed and actual PPl series

Correlations between log-differences of the constructed PPl and actual PPl series for the EMU area.

BEL GER  SPA FRA IRE ITA LUX NETH AUST POR FIN
0997 097 0,85 0,84 0,88 0,83 0,88 0,85 0,87 0,87 0,88
Sample 1999/m1 — 2006/m4
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APPENDIX

A. Derivation of Equations (20)-(23)

We can write Equation (10) in aform

= bE{p,..} - abE{§..} +ab > +as - as1+/§1+——s+/(f+8)y - 1+f)e,
- bEt{pt+1}' abEt{SHl}"'/l)G[ - a3_1+/(f +5)yt - /(1+f)zt'
where /| =[ab +a +/(1+fwls)).

Using Equations (15) and (18) together with the definition for margina cost of a small open
economy, we get

J g A g . A A

=babp.+bab,mC, -abab;s,+/>§-as, +(f+s)y - 1{1+f)z
i=0 i=0 i=0
=b& b, +blf +s)A DT, +blrwis)E S - b+ DA D2,
i=0 i=0 i=0 i=0
'abg. 751 +ll>Gt as{l+l(f+s)y —/(1+f)Z[

=0

U

. L ® Y O

(1' CO,l)pt - Coo¥y - dgsS = ia.lci,lpt-i +ia.lci,2yt-i +ia.ldi,ast-i - ia.OCi,4Z[.i ,
where ¢, = b, for (i=0, ..., p),

Coa = (g, +1 JF +5),
c,=b(f+s)%, for(i=1,...,p),
d,=b{+fw/s)b,- abb, for(i=2, ...,p)
dys = b(L+Fwis)b,, - abb,, +1,
d, = b(A+fwis), - abb, - a,
C4=-bb,(1+f)for(i=1,..,p)and c,, =- (b, +/ J1+7).

Denote§ =s, - s=logS - logS, then

. _ d g 3 J
(1' CO,l)pt - CooYr - CpsS _C1+a CPuita GV +_a CsS.i- A G4z

i=1 i=1 i=1 i=0

Above is Equation (20) where

cz=dfor(i=0,..,p)and c, = sgd03 +a d,
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Add Equation (16) and the definition for marginal cost into Equation (11) and obtain

P =b& bp; +bA bmE +1(f +5)5; - | (1+1)z
i=0 i=0

= b& b, +b(f +5)A DL, - bf +DA bz, +1(F+5)5 - | (@+F)Z
i=0 i=0 i=0

U

. a8 . & ~ 3 .
(1‘ CO,S)pt “CeYt A CsPi tA CGeYi - A G4
=1

i=1 i=0
Above is Equation (21). Now

C g = bb for(i=0,...,p),
Ce=b(f+s)h,for(i=1,..,p),
Cos = (bby, +1 ) +5),

¢, =-bb,(f+1) for (i=0, ..., p)

and
Co7 =~ (bbo,4 +1 )(f +1)'

Combining Equations (13) and (17), weobtain

¥, = ébl,Syt*-i +ébi,6rtti } _ai)Q,eEt{p:ﬂ}' si(rt* ) Et{p:ﬂ})

3 . 3 . d . el 6. el o) .
=absV. taberi- AbePii- G- be T, G- by +Et{pm}-
i=0 i=1 i=0 es 7] es 1]

Defines, =1/s - b,,. Then, add Equation (16) and the definition for margina cost into the above
to get

3 o S . & . . 3 . S o
=absytabeli-Abepi- S ts;abap tsab,mc,
i=0 i=1 i=0 i=0 =0

$ . J . d . R J s $ .
=absy.tabei-a (b|,6 +51b|,3)pt-i - S +51(f +S)a By - sl(f +1)a b,z

i=0 i=1 i=0 i=0 i=0

$ o 3 . d R R 3 .
=a (b|5 +51(f +S)b|,4)yt-i ta bi,srt—i -a (b|s +51bi,3 i T Sl - Sl(f +1)a. bi,4zt

i=0 i=1 i=0 i=0

C

e . . & o 3 . & . & .
(1‘ CO,B)yt = Cooli = Co10Pr =aA GgYei TA Goliei YA CaoPr-i T A CG1idei
i=1 i=

i=1 i=0
Above is Equation (22). Now

Ci,8:bi,5_sl(f +5)bi,4 for (i=0,...,p),
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Cio=his for(i=1,...,p),

Cino=- (b, 6+s1b,5) for (i=0, ..., p),
Cin=-S.(f +1pb,, for (1 =0, ..., p),
and

Coo=Dos-S;-

Then combine Equations (14) and (18) to get

7))

~_ b . 1. I(@+f)
=—Aah o+ - J

S mlaz(.) |,7St-| + mSt-l + m (Zl

U

(L- cow)s =c, + él CuSi +Culz - Z)
Aboveis Equation (23). Now ¢, =b ;b/ mfor (i=0,2,3, ..., p),
Cp = (14 b)/mand ¢, =- s§+ meba b, Y m.
=0 @
B. The Ordering of Variablesin Reduced Form VAR Models

In the different versions of the VAR model in Equation (33), we define the vectors of observations
as

P9 2 p 9 2 ap 0

¢y + ¢DlogY; = ¢Dy, logy, +

Ly, :git i 2y :g it 7 3y, :g i .,
Cs * ¢ 5 < ¢ s 3
gptﬂ g P a g ap, Q

0 2 p. 9 2 ap, 0

0+ DlogY’ + D, logY’' +
o=l Y=g e L oad Cy =g 9N T
iy - (O Iy -

O & é P o ap, g

Variable ap, is the annual HICP inflation of the large country and Dlogy, andD,, logY, refer to
monthly and annual growth of the large country’s industrial product output, respectively. The
reduced VAR model specified with "y, is set to have a direct comparison between the structural
form VARs. Accordingly, a reduced form VAR of %y, and °y, will be estimated to have a

comparison between 'y, and a structure form VAR. Models for *y, - °y, are specified and

estimated to investigate how the terms of trade s variable affects the mode dynamicsin the impulse
response sense of HICP inflation differences to an unanticipated expansionary monetary policy
shock.
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C. Summary Statisticsfor SYAR models

Table4: SYAR models' lag lengths and convergence diagnostics of Model 1 and Model 2 for individual countries

Informati on on structura model lag lengths and convergence diagnostics

leg (p)
Number of draws

Acceptance ratio
Burn-in period
Thinning interva

Geweke z-
satistics
A 11
Ao 21
Ao 12
22
Ao 42
Ao 23
o33
do a4
dp 45
do 55
A2

Median of 1,
Mean of 4,

leg (p)
Number of draws

Acceptance ratio
Burn-in period
Thinning interva

Geweke z-
gatistics
dp,11
21
Ao 12
A 22
Ao 42
Ao 23
o33
Ao 44
Ao 45
Aps5
A2

Median of /1,
Mean of 4,

Belgium
Modedl 1 Modd 2
6 6
250,000 50,000
29% 26%
10,000 5,000
100 100
-15 15
0.2 0.9
1.2 0.0
-0.2 14
-0.6 -0.1
-04 0.7
-0.2 -0.9
0.1 0.6
0.6 0.1
-1.2 -1.0
0.6 NA
169.4 NA
195.4 NA
France
Modedl 1 Modd 2
4 4
250,000 50,000
20% 30%
10,000 5,000
100 100
0.1 -0.3
0.2 -0.6
0.2 0.2
0.2 -0.2
-0.0 0.2
0.6 -0.1
0.6 -1.0
-0.6 -1.1
-0.3 -0.6
-04 0.2
0.8 NA
51.4 NA
68.2 NA

Modd 1

7

250,000
20%
10,000

100

-11
-0.3
0.2
-0.7
-0.2
-1.3
0.3
-11
-0.4
-0.8
0.1

291
47.1

Germany
Modd 1 Modd 2
6 6
250,000 50,000
28% 27%
10,000 5,000
100 100
-0.1 11
-1.5 -0.8
0.9 -0.1
-0.9 05
-1.5 0.1
04 13
0.2 0.1
-1.3 0.1
16 1.0
-1.2 -0.5
0.9 NA
216 NA
34.6 NA

Modd 2

7

50,000
29%
5,000

100

-0.8
0.7
-1.6
-0.8
-0.5
1.0
-0.4
1.0
-0.9
0.3
NA

NA
NA

Austria
Model 1 Model 2 Model 1 Modd 2
8 8 2 2
250,000 50,000 250,000 50,000
21% 23% 20% 29%
10,000 5,000 10,000 5,000
100 100 100 100
0.1 0.2 -0.6 -0.2
0.1 12 -1.4 -0.5
0.6 13 -1.6 -0.8
-04 0.0 -0.6 -0.1
0.1 -1.1 -0.3 0.6
-0.0 -1.3 11 0.6
-0.3 16 -0.7 -0.3
-04 13 -0.2 0.8
1.0 -1.0 -0.7 -0.5
16 -0.1 -0.0 -1.7
-15 NA -0.2 NA
40.0 NA 39.2 NA
58.2 NA 51.6 NA
Ireland Luxembourg
Model 1 Model 2 Model 1 Modd 2
4 4
250,000 50,000 250,000 50,000
25% 31% 28% 28%
10,000 5,000 10,000 5,000
100 100 100 100
-0.3 -0.3 -0.0 0.9
-0.1 -0.1 -0.9 0.5
-04 -04 -0.7 -0.2
-0.7 -0.7 -0.1 12
0.1 0.1 -15 -0.6
0.2 0.2 0.5 0.0
-0.9 -0.9 -0.8 -1.1
-0.3 -0.3 -0.1 -0.7
-0.3 -0.3 0.3 -0.5
-14 -1.4 -1.3 -1.6
-0.1 NA -0.3 NA
1411 NA 16.2 NA
162.4 NA 28.6 NA
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The Netherlands

Modd 1
lag (p) 3
Number of draws 250,000

Acceptance ratio 19%

Burn-in period 10,000
Thinning interva 100
Geweke z-
gatistics
ao11 -1.4
ao21 -1.6
ao,12 0.8
ao22 -1.4
0,42 -0.1
do 23 -04
do 33 -04
do 44 0.1
o5 -1.4
055 0.0
A2 -0.7
Median of 1, 318.0
Mean of 4, 336.7

Mode 2

3

50,000
17%
5,000

100

-0.7
13
-1.3
-0.6
0.9
-1.0
12
-0.6
05
-0.3
NA

NA
NA

Table 5: Reduced form VAR lag lengths

Information on reduced form VAR models lag lengths

Country
Belgium
Germany
Spain
Austria
France
Italy
Ireland
Luxembourg
The Netherlands
Portugal
Finland

WwWww~NhrbdphANONO

owwoAMRMAME O

Estimated lag length (p)
9
10

WWhNNNOINW
Wwworrbhbpwo~No

Portugal Finland
Modd 1 Modd 2 Modell Mode 2
3 3 3 3
250,000 50,000 250,000 50,000
19% 27% 24% 29%
10,000 5,000 10,000 5,000
100 100 100 100
11 14 11 -15
0.5 -1.5 16 -0.1
0.8 17 04 0.8
1.0 18 0.8 -1.4
0.6 -1.3 -0.5 -1.0
0.7 -0.5 -1.0 11
-1.2 0.7 0.2 1.0
-0.3 0.1 14 -0.9
0.8 -0.3 -1.2 0.7
0.2 -0.0 -1.3 0.3
-0.1 NA -13 NA
77.8 NA 18.2 NA
95.2 NA 321 NA

Wwhrhohrrhrhr,bhboNo

P OPRPWOWWWOAOWWPAW®
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