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ABSTRACT 

 
In this paper, we propose the use of a dimensional decomposition procedure together 
with lexicographic parametric programming to reduce computational burden when 
identifying the efficient decision making units in Data Envelopment Analysis (DEA). 
The use of lexicographic parametric programming makes it possible to develop an 
efficient algorithm for the problems with few inputs and outputs. That’s why we 
propose the procedure which first partitions the original problem dimensionally into 
sub-problems and then identifies the efficient units of the sub-problems. Because 
those units are a subset of the weakly efficient solutions of the original problem, they 
are used as an initial approximation for the efficient units of the original problem. The 
efficiency of the approach is illustrated by numerical results. 
 
Keywords: Efficiency Analysis, Data Envelopment Analysis, Decomposition, 
Computational Aspects 

1 INTRODUCTION 

Data Envelopment Analysis (DEA) was originally proposed by Charnes, Cooper 
and Rhodes [1978 and 1979] as a method for evaluating the relative (technical) 
efficiency of different Decision Making Units (DMUs) essentially performing the 
same task. Each of the units uses multiple inputs to produce multiple outputs. The 
units are assumed to operate under similar conditions. The DEA is value-free in the 
sense that efficiency evaluation is based on the data available without taking into 
account the decision maker’s (DM) preferences. 

Based on information about existing data on the input/output-values of the units and 
some preliminary assumptions, a so-called production possibility set (PPS) is 
specified. The production possibility set consists of all possible input/output 
combinations.  A specific part of the production possibility set is called an efficient 
frontier (surface). The input/output – values on the efficient frontier have a property 
that none of the inputs or outputs can be improved without worsening at least one 
input or output. If a DMU lies on the efficient frontier, it is referred to as an efficient 
unit, otherwise it is considered inefficient. DEA also provides efficiency scores and 
reference set for inefficient DMUs. The efficiency scores represent a degree of 
inefficiency of the DMUs. The reference set for inefficient units consists of a set of 
efficient units and determines a virtual target unit on the efficient frontier. 

The target unit is found in DEA by projecting an inefficient DMU radially1 to the 
efficient surface. To check the efficiency of a unit and to find the reference set and the 
efficiency score for inefficient units requires the solving of an LP-model. The 
straightforward method is to solve iteratively an LP-model for each unit separately. 
The optimal basis of the previous iteration is not valid for the next iteration as such, 
because at each iteration, the right-hand side vector and one column in the coefficient 
matrix has to be updated.  

                                                 
1 Term "radial" in the traditional DEA-literature means that an efficient frontier is tried to reach by 
increasing the values of the current outputs or decreasing the values of the current inputs. 
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When the number of the units is tens or even hundreds of thousands, 
computationally more efficient methods are needed. Such problems appear when, for 
example, the efficiency analysis is made at an individual level. In these kinds of 
problems, the straightforward approach to formulate an LP-model for each unit with 
an unknown status does not work. It is too time-consuming. Fortunately, the structure 
of the DEA-model makes it possible to develop special techniques for large-scale 
problems.  

There are not very many authors who have studied computational problems in 
DEA. One of those exceptions is Ali [1993, 1994], who proposed an idea to restrict 
the basis entry. The basis always consists of a set of existing efficient units. When a 
unit is diagnosed inefficient, the corresponding column can be dropped from the set of 
potential basic vectors. Moreover, Dulá and Helgason [1996] proposed solving the 
problem in two phases. In phase I, the extreme point solutions of the polytope 
consisting of all units in the data set are defined. The efficiency scores of the other 
vectors are computed in phase II by using the minimal set of potential basic vectors, 
i.e. efficient units. The idea was further developed in the paper by Dulá et al. [1997]. 
The more recent developments by Dulá and his associates are presented in Dulá and 
Lόpez [2002]. 

Because the computing time as the function of the units increases more than 
linearly, Barr and Durchholz [1997] proposed the partition of the set of the units.  The 
efficient units are first identified in a small data set, and then the union of those units 
is used to build a set of potential basic vectors for the original problem. The union 
consists of all efficient units, but usually also inefficient units. The idea leads to 
computationally efficient algorithms, because the savings in computing time are 
remarkable in comparison to solving the original problem in one phase.   

In our previous paper (Korhonen and Siitari [2007]), we used lexicographic 
parametric programming (Korhonen and Halme [1996]) to traverse from unit to unit 
along the efficient frontier. On the way, it was possible to recognize a set of units 
efficient or inefficient. The procedure is computationally efficient, when the number 
of inputs and outputs is small.  

In this paper, we propose a dimensional decomposition to improve the performance 
of the procedure by Korhonen and Siitari [2007]. An original set is divided 
dimensionally into subsets, and the efficient units are identified in each subset. Those 
units are the weakly efficient units of the original problem. However, they provide a 
good initial approximation for the set of all efficient units of the original problem. The 
size of that set is usually much smaller than the number of the original units. The set 
is supplemented during the solution procedure with the units which are diagnosed 
super-efficient (Andersen and Petersen [1993]). Finally, the efficient units of the 
original problem are recognized from this supplemented set.  

 The paper is given in five sections.  In the next section, the necessary theoretical 
questions are discussed. Section 3 represents the algorithm developed in this paper. 
Computational results are given and discussed in section 4. Section 5 concludes the 
paper with some remarks.  
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2 THEORETICAL CONSIDERATIONS 

2.1 Preliminary Considerations  
Consider a production technology, where m inputs are needed to produce p outputs. 

We denote inputs by x ∈ ℜm
+ and outputs by y ∈ ℜp

+. We define the production 
possibility set (PPS):  

P0 ={(y, x) | y can be produced from x} ∈ ℜp+m
+    (2.1) 

which consists of all feasible inputs and outputs in the general sense that the inputs 
are capable of producing the outputs. We assume that both inputs and outputs are 
freely disposable. As usually, we assume that in outputs more is better and in inputs 
less is better. 

In practice, set P0 is unknown. To approximate P0, we usually gather sample 
information about the existing units, set up some assumptions, and define a set P, 
which is assumed to be a subset of P0.   

Now we are ready to define some efficiency concepts for the elements of the 
production possibility set P. 

Definition 1.  A point (y*, x*) ∈ P is efficient in set P iff (if and only if) there does 
not exist another (y, x) ∈ P such that y ≥ y*, x ≤  x* and (y, x) ≠ (y*, x*).  

Definition 2.  A point (y*, x*)  ∈ P is weakly efficient in set P iff there does not exist 
another (y, x) ∈ P such that y > y* and x < x*.  

Definition 3.  A point (y*, x*)  ∈ P0 - P is super-efficient with respect to set P iff 
there does not exist (y, x) ∈ P such that y ≥ y*, x ≤  x*.  

To simplify notations in the following considerations, we define set Q: 

 (y, x) ∈ P ⇔ (y, -x) ∈ Q,      (2.2) 

and a dimensional chip of Q: QB ∈ ℜh
+, h < p + m 

 }Q|{QB ∈







==

B

A
B q

q
qq .      (2.3) 

 

Theorem 1. If B
* Q∈Bq is weakly efficient in QB, then all Q*

*
* ∈








=

B

A

q
q

q  are weakly 

efficient in Q.  
 

Proof: Assume Q*

*
* ∈








=

B

A

q
q

q  is not weakly efficient. Then there is another  

Q∈







=

B

A

q
q

q  such that q > q*.  However, it leads to the contradiction with the 

assumption that B
* Q∈Bq  is weakly efficient in QB, because there cannot exist another 

BQ∈Bq  such that qB > *
Bq ⁪ 



 5

 
Remark 1. If point *

Bq  is efficient in QB, *q  is weakly efficient in Q, but not 
necessarily efficient.  
Remark 2. If point *q  is (weakly) efficient in Q, then point *

Bq  may be (weakly) 
efficient or inefficient in QB. 

2.2 Basic Data Envelopment Models 
Assume we have n DMUs each consuming m inputs (m ≠ 0),  and producing p 

outputs (p ≠ 0). Information can be presented by two matrices. Let X be an (m × n) - 
matrix and Y be a (p × n) - matrix consisting of non-negative elements, containing 
observed input and output measures for the DMUs, respectively. We denote by xj (the 
jth column of X) the vector of inputs consumed by DMUj, and by xij the quantity of 
input i consumed by DMUj. A similar notation is used for outputs. We further assume 
that xj ≠ 0 and yj ≠ 0, j = 1, 2, …, n, and for simplicity, we assume that there are no 
duplicates in the data set. Furthermore, we denote 1 = [1, ..., 1]T. 

Using the existing data set, we define the (practical) production possibility set as a 
set P ={(y, x) | x ≥ Xλ, y ≤ Yλ, λ∈Λ}, where the definition of Λ depends on the 
assumptions made about the form of set P.   

Data Envelopment Analysis models can be interpreted as tools to check which 
existing or virtual units are on the efficient frontier of P. The traditional CCR-models, 
as introduced by Charnes et al. [1978, 1979] are originally presented as fractional 
linear programs which can easily be formulated and solved as linear programs. Those 
models are so-called constant returns to scale models. Later Banker, Charnes and 
Cooper [1984] developed the so-called BCC models with variable returns to scale2.  
The CCR and BCC models are the basic model types in DEA. Those basic models can 
be presented in a primal or dual form. Which one is primal or dual varies. It is more 
recommendable to call them multiplier and envelopment models accordingly. The 
multiplier model provides information on the weights of inputs and outputs which are 
interpreted as prices in many applications. Instead, the envelopment models provide 
the user with information on the lacks of outputs and the surplus of inputs of a unit. 
Moreover, the envelopment model characterizes the reference set for inefficient units.   

The models can be further classified as input-oriented or output-oriented models. 
The model is input-oriented, when the output levels are given, and the inputs are tried 
to reduce radially in the production feasibility set. In the output-oriented models, the 
role of inputs and outputs are changed with the exception that the outputs are tried to 
increase. Without loss of generality, we may also consider a DEA-model by using a 

general directional vector w = 



 wy

 wx  ≥ 0, w ≠ 0 (discussion on directional distance 

functions, see   Chambers et al. [1998]). Halme et al. [1999] called the model a 
general combined model. Input- and output-oriented models are the special cases of 
that model.  

Consider the following lexicographic formulation of the general DEA-model in the 
so-called envelopment form (Korhonen and Siitari [2007]): 

                                                 
2 Actually, the BCC model was first proposed by Afriat [1972, p.581], in a case of one output. The 
general version of the envelopment BCC model was independently also proposed, implemented and 
solved by Färe, Grosskopf and Logan [1983]. 
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lex max {σ , 1Ts+ + 1Ts-) 
s.t.               (2.4)                                

           Yλ  - σ wy - s+ = y0 
           Xλ + σ wx + s-

 = x0 
        λ ∈ Λ 
                    λ,  s- , s+ ≥ 0 
                                        
where x0 is the input-vector and y0 is the output-vector of a DMU under consideration 
and     

 

Notation “lex max” refers to a lexicographic maximization problem. It means that 
we first solve (2.4) using σ as an objective function. In case, the optimal solution σ* 
is not unique, we add the constraint σ = σ* into the model (2.4) and solve it by using 
1Ts+ + 1Ts- as the objective function.  

The first three constraints for λ specifies one of the BCC - models, and the last one 
specifies the CCR-model. In the combined model, wy = y0 and wx = x0. In the input-
oriented model wy = 0 and wx = x0 , and in the output-oriented model wx = 0  and wy = 
y0.  The value of σ - called an inefficiency score - at the optimum is denoted by σ *. A 
DMU is efficient iff the optimal value σ* and all slack variables s-, s+ equal zero. 
Otherwise, the DMU is inefficient (Charnes et al. 1994). For weakly-efficient 
solutions σ* = 0 but (1Ts+ + 1Ts -) > 0. 

2.3 Problem Decomposition 
Let N be the index set of n DMUs (N = {1, 2, …, n}) in the original problem. Let I 

be the index set of the rows of X (I = {1, 2, …, m}) and let O be the index set of the 
rows of Y (O = {1, 2, …, p}). By dimensional decomposition we mean that the set of 
input variables I and the set of output variables O are divided into q subsets: I = I1 ∪ 
I2 ∪… ∪ Iq, Ii ≠ ∅, and O = O1 ∪ O2 ∪ … ∪ Oq , Oi  ≠ ∅. The sets are not necessarily 
disjoint. Each pair of sets (Ii, Oi) defines a DEA sub-problem Ai (i = 1, 2 ,…, q). Each 
sub-problem specifies a status for each DMUj, j = 1, 2, …, n. The set of efficient 
DMUs in sub-problem Ai is denoted by Ki

E, the set of only weakly efficient DMUs by 
Ki

W and the set of super-efficient DMUs by Ki
S. We drop the subscript, when we refer 

to the original problem. 

In the proposed algorithm, each DMUj, j∈ N is classified to one sub-problem Ai (i = 
1, 2, …, q). The index set Ni refers to the DMUs belonging to sub-problem Ai. 

We denote Ar ⊆ Av, if Ir ⊆ Iv and Or ⊆ Ov. In this case, problem Av has at least all 
the variables that the problem Ar contains. The problem Ar is a dimensional chip of 
the problem Av. Each unit in the problem Ar can be interpreted as a vector qB in (2.3). 
Similarly the production possibility set of Ar relates to the production possibility set 

 {λ 1’λ = 1, λ ≥ 0} for variable returns to scale model (Banker et al. [1984]) 

{λ 1’λ ≤ 1, λ ≥ 0} for non-increasing returns to scale model 
Λ = 

{λ 1’λ ≥ 1, λ ≥ 0} for non-decreasing returns to scale model 

 {λ  λ ≥ 0} for constant returns to scale model (Charnes et al. [1978]). 
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of Av as the vector set QB relates to Q in (2.3). By Theorem 1, if Ar ⊆ Av, then Kr
E ⊆ 

(Kv
W ∪ Kv

E). 

By evaluating dimensionally decomposed problems we can expect to find several 
units that are efficient also in the original (full dimensional) problem. Using these 
units as potential basic variables we can classify all the other DMUs either inefficient 
or super-efficient with respect to our new frontier.   

3 THE ALGORITHM 

3.1 Decomposition algorithm 
The problem with m + p > 1 variables can be decomposed many ways. It is 

important to choose the decomposition in such a way that we get “efficiency 
information” as much as possible. If e.g. Λ = {λ  λ ≥ 0}, then in case we choose all 
variables to be maximized or to be minimized, all units are inefficient. This kind of 
decomposition does not give us much useful information. In advance, it is hard to say 
which decomposition is best. If in each chip there is at least one input to be minimized 
and one output to be maximized, then each sub-problem has at least one efficient unit. 
In addition, it is reasonable to minimize the overlapping of the variables between the 
sub-problems.  Motivation to decompose the problem dimensionally is to recognize 
different efficient DMUs of the original problem. That’s why it is justified to try to 
have as diverse set of variables in each problem as possible. 

In this paper we have used the following algorithm to divide the set of input 
variables I and the set of output variables O into q subsets I1, I2,…,Iq and O1, 
O2,…,Oq. 

 
Step 0: Initialization 

Select block-quantity q (1 ≤ q ≤ max(m, p)) which determines how many sub-
problems will be created. The value for q will be determined empirically. 
Define two temporary index sets It and Ot.  

 
Step 1: Decomposing input variables 

Set It := I. Define k := 1.  
Set allInputsUsed := false and allSubsetsUsed := false. 

 
Step 1a: 

Select the first variable i from the index set It. Redefine Ik :=  Ik + i,  
It := It – i and k := k + 1. 

Step 1b: 
If (It  = ∅) (if all input variables have been used at least once) 

  Redefine It := I. Set allInputsUsed := true. 
If (k = q) (if all subsets have at least one input) 
 Redefine k := 1. Set allSubsetsUsed := true. 
If (allInputsUsed = true) and (allSubsetsUsed = true)  

  Go to Step 2. 
 Else  
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  Go to Step 1a. 
 

Step 2: Decomposing output variables 
 Set Ot := O. Define k := q.  

Set allOutputsUsed := false and allSubsetsUsed := false. 
 

Step 2a: 
Select the first variable o from the index set Ot . Redefine Ok :=  Ok + 

o,  
Ot := Ot – o and k := k - 1. 

Step 2b: 
If (Ot  = ∅) (if all output variables have been used at least once) 

  Redefine Ot := O. Set allOutputsUsed := true. 
If (k = 0) (if all subsets have at least one output) 
 Redefine k := q. Set allSubsetsUsed := true. 
If (allOutputsUsed = true) and (allSubsetsUsed = true)  

  Stop. 
 Else  
  Go to Step 2a. 

3.2 Classification algorithm 
In this section we describe the proposed algorithm for solving the decomposed 

problem. 

Step 0: Initialization 

Divide the set of input variables I and the set of output variables O into q subsets I1, 
I2,…,Iq and O1, O2,…,Oq as described in the decomposition algorithm. For each pair 
of subsets, form a new dimensionally decomposed DEA sub-problem Ai (i = 1, 2, …, 
q). 

Step 1: Dimensional Decomposition 

Solve each of the sub-problems Ai.  Get the union of efficient units KE* in each sub-
problem K1

E ∪ K2
E ∪ … ∪ Kq

E
 = KE* 

Step 2: Reduction of Number of Potentially Efficient Units 

In the set N - KE*, identify inefficient units using all inputs and outputs. Use only the 
units DMUi, i ∈ KE*

 as basic units in (2.4). Define a new index set Ksuper that includes 
the set KE* and the units that were found either efficient or super-efficient.  

 Step 3: Recognition of Efficient Units 

In the set Ksuper, identify inefficient units using all variables. The units that are 
efficient in this problem form the set of efficient units in the original problem.  

4 COMPUTATIONAL RESULTS 

We tested our decomposition procedure using simulated problems, which we 
received from Prof. Jose Dulá. He has also used these problems in his own tests. The 
parameters of the problems are the number of units n, the number of inputs/outputs 
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m+p, and the density of the efficient units d. The number of units we used was 5000, 
10000, 15000, 20000, 25000, and 50000. The number of inputs/outputs was 20. We 
classified the models into three density categories in such a way that the average 
densities in each class were 6.4%, 10.0%, and 22.9%. The computing times are 
reported using five different block-quantities q. The problems are decomposed 
dimensionally into two (q = 2), three (q = 3), four (q = 4) and five (q = 5) sub-
problems. Computing times without decomposition (q = 1) are also reported. The tests 
are run with a PC-computer with one 2.4 GHz processor. The DEA-model used is 
CCR.  

The test results are reported in Tables 1-4 in each combination of the parameters. In 
Table 1, we have reported the computing times when the number of sub-problems is 
two (q = 2). In Table 2 the number of sub-problems is three (q = 3) and in Tables 3 
and 4 the number of sub-problems is four (q = 4) and five (q = 5) respectively. Tables 
1-4 represent the computing times in each steps together with the number of efficient 
(Step 1 and Step 3) or super-efficient (Step 2) units found in each step. Column No 
Part refers to the time (in seconds) needed to solve the problem without 
decomposition (q = 1). Step 1 / Time reports the time required to solve the sub-
problems. Column Step 1 /  # of Alt represents the number of efficient units found in 
sub-problems. Column Step 2 / Time states the time needed to calculate the super-
efficiencies. Step 2 / # of Alt presents the number of super-efficient units found 
(together with the units found in Step1). Column Step 3 / Time states the time that is 
needed to calculate the exact set of efficient units. Step 3 /  # of Alt presents the 
number of efficient units found in the problem. Column Total / Time reports the total 
time needed to solve the problem by dimensional decomposition approach. Total /  
Ratio compares the required total time by decomposition with the time without 
partition. 
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Table 1: Computing Times (s) and the Number of Alternatives when the Problem is 
Decomposed into Two Parts (q=2). 

No Part.
Density # of Alt. Time(s) Time(s) # of Alt. Time(s) # of Alt. Time(s) # of Alt. Time(s) Ratio

5 000 354 25 229 16 733 5 665 46 0.129
10 000 1686 99 263 41 855 8 806 148 0.088

6.4 % 15 000 3559 239 274 72 956 11 829 322 0.091
20 000 8589 431 295 127 997 14 888 571 0.067
25 000 12342 705 341 172 1147 16 1011 893 0.072
50 000 51753 3851 456 525 1642 39 1376 4415 0.085
5 000 555 38 297 32 600 3 586 73 0.132

10 000 2935 195 430 97 1089 12 1038 304 0.103
10.0 % 15 000 6864 778 549 235 1590 53 1498 1066 0.155

20 000 11425 1781 641 363 2055 56 1930 2200 0.193
25 000 19209 1978 707 489 2384 100 2384 2567 0.134
50 000 106172 12776 1087 1559 4956 523 4607 14858 0.140
5 000 675 85 509 65 1253 16 1209 166 0.245

10 000 3264 383 712 197 2441 78 2346 659 0.202
22.9 % 15 000 8053 1475 952 438 3590 233 3447 2146 0.266

20 000 15756 2921 1058 734 4770 541 4517 4196 0.266
25 000 25089 4911 1280 1152 5921 900 5596 6963 0.278
50 000 115585 21511 1802 3073 11670 4033 10783 28617 0.248

Step1 Step2 Step3 Total

 
 

Table 2: Computing Times (s) and the Number of Alternatives when the Problem is 
Decomposed into Three Parts (q=3). 

No Part.
Density # of Alt. Time(s) Time(s) # of Alt. Time(s) # of Alt. Time(s) # of Alt. Time(s) Ratio

5 000 354 2 115 8 870 8 665 17 0.048
10 000 1686 3 124 18 1271 18 806 39 0.023

6.4 % 15 000 3559 12 134 32 1388 21 829 64 0.018
20 000 8589 13 134 42 1551 30 888 85 0.010
25 000 12342 21 163 69 1599 33 1011 124 0.010
50 000 51753 54 206 174 2697 123 1376 351 0.007

5 000 555 2 151 16 721 5 586 23 0.041
10 000 2935 5 167 32 1301 20 1038 57 0.020

10.0 % 15 000 6864 17 212 71 1799 41 1498 128 0.019
20 000 11425 30 230 107 2395 77 1930 215 0.019
25 000 19209 35 257 136 2952 140 2384 312 0.016
50 000 106172 103 330 380 5643 747 4607 1231 0.012

5 000 675 3 197 21 1328 18 1209 42 0.062
10 000 3264 9 261 63 2612 94 2346 166 0.051

22.9 % 15 000 8053 28 293 100 3858 300 3447 428 0.053
20 000 15756 51 328 151 5129 598 4517 799 0.051
25 000 25089 60 323 184 6451 1008 5596 1251 0.050
50 000 115585 210 445 562 12606 4889 10783 5661 0.049

Step1 Step2 Step3 Total
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Table 3: Computing Times (s) and the Number of Alternatives when the Problem is 
Decomposed into Four Parts (q=4). 

No Part.
Density # of Alt. Time(s) Time(s) # of Alt. Time(s) # of Alt. Time(s) # of Alt. Time(s) Ratio

5 000 354 0 70 5 1127 13 665 18 0.051
10 000 1686 1 87 13 1467 24 806 38 0.023

6.4 % 15 000 3559 1 70 16 1847 42 829 58 0.016
20 000 8589 4 99 30 2337 72 888 106 0.012
25 000 12342 4 113 44 2212 71 1011 120 0.010
50 000 51753 14 112 97 4496 510 1376 621 0.012
5 000 555 0 91 8 823 7 586 16 0.028

10 000 2935 2 113 21 1400 24 1038 47 0.016
10.0 % 15 000 6864 3 121 38 2136 68 1498 109 0.016

20 000 11425 6 135 67 2815 149 1930 222 0.019
25 000 19209 6 122 59 4061 436 2384 501 0.026
50 000 106172 19 165 171 6817 1442 4607 1631 0.015
5 000 675 1 121 12 1420 22 1209 34 0.051

10 000 3264 2 160 32 2736 109 2346 143 0.044
22.9 % 15 000 8053 7 190 65 4119 424 3447 496 0.062

20 000 15756 8 161 73 5584 864 4517 945 0.060
25 000 25089 13 198 107 6884 1420 5596 1540 0.061
50 000 115585 31 204 221 13678 7190 10783 7442 0.064

Step1 Step2 Step3 Total

 
 

Table 4: Computing Times (s) and the Number of Alternatives when the Problem is 
Decomposed into Five Parts (q=5). 

No Part.
Density # of Alt. Time(s) Time(s) # of Alt. Time(s) # of Alt. Time(s) # of Alt. Time(s) Ratio

5 000 354 0 45 3 1363 17 665 20 0.058
10 000 1686 0 48 7 2476 75 806 82 0.049

6.4 % 15 000 3559 0 50 10 2694 91 829 101 0.028
20 000 8589 1 60 20 3770 258 888 279 0.032
25 000 12342 1 53 25 3329 235 1011 261 0.021
50 000 51753 2 56 52 6978 1497 1376 1551 0.030
5 000 555 0 54 4 997 12 586 16 0.029

10 000 2935 0 59 10 1762 44 1038 54 0.018
10.0 % 15 000 6864 1 68 17 2623 115 1498 133 0.019

20 000 11425 1 57 20 3940 400 1930 421 0.037
25 000 19209 1 67 29 4268 493 2384 522 0.027
50 000 106172 2 74 68 8162 2360 4607 2430 0.023
5 000 675 0 58 5 1576 30 1209 35 0.052

10 000 3264 0 57 10 3264 207 2346 217 0.067
22.9 % 15 000 8053 2 67 24 4618 542 3447 567 0.070

20 000 15756 1 60 25 6321 1165 4517 1191 0.076
25 000 25089 1 75 36 7773 1991 5596 2028 0.081
50 000 115585 2 81 86 15847 10900 10783 10988 0.095

Step1 Step2 Step3 Total

 
 

Tables 1-4 show that the dimensional decomposition approach decreases 
computation times dramatically. Computation times were smallest with the block-
quantities q = 3 and q = 4 in all problems. The difference in computation times 
between these two block-quantities is generally small. In the biggest problems with 
50000 units the block-quantity q = 3 was somewhat faster. We can also see from the 
Tables 1-4 that the smaller the block-quantity the more time is spent in Step 1 and 
Step 2 and the more potentially efficient units are found in Step 1. On the other hand, 
the smaller the block-quantity the smaller the number of super-efficient units found in 
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Step 2 and the less time is spent in the Step 3 to calculate the exact set of efficient 
units.  

The computing times are illustrated in Figures 1-3 in each efficiency category using 
each five block-quantities. In Figure 1, the average efficiency density is 6.4%. In 
Figure 2 the average efficiency density is 10.0% and in Figure 3 it is 22.9%. 
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Figure 1: Computing Times (s) with Average Efficiency Density 6.4% 
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Figure 2: Computing Times (s) with Average Efficiency Density 10.0% 
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# of Inputs and Outputs = 20
Efficiency density = 22.9%
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Figure 3: Computing Times (s) with Average Efficiency Density 22.9% 

 

The complexity of the decomposition approach depends on n, d, and q. To estimate 
the effect on the computing times, we have used the following regression model to fit 
the data in Tables 1-4: 

t=αnβdγqδε, 

where ε is an error term and α, β, γ, and δ are parameters to be estimated. We took 
the logarithm of the model and used a linear regression to estimate the parameters. 
The results are represented in Table 5. 

 

Table 5: The Estimates of the Regression Coefficients (R2 = 0.918) 

 Coefficients Standard Error Lower 95% Upper 95% 

log(a) -5.229 0.397 -6.018 -4.440

b 2.366 0.098 2.171 2.560

c 1.058 0.108 0.842 1.274

d -2.267 0.118 -2.501 -2.031

 

As can be seen from Table 5, the estimate for the parameter δ is distinctly negative. 
This parameter value gives us a rough estimate of the magnitude of the time savings 
using the dimensional decomposition approach. However, it should be emphasized 
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that the relationship between the logarithm of the computation time and the logarithm 
of the block-quantity is not linear.   

5 CONCLUSIONS 

We have developed a dimensional decomposition procedure to reduce computation 
times when identifying efficient and inefficient units in the Data Envelopment 
Analysis (DEA). Usually the algorithms developed for large-scale problems are based 
on the idea to decompose the problem by units. First the efficient units are recognized 
in sub-problems and then those units are used in computing the efficiency scores for 
the inefficient units. 

 The algorithm developed in this paper divides the problem dimensionally by 
selecting a subset of variables into new sub-problems. The efficient units found in 
sub-problems are the weakly efficient units of the original problem. They provide an 
initial approximation for the set of all efficient units of the original problem. The set 
is supplemented during the solution procedure with the units that are diagnosed 
efficient or super-efficient. The efficient units of the original problem are recognized 
from this supplemented set. The computation times are reported using five different 
decomposition sizes. The dimensional decomposition approach decreases 
computation times drastically.   

In the future, our purpose is to combine the dimensional decomposition approach 
with the other decomposition methods that have been proposed in the literature. We 
also need a method which enables us to select the optimal partition sizes and the 
sequence of the units to be checked. These issues are topics for further research. 
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