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Abstract

We use data on 531 largest European stocks to measure the perfor­
mance of simple value and growth styles against the index. Portfolio
theory is applied to nd the maximum Sharpe ratio and to compare the
e¢ciency of value and growth styles. Multivariate test of alphas shows
that the benchmark index is ine¢cient, and a value strategy based on
P/BV is less ine¢cient. Our data suggests value stocks are avoided, be­
cause their earnings are less stable and return on invested capital is lower
compared to growth stocks. Finally, stocks that migrate from value to
growth provide superior raw and risk­adjusted returns.

1 Introduction

It remains a puzzle in empirical asset pricing that the relative valuation of eq­

uities is strongly correlated with current returns in the cross­section (see e.g.

Fama and French [6],[7]), however the power of relative valuation measures to

predict future returns is quite limited. Lewellen [14] nds that book­to­market

ratio, dividend yield or earnings yield alone explain about 1% of variance of

returns, although all three are statistically signi cant. This is likely due to em­

pirical characteristics; stock returns exhibit high variance, but relative valuation

is persistent. For example, book­to­market, earnings yield and dividend yield

have autocorrelations close to one in the Lewellen [14] study. We add to this

literature by showing that despite the persistence, some stocks experience major

changes in valuation over the short term, and these changes are predictable to

an extent. Because changes in valuation imply that a value stock becomes a

¤We are grateful to Markku Kaustia and Tuomo Vuolteenaho for useful comments.
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growth stock or vice versa, in other words it migrates from one style to another,

we speak of style migration.

We also look at returns on value and growth styles and associate the di¤er­

ence in alphas to di¤erences in certain accounting variables. These are return on

invested capital (ROIC), earnings yield (EY) and operating margin. Note that

ROIC is based on book value of debt and equity, but EY is based on market

value of equity. We repeat the value growth classi cation at the end of period

to discover style migration. Because it follows from changes in relative valuation

(measured here by P/BV), we use a logit model to associate the dynamics of

valuation with two accounting variables, being return on invested capital and

earnings yield. The model is similar in spirit to Wang [19], who applies the logit

model to predict value and size return spreads using the Fama­French factors

as covariates.

Instead of predicting stock returns or scaled prices, we estimate the odds

that a given stock s price­to­book ratio is over the market median at horizon.

Because the response is a dichotomous variable that uses the median P/BV

as cuto¤ point, this approach does not make strict assumptions or require sta­

tionarity of stock price distribution. In our data the nonstationarity is seen

as increasing P/BV medians of value stocks and decreasing P/BV medians of

growth stocks. The style migration model adjusts for market­wide temporal

changes in valuation.

Given that the benchmark index is found to be ine¢cient, we ask how much

one can improve performance with simple strategies, based on ex ante deter­

mined portfolio weights? Theoretical results of Roll [17] and MacKinlay [16]

show that combining an ine¢cient index with an orthogonal portfolio yields an

improvement in the risk­return tradeo¤.

In practice, we operate in a simple CAPM framework, given that index

return explains at least 90% of variance in returns, even though there is some

dispersion in alphas. Our estimates of excess returns and maximum Sharpe

ratio use MSCI Europe as benchmark index. One of the key results is that a

simple value strategy catches some of the improvement in risk­return tradeo¤

that is theoretically obtained by investing in the optimal orthogonal portfolio.

Moreover, there is style migration among stocks. End­of­period growth stocks

are characterized by high return on the book value of invested capital, but low

return on the market value of equity (measured by earnings yield).
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2 The asset pricing framework

2.1 Risk­based vs. nonrisk­based models

If the CAPM leaves an unexplained component in the cross­section of returns,

should it be attached to missing risk factors or irrationally behaving investors?

Risk­based models suggest the former answer. They include various multifactor

models, where increased return comes at the cost of increased risk; hence in­

vestors are assumed rational and increases in expected returns are followed by

increases in risk. The alphas may also be due to measurement error in market

returns due to the fact that the benchmark is an imperfect proxy for the market.

The benchmark of risk­based models is the three­factor model of Fama and

French [7]. The intuition is that in addition to market risk, investors require

risk premium for holding high­BE/ME stocks (HML factor) and small stocks

(SMB factor). Fama and French interpret the HML factor as distress premium.

While the Fama­French model ts reasonably well in historical US returns, it

leaves some questions open. First, the HML and SMB risk factors cannot be

derived using portfolio theory and second, empirical evidence indicates the risk

factors are correlated to some extent. The critics remind that on ex post basis it

is always possible to identify a model that explains the cross section of returns

(see Lo and MacKinlay [15, p. 191]). Indeed, Fama and French [7, pp. 68 69]

themselves admit there are other ways to construct factor portfolios that add

explanatory power to the CAPM.

Nonrisk­based models associate the alphas with market frictions or investor

irrationality, and they may imply arbitrage opportunities. However, the risk­

return tradeo¤ is limited even in the non­risk based context. This follows from

the decomposition of the maximum squared Sharpe ratio proved by Ferson [8,

p. 781]. He shows that the maximum squared Sharpe ratio, estimated in section

3.2, is the sum of squared ratios of the index and an orthogonal portfolio.

Behavioral nance provides a class of nonrisk­based models. For instance,

Lakonishok, Shleifer and Vishny [13] suggest that value returns are due to in­

vestors erroneously extrapolating the past performance of value and growth

stocks. Our data agrees with the extrapolation model to the extent that in­

vestors are unable to foresee that value stocks improve their operating margins,

as illustrated in Figure 5. In this context limited arbitrage cannot be ruled

out. For example, investors may be unable to pro t from relative mispricing of

securities, if short­selling is limited or not allowed. Behavioral nance models
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and the limits of arbitrage are summarized by Barberis and Thaler [1].

Asset pricing models can also be viewed in the consumption­based frame­

work, where factor risk premiums are determined by their covariance with aggre­

gate consumption. Ferson [8] makes the connection of multifactor (or multibeta)

and consumption­based models very explicit. He shows that large risk premiums

are associated with factors that a¤ect asset prices negatively when consumption

is valuable (marginal utility is high). Consumption­based models also o¤er some

theoretical advice on how many factors are needed for asset pricing. We refer

to the Consumption CAPM of Breeden [2] and a spanning theorem therein that

says all risk­averse investors are able to construct optimal portfolios using S +2

assets. Those include the riskless asset, market portfolio and S portfolios most

correlated with the state variables.

2.2 Consumption CAPM

We refer to the Consumption CAPM of Breeden [2], because it shows how the

optimal risk­return tradeo¤ depends on correlation of asset returns with a fun­

damental risk factor, the consumption risk (see eqs. 1 2). Under the CCAPM

the representatitive investor maximizes utility (concave in consumption) in a

market, where asset price dynamics are governed by a set of state variables.

Optimal investment decisions are driven by rst­order conditions saying that (i)

the marginal utility of consuming one euro equals the marginal utility of saving

one euro and (ii) the optimal allocation depends on market prices of risk and

hedging demand, i.e. dynamics of the investment opportunity set. In short­term

analysis hedging demand can be ignored, and optimal portfolio weights depend

only on market prices of risk and, of course, the covariance matrix of returns.

We use the terms market price of risk and Sharpe ratio synonymously.

As pointed out by Campbell and Viceira [3], ignoring the changes in invest­

ment opportunity set leads to myopic portfolio choice when applied in long­run

planning. However, they add that in the special case of CRRA utility and i.i.d

returns short­term and long­term investors choose identical portfolios. In our

model the investment horizon is short, up to ve years, and therefore we allow

myopic portfolio choice.

A key property of the CCAPM is that in equilibrium the return on any

risky asset depends only on aggregate relative risk tolerance1 and the asset s

1Relative risk tolerance is the reciprocal of relative risk aversion. The aggregate risk toler­
ance can be calculated as the sum of individual risk tolerances.
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covariance with aggregate consumption. It follows that the Sharpe ratios of

portfolios are proportional to their correlations with consumption. Moreover,

this result does not require market completeness, i.e. that perfect hedges against

consumption risks were available. In equations (1 2) ¹opt and ¹i are the returns

on the optimal portfolio and some arbitrary portfolio i, TM is the aggregate risk

tolerance, and covariances with consumption are denoted ¾opt;c and ¾i;c.

¹opt ¡ r = (TM=C)¡1¾opt;c (1)

¹i ¡ r = (TM=C)¡1¾i;c (2)

Equations (1 2) show that excess returns are proportional to covariance with

consumption. The next step is to rewrite them using correlations instead of

covariances. Since portfolio i has smaller correlation (in absolute terms) than

the optimal portfolio, it must have a smaller squared Sharpe ratio s2
i than the

optimal portfolio s s2
opt, as shown by eq. (3).

µ
si

sopt

¶2

=

µ
(¹i ¡ r) =¾i

(¹¤ ¡ r) =¾opt

¶2

=

µ
½i;c

½opt;c

¶2

< 1: (3)

Obviously, the previous result holds also for simple Sharpe ratios, if excess

returns are assumed positive. We say that a portfolio is e¢cient when it lies

on the minimum variance frontier, i.e. it yields the optimal risk­return tradeo¤

measured by Sharpe ratio. For later use we also need the de nition of an

orthogonal portfolio. Two portfolios represented by weights (N­vectors) x1 and

x2 are orthogonal if x0
1V x2 = 0, where V is the N £ N covariance matrix of

returns.

In practice we work with a simple CAPM framework, where we examine the

returns of N portfolios. This is justi ed by excellent empirical t in our data.

Expected excess return for market index is zp. It is assumed normal with mean

excess return ¹p ´ (¹m ¡ r) and variance of excess returns ¾2
p. The N­vector B

represents portfolio betas. With this notation the N­vector of excess returns zt is

given by equation (4), where time index t runs from 1 to T . Further, we assume

that the error terms of N regressions follow multivariate normal distribution
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(denoted MV N) with zero mean and N £ N covariance matrix §.

zt = ®t + Bzp;t + ²t (4)

zp » N
¡
(¹m ¡ r) ; ¾2

p

¢
²t » MV N(0; §)

Equations (4) are estimated using ordinary least squares. We assume that

the CAPM t produces non­zero alphas, implying that the becnmark index is

ine¢cient. The hypothesis that ® is not a zero vector is tested using the F­

statistic of MacKinlay [16]. As shown by Roll [17], with an ine¢cient index one

can construct an e¢cient portfolio as a linear combination of the index and the

optimal orthogonal portfolio, in short OOP. It is located on the intersection of

the (a priori unknown) e¢cient frontier and the orthogonal frontier. Roll [17]

proves that the e¢cient portfolio is a combination of the index portfolio and

the optimal orthogonal portfolio h. We will leave out the calculation of OOP

weights, it is covered in the appendix of Roll [17]. It would be inconsistent to

compare ex post constructed orthogonal (or other e¢cient) portfolios to ex ante

constructed value and growth strategies. Excess returns to the OOP are normal

with mean ¹h and variance ¾2
h. Because the OOP and the factor portfolios are

orthogonal, one can formulate a well­de ned asset pricing model (5) using the

OOP. In equation (5) ¯h;t is the vector of asset sensitivities to the OOP and ut

is the error term.

zt = ¯hzh;t + Bzp;t + ut (5)

ut » MV N(0;©)

cov(zp;t; ut) = cov(zh;t; ut) = 0

Now take expectations of equations (4) and (5) to get ®t = ¯h¹h. Knowing

this, we get a formula for the covariance matrix of the e¢cient portfolio. Excess

return on the OOP is denoted ¹h:

§ = ¯
0

h¯h¾2
h + © = ®®

0 ¡
¾2

h=¹2
h

¢
+ © (6)

Equation (6) states that any improvement in return from using the OOP is

followed by an increase in risk, which is of course a key property of risk­based

models. Note that the increase in variance is inversely proportional to the

squared Sharpe ratio of the OOP. This idea can be taken further by recognizing
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that the squared Sharpe ratio of the e¢cient portfolio q, given by eq. (7), is

simply the sum of individual ratios.

s2
q = s2

h + s2
p (7)

This property is also derived by Ferson [8], who calls it the Law of conser­

vation of squared Sharpe ratios . MacKinlay [16] has shown that it is possible

to get an upper bound for s2
h by using the test statistic for the signi cance

of alphas. The upper bound for the squared Sharpe ratio gives the maximum

improvement in risk­return trade­o¤ brought by active management of equity

fund compared to an index fund. Clearly, with ex ante strategies it is very di¢­

cult if not impossible to reach the upper bound. However, our empirical results

suggest that value strategies can capture some of the potential improvement.

2.3 Statistics for excess returns, Sharpe ratio and relative
e¢ciency

We use the method of Gibbons, Ross and Shanken [9] to test the signi cance of

alphas in (4). They derive an F­statistic for the multivariate case and provide

an insightful geometric interpretation for the statistic and squared Sharpe ratio

of the optimal portfolio. We use the MacKinlay [16] version of the GRS test

statistic. The null hypothesis is that the asset pricing model does not leave any

systematic unexplained component in returns, implying ® = 0. This can be

tested using the statistic µ1 that follows the F­distribution with noncentrality

parameter ¸ de ned in (10). Under the null hypothesis the distribution of µ1 is

central F , i.e. ¸ = 0: Equations (8 10) formulate the MacKinlay test statistic2 .

µ1 =

·
T ¡ N ¡ 1

N

¸ b®0b§¡1b®
1 + ¹2

p=¾2
p

(8)

µ1 » FN;T¡N¡1 (¸) (9)

¸ = T

" b®0b§¡1b®
1 + ¹2

p=¾
2
p

#
(10)

What makes the MacKinlay test statistic very useful is that the noncentrality

parameter (10) yields directly an upper bound for the squared Sharpe ratio of

2The di¤erence of MacKinlay and GRS F­statistics is that the latter statistic is calculated
as T

T¡2 µ1: See page 1124 of Gibbons, Ross and Shanken [9]. We have T = 60 so the di¤erence
is fairly small and does not a¤ect empirical ndings.
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the optimal orthogonal portfolio, as pointed out by MacKinlay [16]. To see

why, note that inside the brackets in (10) the numerator equals the estimated

squared Sharpe ratio of the OOP. Clearly the sample gure (s2
h) cannot be higher

than the population gure (s¤2
h ), because the sample gure represents local

optimum and the population gure represents the global optimum. Hence we

have s2
h · s¤2

h : Further, we know that the e¢cient portfolio q must have higher

squared Sharpe ratio than the OOP by equation (7) that implies s2
h · s¤2

h · s2
q :

Finally, check that the denominator of equation (10) cannot be less than one.

Summing up this information yields the MacKinlay upper bound (11) for the

noncentrality parameter ¸:

¸ < Ts2
h · Ts2

q : (11)

This result has a clear economic interpretation. Knowing ¸ from empirical data,

one can calculate the implied Sharpe ratio of the e¢cient portfolio q and then

infer, whether the outcome is reasonable. If it is not, the conclusion is that there

is no risk­based explanation for CAPM residuals. Note from equation (10) that

the noncentrality parameter and expected value of µ1 increase as the riskiness

of alphas decreases. The expected value of µ1 is given by equation (A1).

Lemma 1 presents an estimator for s2
h based on the statistic µ1: It follows

from the distribution of µ1 under the alternative. This estimator represents

an empirical upper bound for the improvement in risk­reward ratio brought by

active portfolio management when the benchmark index is ine¢cient. Although

Lemma 1 applies to the CAPM framework, it can be generalized to the situation

with many risk factors. A similar estimator has been applied in MacKinlay [16],

however without formal proof.

Lemma 1 Assume that the alternative hypothesis (® 6= 0) is true, hence the

test statistic for excess returns (µ1) follows the noncentral F distribution (9).

This yields the unbiased estimator (12) for the squared Sharpe ratio (s2
h) of the

optimum orthogonal portfolio:

bs2
h =

·
bµ1 ¡ (T ¡ N ¡ 1)

(T ¡ N ¡ 3)

¸ ·
N(T ¡ N ¡ 3)

T (T ¡ N ¡ 1)

¸ £
1 + ¹2

p=¾2
p

¤
: (12)

Equation (13) gives the conditional variance of this estimator

var
³ bs2

h j b·´
=

2b·2

T 2

2
64

³
Tb·¡1 bs2

h + N
´2

+
³
2Tb·¡1 bs2

h + N
´

(T ¡ N ¡ 3)

T ¡ N ¡ 5

3
75 (13)
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where · =
¡
1 + ¹2

p=¾2
p

¢
: Note that this assumes · is xed. Given that the true

squared Sharpe ratio s2
h is unknown, we use in practice the standard deviation

estimator b¾ ³ bs2
h j b·´

to calculate con dence bounds for bs2
h:

Proof. Given in the Appendix.

Finally, we measure the relative e¢ciency of the benchmark index using the

measure introduced by Kandel and Stambaugh [12]. It takes values from ­1 to 1,

and value of 1 implies that the index portfolio is ex post mean­variance e¢cient.

The measure is calculated by running on a generalized least squares (GLS)

regression in each cross­section, that is estimating Ri = °0i + °1iE(Ri), where

E(Ri) is the CAPM expected return. Equation (14) gives the GLS estimator

°GLS = (°0; °1)
0 using the following notation; X = [¶ ¯] where ¶ and ¯ are

vectors of ones and the betas, V is the covariance matrix of style returns and E

is the vector of expected returns.

°GLS =
¡
X 0V ¡1X

¢¡1
X 0V ¡1E (14)

The Kandel­Stambaugh measure is denoted Ãp and it is calculated as R­squared

from the regression (14); Ã2
p = R2

GLS . Table 3 reports the average Ãp and some

descriptives from 60 cross­sectional regressions.

3 Data description and results

3.1 Average returns and Sharpe ratios

We consider an investor whose investment opportunity set consists of 600 largest

listed European companies, similar to MSCI Europe or DJ Stoxx indices. Our

dataset consists of returns and accounting variables (EPS, P/BV, ROIC, and

operating margin) on these rms, downloaded from the databases of Thom­

son Datastream and Worldscope. Stock returns are measured by log change in

return index (RI variable) values from Datastream and therefore include divi­

dends. The accounting data is from Worldscope; P/BV, operating pro t margin,

ROIC and earnings yield correspond to elds 09304, 08316, 08376 and 09204.

Risk­free return is calculated using monthly quotes of 6­month Euribor.

Four buy­and­hold style portfolios are formed at the end of December 2001

and held until the end of December 2006. This gives 60 monthly returns for the

period 1/2002 12/2006, to be coupled with annual accounting data for the years
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2001 2005. The benchmark index is value­weighted MSCI Europe total return

that includes dividends. Because the accounting data is missing for some rms,

and some mergers and delistings take place, our sample space is close to, but

does not equal the benchmark index. In order to qualify for the style portfolios,

a stock must have the accounting data available and its P/BV must be positive

at the start3 . The sample space includes 531 stocks at the start and 519 stocks

at the end. If a stock is delisted, its terminal value is the delisting value. If two

rms merge, their combined weight will be the sum of pre­merger weights. One

advantage of buy­and­hold portfolios is their tractability. For example, when

the P/BV sorts are repeated at the end of period, we know exactly what rms

have moved from value to growth.

The style portfolios are based on price­to­book value (P/BV) sorts. Portfolio

weights are proportional to market values in all four styles. Median value invests

in companies with lower than median P/BV and the median growth style invests

in companies above the median P/BV. 30­70 value invests in companies in the

bottom 30%, whereas the 30­70 growth invests in stocks in the top 30%. While

the median may be a practical breakpoint, the 30­70 division is also of interest,

because it is used by Fama and French [7] to calculate the value (HML factor)

premium. Because the portfolios are not rebalanced, there is no survivor bias

in returns. Figure 1 plots the total return indices for our strategies, compared

to the benchmark index.

Mean returns and monthly Sharpe ratios for the styles are shown in Table 1.

It makes clear that value outperforms growth under this period. Another key

result is that the median strategies perform better than the 30­70 strategies.

The overall best rows in Table 1 show how often value strategies outperform

their competitors. Note that median value persistently outperforms other styles

and the benchmark index. Table 1 also reports median P/BVs for 2001 and

05, note the expansion in value styles and contraction in growth styles. Also

earnings yields are reported, and they decrease moving from value to growth.

We also looked at the performance of di¤erent styles when the index return is

negative (22 of 60 months), but could not nd any systematic patterns. Thus,

we dismiss the claim that value stocks perform poorly in bad states of the

economy, when the marginal utility of consumption is high. In fact, Figure 1

shows that the down­market performance of value styles is not unusual. Also,

Chan and Lakonishok [4] survey value and growth performance during bull and

3The sample space includes ve companies whose P/BV is positive at the start (in 2001)
but negative at the end (in 2005).
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bear markets without nding any material di¤erences.

Portfolio 30­70 median 30­70 median MSCI

value value growth growth Europe

mean return (%) 0.704 0.797 0.244 0.441 0.611

st.dev. (%) 5.33 5.14 3.89 4.16 4.51

bootstrap p­value 0.264 0.070 0.025 0.005

Sharpe ratio 0.091 0.112 0.006 0.053 0.086

Simulated Sharpe ratio

over index, (% of time) 50.8 55.3 37.5 44.4

overall best 36/60 18/60 6/60

overall best 30/60 12/60 18/60

median P/BV 01 1.20 1.42 5.25 3.76

median P/BV 05 1.64 1.81 3.75 3.19

median EY 01 (%) 6.14 5.79 2.91 3.66

median EY 05 (%) 7.37 6.83 4.79 5.32

number of stocks 160 266 160 265 600

Table 1: Descriptive statistics of value and growth styles. All returns are

calculated on monthly basis over the period 1/2002 12/2006 (60 months).

Mean risk­free rate is 0.222% per month. Bootstrap p­values are one­

sided, and they are based on the null that the style index return spread

is zero. Simulated Sharpe ratio over index is calculated from 10,000

resampled values. The overall best rows tell how often a given portfolio

performs best during 60 months. MSCI Europe is the total return index

incl. dividends.

Figure 2 compares empirical Sharpe ratios. Value strategies o¤er better risk­

reward trade­o¤, although they are riskier. One­sided bootstrap p­values are

calculated using the method of Wang [19]. The return distribution is resampled

10,000 times to produce t­statistics for the style index return spread4. We can

reject the null that median value index return spread is zero with p­value of

0.07. We can also reject the null for both growth styles in favor of negative

4More formally, the t¡statistic is t = (rj ¡ ri)=sd(rj ¡ ri), where rj is return on style
j and ri is the index return, and sd(¢) is standard deviation. P­values are calculated as

Pr
hp

N (tb ¡ t0) >
p

N ¢ t0
i

when the spread is positive and Pr
hp

N (tb ¡ t0) <
p

N ¢ t0
i

when the spread is negative. tb is the bootstrap value, and t0 is t¡statistic under the null.
We used a stationary bootstrap that requires stationarity of style returns. Stationarity was
con rmed by Augmented Dickey­Fuller regressions. In practice we used the tseries package of
R language.
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return spreads. All three rejections agree with the time­series of returns plotted

in Figure 1. It also shows the case of 30­70 value against the index is undecided.

We prefer not to scale the Sharpe ratios for longer periods, because such

extensions may result in very attractive gures that are unwarranted. Campbell

and Viceira [3] point out that normally distributed returns imply the mean grows

in proportion with time, but standard deviation grows with square root of time.

Therefore extending the Sharpe ratios usually improves them. Also, we have no

overlap in return series that would cause autocorrelation and downward bias in

volatility.

Calculating the Sharpe ratios over a ve­year period raises the question,

whether the outperformance of value styles is due to random chance. Partial

answer is found in Table 1. It reports how often the resampled style­level Sharpe

ratios outperform the index, based on resampling the return distribution 10,000

times. We nd that the odds for median value to outperform the index are

55 : 45. For 30­70 value the odds are almost even at 51 : 49. In contrast, for

growth strategies the odds are below 50 : 50, indicating their expected Sharpe

ratios are below the index. In summary, these numbers agree with the actual

Sharpe ratios that are fairly close (with the exception of 30­70 growth).

30­70 median 30­70 median MSCI

value value growth growth Europe

30­70 value 1

median value 0.9913 1

30­70 growth 0.8781 0.9045 1

median growth 0.9422 0.9645 0.9621 1

MSCI 0.9679 0.9857 0.9492 0.9930 1

Table 2: Correlations of log returns to value and growth style returns. All

gures are calculated on monthly basis over the period 1/2002 12/2006

(60 months). The benchmark is MSCI Europe total return index.

Table 2 shows that returns to di¤erent styles are highly correlated, which

indicates the styles usually move in tandem, although by di¤erent magnitudes.

For practical managers these gures are good news to the extent that high

correlations lead to small tracking error. On the other hand, it is di¢cult

to reconcile the close alignment of value and growth returns with multifactor

models. If there was a value factor in returns, it is unlikely that the 30­70

styles were closely aligned, as con rmed by correlation of 0.88 and Figure 1.
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It can be checked from Figure 1 that 30­70 value is close to an index proxy,

whereas 30­70 growth produces negative alphas. Also, as reported in Table 1,

30­70 value outperforms 30­70 growth and the index less frequently than median

value outperforms median growth and the index. The evidence on returns and

correlations provides some support for the nonrisk­based explanation, i.e. that

investors irrationally avoid value stocks.

In particular, what properties of value stocks do investors dislike? Figure 5

shows that value rms are distressed in the sense that their operating margins

are low, and sometimes even negative at the start. Value rms are also more

risky in that their earnings exhibit higher variance than growth stocks, as

shown by the earnings yield chart. This is in line with the higher betas of value

stocks from Table 3. Further, value stocks show much lower returns on invested

capital than growth stocks. Therefore value stocks may not seem prudent

investments at the start. But the point is that during the ve­year period

value stocks improve their pro tability and return on invested capital materially,

which leads to higher valuations as veri ed by Figure 4.

Figure 5 also shows that growth stocks operating margin and return on

invested capital are almost at. This may disappoint investors, if growth P/BV

multiples represent high expectations in those dimensions. Nevertheless, both

growth styles beat their value counterparts when it comes to sales growth. The

reader may decide, if the margin is too narrow to justify the name growth . A

similar result is reported by Jiang and Koller [10], who nd that growth stocks

have median sales growth of 10.1%, whereas the median for value stocks is 8.7%,

and argue that growth stocks have no advantage in growth .

3.2 Excess returns to style portfolios and the maximum
Sharpe ratio

CAPM estimates for di¤erent styles are reported in Table 3. Panel A shows

value stocks have higher betas than growth stocks, a nding that is at odds

with some earlier evidence claiming there would be no di¤erence in CAPM

betas. The news from estimated alphas is mixed in the sense that only the

median growth alpha is highly signi cant (and negative), but the alphas cannot

be ignored when treated together. The null hypothesis of zero CAPM alphas

can be rejected with p­value of 0.0804, as reported in panel B of Table 3. This

shows that even though the t­statistics of single alphas are modest. Under the

alternative hypothesis (® 6= 0) distribution of the test statistic µ1 is F4;55 (9:62).
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It is characteristic of the F­test that the null hypothesis holds when estimated

alphas and the noncentrality parameter are close to zero. In contrast, under the

alternative both the alphas and noncentrality parameter are large. Note that

the noncentrality parameter (10) increases as the variance of alphas decreases,

implying it is especially large when the excess returns are followed by a small

increase in risk. Further, under the alternative hypothesis s2
h is large, suggesting

that the benchmark index is far from e¢cient. Density functions for µ1 under

the null and alternative hypotheses are plotted in Figure 3. It shows very clearly

that if we reject the null, the range of µ1 and hence the range of possible Sharpe

ratios, become wider.

Portfolio 30­70 median 30­70 median

value value growth growth

A. CAPM alpha (10¡3) 0.365 1.372 ­2.972 ­1.385

(s.e.(10¡3)) (1.748) (1.129) (1.600) (0.640)

beta 1.144 1.124 0.820 0.918

(s.e.) (0.0389) (0.0251) (0.356) (0.014)

R2 0.936 0.971 0.900 0.986

B. F­test µ1 2.204 ¸ 9.618

p 0.0804

C. E¢ciency ave Ãp 0.85 sd (Ãp) 0.18

min Ãp 0.34 max Ãp 0.99

bs2
h 0.0755 var

¡bs2
h

¢
8.411*10¡3

90 % con dence bounds for bs2
h [0, 0.2268]

Max Sharpe ratio bsq =
qbs2

h+bs2
p 0.288

Table 3: Panel A contains estimated CAPM parameters for the style

portfolios. Panel B reports results of the MacKinlay [16] F­test. Panel C

reports the Kandel and Stambaugh [12] relative e¢ciency measure Ãp, as

well as estimated parameters for the optimal orthogonal portfolio and the

maximum Sharpe ratio. All calculations use monthly returns.

Panel C of Table 3 is about the e¢ciency of index portfolio. It reports rst

the relative e¢ciency measure of Kandel and Stambaugh [12], denoted Ãp. The

average Ãp in our data is 0.85 with standard deviation of 0.18. Note that the

maximum Ãp is 0.99. Table 3C also gives the MacKinlay upper bound (11) of

0.1603 for s2
h, based on the estimated noncentrality parameter of 9:62: Further,

applying equation (12) gives an estimate of 0.0755 for s2
h. Adding this to the
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squared Sharpe ratio of the benchmark index yields 0.288 for the Sharpe ratio

of the e¢cient portfolio. This gure should be compared with the ex post ratios

of 0.086 for the index and 0.112 for the median value. It is hardly surprising

that simple ex ante strategies can capture only a small share of the benchmark

ine¢ciency.

We cannot resist a little play with the numbers to show the implied market

price of risk of the value risk factor , if there was one. Associate the di¤erence of

0:288¡0:086 = 0:202 to a value risk factor orthogonal to the index. Assume that

the expected return equals the mean excess return on index, which is 0.3897%

per month. This implies a monthly standard deviation of appr. 1.93% for the

risk factor, less than half of 4.52%, the monthly standard deviation of excess

returns on the index.

3.3 Valuation dynamics and style migration

Here we ask, how relative valuations change over time and what kind of rms

improve their relative valuation. Previous research nds that valuation multi­

ples have some predictive power, but autocorrelated errors and nonstationary

regressors cause problems in inference (see Lewellen [14] and references therein).

Cohen, Polk and Vuolteenaho [5] survey a panel data of BE/ME ratios of US

equities using 40 BE/ME­sorted portfolios. They decompose the variance of

demeaned log BE/ME (the inverse of P/BV) in a 15­year panel to three com­

ponents and nd that about 20% is associated with expected stock returns and

55% is associated with expected pro tability (ROE). This leaves 25% to residual

variance, or the persistent component of book­to­market ratio.

Figure 4 shows the P/BV distributions for di¤erent styles, estimated at the

start (12/2001) and after four years (12/2005). At the start the estimated

densities (thick lines) are cut at the style breakpoints. Looking at the rst

panel, the highest P/BV (at the start) for 30­70 value, equal to the breakpoint,

is 1.55. Vertical lines are drawn at within­style medians. Comparing them

shows that the median P/BV of value stocks increases for both pairs, whereas

the multiple on growth stocks decreases. Another point from Fig. 4 is that

the P/BV distributions of value stocks became less concentrated around their

means over time. The changing shapes imply that some value stocks become

growth stocks, and the reverse is also possible. Nevertheless, the valuation gap

between value and growth stocks but it does not disappear. Median P/BV levels

are reported in Table 1.
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Table 4 looks at style migration, that is the movement from value to growth

and the other way round. When a value stock migrates to growth, its valuation

increases relative to the market, and therefore style migration is di¤erent from

multiple expansion. The odds for a typical median value stock to stay in median

value are 7.2 times the odds for a median growth stock to move to median value.

Despite the fact that most value stocks stay in their initial style, some of them

(73 of 257) improve their relative valuation enough and move to the median

growth style. Panels B and C of Table 4 feature average monthly returns and

Sharpe ratios of the movers and stayers across styles. Clearly, the winners

from style migration are the value stocks that become growth stocks. Their

monthly return is 1.13% and Sharpe ratio is 0.221, an outstanding number

when compared with median value and benchmark index gures of 0.112 and

0.086.

A. Counts of movers and stayers

median value 05 median growth 05 style total

median value 01 184 73 257

median growth 01 68 194 262

style total 252 267 519

B. Monthly returns (%)

median value 05 median growth 05 style total

median value 01 0.742 1.129 0.797

median growth 01 0.262 0.530 0.441

C. Monthly Sharpe ratios

median value 05 median growth 05 style total

median value 01 0.096 0.221 0.112

median growth 01 0.007 0.083 0.053

Table 4: Style migration. Panel A reports the counts of movers and

stayers. The odds for value stock stays in value are 184/73 = 2.52.

Similarly, the odds for growth stock moves to value are 68/194 = 0.35.

The odds ratio is appr. 7.2 : 1 and using Fisher s exact test we can reject

the null that odds ratio equals 1 : 1 with a p­value of 2.2*10¡16. Panel B

prints average monthly returns, and Panel C gives monthly Sharpe ratios.

Average risk­free return is 0.222% per month.

In order to nd what causes style migration, we estimated a logit model for

the probability that a given stock ends up in the median growth style. Because
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the response variable is not return, this model avoids problems with inference

common in predictive regressions. Predicting the actual level of P/BV would be

unwise, since it cannot be ruled out that the scaled stock price follows random

walk. In theory, this must be the case if investors have rational expectations,

as shown by Roll [18]. Our model does not require P/BV to be stationary,

because the cuto¤ point varies from year to year. This way the model adjusts

for market­wide multiple expansion.

Equation (15) de nes the style migration model, where the response variable

is the logit of p = Pr (P=BVfinal is over the median). There are three covari­

ates; V alue01 is an indicator that takes value 1 for median value stocks (in

2001) and 0 for median growth stocks (in 2001). ROIC is the average return

on invested capital for the applicable period, and EY is the average earnings

yield. ROIC and EY are measured in percentage points, that is 10% return

on invested capital corresponds to ROIC value of 10. We also tried to include

average operating margin as covariate in the style migration model, but it didn t

add any explanatory power.

log

µ
p

1 ¡ p

¶
= ¯0 + ¯1V alue01 + ¯2ROIC + ¯3EY (15)

Maximum likelihood estimates for style migration model are given in Table 5.

The likelihood ratio (LR) statistics imply that the covariates have explanatory

power as a group5. If we look at the period 2001 05, the coe¢cient of V alue01

suggests that the odds for a value stock moving to growth are e¡1:7947 = 0:1662,

if everything else is held constant. Note that the estimated ¯1 values increase

from ­3.1 to ­1.8 as the period becomes longer, implying that the likelihood

of large changes in relative valuation grows with time. All the ¯1 values are

signi cant at 0.1% level.

Another key nding from Table 5 is that end­of­period growth stocks tend

to have high ROIC, and the e¤ect remains signi cant after controlling for initial

style orientation and earnings yield. All estimated ROIC coe¢cients reported in

the ¯2 column are highly signi cant and positive. The nding that high ROIC

predicts high end­of­period P/BV is in line with Cohen, Polk and Vuolteenaho

[5], who report that some 40% of the cross­sectional variation in demeaned

BE/ME is related to expected pro tability (measured by ROE). Also, Jiang

and Koller [10] report that growth stocks have higher average ROIC than value

5An analysis of deviance table (not reported here) shows that each covariate adds explana­
tory power.
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stocks, based on studying the S&P 500/ Barra Growth and Value indices.

The style migration model also features earnings yield, and Table 5 shows

it has some predictive power over longer horizons. Negative coe¢cients on EY

are explained by the fact that P/BV is proportional to stock price, whereas

earnings yield is inversely proportional to it. It is intuitive that stock with

low average E/P (high average P/E) tend to have high end­of­period P/BV.

Indeed, the combination of signi cantly positive ¯2 and negative ¯3 indicates

that the ROIC e¤ect is not fully priced by the market by setting higher P/E

(lower earnings yield) on high­ROIC stocks.

period ¯0 ¯1 ¯2 ¯3 med. nal P/BV

2001 02 1.3541*** ­3.1024*** 0.0383** 0.0022 1.68

(0.1837) (0.2388) (0.0127) (0.0063) LR = 269.73

2001 03 1.1382*** ­2.6809*** 0.0336* ­0.0136* 2.00

(0.1802) (0.2239) (0.01385) (0.0066) LR = 215.70

2001 04 0.9668*** ­2.4671*** 0.0417** ­0.0120 2.14

(0.1846) (0.2195) (0.0152) (0.0071) LR = 195.02

2001 05 0.5395** ­1.7947*** 0.0652*** ­0.0172* 2.33

(0.1974) (0.2095) (0.0180) (0.0070) LR = 136.48

Table 5: Estimated coe¢cients for the style migration model (15). Stan­

dard errors are reported in parentheses below the coe¢cients. The med.

nal P/BV column reports median P/BV at the end of period and likeli­

hood ratio (LR) test statistics that are Â2(3) distributed. *, ** and ***

indicate signi cance levels of 5%, 1% and 0.1%, respectively.

Figure 6 presents the model t for 2001 2005 by comparing estimated prob­

abilities of being in median growth style (in 2005) to actual probabilities using

ROIC as grouping variable. The tted curves look di¤erent, because V alue01 =

1 on the left, whereas V alue01 = 0 on the right. The actual probabilities

(dots) are calculated as proportions of end­of­period growth stocks within ROIC

groups. The curves are plotted using medians of EY within the median value

and growth styles (the values are 5.74% and 4.51%, respectively). In general

the actual and estimated probabilities agree. In the left panel the is a single

outlier, resulting from the fact that all stocks in the highest ROIC­value group

stay in their initial style (however, there are only 2 stocks in this group).
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4 Conclusions

Based on returns and accounting data on 531 largest European stocks, we nd

that the benchmark index is ine¢cient, and a simple buy­and­hold value strategy

outperforms the index in terms of returns and Sharpe ratio. However, such ex

ante strategy is able to capture only a minor share of the benchmark index

ine¢ciency. Strong performance of value is consistent with the claim of Fama

and French [7] that value returns result from market overreaction to the relative

prospects of rms. If overreaction tends to be corrected, price­to­book value

associates with the cross section of stock returns.

Investors may avoid value stocks because their initial pro tability, measured

by operating margin, is low but improves signi cantly over the research period.

Another reason for avoiding value stocks and preferring growth stocks is that

growth stocks report consistently higher return on invested capital. Moreover,

the earnings of value stocks appear riskier when measured by operating margin

or earnings yield.

Also, we report style migration among stocks. Value rms with high return

on the book value of equity and debt are likely to improve their relative valuation

and some of them become growth stocks. However, the odds for a growth stock

to stay in the growth category are about seven times the odds for a value stock

to enter the growth category. The stocks that migrate from median value to

median growth provide higher returns and Sharpe ratios than the index and

other value stocks.

The style migration model is consistent with two empirical stylized facts.

First, the positive coe¢cient on ROIC highlights that growth stocks do very well

in ROIC rankings, because ROIC compares net income and interest payments

against the book value of equity and debt. Second, the negative slope on EY

testi es that in earnings yield rankings, where earnings are compared against

the market value of equity, the likely winners are value stocks.

A Appendix: Squared Sharpe ratio of the opti­

mal orthogonal portfolio

We know that µ1, de ned by eq. (8), is a random variable following noncentral

F distribution with N and T ¡ N ¡ 1 degrees of freedom and noncentrality

parameter ¸. We use formulas 3.1 and 3.2 given in chapter 30 of Johnson
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and Kotz [11] for the mean and variance of a noncentral F variate to get the

expressions for µ1.

E (µ1) =
(¸ + N) (T ¡ N ¡ 1)

N(T ¡ N ¡ 3)
(A1)

var (µ1) = 2

µ
T ¡ N ¡ 1

N

¶2
"

(¸ + N)2 + (N + 2¸) (T ¡ N ¡ 3)

(T ¡ N ¡ 3)2 (T ¡ N ¡ 5)

#
(A2)

These formulas require that the number of time periods is somewhat larger

than the number of portfolios, i.e. that T ¡ N > 5. We start by calculating

an estimator for the squared Sharpe ratio of the optimal orthogonal portfolio,

denoted bs2
h: Recall that the estimated value of the noncentrality parameter is

¸ = T bs2
h=

¡
1 + ¹2

p=¾2
p

¢
= T bs2

h=·; (A3)

using the acronym · = 1 + ¹2
p=¾2

p: Combining equations (A1) and (A3) gives

·
N (T ¡ N ¡ 3)

T ¡ N ¡ 1

¸
bµ1 =

T bs2
h

·
+ N:

Note that we need the property E(bµ1) = µ1, i.e. bµ1 is an unbiased estimator: Re­

arranging terms produces the desired formula for expected value of the squared

Sharpe ratio.

bs2
h =

·
bµ1 ¡ (T ¡ N ¡ 1)

(T ¡ N ¡ 3)

¸ ·
N(T ¡ N ¡ 3)

T (T ¡ N ¡ 1)

¸
b· (A4)

The variance of bs2
h is calculated by combining the noncentrality parameter (A3)

with the formula for variance (A2). First we rewrite the previous formula (A4)

for Sharpe ratio yielding (A5).

bs2
h = a

·
bµ1 ¡ (T ¡ N ¡ 1)

(T ¡ N ¡ 3)

¸
(A5)

In eq. (A5) a is positive constant that equals the product of two last terms in

(A4). Then we simply use the rule var(ax) = a2 var(x), which gives after some
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calculations the formula for variance of bs2
h:

var
³ bs2

h j b·´
=

2b·2

T 2

2
64

³
Tb·¡1 bs2

h + N
´2

+
³
2Tb·¡1 bs2

h + N
´

(T ¡ N ¡ 3)

T ¡ N ¡ 5

3
75 (A6)
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Indexed returns to value and growth styles

2002 2003 2004 2005 2006 2007

median value
MSCI
median growth

2002 2003 2004 2005 2006 2007

30­70 value
MSCI
30­70 growth

Figure 1: Indexed returns (total return indices from Datastream) for di¤er­
ent styles. All returns are value­weighted, and there is no rebalancing. The
benchmark is MSCI Europe total return index.
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median value 30­70 value MSCI median growth 30­70 growth

Monthly Sharpe ratios

Figure 2: Monthly Sharpe ratios, calculated over the period 1/2002 12/2006
(60 months) for our four styles and the benchmark (MSCI Europe total return
index).
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Distributions of the F­statistic under H0 and H1

N = 100000   Bandwidth = 0.1907

θ1 E(θ1)

Figure 3: Probability density functions of the test statistic µ1 under the null
and alternative hypotheses. The solid line plots estimated value of µ1, and the
dashed line plots expected value of µ1 under the alternative. (Noncentral F­
distribution is simulated using the ratio of two chi­squared random variables,
see Johnson and Kotz [11, Chapter 30.])
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P/BV of 30­70 value

N = 160   Bandwidth = 0.1323

0 2 4 6 8 10

P/BV of 30­70 growth

N = 160   Bandwidth = 0.9945

0 1 2 3 4 5

P/BV of median value

N = 266   Bandwidth = 0.1757

0 2 4 6 8 10

P/BV of median growth

N = 265   Bandwidth = 0.8222

Figure 4: Distributions of P/BV in di¤erent styles. Thick lines point estimated
densities and within­sample medians at the start (12/2001), and thin lines point
the same gures after four years (12/2005). Actual values are reported in Table
1. Note that both x and y­axis scales are di¤erent in upper and lower panels.
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2001 2002 2003 2004 2005

Sales, 2001=100

median growth
median value
30­70 value
30­70 growth

2001 2002 2003 2004 2005

Earnings yield (%)

30­70 value
median value
30­70 growth
median growth

2001 2002 2003 2004 2005

Operating margin (%)

median growth
30­70 growth
median value
30­70 value

2001 2002 2003 2004 2005

ROIC (%)

30­70 value
median value
30­70 growth
median growth

Figure 5: Development of sales, pro tability, earnings yield and ROIC of value
and growth styles. All gures are value­weighted, and they are based on annual
rm­level data from Thomson Datastream and Worldscope.
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Pr(growth05 | growth01)
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Figure 6: Style migration. The left panel shows the logit model t for median
value 2001 stocks. The right panel shows how well the model ts for median
growth 2001 stocks. The curves are drawn using eq. (15) and they are di¤erent,
because V alue01 = 1 on the left, but V alue01 = 0 on the right. Solid lines
plot estimated probabilities of being in the median growth style as function of
ROIC, and the dots represent actual proportions based on ROIC groupings.
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