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Abstract

Interactive methods are commonly regarded as one of the most useful
and realistic multiobjective optimization techniques and for this reason a
great number of different interactive methods have been developed. How-
ever, we can say that they have two important drawbacks when it comes
to using them in real applications. On the one hand, the question of which
method should be chosen is anything but trivial. On the other hand, there
is a relatively small number of practical implementations of the methods.
In this paper, we introduce a general formulation that can accommodate
several interactive methods. This provides a comfortable implementation
framework for a general interactive system. Besides, this implementation
allows the decision maker to choose the way (s)he wants to give informa-
tion to the system, and makes it possible to change it anytime during the
solution process. This is in fact a change-of-method option which provides
a very flexible framework for the decision maker.

Keywords: Multiple criteria decision making, multiple objectives, inter-
active methods, preference information

1 Introduction

During the years, many methods have been suggested for solving multiobjective
optimization problems (see, e.g., Hwang and Masud (1979); Miettinen (1999);
Sawaragi et al. (1985)) where the aim is to find the most preferred solution in the



presence of several conflicting objectives. The task of multiobjective optimization
methods is to support a decision maker (DM) in formulating her/his preferences
and identifying the best of many Pareto optimal solutions. Different multiobjec-
tive optimization methods use a variety of forms of preference information and
versatile techniques in generating Pareto optimal solutions. Because the task is
to support a decision maker, so-called interactive approaches have turned out to
be very useful and applicable. For this reason, many interactive methods, based
on different solution philosophies, have been developed.

In interactive multiobjective optimization methods, a solution pattern is formed
and repeated several times and at each iteration the DM can direct the search
towards such Pareto optimal solutions that (s)he is interested in. The DM gets
to see some information about the feasible Pareto optimal solutions available
(and maybe some other information describing the trade-offs in the problem)
and can specify preference information in order to find more preferable solutions.
The benefit of using an interactive method is that the DM has a chance to learn
about the interrelationships between the objectives and what kind of solutions are
feasible for the problem. This helps in having more realistic expectations about
the solutions. On the other hand, the DM can concentrate on such solutions that
are interesting to her/him and, thus, it typically is sufficient to produce a rela-
tively small amount of Pareto optimal solutions, which means low computational
costs.

Because there are many interactive methods available, it is not always easy to
select the method to be used. As pointed out by Kaliszewski (2004), it would be
good to create environments (with a common interface) where different methods
were present and the DM could freely select the method (and the way of spec-
ifying preference information) as well as switch between methods. There have
been some attempts of formulating this kind of an environment. For example,
Gardiner and Steuer (1994a,b) suggested a unified algorithm which incorporates
nine to thirteen different methods. However, the implementation of this uni-
fied algorithm is not a straightforward task. This conclusion is supported by
Kaliszewski (2004) with the statement that even though the idea was appealing,
it has remained too complex for DMs. Romero (2001) presented another attempt
to prepare a general optimization structure where several variants of goal pro-
gramming as well as some other methods can be covered. However, the usefulness
and benefits of this approach have not been demonstrated or discussed from the
implementation point of view. One more generalized formulation is given in Vas-
sileva et al. (2005) incorporating thirteen different subproblems used in different
methods but the formulation is rather complex. As far as implementations are
concerned, PROMOIN (Caballero et al., 2002) is an example of an environment
where several interactive methods are included but there is no general problem
formulation and each method must be implemented separately. Furthermore,
the synchronous NIMBUS method (Miettinen and Mékeld, 2006) and its imple-
mentations WWW-NIMBUS®  (Lttp: //nimbus.it.jyu.fi/) and IND-NIMBUS
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(Miettinen, 2006) contain scalarizing functions of different methods but the way
to specify preferences is the same for all of them.

In this paper, we introduce a general formulation that covers eight interactive
multiobjective optimization methods representing three (or actually four) differ-
ent method types. The advantage of this formulation is its simple and compact
structure which enables easy implementation. Furthermore, the framework pre-
sented allows the DM to conveniently change the style of expressing preference
information, that is, changing the method used. However, the DM is not supposed
to know different multiobjective optimization methods and their specificities but
can concentrate on the actual problem to be solved and must only decide which
kinds of preferences (s)he could provide in order to direct the solution process to
a desired direction so that (s)he can identify the most preferred solution. Based
on the preference type used, the general interactive solution scheme will choose
the most appropriate method(s) for each case. The flexible possibility of chang-
ing the method means that the DM is not restricted to one way of specifying
preferences. In different phases of the solution process the DM may wish to ap-
proach the problem in different ways and this is now possible. For example, at
the early stages, in the so-called learning phase, the DM may wish to get a gen-
eral overview of the solutions available and later on, once an interesting region
of solutions has been identified, the DM may wish to fine-tune one’s preferences
in a smaller neighborhood. Our framework supports the DM in this and the DM
has easy access to methods representing different solution philosophies.

It has often been wondered in the literature why relatively few real life appli-
cations of multiobjective optimization have been reported. One possible explana-
tion is that computer implementations of the plethora of methods developed are
not always easily accessible. Another explanation could be that they and their
user interfaces are too complex for real DMs (as mentioned, e.g., in Kaliszewski
(2004)). The benefit of our framework is that it is easy to implement. Thus, we
can say that one of our motivations in this paper is to bridge the gap between
methods developed and their real-world applicability.

In practice, our interactive solution scheme is used so that at each iteration
of the solution process, the DM can decide the type of preferences (s)he wishes
to specify: a reference point (or a classification of objective functions), selecting
from a set of Pareto optimal solutions or marginal rates of substitution (MRSs).
Our formulation contains several methods in each method type and problems
corresponding to the type selected are formed (by setting appropriate variable
values in the general problem formulation) and solved and the DM can decide
whether to consider one such solution or more solutions based on the same pref-
erence information. Then, the DM can fine-tune one’s preferences and get new
solutions or continue by changing the type of preference information specified.

Let us point out that if the DM so desires, after having specified preferences in
some form and obtained solution(s), it is possible to deduce what preferences of
some other type could have produced the same solution, see Luque et al. (2007a).
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This property can easily be included in our solution framework.

The rest of this paper is organized as follows. We discuss some concepts
and notations in Section 2 and introduce our general problem framework, that
is, GLIDE, the global formulation for interactive multiobjective optimization and
the interactive solution scheme based on GLIDE in Section 3. Section 4 is devoted
to an example demonstrating how our formulation can be applied and, finally,
we conclude in Section 5.

2 Concepts and Notations

We consider multiobjective optimization problems of the form

minimize  {f1(x), f2(x), ..., fe(x)}
subject to x € S

(1)

involving k (> 2) conflicting objective functions f; : S — R that we want to
minimize simultaneously. The decision variables x = (z1,...,z,)" belong to the
nonempty compact feasible region S C R™. Objective vectors in objective space
R* consist of objective values f(x) = (fi(x),..., fr(x))? and the image of the
feasible region is called the feasible objective region Z = £(S).

In multiobjective optimization, objective vectors are optimal if none of their
components can be improved without deteriorating at least one of the others.
More precisely, a decision vector X' € S is said to be efficient if there does not
exist another x € S such that f;(x) < f;(x/) foralli =1,...,k and f;(x) < f;(x))
for at least one index j. On the other hand, a decision vector x’ € S is said to
be weakly efficient for problem (1) if there does not exist another x € S such
that fi(x) < fi(x) for all i = 1,...,k and X" is said to be properly efficient if
unbounded trade-offs are not allowed. The corresponding objective vectors f(x)
are called (weakly/properly) nondominated objective vectors. Note that the set of
properly nondominated solution is a subset of nondominated solutions which is a
subset of weakly nondominated solutions. In what follows, we denote the current
nondominated solution by f”.

Let us assume that for problem (1) the set of nondominated objective vectors
contains more than one vector. Because it is often useful to know the ranges
of objective vectors in the nondominated set, we calculate the ideal objective
vector z* = (2%, ..., 25)T € R¥ by minimizing each objective function individually
in the feasible region, that is, zf = mingeg fi(x) = mingep fi(x) for all i =
1,...,k, where F is the set of efficient solutions. This gives lower bounds for
the objectives. The upper bounds, that is, the nadir objective vector z"*d =
(zpad znad)T can be defined as 29 = maxyep fi(x) for all i = 1,...,k. In
practice, the nadir objective vector is usually difficult to obtain. Its components
can be approximated using a pay-off table but in general this kind of an estimate
is not necessarily too good (see, e.g., Miettinen (1999) and references therein). As
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an alternative, we can ask from the DM the worst possible objective values (s)he
could consider and use them as components of the nadir objective vector. In this
way, the solution process is not disturbed by the possibly weak approximation
obtained from the pay-off table.

Furthermore, sometimes a utopian objective vector z** = (z7*,...,z")" is
defined as a vector strictly better than the ideal objective vector. Then we set
¥ =z —e(i=1,...,k), where ¢ > 0 is a small real number. This vector can
be considered instead of an ideal objective vector in order to avoid the case where
ideal and nadir values are equal or very close to each other. In what follows, we
assume that the set of nondominated objective vectors is bounded and that we
have global estimates of the ranges of nondominated solutions available.

All nondominated solutions can be regarded as equally desirable in the mathe-
matical sense and we need a decision maker (DM) to identify the most preferred
one among them. A DM is a person who can express preference information
related to the conflicting objectives. In this paper, it will be assumed that the
solution process is carried out using some interactive method (the general features
of this class of methods have been described in Section 1). Among other issues,
these methods differ from each other in the kind of information asked from the
DM at each iteration.

In this paper, we consider different styles of specifying preference information:
reference levels (that is, levels that are regarded as desirable for the DM for
each objective function; or classification, that is, a division of the objectives into
classes depending on whether the DM wishes to improve, impair or maintain
the current value), just choosing one solution among several ones, or MRSs,
that is, the amount of decrement in the value of one objective function that
compensates an infinitesimal increment in the value of another one, while the
values of all the other objectives remain unaltered. In this paper we introduce a
global formulation which can be transformed, by changing some parameters, into
interactive methods belonging to all these three classes.

)T

3 GLIDE: A Global Formulation for Interactive
Multiobjective Optimization

We want to define a global formulation for interactive multiobjective optimization
techniques. For this purpose, we define a general scalarized formulation called
the GLobal Interactive Decision Environment (GLIDE), which has been designed
so that it can generate different interactive techniques by changing the values
of its parameters. Although eight different methods obtained from GLIDE are
reported in this paper, the global formulation can accommodate other interactive
procedures as well. For the multiobjective optimization problem (1), the GLIDE
problem is defined as follows



(

k
minimize a—+p Z wf(fi(x) - Cllh)
i=1

(GLIDE) § subject to  p"(fi(x) — ¢") < (i=1,...,k) (2)
fi(x) < el 4 5.+ Ael (i=1,...,k)
x e 9,

\

where x € R* and a € R are the variables. In addition, we have parameters
(o, p, W, b, b, et s. and Ael) which are set depending on the kind of in-
formation the DM is willing to provide, and consequently, on the corresponding
interactive method. The optimal solution obtained will be denoted by x"*! and
the corresponding objective vector by f"*! = f(x"*1).

As previously mentioned, this formulation can be transformed into the (inter-
mediate) single objective problems solved by eight different interactive methods,
and therefore, the (weak, proper) efficiency of its optimal solution is guaranteed
just as in the corresponding methods. Anyway, the following theorem collects
general results about the efficiency of the optimal solutions of problem (2), de-
pending on the values of some parameters.

Theorem 1 Let x"*1 be an optimal solution of problem (2). Then, the following
statements hold:

(i) Ifp>0,wr>0and pu >0 (i =1,...,k), then x"*1 is an efficient solution
of problem (1).

(i) Ifp=0oralwl =0, and p >0 (: = 1,...,k), then x"™ is a weakly
efficient solution of problem (1). Moreover, if x"*! is a unique solution,
then it is efficient.

(iii) Ifp>0, Wt >0and ul =0 (i =1,... k), then x"1 is efficient. If for any

J we have w;? =0, then X" is a weakly efficient solution of problem (1).

Proof.

(i) Let us suppose that p > 0, w! > 0 and p! > 0 for all 7 and that x"*!

is not efficient. Then, there exists a feasible solution x* € S such that
fi(x*) = fr < fM (i = 1,...,k) with some j such that ;< th+1.
Therefore, we have for allt =1,...,k

fi < fzhﬂ < 5? T+ Se- Ae?,

pf(ff = af) < pf(fi = qf) < o and

k k
pY Wh(fr —ql) < pd Wl =g,
i=1 i=1



which implies that x* is feasible for problem (2), and the corresponding
value of the objective function is better than the objective value of x*1,
which contradicts the fact that x"*! is an optimal solution of (2). Thus,

x"*1 must be efficient.

(ii) If p = 0 or all w! = 0, and p? > 0 (i = 1,...,k), then problem (2) is
equivalent to solving a minmax problem with a restricted feasible region.
If x"*! is not weakly efficient, then there exists a feasible solution x* € S,

such that f;(x*) < f;(x"™) (i=1,...,k).

Therefore, for each i =1, ..., k, we have:

fi< fz-thl < 5? + s, - Ag?,
pl(ff =) < pl(ff =4l <o

Thus, x* is feasible for problem (2), and the corresponding value of the
objective function is strictly better than the objective value of x"*! (as
in case (i)). Because of this contradiction, x"*! must be weakly efficient.
Using the same reasoning it follows that if x"*! is a unique optimal solution
of (2), then it is efficient.

(iii) If p > 0, w! > 0 and p? = 0 (i = 1,...,k), the first block of constraints
of problem (2) is actually a non-negativity condition on «. Therefore, at
the optimal solution o must be zero, and thus, problem (2) is equivalent to
solving

k
minimize Z wl fi(x)
i=1

subject to  fi(x) < el +s.- Al (i=1,...,k)
x €S,

which is equivalent to a weighted sum problem with a restricted feasible
region, whose additional constraints are the same as in the previous case.
Therefore, any feasible solution with better or at least the same objective
values as in x"! (with at least one strictly better value) would be feasible
for (2), and it would have a better objective function value. Here we again
have a contradiction and, thus, x"*! must be efficient. Analogously, if for
some j we have w” = 0, then x"*! is weakly efficient.

It is important to point out that all the efficient (or properly efficient) solutions
of problem (1) can be obtained using this global scalarized formulation with
adequate values for the parameters. For example, if we set u? > 0 and & + s, -
Aeh > 2rd (j =1,... k), we get the achievement scalarizing function defined by

Wierzbicki (1980).



Besides giving a general problem formulation, we also want to design a flexi-
ble global interactive solution scheme which allows the DM to choose the kind of
information (s)he wants to provide at each iteration. This will make the decision
process easier for the DM, who does not have to follow the same preference elic-
itation pattern during the whole solution process. Rather than that, the scheme
is adapted to the way the DM prefers to provide preference information in, by
changing the interactive method. To this end, based on the GLIDE formulation,
we propose the global interactive solution scheme described in Figure 1. Given
the current solution, the DM can choose what kind of information (s)he wants to
provide: just choose a solution among several ones, reference levels or marginal
rates of substitution. The discontinuous line leading to the MRS option means
that this case cannot be applied to all kinds of problems, as will be specified later
in Section 3.3. Then the DM is asked to provide the corresponding preference
information, and the parameters for GLIDE are set accordingly. Namely, if the
reference point option is chosen, the reference points based methods (REF) or
the classification methods (CLASS) can be used, as will be described in Section
3.1; if the DM wants to choose a solution among several ones, the corresponding
methods (SAMPLE) are used as will be described in Section 3.2; and if the MRS
option is chosen, then some methods of this type can be used, as will be described
in Section 3.3.

Once the parameters have been set, problem (2) is solved. If several solutions
are generated, the DM must choose one of them. After this, (s)he is asked whether
(s)he is satisfied with this solution. If so, the solution process finishes. Otherwise,
the DM is given can decide whether (s)he wants to obtain more solutions without
having to provide extra information. If (s)he wishes so, problem (2) is solved
again with internally updated parameters values. To this end, several methods
of the selected type are used. Finally, if the DM wishes to provide new kind of
information, a new iteration is carried out.

In the implementation of this global formulation, it can be useful to allow the
DM to save interesting solutions found during the solution process in a database
(see, e.g., Jaszkiewicz and Slowinski (1999); Miettinen and Mékeld (2006)). In
other words, the DM can save solutions that seem good candidates as a final
solution although (s)he is not quite satisfied yet. Also, given two already saved
solutions, it could be interesting for the DM to generate intermediate solutions
between them. This can be done by considering as reference points several points
belonging to the segment which joins both solutions, and adjusting the parameters
as described in Section 3.1.

In what follows, we describe the different types of specifying preference in-
formation that we consider and the corresponding interactive methods in more
detail.



Which
information
would DM like
to provide?

IF POSSIBLE

v y
Reference Marginal rates of
levels substitution

Just choose one
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A 4 l y
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Only a single If several solutions obtained,
solution obtained. let DM choose one of them.

Is DM satisfied
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the solution?

NO
Would DM like to
obtain more
solutions with the
same information?

Figure 1: Flowchart of the global interactive solution scheme for multiobjective
optimization.

3.1 Reference Levels

If the DM wishes to specify reference levels (also known as aspiration levels),
given the current nondominated objective vector f*, the DM must provide such
objective function values that (s)he wants to reach. The point consisting of these
reference levels is referred to as a reference point " = (G7, ..., 7).

Because the current solution is nondominated, it is not possible to improve
all objective function values simultaneously. However, the DM can specify a



reference point without taking this specifically into account. Then, once a new
solution is generated with a reference point based method, the DM can see which
objective values did actually impair in order to let the others improve. How-
ever, if the DM wants to control the search more by specifying which objective
functions are allowed to impair, we can utilize this information by using a classi-
fication based method. Thus, based on what kind of values the DM specifies, we
differentiate two separate cases:

1. If each reference level improves the corresponding objective value, that is,
Gt < fh (i =1,...,k), then a reference point based method (REF) will be
used.

2. Otherwise, that is, if there exists j such that q? > f;‘, then a classification
based method (CLASS) is chosen.

Note that based on the reasoning above, if classification based methods can be

used, then also reference point based methods can be used but not vice versa
(Miettinen and Makeld, 2002).

3.1.1 REF - Generate first solution.

If the DM has specified reference levels such that a reference point based method
is to be used, we use the reference point method (Wierzbicki, 1980) to generate
the first new nondominated solution to be shown to the DM. To this end, let
us set the parameters for problem (2) as shown in Table 1. Parameter p is the
so-called augmentation coefficient!.

Table 1: REF — parameters for the reference point method. (Here i =1,... k.)

1
Weights wh =1 = e el >0
Reference levels ¢ = ¢!
Objective bounds &l = 2] Aelh =0 5 =10

Using these parameters, problem (2) is equivalent to solving the following
problem:

k
minimize a—+p Z(fz(x) - ‘jzh)
i=1

(x) — g (3)
subject to %Sa (i=1,...,k)
x € S.

!These augmented achievement scalarizing functions produce properly efficient solutions
(see, e.g., Miettinen (1999); Wierzbicki (1986), for more details). It has also been shown that
the augmentation terms may improve computational efficiency (Miettinen et al., 2006).
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It must be pointed out that in this case it is also possible for the DM to express
preferences regarding the achievement of the reference levels. This possibility,
which can accelerate in many cases the convergence of the method, is explained
in full detail in Luque et al. (2006), and from the implementation point of view,
it only involves assigning different values to the weights /.

3.1.2 REF - Generate more solutions.

If the DM wants to generate more solutions with the same preference information
(that is, the same reference levels), we can consider a perturbation of the reference
point, as suggested by Wierzbicki (1980), for each j € {1,...,k} as follows

e i

A =0 (i=1,...k i#7),

where 0 is the objective vector corresponding to the optimal solution of (3).
In this way, k new solutions can be generated by solving problem (2) with q" =
q" + Aq™ (j =1,...,k) and keeping the other parameters as in Table 1.

If the DM still wants to see more solutions, the GUESS method (Buchanan,
1997) can be used by setting the parameters for problem (2) as shown in Table
2.

Table 2: REF — parameters for the GUESS method. (Herei =1,... k.)

1
W@ZghtS wlh =0 ,u? = m P = 0
Reference levels ¢l = !
Objective bounds el = 21 Aeh =0 se =10

In this case, problem (2) is equivalent to solving the problem

minimize o

(x) — gt
subject to JCZTSZ)—%SOA (1=1,...,k)
2 T4
x € S.

Note that there is no augmentation term in the original method but in our
formulation we can easily generate properly efficient solutions (instead of weakly
efficient ones) by setting p > 0 and Wl = p? (i =1,...,k).

3.1.3 CLASS - Generate first solution.

If the DM specifies a reference point such that a classification based method can
be used, we use the NIMBUS method (Miettinen and Makeld, 1995, 2006) to
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generate the first solution. Let us define three classes of indices: I+ = {i| gl <
Y, I = {i| gt = fP}, and I;7 = {i| §" > f!'}, and let us set the parameters for
problem (2) as shown in Table 3.

Table 3: CLASS — parameters for the NIMBUS method.

Weights wf—ﬁ 0 :ZZWJZ—**forZEIS p>0
izl,.f.,k)z ph=1forie - UIZ

Reference levels ¢ = gl for i € I =zt 1foric Iy UL

Objective eh = hforzGI Aeh=0(Gi=1,...,k) s.=0

bounds eh = fh fori € I U I

Given the parameter values of Table 3, problem (2) can be expressed as

minimize a4+ p E 2 d =

subject to Zn(ad) _;;i <« (i € I}) (4)
i) < 7 (i€ Iy UIy)
filx) < 4 (i € Iy)
xebs.

However, it may be necessary to clarify the reasoning behind the equivalence with
problem (2) by showing an intermediate phase. Given that

pi(fi(x) = ') = 1+ (fulx) = (2]** + 1)) < ~1for i € [;; ULy and

fi(x) — ¢}
W00 — ) = DT s o e I,
J J

then it follows that:
for any i € I;; UI; and j € I;> we have u(fi(x) — ¢") < ,ug‘(fj(x) - cjjh) <a

and, therefore, the optimal value for « is achieved at some constraint belonging to
I }% Therefore, the constraints regarding /,- U I hz can be eliminated from problem
(2), and thus, we have the equivalent problem (4).

Note that in the original NIMBUS method, there are two more classes: I,
and I} for functions to be improved as much as possible and functions that are
allowed to change freely for a while, respectively. Anyway, if a reference level g
is set equal to the corresponding ideal objective value 27, then this index could
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be considered as belonging to I;-. In the same way, if any reference level cj;? is set
equal to the corresponding nadir objective value 274, then this index could be
considered as belonging to I;. For further details, see Miettinen (1999); Miettinen
and Mékela (1995, 1999, 2000, 2006).

3.1.4 CLASS - Generate more solutions.

The GLIDE formulation can accommodate two other classification based meth-
ods: STEM and STOM. In order to obtain the STEP method (STEM) (Benayoun
et al., 1971), let us define classes Ihg, I, and I}? as in the NIMBUS method, and
let us set the parameters for problem (2) as shown in Table 4.

Table 4: CLASS — Parameters for the STEP method.

nad ok
Weights Wh=0(0G=1,...,k) ph = % % foric Iy p=0
max{ |2, |2 [}
ph=1foric Iy UI;
Reference levels ¢l = z* for i € JhS gt = zr for i € I;; U IhZ
Objective eh =gt foriel; Aeh=0(Gi=1,...,k) se =0
bounds h = fh foriE]hSUIh:

Using a similar reasoning as in the previous method, problem (2) takes the
following equivalent form:

minimize a

nad ok
subject to ma>i£|zf;|?|zl**|}(fl<x) — 2 <a (i€l)
filx) < fh (iel;UIL)
filx) < qf (i € I7)
x €5,

which corresponds to STEM modified for nonlinear problems (Eschenauer et al.,
1990). (Note that the original method was for linear problems only.)

Finally, the satisficing trade-off method (STOM) by Nakayama and Sawaragi
(1984) can also be obtained from the GLIDE formulation by setting ¢ = 2*
and pl = ﬁ (¢t = 1,...,k). All the other parameter values are the same

as in the GUESS method in Table 2. (Under certain assumptions, the original
STOM offers a possibility to calculate reference levels for objectives in I hz using
sensitivity analysis, see Nakayama and Sawaragi (1984). However, we do not
utilize it here because in our formulation we assume that the DM specifies all
reference levels.)
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Let us point out that if the DM wants to see more nondominated solutions
after the solutions of NIMBUS, STEM and STOM have been generated, we can
use the reference point based methods described earlier.

3.2 SAMPLE - Several Solutions
3.2.1 SAMPLE - Generate first solution.

If the DM wants only to compare a set of nondominated solutions, we use the
Chebyshev method by Steuer and Choo (1983). To this end, the DM is asked to
decide the number of solutions, NS, (s)he wishes to be shown. Then, a sample of
weight vectors (with all coordinates ranging between 0 and 1) will be randomly
generated. For each vector of weights p”, let us set the parameters for problem
(2) as shown in Table 5.

Table 5: SAMPLE — Parameters for the Chebyshev method. (Herei =1,... k.)

Weights wh =1 p? (random) p >0
Reference levels ¢ = 21*
Objective bounds et =z Aeh =0 se =0

This problem is equivalent to solving:

k
minimize o+ pZ(fz(X) - Z:*)
i=1

subject to  pM(fi(x) —z*)<a  (i=1,...,k)
x €S,

and a corresponding objective vector is obtained. (Actually, more than NS solu-
tions can be generated and then filtered in order to obtain the NS most different
objective vectors to be shown to the DM; see Steuer and Choo (1983) for further
details about the random generation of weights and the filtering process).

If the DM wants to generate more concentrated solutions (for example solu-
tions focused on an area around a given previously saved solution), the Chebyshev
method offers the possibility to reduce the weights space using a reduction factor.
Again, see Steuer and Choo (1983) for further details on this option. Finally, if
the DM wants to generate another set of solutions, a new random generation
process can be carried out using the same method (and therefore, the same pa-
rameters but new random weights).?

2If the random process is well designed and there are enough different solutions, the new
solutions obtained are expected to be different from the previous ones.

14



3.3 MRS - Marginal Rates of Substitution

If the DM desires to specify marginal rates of substitution, then, given the current
objective vector f”, the DM must choose a reference objective function f,, and
then provide MRSs m”; comparing each objective function to f. (i = 1,...k,
i # r). This information can be approximated in the following way. Starting from
" the DM is required to provide the amount A f" to be improved on the value of
objective function f; that can exactly offset the given amount A f* to be worsened
of the reference objective f,.. Then, these amounts allow us to approximate the
MRSs as .

h __ Afr

reT Afzh

As previously mentioned, MRS methods cannot be applied to any kind of
problem. In what follows, we will state the conditions under which the different
methods are assured to work properly. It is strongly recommended not to use
this kind of methods unless one can somehow be sure that the corresponding
conditions are fulfilled. To begin with, optimal Karush-Kuhn-Tucker (KKT)
multipliers have to be calculated at the current solution. To this end, some
reqularity condition (constraint qualification) has to be satisfied at every iteration.

The optimal KKT multipliers can be calculated in two different ways. In
option 1, it is also necessary that second order optimality conditions (Chankong
and Haimes, 1983) are satisfied at the current solution. If this holds, the following
problem is solved:

(i=1,....k).

m

minimize  f.(x)
subject to f;(x) < f (i=1,... k, i#7) (5)
X €S,

which is obtained from problem (2) by setting the parameters as shown in Table
6.

Table 6: MRS - Parameters for the calculation of the optimal KKT multipliers,
option 1. (Herei=1,...,k.)

Weights Wh=00G#7r) wp=0 p=1
wh =1

Reference levels g =0

Objective eh=fh(i#£r) Aeh=0 s.=0

bounds gh = znad

Let us denote by A\ the optimal KKT multipliers corresponding to the con-
straints set on objective functions (i.e., fi(x) < fI i # r). Furthermore, we set
M= 1.
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Option 2 to obtain the optimal KK'T multipliers, which does not assume sec-
ond order optimality conditions (Yang, 1999), is by solving the following minmax
problem

minimize Q

subject to fh_;zz**(fz(x)—zz*) <a (i=1,...,k) (6)

]

x €S,

which can also be obtained from problem (2) by considering the parameter val-
ues given in Table 7. Again, we denote by A the optimal KKT multipliers
corresponding to the constraints (1/(f" — 27)(fi(x) —27) < a (i=1,...,k).

Table 7: MRS - Parameters for the calculation of the optimal KKT multipliers,
option 2. (Herei=1,... k.)

. 1
Wezghts wzh =0 ,U/? = W P = 0
Reference levels ¢t = 27
Objective bounds el = 2z Al =0 se =0

3.3.1 MRS - Generate first solution.

The first solution based on MRSs is an adaptation of the SPOT method (Sakawa,
1982). This adaptation does not make use of the proxy function (whose estimation
goes beyond the reach of the GLIDE formulation). This method is applicable
if the objective functions are twice continuously differentiable and convex, and
the feasible set is convex. Besides, the existence of a continuously differentiable
implicit value function of the DM, which is strictly decreasing and concave, is
also assumed. Let us set the parameters for problem (2) as shown in Table 8.

Table 8: MRS - Parameters for the SPOT method. (Herei=1,...,k.)

Weights Wh=0(@i#r) put =0 p=1
wh =

Reference levels gl =0

Objective eh=fh(i#£r) Aeh =X\t —mh (i#£7r) s (varied)

bounds gh = pnad Ael =0
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Then, problem (2) is equivalent to solving the following problem:

minimize  f,.(x)
subject to  fi(x) < fl 4+ s.- (N —ml) (i=1,... .k i#7) (7)
xeS.

Several values for s, are set and, in this way, different solutions are obtained
by solving problem (7). The DM is then asked to choose one of them. The
variation interval for s. must be chosen in such a way that problem (7) is assured
to have feasible solutions. To this end, it is necessary to calculate an upper bound
for s., denoted by s.. Let 5. be the smallest value of s. such that some coordinate
of el + s, - Ae? reaches its corresponding ideal value. If problem (7), for s. = 3.,
has feasible solutions, then s, is an appropriate upper bound. If not, we reduce
5., multiplying it by a number between 0 and 1 (usually, this number is chosen
between 0.5 and 1), and we check the feasibility again. The process continues
until a valid value for 5. is found. Then, several values between 0 and s, are
selected and the corresponding problem (7) is solved.

3.3.2 MRS - Generate more solutions.

Finally, the algorithm used to generate alternative solutions under the MRS op-
tion is a modification of the GRIST method (Yang, 1999), called PROJECT
(Luque et al., 2007b). In this method, the objective functions are assumed to
be continuously differentiable, and the efficient set is assumed to be connected.
Given the current objective vector and the MRSs between the objective func-
tions, an approximation of the normalized value function gradient is calculated
and a normal vector to the current objective vector is given by the optimal KKT
multipliers mentioned above. The projection of this vector onto the tangent
plane of the efficient set can provide an ascending direction in the DM’s value
function that better approximates the feasible region. Starting from f* and in
the direction of this projection vector, several points are generated and shown
the DM. To generate these points, we calculate the last point whose coordinates
are equal to or smaller than the corresponding ideal objective values (i.e., the
first point with at least one coordinate being equal to the corresponding ideal
objective value). Then we calculate several points between this point and the
current objective vector and show them to the DM who is supposed to choose
one. Let us denote it by ¢". This point chosen by the DM, which is infeasible
in the majority of cases, is used to generate a solution which obeys the MRSs by
solving the following problem:
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minimize o

(x) — gh
subject to J‘CZA(::)—ETSQ (1=1,...,k) (8)
4% — Ji
x €9,

which can be obtained from the GLIDE formulation by setting the parameters
as shown in Table 9. For further details about the determination of the normal
vector and other features of the algorithm, see Yang (1999); Yang and Li (2002).

Table 9: MRS — Parameters for the PROJECT method. (Here i =1,...,k.)

T
Reference levels ¢l = ¢!
Objective bounds &l = 21 Aeh =0 se =10

4 Example

Let us illustrate with an example how our interactive solution scheme with
GLIDE can be utilized. The problem considered has been described in Narula
and Weistroffer (1989) and also considered in Miettinen and Makeld (1997) and
briefly described in Miettinen et al. (2006). We have a pollution problem of a
river involving four objective functions and two variables in the form

maximize  fi(x) = 4.07 + 2.27x;

o 0.01 0.30
maximize  fy(x) = 2.60 + 0.03z1 4+ 0.02z5 + 1.39 — 7 i 1.39 — 3
0.71
maximize  f3(x) = 8.21 — 1.09 — 22
0.96
minimize  fy(x) = —0.96 + 1.09 — 22

subject to 0.3 < xq, 29 < 1.0.

In this problem, a fishery and a city of medium size are polluting water in the
river and, thus, there is both industrial and municipal waste in the river. The
city is situated downstream from the fishery. There exist two treatment plants,
one in the fishery and another in the city. The waste is described in pounds of
biochemical oxygen demanding material (BOD) and the two decision variables
represent the proportional amounts of BOD removed from water in the treatment
plants.
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Here the first two objective functions describe the quality of water after the
fishery and after the city, respectively. Cleaning the water in the fishery decreases
the return on investments and, thus the third objective function measures the
percent return on investment at the fishery. Finally, cleaning the water in the
city means addition to the tax rate in the city and this is represented in the
last objective function. Therefore, the first three objective functions are to be
maximized, while the last one is to be minimized. The ideal and nadir values of
the four objective functions are displayed in Table 10. It can be observed that fs
(quality of the water after the city) has the smallest variation range.

Table 10: Ideal and nadir values.

Objective Ideal Nadir
fi maximize  6.34 4.75
fo maximize 3.44 2.8
f3 maximize 7.50  0.32
fa minimize  0.00 9.71

Iteration 1. When we start solving the problem, let us assume that the DM
wishes to get an overall picture of the problem with four different nondominated
solutions. Therefore, the option ’choosing one among several solution’ is used,
and the following nondominated solutions are obtained by solving the GLIDE
problem (2) with the parameters given in Table 5 (with four sets of random
weights):

(5.56, 2.87, 7.13, 0.00), (6.00, 2.88, 6.27, 0.00),
(5.80, 3.02, 6.82, 0.95), (6.21, 3.15, 4.75, 2.00).

Among these solutions, the DM chooses the last one: (6.21,3.15,4.75,2.00).
In relative terms, here the value of f; (water quality after the fishery) is the
closest one to its ideal value.

Iteration 2. Next, the DM wishes to give MRSs?, taking f; as the reference
objective. If this objective is relaxed by 0.1 units, the DM says that this is
compensated by an improvement of 0.3 units in fy, or an improvement of 0.1
units in f3, or an improvement of 0.05 units in f;. This implies that the DM
regards fy as (locally) less important than objective 1, objective 3 as (locally)
equally important than objective 1, and f; as (locally) more important than
objective one. Therefore, problem (2) is solved using the parameters shown in
Table 8 for four step sizes, and the following solutions are shown to the DM:

(6.21, 3.15, 4.75, 2.00), (6.18, 3.09, 5.05, 1.38)
(6.15, 3.03, 5.35, 0.87), (6.12, 2.95, 5.65, 0.39),

3Note that for illustrative purposes we here use this option even though the problem does
not satisfy the assumptions specified in Section 3.3.1.
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who chooses the second one: (6.18,3.09,5.05,1.38).
As it can be seen, the environmental objectives f; and f, have experimented
a light decrease, while the economical ones (f3 and f;) have been improved.
Iteration 3. Let us now assume that the DM wishes to set very optimistic
reference levels for every objective, as follows:

"=6.2, =32 ¢@=60 ¢ =10

Therefore, the reference point option is selected, and the parameters for prob-
lem (2) are set as shown in Table 1. As a consequence, the following solution is
obtained: (6.16,3.14,5.29,1.97).

In this iteration, the quality of the water after the fishery (f;) has slightly
decreased and the addition to the tax rate (f;) has increased significantly. On
the other hand, both the quality of the water after the city (f;) and the return
on investments (f3) have increased.

Iteration 4. Now the DM wishes to improve the economical objectives at
the price of relaxing a little bit in the environmental ones. Therefore, the DM
sets the following reference levels:

Q' =60, ¢ =30 ¢ =60 ¢ =15

In this case, the classification based option is chosen and problem (2) is solved
using the parameters shown in Table 3. The solution obtained is the following
one: (6.00,3.05,6.28,1.10).

As it can be seen, the quality of the water after the fishery is at its reference
level and the quality of water after the city is slightly better than the reference
level. On the other hand, the economical objectives have been improved beyond
their reference levels. Let us assume that the DM decides to stop with this
solution, which implies to remove the 85.02% of the BOD at the treatment plant
of the fishery, and the 79.01% of the BOD at the treatment plant of the city. A
graphical representation of the four iterations (with the solutions selected) can
be seen in Figure 2, where the bigger the horizontal bars are, the better the value
of the corresponding objective is.

Finally, it must be pointed out that the purpose of this example is to illustrate
the performance and flexibility of the global interactive solution scheme, and
that is why four iterations have been carried out, all of them with different
preference elicitation styles. Obviously, the DM does not have to change the
type of preference information so often, (s)he can ask for several solutions based
on the information already specified and continue the solution process as long as
desired.
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Iteration 1 Iteration 2
\ \ \ \
Obijective 1 l6.2 Obijective 1 | 6.1
Obijective 2 3,15 Obijective 2 | 3.09
Objective 3 |4.75 Objective 3 | 5.05
Objective 4 2,00 Objective 4 | 1,38
\ \ \ \
Iteration 3 Iteration 4
\ \ \
Objective 1 |6.16 Objective 1 |I6.00
Objective 2 3,14 Objective 2 | 3,05
Objective 3 | 5,29 Objective 3 | 6,28
Objective 4 1,97 Objective 4 | 1,10
\ \ \ \ \ \ \

Figure 2: Graphical display of the four iterations.

5 Conclusions

In this paper, a global formulation which can accommodate several interactive
multiobjective optimization methods has been introduced. The compact struc-
ture of this formulation takes the form of a general optimization problem with
a set of parameters that have to be changed in order to obtain the different in-
teractive methods supported. To be more specific, in this paper we show how
the reference point, GUESS, NIMBUS, STEM, STOM, Chebyshev, SPOT and
PROJECT methods can be derived from this general formulation (besides, other
interactive methods like Klamroth and Miettinen (2007) could also be considered
by choosing the corresponding parameters).

It is clear that one of the main features that an interactive decision aid tool
must have in order to successfully tackle real problems is flexibility. This flexibil-
ity is understood as the ability of the system to adapt the solution process to the
DM'’s wishes allowing her/him to choose the most appropriate way of providing
information any time during the process. To this end, it is necessary to imple-
ment different interactive techniques which utilize different kinds of preference
information. On the other hand, one of the weak points of the interactive multi-
objective optimization field is the very limited number of practical and easy-to-use
implementation.

We would like to emphasize the compactness of the formulation proposed,
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which makes it different from the other general conterparts previously published.
The GLIDE formulation has been designed with two main aims. First, providing
a comfortable decision aid environment for the DM, and second, aiding potential
programmers to implement the interactive system.

From the point of view of the DM, a general algorithm has been built where
(s)he only has to decide what type of preference information (reference levels,
choosing a solution among some efficient solutions or MRSs) does (s)he want to
provide at each iteration. The algorithm chooses the corresponding method and
produces the solution(s). Given that more than one interactive method of each
class is supported by the global formulation, it is also possible to generate several
different solutions with the same information if the DM so wishes.

From the point of view of the programmer, the global formulation is com-
plemented with tables with the values of the parameters of GLIDE for each of
the methods considered. This provides a simple implementation framework that
makes it easier to create an interactive system based on the GLIDE formulation.

Finally, a simple hypothetical illustrative example has been used to show
the performance of the global formulation and of the interactive solution scheme
proposed. Although a preliminary implementation has been developed in order
to test the algorithm and to solve the example, our future research trends include
a more versatile implementation of an interactive system based on GLIDE with
a flexible and graphical user interface, and its application to real life problems.
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