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Abstract

We describe a new interactive learning-oriented method called Pareto navigator
for nonlinear multiobjective optimization. In the method, first a polyhedral approx-
imation of the Pareto optimal set is formed in the objective function space using
a relatively small set of Pareto optimal solutions representing the Pareto optimal
set. Then the decision maker can navigate around the polyhedral approximation
and direct the search for promising regions where the most preferred solution could
be located. In this way, the decision maker can learn about the interdependencies
between the conflicting objectives and possibly adjust one’s preferences. Once an
interesting region has been identified, the polyhedral approximation can be made
more accurate in that region or the decision maker can ask for the closest counter-
part in the actual Pareto optimal set. If desired, (s)he can continue with another
interactive method from the solution obtained. Pareto navigator can be seen as a
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nonlinear extension of the linear Pareto race method. Pareto navigator is computa-
tionally efficient because most of the computations are performed in the polyhedral
approximation and for that reason function evaluations of the actual objective func-
tions are not needed. Thus, the method is well suited especially for problems with
computationally costly functions. Furthermore, thanks to the visualization tech-
nique used, the method is applicable also for problems with three or more objective
functions, and in fact it is best suited for such problems. We illustrate the method
and the underlying ideas with an example.

Keywords: multicriteria optimization, MCDM, interactive methods, decision sup-
port, Pareto optimality

1 Introduction

Solving multiobjective optimization problems can be understood as finding the most pre-
ferred trade-off between conflicting objectives. In the field of multiple criteria decision
making (MCDM), the idea is to help a decision maker in finding the best solution among
mathematically incomparable compromises, so-called Pareto optimal solutions. During
the years, many methods have been developed for this purpose (see, e.g. [1, 4, 12, 19, 20]).
However, their real-life applications are still surprisingly few [6]. One possible explana-
tion could be that the tools developed for decision support may not be illustrative and
easy-to-use enough for real decision makers.

Multiobjective optimization methods can be classified, for example, according to the
role of the decision maker in the solution process [12]. Among the plethora of multiobjec-
tive optimization methods available, interactive methods are regarded promising because
they allow an active participation of the decision maker in the solution process. In this
way, the decision maker can direct the search and concentrate on solutions that are most
interesting to her/him. For example, according to [21], two different conceptions regard-
ing interactive methods can be identified. In searching-oriented methods, a converging
sequence of solution proposals is presented to the decision maker. On the other hand,
in learning-oriented methods, a free exploration of solutions is possible allowing trial and
error. As mentioned in [12], the best way would be to combine these approaches. As a
matter of fact, in many decision processes, one can identify two phases: a learning phase
and a decision phase. No matter which style of expressing preference information is used
(e.g., desirability of trade-offs, reference points, classification of objective functions etc.),
it is often valuable for the decision maker first to be able to learn about the possibilities
and limitations of the problem in order to adjust one’s hopes on a realistic level and
then fine-tune the final solution. It is also important to use concepts the decision maker
understands well.

An attempt of developing an intuitive and understandable method for linear multi-
objective optimization problems was suggested in [10] as a so-called Pareto race. There,
the idea is that the decision maker can navigate in the set of Pareto optimal solutions
like driving a car, in other words, move around in the Pareto optimal set according to



his/her desires in order to identify the most preferred trade-off. Thanks to parametric lin-
ear programming, Pareto race can show changes in objective function values in real-time.
This is a very appealing learning-oriented approach but, as said, it works only for linear
problems.

In this paper, we concentrate on (convex) nonlinear problems and introduce a method
that enables convenient and real-time navigation in the approximated Pareto optimal
set of a nonlinear multiobjective optimization problem. We call this learning-oriented
method by the name Pareto navigator. One can say that we extend and generalize the
navigation ideas used in the Pareto race to nonlinear problems. At the same time, we
enable the decision maker to direct the search for the most preferred solution in more
diverse ways than in Pareto race.

The starting point of our method is a relatively small discrete representation of the set
of Pareto optimal solutions. Using these solutions, we generate a polyhedral approxima-
tion of the Pareto optimal set in the objective function space. In this approximation, the
decision maker can navigate according to his/her wishes and search for the most preferred
trade-off. Because of the structure of the approximation, computation is fast and move-
ments can be shown in real-time. Thus, our approach is particularly useful for problems
where function evaluations are costly and time-consuming. Instead of response surface or
kriging type of approaches (see, e.g., [9]), we directly approximate the Pareto optimal set
and not the objective functions involved. Once the decision maker has identified an inter-
esting region or solution, (s)he can ask for a more accurate approximation of the Pareto
optimal set (i.e., more points in the approximation or concentrate the approximation in
the desired region [7]) or see (in some sense) the closest Pareto optimal solution in the
original problem. Then one can continue navigating or continue with another interactive
method after having learned about the feasible trade-offs.

The strengths of our approach include the applicability to computationally costly prob-
lems as well as a very intuitive user interface. The decision maker can see global trade-off
information between different conflicting objectives in real-time and conveniently control
in which direction to move, that is, which objectives to improve or which objectives to
allow getting worse. This enables the decision maker to learn about the interdependen-
cies among the objectives in the problem and set one’s expectations on a realistic level.
Even though we are dealing with an approximation, the decision maker can anytime get
to see (in some sense) the closest Pareto solution of the original problem (by projecting
the solution identified). We demonstrate our approach and a graphical user-interface of a
software implementation with an example.

The rest of this paper is organized as follows. First we introduce some notations and
concepts used in Section 2. In Section 3, the algorithm of Pareto navigator is presented.
Section 4 is devoted to implementation issues including a user interface and an example
that demonstrates how Pareto navigator can be used. In Section 5, we shortly discuss
some issues related to the development of the method and future research. We finish with
some concluding remarks in Section 6.



2 Some notations and concepts

In this paper, we deal with convex multiobjective optimization problems of the form

minimize  {f1(x),..., fe(x)} (1)
subject to x € S,

where x € R" is called a decision (variable) vector and it should belong to the feasible
region S. We assume that all the objective functions f; : R® — R, for each i =1,... k,
and S are convex. The image of a feasible decision vector x € S under mapping f :
R" — R¥ from the decision variable space R™ to the objective space RF is called a feasible
objective vector and denoted by z = f(x) = (f1(x),..., fr(x))T. The components of
objective vectors are called objective values.

In this paper, we define optimality using the concept of Pareto optimality.

Definition 2.1

A decision vector x* € S and an objective vector f(x*) are said to be Pareto optimal
if there does not exist another decision vector x € S such that f;(x) < f;(x*) for all
i=1,...,k and f;(x) < f;(x*) for some j.

Note that the Pareto optimal solutions are in a mathematical sense incomparable
without additional information. Furthermore, problem (1) typically has infinitely many
Pareto optimal solutions. The set of all the Pareto optimal objective vectors is called the
Pareto optimal set. Later on, this will also be referred to as an actual Pareto optimal set.

Usually in the MCDM field, the aim of solving a multiobjective optimization problem
is to find a single feasible decision vector which is considered as the final solution for
problem (1). However, we need some external information to decide which of the Pareto
optimal solutions is the most preferred one. A decision maker (DM) is a person who has
knowledge about the problem in question and can express preference information related
to Pareto optimal solutions. Naturally, what is to be regarded as most preferred depends
on the DM involved.

It is often useful for the DM to know lower and upper bounds for the values of objective
functions appearing in the Pareto optimal set. The ideal objective vector z* € R* consists
of the optimal values 2} for each objective function f; with respect to the feasible region
S. In other words, these are the best values that the individual objective functions can
attain in the Pareto optimal set. If the objective functions are conflicting, which usually
is the case, the ideal objective vector is infeasible. The nadir objective vector z"*¢ gives
upper bounds for the values of the individual objective functions in the Pareto optimal
set. However, because the set of Pareto optimal decision vectors is unknown beforehand,
we usually need to use an approximated nadir objective vector (in the case of more than
two objectives). Often it is approximated using a payoff table (see [12] and references
therein) but other ways also exist [3].

As motivated in the introduction, we consider here interactive approaches and, in par-
ticular, learning-oriented methods. The purpose of interactive methods is to aid the DM
in finding a Pareto optimal solution which corresponds to the preferences of the particular



DM in the best possible way. In interactive methods, a solution pattern is formed and
iteratively repeated allowing the DM to adjust one’s preferences and concentrate on so-
lutions (s)he finds interesting. This means that the DM is directing the search according
to her/his desires.

In interactive multiobjective optimization, there are several possibilities for the DM
to express preference information [12]. For example, the DM can indicate desired changes
in the objective function values of the current Pareto optimal solution by specifying a
classification. Widely used classes are the following: Objective functions whose values
should be improved, are satisfactory or are allowed to impair. Note that if some objective
function value is improved, then some other one must be allowed to impair in order to
get another Pareto optimal solution. Another possibility to express preferences is to use
reference points. A reference point z € R¥ consists of aspiration levels z;, i = 1,...,k,
that represent desired values for the objective functions. Note that the reference point
does not need to be feasible. A reference point can also be extracted from the classification
information [15, 16]. In that case, the components of the reference point z are the ideal
value 2z, the current value and the nadir value z'%? for the classes described above,
respectively.

3 Pareto navigator

We propose a new interactive learning-oriented method, Pareto navigator, for multiob-
jective optimization. We use a polyhedral approximation of the Pareto optimal set in
order to enable the DM to explore the Pareto optimal set. With Pareto navigator, the
DM can conveniently study trade-offs between the conflicting objectives in real-time and
locate regions that are interesting to her/him. Therefore, we have a good learning tool
to study the behavior of the problem. Because the exploration takes place in the approx-
imated instead of the actual Pareto optimal set, it can be done with low cost even for
computationally expensive problems. Thus, our approach is particularly useful in complex
real-world problems where function evaluations, for instance, come from some simulation
tool and may necessitate solving partial differential equations.

The starting point of our approach is a relatively small set of Pareto optimal solutions
that is used to represent the actual Pareto optimal set. The polyhedral approximation
generated by these solutions in the objective space will be referred to as an approximated
Pareto optimal set. Solutions in this set will be called approximated Pareto optimal solu-
tions. Using the approximated Pareto optimal set enables studying changes in objective
function values in real-time when moving from one solution to another. This is realized
using parametric programming. Once the DM has located an interesting solution or area
from the approximation, (s)he is shown the corresponding solution in the actual Pareto
optimal set. By a corresponding solution we here mean an actual Pareto optimal solution
that is in some sense closest to the approximated solution. If desired, one can continue, for
instance, with some other multiobjective optimization method which allows more detailed
comparison of trade-offs between the Pareto optimal solutions (see, e.g., [12]). If the ap-



proximated Pareto optimal solution and the corresponding actual Pareto optimal solution
are far from each other, the DM can also ask for a more accurate approximation of the
Pareto optimal set to be generated (e.g., by increasing the number of solutions that the
polyhedral approximation is based on). It is also possible to improve the approximation
locally, as suggested in [7], and study the polyhedral approximation related to a subset
of the original Pareto optimal set. Our simplified setting allows us to decrease cognitive
burden set on to the DM while (s)he is making an overall evaluation about what kind of
solutions may be available and which of them are interesting.

Usually, in interactive multiobjective optimization methods, the interdependencies be-
tween objectives are analyzed in a rather local sense, that is, mostly pointwise (e.g., trade-
off rates at some solution). Instead, in Pareto navigator, the idea is to concentrate on
capturing a global understanding of the possibilities and limitations in the problem con-
sidered. In other words, we provide means to study the overall behavior of Pareto optimal
solutions. This is an essential part of the learning phase, discussed in the introduction. If
a separate decision phase is needed after using Pareto navigator, one can switch to some
other interactive method which typically are designed to support the decision phase.

The Pareto navigator method consists of two phases: initialization and navigation.
The initialization phase is purely technical where we first produce a (relatively small)
representative set of Pareto optimal solutions of problem (1). Using these solutions we
generate a polyhedral approximation for the Pareto optimal set in the objective space.
After the initialization phase is completed we are ready to start the navigation phase
where the DM is in charge. In Figure 1, the algorithm of the Pareto navigator method is
presented from the DM’s perspective using steps 1 — 6. Next, we describe more detailed
actions related to these steps.

1 2

Initialization

DM: “Would
you like to
proceed to
some new
direction?”

DM:Proceed to the
direction specified
until the DM stops
the speed of
movement

DM: “Has the

most preferred

solution been
found?”

DM: Specify
preferences about
desired changes

actual Pareto optimal
solution is shown to the

Stop, the corresponding
DM

Figure 1: Flowchart of Pareto navigator from the DM’s perspective.



Initialization phase

Before the DM can start to use Pareto navigator, an initialization procedure is carried out.
In Figure 1, this phase is denoted more generally as a step 1 but technically it contains
the following two separate substeps.

la. A discrete representation of the Pareto optimal set and a corresponding polyhedral
approximation are produced in the objective space.

This step needs no interaction with the DM. There exist many methods that can
be used to generate the discrete representation (see, e.g., [11, 18]). Here we apply an
adaptive approximation of the Pareto optimal set [8]. The advantage of this method is
the upper bound for the approximation error it produces. It would also be possible to
use some evolutionary approaches developed for approximating the Pareto optimal set
(see, e.g., [2]). However, it must be pointed out that with evolutionary approaches the
resulting solutions may only be nondominated with respect to the final population but
not actually Pareto optimal (the actual Pareto optimal set may dominate the polyhedral
approximation considered). Computationally, the most demanding task is the production
of a discrete representation of the Pareto optimal set. However, this representative set
can be generated well before the DM is involved in the method.

Let us assume that we have a discrete set of Pareto optimal solutions related to problem
(1). As an example, we describe one possible way to build a polyhedral approximation for
the actual Pareto optimal set using these solutions. Because we are dealing with convex
problems in this paper, it is convenient to produce the polyhedral approximation using
the convex hull of the Pareto optimal solutions available. A convex hull can be expressed
in a form Az < b and this inequality characterizes a polyhedral set. In other words, the
inequality holds for objective vectors z € R¥ which belong to the convex hull. Later on,
when step 5 is described, we explain how a convex hull of the form Az < b can be used
to obtain approximated Pareto optimal solutions.

In order to generate visualizations, we also need information about the ranges of the
objective values in the Pareto optimal set. We can approximate ideal and nadir objective
values as discussed in Section 2, or alternatively, it is possible to ask the DM for the best
and the worst objective values to be considered.

1b. In what follows, the DM is involved. First, the DM is asked to select a starting
point for the navigation phase.

For example, (s)he can specify a reference point which is then projected in the ap-
proximated Pareto optimal set. The projection can be made, for example, by solving a
parametric programming problem (3) introduced in step 5. Alternatively, (s)he can select
the most preferred actual Pareto optimal solution from the set used in step la. In this, a
visualization like the one given in Figure 2 can be helpful for the DM.

Navigation phase

The overall idea of the navigation phase is to allow the DM to move around in the
approximated Pareto optimal set in those directions where (s)he feels the most promis-
ing solutions could be located. After the desired direction has been found, the method



starts, in real-time, to produce approximated Pareto optimal solutions to the direction
determined. The approximated solutions are produced with a parametric programming
procedure using a relatively small step size such that when the solutions are shown to the
DM, (s)he experiences the motion as continuous. The speed of movement (i.e. how rapid
the change in objective function values is) is determined by the DM. At any time the DM
wishes, (s)he can adjust the speed, change the direction or even go backwards (i.e., where
(s)he came from). In this way, the DM rapidly evaluates each approximated Pareto opti-
mal solution produced along the determined direction. In practice, the objective function
values can be visualized, for example, using a bar chart. In other words, the DM sees the
lengths of the bars changing as the corresponding objective function value changes. Once
the DM has found the most promising solution in the current direction, (s)he can stop the
movement. This solution is called a current solution. In what follows, we describe steps
2 — 6 forming the navigation phase of Pareto navigator (see Figure 1) in more detail.

2. The objective values of the current solution are visualized to the DM using a bar
chart and the DM is asked the question “Has the most preferred solution been found”. If
the DM is satisfied with this solution, we proceed to step 6. Otherwise, we continue to
step 3.

Note that in principle the DM may feel that the solution selected in the initialization
phase is good enough as the final solution and we can stop without the navigation phase.
However, we assume here that the DM is interested in learning about the problem and
studying further solution possibilities.

3. If the DM is not satisfied with the current solution (i.e., (s)he answered no to
the question in step 2), (s)he is further asked “Would you like to proceed to some new
direction”. A negative answer means that the DM wants to continue in the current
direction. Then we proceed to step 5. In the opposite case the DM can change one’s
preferences and then a new search direction is determined.

Note that the DM must always specify preferences related to desired changes in ob-
jective values after the initialization phase. After this, the initial search direction can be
determined correspondingly.

4. Now, the DM wants to change the search direction and (s)he is asked to specify
preferences on how the current solution should be improved. The preference information
is requested from the DM, for instance, in the form of a classification or as a reference
point.

With the preference information the DM indicates what kind of changes would make
the current solution more preferred. This information is used to determine a new search
direction from the current solution. Basically, any form of preference information can be
used as long as it is possible to extract a unique search direction from it. For example, if
a reference point z is used, we can set the search direction as d = z — z¢, where z° is the
current solution. Remember that a reference point can also be extracted from classification
information, as described in Section 2. Determining the search direction plays a significant
role when reflecting the preferences of the DM. Thus, special attention should be paid in
selecting a convenient and intuitive form for the DM to specify preferences.

5. From the current solution z° we move to the search direction determined by using



the preference information obtained from the DM. After the search direction has been
determined, the method starts to produce approximated Pareto optimal solutions. The
DM can stop the movement at any solution desired. Then we continue to step 2.

As far as producing approximated Pareto optimal solutions is concerned, we solve a
parametric programming problem to generate them in real-time. To be more specific, we
consider the formulation

minimize  max w;(2; — Z(a))
i=1,...,k (2)
subject to Az < b.
Problem (2) uses an achievement (scalarizing) function employed in the reference point
method [22, 23] where w;, i = 1, ..., k, are the scaling coefficients and the reference point
z(a) = (z° + ad) € R* can be moved parametrically to the specified search direction
d € R* by altering parameter o € R (negative values of « allow us to move backwards).
Here we use scaling coefficients w; = 1/(27%¢ — 2¥). The linear constraints Az < b of
problem (2) are forming a convex hull for a set of Pareto optimal solutions, as described in
step la, and actually we are now projecting a reference point z(«) to the nondominated
facets of the convex hull. This gives an approximated Pareto optimal solution. The
parametric problem (2) above can be considered in an equivalent linear form by adding a
new variable ( € R. This leads to the following formulation

minimize ¢’z
subject to A’z <b’ (3)
z' € RFH!
where
- 0
_a 0 1 0 z1(a)
1 ¢ e :
c= ’ 7= T la=] -1 o o 1 b’ = (@)
E b b W ) bl )
0 ayr a1 ... Qig .
0 2K . . :
by
0 ag agp ... agu

where ¢ is the number of linear constraints in problem (2). The problem (3) is a para-
metric linear programming problem which can be solved with a suitable optimizer. The
solution of problem (3) is an approximated Pareto optimal solution in the polyhedral
approximation (i.e., due the projection it belongs to one of the nondominated facets of
the convex hull). We can generate new solutions fast because we are solving a linear
parametric programming problem.

6. Once the DM has found a satisfactory approximated Pareto optimal solution, we
stop the search. The approximated solution is projected to the actual Pareto optimal set
and the resulting solution is shown to the DM.



The projection can be realized, for example, by setting the selected solution as a
reference point and using some achievement scalarizing function to project it (see, e.g.
[12, 23]). Note that the DM can at any moment ask for the actual Pareto optimal solution
corresponding to the current solution. If the problem is convex, the approximated solution
is always feasible. This means that the objective values in the corresponding actual Pareto
solution are always as good as in the solution selected by the DM. If the DM is willing to
continue navigation after this, we continue to step 2. If desired, it is possible to add the
computed actual Pareto optimal solution to the approximation to make it more accurate.
This, naturally, necessitates regenerating the polyhedral approximation, that is, we go
back to step 1.

After the learning phase has been completed with the Pareto navigator method (after
step 6), the DM can stop (if the most preferred solution has been found) or proceed
to the decision phase and continue, for example, with some interactive method (see,
e.g. [1, 4, 12, 20]), as mentioned earlier. If the DM has specified preferences in the
form of reference points or classifications, it may be natural and intuitive to continue
with interactive reference point [5, 22| or classification based methods [13, 14, 16, 17],
respectively. Alternatively, the DM can continue the learning phase and, for example,
ask for a more accurate approximation of the Pareto optimal set to be generated in the
neighborhood of the selected solution (see, e.g., [7]). Then we go to step 1 to generate a
new set of Pareto optimal solutions in the specified region and initiate Pareto navigator
again.

4 Using Pareto navigator

In this section, we demonstrate how the Pareto navigator method can be used from the
DM’s point of view. To be more specific, by using an example problem, we describe step-
by-step what kind of interaction can take place during the navigation phase outlined in
Figure 1. However, it must be emphasized that visualizations used and the way how the
DM indicates his/her preferences are only suggesting one possible approach, and in this
respect the user interface can be customized also in other ways to meet the needs of the
DM. We consider the following simple problem:

—I1 —$2+5
minimize $(2% — 10z + 23 — dap + 11)
(5 —x1)(zg — 11)
subject to 3x1 + 22 —12 <0
2!['1 + Ty — 9 S 0
T1+ 22, —12 <0
0<z; <4, 0< 2y <60.

Actually this example problem is not convex due the third objective function but we can
say that it is mildly nonconvex. However, the example demonstrates that this does not
affect the applicability of Pareto navigator.
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la. To begin with, we apply the adaptive approximation method in the initialization
phase and as a result we get a list of actual Pareto optimal solutions (see Table 1) to be
used to produce a polyhedral approximation. Here we have selected to use 7 solutions.
After using the adaptive approximation method, we also get approximations for the ideal
and the nadir objective vectors. In what follows, we describe actions of a DM and explain
how Pareto navigator can be used to search for a promising solution in the objective space.

fi f2 f3
—2.00 0.00 —18.00
—1.00 4.60 —25.00
0.00 —-3.10 —14.25
1.38 0.62 —35.33
1.73 1.72 —38.64
2.48 1.45 —42.41
5.00 2.20 —55.00

N O U W N

Table 1: Initial set of Pareto optimal solutions.

1b. The DM specifies the starting point for Pareto navigator by selecting the most
interesting actual Pareto optimal solution from the initial set listed in Table 1. The same
set of solutions is also shown with a value path visualization in Figure 2 (remember that
the starting point could alternatively be specified with a reference point.) Let us now
assume that the solution 4 is the most appealing to the DM.

nadir

ideal [}

Figure 2: Value path visualization of the initial set of Pareto optimal solutions.

2. In what follows, we refer to the solution selected as A = (1.38,0.62, —35.33) (see
Figure 3) and assume that the DM wants to examine its surroundings.

3. The initial solution A has now been selected but we do not yet have a search
direction. After the initialization step, it is obligatory for the DM to specify preferences
in order to set the search direction.

4. When studying A, the DM is interested in finding solutions where values of objec-
tives fi and fo are improving while the value of objective f3 can be relaxed. By using
this classification information, an initial search direction from the selected solution A can
be generated. To be more precise, the classification made produces a reference point
z' = (27, 25, 25T which is used together with the current solution A to produce the
search direction.

5. Pareto navigator starts to generate solutions in the direction determined and up-
dates in real-time the bar chart visualization depicting approximated solutions that are
generated. The DM is able to determine a desired speed of movement. Based on the
continuously changing lengths of bars in the bar chart visualization, the DM can rapidly
see what kind of solutions are available in the current direction (which corresponds to

11



the given classification). When an interesting area has been reached, the DM stops the
movement. Note that the DM is also allowed to move backwards in the current direction
if the DM feels that (s)he already passed an area which seemed more interesting than the
current one.

2. Let us now assume that the DM has arrived from the starting solution A to the
solution B = (0.35, —0.51, —26.26)T, where (s)he has stopped the movement (see Figure
3). However, solution B is not satisfactory to the DM.

3. While moving from A to B the DM has learned how the solutions are behaving
with respect to the classification given at point A. The DM thinks that continuing in
this direction is no more interesting and wants to change the direction by giving a new
classification indicating how objective values should be changed from those obtained at
B.

4. The DM classifies the objectives at B in such a way that the value of objective
f1 should be improved even more and therefore allows objective f, to degrade. On the
other hand, the DM feels that the value of objective f3 should maintain its current level.
A new search direction is generated based on this classification similarly as illustrated in
the context of the first classification.

5. The method starts to produce approximated solutions to the new search direction.
The DM analyzes in real-time the bar chart visualization until an interesting solution is
achieved.

2. The DM stops at solution C' = (—0.64,1.82, —25.95)T (see Figure 3) and decides
to explore the surrounding solutions further.

3. (S)he feels that the current direction no longer produces solutions that are inter-
esting enough.

4. The DM is satisfied with the value of f; but is ready to sacrifice in its value to
slightly improve objectives fo and f3. This classification gives us again a new search
direction as previously described.

5. The DM continues to analyze approximated solutions in the direction determined
until (s)he sees a promising solution.

2. The solution D = (—0.32,2.33, —27.85)7 (see Figure 3) seems very satisfactory to
the DM.

6. The navigation phase is stopped and the final approximated Pareto optimal solution
D is now projected to the actual Pareto optimal set, as described in Section 3. The
corresponding actual Pareto optimal solution (—0.33,2.32, —27.91)7 is shown to the DM.
The DM is satisfied with this solution, which is quite similar to the approximated solution
D. The whole solution process can be stopped.

As we can see, the DM was able to learn about the solutions available and conveniently
direct the search for the most preferred solution. The whole solution process described
above is summarized and depicted in Figure 3 where the vertical value path visualization
on the right side is reflecting what kind of objective vectors the DM has analyzed during
the solution process. On the left side of Figure 3, the solutions A, B, C', and D are snap-
shots of the vertical value path. These are the solutions where the DM has temporarily
stopped the movement and the continuously changing visualization in the bar chart, to
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determine a new search direction (i.e., classification). It is not trivial to illustrate real-time
movements here. Thus, it must be emphasized that during the solution process the DM
analyzes approximated Pareto optimal solutions using only one bar chart visualization
where the lengths of the bars are changing in real-time.
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Figure 3: The progress of the method.

Because our simple example contains only three objectives, it is possible to illustrate
what happened in the objective space during the solution process described. In Figure 4,
the triangulated area represents the polyhedral approximation (i.e., nondominated facets
of the convex hull) which was constructed by using the initial set of Pareto optimal
solutions (vertex points in Figure 4). The approximation contains only nondominated
facets so for the DM the movement on this polyhedral approximation feels like moving in
the actual Pareto optimal set. Solutions A, B, C, and D are the same approximated Pareto
optimal solutions that were obtained during the solution process. Figure 5 illustrates the
actual Pareto optimal set. The black points in Figure 5 corresponds to the vertex points
in Figure 4. It must be emphasized that in a general case it may be computationally
very expensive to produce a visualization of the actual Pareto optimal set (as presented

in Figure 5). Naturally, for problems with more than three objective functions, we cannot
generate visualizations like Figures 4 and 5.
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5 Discussion

In what follows, we wish to discuss some topics related to the implementation and future
research. First of all, we must emphasize that in this kind of an interactive method,
the user interface plays a very important role. When designing the user interface, it is
especially important to consider how the DM is able to indicate preferences (for setting
a search direction) to utilize the full strength of the Pareto navigator method. The
interaction should be as easy, intuitive and as fast as possible.

As far as setting the search direction is concerned, we can say that Pareto navigator
is a more versatile method than what the implementation of Pareto race was. This is
because the DM could only say which objective function was to be improved in Pareto
race, whereas Pareto navigator allows the DM to express desires for all the objective
functions about how their values should change. Future research could include a compar-
ison of different methods to aid the DM to determine directions while navigating in the
approximation.

When describing the idea of classification in general, we mentioned that some objective
function should be allowed to get worse if some other is desired to be improved. However,
in Pareto navigator the DM can violate this, if so desired. In other words, the DM is
allowed to ask for improvement in all the objectives. Naturally, it is not possible to
improve all objective values simultaneously but the search direction can be set so. In this
case, when producing new solutions, the method selects some objective functions to get
worse in order to allow the others to improve. However, if the DM wants to feel being
more in control, it is recommended that the classification indicates which are the objective
functions that can impair in value so that the others can improve. This kind of behavior
must be also taken into account when designing a user interface.

Our method may have difficulties when dealing with, for example, design problems
where the visualization of solutions needs variable values. In such cases, in addition to
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the objective values, the DM analyzes the quality of solutions via visualization. However,
while moving in the approximated Pareto optimal set, a connection to the variable space
is temporarily lost. This may be regarded as a shortcoming of Pareto navigator, but
this is the price to be paid for enabling a computationally inexpensive navigation phase.
Let us point out that the actual Pareto optimal solution together with the corresponding
variable values can always be obtained by using projection (in step 6 of the algorithm).

As mentioned before, once the DM has asked for the actual Pareto optimal solution
corresponding to the current approximated one, one does not have to stop the whole solu-
tion process. Instead, one can continue the navigation from that point. It is also possible
to update the approximation used by including the actual Pareto optimal solutions gen-
erated so far in the set that is the basis of the polyhedral approximation and repeating
the initialization phase. In this way, the approximation can be made more accurate while
the DM is using the method. Naturally, this option is convenient only if we assume that
the computation of actual Pareto optimal solution does not take too much time.

Even though our method has here been described for convex problems, it can basically
be used for some other problems, as well. However, in convex cases we always know that
the approximated solutions are dominated by the corresponding actual Pareto optimal
solutions. In nonconvex problems, this is not necessarily the case. For example, as shown
in Section 4, the applicability of Pareto navigator is not restricted to convex problems
only. Moreover, the general idea of navigating around a polyhedral approximation of the
Pareto optimal set can be extended to nonconvex problems. The implementation of the
navigation idea in the case of highly nonconvex problems (that cannot be approximated
by a convex polyhedron) is subject to future research.

In this paper, we have used the concept of Pareto optimality to determine what kind of
solutions of problem (1) are interesting to the DM. However, despite the name, the Pareto
navigator method can also be used in the case of more general dominance structures than
Pareto dominance (see, e.g., [19]).

6 Conclusions

We have described a new interactive learning-oriented method for convex nonlinear mul-
tiobjective optimization, called Pareto navigator. The method enables convenient naviga-
tion in the approximated Pareto optimal set. With this method, the DM can see changes
in the trade-offs between conflicting objectives in real time. This intuitive approach gives
general understanding of the possibilities and limitations of the problem considered and,
thus, supports learning. Even though we operate in the approximated Pareto optimal
set, the DM can at any moment see the corresponding actual Pareto optimal solution.
Because most of the computations are carried out in the approximated Pareto optimal set
(and this can be realized with the help of parametric linear programming), the method is
particularly suitable for computationally challenging real-world problems.

We have demonstrated Pareto navigator with an example with three objective func-
tions. However, our approach is not limited to such problems because bar charts can

15



easily be used as the main means of visualization also when solving problems with more
objectives. Particularly in cases when a visualization of the whole Pareto optimal set is
not available, Pareto navigator is a useful tool to explore the Pareto optimal set in an
interactive and efficient way.
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