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Abstract

Nadir objective vector is constructed with the worst Pareto-optimal objective values in a
multi-objective optimization problem and is an important entity to compute because of its
importance in estimating the range of objective values in the Pareto-optimal front and also in
using many interactive multi-objective optimization techniques. It is needed, for example, for
normalizing purposes. The task of estimating the nadir objective vector necessitates information
about the complete Pareto-optimal front and is reported to be a difficult task using other
approaches. In this paper, we propose certain modifications to an existing evolutionary multi-
objective optimization procedure to focus its search towards the extreme objective values and
combine it with a reference-point based local search approach to constitute a couple of hybrid
procedures for a reliable estimation of the nadir objective vector. With up to 20-objective
optimization test problems and on a three-objective engineering design optimization problem,
the proposed procedures are found to be capable of finding a near nadir objective vector reliably.
The study clearly shows the significance of an evolutionary computing based search procedure
in assisting to solve an age-old important task of nadir objective vector estimation.

Keywords: Nadir point, multi-objective optimization, non-dominated sorting GA, evolution-
ary multi-objective optimization (EMO), hybrid procedure, ideal point. Pareto optimality.

1 Introduction

In a multi-objective optimization procedure, the estimation of a nadir objective vector (or simply
a nadir point) is often an important task. The nadir objective vector consists of the worst values
of each objective function corresponding to the entire Pareto-optimal front. Sometimes, this point
is confused with the point representing the worst objective values of the entire search space, which
is often an over-estimation of the true nadir objective vector. Along with the ideal objective vector
(a point constructed by the best values of each objective), the nadir objective vector is used to
normalize objective functions [1], a matter often desired for an adequate functioning of multi-
objective optimization algorithms in the presence of objective functions with different magnitudes.
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With these two extreme values, the objective functions can be scaled so that each scaled objective
takes values more or less in the same range. These scaled values can be used for optimization with
different algorithms like the reference point method, weighting method, compromise programming
or the Tchebycheff method (see [1] and references therein). Such a scaling procedure may help
in reducing the computational cost by solving the problem faster [2]. Apart from normalizing
the objective function values, the nadir objective vector is also used for finding Pareto-optimal
solutions in different interactive algorithms like the guess method [3] (where the idea is to maximize
the minimum weighted deviation from the nadir objective vector), or it is otherwise an integral
part of an interactive method like the NIMBUS method [1, 4]. Moreover, the knowledge of nadir
and ideal objective values helps the decision-maker in adjusting her/his expectations on a realistic
level by providing the range of each objective and can then be used to aid in specifying preference
information in interactive methods in order to focus on a desired region. Furthermore, in visualizing
Pareto-optimal front, the knowledge of the nadir objective vector is essential. Along with the ideal
point, the nadir point will then provide the range of each objective in order to facilitate comparison
of different Pareto-optimal solutions, that is, visualizing the trade-off information through value
paths, bar charts, petal diagrams etc. [1, 5].

Researchers dealing with multiple criteria decision-making (MCDM) methodologies have sug-
gested to approximate the nadir point using a so-called payoff table [6]. This involves computing
the individual optimum solutions, constructing a payoff table by evaluating other objective values
at these optimal solutions, and estimating the nadir point from the worst objective values from
the table. This procedure may not guarantee a true estimation of the nadir point for more than
two objectives. Moreover, the estimated nadir point can be either an over-estimation or an under-
estimation of the true nadir point. For example, Iserman and Steuer [7] have demonstrated these
difficulties for finding a nadir point using the payoff table method even for linear problems and
emphasized the need of using a better method. Among others, Dessouky et al. [8] suggested three
heuristic methods and Korhonen et al. [9] another heuristic method for this purpose. Let us point
out that all these methods suggested have been developed for linear multi-objective problems where
all objectives and constraints are linear functions of the variables.

In [10], an algorithm for deriving the nadir point is proposed based on subproblems. In other
words, in order to find the nadir point for an M -objective problem, Pareto-optimal solutions of
all lower-dimensional problems must first be found. Such a requirement may make the algorithm
computationally impractical beyond three objectives, although Szczepanski and Wierzbicki [11]
implemented the above idea using EAs and showed successful applications up to three and four
objective linear optimization problems. Moreover, authors [10] did not suggest how to realize the
idea in nonlinear problems. It must be emphasized that although the determination of the nadir
point depends on finding the worst objective values in the set of Pareto-optimal solutions, even for
linear problems, this is a difficult task [12].

Since an estimation of the nadir objective vector necessitates information about the whole
Pareto-optimal front, any procedure of estimating this point should involve finding Pareto-optimal
solutions. This makes the task more difficult compared to finding the ideal point [9]. Since evolu-
tionary multi-objective optimization (EMO) algorithms can be used to find the entire or a part of
the Pareto-optimal front, EMO methodologies stand as viable candidates for this task. However,
some thought will reveal that an estimation of the nadir objective vector may not need finding the
complete Pareto-optimal front, but only an adequate number of extreme Pareto-optimal solutions
may be enough for this task. Based on this concept, in this paper, we suggest two modifications to
an existing EMO methodology – elitist non-dominated sorting GA or NSGA-II [13] – for empha-
sizing to converge near to the extreme Pareto-optimal solutions, instead of emphasizing the entire
the Pareto-optimal front. Thereafter, a local search methodology based on a reference point ap-
proach [14] borrowed from the multiple criteria decision-making literature is employed to enhance
the convergence properties of the extreme solutions. Simulation results of this hybrid nadir point

2



estimation procedure on problems with up to 20 objectives and on an engineering design problem
amply demonstrate that one of the two approaches – the extremized crowded NSGA-II – is capable
of finding a near nadir point more quickly and reliably than the other proposed method and the
original NSGA-II approach of first finding the complete Pareto-optimal front and then estimating
the nadir point. Results are encouraging and suggest further application of the procedure to a
variety of different multiobjective optimization problems.

The rest of this paper is organized as follows. In Section II, we introduce basic concepts of
multiobjective optimization and discuss the importance and difficulties of estimating the nadir
point. In Section III, we describe two modified NSGA-II approaches for finding near extreme
Pareto-optimal solutions. The nadir point estimation procedures proposed based on a hybrid
evolutionary-cum-local-search concept is described in Section IV. Academic test problems and
results are described in Section V. The use of the hybrid nadir point estimation procedure is
demonstrated in Section VI by solving a test problem and an engineering design problem. Finally,
the paper is concluded in Section VII.

2 Nadir Objective Vector and Difficulties of its Estimation

We consider multi-objective optimization problems involving M conflicting objectives (fi : S → R)
as functions of decision variables x:

minimize {f1(x), f2(x), . . . , fM (x)}
subject to x ∈ S,

}
(1)

where S ⊂ Rn denotes the set of feasible solutions. A vector consisting of objective function values
calculated at some point x ∈ S is called an objective vector f(x) = (f1(x), . . . , fM (x))T . Problem
(1) gives rise to a set of Pareto-optimal solutions (P ∗), providing a trade-off among the objectives.
In the sense of minimization of objectives, Pareto-optimal solutions can be defined as follows [1]:

Definition 1 A decision vector x∗ ∈ S and the corresponding objective vector f(x∗) are Pareto-
optimal if there does not exist another decision vector x ∈ S such that fi(x) ≤ fi(x∗) for all
i = 1, 2, . . . , M and fj(x) < fj(x∗) for at least one index j.

Let us mention that if an objective fj is to be maximized, it is equivalent to minimize −fj . In
what follows, we assume that the Pareto-optimal front is bounded. We now define a nadir objective
vector as follows.

Definition 2 An objective vector znad = (znad
1 , . . . , znad

M )T constructed using the worst values of
objective functions in the complete Pareto-optimal front P ∗ is called a nadir objective vector.

Hence, for minimization problems we have znad
j = maxx∈P ∗ fj(x). Estimation of the nadir objective

vector is, in general, a difficult task. Unlike the ideal objective vector z∗ = (z∗1 , z∗2 , . . . , z∗M )T ,
which can be found by minimizing each objective individually over the feasible set S (or, z∗j =
minx∈S fj(x)), the nadir point cannot be formed by maximizing objectives individually over S. To
find the nadir point, Pareto-optimality of solutions used for constructing the nadir point must be
first established. This makes the task of finding the nadir point a difficult one.

To illustrate this aspect, let us consider a bi-objective minimization problem shown in Figure 1.
If we maximize f1 and f2 individually, we obtain points A and B, respectively. These two points can
be used to construct the so-called worst objective vector. In many problems (even in bi-objective
optimization problems), the nadir objective vector and the worst objective vector are not the same
point, which can also be seen in Figure 1.
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Figure 2: Payoff table may not produce the
true nadir point.

2.1 Payoff Table Method

Benayoun et al. [6] introduced the first interactive multi-objective optimization method and used
a nadir point (although the authors did not use the term ‘nadir’), which was to be found by
using a payoff table. In this method, each objective function is first minimized individually and
then a table is constructed where the i-th row of the table represents values of all other objective
functions calculated at the point where the i-th objective obtained its minimum value. Thereafter,
the maximum value of the j-th column can be considered as an estimate of the upper bound of
the j-th objective in the Pareto-optimal front and these maximum values together may be used to
construct an approximation of the nadir objective vector. The main difficulty of such an approach
is that solutions are not necessarily unique and thus corresponding to the minimum solution of an
objective there may exist more than one solutions having different values of other objectives, in
problems having more than two objectives. In these problems, the payoff table method may not
result in an accurate estimation of the nadir objective vector.

Let us consider the Pareto-optimal front of a hypothetical problem involving three objective
functions shown in Figure 2. The minimum value of the first objective function is zero. As can
be seen from the figure, there exist a number of solutions having a value zero for function f1 and
different values of f2 and f3 (all solutions on the line BC). In the payoff table, when the three
objectives are minimized one at a time, we may get objective vectors f (1) = (0, 0, 1)T (point C),
f (2) = (1, 0, 0)T (point A), and f (3) = (0, 1, 0)T (point B) corresponding to minimizations of f1,
f2, and f3, respectively, and then the true nadir point znad = (1, 1, 1)T can be found. However,
if vectors f (1) = (0, 0.2, 0.8)T , f (2) = (0.5, 0, 0.5)T and f (3) = (0.7, 0.3, 0)T (marked with open
circles) are found corresponding minimizations of f1, f2, and f3, respectively, a wrong estimate
z′ = (0.7, 0.3, 0.8)T of the nadir point will be made. The figure shows how such a wrong nadir point
represents only a portion (shown dark-shaded) of the Pareto-optimal front. Here we obtained an
underestimation but the result may also be an overestimation of the true nadir point in some other
problems.

3 Evolutionary Multi-Objective Approaches for Nadir Point Es-
timation

As has been discussed so far, the nadir point is associated with Pareto-optimal solutions and,
thus, determining a set of Pareto-optimal solutions will facilitate the estimation of the nadir point.
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For the past decade or so, evolutionary multi-objective optimization (EMO) algorithms have been
gaining popularity because of their ability to find multiple, wide-spread, Pareto-optimal solutions
simultaneously in a single simulation run [15, 16]. Since they aim at finding a set of Pareto-optimal
solutions, an EMO approach may be an ideal way to find the nadir objective vector.

Simply, a well-distributed set of Pareto-optimal solutions can be attempted to find by an EMO,
as was also suggested by and an estimate of the nadir objective vector can be constructed by picking
the worst values of each objective. This idea was implemented recently [11] and applied to a couple
of three and four objective optimization problems. However, this naive procedure of first finding a
representative set of Pareto-optimal solutions and then determining the nadir objective vector seems
to possess some difficulties. Recall that the main purpose of the nadir objective vector, along with
ideal point, is to be able to normalize different objective functions, so an interactive multi-objective
optimization algorithm can be used to find the most preferred Pareto-optimal solution. Some may
argue that if an EMO has already been used to find a representative Pareto-optimal set for the
nadir point estimation, there is no apparent reason for constructing the nadir point for any further
analysis. They can further suggest a simple approach in which the decision maker can evaluate
the suitability of each obtained Pareto-optimal solution by using some higher-level information and
finally choose a particular solution. However, representing and analyzing the set of Pareto optimal
solutions is not trivial when we have more than two objectives in question. Furthermore, we can
list several other difficulties related to the above-described simple approach. Recent studies have
shown that EMO approaches using the domination principle possess a number of difficulties in
solving problems having a large number of objectives [17, 18]:

1. To represent a high-dimensional Pareto-optimal front requires an exponentially large number
of points [15], which, among others, increases computational cost.

2. With a large number of conflicting objectives, a large proportion of points in a random
initial population are non-dominated to each other. Since EMO algorithms emphasize all
non-dominated solutions in a generation, a large portion of an EA population gets copied to
the next generation, thereby allowing only a small number of new solutions to be included
in a generation. This severely slows down the convergence of an EMO towards the true
Pareto-optimal front.

3. EMO methodologies maintain a good diversity of non-dominated solutions by explicitly us-
ing a niche-preserving scheme which uses a diversity metric specifying how diverse the non-
dominated solutions are. In a problem with many objectives, defining a computationally fast
yet a good indicator of higher-dimensional distances among solutions becomes a difficult task.
This aspect also makes the EMO approaches computationally expensive.

4. With a large number of objectives, visualization of a large-dimensional Pareto-optimal front
gets difficult.

The above-mentioned shortcomings cause EMO approaches to be inadequate for finding the com-
plete Pareto-optimal front in the first place [17]. Thus, for handling a large number of objectives,
it may not be advantageous to first use an EMO approach for finding representative points of the
entire Pareto-optimal front and then estimate the nadir point.

Szczepanski and Wierzbicki [11] have simulated the idea of employing multiple bi-objective
optimization techniques suggested elsewhere [10] using an EMO approach to solve a three-objective
test problem and construct the nadir point by accumulating all bi-objective Pareto-optimal fronts
together. Although the idea seems interesting and theoretically sound, it requires

(M
2

)
bi-objective

optimizations to be performed. This may be a daunting task particularly for problems having more
than three or four objectives.

However, the above idea can be pushed further and instead of finding bi-objective Pareto-
optimal fronts, an emphasis can be placed in an EMO approach to find only the extreme points of
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the Pareto-optimal front. These points are non-dominated extreme points which will be required
to estimate the nadir point correctly. With this change in focus, the EMO approach can also be
used to handle large-dimensional problems, particularly since the focus would be to only converge
to the extreme points on the Pareto-optimal front. For the three-objective minimization problem
of Figure 2, the proposed EMO approach would then distribute its population members near the
extreme points A, B, and C, instead of on the entire Pareto-optimal front (on the triangle ABC), so
that the nadir point can be estimated quickly. In the following subsections, we describe two EMO
approaches for this purpose.

3.1 Worst Crowded NSGA-II Approach

In this study, we implement a couple of different nadir point estimation approaches on a particular
EMO approach (NSGA-II [13]), but they can also be implemented in other state-of-the-art EMO
approaches as well. Since the nadir point must be constructed from the worst objective values of
Pareto-optimal solutions, it is intuitive to think of an idea in which population members having
the worst objective values within a non-dominated front are emphasized. In our first approach, we
employ a modified crowing distance scheme in NSGA-II by emphasizing the worst objective values
in every non-dominated front.

In every generation, population members on every non-dominated front (having Nf members)
are first sorted from minimum to maximum based on each objective (for minimization problems)
and a rank equal to the position of the solution in the sorted list is assigned. In this way, a member
i in a front gets a rank R

(m)
i from the sorting in m-th objective. The solution with the minimum

function value in the m-th objective gets a rank value R
(m)
i = 1 and the solution with the maximum

function value in the m-th objective gets a rank value R
(m)
i = Nf . Such a rank assignment continues

for all M objectives. Thus, at the end of this assignment process, each solution in the front gets
M ranks, one corresponding to each objective function. Thereafter, the crowding distance di to a
solution i in the front is assigned as the maximum of all M ranks:

di = max
{
R

(1)
i , R

(2)
i , . . . , R

(M)
i

}
. (2)

The diversity preserving operator of NSGA-II emphasizes solutions having higher crowding distance
value. In this way, the solution with the maximum objective value of any objective gets the best
crowded distance. Like before, the NSGA-II approach emphasizes a solution if it lies on a better
non-dominated front and for solutions of the same non-dominated front it emphasizes a solution with
a higher crowding distance value. Thus, solutions of the final non-dominated front which could not
be accepted entirely by NSGA-II’s selection operator are selected based on their crowding distance
value. Solutions having the worst objective value get emphasized. This dual task of selecting non-
dominated solutions and solutions with worst objective values should, in principle, lead to a proper
estimation of the nadir point in most problems.

However, we realize that an emphasis on the worst non-dominated solutions alone may have
at least two difficulties in certain problems. First, since the focus is to find only a few solutions
(instead of a complete front), the population may lose its diversity early on during the search
process, thereby slowing down the progress towards the true extreme points. Moreover, if, for
some reason, the convergence is a premature event to wrong solutions, the lack of diversity among
population members will make it even harder for the EMO to find the necessary extreme solutions
to construct the true nadir point.

The second difficulty of the worst-crowded NSGA-II approach appears in certain problems and
is a more serious issue. In some problems, solutions involving the worst objective values may
give rise to a correct estimate of the nadir point, but piggy-backing with one or more spurious
points (which are non-optimal but non-dominated with the obtained worst points) may lead to a
wrong estimate of the nadir point. We discuss this important issue with an example problem here.
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Consider a three-objective minimization problem shown in Figure 3, where the surface ABCD
represents the Pareto-optimal front. Points A, B, C and D can be used to construct the true
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Figure 3: A problem which may cause difficulty to the worst crowded approach.

nadir point znad = (1, 1, 1)T . Now, by using the worst-crowded NSGA-II, we expect to find three
individual worst objective values, which are points B=(1, 0, 0.4)T (for f1), D=(0, 1, 0.4)T (for f2)
and C=(0, 0, 1)T (for f3). Note that there is no motivation for the worst-crowded NSGA-II to find
and maintain point A=(0.9, 0.9, 0.1)T in the population, as this point does not correspond to the
worst value of any objective in the set of Pareto-optimal solutions. With the three points (B, C and
D) in a population, a point E (with an objective vector (1.3, 1.3, 0.3)T ) if found by EA operators,
will become non-dominated to points B, C, and D, and will continue to exist in the population.
Thereafter, the worst-crowded NSGA-II will emphasize points C and E as extreme points and
the reconstructed nadir point will become F=(1.3, 1.3, 1.0)T , which is a wrong estimation. This
difficulty could have been avoided, if the point A was included in the population.

A little thought will reveal that the point A is a Pareto-optimal solution, but corresponds to
the best value of f3. If point A is present in the population, it will dominate point E and would not
allow point E to be present in the non-dominated front. Interestingly, this situation does not occur
in bi-objective optimization problems. To avoid a wrong estimation of the nadir point due to the
above difficulty, ideally, an emphasis on maintaining all Pareto-optimal solutions in the population
must be made. But, since this is not practically viable, we suggest another approximate approach
which is somewhat better than this worst-crowded approach.

3.2 Extremized Crowded NSGA-II Approach

In the extremized crowded approach proposed here, in addition to emphasizing the worst solution
corresponding to each objective, we also emphasize the best solution corresponding to every objec-
tive. In this approach, solutions on a particular non-dominated front are first sorted from minimum
(with rank R

(m)
i = 1) to maximum (with rank = Nf ) based on each objective. A solution closer

to either extreme objective vectors (minimum or maximum objective values) gets a higher rank
compared to that of an intermediate solution. Thus, the rank of solution i for the m-th objective
R

(m)
i is reassigned as max{R(m)

i , Nf − R
(m)
i + 1}. Two extreme solutions for every objective get

a rank equal to Nf (number of solutions in the non-dominated front), the solutions next to these
extreme solutions get a rank (Nf − 1), and so on. Figure 4 shows this rank-assignment procedure.
After a rank is assigned to a solution by each objective, the maximum value of the assigned ranks
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Figure 4: Extremized crowding distance calculation.

is declared as the crowding distance, as in (2). The final crowding distance values are shown within
brackets in Figure 4.

For a problem having a one-dimensional Pareto-optimal front (such as, in a bi-objective prob-
lem), the above crowding distance assignment is similar to the worst crowding distance assignment
scheme (as the minimum-rank solution of one objective is the maximum-rank solution of at least
one other objective). However, for problems having a higher-dimensional Pareto-optimal hyper-
surface, the effect of extremized crowding is different from that of the worst crowded approach.
In the three-objective problem shown in Figure 3, the extremized crowded approach will not only
emphasize the extreme points A, B, C and D, but also solutions on edges CD and BC (having the
smallest f1 and f2 values, respectively) and solutions near them. This approach has two advan-
tages: (i) a diversity of solutions in the population may now allow genetic operators (recombination
and mutation) to find better solutions and not cause a premature convergence and (ii) the presence
of these extreme solutions will reduce the chance of having spurious non-Pareto-optimal solutions
(like point E in Figure 3) to remain in the non-dominated front, thereby causing a more accurate
computation of the nadir point. Moreover, since the intermediate portion of the Pareto-optimal
front is not targeted in this approach, finding the extreme solutions should be quicker than the
original NSGA-II, especially for problems having a large number of objectives and involving com-
putationally expensive evaluation schemes.

4 Nadir Point Estimation Procedure

The NSGA-II approach (and for this matter any other EMO method) is usually found to come
closer to the Pareto-optimal front quickly and then observed to take many iterations to reach to
the exact front. To enhance the performance, often NSGA-II solutions are improved by using a
local search approach [15, 19]. In the context of nadir point estimation using the proposed modified
NSGA-II approaches, one of the following three scenarios can occur with each obtained extreme
non-dominated point:

1. It is truly an extreme Pareto-optimal solution which can contribute in estimating the nadir
point accurately,

2. It gets dominated by the true extreme Pareto-optimal solution, or

3. It is non-dominated to the true extreme Pareto-optimal solution.

In the event of second and third scenario, an additional local search approach may be necessary
to reach to the true extreme Pareto-optimal solution. Since, the estimation of the nadir point
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needs that the extreme Pareto-optimal solutions are found accurately, we suggest a hybrid, two-
step procedure of first obtaining near-extreme solutions by using a modified NSGA-II procedure
and then improving them by using a local search approach. The following procedure can be used
with either worst-crowded or extremized-crowded NSGA-II approaches, although our initial hunch
and simulation results presented later suggest the superiority of the latter approach. We call this
hybrid method is our proposed nadir point estimation procedure.

Steo 1: Supply or compute ideal and worst objective vectors.

Step 2: Apply worst-crowded or extremized-crowded NSGA-II approach to find a set of non-
dominated extreme points. Iterations are continued till a termination criterion (described in
the next subsection), which uses ideal and worst objective vectors computed in Step 1, is met.
Say, P non-dominated extreme points are found in this step.

Step 3: Apply a local search approach from each extreme point x to find the corresponding optimal
solution y∗ using the following augmented achievement scalarizing function:

Minimize maxM
j=1 w̄x

j

(
fj(y)−zj(x)

fmax
j −fmin

j

)

+ρ
∑M

k=1 w̄x
j

(
fj(y)−zj(x

fmax
j −fmin

j

)
,

subject to y ∈ S,

(3)

where fmax
j and fmin

j are the minimum and maximum values of j-th objective function ob-
tained from the set P . The j-th component of the reference point z(x) is identical to fj(x),
except if the component corresponds to the worst value (fmax

j ) of the j-th objective. Then
the following value is used: zj(x) = fmax

j +0.5(fmax
j − fmin

j ). The local search is started from
x. For the extreme point x, a pseudo-weight vector is computed as follows:

w̄x
j = max

{
ε,

(fj(x)− fmin
j )/(fmax

j − fmin
j )

∑M
k=1(fk(x)− fmin

k )/(fmax
k − fmin

k )

}
. (4)

A small value of ε is used to avoid a weight of zero.

Finally, construct the nadir point from the worst objective values of the extreme Pareto-
optimal solutions obtained by the above procedure.

Next, we describe the details of the local search approach.

4.1 Reference Point Based Local Search Approach

We have suggested the use of the achievement scalarizing function derived from a reference point
approach [14] as a local search approach. In this way, the reference point approach can be applied
to convex or non-convex problems alike. The motivation for using the above-mentioned weight
vector and the augmented achievement scalarizing function is discussed here with the help of a
hypothetical bi-objective optimization problem.

Let us consider a bi-objective optimization problem shown in Figure 5, in which points A and B
(close to the true extreme Pareto-optimal solutions P and Q, respectively) are found by one of the
above modified NSGA-II approaches. Our goal for employing the local search approach is to reach
the corresponding true extreme point (P or Q) from each of the near-extreme points (A or B). The
approach suggested above first constructs a reference point, by identifying the objective function
for which the point corresponds to the worst value. In the case of point A, the worst objective
vector is f2 and for point B, it is f1. Next, for each point, the corresponding worst function value
is degraded further and the other function value is kept the same to form a reference point. For
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Figure 5: The local search approach is expected to find extreme Pareto-optimal solutions exactly.

point A, the above task will construct point A′ as the reference point. Similarly, for B, the point
B′ will be the reference point. The degradation of the worst objective value (suggested in Step 3
of the nadir point estimation procedure) causes the reference point to lie on the attainable part
of the Pareto-optimal front which, along with the proposed weighting scheme (discussed in the
next paragraph) facilitates in finding the true extreme point. If an extreme solution obtained by a
modified NSGA-II approach corresponds to the worst objective value in more than one objective,
all such objective values must be degraded to construct the reference point.

We can now discuss the weighting scheme suggested here. Along with the above reference
point assignment scheme we suggest to choose a weight vector which will cause the achievement
scalarizing problem to have its optimum solution in the corresponding extreme point. In other
words, the idea of choosing an appropriate weight vector is to project the chosen reference point to
the extreme Pareto-optimal solution. We have suggested equation (4) for this purpose. For point
A, this approach assigns a weight vector (ε, 1)T . The optimization of the achievement scalarizing
function can be thought as a process of moving from the reference point (A′) along a direction
formed by reciprocal of weights and finding the extreme contour of the achievement scalarizing
function corresponding to all feasible solutions. For point A′, this direction is marked using a
solid arrow and the extreme contour is shown to correspond to the Pareto-optimal solution P. To
avoid converging to a weak Pareto-optimal solution, we use the augmented achievement scalarizing
function [1] with a small value of ρ here. For the near-extreme point B, the corresponding weight
vector is (1, ε)T and as depicted in the figure, the resulting local search solution is the other extreme
Pareto-optimal solution Q. Since each of these optimizations are suggested to be started from their
respective modified NSGA-II solutions, the computation of the above local search approaches is
expected to be fast.

We should highlight the fact that any arbitrary weight vector may not result in finding the
true extreme Pareto-optimal solution. For example, if for the reference point A′, a weight vec-
tor shown with a dashed arrow is chosen, the corresponding optimal solution of the achievement
scalarizing problem will not be P, but P′. Our suggestion of the construction of reference point
and corresponding weight vector together seems to be one viable way of converging to an extreme
Pareto-optimal solution.

Before we leave this subsection, we discuss one further issue. It is mentioned above that the use
of augmented achievement scalarizing function allows us not to converge to a weak Pareto-optimal
solution by the local search approach. But, in certain problems, the approach may only allow to
find an extreme proper Pareto-optimal solution [1] depending on the value of the parameter ρ. If
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for this reason any of the exact extreme points is not found, the estimated nadir point may be
inaccurate. In this study, we control the accuracy of our estimated nadir point by choosing an
appropriately small ρ value. If it is a problem, it is possible to solve a lexicographic achievement
scalarizing function [1] instead of the local search approach described in Step 3.

4.2 Termination Criterion for Modified NSGA-II

Typically, an NSGA-II simulation is terminated when a pre-specified number of generations are
elapsed. Here, we suggest a performance based termination criterion which causes a NSGA-II sim-
ulation to stop when the performance reaches a desirable level. The performance metric depends
on a measure stating how close the estimated nadir point is to the true nadir point. However, for
applying the proposed NSGA-II approaches to an arbitrary problem (for which the true Pareto-
optimal front, hence the true nadir point, is not known a priori), we would need a different concept.
Using the ideal point (z∗) and the worst objective vectors (zw) we can define a normalized dis-
tance (ND) metric as follows and track the convergence property of this metric to determine the
termination of a NSGA-II approach:

ND =

√√√√ 1
M

M∑

i=1

(
zest
i − z∗i
zw
i − z∗i

)2

. (5)

If in a problem, the worst objective vector zw (refer to Figure 1) is the same as the nadir point, the
normalized distance metric value will be one. For other scenarios, the normalized distance metric
value will be smaller than one. Since the exact final value of this metric for finding the true nadir
point is not known a priori, we record the change (∆) in this metric value from one generation to
another. When the change is not significant over a continual number of τ generations, the modified
NSGA-II approach is terminated and the current non-dominated extreme solutions are sent to the
next step for performing a local search.

However, in the case of solving some academic test problems, the location of the nadir objective
vector is known and a simple error metric (E) between the estimated and the known nadir objective
vectors can be used for stopping a NSGA-II simulation:

E =

√√√√ M∑

i=1

(
znad
i − zest

i

znad
i − z∗i

)2

. (6)

To make the approach pragmatic, in this paper, we terminate a NSGA-II simulation when the
error metric E becomes smaller than a predefined threshold value (η). Each non-dominated extreme
solution of the final population is then sent to the local search approach for a possible improvement.

5 Results of Numerical Tests

We are now ready to describe the results of numerical tests obtained using the nadir point estimation
procedure. We have chosen problems having two objectives to 20 objectives in this study. In these
test problems, the entire description of the objective space and the Pareto-optimal front is known.
We choose these problems to test the working of our proposed nadir point estimation procedure.
Thus, in these problems, we do not perform Step 1 explicitly. Moreover, if Step 2 of the procedure
(modified NSGA-II simulation) successfully finds (using the error metric (E ≤ η) for determining
termination of a simulation) the known nadir point, we do not employ Step 3 (local search).

In all simulations here, we compare three different approaches:

1. NSGA-II with the worst crowded approach,
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2. NSGA-II with the extremized crowded approach, and

3. A naive NSGA-II approach in which first we find a set of Pareto-optimal solutions using the
original NSGA-II and then estimate the nadir point from the obtained solutions.

To investigate the robustness of these approaches, parameters associated with them are kept fixed
for all problems. We use the SBX recombination operator [20] with a probability of 0.9 and
polynomial mutation operator [15] with a probability of 1/n (n is the number of variables) and a
distribution index of ηm = 20. The population size and distribution index for the recombination
operator (ηc) are set according to the problem and are mentioned in the respective sections. Each
algorithm is run 11 times, each time starting from a different random initial population, however
all proposed procedures are started with an identical set of initial populations to be fair. The
number of generations required to satisfy the termination criterion (E ≤ η) is noted for each
simulation run and the corresponding best, median and worst number of generations are presented
for a comparison. The following parameter value is used to terminate a simulation run for all test
problems: η = 0.01.

5.1 Bi-objective Problems

As mentioned earlier, the payoff table can be reliably used to find the nadir point for a bi-objective
optimization problem and there is no real need to use an evolutionary approach. However, here we
still apply the nadir point estimation procedure with two modified NSGA-II approaches to three
bi-objective optimization problems and compare the results with the naive NSGA-II approach
mentioned above.

Three difficult bi-objective problems (ZDT test problems) described in [21] are chosen here.
The ZDT3 problem is a 30-variable problem and possesses a discontinuous Pareto-optimal front.
The nadir objective vector for this problem is (0.85, 1.0)T . The ZDT4 problems is the most difficult
among these test problems due to the presence of 99 local non-dominated fronts, which an algorithm
must overcome before reaching the global Pareto-optimal front. This is a 10-variable problem with
the nadir objective vector located at (1, 1)T . The test problem ZDT6 is also a 10-variable problem
with a non-convex Pareto-optimal front. This problem causes a non-uniformity in the distribution
of solutions along the Pareto-optimal front. The nadir objective vector of this problem is (1, 0.92)T .
In all these problems, the ideal point (z∗) corresponds to a function value of zero for each objective.

Table 1 shows the number of generations needed to find a near nadir point (within η = 0.01) by
different approaches. For ZDT3, we use a recombination index of ηc = 2 and for ZDT4 and ZDT6,
we use ηc = 10. It is clear from the results that the performance indicators of the worst crowded
and extremized crowded NSGA-II are more or less the same and are slightly better than those of
the naive NSGA-II approach in more complex problems (ZDT4 and ZDT6).

Table 1: Comparative results for bi-objective problems.

Test Pop. Number of generations
Problem size NSGA-II Worst crowd. NSGA-II Extr. crowd. NSGA-II

Best Median Worst Best Median Worst Best Median Worst
ZDT3 100 33 40 55 33 40 113 28 36 45
ZDT4 100 176 197 257 148 201 224 165 191 219
ZDT6 100 137 151 161 125 130 143 126 132 135

Figures 6 and 7 present how the error metric value reduces with the generation counter for
problems ZDT4 and ZDT6, respectively. All the three approaches are compared in these figures
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with an identical termination criterion. It is observed that the convergence patterns are almost the
same for all of them. Based on these results, we can conclude that for bi-objective test problems
used in this study, the extremized crowded, the worst crowded, and the naive NSGA-II approaches
perform quite equally. As mentioned before, there is no real need of using an evolutionary algorithm
procedure, because the payoff table method works well in such bi-objective problems.
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Figure 6: The error metric for ZDT4.
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Figure 7: The error metric for ZDT6.

5.2 Problems with More Objectives

To test Step 2 of the nadir point estimation procedure on three and more objectives, we choose three
DTLZ test problems [22]. These problems are designed in a manner so that they can be extended
to any number of objectives. The first problem, DTLZ1, is constructed to have a linear Pareto-
optimal front. The true nadir objective vector is znad = (0.5, 0.5, . . . , 0.5)T and the ideal objective
vector is z∗ = (0, 0, . . . , 0)T . The Pareto-optimal front of the second test problem, DTLZ2, is a
quadrant of a unit sphere centered at the origin of the objective space. The nadir objective vector
is znad = (1, 1, . . . , 1)T and the ideal objective vector is z∗ = (0, 0, . . . , 0)T . The third test problem,
DTLZ5, is somewhat modified from the original DTLZ5 and has a one-dimensional Pareto-optimal
curve in the M -dimensional space [17]. The ideal objective vector is at z∗ = (0, 0, . . . , 0)T and the

nadir objective vector is at znad =
(
( 1√

2
)M−2, ( 1√

2
)M−2, ( 1√

2
)M−3, ( 1√

2
)M−4, . . . , ( 1√

2
)0

)T
.

5.2.1 Three-Objective DTLZ Problems

All three approaches are run with 100 population members for problems DTLZ1, DTLZ2 and
DTLZ5 involving three objectives. Table 2 shows the number of generations needed to find a
solution close (within a error metric value of η = 0.01 or smaller) to the true nadir point. It can
be observed that the worst crowded NSGA-II and the extremized crowded NSGA-II perform in a
more or less similar way when compared to each other and are somewhat better than the naive
NSGA-II. In the DTLZ5 problem, despite having three objectives, the Pareto-optimal front is
one-dimensional. Thus, the naive NSGA-II approach performs as well as the proposed approaches.

To show the difference between the working principles of the modified NSGA-II approaches and
the naive NSGA-II approach, we show the final populations for the extremized crowded NSGA-II
and the naive NSGA-II for DTLZ1 and DTLZ2 in Figures 8 and 9, respectively. Similar results
can be found for the worst crowded NSGA-II approach, but are not shown here for brevity. It is
clear that the extremized crowded NSGA-II concentrates its population members near the extreme
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Table 2: Comparative results for DTLZ problems with three objectives.

Test Pop. Number of generations
problem size NSGA-II Worst crowd. NSGA-II Extr. crowd. NSGA-II

Best Median Worst Best Median Worst Best Median Worst
DTLZ1 100 223 366 610 171 282 345 188 265 457
DTLZ2 100 75 111 151 38 47 54 41 49 55
DTLZ5 100 63 80 104 59 74 86 62 73 88

regions of the Pareto-optimal front, so that a quicker estimation of the nadir point is possible to
achieve. However, in the case of the naive NSGA-II approach, a distributed set of Pareto-optimal
solutions is first found using the original NSGA-II (as shown in the figure) and the nadir point is
constructed from these points. Since the intermediate points do not help in constructing the nadir
objective vector, the naive NSGA-II approach is expected to be slow, particularly for problems
having a large number of objectives.
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5.2.2 Five-Objective DTLZ Problems

Next, we study the performance of all three NSGA-II approaches on DTLZ problems involving
five objectives. In Table 3, we collect information about results as in previous subsections. It is

Table 3: Comparative results for five-objective DTLZ problems.

Test Pop. Number of generations
problem size NSGA-II Worst crowd. NSGA-II Extr. crowded NSGA-II

Best Median Worst Best Median Worst Best Median Worst
DTLZ1 100 2,342 3,136 3,714 611 790 1,027 353 584 1,071
DTLZ2 100 650 2,142 5,937 139 166 185 94 114 142
DTLZ5 100 52 66 77 51 66 76 49 61 73

now quite evident from Table 3 that the modifications proposed to the NSGA-II approach perform
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much better than the naive NSGA-II approach. For example, for the DTLZ1 problem, the best
simulation of NSGA-II takes 2,342 generations to estimate the nadir point, whereas the extremized
crowded NSGA-II requires only 353 generations and the worst-crowded NSGA-II 611 generations.
In the case of the DTLZ2 problem, the trend is similar. The median generation counts of the
modified NSGA-II approaches for 11 independent runs are also much better than those of the naive
NSGA-II approach.

The difference between the worst crowded and extremized crowded NSGA-II approaches is also
clear from the table. For a problem having a large number of objectives, the extremized crowded
NSGA-II emphasizes both best and worst extreme solutions for each objective maintaining an
adequate diversity among the population members. The NSGA-II operators are able to exploit
such a diverse population and make a faster progress towards the extreme Pareto-optimal solutions
needed to estimate the nadir point correctly. However, on the DTLZ5 problem, the performance
of all three approaches is similar due to the one-dimensional nature of the Pareto-optimal front.
Figures 10 and 11 show the convergence of the error metric value for the best runs of the three
algorithms on DTLZ1 and DTLZ2, respectively. The superiority of the extremized crowded NSGA-
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Figure 11: The error metric on five-objective
DTLZ2.

II approach is clear from these figures. These results imply that for a problem having more than
three objectives, an emphasis on the extreme Pareto-optimal solutions (instead of all Pareto-optimal
solutions) is a faster approach for locating the nadir point.

So far, we have demonstrated the ability of the nadir point estimation procedure in converging
close to the nadir point by tracking the error metric value which requires the knowledge of the true
nadir point. It is clear that this metric cannot be used in an arbitrary problem. We have suggested
a normalized distance metric for this purpose. To demonstrate how the normalized distance metric
can be used as a termination criterion, we record this metric value at every generation for both
extremized crowded NSGA-II and the naive NSGA-II simulations and plot them in Figures 12
and 13 for DTLZ1 and DTLZ2, respectively. Similar trends were observed for the worst crowded
NSGA-II, but for clarity the results are not superimposed in the figures here. To show the variation
of the metric value over different initial populations, the region between the best and the worst
normalized distance metric values is shaded and the median value is shown with a line. Recall
that this metric requires the worst objective vector. For the DTLZ1 problem, the worst objective
vector is computed to be zw

i = 551.45 for all each objective i. Figure 12 shows that the normalized
distance (ND) metric value converges to 0.00091. When we compute the normalized distance
metric value by substituting the estimated nadir objective vector with the true nadir objective
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vector in equation (5), an identical value of ND is computed. Similarly, for DTLZ2, the worst
objective vector is found to be zw

i = 3.25 for i = 1, . . . , 5. Figure 13 shows that the normalized
distance metric (ND) value converges to 0.286, which is identical to that computed by substituting
the estimated nadir objective vector with the true nadir objective vector in equation (5). Thus, we
can conclude that in both problems, the convergence of the extremized crowded NSGA-II is on the
true nadir point.

The rate of convergence of both approaches is also interesting to note from Figures 12 and 13.
In both problems, the extremized crowded NSGA-II converges to the true nadir point quicker than
the naive NSGA-II.
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5.2.3 Ten-Objective DTLZ Problems

Next, we consider the three DTLZ problems for 10 objectives. Table 4 presents the numbers
of generations required to find a point close (within η = 0.01) to the nadir point by the three
approaches for DTLZ problems with ten objectives. It is clear that the extremized crowded NSGA-

Table 4: Comparative results for 10-objective DTLZ problems.

Test Pop Number of generations
problem size NSGA-II Worst crowd. NSGA-II Extr. crowd. NSGA-II

Best Median Worst Best Median Worst Best Median Worst
DTLZ1 200 17,581 21,484 33,977 1,403 1,760 2,540 1,199 1,371 1,790
DTLZ2 200 – – – 520 823 1,456 388 464 640
DTLZ5 200 45 53 60 43 53 57 45 51 64

II approach performs an order of magnitude better than the naive NSGA-II approach and is also
better than the worst crowded NSGA-II approach. Both the DTLZ1 and DTLZ2 problems have
10-dimensional Pareto-optimal fronts and the extremized crowded NSGA-II makes a good balance
of maintaining diversity and emphasizing extreme Pareto-optimal solutions so that the nadir point
estimation is quick. In the case of the DTLZ2 problem with ten objectives, the naive NSGA-II could
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not find the nadir objective vector even after 50,000 generations (and achieved an error metric value
of 5.936). Figure 14 shows a typical convergence pattern of the extremized crowded NSGA-II and
the naive NSGA-II approaches on the 10-objective DTLZ1. The figure demonstrates that for a large
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Figure 14: Performance of three methods on 10-objective DTLZ1.

number of generations the estimated nadir point is away from the true nadir point, but after some
generations (around 1,000 in this problem) the estimated nadir point comes quickly near the true
nadir point. To understand the dynamics of the movement of the population in the best performed
approach (the extremized crowded NSGA-II) with the generation counter, we count the number of
solutions in the population which dominate the true nadir point and plot this quantity in Figure 14.
In DTLZ1, it is seen that the first point dominating the true nadir point appears in the population
at around 750 generations. Thereafter, when an adequate number of such solutions appear in
the population, the population very quickly converges near the extreme Pareto-optimal front for
correctly estimating the nadir point. There is another matter which also helps the extremized
crowded NSGA-II to converge quickly to the desired extreme points. Since extreme solutions are
forced to survive in the population by the ranking selection scheme, a niching phenomenon occurs
in which multiple local niches near the extreme solutions are formed and maintained. The crossover
and mutation operators acting on these niches independently then help focus on these regions more
closely than in the naive NSGA-II approach and eventually cause to converge close to the true
extreme Pareto-optimal solutions quickly. A similar phenomenon occurs for the worst crowded
NSGA-II, but is not plotted in the same figure for clarity.

5.3 Scale-up Performance

In this subsection, we investigate the overall function evaluations required to reach near the true
nadir point on DTLZ1 and DTLZ2 test problems having three to 20 objectives. As before, we
restrict the error metric (E) value to reach below a threshold of 0.01 to determine termination of a
procedure. Here, we investigate the scale-up performance of the extremized crowded NSGA-II alone
and compare it against that of the naive NSGA-II approach. Since the worst crowded NSGA-II did
not perform well on 10-objective DTLZ problems compared to the extremized crowded NSGA-II
approach, we do not apply it here.

Figure 15 plots the best, median, and worst of 11 runs of the extremized crowded NSGA-II
and the naive NSGA-II on DTLZ1. First of all, the figure clearly shows that the naive NSGA-II is
unable to scale up to 15 or 20 objectives. In the case of 15-objective DTLZ1, the naive NSGA-II’s
performance is more than two orders of magnitude worse than that of the extremized crowded
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Figure 16: Function evaluations versus number
of objectives for DTLZ2.

NSGA-II. For this problem, the naive NSGA-II with more than 200 million function evaluations
obtained a front having a poor error metric value of 12.871 from the true nadir point. Due to the
poor performance of the naive NSGA-II approach on the 15-objective problem, we did not apply
it to the 20-objective DTLZ1 problem.

Figure 16 shows the performances on DTLZ2. After 670 million function evaluations, the naive
NSGA-II was still not able to come close (with an error metric value of 0.01) to the true nadir point
on the 10-objective DTLZ2 problem. However, the extremized crowded NSGA-II took an average
of 99,000 evaluations to achieve the task. Because of the computational inefficiencies associated
with the naive NSGA-II approach, we did not perform any simulation for 15 or more objectives,
but the extremized crowded NSGA-II could find the nadir point up to the 20-objective DTLZ2
problem.

The nature of the plots for the extremized crowded NSGA-II in both problems is found to
be sub-linear on logarithmic axes. This indicates a lower than exponential scaling property of
the proposed extremized crowded NSGA-II. It is important to emphasize here that estimating the
nadir point requires identification of the worst Pareto-optimal solutions. Since this requires that
an evolutionary approach essentially puts its population members on the Pareto-optimal front, an
adequate computational effort must be spent to achieve this task. However, results shown earlier for
two to 10-objective problems have indicated that the computational effort needed by the extremized
crowded NSGA-II approach is smaller when compared to the naive NSGA-II. It is worth pointing
out here that decision makers do not necessarily want to or are not necessarily able to consider
problems with very many objectives. However, the results of this study show a clear difference even
with smaller problems involving, for example, five objectives.

6 Results: Extremized Crowded NSGA-II with Local Search

Now, we apply the complete nadir point estimation procedure which makes a serial application
of a modified NSGA-II approach followed by the local search approach on two problems. The
first problem is a numerical test problem taken from the literature and the second problem is an
important problem involving the design of a welded beam.
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6.1 Problem KM

We consider a three-objective optimization problem, which provides difficulty for the payoff table
method to estimate the nadir point. This problem was used in another study [23]:

Minimize





−x1 − x2 + 5
1
5(x2

1 − 10x1 + x2
2 − 4x2 + 11)

(5− x1)(x2 − 11)





,

subject to 3x1 + x2 − 12 ≤ 0,
2x1 + x2 − 9 ≤ 0,
x1 + 2x2 − 12 ≤ 0,
0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 6.

(7)

Individual minimizations of objectives reveal the following three objective vectors: (−2, 0,−18)T ,
(0,−3.1,−14.25)T and (5, 2.2,−55)T , thereby identifying the vector z∗ = (−2,−3.1,−55)T as the
ideal objective vector. The payoff table method will find (5, 2.2,−14.25)T as the estimated nadir
point from these minimization results. Another study [24] used a grid-search strategy (compu-
tationally possible due to the presence of only three objectives) of creating a number of feasible
solutions systematically and construct the nadir point from the solutions obtained. The estimated
nadir point was (5, 4.6,−14.25)T for this problem, which is different from that obtained by the
payoff table method. We now employ our nadir point estimation procedure to find the nadir point
for this problem.

Step 1 of the procedure finds z∗ = (−2,−3.1,−55)T and zw = (5, 4.6,−14.25)T . In Step 2 of
the procedure, we employ the extremized crowded NSGA-II and find four non-dominated extreme
solutions, as shown in the first column of Table 5. It is interesting to note that the fourth solution

Table 5: Extremized crowded NSGA-II and local search method on Problem KM.

x Objective vector w z Extreme point
1 (0, 0)T (5, 2.2,−55)T (1, 0.688, 0.001)T (8.5, 2.2,−55)T (5, 2.2,−55)T

2 (3.508, 1.477)T (0.015,−3.1,−14.212)T (0.288, 0.001, 1)T (0.015,−3.1, 6.182)T (0,−3.1,−14.25)T

3 (0, 6)T (−1, 4.6,−25)T (0.143, 1, 0.736)T (−1, 8.450,−25)T (−1, 4.6,−25)T

4 (2, 5)T (−2, 0,−18)T

is not needed to estimate the nadir point, but the extremized principle keeps this extreme solu-
tion corresponding to f1 to possibly eliminate spurious solutions which may otherwise stay in the
population and provide a wrong estimate of the nadir point (See Figure 3 for a discussion).

The extremized crowded NSGA-II approach is terminated when the normalized distance metric
does not change by an amount ∆ = 0.001 in a consecutive τ = 500 generations. Figure 17 shows the
variation of the normalized distance metric value computed using the above-mentioned ideal and
worst objective vectors. At the end of Step 2, the estimated nadir point is znad = (5, 4.6,−14.212)T ,
which seems to disagree on the third objective value with that found by the grid-search strategy.

To investigate if any further improvement is possible, we proceed to Step 3 and apply three
local searches, each started with one of the first three solutions presented in the table, as these
three solutions constitute the nadir point. The weight vector (w, constructed with ε = 0.001),
the corresponding reference point (z), and the solution of the local search for each of the three
extreme points are tabulated in Table 5. The extremized crowded NSGA-II solution (column 3 in
the table) is used as the starting solution and fmincon routine (an SQP method in which every
approximated quadratic programming problem is solved using the BFGS quasi-Newton method
[25]) of MATLAB is used with ρ = 10−7. The table clearly shows that solution 2 (the objective
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Figure 17: Normalized distance metric
with generation for problem KM.
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vector (0.015,−3.1,−14.212)T , obtained by the extremized crowded NSGA-II), was not a Pareto-
optimal solution. The local search approach starting from this solution is able to find a better
solution (0,−3.1,−14.25)T . This shows the importance of employing the local search approach.
However, the other two extreme solutions obtained by the extremized crowded NSGA-II could not
be improved further. Figure 18 shows the Pareto-optimal front for this problem. These three
extreme Pareto-optimal points are marked on the front with a shaded circle. The fourth point
is also shown with a star. The nadir point estimated by the combination of extremized crowded
NSGA-II and the local searches is (5, 4.6,−14.25)T , which is identical to that obtained by the grid
search strategy [24].

6.2 Welded Beam Design Optimization

So far, we have applied the nadir point estimation procedure to academic test problems. They have
given us confidence in our suggested procedure. Next, we consider an engineering design problem
having three objectives.

This problem is a well-studied one [15, 26] having four design variables, x = (h, `, t, b)T (di-
mensions specifying the welded beam). Minimizations of cost of fabrication, end deflection and
normal stress are of importance in this problem. There are five non-linear constraints involv-
ing shear stress, normal stress, a physical property, buckling limitation, and end deflection. The

b

t

hl
F

Figure 19: The welded beam design problem.
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mathematical description of the problem is given below:

Minimize





f1(x) = 1.10471h2` + 0.04811tb(14.0 + `)
f2(x) = δ(x) = 2.1952

t3b

f3(x) = σ(x) = 504,000
t2b



 ,

Subject to g1(x) ≡ 13, 600− τ(x) ≥ 0,
g2(x) ≡ 30, 000− σ(x) ≥ 0,
g3(x) ≡ b− h ≥ 0,
g4(x) ≡ Pc(x)− 6, 000 ≥ 0,
g5(x) ≡ 0.25− δ(x) ≥ 0,
0.125 ≤ `, t ≤ 10,
0.125 ≤ h, b ≤ 5,

(8)

where the terms τ(x) and Pc(x) are given as

τ(x) =
[
(τ ′(x))2 + (τ ′′(x))2 + `τ ′(x)τ ′′(x)/

√
0.25(`2 + (h + t)2)

]1/2
,

Pc(x) = 64, 746.022(1− 0.0282346t)tb3.

where

τ ′(x) =
6, 000√

2h`
,

τ ′′(x) =
6, 000(14 + 0.5`)

√
0.25(`2 + (h + t)2)

2 [0.707h`(`2/12 + 0.25(h + t)2)]
.

In this problem, we have no knowledge on the ideal and worst objective values. Since these
values will be required in computing the normalized distance metric value for termination of the
extremized crowded NSGA-II, we first compute them here.

6.2.1 Step 1: Computing Ideal and Worst Objective Vectors

We minimize and maximize each of three objectives to find the individual extreme points of the
feasible objective space. For this purpose, we have used a single-objective real-parameter genetic
algorithm with the SBX recombination and the polynomial mutation operators [20, 15]. We use
the following parameter values: population size = 100, maximum generations = 500, recombination
probability = 0.9, mutation probability = 0.1, distribution index for recombination = 2, and distri-
bution index for mutation = 20. After a solution is obtained by a GA simulation, it is attempted to
improve by a local search (LS) approach. Table 6 shows the corresponding extreme objective values
before and after the local search approaches. Interestingly, the use of the local search improves
the cost objective from 2.3848 to 2.3810. As a outcome of the above single-objective optimization
tasks, we obtain the ideal and worst objective values, as shown below:

Cost Deflection Stress
Ideal 2.3810 0.000439 1008

Worst 333.9095 0.0713 30000

6.2.2 Step 2: Applying Extremized Crowded NSGA-II

First, we apply the extremized crowded NSGA-II approach with an identical parameter settings as
used above, except that for SBX recombination ηc = 10 is used, according to the recommendation in
[15] for multi-objective optimization. A termination criterion on normalized distance (ND) metric
computed with ideal and worst objective vectors found above and with τ = 500 and ∆ = 0.001 is
employed. Figure 20 shows the variation of the ND metric with generation. It is interesting to
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Table 6: Minimum and maximum objective values of three objectives. The values marked with a
(*) for variables x1 and x2 can take other values without any change in the optimal objective value
and without making the overall solution infeasible.

Cost Deflection Stress x1 x2 x3 x4

Minimum 2.3848 0.2428 6.2664 8.2972 0.2443
Min. after LS 2.3810 0.2444 6.2175 8.2915 0.2444

Maximum 333.9095 5 10 10 5
Max. after LS 333.9095 5 10 10 5

Minimum 0.000439 (*)4.4855 (*)9.5683 10 5
Min. after LS 0.000439 (*)4.4855 (*)9.5683 10 5

Maximum 0.0713 0.8071 5.0508 1.8330 5
Max. after LS 0.0713 0.8071 5.0508 1.8330 5

Minimum 1008 (*)4.5959 (*)9.9493 10 5
Min. after LS 1008 (*)4.5959 (*)9.9493 10 5

Maximum 30000 2.7294 5.7934 2.3255 3.1066
Max. after LS 30000 0.7301 5.0376 2.3308 3.0925

note how the normalized distance metric, starting from a small value (meaning that the estimated
nadir point is closer to the worst objective vector), reaches a stabilized quantity of 0.5394. Since
the extremized crowded NSGA-II approach does not change the above normalized distance value
for a consecutive τ = 500 generations from 844 generations within a margin of ∆ = 0.001, the
algorithm is terminated at generation number 1344.

Interestingly, only two non-dominated extreme points are found by the extremized crowded
NSGA-II. They are shown in Table 7. From these two solutions, the estimated nadir point is

Table 7: Two population members obtained using the extremized crowded NSGA-II approach.

Sol. No. Cost Deflection Stress x1 x2 x3 x4

Extremized crowded NSGA-II
1. 36.4277 0.000439 1008 1.8679 0.4394 10 5
2. 3.5638 0.0193 26800 0.5161 3.2978 6.0345 0.5164

After local search
1. 36.4209 0.000439 1008 1.7345 0.4789 10 5
2. 2.3810 0.0158 30000 0.2444 6.2175 8.2915 0.2444

(36.4277, 0.0193, 26800)T .

6.2.3 Step 3: Applying Local Searches

The two solutions obtained are now attempted to be improved by the local search approach, one
at a time. We compute the pseudo-weight vector for each of the two solutions using equation (4).
We observe that for the two obtained solutions in Table 7, the following extreme objective values
result:

fmin
1 = 3.5638, fmax

1 = 36.4277,
fmin
2 = 0.000439, fmax

2 = 0.0193,
fmin
3 = 1008, fmax

3 = 26800.
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Figure 20: Normalized distance metric till termination.

When these values are substituted in equation (4) for solution 1 and using ε = 0.001, we obtain
w̄x(1)

= (1, 0.001, 0.001)T . For solution 2, we obtain w̄x(2)
= (0.001, 0.5, 0.5)T . The corresponding

reference points are (52.860, 0.00439, 1008)T and (3.5638, 0.02873, 39696)T , respectively. We have
used ρ = 10−7 for the augmented achievement scalarizing function. We now apply fmincon routine
of MATLAB to find the optimal solutions corresponding to the augmented achievement scalarizing
functions. The solutions obtained are shown in Table 7 with a heading ‘After local search’.

Interestingly, the local search improves the first solution to a slightly better one. However, for
the second solution, the local search finds a non-dominated solution which is better in terms of the
first two objectives but worse in the third objective. Since this solution corresponds to the smallest
cost solution of the two extremized crowded NSGA-II solutions, the weight vector and reference
point are selected in a manner so as to target finding a better cost solution. The proposed local
search is able to achieve this task, but at the expense of the third objective. Interestingly, this cost
objective value is exactly the same as that obtained by the minimization of cost objective alone
in Table 6. It is clear that the extremized NSGA-II approach in Step 2 found a solution close to
an extreme Pareto-optimal solution and the application of Step 3 helps to move this solution to
the extreme Pareto-optimal solution. This study clearly shows the efficacy of our suggestion of an
appropriate weight vector and reference point for the local search approach.

Observing these two final solutions, we can now estimate the nadir point (cost, deflection, stress)
for the welded beam design problem:

Nadir point: (36.4209, 0.0158, 30000)T .

6.2.4 Verification Through the Naive NSGA-II Approach

In order to verify the estimated nadir point obtained by the proposed procedure, finally we apply the
naive NSGA-II approach in which the naive NSGA-II is applied to the three-objective optimization
problem to find the entire Pareto-optimal front. Thereafter, the range of the Pareto-optimal front
will then provide us information about the nadir point. We use an identical parameter setting as
used in the extremized crowded NSGA-II simulation. Again, we use a hybrid NSGA-II and local
search procedure here. The local search approach used here is applied to a few NSGA-II solutions
one at a time and is described in [15]. We employ (fconmin) of MATLAB for this purpose. In
Figure 21, we show the NSGA-II solutions with circles and their improvements by the local search
method with diamonds. Two non-dominated extreme solutions obtained using our nadir point
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Figure 21: Pareto-optimal front and estimation of nadir point.

estimation procedure are marked using squares. Both approaches find an identical nadir point,
thereby providing confidence to our approach proposed.

7 Conclusions

We have proposed a hybrid methodology involving evolutionary and local search approaches for
estimating the nadir point in a multi-objective optimization problem. By definition, a nadir point
is constructed from the worst objective values corresponding to the solutions of the Pareto-optimal
front. It has been argued that the estimation of the nadir point is an important matter in multi-
objective optimization. Since the nadir point relates to the extreme Pareto-optimal solutions, the
estimation of nadir point is a difficult task. Since intermediate Pareto-optimal solutions are not
important in this task, the suggested NSGA-II approaches have emphasized the worst or extreme
solutions corresponding to each objective. To enhance the convergence properties and make the
approaches reliable, modified NSGA-II approaches are combined with a reference point based local
search procedure. The extremized crowded approach has been found to be capable of making
a quicker estimate of the nadir point than a naive approach (of employing the naive NSGA-II
approach to first find a set of Pareto-optimal solutions and then construct the nadir point) on a
number of test problems having two to 20 objectives and on a difficult engineering design problem
involving non-linear objectives and constraints. In addition, we have tried the procedure to solve
other numerical test problems as well. In this paper, constraints have been handled using the
constraint domination principle implemented in NSGA-II. Based on the study, we can conclude the
following:

1. Emphasizing both best and worst objective values in a non-dominated front has been found
to be a better approach than emphasizing only the worst objective values. Since the former
approach maintains a diverse set of solutions near the worst objective values and can in
principle dominate spurious solutions to remain in the population, the result of the search is
better and more reliable than the worst crowded approach.

2. The computational effort to estimate the nadir point has been observed to be much lower
(more than an order of magnitude) for many objectives than the naive NSGA-II approach.

3. For problems with up to three objectives and for DTLZ5 problem having a low-dimensional
Pareto-optimal front, both proposed approaches have been observed to perform well.
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We have listed reasons for which nadir objective vectors are needed. They included normalizing
objective functions, giving information about the ranges of objective functions within the Pareto-
optimal front to the decision maker, visualizing Pareto-optimal solutions, and enabling the decision
maker to use different interactive methods. What is common to all these is that the nadir objective
vector can be computed beforehand, without involving the decision maker. Thus, it is not a
problem if several hundred function evaluations are needed in the extremized crowded NSGA-II.
Approximating the nadir point can be an independent task to be executed before performing any
decision analysis.

One of the reasons why it may be advisable to use some interactive method for identifying the
most preferred solution instead of trying to approximate the whole set of Pareto-optimal solutions
is that for problems with several objectives, for example, the NSGA-II approach requires a huge
number of evaluations to find a representative set. For such problems, the nadir point may be esti-
mated quickly and reliably using the hybrid NSGA-II-cum-local-search procedure. The extremized
crowded NSGA-II approach can be applied with a coarse termination requirement, so as to obtain
near extreme non-dominated solutions quickly. Then, the suggested local search approach can be
employed to converge to the extreme Pareto-optimal solutions reliably and accurately. Thereafter,
an interactive procedure (like NIMBUS [1], for example) (using both ideal and nadir points ob-
tained) can be applied interactively with a decision-maker to find a desired Pareto-optimal solution
as the most preferred solution.

This study is important in another aspect. The proposed nadir point estimation procedure
uses a hybridization of EMO and a local search based multiple criteria decision making (MCDM)
approaches. The population aspect of EMO has been used to find near extreme Pareto-optimal
solutions simultaneously and the reference point based local search methodology helped converge
to true extreme Pareto-optimal solutions so that the nadir point can be estimated reliably. Such
collaborative EMO-MCDM studies help develop hybrid and efficient procedures which use best
aspects of both contemporary fields of multi-objective optimization. Hopefully, this study will
motivate researchers to engage in more such collaborative studies for the benefit of either field and,
above all, to the triumph of the field of multi-objective optimization.
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