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Abstract

In this paper we survey interactive multiobjective optimization methods that utilize, in a
way or another, so called objective trade-off rate information. Objective trade-off information
can be obtained by studying only the properties of the underlying multiobjective optimization
problem. In the context of multiobjective methodology trade-off information can be useful
because it can be used to indicate relative changes in values of other objectives when the value
of some objective is altered from its current value. This kind of information is especially useful
when supporting a decision maker. We analyze interactive methods that utilize the trade-off
information and discuss some main benefits and drawbacks that can be related to trade-offs in
general. As a conclusion we can see that in interactive methods objective trade-off information
can be utilized at very different levels ranging from learning to decision making.

1 Introduction
Multiobjective optimization procedures deal with optimization problems having several conflicting
objectives defined on a set of feasible decision variables. Typically, when dealing with optimization
problems we are interested in determining one such decision variable allocation which in some sense
produces an optimal solution for a given problem. However, when we consider multiple conflicting
objectives one decision variable vector cannot produce simultaneously an optimal value for every
objective at the same time and therefore an additional problem is how to determine a so called
best compromise solution. In a general case such a best compromise solution cannot be determined
in a satisfying way purely by mathematical means and typically a human decision maker (DM),
who can be considered as an expert of an underlying problem, is used to determine subjectively
this best compromise. The task of the DM is to find a balance (in a subjective sense) between
conflicting objectives, and this can be obtained by finding favorable trade-off between objectives.

When we are dealing with multiobjective problems containing continuous variables and func-
tions the set of potential compromise solutions where to choose from is typically infinite. Especially
in the case where we have more than two conflicting objectives approaches such as visualization
or pairwise comparison of all potential solutions are not necessarily efficient or possible methods
to determine the most preferred solution. This kind of problem make worthwhile to consider in-
teractive solution methods where the DM is acting in collaboration with the method and directs
the search procedure to regions that are interesting while trying to avoid uninteresting regions.
Since the 1970’s several interactive methods for linear and nonlinear multiobjective optimization
problems have been developed (see, e.g., [4], [17], [24], [26]).

In a typical interactive method the DM considers at each iteration a solution candidate (or a
couple of candidates) and states preferences related to this solution(s). The underlying solution
method then utilizes the preference information to generate a new solution candidate at the next
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iteration. This procedure is continued until the DM is satisfied with some of the obtained solutions.
The main differences between interactive methods are related to the ways how and in what form
they obtain preference information from the DM and how this information is utilized in the method
to produce the next solution(s). In an ideal situation while using an interactive method the DM
learns about her/his own preferences and at the same time also learns to know what kind of
solutions are attainable. Based on what has been learned it is assumed that the DM is able to
direct the method toward the subjectively best compromise solution.

A very important aspect related to interactive methods is how the DM is supported during the
interaction. At each iteration some kind of information is shown to the DM who is then supposed
to offer preference information related to the solution in such a way that at the next iteration a
new more interesting solutions can be generated. Here, for instance, information obtained during
the current and the previous iterations can be used to aid the DM to state preferences according to
which the next solution is produced. An alternative possibility is to try to approximate what kind
of solutions are available if certain kind of preference information is given. In other words, instead
of history information we try to forecast what kind of solutions might be available if certain type
of preference information is given at the current solution. Trade-off rate information can be seen
as this kind of forecasting information because it can be used to indicate relative changes in the
values of other objectives when the value of some objective is altered from its current value at the
current solution.

From the decision support perspective trade-off rates are used, for instance, to approximate
how values of objectives are going to change if certain type of preference information is given (e.g.
STOM method [21], and ISTM method [31]). On the other hand, the trade-off information can be
used to study whether there locally exists such a solution which is corresponding to the preferences
given by the DM (e.g. SPOT method [22], ISWT method [3]), or what will happen for the objective
function values if we move from one decision variable vector to another (e.g. ZW method [36]).

Trade-off information can be used in several different ways and our aim in this paper is to
survey some central ways how the trade-off information has so far been utilized in the interactive
multiobjective optimization methods. We restrict our study to the concept of so called objective
trade-off information that can be obtained purely by inspecting the properties of the underlying
problem. Another widely used type of trade-off information is so called subjective trade-off which
is based more on the preferences of the DM. Due to this restriction, we do not discuss here methods
that are directly based on such a trade-off concepts as marginal rate of substitution (e.g. GDF
method [6]), trade-off cuts (see, e.g., [25]) or bounded trade-offs (see, e.g., [10] and [12]). In
addition, we restrict discussion to the methods that can be in a convenient way implemented in
practice. Therefore, we omit here such theoretical approaches as trade-off directions (see, e.g.,
[9],[15],[18],[29]), even though they are very closely related to the objective trade-off concept.

In what follows, we start in Section 2 by defining a multiobjective optimization problem and
what we mean by its solution. We also give a general outline of an interactive method. In Section
3 we give a formal definition for the trade-off concept and discuss how it can be connected to
interactive methods. In section 4 we present a couple of scalarization formulations that are later on
used in methods to produce solution candidates. Computing trade-off rates using Karush-Kuhn-
Tucker -multipliers is discussed in Section 5. In Section 6 we present some central interactive
methods that utilize the objective trade-off concept in some unique way. Some discussion and
further analysis of the methods is presented in Section 7. Finally, we conclude in Section 8.

2 Multiobjective optimization problem
A multiobjective optimization problem can be stated in the following form

minimize {f1(x), . . . , fk(x)}

subject to x ∈ S := {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}
(1)

having k conflicting objective functions fi : Rn → R and a feasible set S 6= ∅ defined by m constraint
functions gi : Rn → R. In what follows, we say that a decision vector x = (x1, . . . , xn)T , containing
decision variables xi as its components, belong to a decision space Rn and if vector x ∈ S it is
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called a feasible decision vector. A mapping f : Rn → Rk can be used to map a decision variable
x to an objective vector f(x) = (f1(x), . . . , fk(x))T ∈ Rk, where Rk is called an objective space. If
x ∈ S then f(x) is called a feasible objective vector. The image f(S) ⊂ Rk of the feasible set is
called a set of feasible objective vectors.

Because of the notational conveniences we consider problem (1) in the minimization form.
However, this does not affect the generality because maximization of some objective function fi

is equal to minimizing −fi, for any i = 1, . . . , k. Later on, in this text some single objective
subproblems are presented in a maximization form, but only in cases where maximization form
supports the underlying idea. For instance, when a value function concept is later on presented it
is more intuitive to assume that the value is maximized than minimized, even if from the technical
point of view the problem can be treated equivalently in either form.

Furthermore, unless stated otherwise, through out this paper we assume that the objective
functions fi (i = 1, . . . , k) and the constraint functions gi (i = 1, . . . ,m) of problem (1) are
nonlinear and continuous. In most cases we also assume that these functions are at least once
continuously differentiable but this kind of additional properties are always listed explicitly if they
are relevant in a context.

So far, we have only outlined a general multiobjective optimization problem framework and
defined some terminology related to it. In order to solve problem (1) we must also characterize
what is meant by its solution.

2.1 Solution concepts
In what follows, we simply assume that for the DM less is always more. This kind of an assumption
leads to concept of Pareto optimality.

Definition 2.1 (Pareto optimality). A decision vector x̂ ∈ S is Pareto optimal (efficient, nonin-
ferior, nondominated) if there exists no other decision vector x ∈ S such that fi(x) ≤ fi(x̂) for all
i = 1, . . . , k and at least one of the inequalities is strict. An objective vector f(x̂) = ẑ is Pareto
optimal if the corresponding decision vector x̂ ∈ S is Pareto optimal.

The concept of Pareto optimality can be used to determine decision vectors that can be con-
sidered in a mathematical sense as a potential solutions for the problem (1), therefore we also
use term Pareto optimal solution to refer a Pareto optimal decision vector. In a Pareto optimal
solution x̂ ∈ S the value of the objective fi (i = 1, . . . , k) cannot be improved without degrading
the value at least one other objective fj (j = 1, . . . , k, j 6= i) at the same time. In the light of this
we can say that if the DM is interested in changing one Pareto optimal solution to another one
then some kind of trade-off among objectives is necessary, that is, simultaneous improvement of
every objective is not possible and something must be always given up in order to gain something.
The task of the DM is to determine which of the Pareto optimal solutions is the most preferred
one.

In what follows, we use term Pareto surface to refer set f(E). Loosely speaking, this is due
the topological fact that f(E) belongs to the boundary of f(S), and therefore it can be also seen
belonging to a hypersurface of the objective space.

Because in multiobjective optimization methods potential solution candidates are typically con-
sidered to belong to the set of Pareto optimal vectors E it is useful to define upper and lower bounds
for the set f(E). If x?,i is a solution of the problem minx∈Sfi(x) and x†,i is a solution of the prob-
lem maxx∈E fi(x) then vectors z? = (f1(x?,1), . . . , fk(x?,k))T and z† = (f1(x†,1), . . . , fk(x†,k))T

are called the ideal and nadir objective vectors, respectively. In other words, the ideal and the nadir
objective vectors give the lower and the upper bounds for objective function values in the Pareto
optimal set E, respectively. Because ideal and nadir objective vectors are usually used for scaling
purposes it is usually convenient to consider a utopian objective vector z?? instead of the ideal
objective vector. The utopian objective vector can be defined, for example, by setting z??

i = z?
i − ε

for each i = 1, . . . , k, where ε is a small strictly positive real number. This allows us to avoid
numerical difficulties which might occur, for instance, when we do scaling fi(x)/(z†−z?), for each
i = 1, . . . , k. In a general case nadir objective vector can not usually be computed exactly and,
therefore, it needs to be approximated. A widely used, though generally unreliable, approximation
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can be obtained by using a payoff table (see, e.g., [17]). In some cases also the DM can give an
approximation for objective function ranges.

Even if the concept of Pareto optimality is quite an intuitive way to determine a set of potential
solutions for problem (1) it is not the only way. When considering optimality of problem (1) we can
use the theory of preference relations and end up with different kind of optimality concepts (see,
e.g. [35] for more details). However, in this paper we omit more general optimality considerations
and use the concept of Pareto optimality. However, due the technical reasons we are in practice
also forced to consider the weak and proper forms of Pareto optimality. The explanation for this
is given later when we present methods to produce Pareto optimal solutions.

Definition 2.2 (Weak Pareto optimality). A decision vector x̂ ∈ S is weakly Pareto optimal if
there exists no other decision vector x ∈ S such that fi(x) < fi(x̂) for all i = 1, . . . , k. An objective
vector f(x̂) is weakly Pareto optimal if the corresponding decision vector x̂ ∈ S is weakly Pareto
optimal.

Definition 2.3 (Proper (Geoffrion) Pareto optimality). A decision vector x̂ ∈ S is said to be
properly Pareto optimal if it is Pareto optimal and if there exists a finite M > 0 such that for each
fi and each x ∈ S satisfying fi(x) < fi(x̂), there exists at least one fj such that fj(x) > fj(x̂)
and

fi(x̂)− fi(x)
fj(x)− fj(x̂)

≤ M

for all i, j = 1, . . . , k and i 6= j. An objective vector f(x̂) is called properly Pareto optimal if the
corresponding x̂ is properly Pareto optimal.

The relationship between Definitions 2.1, 2.2, and 2.3 can be characterized by inclusion EP ⊆
E ⊆ EW ⊆ S, where sets EP and EW are the set of properly and weakly Pareto optimal vectors,
respectively. From the DM point of view weakly Pareto optimal solutions are usually uninteresting
because if a vector x̂ ∈ EW is weakly Pareto optimal there may exists one vector x ∈ EW at
which the value of some objective fi is improved without degradation in the value of any other
objective. On the other hand, restriction to the properly Pareto optimal solutions excludes from
consideration such Pareto optimal solutions where a relatively small change in the value of one
objective can lead to a very large change in the value of another. These concepts are intuitively
very closely connected to the concept of a trade-off which is the main topic of this paper.

2.2 An interactive multiobjective optimization method
As pointed out in the previous section, from the purely mathematical point of view the set of
Pareto optimal solutions E can be considered as a solution for problem (1). However, difficulties
to evaluate the entire set E arise especially in the case of continuous problems when the set E
usually contains infinitely many points. We are usually interested in determining just one vector
which is then considered as a final solution for problem (1). We use a term the best compromise
solution to refer to a vector that is considered in a subjective sense (from the DM’s perspective)
as the best alternative in the set of Pareto optimal solutions of problem (1). This kind of best
compromise cannot be determined by purely mathematical means and therefore some external
preference information related to importance of objectives is needed. In multiobjective optimization
the external preference information is typically given by the DM. This preference information is
then incorporated into a solution method. In a nutshell multiobjective optimization procedures
differ from each other mainly in 1) the way they obtain external preference information and 2) the
way this preference information is used during the solution process.

One possible way to classify multiobjective optimization methods is to examine when the pref-
erence information is obtained from the DM (see, e.g. [11] or [17]). In this way at least four
main method categories can be recognized: no-preference, a posteriori, a priori, and interactive
methods. In no-preference methods the preference information of the DM is not available and
just some Pareto optimal solution is obtained. A posteriori methods generate representative set of
Pareto optimal solutions after which the DM selects the most preferred one. In a priori methods
the preferences of the DM are determined before the solution process, and then a Pareto optimal
solution which is in some sense the closest one is determined. Interactive methods work iteratively
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in interaction with the DM and solution candidates at each iteration are generated using preference
information obtained from the DM.

In this paper the main emphasis is laid on the class of interactive methods. This is due to the
fact that in multiobjective optimization the trade-off concept (to be presented) is mostly connected
to the interactive methods. Typically, a general interactive method has three steps [17]:

1. Find an initial Pareto optimal solution.
2. Interact with the DM.
3. Generate one or some Pareto optimal solution(s). If the new solution or some of the previous

solutions is acceptable to the DM, stop. Otherwise, go to step 2.

In step 1 and 3 Pareto optimal solutions are generated from the set of Pareto optimal solutions
E. In step 2 the term ’interact’ means that preference information (related to previously shown
Pareto optimal solutions) is obtained from the DM. This can be done in several ways and usually
the main differences between interactive methods are in the way the preference information is asked
from the DM and what kind of information is shown to the DM in this interaction.

The key issue with interactive methods is that the DM is able to learn during the iterative
process. Learning is, on the one hand, related to properties of the problem which means that the
DM gradually grasps an idea of what kind of Pareto optimal solutions are available. On the other
hand, the DM also learns about his/her own preferences. In some interactive methods the DM is
allowed to change his/her mind which is intuitively speaking an important aspect when learning
something new.

In addition to the learning aspect, interactive methods might be useful also when function
evaluations are expensive or when we are dealing with a relatively large number of objectives. This
is due the fact that in interactive methods only a relatively small set of Pareto optimal solutions is
usually needed because the DM works in collaboration with the method and directs continuously
the search to the areas which seems to be most interesting to him/her. In other words, computation
of uninteresting Pareto solutions can be avoided. The efficiency of an interactive method is related
to the way it supports the DM during the solution process. The key issues are what kind of and
which amount of information should be shown to the DM. If too much information is shown to
the DM (s)he may become cognitively loaded, and the same goes with too demanding questions
related to preferences. One important topic is also that no method works for every DM and every
problem, and this is related to the question in what form should the preference information be
asked from the DM.

The next section introduces the concept of trade-off information and later on, we will also
present some interactive methods which are utilizing trade-off information. Trade-off information
offers one way to support the DM during the interactive procedure, but it must be emphasized that
it is definitely not the only way. As already pointed out, it depends on the underlying problem and
the DM what kind of information is most useful in some context, and also trade-off information
has its benefits and drawbacks. A completely other problem is how to determine which kind of
information is the most useful in some particular context. All in all the trade-off concept to be
presented should be considered as supporting information which is meant to aid the DM during
the interactive procedure so that (s)he could get more confidence that the decisions made are
corresponding to one’s preferences.

3 Trade-off information
If we consider two conflicting objectives, intuitively speaking the term ’trade-off’ means that we
must sacrifice something in the value of other objective in order to gain something in the value of
another one. In other words, we trade some amount of one good to obtain some other good. From
a more technical perspective we are considering trade-off information as a value which offers an
answer to the question “How much is the relative change in the value of objective fi when the value
of objective fj changes by one unit?”. When considering, for instance, some Pareto optimal solution
it is quite clear that in some cases this kind of information can be very useful when incorporated
to multiobjective optimization methods. For instance, at some Pareto optimal solution we can use
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trade-off information to indicate how the objective function values are going to change if we move
from the current solution to some nearby solution. The trade-off information can be considered
in the methods mainly in two ways: ’what is’, and ’what should be’. This means that ’what is’
type of objective trade-off gives us information about the real interconnections between objective
functions whereas ’what should be’ type of subjective trade-off information is determined by the
DM and it is used to reflect the preferences (see e.g. [4, p. 335]). The emphasis in this text is
on objective trade-off information, but we will present also methods that combines both of these
ways.

The formal definition for the trade-off concept can be given in the following form (see, e.g. [8],
[4, pp. 331]):

Definition 3.1 (Trade-off). Let us assume that we have two decision variables x, x̂ ∈ S. The trade-
off (rate of change, rate of transformation, pairwise trade-off, point-to-point trade-off) between x
and x̂ involving objective functions fi and fj is defined as

Tij(x, x̂) =
fi(x)− fi(x̂)
fj(x)− fj(x̂)

=
∆fi(x, x̂)
∆fj(x, x̂)

(2)

where fj(x) 6= fj(x̂).

Remark 3.1. Trade-off Tij(x, x̂) in Definition 3.1 is not defined if fj(x) = fj(x̂). However, we can
consider the following extension:

T ij(x, x̂) :=


−∞ , if ∆fi(x, x̂) < 0 and ∆fj(x, x̂) = 0
0 , if ∆fi(x, x̂) = 0 and ∆fj(x, x̂) = 0
∞ , if ∆fi(x, x̂) > 0 and ∆fj(x, x̂) = 0

Tij(x, x̂) otherwise.

(3)

In other words, trade-off can be considered as a mapping T ij : Rn × Rn → R, where R :=
{−∞} ∪ R ∪ {∞}. The extension above might be useful because infinite trade-off has, at least
in theory, intuitive meaning. For instance, in the set of weakly Pareto optimal solutions it may
be possible to make changes where one objective value becomes better (T ij = −∞) or worse
(T ij = ∞) while another objective maintains its current level. Basically this means that we can
gain or loose in the value of one objective with zero cost in the value of another objective.

If problem (1) contains more than two objectives it makes sense to separate the following two
cases.

Definition 3.2 (Partial and total trade-off). Trade-off Tij(x, x̂) is called a partial trade-off if
fl(x) = fl(x̂) for all l = 1, . . . , k and l 6= j, i. If fl(x) 6= fl(x̂) for at least one l then Tij(x, x̂) is
called a total trade-off.

Let us point out that when there are only two objective functions then partial trade-off is
always equal to total trade-off, but in the case of more than two objectives this equality does not
generally hold.

In some cases it maybe convenient to consider Definition 3.1 in a very small neighborhood of
some decision variable x̂. We can, for instance, study what kind of trade-offs are available if we
vary a decision variable x̂ to some certain direction d ∈ Rn.

Definition 3.3 (Trade-off rate). Let us assume that there is a direction d such that x̂ + αd ∈ S
for all α ∈ [0, ᾱ] and for some ᾱ > 0. If the limit

tij(x̂;d) = lim
α↘0

Tij(x̂ + αd, x̂) = lim
α↘0

fi(x̂ + αd)− fi(x̂)
fj(x̂ + αd)− fj(x̂)

exists we say that tij(x̂;d) is a trade-off rate (marginal rate of transformation) at x̂ to the direction
d involving objectives fi and fj . Furthermore, if fi and fj are both continuously differentiable at
x̂ then

tij(x̂;d) =
∇fi(x̂)T d

∇fj(x̂)T d
.
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Definition 3.4 (Partial and total trade-off rate). Trade-off rate tij(x̂;d) is called a partial trade-
off rate if fl(x) = fl(x̂ + αd) for all α ∈ [0, ᾱ], for some ᾱ > 0, and for all l = 1, . . . , k and l 6= j, i.
Otherwise tij(x̂;d) is called a total trade-off rate.

In what follows, we use notation tij(x̂) at x̂ ∈ S without any explicit direction to denote partial
trade-off.

From Definition 3.3 we see that trade-off rate at some x̂ ∈ S can be computed easily using for-
mula ∇fi(x̂)T d/∇fj(x̂)T d but if the term ∇fj(x̂)T d is zero then tij(x̂,d) is not defined. However,
we can extend this definition in a similar way we did in the case of Definition 3.1.

It must be pointed out that trade-off definitions above do not make any assumptions related to
the Pareto optimality. However, in this paper we are interested in considering trade-offs especially
related to decision vectors belonging to the Pareto optimal set E. When we consider a Pareto
optimal solution we know that none of the objective values can be improved without degrading a
value of at least one other objective. In the terms of trade-offs this means that at a Pareto optimal
solution at least one trade-off rate value involving objectives fi and fj must be negative, where
i, j ∈ {1, . . . , k} and i 6= j. In other words, if we want to improve the value of one objective then
at least one other objective value must be degraded.

If we consider practical use of trade-off and trade-off rate we can see two main differences. The
first one is that in a nonlinear case a trade-off (Definition 3.1) is always exact between two Pareto
optimal solutions whereas the trade-off rate (Definition 3.3) is giving a linear approximation of
what happens in a relatively small neighborhood of considered Pareto optimal solution when we
move a small step away from the given solution to a certain direction. On the other hand, to
compute trade-off by using Definition 3.1 we must generate two Pareto optimal solutions whereas
trade-off rate in Definition 3.3 can be computed by using the information obtained at a single Pareto
optimal solution. This is an important aspect, because we can use trade-off rate information to
reflect what is happening in a neighborhood of some particular Pareto optimal solution without
needing to produce any other Pareto optimal solution. This kind of information can be helpful to
the DM when (s)he must decide how to state preferences in an interactive method in such a way
that the method is able to produce improved solutions.

No matter in which form trade-off information is used in interactive multiobjective methods,
the most important aspect is that it offers information that is useful for the DM and this way
helps to make better decisions during an interactive solution procedure. If we consider Definition
3.3 the first problem is how to select the direction d in a meaningful way. Later on we will see
that in the case of partial trade-off rates we do not have to consider directions explicitly. So far
in the literature the partial trade-off rates have been the most used form of trade-off information
in interactive methods. However, also other than partial trade-off directions are used. We will
see that, for instance, such an intuitive directions as coordinate axes directions and directions of
objective function gradients are considered in the existing methods. Even thought the direction
can be selected freely it is important to notice that it must always produce trade-off information
which have some meaning for the DM. The aim is to offer information that aids the DM in a way
or another.

Figure 1 illustrates the concepts of trade-off (Definition 3.1) and trade-off rate (Definition 3.3)
in the case of two objective functions. As can be seen the trade-off Tij(x, x̂) = ∆fi(x, x̂)/∆fj(x, x̂)
can be related to two Pareto optimal solutions x and x̂ even if they are located at very different
parts of the Pareto optimal set E. The aim with the trade-off rate, in the case of a Pareto optimal
x̂, is to consider such a direction d which produces a tangent vector for the Pareto optimal surface
at f(x̂), in other words, in Definition 3.3 there must be such a ᾱ > 0 such that x̂ + αd ∈ E for all
α ∈ [0, ᾱ].

Even if the trade-off rate information is an appealing way to reflect the local changes in some
neighborhood of the considered Pareto optimal solution it must be emphasized that it offers only
a linear approximation of the Pareto surface. In addition, this approximation may in a nonlinear
case give a very misleading idea of how the underlying Pareto surface is actually behaving if we
move further away from the considered Pareto optimal solution.

Like pointed out formerly, by definition the trade-off concept is not related only to Pareto
optimal solutions. This means that, for example, trade-off can be computed between any two
decision vectors. Furthermore, the trade-off rate can be computed at any decision vector to any
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Figure 1: An illustration of trade-off and trade-off rate

direction, and even if the vector is Pareto optimal the direction might point out of set E. However,
from the practical point of view it is preferable that these computed values have some concrete
meaning in multiobjective solution methods. Therefore, it is favorable to consider only trade-offs
between Pareto optimal solutions.

One other way to utilize trade-off kind of ideology in multiobjective optimization methods is to
use the concept of subjective trade-off. This means that instead of computing objective trade-offs
related to Pareto optimal solutions we can ask the DM to define preferred trade-offs related to some
solution(s). This kind of subjective trade-off information can be, for instance, used in interactive
methods to introduce new constraints that temporarily or permanently limit the search space (e.g.
trade-off cut methods), or the DM can indicate his/her so called indifference direction at some
Pareto optimal solution in a form of a marginal rate of substitution.

The use of subjective trade-off information is typically related to an assumption that the DM
has in a local sense an implicit value function V : Rk → R. Because of the Pareto optimality we
assume that for the DM less is more. In such a case V is assumed to be monotonously decreasing.
In this respect it is considered as if the DM is trying to “maximize” V (f(x)) subject to x ∈ S.
Basically the term ’implicit’ means that the analytic form of V is not known but the DM is able to
reflect the shape of this function by answering to questions related to preferences. Local means that
preferences of the DM at some considered Pareto optimal solution are only related to that point
and given preference information reflects only the local behavior of the implicit value function.

A value function represents the preferences of the DM related to objective vectors in such a
way that if f(xa) and f(xb) are objective vectors and V (f(xa)) > V (f(xb)) then the DM prefers
xa to xb. If V (f(xa)) = V (f(xb)) then the DM is indifferent between these two objective vectors,
in other words, f(xa) and f(xb) lie on the same indifference curve, that is, the contour curve of
the value function V .

Definition 3.5 (Marginal rate of substitution (MRS)). A marginal rate of substitution (indiffer-
ence trade-off rate) involving objectives fi and fj at x, denoted by mij(x), indicates the amount
how much the value of the objective fi must be improved to compensate a one unit degrade in
the value of the objective fj while other objectives remain unchanged. If for V partial derivatives
with respect to objectives fj and fi exist then at x MRS is

mij(x) =
∂V (f(x))

∂fj

∂V (f(x))
∂fi

The usefulness of MRS information can be described as follows. Consider that by defining
mij(x) values between each pair of objectives we are able to construct in the objective space
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a tangent hyperplane for indifference curve of value function V at some x. The hyperplane is
separating the objective space into two halfspaces where the other halfspace contains directions
from x where the value of V is decreasing and another halfspace contains directions where the
value of V is increasing. This is due the fact that the gradient vector of an implicit value function
indicates the direction of the greatest value improvement from the DM perspective. This kind of
information can be utilized in methods, for instance, in such a way that at some x we can ask mij

values from the DM and after that we can generate in a small neighborhood of x another Pareto
optimal solution which is guaranteed to produce at least as good value of V as V (x).

Let us assume that we have a problem which has a convex Pareto surface and that x̂ ∈ S is a
Pareto optimal decision vector and tij(x̂) is corresponding to a partial trade-off involving objectives
fi and fj . If at some point we have −mij(x̂) = tij(x̂) for all i, j = 1, . . . , k, i 6= j, then x̂ ∈ S
can be considered to be the best compromise solution for the DM (see, e.g., [22]). This is due to
the fact that the set of Pareto optimal objective vectors f(E) is always located at the boundary
of the set of feasible objective vectors f(S) and if the tangent of this boundary is perpendicular
with the direction of indifference curve this means in the case of convex Pareto surface that it is
not possible to move to any feasible direction in objective space in such a way that the value of V
would increase. This relationship between MRS and trade-off rate is depicted in Figure 2 where
f(xa) is optimal with respect to V . In the figure dashed line indicates the indifference curves
(contour curves) of the value function V .

Figure 2: The connection between MRS and trade-off rate

4 Generating Pareto optimal solutions
As formerly pointed out, from the mathematical point of view, the solution to problem (1) is the
set of Pareto optimal decision vectors E and the DM is needed to determine which solution is the
most preferred one to him/her. The problem is that set E is not explicitly defined. Therefore, to
evaluate Pareto optimal solutions we need some methods that are able to generate them from the
set of feasible decision vectors S. One way to determine individual Pareto optimal solutions is to
convert problem (1) to a single objective form, this task is called scalarization. In scalarization a
relatively small set of parameters is connected to problem (1) in such a way that by altering these
parameters we can form different single objective problems when solved produce as a solution a
Pareto optimal solution. This kind of single objective formulation is called scalarization problem
and it can be designed in several different ways.

Ideally it is assumed that by solving an scalarization problem we are able to produce any Pareto
optimal solution related to problem (1), and furthermore, it is assumed that only Pareto optimal
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solutions are produced. However, these assumptions are not usually fulfilled [24, pp. 277]. Next
we present two scalarization problem formulations that are referred to later on when interactive
multiobjective optimization methods utilizing trade-offs are presented.

The ε-constraint method (e.g. in [4]) proposes a scalarization where one objective function fi is
selected as a primary objective while rest of the objectives fj are treated as constraints and called
constraint objectives. It is suggested that the most important objective for the DM is selected as
a primary objective. This leads to the following scalarization problem formulation:

minimize
x

fi(x), for some i ∈ {1, . . . , k}
subject to fj(x) ≤ εj , for all j = 1, . . . , k, and , j 6= i

x ∈ S,

(4)

where S is the feasible set of the original problem (1). A vector ε ∈ {(ε1, . . . , εi−1, εi+1, . . . , εk)T ∈
Rk−1 : X(ε) 6= ∅}, where X(ε) := {x ∈ Rn : fj(x) ≤ εj , j 6= i}, is set in such a way that there
exists at least one vector in the set S ∩X(ε).

If scalarization (4) is used directly as a solution method then the DM is assumed to set upper
bounds εj for constraint objectives fj (j = 1, . . . , k and j 6= i), and by altering these bounds
different (weakly) Pareto optimal solutions can be generated. One drawback related to this problem
is that especially in the case of several objectives it might be difficult to explicitly check whether
bounds εj set by the DM are assigned in such a way that the set S ∩ X(ε) contains at least one
feasible decision vector.

In weighted Chebyshev method [2] another kind of scalarizing problem formulation is used. Later
on, we use term Chebyshev scalarization to refer the following problem:

minimize
x

max
i=1,...,k

wi(fi(x)− z??
i )

subject to x ∈ S
(5)

In this scalarization different (weakly) Pareto optimal solutions are obtained by projecting the
utopian vector z?? to the set of Pareto optimal solutions. This is done by assigning different scaling
factors wi > 0 for objectives fi (i = 1, . . . , k).

The presented formulation (5) is able to produce all (weakly) Pareto optimal solutions and it
is also guaranteed that every solution obtained is (weakly) Pareto optimal. The drawback with
problem (5) is that the objective function is not differentiable and therefore usage of efficient
gradient based solvers is not directly possible. However, if the functions fi are all differentiable
then problem (5) can be converted to an equivalent differentiable form by adding an auxiliary
variable. This leads to the following formulation:

minimize
α,x

α

subject to wi(fi(x)− z??
i ) ≤ α

x ∈ S

(6)

In the upcoming sections we present several multiobjective optimization methods that utilize
either of the presented scalarization problems (except the ISTM method). To simplify notation,
we will use the formulations above without so called augmentation terms. An augmentation term
can be included to ensure that obtained solutions are properly Pareto optimal. However, it must
be emphasized that all presented methods to be presented can be formulated in such a way that
they produce properly Pareto optimal solutions instead of weakly Pareto optimal. Especially from
the trade-off information utilization perspective it does not make a much difference whether we
consider weakly or properly Pareto optimal solutions, as long as we consider trade-offs in the
extended form in the sense of Remark 3.1. In what follows, we use the term Pareto optimal even
if the considered method might produce only weakly Pareto optimal solutions.

Both the scalarization methods presented above can be basically used as an interactive multiob-
jective optimization methods directly. The DM just alters mutually constraint εi (i = 1, . . . , k− 1)
or scaling factor wi (i = 1, . . . , k) parameters and obtains a set of Pareto optimal solutions and
at some point selects the most preferred one as the final solution. However, in a general case it is
intuitively quite easy to understand that setting parameters consistently in this way might be very
difficult. This gives a motivation for more cultivated interactive methods where the aim is to offer
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to the DM a framework where scalarization parameters can be set in a systematic and meaningful
way. The ideal situation is such where the DM can feel that (s)he is in control and the solution se-
lected as a final one corresponds to his/her preferences and is therefore in subjective sense the best
possible according to the current knowledge. Later on, we describe interactive methods that use
the trade-off concept, in a way or another, to aid the DM to indicate preferences. The preferences
are then used implicitly to set parameters in a scalarization function at each iteration. However,
before presenting the methods, we discuss one popular way to compute (partial) trade-off rates as
a side-product when a Pareto optimal solution is produced using some scalarization function and
an appropriate single objective optimization method.

5 Trade-off rates and Karush-Kuhn-Tucker multipliers
As already pointed out, the trade-off concept does not necessitate by definition that the considered
decision variables are Pareto optimal. However, the aim of this paper is to discuss how trade-off
information is used in interactive multiobjective methods and therefore we are mostly interested
in generating and analyzing trade-off information related to Pareto optimal solutions.

The computation of the trade-off Tij(x, x̂) (Definition 3.1) between two separate Pareto optimal
solutions x ∈ E and x̂ ∈ E is a straightforward task. After we have generated these vectors by
using some scalarization formulation we can use the value Tij to indicate the relative objective
value changes if we consider a vector x instead of x̂

If the objective functions fi and fj considered are continuously differentiable, then also trade-off
rate tij(x̂;d) can be easily computed at x̂ to some direction d by using Definition 3.3. However,
for our purposes the direction d is meaningful only when it points to the Pareto optimal set E or
at least is a tangent direction to E at the Pareto optimal solution x̂ ∈ E which is located at the
boundary of the Pareto optimal set E ⊂ S. Furthermore, the direction d must be set in such a way
that the corresponding trade-off has some special meaning for the DM because we are interested
in offering supporting information for the DM. One possible meaningful direction d is such where
tij(x̂;d) turns to be a partial trade-off tij(x̂). Remember that tij(x̂) indicates how the value of
the objective fi is changing when the value of the objective fj changes by one unit while the other
objectives are remaining at their current levels. In existing methods, the partial trade-off rate is the
most used form of trade-off information, and in what follows we study how partial trade-off rates
can be computed without needing to explicitly consider the direction d appearing in Definition 3.3.

From the application perspective, the most popular way to compute partial trade-off rate infor-
mation at the given Pareto optimal solution is to use the connection to the Karush-Kuhn-Tucker
(KKT) multipliers [13] related to some Pareto optimal solution obtained using some scalarization
function. In practice this means that the numerical single objective optimization method used
to solve scalarization problems must be able to produce KKT-multipliers related to each Pareto
optimal solution computed.

Because this approach plays such a central role in the practical trade-off rate computation,
next we present, as an example, a theorem which connects KKT-multipliers to ε-constraint scalar-
ization (4) (see e.g. [7]). The following theorem was presented originally in [7] and the necessary
background to understand terminology used is given in Appendix. Without loss of generality, we
assume that the objectives are indexed in such a way that the primary objective in the ε-constraint
scalarization (4) is the objective fk.

Theorem 5.1. Let a Pareto optimal solution x̂ ∈ E be a solution for scalarization problem (4)
for some ε̂ = (ε̂1, . . . , ε̂k−1)T such that the following conditions are satisfied

i) x̂ is a regular point with respect to active constraints
ii) the second order sufficiency conditions hold at x̂

iii) all active constraints at x̂ are nondegenerate

Let λ̂j denote the optimal KKT-multiplier corresponding to the constraint objective fj(x̂) ≤ εj,
j = 1, . . . , k − 1. Without loss of generality assume that these constraints are ordered in such a
way that λ̂j > 0 for all j = 1, . . . , p and λ̂j = 0 for all j = p + 1, . . . , k − 1. Based on the implicit
function theorem we have
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a) If p = k − 1 (i.e. ε̂j = fj(x̂) for all j = 1, . . . , k − 1) then there exists a neighborhood N(x̂)
of x̂ and continuously differentiable vector-valued function x̄ : Rk−1 → Rn defined in some
neighborhood N(ε̂) ⊂ Rk−1 of ε̂ such that E ∩N(x̂) ⊆ x̄(N(ε̂)) ⊆ E.

b) If p = k − 1 and N(x̂) is as in a), let Zk =
{
(f1(x), . . . , fk(x))T : x ∈ E ∩N(x̂)

}
and

Zk−1 =
{
(f1(x), . . . , fk−1(x))T : x ∈ E ∩N(x̂)

}
. There exists a continuously differentiable

function f̄k defined on Zk−1 such that for each (f1(x), . . . , fk(x))T ∈ Zk we can get fk(x) =
f̄k(f1(x), . . . , fk−1(x))T . Moreover

∂f̄k

∂fj
(f1(x̂), . . . , fk−1(x̂)) = −λ̂j

for each j = 1, . . . , k − 1.

c) If 1 ≤ p < k − 1 then let Zk
ε =

{
(f1(x), . . . , fk(x))T : x ∈ x̄(N(ε̂))

}
. There exist con-

tinuously differentiable functions f̄p+1, . . . , f̄k−1 and f̄k defined on N(ε̂) such that for each
(f1(x), . . . , fk(x))T ∈ Zk

ε we have

f̄j(x) = f̄j(f1(x), . . . , fp(x), ε̂p+1, . . . , ε̂k−1), for all j = p + 1, . . . , k.

Moreover for each i = 1, . . . , p we have

∂f̄k

∂fi

∣∣∣∣
ε=ε̂

= −λ̂j =
∇fk(x̂)T di

∇fi(x̂)T di

where di is the direction of ∂x̄(ε̂)/∂εi, and for each j = p + 1, . . . , k − 1 we have

∂f̄j

∂fi

∣∣∣∣
ε=ε̂

= ∇fj(x̂)T ∂x̄(ε̂)
∂εi

Proof. See [7, pp. 163]

Theorem 5.1 means that when conditions i), ii), and iii) are fulfilled at some Pareto optimal so-
lution x̂ and the KKT-multiplier λ̂j strictly positive for each constraint objective fj , j = 1, . . . , k−1,
in problem (4), then −λ̂j (for some j = 1, . . . , k − 1) reflects how primary objective fk is going to
change if constraint objective fj is changing by one unit, while the other objectives remain at their
current levels. In other words, we have a connection between optimal KKT-multipliers of problem
(4) and partial trade-off rates. If all KKT-multipliers are not strictly positive at the considered
Pareto optimal x̂ (i.e. one of the objective constraints is not active, fj(x̂) < ε̂j) we are not able
to consider partial trade-off rates. In Theorem 5.1 case c) reflects this kind of situation, indicating
that we can consider total trade-off. The practical implications of this are considered a bit later
when the ISWT method is presented.

A technical problem related to case c) in Theorem 5.1 is that the value ∂x̄(ε̂)/∂εj is not know.
However, it can be approximated, for instance, by perturbing by a small amount the component
ε̂j of vector ε̂ that is related to constraint objective fj having a strictly positive KKT-multiplier
and solving this perturbed problem. In [4, pp. 376] some alternative ways are presented to deal
with this situation but in every case some additional computation is always needed.

In practice, when some interactive multiobjective optimization method utilizing the ε-contraint
scalarization (4) is used, it may be difficult to confirm that assumptions i), ii), and iii) of Theorem
5.1 are fulfilled at some Pareto optimal solution under consideration. In [14], it is claimed, without
proof, that the following Lemma can be used to verify whether the assumptions in Theorem 5.1
hold at some Pareto optimal solution in the case of the ε-contraint scalarization (4).

Lemma 5.2. Let us denote the Lagrangian function related to problem (4) by

L(x,λ,µ) = fk(x) +
k−1∑
i=1

λi(∇fi(x)− εi) +
m∑

i=1

µigi(x)
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and ∇2
xxL(x̂, λ̂, µ̂) is the corresponding Hessian matrix with respect to x. Furthermore, λ̂ ∈

Rk−1, µ̂ ∈ Rm are optimal KKT-multipliers related to the objective constraints and the original
constraints, respectively. The vector ε ∈ Rk−1 is the ε-constraint vector. The diagonal matrices
D1(gj(x̂)), D2(fi(x̂)− εi) and D3(−λ̂i) are m×m, (k− 1)× (k− 1) and (k− 1)× (k− 1) matrices
which have gj(x̂), fi(x̂)− εi and λi as diagonal entries, respectively.

In Theorem 5.1, the conditions i)− iii) are satisfied for problem (4) if and only if the matrix

∇2
xxL(x̂, λ̂, µ̂) ∇g1(x̂)T . . .∇gm(x̂)T ∇f1(x̂)T . . .∇fk−1(x̂)T 0 0
µ̂1∇g1(x̂)T

... D1(gj(x̂)) 0 0 0
µ̂m∇gm(x̂)T

λ̂1∇f1(x̂)T

... 0 D2(fi(x̂)− εi) D3(−λ̂i) 0
λ̂k−1∇fk−1(x̂)T

∇f1(x̂)T

... 0 0 0 0
∇fk−1(x̂)T

∇fk(x̂)T 0 0 0 −1


is nonsingular at a Pareto optimal x̂ ∈ E.

Even thought Theorem 5.1 is valid only for the ε-constraint scalarization (4), similar results
have been presented for several other scalarization problem formulations. For example, Sakawa and
Yano [33] showed that there is a connection between partial trade-off rates and KKT-multipliers
related to Chebyshev scalarization problem (6).

As stated in Theorem 5.1 for the ε-constraint scalarization (4), a partial trade-off rate involving
primary objective fk and some constraint objective fj , for some j = 1, . . . , k − 1, is

∂fk

∂fj
(x̂) = −λ̂j . (7)

For the Chebyshev scalarization problem (6), partial trade-off rates can be obtained from the
formula

∂fi

∂fj
(x̂) = − λ̂jwj

λ̂iwi

, (8)

where wi, wj and λ̂i, λ̂j are scaling factors and optimal KKT-multipliers related to the objectives
fi and fj , respectively.

In addition to the scalarizations (4) and (6) used in this paper in [34] corresponding connec-
tions are derived using so called hyperplane problem for several well-known scalarization problem
formulations such as: the weighting method, and the augmented forms of the ε-constraint and
the Chebyshev scalarization. In [14], results similar to Lemma 5.2 have also been presented for
the weighting method and Chebyshev scalarization method. In [23] it is shown by using so called
generalized hyperplane method that there is a connection between partial trade-off rates and KKT-
multipliers also in the case of other than Pareto dominance structure (the case where optimality is
defined by using some other convex cone than orthant cone). All these results are derived using the
implicit function theorem and sensitivity results from the theory of single objective optimization
(see, e.g., [5, Theorem , pp. 3.2.2 ,pp. 72], [16, Sensitivity theorem, pp. 236]).

In the case of multiobjective linear optimization problems the simplex method produces mul-
tipliers that have a bit similar kind of interpretation like KKT-multipliers have in the case of
nonlinear problems. We discuss this connection when trade-off utilizing methods are introduced
in the next section.

6 Objective Trade-off rates and interactive methods
In this section, we survey interactive multiobjective optimization methods that have presented
some unique way to utilize objective trade-off information. We present only the methods that use
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objective trade-off information in some form either with or without connections to the concept of
subjective trade-off information such as MRS. The presented methods can be seen as a prototypes
and each of them characterize one unique way to use trade-off information in the context of
multiobjective optimization methods. Later on, we analyze the methods presented and propose an
classification based on the level at which the trade-off information is utilized in these methods.

In what follows, each of these methods is first shortly described and related trade-off ideas
are explained. It must be emphasized that the methods are in most cases presented in a slightly
simplified form to highlight the underlying trade-off ideas. For instance, most of the methods
are actually using augmented scalarization problem formulations which enables them to deal with
properly Pareto optimal instead of weakly Pareto optimal solutions. However, inclusion of such
technical details makes the notation only more complicated while the actual trade-off utilization
idea remains the same. Therefore, we omit some technical details. In most of the cases there may
also exist extensions to a basic method but those are mentioned only if they make some relevant
contribution to the underlying trade-off concept.

In what follows, it is important to notice that the methods are not presented in the order they
have been appeared in the literature. This means that the methods are not necessarily always
proposing an improvement to the methods that have already been existing before them. Thus, the
presentation order is based on the way how the trade-off information is utilized in the methods.
The following ways can be identified: trade-off to the coordinate direction in the decision space,
trade-off to the direction of an objective function gradient, trade-off and approximation of implicit
value function, automatic trade-off to aid the DM, determining allowed change using trade-off table,
and trade-off rates and MRS as a stopping condition. We will notice that trade-off information is
utilized at different levels ranging from learning to decision making.

6.1 Trade-off to the coordinate direction (ZW)
In a general case, in Definition 3.3 when defining a trade-off rate the direction d can be set in in-
finitely many ways. One intuitively meaningful direction is the coordinate direction in the decision
space. This makes sense especially if we are solving a linear multiobjective optimization problem
with the simplex method and want to consider relative changes in the objective function values
when some nonbasic variable enters the basis. The method of Zionts and Wallenius (ZW) [36] is
the first interactive multiobjective optimization method that directly utilizes trade-off information
to aid the DM to reflect her/his preferences during the interactive solution process.

We consider a linear multiobjective optimization problem in the standard form

minimize
x

Cx

subject to Ax = b
x ≥ 0

(9)

where we have vector x ∈ Rp, C is k × p matrix, A is m × p matrix, and vector b ∈ Rm. In the
standard formulation, inequality constraints are converted to equality constraints by adding slack
variables, so when compared to the problem (1) we have p > n, that is, in addition of decision
variables x contains also slack variables. Let us assume that x̂ is a Pareto optimal solution for (9)
and the corresponding simplex tableau is the following

xB xN

x̂1 1 a . . . a b
...

. . .
...

. . .
...

...
x̂n 1 a . . . a b
f1 s . . . s −f1

...
...

. . .
...

...
fk s . . . s −fk

where columns xB are xN containing basic and nonbasic variables, respectively.
The underlying idea of the method is to show at each iteration to the DM one Pareto optimal

solution and ask whether the DM is interested in changing this solution to another one if this
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leads to a certain trade-off in the objective function values. According to the answers of the DM,
an implicit value function is approximated and based on this information a new Pareto optimal
solution is produced.

In more detail, it is assumed that the DM has at each iteration h an implicit linear value function
of the form V (wh,x) = −(wh)T Cx, where the weighting vector wh ∈ Rk is not known explicitly.
Components wh

i of the weighting vector satisfy the conditions
∑k

i=1 wh
i = 1 and wh

i > 0 for all
i = 1, . . . , k. At the each iteration, the preference information of the DM is obtained using trade-off
information related to the current Pareto optimal solution x̂h and this preference information is
used to determine a vector wh which is used to form the value function V (wh,x). At each iteration
h, a new Pareto optimal solution xh is obtained by solving the following subproblem

maximize
x

V (wh,x)

subject to Ax = b
x ≥ 0

(10)

If we consider the optimal simplex tableau related to the Pareto optimal extreme solution xh,
then the components sj

i of the jth nonbasic column sj indicate how much the value of the objective
fi is going to change with respect to one unit change in nonbasic variable xj if this variable enters
the basis. Hence, in this method objective trade-off information is shown to the DM in the form
of vector sj . The method proceeds as follows:

1. Set h = 1 and initial weights wh (e.g. equal weights). Set W = ∅, this set will contain
additional constraints to be generated during the method.

2. Use the simplex method to solve problem (10) and to obtain a Pareto optimal extreme
solution xh.

3. Determine the index set Jh(xh) that contains all nonbasic columns which lead to adjacent
Pareto optimal extreme solution from xh and have not been considered before (see [36,
Appendix 1] or [4, pp. 236] for more details).

4. Present xh and Cxh to the DM. For each index j ∈ Jh(xh), present values sj ∈ Rk to
the DM. Each component sj

i of column vector sj indicates how much the value of objective
fi is going to change if the variable xj changes by one unit. By comparing the values sj

i

(i = 1, . . . , k) related to each objective function, the DM is getting an idea of trade-offs. If
the DM is willing to make a proposed trade-off, add constraint −(wh)T sj > 0 permanently to
set W . If the DM is not willing to make a trade-off, add constraint −(wh)sj < 0 permanently
to set W . If the DM is indifferent, add constraint −(wh)sj = 0 permanently to set W .

5. If for each j ∈ Jh(xh) the DM is not willing to make a trade-off or is indifferent with all j,
then the current Pareto optimal extreme solution xh is the final solution and the procedure
can be stopped. Otherwise continue.

6. Find weight vector wh+1 satisfying constraints
∑k

i=1 wi = 1, wi > 0, for all i = 1, . . . , k,
and constraints stacked to the set W for each j ∈ Jh(xh) during this and all the previous
iterations. Set h = h + 1 and go to step 2.

Remark 6.1. In the above procedure, the trade-off information shown to the DM is related to the
question whether to move to some Pareto optimal extreme solution or not if a certain trade-off
will occur. As pointed out, in the original form of this method, trade-off information is not shown
to the DM in the form given in Definition 3.3. However, it is possible to show all or some of the
trade-off rate values tpq(xh, ej) = sj

p/sj
q to the DM, where we have a unit vector ej ∈ Rn, having

components ej
i = 0 for i 6= j and ej

i = 1 for i = j. The value tpq(xh, ej) reflects the trade-off
rate involving the objectives fp and fq if we move to a Pareto optimal extreme solution which
corresponds to the simplex tableau operation where nonbasic variable xj enters the basis.

One drawback of this method is that because the simplex method is used, the method produces
only Pareto optimal solutions that are extreme points of the underlying linear problem. However,
in some cases the DM might be interested in intermediate Pareto optimal solutions as well. Another
drawback is the stopping condition which is build into the method, in other words, the method will
terminate in a finite number of steps and the DM is not totally free to decide whether he/she is
satisfied with the final solution or not. In addition, the assumption related to existence of a linear
value function might be too restricting.
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6.2 Trade-off rates to the direction of an objective function gradient
(IMOOP)

In the previous section, we did consider coordinate directions as the direction d in Definition
3.3. In paper [27] Tappeta and Renaud have proposed the interactive multi-objective optimization
procedure (IMOOP) in which the concept of so called trade-off matrix is used. The problem with
this method is that in the original paper [27] the presentation is not precise and most of the results
are stated without any rigorous proofs. Therefore, we do not describe here the complete algorithm
of the IMOOP method but only outline the most relevant ideas which are directly related to the
utilization of objective trade-off information. Later on, we will see that also ISTM method utilizes
similar kind of idea to aid the DM. However, from the trade-off concept point of view the unique
idea related to the IMOOP method is the way how trade-off rate information is computed to the
direction of an objective function gradient instead of the direction of which is producing partial
trade-off rates.

In the IMOOP method the Pareto optimal solutions are generated using the Chebychev scalar-
ization problem (6). At each iteration h of this interactive solution procedure the DM determines
an aspiration level z̄h

i for each objective fi, i = 1, . . . , k to reflect the levels (s)he is interested
in achieving. These aspiration levels are used to set scaling factors as wh

i = 1/(z̄h
i − z??) in the

Chebychev scalarization problem (6). Let us denote the corresponding solution by xh.
At the current Pareto optimal solution xh the DM is able to do trade-off analysis by using so

called trade-off matrix containing total trade-offs computed for each objective fj to the direction
which gives the largest feasible improvement for that particular objective. If there is no active
constraints at the current Pareto optimal solution xh, that is, gi(xh) < 0, for each i = 1, . . . ,m,
then largest improvement for objective fj at xh is of course to direction −∇fj(xh). In the light
of the Definition 3.3 we can compute for each objective fj total trade-offs tij(xh,−∇fj(xh)), for
each i = 1, . . . , k.

In the case where we have active constraints at xh, that is, gi(xh) = 0, for some i = 1, . . . ,m,
the gradient vector −∇fj(xh) is not necessarily pointing to the feasible set S. To overcome this
problem we can project corresponding −∇fj(xh) to the feasible set S. This can be done by
introducing a matrix J where the gradient vectors ∇gi(xh) of the active constraints at xh are as
a row vectors. The projection matrix M = I − JT (JJT )−1J , where I is the identity matrix, can
be used to project the gradient vector −∇fi(xh) to the direction di;h = −M∇fi(xh) which is a
tangent direction for the feasible set S at xh.
Remark 6.2. For instance, the situation where M = 0 is not considered in [27]. However, this
problem can be approached with a similar kind of technique which is used in the context of the
gradient projection method of Rosen, proposed for the single objective optimization (see, e.g., [1]).
Furthermore, the projection procedure might produce an improving feasible direction but it is in
a general case unclear whether this direction is pointing to the set of Pareto optimal solutions.

We denote by di;h the projection direction related to gradient vector −∇fi(x̂) at iteration h.
At the current solution xh the following trade-off matrix is shown to the DM. t11(xh;d1;h) . . . tk1(xh;d1;h)

...
. . .

...
t1k(xh;dk;h) . . . tkk(xh;dk;h)

 (11)

The row j in the matrix above reflects what is the total trade-off involving objectives fi and fj

when we move to the feasible direction that (in a certain sense) produces the largest descent for the
objective fj . It must be pointed out that the diagonal entry tii(xh;di;h) = 1, for each i = 1, . . . , k.

In [27], it is proposed that also partial trade-off rates tij(xh) can be produced using the projec-
tion idea presented above. In such a case the matrix J containing gradients of active constraints
will also contain the gradient vectors ∇fp(xh) for p 6= i, j. In other words, we are projecting
the direction −∇fj(xh) to the direction which is feasible (or at least a tangent direction at the
boundary of S) and where the change in the objectives fp is zero, for all p = i 6= j.

Trade-off rate information can be considered as a first-order approximation of the Pareto sur-
face. In addition to this first order approximation, the IMOOP method produces also a second
order approximation for the Pareto surface. However, we omit further details here because those
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are not directly related to the objective trade-off concept in the sense it is treated in this paper.
Even thought, in [27] Tappeta and Renaud present this unique way to produce trade-off matrix,
they do not give any concrete ideas how this information can be explicitly used by the DM to set
aspiration levels for the next iteration of an interactive procedure. Therefore, in the context of
the IMOOP method the trade-off matrix is offered for the analysis purposes and based on this
information the DM is free to make any conclusion (s)he likes. The purpose of objective trade-off
information is just to reflect overall behavior of the Pareto surface.

6.3 Trade-off and approximation of implicit value function (ISWT)
The previous methods did utilize trade-off rate information computed using simplex multipliers or
Definition 3.3. In the rest of the methods to be presented we consider trade-off rates which are
produced by using the connection to KKT-multipliers (this was discussed in Section 5).

If partial trade-off rate involving two objectives fi and fj is presented to the DM at some Pareto
optimal solution, the DM can indicate how preferable the trade-off is. This kind of information can
be interpreted in a way that it reflects the shape of an implicit value function. If at some Pareto
optimal solution the DM is indifferent to the underlying trade-offs this indicates that the DM is
satisfied with this solution. In other words, the DM does not prefer any kind of change.

The interactive surrogate worth trade-off (ISWT) method [3] which is an interactive extension
of the surrogate worth trade-off (SWT) method [8], utilizes a technique where the DM indicates
her/his preferences toward to objective trade-offs at a Pareto optimal solution. In the ISWT
method, the ε-constraint scalarization (4) is used to produce Pareto optimal solutions and upper
bounds εj in constraints fj(x) ≤ εj are produced from a local approximation of an implicit value
function. At each iteration, preference information is obtained from the DM by asking questions
related to trade-off rates at the current Pareto optimal solution. In what follows, it is assumed
that conditions of Theorem 5.1 are satisfied.

The basic steps of the ISWT method are as follows:

1. Set h = 1. Select one objective fi as a primary objective, and set initial values of εh.
2. Obtain a Pareto optimal solution xh by solving ε-constraint scalarization problem (4). Com-

pute trade-off rates by using equation (7).
3. Obtain surrogate worth values Wh

ij from the DM. Values Wh
ij are used to indicate how

preferable the trade-offs are at the current solution xh. If the DM does not want to move
from current solution, then stop. Otherwise continue.

4. Use Wh
ij values and εh to form εh+1. Go to step 2.

In step 2, trade-off rates are produced using the results of Theorem 5.1, where the KKT-
multiplier λj was related to objective constraint fj of the ε-constraint scalarization problem (4) in
such a way that it reflects the amount of change in the value of the primary objective fi when the
value of the constraint objective fj is changing by one unit. If at iteration h, the KKT-multipliers
are positive, that is, λh

j > 0, for all j = 1, . . . , k and i 6= j, then in step 3 the following question is
presented for each j 6= i to the DM:

Question 1: “Consider the current objective values f(xh). How keen are you to improve fi by
λh

j units for each one unit degrade in the value of the objective fj if all the other objectives
fp, p = 1, . . . , k and p 6= i, j, keep their current values?”

The DM answers to the previous question using integers from −10 to 10 (surrogate worth
values). Number 10 means that the DM wants to make the proposed trade-off and number −10
indicates that the DM wants to make an opposite trade-off. Number 0 indicates that the DM is
indifferent with the proposed change. These integers are assigned to Wh

ij for all j = 1, . . . , k and
j 6= i. In step 3, the procedure is stopped if Wh

ij = 0 for all j = 1, . . . , k, j 6= i, which indicates
that the DM does not want to make any changes to the current solution xh.

We recall from Theorem 5.1 that the KKT-multipliers related to objective constraints at the
solution of the ε-constraint problem may not be strictly positive in a general case. In such a case
for the objectives constraints fj having KKT-multiplier λh

j = 0 the following question is presented
to the DM:
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Question 2: “Consider the current objective levels f(xh). How keen are you to improve
fi by λh

j units and change the values of objectives fp (for p = 1, . . . , k and p 6= i, j), by
∇fp(xh)T ∂x̄(εh)/∂εj units, while the value of objective fj degrades by one unit.”

This question is related to the case c) in Theorem 5.1, and as pointed out earlier some additional
computation is needed to produce the term ∂x̄(εh)/∂εj . In other words, this kind of a situation
can be handled but it is unfavorable from a computational perspective.

When Wh
ij values are obtained, a new bound εj can be set for each constraint objective fj ,

for all j = 1, . . . , k, j 6= i, of ε-constraint scalarization problem (4). If constraint objective fj

(j = 1, . . . , k, j 6= i) has a strictly positive KKT-multiplier, the constraint can be updated by
setting

fj ≤ εh+1 = εh + αh
(
Wh

ij |fj(xh)|
)

If the KKT-multiplier of some constraint objective fj (j = 1 . . . , k, j 6= i) is zero then the constraint
can be updated by setting

fj ≤ εh+1 = εh + α

(
∇fj(xh)T

(
∂x̄(εh)

∂εj

)
Wh

ij |fj(xh)|
)

In the above formulas, the parameter α is varied in a relatively small interval (0, ᾱ) ∈ R and
for each of these α values a new ε-constraint problem is solved. Solutions obtained can be then
visualized to the DM who is able to point out the most preferred εh+1

j which determines a new
upper bounds for the ε-constraint problem (4).

In the original method formulation surrogate worth values Wh
ij are assigned as integers in the

range [−10, 10]. However, Tarvainen has suggested in [28] that limiting the range to [−2, 2] might
help the DM to make more consistent decisions because there is less where to choose from.

At most (k − 1) trade-off related questions are asked at each iteration. This happens when
all the KKT-multipliers related to constraint objectives fj are strictly positive, when the DM
is assumed to compare two objective at a time and indicate whether the change is favorable or
not with the assumption that all other objectives remain at their current levels. When some of
the KKT-multipliers are zero, then Question 2 is presented to the DM for every objective which
has a positive KKT-multiplier. However, even though we have fewer questions, the DM has to
consider changes involving several objectives and this may cause cognitive burden especially when
the problem considered contains several objectives.

6.4 Automatic trade-off to aid the DM (STOM)
The satisficing trade-off method (STOM) [21] is based on a classification idea. During the interac-
tive procedure, the DM is assumed to classify objective functions at each iteration h to the three
classes: Objectives fi (i ∈ Ih

I ) that should be improved, objectives fi (i ∈ Ih
R) that can be relaxed,

and objectives fi (i ∈ Ih
A) which are accepted as they are. At each iteration, the DM indicates

at the current Pareto optimal solution his/her preferences as aspiration levels z̄i for objectives to
be improved and the method uses trade-off rate information to automatically propose values for
aspiration levels related to objectives to be relaxed, this procedure is called an automatic trade-off.
The DM is always allowed to change the automatically set aspiration levels, but especially in the
case of problems that have very many objective functions this kind of support can be useful because
it can be used to decrease cognitive burden set on the DM. Technically, in this method Chebyshev
scalarization problem (6) is used, where the scaling parameter wh

i = 1/(z̄h
i − z??

i ) is set at each
iteration h by using the aspiration level z̄h

i related to objective fi, for all i = 1, . . . , k.

1. Set h = 1 and ask the DM to specify aspiration levels z̄h
i for each fi (i = 1, . . . , k).

2. Solve Chebyshev problem (6) to obtain a Pareto optimal solution xh.
3. Show f(xh) to the DM. Ask the DM to classify objective functions fi (i = 1, . . . , k) to classes

Ih
I , Ih

A, and Ih
R. If Ih

I = ∅, stop. Otherwise, ask the DM to specify new aspiration levels z̄h+1
i

for objective functions fi, where i ∈ Ih
I . Set z̄h+1

i = fi(xh) for fi, where i ∈ Ih
A.
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4. Use automatic trade-off to set new aspiration levels z̄h+1
i for objective functions fi classified

to set Ih
R. In other words, set z̄h+1

i = fi(xh) + 1
|Ih

R|λiwi

∑
j∈Ih

I
λjwj(fj(xh)− z̄j), for i ∈ Ih

R,

where λi is optimal KKT-multiplier related to fi in problem (6) and |Ih
R| is the number of

objectives classified to class Ih
R.

5. Set h = h + 1 and go to step 3.

Like trade-off rate information generally, also automatic trade-off information is giving only
a linear approximation about how much relaxed objectives are going to change with respect to
a change in objectives the DM has selected to be improved. For linear and quadratic problems
automatic trade-off information can be interpret as an exact information, this is means that it is
possible to obtain Pareto optimal solutions without needing to solve a scalarization problem (see,
e.g., [19] and [20]).

6.5 Determining allowed change using trade-off table (ISTM)
Even though, in the IMOOP method we already introduced the concept of a trade-off matrix
we did not considered how this kind of information can be explicitly used by the DM in an
interactive solution procedure. Next, we present the interactive step trade-off method (ISTM) [31]
to demonstrate the usage of trade-off matrix when determining aspiration levels. The basic idea
in the ISTM method is quite similar to the STOM method. At each iteration, the DM is shown
some Pareto optimal solution and some supporting information. If the DM is not satisfied with
the solution shown then (s)he classifies the objectives to the three classes which are the same as
in the STOM method. In other words, at each iteration h all k objective functions of problem (1)
are classified to classes Ih

I , Ih
A, and Ih

R. For each objective fi which can be relaxed (class i ∈ Ih
R)

the DM is assumed to determine amount of relaxation according to the trade-off rate information
related to current Pareto optimal solution. The difference to the STOM method is that the DM
determines the aspiration levels for the objectives that are relaxed by using the trade-off matrix,
in the STOM method these aspiration levels are proposed automatically.

The scalarization problem solved in ISTM method differs slightly from scalarization problems
(i.e. problems (4) and (6)) used in the other interactive methods presented in this paper. In the
ISTM method the following (simplified) auxiliary problem is solved

maximize
α,x

∑
i∈Ih

I

αh
i

subject to fi(x) ≤ fi(xh−1)− wiα
h
i , for i ∈ Ih

I

fi(x) ≤ fi(xh−1), for i ∈ Ih
A

fi(x) ≤ fi(xh−1) + ∆fi, for i ∈ Ih
R

(12)

where, for instance, wi = (z†i − z??
i ) reflecting the possible value range of the objective fi. Let us

denote by |Ih
I | the number of objectives classified to class Ih

I at iteration h. The vector αh ∈ R|Ih
I |

contains auxiliary variables αh
i ≥ 0. By looking at the first constraint fi(x) ≤ fi(xh−1)−wiαi we

can see that the aim in the auxiliary problem is to maximize an improvement for the objectives
classified to class Ih

I . At each iteration h, the DM is required to determine an amount of relaxation
∆fi related to objective fi (i ∈ Ih

R) by using the trade-off rate information at the current solution.
The partial trade-off rates are determined by the optimal KKT-multiplier λh

i related to con-
straints based on class Ih

R. Therefore, assumptions similar to the presented in Theorem 5.1 must
be satisfied. For problem (12) at obtained Pareto solution xh partial trade-off involving objectives
fi, for i ∈ Ih

I , and fj , for j ∈ Ih
R, is tij(xh) = −wiλ

h
j [31]. In other words, at the current solution

the partial trade-off rate is used to produce a linear approximation for the change involving two
objectives, with the assumption that the other objectives can be kept at their current levels. The
ISTM method proceeds as follows:

1. Set h = 1 and produce an initial Pareto optimal solution xh by solving the Chebyshev
scalarization problem (6) (e.g. by using scaling parameters wi = 1/(z†i − z??

i )).
2. The DM is required to classify the objectives to Ih

I , Ih
A, and Ih

R by using information based
on vectors f(xh), z? and z†.
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3. By examining the current solution and the corresponding partial trade-off rates the DM is
required to assign values ∆fh

j , for all i ∈ Ih
R and then answering the questions Qh

j : “Suppose
that objective fp remains its current level fp(xh), for p = 1, . . . , k, p 6= i, j. If the objective
values fj(xh), for j ∈ Ih

R, are relaxed to the values fj(xh) + ∆fj while objective values
fi(xh), for i ∈ Ih

I , are improved to the values fi(xh)− wiλj∆fj , do you consider this trade-
off worthwhile?”. The DM must assign values ∆fh

j again if the corresponding trade-off is not
satisfying her/him. If the DM sets all ∆fh

j = 0, the procedure is stopped.
4. Form and solve the auxiliary problem (12) using information obtained from the DM. The

obtained Pareto optimal solution is xh+1 and λh+1
j is the optimal KKT-multiplier related to

constraints of class Ih
R

5. If the DM is satisfied with the current solution xh+1, stop. Otherwise, set h = h+1 continue
to step 2

In step 3, the DM is assumed to use partial trade-off rates that are presented in a matrix form
where component tij(xh) is indicating partial trade-off between a relaxed (i ∈ Ih

R) and an improved
(j ∈ Ih

I ) objective. It is quite clear that when the number of objectives in the problem is very
high the analysis of numerical trade-off matrix can be quite demanding for the DM. An important
aspect to notice is the fact that the DM is not forced to use the trade-off matrix in any way or is
allowed to interpret it very freely. However, unlike in the IMOOP method, in the ISTM method
some outlines are given how the DM should use trade-off information to determine aspiration levels
for the next iteration. In this sense the trade-off matrix can be considered as additional supporting
information that is not directly related to the method itself. Therefore, it might be useful to
consider the trade-off rate matrix as supporting information in the context of any interactive
method.

6.6 Trade-off rate and MRS as a stopping condition (SPOT and GRIST)
From the trade-off perspective, the main idea in this method is the stopping condition that uses
MRS’s and partial trade-off rates. The use of MRS necessitates the assumption that the DM has
an implicit value function. The aim is to determine such a Pareto optimal solution x̂ where the
trade-off rate and MRS values are concurrent, that is, mij(x̂) = −tij(x̂), for each j = 1, . . . , k and
j 6= i. This idea was already illustrated in Figure 2. This kind of stopping condition necessitates
that the problem is convex, that is, it is assumed that functions fi (i=1,. . . ,k) and gi (i = 1, . . . , k)
of problem (1) are convex. The sequential proxy optimization technique (SPOT) [22] utilizes this
idea. The method uses the ε-constraint scalarization (4) and the MRS values are given by the DM.
The MRS values are used to reflect the shape of an implicit value function.

The method starts from some Pareto optimal solution where the DM provides MRS information.
If the stopping condition mentioned above is not fulfilled then a search direction is generated to
the set of feasible objective vectors and using this direction a special proxy value function, that is
used to simulate an implicit value function, is maximized. The solution maximizing proxy function
is Pareto optimal. If the DM feels that the solution obtained is better than the previous one, then
the DM is assumed to provide new MRS information and a new feasible direction is generated.
Otherwise, more interesting solutions can be searched for between the previous and the current
solution.

It is assumed that at each Pareto optimal solution xh assumptions similiar to the presented in
Theorem 5.1 are satisfied. This means that at a Pareto optimal solution considered partial trade-
off rate involving the primary objective fi and some objective constraint fj in the ε-constraint
scalarization (4) can be obtained using the optimal KKT-multiplier λh

j related to fj . Furthermore,
it is assumed that the DM has an implicit value function which is concave, strictly monotonically
decreasing and continuously differentiable with respect to objectives fi (i = 1, . . . , k). Note that
because we are dealing with the ε-constraint scalarization problem (4), we have the relation tij(x̂) =
−λj between partial trade-off rates and KKT-multipliers. The method proceeds as follows:

1. Set h = 1. Select one objective function fi as a primary objective and set initial values for
the upper bound vector εh in ε-constraint scalarization problem (4).
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2. Obtain a solution xh by solving the ε-constraint scalarization problem (4) (all objective
constraints must be active at the obtained solution, that is, fj(xh) = εh

j , for all j = 1, . . . , k−
1).

3. Ask the DM to determine MRS values mh
ij related to the current objective vector f(xh).

4. If
∣∣mh

ij − λh
ij

∣∣ < δ, for all i = 1, . . . , k and i 6= j, where δ is a small strictly positive real
number, then stop. The vector xh is a final solution. Otherwise continue.

5. Set ∆εh
j = −mh

ij −λh
ij , for each j = 1, . . . , k−1 and this determines the direction vector ∆εh

where the value of an implicit value function is improving.
6. Use a proxy function P to locally approximate the implicit value function and determine a

step size αh in such a way that P is maximized at a point satisfying ε-constraints fj(xh) ≤
εh
j + αh∆εh

j (see [22], for more details).

Above we have given only a very rough outline of the SPOT method. From trade-off information
point of view, the most important aspect with this method is how MRS’s and trade-off rates
are utilized in the stopping condition. Therefore, we do not go into details, for instance, with
consistency checks related to MRS information or possible proxy function forms. If the DM is
consistent in giving MRS information then k−1 MRS values at each iteration is needed. However,
it is not necessarily easy for the DM to be consistent with MRS information.

The GRIST method [30, 32] is using the similar stopping condition as SPOT. In the GRIST
method partial trade-off rate information obtained at the current Pareto optimal solution xh is
used to produce the tangent hyperplane for the Pareto surface. The DM is assumed to reflect the
shape of an implicit utility function by offering MRS information. The MRS information is used to
produce a gradient vector of an implicit value function at xh and this gradient is projected to the
tangent hyperplane of the Pareto surface. By using the preference information given by the DM a
step size is determined to the direction of the projected gradient of an implicit value function, this
determines a reference point (aspiration levels) belonging to the tangent hyperplane. The reference
point is then projected to the set of Pareto optimal solutions. When the procedure is repeated
we end up eventually in a situation where the normal vector of the tangent hyperplane and the
gradient of an implicit value function coincide. This is similar to the stopping condition described
above and explained in the context of Figure 2.

7 Further analysis and discussion
In the methods presented trade-off information is mainly produced by using the trade-off inter-
pretation related to the KKT-multipliers, like described in the case of ε-constraint scalarization
problem (4) in Theorem 5.1. Theorem 5.1 (and similar results) can be used to produce partial
trade-off rates instead of total trade-off rates. In a general case partial trade-off rates have proba-
bly more intuitive interpretation than total trade-off rates because by considering partial trade-offs
the DM can concentrate on pairwise comparison of objectives instead of considering change in all
objectives simultaneously. This might be the reason why in methods it is more popular to use
results like Theorem 5.1 than to compute objective trade-off rates directly from the Definition 3.3.

One main drawback related to Theorem 5.1 (and similar results) is that an underlying multi-
objective optimization problem must fulfill quite demanding assumptions. However, in this sense
results like Lemma 5.2 are useful because these can be used to test whether the necessitated as-
sumptions are satisfied at some Pareto optimal solution. Even thought, in practice it might be
too expensive to produce necessitated second order information accurately enough (e.g. most of
the numerical single objective optimization methods avoid direct computation of any kind of sec-
ond order information, which means, that such information is not necessarily available without an
additional computation.)

In addition, in Theorem 5.1, the case where the number of objectives is greater than the number
of decision variables is likely to cause problems because of the degenerate objective constraints
related to a scalarization function utilized. However, in practice this is not necessarily a serious
problem because usually we have a relatively large amount of variables and only few objectives.

Even thought, the assumptions in Theorem 5.1 can be considered as a drawback it is of course
favorable that an interactive method is able to handle such special cases when, for example, some
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of those assumptions is not fulfilled. However, if we consider the methods presented, in their basic
form, only the ISWT method directly addresses the problem which arises when the assumptions
of Theorem 5.1 (case c)) are not completely fulfilled.

As an alternative approach Definition 3.3 is convenient especially when we have some direction
which produces meaningful trade-off rates for the DM (direction such as the gradient of an objective
function). Like seen in the case of the IMOOP method a direction can be projected to the feasible
set. However, the IMOOP method introduces only one possible way to do a projection, in a
general case this can be done infinitely many ways (some possible examples are presented e.g. in
[1, pp. 411]. Which is the best way to do the projection depends on what we want to achieve.
Which ever is the utilized projection style it is important that the DM has a clear picture what
the trade-off rates to the projected direction are trying to reflect. As pointed out, in the case of
the IMOOP method also partial trade-off rates can be obtained through a projection. However,
such approaches have not yet been studied in mathematically rigorous way.

Event thought, objective trade-off rate information is utilized successfully in many methods
there is also many problems related to this kind of information. First of all, it must be kept in
mind that trade-off rate information gives us only a linear approximation about what is happening
at the Pareto surface in some local neighborhood of the select Pareto optimal solution. If the
underlying multiobjective optimization problem is not highly nonlinear then linear approximation
might be very useful when supporting the DM. On the other hand, if we are dealing with highly
nonlinear problems linear approximation may give a very misleading idea about the interconnec-
tions between objective functions. Furthermore, if a linear approximation is accurate enough only
a very small neighborhood of some considered Pareto optimal solution this kind of information
might be irrelevant for the DM. The aim is to build confidence not to distract the DM. In the
case of a general nonlinear multiobjective optimization problem it might be difficult to deter-
mine beforehand how reliable a linear approximation is in the case of some particular problem.
Therefore, more research is needed to produce results which can be used to produce reliable error
approximation for trade-off rate computations.

Figure 3 illustrates some problems that might occur when we are using trade-off rate informa-
tion. In Figures a) and b) we can see that even if the Pareto surface is very smooth and connected
trade-off rate information can give a completely misleading picture. In b) the Pareto surface is
smooth and almost linear, excluding a small bump in the middle which causes trade-off rate in-
formation point totally irrelevant direction. It must be emphasized that especially in the case of
several objectives this may be a serious problem because the DM do not usually have any kind of
visualization of the objective space at hand. In c) the disconnected Pareto surface causes a problem
when trade-off rate is evaluated at very close of the boundary of the relative interior of the Pareto
surface. In d) the Pareto optimal set is disconnected, Pareto surface is nonsmooth and connected,
and overlapping dark gray lines present two sets of objective vectors that can be considered as
Pareto optimal if consideration is restricted one at a time to some local area in the decision space.
This behavior might be relevant because the direction in Definition 3.3 is defined locally so it is
not possible to directly identify the problem occurring in d).

Figure 3: Some problems related to trade-off rate information

Despite the potential problems mentioned above trade-off rates, when available, can be very
useful to capture the shape of the Pareto surface at a local neighborhood of some Pareto optimal
solution. In the context of interactive multiobjective methods the most appealing feature related to
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the trade-off rate concept is that they can reflect available solution possibilities without additional
computation. If we consider the methods surveyed in this paper we can notice that they utilize
trade-off information at a couple of different levels. By examining the methods, we can identify at
least the following three main classes.

A Trade-off rate information is used to describe the overall shape of the Pareto surface. Trade-
off rates are shown to the DM, for instance, in a matrix form and the DM has not been given
any explicit rule how to utilize this information. In other words, trade-off rate information
is presented only for analysis purposes as additional supporting information. In this paper
IMOOP and ISTM methods can be seen partly to fit into this class.

B Trade-off rate information is used in explicit way to predict what is happening for the other
objectives when the DM has already stated some preference information related to some
other objectives. The methods STOM and ISTM utilize this idea.

C Trade-off rate information is used with a connection to an implicit value function. The
methods SPOT and GRIST use objective trade-off rates and MRS to determine a stopping
condition to an interactive procedure. In the ISWT and ZW methods trade-off rates are used
to produce questions which aim to capture the shape of an implicit value function.

The classification above can be also interpret in such a way that in class A methods offer trade-
off information in a very general form to reflect what kind of trade-offs are available around of
some Pareto optimal solution. This information can be very useful to quickly analyze whether that
solution could be improved in a local neighborhood to produce solution which corresponds more
closely the preferences of the DM. However, even though the idea seems to be useful the problem
might be that the numerical trade-off rate matrix causes quite a much cognitive burden for the
DM, especially when the number of objectives increases.

In the methods belonging to class B the DM indicates some preference information which is
then used with underlying objective trade-off rate information to approximate into what kind of
solutions the given preferences might lead. The methods in this class use trade-off information just
to reflect or approximate what kind of Pareto optimal solutions are available.

The methods in class C are interpreting objective trade-off information in more explicit way.
In other words, ’what should be’ type of information (subjective trade-off information) is obtained
from the DM and it is, in a way or another, compared to ’what is’ type of information (objective
trade-off information). The aim is to find such a Pareto optimal solution where objective and
subjective information corresponds to each other.

It is also important to notice that the methods in class A are more learning-oriented than the
methods in class B or C. On the other hand, methods in class C are more decision making oriented
by assuming that the DM should know more precisely what (s)he wants. This kind interpretation
suggests that trade-off ideas used in class A are more suitable for situations where the DM is just
trying to capture an overall idea related to the available Pareto optimal solutions. Class C contains
some ideas that are usable when the DM is aware of his/her preferences. The trade-off ideas in
class B are somewhere in the middle. This observation is quite natural and fits well to the context
of multiobjective optimization problem solving where it can been seen that many times so called
learning phase precedes the decision making phase.

8 Conclusions
In this paper we have discussed about the concept of objective trade-off information and how it
has been so far utilized in the interactive multiobjective optimization methods presented in the
literature. We have outlined, from a practical perspective, some important theoretical ideas behind
objective trade-off information and explained how this kind of information is typically produced in
interactive methods. The methods have been selected to this paper based on the originality of the
objective trade-off idea they are utilizing. Therefore, possible extensions and applications of the
methods are not discussed unless they have contributed to the underlying trade-off utilization idea.
Based on the analysis made, we can conclude that trade-off information can be used at different
levels and different phases of an interactive solution process.
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At which level the trade-off information should be used is of course a matter of taste. The most
appropriate approach can be selected according to what kind of information the DM is able or
wants to use in the solution process. It must be emphasized that trade-off information offers only
one way to present and ask information in interactive methods. In an ideal case the DM is able to
indicate which kind of method is the most suitable for some particular problem or solution phase.
In other words, trade-off type of information can be useful but it necessitates that it is natural
for the DM to consider relative changes between objectives. It is clear that some multiobjective
problems might contain incommensurable objectives where it is very difficult (or even impossible)
for the DM to consider a relative unit trade-offs between objective function values. Of course, in
such a case trade-off information based methods should not be used.

It is appealing to think that objective trade-off information based ideas can be possibly easily
integrated (in the sense of automatic trade-off) to existing methods as an additional decision
support tools that can be made available for the DM when needed. In such a case without affecting
the underlying method the DM could freely request trade-off information to grasp an idea what
kind of solutions are available around a neighborhood of some particular solution.

As potential objective trade-off information related research topics we can point out at least
the following ones. Definitely more research is needed related to quality of linear approximation
obtained using trade-off rate information. For the DM it is important to know how reliable shown
information is. It might be, for instance, possible to use sensitivity of KKT-multipliers to approx-
imate quality of linear approximation (see e.g. [5]). It is also important to start to pay more
attention to the situations where the assumptions in results like Theorem 5.1 are not fulfilled.
Furthermore, a possibility of capturing a general behavior of Pareto surface around some Pareto
optimal solution might be very useful for the DM, and therefore it must be studied in more detail
how this kind of information can be efficiently presented to the DM without causing to much cog-
nitive burden. In a broader context the presentation of all available trade-off directions (e.g. in
the sense of [9]) at some Pareto optimal solution should be also studied in the context of practical
multiobjective optimization methods.

A Appendix: Results from the single objective optimization
To present Theorem 5.1 which connects Karush-Kuhn-Tucker (KKT) multipliers to the concept
of trade-off rate in the case of the ε-constraint scalarization (4) we need a couple of well-known
definitions and results from the theory of single objective optimization. In what follows, we will
present results only for inequality constrained problem. However, it must be emphasized, that all
the results can be extended to include equality constraints as well. In the following we are dealing
with a nonlinear single objective optimization problem of the form

minimize
x

f(x)

subject to gi(x) ≤ 0, for all i = 1, . . . ,m
(13)

where f : Rn → R and gi : Rn → R, are objective and constraints functions, respectively. In what
follows, we denote by I(x̂) := {i : gi(x̂) = 0} an index set indicating constraints gi of problem (13)
which are active at some x̂.

Definition A.1 (Regular point). It is said that x̂ is a regular point if vectors ∇gj(x̂), for i ∈ I,
are linearly independent.

Now we present couple of optimality conditions related to problem (13).

Theorem A.1 (KKT Necessary Conditions). Let x̂ be a regular point of the constraints of problem
(13). For x̂ to be a local minimum of problem (13) there must exist a set of KKT-multipliers
λ ∈ Rm such that

∇f(x̂) +
∑

i∈I(x̂)

λi∇gi(x̂) = 0

λigi(x̂) = 0, for all i = 1, . . . ,m
λi ≥ 0, for all i = 1, . . . ,m

(14)
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Proof. See e.g. [16]

Definition A.2 (Nondegenerate constraint). An active constraint gi is said to be nondegenerate
if λi > 0 for each i ∈ I(x̂).

Let us divide index set I(x̂) into two separate sets I+(x̂) = {i : λi > 0} and I0(x̂) = {i : λi = 0}
according to the quality of optimal KKT-multiplier λi assigned to active constraints gi, for i ∈ I(x̂).
The second order sufficiency conditions for a feasible vector x̂ to be local solution for problem (13)
are the following.

Theorem A.2 (Second order KKT Sufficiency Conditions). Let us assume that functions f and
gi are twice continuously differentiable and ∇2 is the Hessian matrix operator. If in addition,
condition A.1 holds at x̂ and the matrix

∇2f(x̂) +
∑

i∈I(x̂)

λi∇2gi(x̂)

is positive definite for all vectors d 6= 0 which fulfill conditions

∇gi(x̂)T d = 0, for all i ∈ I+(x̂)
∇gi(x̂)T d ≤ 0, for all i ∈ I0(x̂)

then x̂ is local minimum of problem (13).

Proof. See e.g. [16]

Using the above results we can now present a theorem which can be used when KKT-multipliers
are connected to the trade-off rate concept in Theorem 5.1.

Theorem A.3 (Sensitivity Theorem). Let functions f and gi be twice continuously differentiable.
In a single objective problem

minimize
x

f(x)

subject to gi(x) ≤ ci, for all i = 1, . . . ,m
(15)

and let x̂ be a local feasible solution for this problem when ci = 0, for all i = 1, . . . ,m. If x̂ satisfies
conditions

i) The vector x̂ is a regular point
ii) Second-order sufficiency conditions are satisfied at x̂

iii) The active constraints are nondegenerate at x̂

then there is a continuously differentiable function x̄ : Rm → Rn defined on a neighborhood 0 ∈ Rm

such that x̄(0) = x̂ and such that for every c in a vicinity of 0, a vector x̄(c) is a strict local
solution for problem (15). Moreover optimal KKT-multipliers related to constraints at solution x̂
have following interpretation

∂f(x̄(0))
∂ci

= −λi, for all i = 1, . . . ,m (16)

Proof. See e.g. [16]

Above Theorem A.3 can be interpreted in such a way that optimal KKT-multipliers λ related
to the constraints of problem (15) at some solution x̂ indicate a relative change in the value of the
objective function when the constraint requirements are changed by one unit. In other words, if
active constraint gi, for some i = 1, . . . ,m, is relaxed by one unit then value of objective function
f is improved an amount of λi. Of course this approximation is only linear and reflects only
infinitesimal changes, but anyhow it gives an idea what is happening if constraints are altered at
some solution.
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