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Abstract 
 
This paper uses quarterly ex post and real-time U.S. data to show that the very simple 
hybrid New Keynesian model of Clarida, Galí and Gertler [1999. The Science of 
Monetary Policy: A New Keynesian Perspective. Journal of Economic Literature 37, 
1661-1707] can provide forecasts comparable to those based on Bayesian reduced-form 
vector autoregressive models. The issue is important, since several recent papers have 
suggested different ways to improve the forecast performance of New Keynesian models 
at the cost of increasing the complexity of model mechanisms, thus reducing the 
practicability of these approaches. 
 
JEL Classification: C11; C32; E37; E47. 
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1. Introduction 
 

There is an increasing volume of literature focusing on developing New Keynesian (NK) 

models suitable for forecasting and quantitative policy analysis; see Sungbae and 

Schorfheide (2007) and references therein. Within this literature, Smets and Wouters 

(2003, 2005 and 2007), Christiano et al. (2005), Adolfson et al. (2007a), and Adolfson et 

al. (2005, 2008), construct large-scale NK models aiming to find a structural 

macroeconomic model which has a fit comparable to that of reduced-form Bayesian 

vector autoregressive (VAR) models. In these studies, additional shocks, frictions and 

measurement errors are introduced to the NK model mechanisms until the desired fit is 

achieved. This approach ignores model uncertainty, leading to inferences which are over-

confident and decisions which are riskier than the policy-maker believes them to be. A 

promising alternative strategy is provided by Del Negro and Schorfheide (2004). In their 

approach an NK model is used to generate a prior distribution for the parameters of the 

VAR to improve the forecast and policy analysis performance of these models. Although 

this approach is promising, it is nonetheless complicated and the numerical methods 

required in estimation are time-consuming. The practicability of this approach can 

therefore be questioned; see also Del Negro et al. (2007). In the light of recent NK 

literature, it would be thus interesting to see whether a simple NK model, including only 

few shocks and the standard price rigidity, can have a fit comparable to other forecasting 

methods such as the Bayesian VARs commonly used as a benchmark. 

 

This paper has two objectives. First, it provides a method for the Bayesian analysis of a 

simple hybrid NK model of Clarida et al. (1999). The method is very easy to implement 

and leads to savings in the CPU time required in posterior simulation, compared to the 

commonly used Kalman filter approach. Lindé (2005) estimates a version of the hybrid 

NK model with the full information maximum likelihood (FIML) method using U.S. 

data. We instead adopt a Bayesian full information framework, since the FIML estimates 

turned out to be very sensitive to starting values and since Bayesian methods allow 

incorporation of prior information which facilitates numerical maximization.  
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Our second objective is to compare the forecasting properties of the hybrid NK model 

against commonly used forecasting tools such as Bayesian VARs and naïve forecasts 

based on univariate random walks. Using quarterly U.S. data we show that the hybrid 

model can provide forecasts of key macroeconomic variables, inflation and short-term 

nominal interest rate, and a measure of the output gap comparable to forecasts based on 

reduced-form Bayesian VARs. Our results also indicate that the hybrid model predicts 

more accurately than naïve forecasts based on univariate random walks. In particular, 

these results hold for both ex post data and real-time data, which are available to policy-

makers when forecasts are being made. Our results also confirm the finding of Smets and 

Wouters (2007) that the cross-equation restrictions implied by NK models work 

especially well in forecasting at medium-term horizons (from four to twelve quarters). 

For policy-makers, comparisons of forecasts at longer than one quarter horizon are of 

interest, since policy actions typically depend on expected future developments in the 

economy. 

 

Finally, we find two major reasons for the good forecasting performance of the hybrid 

model. Firstly, the model allows both for the endogenous persistence in inflation and 

output and for the persistence of exogenous shock processes. This approach is commonly 

used in large-scale NK models, which forecast well. Secondly, our joint prior is well 

designed in allowing the parameters to be estimated fairly freely, while being sufficiently 

informative to keep the posterior distribution away from economically non-meaningful 

values. 

 

The remainder of the paper is organized as follows. In section 2, we discuss the model, 

the prior and the data. We continue the analysis by reporting the posterior distributions of 

the parameters. In section 3, we explain the forecasting comparison methods, and present 

and discuss the results of a forecasting exercise. Section 4 concludes the paper. 
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2. Likelihood, Prior, Data, and Posterior 
 

In this section we introduce a hybrid NK model. Its likelihood and the joint prior density 

function of the structural parameters are specified. We then describe the data and 

continue the analysis by reporting the posterior distributions of the parameters. 

 
2.1. Model Likelihood 
 
Let us consider the following hybrid NK model for period t inflation1, πt, and a measure 

of the output gap, xt, respectively, 
 

( ) tttttt xE ,11 1 πεγπαπαπ ++−+= −+ ,      (1) 

 

( ) ( ) txtttrtttt ERxxEx ,111 1 επβββ +−−−+= +−+ ,    (2) 

 

where parameters α and β satisfy the conditions 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Equation (1) is 

the hybrid New-Keynesian Phillips curve (NKPC), similar to that analyzed in Rudd and 

Whelan (2006), while Equation (2) is the aggregate demand equation. The model is very 

close to that carefully studied in Clarida et al. (1999). 

 

The disturbance terms επ,t and εx,t in Equations (1) and (2) are assumed to follow 

univariate AR(1) processes: 

 

 ttt u ,1,, ππππ ερε += − ,        (3) 

 

 txtxxtx u ,1,, += −ερε ,        (4) 

 

where ∈xρρπ , [–1,1], and uπ,t and ux,t are independently and identically distributed (i.i.d.) 

random variables with zero means and variances 2
πσ  and 2

xσ , respectively.  

 

                                                 
1Price inflation is defined as the percent change in the price level from t – 1 to t. 
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We close the model with the following Taylor rule for the nominal interest rate Rt,  

 

( )( ) tRttxtt RxR ,11 εργπγρ π +++−= − ,     (5)  

 

where the parameter ∈ρ [0, 1] measures the degree of interest rate smoothing, the 

disturbance term εR,t obeys εR,t = ρRεR,t-1 + uR,t, ∈Rρ [–1,1], and uR,t is an i.i.d. random 

variable with zero mean and variance 2
Rσ . 

 

The model in Equations (1)-(5) can be solved analytically by using standard first-order 

log-linear methods. In particular, this paper follows Lindé (2005) in applying the solution 

algorithm of Söderlind (1999). The solution gives the equilibrium law of motion for the 

relevant state variables. Specifically, the state equation is given by zt = Czt-1 + vt, where zt 

= (επ,t, εx,t, εR,t, πt-1, xt-1, Rt-1)′, vt = (uπ,t, ux,t, uR,t, 0, 0, 0)′ and C is a nonlinear function of 

structural parameters. Given that the shocks are normally distributed and that the vector 

of observables yt = (πt, xt, Rt)′  is a linear combination of the state variables, the common 

approach is to specify a recursive likelihood function for the model using the Kalman 

filter. The estimates of the model can then be obtained using standard non-linear 

optimization methods. 

 

Alternatively, the analytical solution of the model can be written as a full information 

system of the vector of observables; see Lindé (2005). Specifically,  

 

 ttyt CyCy εε+= −1 ,        (6) 

 

where εt = (επ,t, εx,t, εR,t)′ and Cy and Cε are partitions of the solution matrix C conformably 

with yt and εt, respectively. 

 

Then denote εt = Ρεt-1, where Ρ is a diagonal matrix whose diagonal entries are given by 

ρπ, ρx and ρR. The likelihood function for a sample of T observations can be written as 
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      ( ) ( ){ }'5.0exp; 12/ UUtrCYL TT −−− Λ×−Λ∝ εθ ,    (7) 

 

where θ = (β, α, βr, γ, γπ, γx, ρ, ρπ, ρx, ρR, σπ, σx, σR)′ is a vector comprising all model 

parameters and Λ a diagonal covariance matrix with diagonal entries 2
πσ , 2

xσ and 2
Rσ . 

Furthermore, the tth rows of (T×m) matrices Y and U are given by yt′ and ut′, respectively, 

where m is the number of observables and 

 

 ( )( )2
1

1
11

−
−

−
−− Ρ+Ρ+−= tytytt yCCCyCCCyCu εεεεε .    (8) 

 

In what follows, we adopt the full information approach of Equation (7), since the 

optimization algorithm based on it proved faster than the algorithm based on the 

recursive Kalman filter. Specifically, the Kalman filter approach requires roughly 4.5 

times as much CPU time for posterior simulation as our approach (with a sample of 200 

observations). Furthermore, both estimation methods were also found to produce similar 

results. 

 

The model described in Equations (1)-(5) contains 13 parameters, collected in θ. It is 

fairly easy to see that all parameters are identifiable from the data. However, the 

maximum likelihood (ML) estimation of the model turned out to be a challenging task. In 

particular, the ML estimates of the parameters were very sensitive to the starting values 

of maximization due to a multimodal likelihood. This problem remained even when the 

parameter space was restricted to an economically feasible region. To illustrate this 

problem we give an example from the previous literature. Lindé (2005) estimates a 

version of the model in Equation (1)-(5) on U.S. data with full information maximum 

likelihood (FIML).2 He finds positive and highly significant parameter estimates for the 

slope coefficients γ (≈ 0.05) and βr (≈ 0.09). However, there exists a local equilibrium in 

which the likelihood is higher than that in Lindé’s solution. At this equilibrium the slope 

coefficients γ and βr are still positive, but rather close to zero. According to Lindé (2005), 

                                                 
2 Lindé (2005) adds additional lags in the aggregate demand equation (2) and the monetary policy rule (3) 
to make disturbance terms εx,t and εR,t white noise. 



 6

the estimation can with different starting values converge to local equilibria with more or 

less plausible parameter values. To facilitate numerical maximization, we suggest using 

Bayesian methods, which allow incorporation of prior beliefs on parameters. While 

restricting, for example, the slope coefficients γ and βr to be equal to some theoretical 

values gives an example of a very strong prior belief, other kinds of beliefs cannot easily 

be considered in the classical framework.  

 

As seen in current literature, Bayesian methods have become a standard workhorse in 

analysing the NK models. Sungbae and Schorfheide (2007) provide an excellent review 

of the Bayesian methods developed in recent years to estimate and evaluate this class of 

models (see also Adolfson et al., 2007b). Rather than elaborating the details of Bayesian 

methods in analysing the NK models, which is already done in Sungbae and Schorfeide 

(2007), we discuss our choices of marginal prior distributions in the next subsection. 

 

2.2 Marginal Priors 

 

The starting-point in the Bayesian analysis is to determine the prior density function of 

the parameters, p(θ), which together with the likelihood function (7) yields the posterior 

density 

 

  ( ) ( ) ( )
( ) ( )∫

=
θθθ

θθθ
dYLp

YLpYq
;
; .       (9) 

 

A typical informative prior reflects the researcher’s subjective beliefs, summarizes 

information from the data not included in the estimation sample, or is based on both of 

them. Often the underlying economic theory provides a natural starting-point for the prior 

elicitation. We will use a very simple structural model as the basis of our prior 

knowledge. The model can be obtained by log-linearizing the aggregation of individual 

firms’ pricing decisions and the consumption Euler equation without using ad hoc 

assumptions such as backward inflation indexation or habit formation in consumption. 

Specifically, the prior means of the parameters in θ are based on the following model, 
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( )( )( )
tttt xbbE

κ
ζκκππ +−−

+= +
111

1 ,     (10) 

 

( )11 ++ −−= tttttt ERxEx π ,       (11) 

 

where b is the subjective discount factor, κ the frequency of price adjustment and ζ the 

elasticity of labor supply. Note that, for simplicity, a standard assumption on prior 

independence is used; see e.g. Zellner (1971). Del Negro and Schorfheide (2008) criticize 

this assumption as having the drawback that the resulting joint prior distribution may 

assign a non-negligible amount of probability mass to regions of the parameter space 

where the model is unreasonable. It is fairly easy to see that the undesirable property 

suggested by Del Negro and Schorfheide (2008) is not present in our joint prior. 

 

Table 1 lists the marginal prior distributions of the parameters. The beta prior 

distributions of the parameters α and β are concentrated towards unity, but are 

nonetheless only weakly informative (see Equations 10 and 11 for motivation). The prior 

mean of the slope coefficient βr is set at unity, while the prior mean of γ (1.00) can be 

obtained by setting the subjective discount factor, the elasticity of labor supply and the 

frequency of price adjustment at their standard calibrated values, e.g. 0.99, 2 and 0.57, 

respectively, in Equation (10). The prior variances of these parameters (γ, βr) are set to be 

small enough to keep the posterior distribution away from economically non-meaningful 

values. The prior means of the policy parameters γπ (1.50) and γx (0.50) are obtained from 

Taylor (1993).3 However, some interest rate smoothing is also allowed a priori. That is, 

the prior mean of ρ is set at 0.50. With the given prior variances, the marginal prior 

distributions of these parameters (γπ, γx, ρ) turned out to be practically noninformative.  

 

                                                 
3 In Taylor (1993), the interest rate and the inflation rate are expressed on a yearly basis. Since we express 
them on a quarterly basis, the prior mean of γx should be set at 0.125 (0.5 divided by 4). However, the 
standard deviation of the measure of the output gap used in Taylor (1993) is markedly higher than the 
standard deviation of the measure of the output gap used in this paper. Thus, the prior mean of 0.5 can be 
seen to be justified in our case. 
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The standard deviations σπ, σx, and σR are assumed to follow inverse-gamma distributions 

with shape and scale parameters yielding fairly loose priors. Finally, the normal prior 

distribution with zero mean and 0.752 variance is used for the transformed parameters 

 

π

π
π ρ

ρφ
−
+

=
1
1log

2
1 , 

x

x
x ρ

ρφ
−
+

=
1
1log

2
1  and 

R

R
R ρ

ρφ
−
+

=
1
1log

2
1 .   (12) 

 

These marginal priors force the posterior distributions of the autoregressive parameters 

ρπ, ρx and ρR to be located in the interval [–1, 1]. The marginal priors are also very loose, 

but nevertheless turned out to improve simulation efficiency. 

 

2.3 Data and Results 

 

Throughout this study the quarterly U.S. data from 1953:2 to 2004:4 are used. In addition 

to the entire sample, the models are estimated for the subsample periods 1953:2-1982:2 

and 1982:3-2004:4, capturing the “Great Inflation” and “Great Moderation” periods, 

respectively. This serves as a convenient check for robustness and parameter constancy. 

We are aware that the nominal interest rate, as the instrument of monetary policy, 

provides a reasonable description of the Federal Reserve’s operating procedures only 

after 1964; see Clarida et al. (1999). However, the first ten years of data are required to 

have a sufficiently long out-of-sample forecasting period. We form out-of-sample 

forecasts from 1976:4 to 2004:4 to have forecast series which covers a diverse spectrum 

of inflation volatility. 

 

The output gap is measured as a logarithmic difference between the actual and the 

potential output level. Two measures of actual output are used: real gross domestic 

product (GDP) and non-farm business (NFB) sector output. The logarithm of the 

potential output is proxied by the one-sided Hodrick-Prescott (HP) trend estimate in the 

model 
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gt = τt + η1t,         (13) 

 

(1 – L)2τt = η2t,         (14) 

 

where gt is the logarithm of the measure of actual output, L is a lag operator and η1t and 

η2t are mutually uncorrelated white noise sequences with the relative variance q = 

var(η1t)/var(η2t). The value of q = 0.67×10−3 is taken from Stock and Watson (1999). We 

use the previous approximation of potential output, since our focus is on forecasting and 

since it does not use the future values of the detrended variable, as the optimal two-sided 

trend extraction HP-filter for Equations (13) and (14) does.4 Furthermore, Stock and 

Watson (1999) find, after experimenting with several methods suitable for forecasting, 

that this procedure produces plausible gap estimates which work fairly well in inflation 

forecasting. 

 

The price inflation is measured as the log difference of the Implicit Price Deflator of 

GDP (NFB). All the series are seasonally adjusted. The source of the final vintage data is 

the FREDII databank of the Federal Reserve Bank of St. Louis, while that of the real-

time data is the Federal Reserve Bank of Philadelphia. The Federal Funds rate (FFR) is 

used as the instrument of monetary policy. The nominal interest rate and inflation rate 

series are measured as quarterly changes corresponding to their appearance in the 

structural model. Finally, the data are demeaned prior to estimation. 

 

                                                 
4 We also tested for detrending linear and quadratic trend methods which are suitable for forecasting, and 
found that the results presented are not sensitive to using these measures of potential output. Furthermore, 
we ran several regressions with the dataset used in Lindé (2005). The results of the regressions with our and 
his datasets were quite similar. 
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The estimation results5 are presented in Table 1, in the topmost panel (A) for the entire 

sample and in the lower panels (B and C) for the two subsample periods. The data appear 

to be particularly informative in all these samples. That is, the variances of the posterior 

distributions are found to be systematically smaller than the prior variances. The 

posteriors are also relatively stable between the data sets and the subsamples with two 

exceptions. The variances of the stochastic error processes seem to have fallen in the 

second subsample period. Sims and Zha (2006) and Smets and Wouters (2007) find 

similar evidence in U.S. data concerning the variance of monetary policy shocks. Our 

results also indicate that the Federal Reserve seemed to respond to the output gap and 

inflation more strongly during the second subsample period. The latter result is in 

accordance with that of Boivin and Giannoni (2006) and Smets and Wouters (2007), 

while Bernanke and Mihov (1998), Leeper and Zha (2003) and Canova (2006) find a 

relatively stable interest rate rule for the post WWII sample.  

 

The Taylor principle is fulfilled in all the samples. This contradicts Clarida et al. (2000), 

who report that the Federal Reserve responded less than one-to-one to inflation during the 

period 1960-1979 (pre-Volcker period), thus violating the Taylor principle. In line with 

our result, for example, Smets and Wouters (2007) and Rabanal and Rubio-Ramírez 

(2005) find the inflation coefficient to be greater than one. 

                                                 
5 To generate a Monte Carlo sample from the posterior of θ we used a version of the random walk 
Metropolis algorithm for Markov Chain Monte Carlo (MMCMC). The algorithm uses a multivariate 
normal distribution for the jump distribution on changes in θ. Our simulation procedure was as follows: we 
first simulated 10,000 draws using a diagonal covariance matrix with diagonal entries 0.00001 in the jump 
distribution. We then used these draws to estimate the posterior covariance matrix of θ and scale it by the 
factor 2.42/13, to obtain an optimal covariance matrix for the jump distribution; see e.g. Gelman et al. 
(2004). We continue by a simulating 10,000 draws and calculated a more accurate covariance matrix for θ. 
We repeated this roughly 2 times. We then added noise to the posterior median to obtain overdispersed 
starting values and simulated three chains of length 30,000.  We excluded the first 5000 simulations as a 
burn-in period in each chain and picked out every 25th draw from the Markov chain, yielding a sample of 
3000 draws, which economizes on storage space and reduces autocorrelation across draws. The 
convergence of the chains was checked using Gelman and Rubin’s convergence diagnostic R (also called 
‘potential scale reduction factor’); see Gelman and Rubin (1992).  The diagnostic values close to 1 indicate 
approximate convergence and values smaller than 1.1 are acceptable in most cases. In our case the 
diagnostic was estimated to be between 1.01 and 1.03 for all parameters and all models. The multivariate 
version of Gelman and Rubin's diagnostic proposed by Brooks and Gelman (1998) was between 1.01 and 
1.02 for each model; the convergence was thus fairly good. The frequencies of accepted jumps were 
roughly 0.21. Finally, the previous adaptive Metropolis algorithm is used because the covariance matrix 
estimate based on the local behaviour of the posterior at its highest peak turned out to give too optimistic a 
view of precision, and thus failed to yield an efficient covariance matrix for the normal jump distribution. 
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The point estimate of α (0.08) indicates a very insignificant role for the forward-looking 

behavior in the Phillips curve. This result is in accordance with those of Fuhrer (1997), 

Lindé (2005) and Rudd and Whelan (2006), but at odds with the results of Smets and 

Wouters (2003, 2005 and 2007), Adolfson et al. (2005) and Galí et al. (2005). The latter 

group of authors obtain relatively low parameter estimates for the degree of price 

indexation. Our estimates were obtained using a statistical measure of the output gap. 

Galí and Gertler (1999) and Galí et al. (2005) have suggested that the key reason for the 

lack of success of the forward-looking NKPC is that the detrended output is not a good 

proxy for real marginal costs. Contrary to their finding, Rudd and Whelan (2006), who 

used both the output gap and labor's share as a proxy for real marginal cost, found that 

the evidence for the forward-looking behavior in the NKPC was very weak. 

 

The point estimates of β are high, supporting the traditional forward-looking 

intertemporal Euler equation. In contrast, previous studies have typically observed a high 

degree of habit persistence; see e.g. Christiano et al. (2005), and Smets and Wouters 

(2007). However, there seems to be a trade-off between the forward-looking behavior of 

the demand equation and the persistence of autoregressive demand shocks. In our paper, 

the high autoregressive parameter of the exogenous shock process (ρx = 0.79) takes into 

account the degree of persistence observed in the data. In Smets and Wouters (2007), the 

habit formation of consumption takes into account the high persistence, while the 

autoregressive parameter of exogenous shocks is estimated to be relatively small (0.36). 

Smets and Wouters (2007), however, assume a high habit parameter 0.7 (with 0.01 prior 

variance), a priori.  Finally, the persistence of monetary policy shocks (ρR) is relatively 

low and equal to that estimated by Smets and Wouters (2007). 

 

3. Forecast Comparison 
 

In this section we first discuss the forecasting methods. We then provide some details for 

the forecasting comparison methods. Finally, we report the results of a forecasting 

exercise. 
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3.1 Measuring the Prediction Performance of Competitive Models 

 

It is fairly easy to see that Equation (6) can be treated as a reduced-form VAR with lag-

length 2 and normally distributed errors with covariance matrix Σ = CεΛCε′. Thus, the 

conditional predictive distribution of Equation (6) for the joint lead time 1 through H, 

p(yt+1,…,yt+H|Y,θ), is multivariate normal; see Lütkepohl (1993). This facilitates 

straightforward simulations from p(yt+1,…,yt+H|Y,θ), given the posterior p.d.f. of θ. The 

method for obtaining the posterior p.d.f. of θ was explained in the previous section.6 

 

The predictive performance of the hybrid NK model is compared to two Bayesian VARs 

and to naïve forecasts based on univariate random walks. The VAR systems consist of 

the same three variables, yt = (πt, xt, Rt)′, as the hybrid NK model. The data are not 

however demeaned prior to estimation. Diffuse and Normal-Diffuse priors are used for 

the parameters of the VAR models; see Kadiyala and Karlsson (1997) for discussion. 

Parameterization of the Normal-Diffuse prior is based on the assumption that the 

variables behave as if they had random walk components; see Litterman (1980). That is, 

the prior means are set at zero except for the elements corresponding to the first own lag 

of each variable. The prior variances of the parameters in the ith equation of a p-lag 

VAR (k = 1,…, p)7 are given by π1/k, π2si
2/sj

2k (i ≠ j) and π3si
2, for the parameters on own 

lags, foreign lags and a constant, respectively; see Litterman (1986) and Kadiyala and 

Karlsson (1997) for the motivation of this prior variance specification. A scale factor 

accounting for the different scales of the variables, si
2, is set at the residual standard error 

of equation i. The relative tightness of the prior is set at the commonly used values of 

hyper-parameters, π1 = 0.05 and π2 = 0.005; see e.g. Kadiyala and Karlsson (1997) and 

                                                 
6 In a rolling forecast exercise, a total of 113 chains were simulated from each model. The posterior 
estimates of θ are based on 30,000 draws. The first 6,000 draws were discarded as a burn-in period. To 
reduce the size of output files, every 12th draw was saved. The predictive likelihoods are thus computed on 
the basis of 2000 draws from the Markov chain. Geweke (1992) proposed a convergence diagnostic for 
Markov chains based on a test for the equality of means of the first and last parts of the chain (in this paper 
the first 10% and the last 50% of observations were used). The test statistic is a standard Z-score; the 
difference between the two sample means divided by its estimated standard error. The standard error is 
estimated from the spectral density at zero and so takes into account any autocorrelation. The hypothesis of 
the equality of means was not rejected for most parameters at the 5 % significance level. 
7 In our paper, p is set at 4. The fractional marginal likelihoods (FML) of Villani (2001), which were used 
in preliminary data analysis, supported this choice in over 99% of the estimated regressions. 
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Litterman (1986).  The tightness of the constant terms is set at π3 = 0.05, which shrinks 

the processes towards driftless univariate random walk. This prior specification provides 

a suitable description for the processes of inflation, nominal interest rate and detrended 

output. The posterior distributions were simulated using the Gibbs sampling algorithm8 of 

Kadiyala and Karlsson (1997) for the Normal-Diffuse prior specification and the 

matricvariate Student’s t distribution for the Diffuse prior specification. The predictive 

likelihoods were computed on the basis of 2,000 draws from the posteriors. 

  

The forecasting performance of the models is examined using the standard rolling 

forecast procedure, which entails making forecasts using data dated before the forecasting 

period. The forecasting procedure is as follows: using data up to a given time point T all 

the parameters in the model are estimated and the predictive distribution over yT+1,…,yT+H 

is computed.9 Moving forward one period, all the parameters are re-estimated and the 

forecast distribution of yT+2,…,yT+H+1 is computed. This is continued until no more data 

are available to compute the one-step-ahead forecast errors. The period over which the 

dynamic forecast distributions are computed in this manner is 1976:4 through 2004:4. In 

addition to the entire forecasts sample, the forecasts are also compared for the subsample 

period 1990:1-2004:4 (the sample period of Smets and Wouters, 2007). This serves as a 

check of robustness of the results and increases the comparability of our results to those 

in previous literature; especially in the paper of Smets and Wouters (2007). 

 

Adolfson et al. (2007a) recommend use of several univariate and multivariate measures 

to determine the accuracy of the point forecasts. The two commonly used univariate 

measures of accuracy, the root mean squared forecast error (RMSE) and the mean 

absolute forecast error (MAE) are computed as 

 

                                                 
8 2,200 draws were simulated and the first 200 draws from the Markov chain were neglected as a burning 
period. 
9 Note also that when the forecasts are evaluated the data is demeaned and the gap estimates are computed 
using the data up to time T. Furthermore, when the analysis is based on demeaned data, the posterior 
median forecasts are computed and the means are added to the median forecasts.  
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respectively, where ( ) thtihtiti yyhe ++ −= ,,, ˆ  is the ith element of the h-step-ahead forecast 

error, thty +ˆ  the h-step-ahead posterior median forecast of yt+h and Nh the number of the h-

step-ahead forecasts (h = 1,…,H). However, only the RMSEs are reported, since these 

two measures turned out to produce equal results. 

 

Two multivariate accuracy measures of point forecast, the log determinant statistic and 

the trace statistic, are also used in addition to the univariate measures. The multivariate 

statistics are based on the scaled h-step-ahead mean squared error (MSE) matrix  

 

 ( ) ( ) ( )heheNhT t

NT

Tt
thM

h

'
1

1 ⋅= ∑
−+

=

−  ,       (17) 

 

where ( ) ( )heMhe tt
1−=  and M is a scaling matrix accounting for the different scales of 

the variables being forecasted.10 As discussed in Adolfson et al. (2007a), the forecasting 

performance of the least predictable dimensions, that is, those corresponding to the 

highest eigenvalues of the square matrix TM(h), mainly determine the trace statistic 

tr[TM(h)] = λ1+…+λm, while the log determinant statistic log |TM(h)| = log λ1+…+log λm 

also takes into account the forecasting performance of the most predictable dimensions 

(the lowest eigenvalues). It is also obvious that when the lowest eigenvalue of TM(h) 

approaches zero, the most predictable dimension determines the log determinant statistic. 

 

                                                 
10 We follow Adolfson et al. (2007a) and set M equal to the diagonal of the sample covariance matrix of the 
yt from 1976:4 to 2004:4 (1990:1 to 2004:4). 
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Finally, in view of the increasing interest for forecast uncertainty, we also compare the 

prediction performance of the competitive models using the log predictive density score 

(LPDS), which is a measure of the accuracy of multivariate density forecasts; see 

Adolfson et al. (2007a). To be more concrete, let thty |ˆ + and Ωt+h|t denote the posterior 

mean and covariance matrix of the h-step-ahead forecast distribution pt(yt+h). Then, under 

the normality assumption of pt(yt+h), the LPDS of the h-step-ahead predictive density at 

time t is defined as 

 

( ) ( )htthtt ypyS ++ −= log2  

 ( ) ( ) ( )ththtthtththttht yyyym ++
−
++++ −Ω−+Ω+= ˆˆlog2log 1'π .  (18) 

 

We report the averages of the LPDSs over the evaluated h-step-ahead forecasts, 

 

 ( ) ( )∑
−+

=
+

−=
1

1
hNT

Tt
htth ySNhS .       (19) 

 

This measure takes into account the forecasting performance of the predictive density as 

a whole. 

 
3.2 Results 
 
Figures 1-3 summarize the forecasting performance of the competitive models. 

Specifically, Figure 1 reports the RMSEs in quarterly percentage terms, Figure 2 the log 

determinant and the trace statistics, and Figure 3 the averages of the LPDS statistic. 

Figures 4-6 gives the corresponding statistics for the forecasts based on real-time data. 

The results based on the NFB data were similar to those based on the GDP data and in 

order to save space we report only the latter. All the statistics are reported at the 1 to 12 

quarters horizons. 11 In the figures, a small value favors the model. 

 

                                                 
11 We do not report the marginal likelihood, since it captures only the one-step-ahead predictive 
performance of the full model and is therefore too restricted for forecasting comparison. 
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A few key findings emerge from the figures. Firstly, although the models are very simple 

they seem to forecast particularly well. According to the RMSEs, the small-scale models 

appear to produce more accurate point forecasts, on both inflation and the Federal Funds 

rate,12 than the large-scale Bayesian VAR of Smets and Wouters (2007). In addition, the 

models turned out to produce real-time inflation forecasts which outperformed the naïve 

forecasts up to six quarters in the 1990:1-2004:4 subsample (see Figure 4). This result 

gives some perspective to the forecast accuracy of the hybrid model, when we take into 

account the finding of Atkeson and Ohanian (2001) that the one-year-ahead Federal 

Reserve’s Greenbook inflation forecast has not been better on average than the naïve 

forecast since 1984. 

 

Secondly, all the forecast comparison methods appear to yield similar conclusions. In the 

entire sample the forecasts of the hybrid model outperform those of the Bayesian VARs, 

while in the low inflation subsample (1990:1-2004:4) all the multivariate forecasting 

methods seem to produce equally accurate forecasts. Thus, the restrictions (stationary and 

cross-equation) implied by the hybrid model appear to help in forecasting especially well 

during high inflation periods. According to the univariate and multivariate measures of 

forecast accuracy, this result is most obvious at medium-term horizons. One exception is 

the nominal interest rate. The hybrid model forecasts this series very well in all samples 

and forecasting horizons (see Figure 1 and 4). In particular, all these results hold for both 

ex post data and real-time data. 

 

Taking a closer look at the figures we see that the hybrid model is superior to the naïve 

forecasts at all samples and horizons, except for the longer horizon inflation forecasts in 

the low inflation subsample. In this subsample, the Bayesian VARs also give slightly 

better inflation and output gap forecasts than the hybrid model, according to the RMSEs. 

However, the improvement in the predictability of the variables is clearly negligible. 

 

                                                 
12 The GDP forecasts are not directly comparable to results of Smets Wouters (2007), since they use the log 
difference of GPD series, while we use the GDP gap series. 
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It also seems that the shrinking prior does not improve the forecasting performance of 

VARs in terms of point forecasting accuracy. This is not surprising, since the VAR 

systems are particularly parsimonious and, hence, do not suffer from the over-

parameterization problem. However, the LPDS statistics (see Figures 3 and 6) support a 

slightly better forecasting density for the Normal-Diffuse prior specification in the low 

inflation subsample. Over the entire sample the LPDSs support Bayesian VARs at the 

shorter forecasting horizons (1 to 4 quarter); however, the hybrid model again 

outperforms the VARs at the longer horizons. 

 

In sum, it seems fair to say that the simple hybrid NK model captures the predictable 

behavior of the three U.S. key macroeconomic variables very well. The reason for its 

good forecasting performance may be that the model allows both for the endogenous 

persistence in inflation and output and for the persistence of the exogenous shock 

processes. This approach is commonly used in large-scale NK models, which forecast 

well. Our joint prior is also well designed in allowing the parameters to be estimated 

fairly freely, while being informative enough to keep the posterior distribution away from 

economically non-meaningful values. 

 

4. Conclusion 
 

Several recent papers have suggested different ways to improve the forecast performance 

of New Keynesian models. Unfortunately, improvement in fit is achieved at the cost of 

increasing the complexity of model mechanisms, which reduces the practicability of these 

approaches. This paper, in contrast, has shown that the very simple hybrid New 

Keynesian model of Clarida et al. (1999) can provide forecasts comparable to those based 

on commonly used benchmark models such as reduced-form Bayesian VARs and 

univariate random walks. 

 

Our forecasting evidence indicates that the restrictions implied by the hybrid model work 

especially well in high inflation regimes. According to several univariate and multivariate 

measures of forecast accuracy, the forecasts of the hybrid model outperform those of the 



 18

Bayesian VARs when high inflation periods are forecast. In the low inflation forecast 

subsample, the methods produce equally accurate forecasts. One exception was the 

nominal interest rate. The hybrid model seems to forecast this series very well in all 

samples and horizons. The hybrid model also predicts more accurately than the naïve 

forecasts based on univariate random walks. Finally, we note that all these findings hold 

for both ex post and real-time data. 
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Table 1. Priors and Posteriors 
 
____________________________________________________________________________________________________________________________________ 

 Prior Distr. Posterior Distr. (BKT) Posterior Dist. (NFB) 
___________________________________________________________________________________________________________________________________ 

Panel A: Sample 1954:2 – 2004:4 
____________________________________________________________________________________________________________________________________ 

Par. Distr. Mean St.Dev. Median 5% 95% Median 5% 95% 
α Beta 0.67 0.24 0.08 0.02 0.19 0.08 0.02 0.18 
γ Gamma 1.00 0.32 0.03 0.02 0.05 0.03 0.02 0.05 
β Beta 0.67 0.24 0.75 0.65 0.84 0.74 0.65 0.83 
βr Gamma 1.00 0.32 0.10 0.05 0.16 0.12 0.07 0.20 
γπ Gamma 1.5 0.61 1.82 1.50 2.32 1.82 1.46 2.34 
γx Gamma 0.5 0.35 0.59 0.40 0.87 0.49 0.33 0.76 
ρ Beta 0.5 0.22 0.87 0.83 0.91 0.89 0.85 0.92 
ρπ Normal 0 0.54 -0.38 -0.46 -0.28 -0.42 -0.50 -0.33 
ρx Normal 0 0.54 0.79 0.67 0.87 0.78 0.66 0.86 
ρR Normal 0 0.54 0.12 -0.00 0.24 0.11 -0.00 0.24 
σπ Invgam. 0.40 3.96 0.29 0.26 0.32 0.34 0.31 0.37 
σx Invgam. 0.40 3.96 0.16 0.12 0.20 0.21 0.16 0.28 
σR Invgam. 0.40 3.96 0.22 0.20 0.24 0.22 0.20 0.24 

____________________________________________________________________________________________________________________________________ 
Panel B: Sample 1954:2 – 1982:2 

____________________________________________________________________________________________________________________________________ 
α Beta 0.67 0.24 0.08 0.02 0.20 0.08 0.02 0.21 
γ Gamma 1.00 0.32 0.05 0.03 0.07 0.05 0.03 0.07 
β Beta 0.67 0.24 0.79 0.66 0.94 0.77 0.66 0.92 
βr Gamma 1.00 0.32 0.19 0.11 0.32 0.21 0.12 0.35 
γπ Gamma 1.5 0.61 1.86 1.46 2.46 1.81 1.41 2.47 
γx Gamma 0.5 0.35 0.52 0.29 0.86 0.47 0.25 0.77 
ρ Beta 0.5 0.22 0.84 0.78 0.90 0.87 0.80 0.92 
ρπ Normal 0 0.54 -0.35 -0.48 -0.21 -0.41 -0.52 -0.28 
ρx Normal 0 0.54 0.77 0.60 0.87 0.76 0.60 0.87 
ρR Normal 0 0.54 0.11 -0.06 0.29 0.10 -0.06 0.27 
σπ Invgam. 0.40 3.96 0.34 0.30 0.39 0.41 0.36 0.46 
σx Invgam. 0.40 3.96 0.24 0.17 0.34 0.32 0.22 0.43 
σR Invgam. 0.40 3.96 0.28 0.25 0.31 0.28 0.25 0.32 

____________________________________________________________________________________________________________________________________ 
Panel C: Sample 1982:3  – 2004:4 

____________________________________________________________________________________________________________________________________ 
α Beta 0.67 0.24 0.08 0.02 0.20 0.08 0.02 0.20 
γ Gamma 1.00 0.32 0.05 0.03 0.08 0.04 0.03 0.06 
β Beta 0.67 0.24 0.83 0.70 0.97 0.86 0.73 0.98 
βr Gamma 1.00 0.32 0.19 0.11 0.32 0.23 0.13 0.37 
γπ Gamma 1.5 0.61 2.65 1.93 3.64 2.63 1.88 3.75 
γx Gamma 0.5 0.35 0.89 0.57 1.35 0.69 0.42 1.08 
ρ Beta 0.5 0.22 0.90 0.86 0.93 0.91 0.87 0.94 
ρπ Normal 0 0.54 -0.35 -0.50 -0.17 -0.37 -0.50 -0.22 
ρx Normal 0 0.54 0.88 0.79 0.94 0.88 0.80 0.94 
ρR Normal 0 0.54 0.29 0.11 0.47 0.34 0.16 0.52 
σπ Invgam. 0.40 3.96 0.22 0.19 0.25 0.24 0.20 0.28 
σx Invgam. 0.40 3.96 0.09 0.06 0.12 0.11 0.08 0.16 
σR Invgam. 0.40 3.96 0.12 0.10 0.13 0.11 0.10 0.13 

____________________________________________________________________________________________________________________________________ 
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Figure 1. The Root mean squared forecast errors for the competitive models 
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Figure 2. The log determinant statistics and the trace statistics for the competitive models 
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Figure 3. The average log predictive density scores for the competitive models 
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Figure 4. The Root mean squared forecast errors for the competitive models (real-time data) 
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Figure 5. The log determinant statistics and the trace statistics for the competitive models l (real-time data) 
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Figure 6. The average log predictive density scores for the competitive models (real-time data) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 26

 
References: 
 
Adolfson, Malin, Stefan Laséen, Jesper Lindé, and Mattias Villani, “Evaluating an 
Estimated New Keynesian Small Open Economy Model,” Journal of Economic 
Dynamics and Control forthcoming (2008). 
 
Adolfson, Malin, Jesper Lindé, and Mattias Villani, “Forecasting Performance of an 
Open Economy DSGE Model,” Econometric Reviews 26:2-4 (2007a), 289–328. 
 
Adolfson, Malin, Stefan Laséen, Jesper Lindé, and Mattias Villani, “The Role of Sticky 
Prices in an Open Economy DSGE Model: A Bayesian Investigation,” Journal of the 
European Economic Association 3:2-3 (2005), 444–457. 
 
Adolfson, Malin, Jesper Lindé, and Mattias Villani, “Bayesian Inference in DSGE 
Models - Some Comments,” Econometric Reviews 26:2-4 (2007b), 173–185. 
 
Atkeson, Andrew, and Lee, E. Ohanian, “Are Phillips Curves Useful for Forecasting 
Inflation?,” Federal Reserve Bank of Minneapolis Quarterly Review 25:1 (2001), 2–11. 
 
Bernanke, Ben, and Ilian Mihov, “Measuring Monetary Policy,” The Quarterly Journal 
of Economics 113:3 (1998), 869–902. 
 
Boivin, Jean, and Marc P. Giannoni, “Has Monetary Policy Become More Effective?,” 
The Review of Economics and Statistics 88:3 (2006), 445–462. 
 
Brooks, Stephen P., and Andrew Gelman, “General Methods for Monitoring 
Convergence of Iterative Simulations,” Journal of Computational and Graphical 
Statistics 7:4 (1998), 434–455. 
 
Canova, Fabio, “Monetary Policy and the Evolution of the US Economy,” CEPR 

Discussion Papers No. 5467 (January 2006).  

 
Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans, “Nominal Rigidities 
and the Dynamic Effects of a Shock to Monetary Policy,” Journal of Political Economy 
113:1 (2005), 1–46. 
 
Clarida, Richard, Jordi Galí, and Mark Gertler, “The Science of Monetary Policy: A New 
Keynesian Perspective,” Journal of Economic Literature 37 (December 1999), 1661–
1707. 
 
Clarida, Richard, Jordi Galí, and Mark Gertler, “Monetary Policy Rules and 
Macroeconomic Stability: Evidence and Some Theory,” Quarterly Journal of Economics 
115:1 (2000), 147–180. 
 



 27

Del Negro, Marco, and Frank Schorfheide, “Priors from General Equilibrium Models for 
VARs,” International Economic Review 45:2 (2004), 643–673. 
 
Del Negro, Marco, Frank Schorfheide, Frank Smets, and Ralf Wouters, “On the fit of New-
Keynesian Models,” Journal of Business & Economic Statistics 25:2 (2007), 143–162. 
 
Del Negro, Marco, and Frank Schorfheide, “Forming Priors for DSGE Models,” 
Manuscript (2008). 
 
Fuhrer, Jeffrey C., “The (Un)Importance of Forward-looking Behavior in Price 
Specifications,” Journal of Money, Credit and Banking 29:3 (1997), 338–350. 
 
Galí, Jordi, and Mark Gertler, “Inflation Dynamics: A Structural Econometric Analysis,” 
Journal of Monetary Economics 44:2 (1999), 195–222. 
 
Galí, Jordi,  Mark Gertler, and J. David López-Salido, “Robustness of the Estimates of 
the Hybrid New Keynesian Phillips Curve,” Journal of Monetary Economics 52:6 (2005), 
1107–1118. 
 
Gelman, Andrew, and Donald B. Rubin, “Inference from Iterative Simulation Using 
Multiple Sequences,” Statistical Science 7:4 (1992), 457–472. 
 
Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin, Bayesian Data 
Analysis 2nd edition (Boca Raton: Chapman & Hall/CRC, 2004). 
 
Geweke, John, “Evaluating the Accuracy of Sampling-based Approaches to Calculating 
Posterior Moments” (pp. 169–193), in José M. Bernardo, James O. Berger, A. Philip 
David and Adrian F.M. Smith (Eds.), Bayesian Statistics, Vol. 4 (Oxford Oxford 
University Press, UK, 1992). 
 
Kadiyala, K. Rao and Sune Karlsson, “Numerical Methods for Estimation and Inference 
in Bayesian VAR-Models,” Journal of Applied Econometrics 12:2 (1997), 99–132. 
 
Leeper, Eric, and Tao Zha, “Modest Policy Interventions,” Journal of Monetary 
Economics 50:8 (2003), 1673–1700. 
 
Lindé, Jesper, “Estimating New-Keynesian Phillips Curves: A Full Information 
Maximum Likelihood Approach,” Journal of Monetary Economics 52:6 (2005), 1135–
1149. 
 
Litterman, Robert B., “A Bayesian Procedure for Forecasting with Vector 
Autoregressions,” Mimeo, Massachusetts Institute of Technology (1980). 
 
Litterman, Robert B., “Forecasting with Bayesian vector autoregressions - Five years of 
experience,” Journal of Business and Economic Statistics 4:1 (1986), 25–38. 
 



 28

Lütkepohl, Helmut, Introduction to Multiple Time Series Analysis, 2nd edition 
(New York: Springer-Verlag, 1993). 
 
Rabanal, Pau, and Juan F. Rubio-Ramírez, “Comparing New Keynesian Models of the 
Business Cycle: A Bayesian Approach,” Journal of Monetary Economics 52:6 (2005), 
1151–1166. 
 
Rudd, Jeremy, and Karl Whelan, “Can Rational Expectations Sticky-Price Models 
Explain Inflation Dynamics?,” American Economic Review 96:1 (2006), 303–320. 
 
Sims, Christopher, and Tao Zha, “Were There Regime Switches in U.S. Monetary 
Policy?,” American Economic Review 96:1 (2006), 54–81. 
 
Smets, Frank, and Ralf Wouters, “An Estimated Dynamic Stochastic General Equilibrium 
Model of the Euro Area,” Journal of the European Economic Association 1:5 (2003), 
1123–1175. 
 
Smets, Frank, and Ralf Wouters, “Comparing Shocks and Frictions in US and Euro Area 
Business Cycles: a Bayesian DSGE Approach,” Journal of Applied Econometrics 20:2 
(2005), 161–183.  
 
Smets, Frank, and Ralf Wouters, “Shocks and Frictions in US Business Cycles: A 
Bayesian DSGE Approach,” American Economic Review 97:3 (2007), 586–606. 
 
Stock, James, and Mark Watson, “Forecasting Inflation,” Journal of Monetary 
Economics 44:2 (1999), 293–335. 
 
Sungbae, An, and Frank Schorfheide, “Bayesian Analysis of DSGE Models,” 
Econometric Reviews 26:2-4 (2007), 113–172. 
 
Söderlind, Paul, “Solution and Estimation of RE Macromodels with Optimal Policy,” 
European Economic Review 43:4-6 (1999), 813–823. 
 
Taylor, John B., “Discretion Versus Policy Rules in Practice,” Carnegie-Rochester 
Conference Series on Public Policy 39 (December 1993), 195–214. 
 
Villani, Mattias, “Fractional Bayesian Lag Length Inference in Multivariate 
Autoregressive Processes,” Journal of Time Series Analysis 22:1 (2001), 67–86. 
 
Zellner, Arnold, “An Introduction to Bayesian Inference in Econometrics” (New York 
John Wiley and Sons, Inc., 1971). 
 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Shift: none
     Normalise (advanced option): 'improved'
      

        
     32
            
       D:20080617140126
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     1
     0
     Full
     280
     203
    
     None
     Down
     5.6693
     0.0000
            
                
         Both
         284
         AllDoc
         299
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     29
     28
     29
      

   1
  

 HistoryList_V1
 qi2base



