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Abstract

When solving multiobjective optimization problems with interactive meth-
ods, a decision maker (DM) directs the search for the most preferred Pareto
optimal solution with his/her preferences. We propose a tool that can be used
to support the DM. With this tool, the DM can conveniently learn about lo-
cal trade-offs between the conflicting objectives and judge whether they are
worthwhile. The tool is based on an idea where the DM is able to vary
a selected Pareto optimal objective vector. The varied vector is treated as
a reference point which is then projected to the tangent hyperplane of the
Pareto optimal set at the Pareto optimal solution selected. This information
can be used to reflect what kind of Pareto optimal solutions and trade-offs
are available in a local neighborhood of the solution. This tool is especially
useful when trade-off analysis must be carried out fast and without increas-
ing computation workload. We also propose a applicability study method for
the trade-off analysis tool proposed and demonstrate the usage of the ideas
through an academic example problem.

Keywords: multicriteria optmization, interactive methods, reference point method,
trade-off analysis, MCDM, Pareto optimality
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1 Introduction

When solving multiobjective optimization problems, we must optimize several con-
flicting objective functions simultaneously. Because of the conflicting nature of the
objectives, we can identify compromises, so-called Pareto optimal solutions, where
we cannot improve any objective without impairing at least one of the others. The
purpose of multiobjective optimization methods is to offer support and ways to find
the best compromise solution. In this, a decision maker (DM) and his/her preference
information play an important role. By a DM we mean a person who is an expert in
the domain of the problem considered and who typically is responsible for the final
solution.

Multiobjective optimization methods can be classified in many ways (see e.g.
[6]). A widely used class of methods is interactive methods where the DM iteratively
directs the solution procedure by indicating his/her preferences related to solution
candidates shown. The method then utilizes the given preference information and
tries to produce new solution candidates which are more satisfying for the DM. The
iteration continues until the DM is satisfied or likes to stop the solution process.
The key feature of interactive methods is that during the solution process the DM
is able to learn about the underlying problem as well as his/her own preferences.

So far, many interactive methods have been proposed in the literature (see e.g.
[6]). They differ from each other, for example, by the type of preference information
utilized. It is important that the DM is able to specify the kind of information (s)he
is asked to and that the concepts used are familiar to him/her. Reference point based
interactive methods are popular because a reference point has a natural meaning for
the DM. It consists of desirable objective function values, so-called aspiration levels
(for each objective). After the DM has specified the reference point, the feasible
Pareto optimal solution is found that best corresponds to it. If the DM is not
satisfied, (s)he can specify another reference point. However, these methods are
sometimes criticized for the fact that they do not provide support for the DM how
to change the reference point in order to get more preferred solutions.

In this paper, we propose a trade-off analysis tool that can offer for the DM a
way to analyze solution candidates. This tool is best suited for local analysis of
solutions where the DM is interested in studying whether it is worthwhile to search
for a better solution in a neighborhood of some solution. This study is strongly
motivated by the experiences given by several DMs who have used the interactive
NIMBUS method (see e.g.[6, 7]). NIMBUS is a classification based method and
it is shown in [7] how it is closely related to reference point based methods. The
ideas proposed are directed to users of both classification and reference point based
methods. The motivation here is that real DMs in certain cases miss additional
local trade-off information so that they could get to know how values of objectives
are changing, in other words, in which directions to direct the solution process so
that they could avoid trial-and-error, that is, specify some preference information
so that more preferred solutions will be generated. Especially, in the case where
the underlying problem is computationally demanding, it does not necessarily make
sense to compute additional solutions around some solution just to grasp an idea
of what kind of trade-offs there are available because such an approach is too time-
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consuming. Instead, the local trade-off analysis is computationally very inexpensive
because it utilizes information that is already available as a byproduct of previous
optimizations.

Examples of interactive methods that utilize objective trade-off information in-
clude ISWT [1], SPOT [9], GRIST [12], STOM [8] and IMOOP [10]. By objective
trade-off information we mean that information is based on the properties of the
underlying problem. In the ISWT, SPOT, and GRIST methods objective trade-offs
are in crucial role, that is, these methods use trade-off information explicitly when
they determine Pareto optimal solutions based on the DM’s preferences. In the
STOM method trade-offs can be also used explicitly but the DM is allowed to make
this decision, that is, objective trade-offs are not necessarily taken account when
determining Pareto optimal solutions. The IMOOP method gives us an example of
a method where objective trade-off information is offered for the DM just as addi-
tional information that can be used in analysis purposes but it is not explicitly used
when Pareto optimal solutions are determined. In other words in IMOOP the DM is
free to use shown trade-off information as (s)he likes. See [2] for more details about
different kind of interactive multiobjective methods that utilize objective trade-offs.

The trade-off analysis tool to be presented in this paper is a bit similar to the
automatic trade-off concept in the interactive STOM method where the DM classifies
objectives at each iteration into three classes (improved, relaxed, or accepted as
they are). In STOM, a central idea is that the DM only gives desirable amounts
of change for the objectives to be improved and objective trade-off information is
used to estimate how much relaxation is needed in the others to obtain the desired
improvements. The aim is to decrease the cognitive burden set on the DM by asking
less preference information.

The main ideological difference between STOM and our approach is that we aim
at providing the DM support for specifying the classification, that is, which objec-
tives to improve or to relax. In our approach, the DM is assumed to determine
desires of how to change objective values to get a more preferred solution. However,
instead of using this preference information to generate new Pareto optimal solu-
tions, we use trade-off analysis to see whether desired improvements are possible.
In other words, we use a linear approximation of the solution set to reflect local
trade-offs near some solution of a nonlinear problem. Because trade-off analysis is
in our approach computationally inexpensive, we can save in computational cost.
Furthermore, it may take time to generate the new solution. With our approach,
the DM can get confirmation whether it really makes sense to go to the direction
specified and wait for the new solution to be produced. When the DM has found an
interesting direction the computation can be executed to produce a Pareto optimal
solution.

The authors have already shortly introduced initial ideas behind the trade-off
analysis tool in [3]. However, in this paper these ideas are developed further and
discussed in more detail. In addition a supplementary applicability study method is
included.

In what follows, in Section 2 we briefly present concepts and notation. The trade-
off analysis tool is introduced in Section 3. In Section 4, we propose an approach
how to study an applicability of the trade-off analysis. The usage of the method
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proposed is demonstrated through an example in Section 5. Finally, we discuss the
potential of the tool in Section 6 and conclude in Section 7.

2 On multiobjective optimization and interactive

methods

We consider nonlinear multiobjective optimization problems in the form

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S (1)

with k conflicting twice differentiable objective functions fi which are minimized
subject to decision vector x belonging to a feasible set S. For each x ∈ S we
can use a mapping f : Rn → Rk to form a feasible objective vector z = f(x) =
(f1(x), . . . , fk(x))T belonging to an objective space Rk. The image f(S) ⊆ Rk of the
feasible set is called a set of feasible objective vectors.

For the DM, potentially interesting solutions of problem (1) can by identified
by using the concept of Pareto optimality. A decision vector ẋ ∈ S and the corre-
sponding objective vector f(ẋ) are Pareto optimal if there exists no other decision
vector x ∈ S such that fi(x) ≤ fi(ẋ) for all i = 1, . . . , k and at least one of the
inequalities is strict. In what follows, we refer to a Pareto optimal decision vector
and the corresponding objective vector by the term Pareto optimal solution. If a
solution is Pareto optimal, we say that it is not dominated by any other feasible
solution, that is, it is nondominated. In this text, when it is said that an objective
vector is dominated or nondominated we mean the dominance in the sense of Pareto
optimality. In objective space Pareto optimal objective vectors can be identified by
using positive orthant cone Rk

+ =: {z ∈ Rk : zi ≥ 0, for i = 1, . . . , k} as a dom-
inance structure. If ż is Pareto optimal then (ż − Rk

+) ∩ (f(S) \ {ż}) = ∅. We
use a term Pareto surface for the set P = f(E), where E ⊆ S is the set of Pareto
optimal solutions of problem (1). A decision vector ẋ ∈ S is weakly Pareto optimal
if there does not exist another decision vector x ∈ S such that fi(x) < fi(ẋ) for
all i = 1, . . . , k. The set of Pareto optimal solutions is always a subset of the set of
weakly Pareto optimal solutions.

A general interactive multiobjective optimization method can be outlined as
follows:

1. Find an initial Pareto optimal solution.

2. Interact with the DM.

3. Obtain a Pareto optimal solution. If the new solution or some of the previous
solutions is acceptable to the DM, stop. Otherwise, go to step 2.

The main advantage of this kind of interactive methods is that the DM is allowed to
guide the solution procedure to areas of the feasible set where the most interesting
Pareto optimal solutions are located.

Here we concentrate on reference point and classification based methods. To
be more specific, we assume that an achievement scalarizing problem [11] is used

4



in steps 1 and 3 to produce (weakly) Pareto optimal solutions for problem (1). In
other words, we solve the problem

minimize α
subject to wi(fi(x)− z̄) ≤ α, for i = 1, . . . , k

x ∈ S, α ∈ R.
(2)

For brevity of presentation, we discuss a scalarizing formulation that generates
weakly Pareto optimal solutions. Weak Pareto optimality can be avoided, for in-
stance, by considering an augmented version (see e.g. [6]). In step 2 of a reference
point based interactive procedure, the DM sets aspiration levels z̄i to indicate desir-
able levels of the objective functions fi, for i = 1, . . . , k . These values can be used
to form a reference point z̄ = (z̄1, . . . , z̄k)

T . The scaling coefficients wi > 0 can be
used to determine how the given reference point z̄ is projected to the set of Pareto
optimal solutions. One possible scaling is wi = 1/(zup

i −zlow
i ), where zup

i and zlow
i are

approximated (computed or given by the DM) high and low value for the objective
function fi attainable in the Pareto optimal set, respectively. In what follows, when
we say that ẋ is an optimal solution of (2) we implicitly refer to solution (ẋ, α̇).

3 Interactive trade-off analysis tool

Assuming the problem is properly defined and the DM is rational, the DM considers
Pareto optimal solutions in multiobjective optimization methods. Because of the
definition of Pareto optimality, moving from some Pareto optimal solution to another
one always necessitates some trade-off in objective function values. When using an
interactive method, the DM might be interested in knowing what kind of trade-off
takes place if some particular Pareto optimal solution is altered, that is, what kind of
Pareto optimal solutions exists in a neighborhood of the Pareto optimal solution in
investigation. From the practical point of view, it is not always necessarily efficient
or purposeful to carry out accurate computations to reflect what is happening in
the set of Pareto optimal solutions. In such a case an approximation of the Pareto
surface can be used to study interconnections between the objectives.

3.1 Linear approximation

Let us assume that a Pareto optimal solution ẋ for problem (1) is produced by solving
problem (2) and the DM wants to study the trade-offs in a local neighborhood of
ż = f(ẋ) in order to determine in which direction to move from this solution to
get a more satisfactory solution. When available, a tangent hyperplane T (ż) for the
Pareto surface P at ż can be used to reflect trade-off information. In other words, we
produce a linear approximation for the nonlinear (possibly also nonconvex) Pareto
surface. In what follows, we refer to T (ż) with a term trade-off plane. The trade-off
interpretation of Karush-Kuhn-Tucker (KKT) multipliers related to a solution of
problem (2) can be used to obtain this trade-off plane [14], [15].

Theorem 3.1 (Partial trade-off using KKT multipliers). Let ẋ be a solution of (2)
for some w and z̄, with optimal KKT multipliers λi related to constraints wi(fi(x)−
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z̄i) ≤ α, for i = 1, . . . , k. Let us assume that 1. second-order KKT sufficiency
conditions are satisfied at ẋ, 2. at ẋ, gradients of active constraints are linearly
independent and 3. all active constraints have strictly positive KKT multipliers at
ẋ. Then partial trade-off rate involving objectives f1 and fi at ẋ is ∂f1(ẋ)/∂fi =
−(λiwi)/(λ1w1), for i = 2, . . . , k.

Partial trade-off rate information can be interpreted as a linear approximation
for a relative change in the value of f1 when the value of fi (i = 2, . . . , k) is changing
by one unit and at the same time all the other objectives fj (j = 2, . . . , k, j 6= i)
remain at their current levels. This information can be presented in the form of
partial trade-off vectors t1i(ẋ) ∈ Rk, where the first component is −(λiwi)/(λ1w1),
i:th component is 1, and the other components (j = 2, . . . , k ,j 6= i) are zero. We
can directly conclude that vector n = −(λ1w1, λ2w2, . . . , λkwk)

T is orthogonal to
t1i(ẋ), for all i = 2, . . . , k. In other words, we can express a normal vector in an
explicit form whenever we are able to compute partial trade-off vectors (see e.g. [12]
and [13]).

The normal vector n for the Pareto surface P at some ż ∈ P can be used to
characterize objective vectors z ∈ T (ż) ⊂ Rk in the neighbourhood of ż in the form
nT (z − ż) = 0. Because the plane T (ż) is giving only a linear approximation for
the Pareto surface, we must point out that in the nonlinear case a vector z ∈ T (ż)
is most likely not Pareto optimal (when z 6= ż), and it might be even infeasible.
However, we can use T (ż) to roughly reflect what kind of Pareto optimal objective
vectors are available in a local neighborhood of ż.

In this paper, we restrict our consideration to Pareto optimal solutions of problem
(1) where it is possible to compute the trade-off plane T (ż) using KKT multipliers
(see e.g. [5] how the assumptions in Theorem 3.1 can be verified). Based on this
information, the DM can judge whether more preferred solutions could be located in
a neighborhood of the Pareto optimal solution ż, in other words, in which directions
to look for better solutions by executing steps of the actual interactive procedure
(without approximation). Next we propose a trade-off analysis tool and discuss it
in some more detail. We assume that KKT multipliers are available as byproducts
after solving problem (2).

3.2 Trade-off analysis tool

Let us assume that the DM wants to study the trade-off behavior in a local neigh-
borhood of a Pareto optimal solution ż. The DM is assumed to determine desires of
how to change objective values to get a more preferred solution. However, instead of
using this preference information to generate new Pareto optimal solutions, we use
trade-off analysis to study whether desired improvements are possible. This analy-
sis is computationally inexpensive because it is based on information obtained from
KKT multipliers related to the solution ż. Whenever we use appropriate numerical
solver to solve problem (2) constraint related KKT multipliers can be obtained as
a byproduct. Therefore, with the trade-off tool, the DM can conveniently and fast
get confirmation whether it really makes sense to go to the direction specified. Al-
ternatively, if the solution is far from what was expected, the DM may alter one’s
preferences.
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In what follows, a vector d ∈ Rk (expressed implicitly by the DM) is used to
indicate desired changes in the objective function values at ż. This determines a
reference point z̄ = (ż + d) which can be used in a linear achievement scalarizing
problem

minimize α
subject to wi(zi − (żi + di)) ≤ α, for i = 1, . . . , k

nT (z − ż) = 0
z ∈ Rk, α ∈ R.

(3)

In other words, the Pareto surface is temporarily replaced by a linear approximation
at ż (see Figure 1) and the solution which is in some sense closest to the reference
point locating on this trade-off plane (in Figure 1 this solution is denoted by z̃) is
found and shown to the DM. We call this solution an approximated Pareto optimal
solution. This gives some rough information for the DM about the feasibility of
the desires expressed in the reference point. Because the approximated solution
corresponding to the new reference point is obtained fast, the DM can judge in
real-time whether (s)he would like to get the actual Pareto optimal solution, that
is, solve problem (2) corresponding to the reference point z̄.

It is preferable, even thought not necessary, that the variation d is set in such a
way that it obeys the concept of Pareto optimality, that is, if value of some objective
is improved then the value of at least one objective should be degraded. This is an
important issue because if the preferences are set according to the concept of Pareto
optimality it is more likely that the DM can experience that the method is able
to produce Pareto optimal solutions which corresponds to preferences expressed
(feeling of control). Problem (3) has a unique solution except if the normal vector
n is parallel to some of the coordinate axis in the objective space Rk.

For our purposes, it is enough to use information that the projection direction
in problem (2) is determined by a vector w−1 = (1/w1, . . . , 1/wk), where wi > 0
(i=1,. . . ,k) are the scaling coefficients (we do not have to pay special attention
to weak Pareto optimality). Thus, instead of solving the linear problem (3), we
can directly compute where the projection direction vector (ż + d + tw−1) and
trade-off plane nT (z − ż) = 0 are intersecting. This means solving for t (to be
denoted by t̃) in equation nT ((ż + d + tw−1) − ż) = 0 which we can write in
the form t̃ = −(nT d)/(nT w−1) (we do not need to consider case nT w−1 = 0
because w−1

i > 0, ni ≤ 0, and n 6= 0). Then, the approximated Pareto optimal
objective vector obtained using the preference information given by the DM is z̃ =
(ż + d) + t̃w−1 = z̄ + t̃w−1.

In practical method framework it is convenient to assumed that zlow ≤ z̄ ≤ zup

and zlow ≤ z̃ ≤ zup. However, in the above procedure it might happen that z̃i ≥ zup
i ,

for more than one i = 1, . . . , k, even though zlow ≤ z̄ ≤ zup would hold. This special
case can be also taken account but for the sake of clarity we omit such a details in
this paper.

Figures 1 and 2 depict an imaginary situation where the trade-off analysis is
carried out at some Pareto optimal solution ż ∈ P . It must be pointed out that
even thought in Figures 1 and 2 we consider the case of only two objectives, the
trade-off analysis tool is best suited for problems having three or more objectives.
Naturally, the method can also be used without any restrictions for biobjective
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Figure 1: Approximation of the Pareto
surface

Figure 2: Varying the selected solution

problems but it is not that useful.
In Figure 1, we demonstrate the trade-off tool with a simple problem, where the

DM considers solution ż and is interested in improving f2 value by allowing f1 to
degrade as indicated by the reference point z̄ = (ż + d). According to the trade-off
analysis, the approximated solution reflecting z̄ is z̃ ∈ T (ż). Vector z̈ is the Pareto
optimal objective vector which would have been obtained by solving problem (2).
The Pareto optimal vector corresponding to z̄ is computed only if the approximated
Pareto optimal objective vector z̃ is promising for the DM. From z̃, the DM gets
fast some understanding about the feasibility of the desires specified without solving
(2) at all. It is clear that in a general nonlinear case, too large variation d may lead
to a poor approximation. In practice, the DM can be informed about an appropriate
maximal variation (see the next section).

Figure 2 gives an example from a practical point of view by suggesting a user
interface for the trade-off analysis tool described above. The DM has selected for
trade-off analysis a Pareto optimal solution ż for which objective function values are
visualized using a bar chart. The triangle marker is a reference point z̄ = (z̄ + d)
determined by the DM. The circle marker indicates the approximated Pareto optimal
objective vector z̃ ∈ T (ż) obtained using trade-off analysis.

When the reference point z̄ is altered the approximated vector z̃ can be up-
dated very fast accordingly and the DM can get in real-time an idea of what kind
of trade-offs are available in a local neighborhood of the selected Pareto optimal
solution. Furthermore, the DM can learn how his/her preferences corresponds to
Pareto optimal solutions available near ż.

4 Applicability study

In the previous section we did introduce the trade-off analysis tool which can be
used to study what kind of Pareto optimal solutions and trade-offs there are avail-
able around some Pareto optimal solution. The strength of this approach is that
all computationally significant technical information needed to setup the analysis
environment can be obtained as a byproduct when the Pareto optimal solution is
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produced as a solution of (2) by using an appropriate single objective optimization
algorithm able to produce KKT multipliers.

Even thought the proposed tool sounds appealing, especially from the computa-
tional point of view, it must be pointed out that the analysis is based on a linear
approximation of the Pareto surface. It is clear that for highly nonlinear Pareto
surfaces the linear approximation may be reliable only in a very (possibly insignifi-
cantly) small neighborhood of the Pareto optimal solution selected for the analysis.
Therefore, it is important to have some indicators which can be used to say some-
thing about the applicability of the approximated Pareto optimal solutions. The aim
of the trade-off analysis tool is to offer support for decision making and learning.
We do not want to mislead or distract the DM and this gives us a motivation to
study applicability issues in more detail.

In a general case, it is not easy to study how well the linear trade-off plane at
some Pareto optimal solution is approximating the nonlinear (possibly nonconvex)
Pareto surface. This is even more difficult if we are not willing to make any additional
(with respect to Theorem 3.1) technical assumptions related to problem properties.
Without restricting the applicability of the trade-off analysis tool, in what follows,
we propose a very general approach which allows us to say at least something about
how realistic the approximation is. It must be emphasized that an applicability study
approach to be presented is just an addition to the trade-off tool idea introduced
in the previous section. When the DM is just interested in knowing trade-off rates
between objectives the trade-off tool can be useful even thought the approximated
Pareto optimal solution is not realistic. However, if the DM is wants to use trade-off
tool explicitly to set reference points then it is of course interesting to know whether
the approximated Pareto optimal solution is realistic.

In our approach, we propose an applicability study which is solely based on
the Pareto optimal solutions computed during an interactive procedure. In other
words, we do applicability study without producing any additional information. We
do not pay any attention to the technical properties of the underlying problem
(1) but use only the information that a Pareto optimal objective vector cannot be
dominated by any other Pareto optimal objective vector. Roughly speaking, when
in the trade-off analysis the DM determines a reference point by varying the values
of some Pareto optimal objective vector, we can study whether the corresponding
approximated Pareto optimal objective vector belonging to the trade-off plane is
dominated by or dominating any of the known Pareto optimal objective vectors. In
other words, we can determine whether the approximation is realistic with respect
to all Pareto optimal solutions computed. Therefore, the applicability study can be
used to indicate for the DM unrealistic approximations. In this framework more
accurate control is obtained when the number of available Pareto optimal points
increases. However, it must be emphasized that our aim is not to restrict the trade-
off analysis but just indicate for the DM that the variation proposed to the Pareto
optimal solution under investigation might be too rough and therefore it would be
probably better to consider smaller variation or do the analysis based on some other
Pareto optimal solution.

The idea of applicability study is illustrated in Figure 3 where the analysis is
carried out at a Pareto optimal objective vector ż0. We assume that at the moment
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Figure 3: Applicability study of the approximation

when the trade-off analysis takes place, only Pareto optimal objective vectors ż0,
ż1, and ż2 are explicitly known. The straight line going through ż0 is depicting the
trade-off plane T (ż0). Figure 3 contains three cases where the DM has independently
determined z̄a, z̄b, or z̄c as a reference point.

In Figure 3, the reference point z̄a produces an approximated Pareto optimal
objective vector z̃a. Based on the Pareto optimal objective vectors ż1 and ż2 this
approximation is realistic, that is, z̃a is neither dominated by nor dominating the
other known Pareto optimal objective vectors. A similar conclusion can be drawn
in the case of any objective vector (ż0 + t(z̃a − ż0)) ∈ T (ż0), for t ∈ [0, 1]. In other
words, any of the objective vectors (z0 + t(z̃a − ż0)) can be Pareto optimal with
respect to ż1 and ż2 (note that explicit form of the Pareto surface is not known).
We say that a Pareto optimal objective vector is active when it dominates or is
dominated by vector (z0 + t(z̃a − ż0)), for some t ∈ [0, 1].

Let us now assume that the DM has determined z̄b or z̄c as a reference point.
Even thought both the resulting approximated Pareto optimal objective vectors z̃b

and z̃c, respectively, can be Pareto optimal (neither dominated nor dominating) the
problem is that the objective vectors (ż0 + t(z̃b − ż0)) ∈ T (ż0) and (ż0 + t(z̃c −
ż0)) ∈ T (ż0) both violate the domination concept for some t ∈ [0, 1] (in Figure
3 circled numbers 1 and 2 indicate the position where the corresponding Pareto
optimal objective vector becomes active). Therefore, if the DM proposes z̄b or z̄c as
a reference point, the method can inform the DM about the Pareto optimal solution
which becomes first active when we start to move from the Pareto optimal ż0 toward
to the approximated Pareto optimal objective vector z̃b or z̃c. In other words, we see
from Figure 3 that the DM might be interested in performing trade-off analysis in a
local neighborhood of ż1 instead of ż0 if (s)he proposes variation to ż0 which leads
to the reference point z̄b or z̄c. In this context, the reference point z̄c does not imply
that the method suggests Pareto optimal objective vector ż2 for the DM because it
is assumed that the DM is interested in doing local analysis around Pareto optimal
ż0 and therefore the first active Pareto optimal objective vector ż1 is suggested
instead.

In must be emphasized that in this applicability study it is assumed that the DM
is especially interested about the solutions which have similar trade-off rates between
objectives as induced by the reference point. In the terms of Figure 3 the trade-off
rates related to the approximated Pareto optimal objective vectors (ż0 + t(z̃c− ż0))
are corresponding to reference points ż0 + t(z̄c − ż0), for t ∈ [0, 1]. In other words,
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if approximated Pareto optimal objective vector z̃c corresponding to reference point
z̃c is feasible to the DM but not realistic then it is assumed that the DM is also
interested in considering approximated Pareto optimal vectors (ż0 + t(z̃c− ż0)), for
t ∈ [0, 1], because similar trade-off rates are assigned to them.

In an interactive solution procedure, usually some set of Pareto optimal solutions
is generated based on the DM’s preference information. Let us denote by P ′ ⊂ P a
set of Pareto optimal objective vectors produced in the interactive method according
to the preferences of the DM. We assume that the DM wants to do trade-off analysis
related to the Pareto optimal solution ż ∈ P ′ by proposing a variation di for some
values żi, for i = 1, . . . , k. This produces a reference point z̄ = (ż + d). When the
Pareto optimal solution ż is varied by d it might happen that for some t ∈ [0, 1]
approximated Pareto optimal solution ż+t(z̃−ż) becomes dominated by or starts to
dominate some of the Pareto optimal solutions in set P ′′ = P ′\{ż}. If this happens,
we know that the approximated Pareto optimal objective vector is not necessarily
realistic. If no such t ∈ [0, 1] exists, then the obtained linear approximation can be
considered to be applicable. However, we do not actually have an idea how far away
the approximated Pareto optimal objective vector is from the Pareto surface.

Algorithm 1 below can be used to determine whether some approximated Pareto
optimal objective vector is realistic with respect to the set P ′′. The idea is to find
the minimal t ∈ [0, 1] in such a way that either ż + t(z̃ − ż) enters the set z − Rk

+

or z enters the set ż + t(z̃ − ż)− Rk
+, where z ∈ P ′′.

Algorithm 1 Applicability study of approximated Pareto optimal objective vector

Require: ż ∈ P ′ and z̃ ∈ T (ż)
tmin ←M > 1
zmin ← ż
for all z ∈ P ′′ do
t1 ← minimize t subject to (z̃ − ż)t ≤ (ż − z) and 0 ≤ t ≤ 1
if t1 ≤ tmin then
tmin ← t1
zmin ← z

else
t2 ← minimize t subject to (z̃ − ż)t ≥ (ż − z) and 0 ≤ t ≤ 1
if t2 ≤ tmin then
tmin = t2
zmin ← z

end if
end if

end for

If we have tmin = M at the end, then the approximated Pareto optimal objective
vector z̃ can be Pareto optimal with respect to P ′′. The first minimization problem
reveals whether ż + t(z̃ − ż) dominates any Pareto optimal objective vectors in P ′′

for some t ∈ [0, 1] and the second one whether ż + t(z̃ − ż) is dominated by any
Pareto optimal objective vectors in P ′′. If at the end 0 ≤ t ≤ 1 then zmin refers to
the Pareto optimal objective vector which becomes first active when we move from
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ż to z̃.
We assume that ż 6= z holds for all pairs ż, z ∈ P ′. However, when k > 2 it

might happen that tmin value is assigned to more than one Pareto optimal solution.
In such a case we can choose in some sense closest one of these solutions. Weak
Pareto optimality might also necessitate a special attention especially in the case
when tmin = 0. However, we do not go into details with these issues because the
emphasis is on the description of a general method framework.

It is clear that when we have only very few Pareto optimal points available (or if
we have a large number of objectives), the applicability study method proposed does
not necessarily help that much to evaluate whether approximated Pareto optimal
solutions obtained in the trade-off analysis are realistic or not (this is due the fact
that considered objective vectors are not dominating each other). In other words, the
DM can determine very large variations to the Pareto optimal objective vector under
investigation without the method being able to say anything about the applicability
of the approximation obtained. However, the applicability study presented in this
section can be regarded as an addition to the initial trade-off analysis tool idea
rather than a robust applicability indicator. The idea is just to take advantage of
all information available, that is, all computed Pareto optimal solutions no matter
how many are available. Naturally, the more Pareto optimal solutions are available,
the better the applicability study is able to notify the DM about too large variations
during the trade-off analysis.

Furthermore, in some cases the DM might be interesting in knowing that if the
first active Pareto optimal solution obtained through applicability study is domi-
nated by approximated Pareto optimal objective vector then we can suspect that
the trade-off plane is giving an outer approximation for the Pareto surface and ap-
proximated Pareto optimal objective vectors are infeasible. Same kind of analogy
can be considered when the first active Pareto optimal objective vector dominates
the approximated Pareto optimal objective vector (inner approximation of Pareto
surface). However, it is clear that in the case of highly nonconvex Pareto surface
these interpretations can be very misleading especially if the applicability study is
carried out using relatively small number of Pareto optimal solutions which are not
enough to capture the overall shape of the Pareto surface.

5 Example

In this section, we demonstrate the usage of the trade-off analysis tool by considering
a nonconvex problem having three objective functions. This example problem is
constructed to study nonconvex Pareto surface with the trade-off analysis tool and
therefore the objectives do not have any practical interpretation. Even thought
the example problem does not contain any computationally demanding functions, it
must be pointed out that while carrying out the trade-off analysis we do not need
to evaluate functions related to the original problem.

In this example, the objective functions fi : R2 → R (i = 1, 2, 3) are constructed
by using function φ(x1, x2) = ψ(x1, x2)− exp(−50ψ(x1, x2)), where the nested func-
tion is ψ(x1, x2) = x2

1 + x2
2. The actual problem is expressed in the form
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f1 f2 f3

zlow −1.00 −1.00 −1.00
zup 1.00 2.00 2.00
ż1 −0.18 0.78 0.78
ż2 0.16 0.41 0.91
ż3 0.47 0.12 1.22
ż4 0.16 0.91 0.41
ż5 0.28 0.53 0.53
ż6 0.41 1.16 0.16

Figure 4: Pareto optimal solu-
tions
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Figure 5: Objective space

minimize {f1 = φ(x1, x2), f2 = φ(x1, x2 − 1), f3 = φ(x1 − 1, x2)} . (4)

Let us assume that the DM has already obtained six Pareto optimal solutions
by using an interactive method. The objective function values of these solutions are
shown in Figure 4 together with upper and lower bounds for objective functions. In
this case the DM has determined bounds zup and zlow by using his/her expertise.
The DM has selected the Pareto optimal objective vector ż5 for trade-off analysis.
The Pareto surface and the six Pareto optimal solutions are visualized in Figure 5.
Even thought the Pareto surface is visualized in Figure 5 its explicit form is assumed
to be unknown 1.

As already explained in Section 3, the DM is able to vary the components of
the Pareto optimal objective vector selected to produce a reference point which is
then projected to the trade-off plane. Let us assume that we have a simple user
interface containing bar chart visualization for each Pareto optimal objective vector
computed and the DM has selected Pareto optimal ż5 for the trade-off analysis (the
upper part of Figure 6). In case (a) appearing in Figure 6, the DM is interested in
studying what kind solutions are approximately available if (s)he wants to improve
the value of f1 around 5% and value of f3 around 10% from ż5

1 and ż5
3 , respectively

(percentage referes to ranges (zup
i −zlow

i ), i=1,2,3). To compensate this improvement
the DM is willing to sacrifice around 5% in the value of f2 from ż5

2 . The DM proposes
this variation by adjusting the position of gray triangle markers appearing in (a) bar

1Note that this kind of a visualization is not possible with more than three objectives. Fur-
thermore, with practical problems given in a nonanalytic form, it may be computationally very
time-consuming to produce visualizations such as in Figure 5.
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Figure 6: Trade-off analysis with applicability notification

chart in Figure 6. The resulting approximated Pareto optimal objective vector is
z̃ and it is indicated in Figure 6 with white circles. By using Algorithm 1 we can
confirm that the approximation z̃ can be considered realistic and applicable with
respect to the five other Pareto optimal solutions computed. However, we do not
know how far from the Pareto surface P the approximated Pareto optimal objective
vector z̃ really is.

In Figure 6, case (b) reflects the situation where the DM has proposed a twice
as large variation as in case (a). The trade-off between objective functions remains
therefore unchanged, but the difference is that now the reference point z̄ produces
the approximated Pareto optimal objective vector z̃ which dominates the Pareto
optimal objective vector ż6 and, thus, the approximation is not realistic. By using
Algorithm 1 we can confirm that ż6 is the first Pareto optimal objective vector
which becomes active when we move from ż5 towards z̃. Because the approximation
obtained is not realistic the applicability study suggests for the DM that maybe
(s)he would like to do trade-off analysis based on the Pareto optimal solution ż6

instead of the current solution ż5. However, it must be emphasized that this is
only a suggestion and the DM is allowed to continue the analysis even thought the
resulting approximations are not realistic. The approximated Pareto optimal vectors
can be used by the DM to study the local trade-off structure around the selected
Pareto optimal solution even thought it might lead in practice to an unrealistic
approximation.

The analysis carried out can be used, for instance, to determine explicitly the
next reference point which is then utilized in problem (2) to produce the next Pareto
optimal solution. On the other hand, the trade-off tool can be also used to determine
a promising classification in a classification based method. In such a case the DM
is able to grasp and idea what kind of changes to expect when a certain kind of
classification is made. This is especially useful when we are dealing with problems
having several objectives.
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6 Discussion

The definite strength of the method proposed is that the linear approximation of
the Pareto surface can be produced as a byproduct when a Pareto optimal solution
is computed. Furthermore, in the trade-off analysis, all computations are fast and
can be performed in real-time. Because of this, the DM is able to capture, with a
relatively small effort, an idea about the trade-off rates and local behavior of the
Pareto surface around the selected Pareto optimal solution.

The reference point determined in the trade-off analysis can be used directly to
produce the corresponding actual Pareto optimal solution. Therefore, this tool can
be used to build up confidence for the DM while (s)he is setting the next reference
point in a reference point based interactive method. However, the DM is not forced
to set preferences according to the information obtained in the analysis. This method
can be seen as a purely additional decision support tool that can be used in an
interactive framework when needed. The benefit of this approach is that the trade-
off analysis can be made dynamically through visualization, like presented in Figures
2 and 6, instead of considering just static numerical trade-off values.

On the other hand, one potential drawback related to the trade-off analysis tool
is the quite demanding assumptions that must be satisfied when solving problem
(2), in practice it might be difficult to check that assumptions in Theorem 3.1 hold.
For instance, the second order KKT sufficiency conditions assume that the functions
related to the problem are twice continuously differentiable. This may be difficult
to guarantee in the case of practical problems. Furthermore, linear independence of
active constraints may also be problematic if we have, for instance, more objectives
than variables (however, this happens very rarely in practical applications). We must
also emphasize that the solver used to solve problem (2) must be able to produce
KKT multipliers.

As a second potential drawback we can consider the lack of accurate indicator
how well the linear approximation obtained by using trade-off plane at some Pareto
optimal solution is able to capture the shape of the Pareto surface. In other words,
how large variations the DM is able to propose to the Pareto optimal solution ana-
lyzed in such a way that the obtained approximation is still in some sense realistic
(an approximation error). In the case of highly nonlinear Pareto surface the trade-off
information obtained might in the worse case hold only in an insignificantly small
neighborhood of the Pareto optimal solution considered. The applicability study pre-
sented can help in indication of unrealistic approximations but it works efficiently
only when we have enough Pareto optimal solutions already computed. However, it
is generally known that typically in interactive methods the DM is carrying out only
relatively small number of iterations which might mean that a set of Pareto optimal
solutions available for applicability study is quite small. In other words, available
Pareto optimal solutions are dominating relatively small set of objective vectors in
the objective space. This kind of problem is also related to case where we have large
number of objectives.

In addition to the approximation error issue mentioned, one drawback that can
be also related to the trade-off plane approximation methods is the problem whether
the Pareto surface exists ”under” the trade-off plane when we move at the plane to
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the certain direction (consider trade-off analysis in a very narrow area of the Pareto
surface like for instance in some of the ”spike-shaped” areas in Figure 5). In general
this situation is difficult to determine in the case of the general nonlinear problem.

Let us point out that the solution method can also produce a representative set of
Pareto optimal solutions before actual interaction with the DM. The representative
set is assumed to capture the shape of Pareto surface (so called a posteriori methods
can be utilized, see e.g. [6]). Then DM is allowed to study trade-offs at Pareto
optimal solutions belonging to the representative set generated. Because of more
Pareto optimal solutions are available the applicability study proposed can more
efficiently point out unrealistic approximated Pareto optimal solutions for the DM.
This kind of utilization of the trade-off tool can be, for instance, seen as a part of the
Pareto navigator method [4] where the DM is first building an intuition (learning
phase) related to available Pareto optimal solutions by using an piecewise linear
approximation of Pareto surface based on a generated representative set of Pareto
optimal objective vectors. When some interesting area of Pareto surface is located
the DM can continue to analyze the selected Pareto optimal solutions more closely
(decision phase). Here the trade-off analysis tool can be utilized.

Topics for further research include a study of efficient applicability and error
measures that could be conveniently related to the approximation used for trade-
off analysis. The aim is that applicability measures developed should have some
concrete meaning for the DM and the analysis should be made possible without
needing to increase computation workload too much. For instance, it must be studied
further how all Pareto optimal solutions produced during an interactive procedure,
at the moment when the trade-off analysis takes place, could be used to produce
applicability measures. In addition, an approximation error between the trade-off
plane and the Pareto surface is also an important topic. Furthermore, the proposed
tool must be tested with real problems and decision makers.

7 Conclusions

We have introduced a trade-off analysis tool for supporting a DM in using interactive
reference point or classification based methods in nonlinear multiobjective optimiza-
tion. When using such methods, the DM is supposed to indicate one’s preferences of
how to improve the Pareto optimal solution under consideration by specifying aspi-
ration levels forming a reference point or a classification for the objective functions.
Typically, the DM is not supported in this preference specification task. However,
in particular when the problem involves computationally costly functions, it may be
time-consuming to wait for a new solution corresponding to the specified desires to
be computed. Our tool provides support in this respect. In other words, we pro-
vide an approximated solution and the DM can then judge whether it is worthwhile
to take the time and generate a new Pareto optimal solution corresponding to the
preferences specified or whether it is better to change the reference point or clas-
sification. In this way, the DM can avoid unnecessary trial-and-error in obtaining
satisfactory solutions.

The approximated solution is obtained using a local, linear approximation of the
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Pareto optimal set (this approximation is formed at the point under consideration).
The tool projects the reference point specified onto the linear approximation. This
can be done with a minimal computational effort. Importantly, the tool utilizes
information contained in Karush-Kuhn-Tucker multipliers which can be obtained as
byproducts when Pareto optimal solutions are generated. This means that we do
not need to produce any additional information in order to carry out the analysis.
Thus, the tool is particularly useful for computationally costly problems.

Besides the trade-off analysis tool, we propose a supplementary applicability
study which can be used to analyze how realistic the outcome of the trade-off analysis
is. The idea is to compare the outcome to other Pareto optimal solutions available
(which have been generated earlier during the solution process). In this way, we take
advantage of the information available and improve the reliability of the trade-off
analysis.
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