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ABSTRACT 

 
In this paper, we propose a computationally effective stepwise method to identify 

efficient units in large-scale Data Envelopment Analysis (DEA) models. The method is 
based on approximating the efficient frontier. We first identify a subset of efficient 
decision making units (DMUs) using lexicographic parametric programming. The 
subset of efficient units is then used to reduce the set of remaining units that are 
potentially efficient. Finally, the set of efficient units in the problem is recognized from 
the reduced set of potentially efficient units. The computational effectiveness of the 
proposed algorithm is demonstrated by solving a wide range of problems – including 
models with 100 000 units and twenty inputs and outputs. We also compare the 
algorithm to the methods represented in our previous papers and discuss their 
conceivable integration. 

 

Keywords: Efficiency Analysis, Data Envelopment Analysis, Computational Aspects, 
Decomposition 

1 INTRODUCTION 

Data Envelopment Analysis (DEA) is a non-parametric technique used in estimating 
the relative efficiency of different decision making units (DMUs). It is assumed that 
DMUs are performing the same task using similar multiple inputs to produce similar 
multiple outputs under similar conditions.  

DEA models produce feasible input-output combinations based on observed inputs 
and outputs of the DMUs and their linear combinations. These feasible input-output 
combinations are called the production possibility set (PPS). The production possibility 
set determines how much a given DMU could increase its outputs or decrease its 
inputs, i.e. how efficient it is. Efficient frontier (surface) is the subset of the production 
possibility set where none of the inputs or outputs can be improved without worsening 
some other input or output. If a DMU lies on the efficient frontier, it is referred to as 
an efficient unit, otherwise it is considered inefficient. DEA also provides efficiency 
scores and reference set for inefficient DMUs. The efficiency scores represent a degree 
of inefficiency of the DMUs. The reference set for inefficient units consists of efficient 
units. 

To check the efficiency of a unit and to find the reference set and the efficiency score 
for inefficient units requires the solving an LP-model. The “standard” algorithm solves 
iteratively an LP-model for each unit separately. For each unit, the rhs - vector and one 
column (direction vector) in the coefficient matrix has to be updated. The optimal basis 
of the previous iteration is not valid for the next iteration as such. The approach is 
usable in small problems, but is computationally very ineffective in large scale 
problems.  

When the number of units is large, let us say many ten thousands or even hundreds 
of thousands, computational aspects become important. Such problems appear when, 
for example, all high-schools or hospitals in Europe are evaluated, or when the 
efficiency analysis is made at an individual level. There exist also models which demand 
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efficiency calculation several times for each DMU. For example, a fuzzy DEA 
approach developed by Kao and Liu (2000) utilizes an -cut concept in which each -
cut  needs  to  solve  a  pair  of  ordinary  DEA  models.   In  these  kinds  of  problems,  the  
straightforward approach to formulate an LP-model for each unit with an unknown 
status becomes too time-consuming. Fortunately, the structure of the DEA-model 
makes it possible to develop special techniques for large-scale problems.  

In this paper, we propose an efficient frontier approximation procedure to reduce the 
computation times of lexicographic parametric programming method by Korhonen and 
Siitari (2007). Since the approach in Korhonen and Siitari (2007) typically finds most 
of the efficient units at the very beginning of the computation, it is possible to get a 
good approximation by stopping the computation process early and using the efficient 
units found thus far as an approximated frontier. For example, in a problem with 10000 
units and 10 inputs/outputs (solved by using a procedure described in Korhonen and 
Siitari (2007)) over 90% of all efficient units were found after running the procedure 
under 10% of the total computation time. Using a subset of efficient units (the units 
that form the approximated efficient frontier) as potential basic variables, it is possible 
to recognize most of the remaining inefficient units rapidly. During the solution 
procedure the subset of efficient units is supplemented with the units that are 
diagnosed super-efficient (Andersen and Petersen (1993)). Finally, the efficient units of 
the problem are recognized from this supplemented set.  

 The paper is given in eight sections.  In the next section, we review some techniques 
that have been published to speed up DEA. In section 3, we illustrate the main idea of 
the article. In section 4, the necessary theoretical questions are discussed. In section 5, 
we represent the algorithm developed in this paper. Computational results are given 
and discussed in section 6. In section 7, we compare the solution technique developed 
in this paper to the dimensional decomposition technique of Korhonen and Siitari 
(2009). Section 8 concludes the paper with some remarks.  

2 Overview of Existing Techniques 

There are only few authors who have studied computational issues in DEA. Ali 
(1993, 1994), proposed an idea of “restricted basis entry” (RBE). The basis always 
consists of a set of existing efficient or unknown units. When a unit is diagnosed 
inefficient, the corresponding column is dropped from the set of potential basic 
vectors.  

Dulá and Helgason (1996) proposed solving the problem in two phases. In phase I, 
the extreme point solutions of the polytope consisting of all units in the data set are 
defined. The efficiency scores of the other vectors are computed in phase II by using 
the minimal set of potential basic vectors, i.e. efficient units. The idea was further 
developed in Dulá et al. (1998), (2001) and (2002). Dulá (2008) explores the impact 
of several LP enhancements and DEA specific accelerators. It reports the 
computational results of DEA problems with up to 100K DMUs. 

Because the computing time as the function of the units increases more than linearly, 
Barr and Durchholz (1994) and (1997) proposed the partition of the set of the units.  
The efficient units are first identified in each partition of the data set, and then the 
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union of those units is used to build a set of potential basic vectors for the original 
problem. The union consists of all efficient units, but usually also inefficient units.  

Chen and Cho (2009) proposed an accelerating procedure that calculates the 
efficiency scores by identifying a set of neighborhood units for a DMU under 
consideration. The procedure performs well especially in problems where the 
proportion of efficient units is high.   

Korhonen and Siitari (2007) used lexicographic parametric programming (Korhonen 
and Halme (1996)) to traverse from unit to unit along the efficient frontier. 
Lexicographic parametric programming was used to guarantee that the search will stay 
on the efficient frontier also in a case when a boundary is reached. On the way, it was 
also possible to early identify units efficient or inefficient. The units entering the basis 
were recognized efficient and the units dominated by an efficient facet were identified 
inefficient. The procedure is computationally efficient, when the number of inputs and 
outputs is small. This fact led Korhonen and Siitari (2009) to further develop the 
efficiency of the procedure by proposing the technique based on the idea of 
decomposing the problem dimensionally. The efficient units were identified in each 
sub-problem and further used as an initial approximation for the set of all units. 

3 ILLUSTRATION OF THE MAIN IDEA OF THE ARTICLE 

To illustrate the main idea of the procedure developed in this paper we use the 
following simple example. Assume we have six DMUs each using one identical input 
producing two outputs as depicted in Figure 1. 
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Figure 1. Constructing the Approximated Efficient Frontier (Step 1) 

The search is started from A, which is found efficient. Next we check the efficiency 
of B. When we move from unit to unit we use lexicographic parametric programming 
(see, Korhonen and Siitari (2007)). During the search, unit C is recognized efficient. 
Unit B is found inefficient because it is projected1 onto facet AC. Using the procedure 

                                                
1In traditional DEA –models the projection is typically done radially. The term “radial” means that an 
efficient frontier is tried to reach either by proportionally increasing the values of the current outputs 
or decreasing the values of the current inputs. If we are only interested to find which units are efficient 
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described in Korhonen and Siitari (2007) we would next check the efficiency of units 
D, E and F. In the procedure used in this paper, we instead stop the solution process 
early and use the information available to construct an approximated efficient frontier. 
The approximated efficient frontier is constructed using the units that have been 
recognized efficient so far. The motive to use the approximation is to reduce the 
computational burden needed to evaluate the rest of the units. In this problem, we 
approximate the efficient frontier using efficient units A and C to classify the remaining 
unknown units E, D and F (Figure 2).   
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Figure 2. Using the Approximated Efficient Frontier to Identify Inefficient Units 

(Step 2) 

Using the approximated efficient frontier, we find that unit E is inefficient and units 
D and F are super-efficient (see, Andersen and Petersen (1993)). Each pivot operation 
in this phase is less time consuming, because the coefficient matrix consists of only two 
units compared to six units at the previous phase (Figure 1). This way we can identify 
inefficient units with little computational effort.  

We need one more phase to recognize the final status of the remaining two 
potentially efficient units D and F (Figure 3). In the final phase, only efficient (A, C) 
and potentially efficient (D, F) units must be included in the coefficient matrix. During 
the final step as well as in the first step any unit that is recognized inefficient can be 
immediately dropped from the coefficient matrix (see, Ali (1993) and (1994)). 

 

                                                                                                                                       
(or inefficient) we can use any non-zero projection vector (see, discussion in Korhonen and Siitari 
(2007)). 
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Figure 3. Recognizing all Efficient Units (Step 3) 

 

In the last step, unit F is found efficient. Unit D is found inefficient because it is 
projected onto facet CF. The procedure has identified units A, C and F as efficient and 
units B, D and E as inefficient. 

4 THEORETICAL CONSIDERATIONS 

4.1 Definitions 
 

Consider a production technology, where m inputs are needed to produce p outputs. 
We  denote  inputs  by  x  m

+  and outputs by y  p
+ . Now we can define the 

production possibility set (PPS):  

P0 ={(y, x) | y can be produced from x}  p+m
+    

which consists of all feasible inputs and outputs in the general sense that the inputs are 
capable of producing the outputs. We assume that both inputs and outputs are freely 
disposable. As usually, we assume that in outputs more is better and in inputs less is 
better. 

In practice, set P0 is unknown. To approximate P0, we usually gather sample 
information about the existing units, set up some assumptions, and define a set P, 
which is assumed to be a subset of P0.   

Now we are ready to define some efficiency concepts for the production possibility set 
P. 

Definition 1.  A point (y*, x*)  P is efficient in set P iff (if and only if) there does not 
exist another (y, x)  P such that y  y*, x   x* and (y, x)  (y*, x*).  

Definition 2.  A point (y*, x*)   P is weakly efficient in set P iff there does not exist 
another (y, x)  P such that y > y* and x < x*.  
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Definition 3.  A point  (y*, x*)    P0 -  P  is  super-efficient with  respect  to  set  P  iff  
there does not exist (y, x)  P such that y  y*, x   x*.  

When (y*, x*)  P is not efficient, it is inefficient.  

4.2 Basic Data Envelopment Models  
Assume we have n DMUs each consuming m inputs (m  0), and producing p 

outputs (p  0). Let D be the index set of n DMUs (D = {1, 2, …, n}). Let X be an (m 
×  n) - matrix and Y be  a  (p × n) - matrix consisting of non-negative elements, 
containing observed inputs and outputs of DMUs, respectively.  

Consider the following lexicographic formulation2 of general DEA in the so-called 
envelopment form (Korhonen and Siitari (2007)): 

 
lex max { j , 1Tsj

+ + 1Tsj
-) 

s.t.               (1)     
           X  + j wx + sj

-
 = xj                            

           Y   - j wy – sj
+ = yj 

           
                    ,  sj

- , sj
+  0 

                                        
where xj is the input-vector and yj is  the  output-vector  of  a  DMU j  D under 
consideration and     

The first three constraints for  specifies one of the BCC - models, and the last one 
the CCR-model. In the combined model, wy = yj and wx = xj. In the input-oriented 
model wy = 0 and wx = xj , and in the output-oriented model wx = 0  and wy = yj. Input 
and output sets X and Y define the production possibility set P = {(y, x) | x  X , y  
Y , }3. 

The value of j , called an inefficiency score for unit j, at the optimum is denoted by 
j
 *. Notation “lex max” refers to a lexicographic maximization problem. It means that 

we first solve (1) using j as an objective function. In case, the optimal solution j* is 
not unique, we add the constraint j = j* into the model (1) and solve it by using 1Tsj

+ 

+ 1Tsj
- as the objective function. Let´s for simplicity define the directional vector4 w = 

(wx, wy) and sj = (1Tsj
+, 1Tsj

-). 

 

 
                                                
2Lexicographic formulation is used to guarantee that weakly efficient units are not chosen into the 
basis (see, discussion in Korhonen and Siitari (2007)). 
3For a textbook introduction into DEA see, for example, Charnes et al. (1994). 
4For a discussion on directional distance functions see, Chambers et al. (1998). 

 {  1’  = 1,   0} for variable returns to scale model (Banker et al. (1984)) 

{  1’   1,   0} for non-increasing returns to scale model 
 = 

{  1’   1,   0} for non-decreasing returns to scale model 

 {     0} for constant returns to scale model (Charnes et al. (1978)). 
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Theorem 1. The following results hold  for model (1): 

1. (xj , yj) is efficient iff the value of j  at the optimum is j* = 0 and if the sum of 
slacks 1Tsj at the optimum is 1Tsj* = 0. This result holds for all w  0, w  0. 

2. (xj , yj) is inefficient iff the value of j at the optimum is j* > 0 or j* = 0 and 
1Tsj* > 0. This result holds for all w  0, w  0. 

Proof: 

see, Korhonen and Luptacik (2004).  

If model (1) is solved for all units j  D we can define E = {j  D | j* = 0, 1Tsj* = 
0} to be the set of the indices of the efficient units in D. Accordingly, we can define I = 
D - E to be the set of inefficient units in D.  

Let Bj* be the set of basic variables associated with an optimal basis for model (1) of 
DMU j. 

Theorem 2. Early identification of efficient units: 

For all j  D, Bj*  E. 

Proof: 

 see, for example Ali (1993).  

Theorem 2 states that all the units in the optimal basis for some unit are efficient. 
Actually, if the problem (1) is maintained lexicographically optimal, a unit that enters 
the basis at any pivot operation is efficient (see, Korhonen and Siitari (2007)). 

 Any unit that is found inefficient can be dropped from the set of potential basic 
variables.  This  way,  we  can  drop  the  columns  of  the  inefficient  units  from  X and Y 
matrices during the solution process (“restricted basis entry”, RBE, see Ali (1993, 
1994)) and diminish the complexity of pivot operations that follows.  

4.3 Problem Approximation 

Let  Dh  D  (Dh  ) be the index set of the units used to approximate the 
production possibility set of the model (1). Let a (a = |Dh|) be the number of units used 
in the approximation. Let Xh be  an  (m  ×  a) - matrix and Yh be  a  (p × a) - matrix 
consisting of the inputs and outputs of the DMUs h  Dh.  

Let  Dk  D  (Dk  ) be the index set of units whose efficiency status we are 
interested to check with the approximated problem. Sets Dh and  Dk need  not  be  
disjoint5. Neither must their union equal to set D 6.   

The model (1) can be approximated by: 

 

 

                                                
5However, in practise when the approximated problem (2) is used in the algorithm represented in 
section 5 Dh and Dk are always disjoint (i.e. Dh  Dk = ).  
6In the algorithm of section 5 the union of Dh and Dk is usually not equal to D (i.e. (Dh  Dk)  D). 
However, in some rare cases when the frontier construction phase did not find any inefficient units it 
is possible that their union equals to D (i.e. (Dh  Dk) = D). 
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lex max { k , 1Tsk
+ + 1Tsk

-) 
s.t.               (2)     

           Xh  + k wx + sk
-
 = xk                            

           Yh   - k wy – sk
+ = yk 

           
                    ,  sk

- , sk
+  0 

                                        
where xk is the input-vector and yk is  the  output-vector  of  a  DMU k  Dk under 

consideration. Input and output sets Xh and Yh define an approximated production 
possibility set Ph = {(y, x) | x  Xh , y  Yh , }.  

In the model (2) units h  Dh form the set of potential basic variables. A DMU k  
Dk does not usually belong to the set  Dh.  If  it  does  not  belong  to  the  set  Dh it  is  not  
included in Xh and Yh. Thus, we can define the following three efficiency concepts for 
the model (2):  

 
Theorem 3. The following results hold for the model (2): 

1. (xk , yk)  Ph is efficient in the set Ph iff the value of k at the optimum is k* = 
0 and the sum of slacks 1Tsk at the optimum is 1Tsk* = 0. This result holds for 
all w  0, w  0. 

2. (xk , yk)  Ph is inefficient iff the value of k at the optimum is k* > 0 or k* = 
0 and 1Tsk* > 0. This result holds for all w  0, w  0. 

3. (xk , yk)  P  –  Ph is  super-efficient  in  set  the  Ph iff the value of k at the 
optimum is k* < 0. This result holds for all w > 0. 

Proof:  

Points 1. & 2: see, Korhonen and Luptacik (2004).  

Point  3:  Assume (xk , yk) is super-efficient. Assume that, at the optimum of 
the problem, k*  would  be  greater  than  or  equal  to  zero  ( k*  0) using a 
directional vector w > 0. That would imply that there exists another point (x, y) 

 Ph such  that  x = Xh *  xk and y = Yh *  yk contracting the initial 
assumption that (xk , yk) is super-efficient. 

If model (2) is solved for all units k  Dk they will be divided into three mutually 
exclusive and exhaustive sets Ek = {k  Dk | k* = 0, 1Tsk* = 0}, Sk = {k  Dk | k* < 
0}, and Ik = Dk – Ek – Sk. The sets Ek, Sk and Ik refer respectively to units in Dk that 
are efficient, super-efficient and inefficient in the model (2).  

Theorem 4. If a unit is inefficient in the approximated model (2) it is also inefficient 
in the original model (1): 

i.e. for all k  Dk (Dk  D), if k  Ik then also k  I  

Proof: 

Unit k corresponds to a point (xk , yk). Because it is inefficient in the model (2) 
there exists another point (x*, y*)  (xk , yk) such that x* = Xh *  xk and y* = 
Yh *  yk.  Because Dh  D there exists 2* in the model (1) such that X 2*= 
Xh *= x*  xk and Y 2*= Yh *= y*  yk implying the unit k that corresponds to 
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the  point  (xk , yk) is inefficient also in the original problem (1) ( 2* could  be  
constructed so that its components that correspond to units k  Dk are the 
same than in * while all the other components in 2* are zero).  

Theorem 4 states that if the unit k under evaluation in the approximated model (2) is 
inefficient, it is also inefficient in the original model (1). However, if the unit is efficient 
or super-efficient in the approximated model (2), it could still be inefficient in the 
original model (1). Since the matrices Xh and Yh in the approximated problem (2) are 
smaller, the pivot operations7 are also less time consuming compared to the original 
problem (1). By solving the approximated problem first we can reduce the computing 
times when evaluating the efficiency of all units j  D, because every unit that is 
diagnozed inefficient in the approximated problem (2) can be dropped from the 
problem (1) when identifying the set of efficient units.  

5 DEVELOPMENT OF THE PROCEDURE 

The following algorithm will be used in section 6 to solve a set of simulated 
problems. The algorithm consists of three main steps. First we search for the units that 
will be used to construct the approximated efficient frontier (Step 1 in the procedure 
below). In principle, any set of units could be used to approximate the efficient 
frontier.  However,  using  the  formulation  (1)  we  can  find  units  that  are  known  to  be  
efficient. Thus, it is certain that a minimal number of units are used to form a given 
approximated production possibility set Ph (i.e. there is not inefficient units in the index 
set Dh). This is important, because inefficient units would make every pivot operation 
computationally more demanding in the next phase (Step 2 in the procedure below). 
According to formulation (2) and Theorem 4, the approximated efficient frontier can 
be used to identify units that are inefficient in the original problem (Step 2). Finally, we 
need to check the efficiency status of the units that were found either efficient or 
super-efficient in Step 2 to identify the set of efficient units in the original problem 
(Step 3). The more inefficient units there were found in Step 2, the less demanding 
every pivot operation is in the final phase and the less there are units whose efficiency 
status is to be checked. 

The only parameter in the algorithm whose value must be determined beforehand is 
a fraction-parameter b (0  <  b  1).  It  determines  the  proportion  of  units  to  be  
evaluated in the approximation phase (Step 1). Parameter b determines how accurate 
the approximation of the efficient frontier is.  The larger the selected value for b, the 
closer the approximation of the efficient frontier is to the original frontier. For 
example, if we select b = 1 the procedure is guaranteed to identify the efficiency status 
of all the units in Step 1. This is obvious, because in that case the approximated 
frontier equals the original frontier.  On the other hand, small values for b will cause 

                                                
7 The complexity of a pivot operation is dependant on the number of rows and columns in the DEA 
model. In model (1) the complexity is approximately c*(m+p)*n, in model (2) the complexity is 
c*(m+p)*a, where c is some constant, m is the number of inputs, p is the number of outputs, n is the 
number of DMUs in model (1) and a is the number of DMUs that are used to construct the frontier in 
model (2). If the “restricted basis entry” (RBE, see Ali(1993) and (1994)) is used, then in model (1) n 
is only at the beginning of the procedure equal to the number of DMUs. After finding some inefficient 
units it is equal to the number of unknown and efficient units.   



 11 

the procedure to spend more time in Step 3 and less time in Steps 1 and 2. The optimal 
value for b will be determined empirically in section 6. 

 

Step 0: Initialization 

Select a value for the fraction-parameter b. Select a directional vector8 w > 0.  
The same directional vector is used for all the units. Define sets U = D, E =  
and I =  to describe units that have been identified unknown, efficient and 
inefficient respectively in the original problem (1). 

Step 1: Constructing the Approximated Efficient Frontier  

Step 1.0: Formulate the problem as model (1). Use units U  E as potential 
basic variables in (1). Use early identification of efficient units and RBE 
(Theorem 2). 

Step 1.1: Evaluate the efficiencies of b*|U| (rounded up to the next integer) units 
in the set U. Append new efficient and inefficient units that are found into the 
sets E and I respectively. Redefine U := U – E - I. 

If (U = ) 

E is the set of efficient units in D. The procedure can be stopped. 

Else 

  Go to Step 2. 

Step 2: Using the Approximated Efficient Frontier to Identify Inefficient Units 

Step 2.0: Formulate the problem as model (2). Use only units E, that were found 
efficient in the Step 1, as potential basic variables (i.e. Dh in section 4.3 is equal 
to E (Dh = E)).  

Step 2.1: Evaluate the super-efficiencies of all the units U whose efficiency 
status  are  still  after  Step  1  unknown (i.e.  Dk in  section  4.3  is  equal  to  U (Dk = 
U)). Append all inefficient units k  Dk found in the approximated problem (2) 
into set Ik. Using Theorem 4 we can redefine I := I + Ik and U := U – Ik.   

Step 3: Recognizing all Efficient Units 

Step 3.0: Formulate  the  problem as  model  (1).  Use  units  (U  E)  as  potential  
basic variables in (1). Use early identification of efficient units and RBE 
(Theorem 2). 

Step 3.1: Evaluate the efficiencies of remaining unknown units U. Append new 
efficient and inefficient units that are found in U into sets E and I respectively. E 
is the set of efficient units in D. 

In Steps 1 and 3 the procedure identifies new efficient and inefficient units using the 
formulation (1). When the problem is formulated as in (1) the units under evaluation 
form a subset of the set of potential basic variables. Thus, the unit under evaluation in 
these steps can not be super-efficient. Steps 1 and 3 use units U and E as potential 

                                                
8 To avoid computational difficulties, we select a vector such that each element is of the same 
magnitude as the corresponding inputs and outputs. 
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basic variables. Step 1 evaluates the efficiencies of some fraction b of all the units. Step 
3 evaluates the efficiencies for all the remaining units in U. Steps 1 and 3 always use 
early identification of efficient units and RBE. If the number of input and output 
variables is low also early identification of inefficient units should be used9 (see, details 
in Korhonen and Siitari (2007)). By using RBE in these steps, we can remove every 
inefficient unit that is found from the set of potential basic variables. This way we can 
diminish the complexity of every pivot operation that follows. 

Step 2 reduces the number of potentially efficient units in the original problem. 
When the problem (2) is formulated as in Step 2 the unit k  Dk under evaluation does 
not belong to the set of potential basic variables Dh. Thus, units under evaluation in this 
step can be super-efficient. The units that are identified efficient or super-efficient in 
Step 2 can be inefficient in the original problem, so in Step 2 we are mostly interested 
in the units that are found inefficient. Inefficient units found in the approximated 
problem of Step 2 are also inefficient in the original problem. In Step 2 we do not use 
early identification of efficient units or RBE, because all the units in the set of potential 
basic variables are beforehand known to be efficient. 

The sequence of the units to be checked has also an effect on the performance of 
the procedure. In this paper, we use a random sequence in all the steps. However, the 
efficiency of the procedure might be better if a more sophisticated selection of the 
sequence was used. This might be especially important for Step 3, because the 
procedure typically spends most of time in it (see, section 6). Also, in Step 2 we could 
collect some information about the differences in the optimal basis solutions of efficient 
and super-efficient units. This information could be used in Step 3 to select a sequence 
that reduces the total number of pivot operations. 10  

6 ANALYSIS AND NUMERICAL RESULTS 

6.1 Computational Results 
We tested the approximation procedure using simulated problems, which we 

received from Prof. Jose Dulá. These problems are also the same that we have used in 
our previous papers (Korhonen and Siitari (2007) and (2009)). The parameters of the 
problems are the number of units n, the number of inputs and outputs v = m + p, and 
the density of the problem d. The number of units we used was 5000, 10000, 15000, 
20000, 25000, and 50000. The number of inputs and outputs (v) was 5, 10, 15 and 20. 
We classified the models into three density categories (low, average and high). These 
categories represent the average densities in the models. The computing times were 
calculated using twenty different values for parameter b from 0.0025 to 0.05 with 

                                                
9 If we use the early identification of inefficient units we check, during a pivot operation, whether the 
values in the column of the simplex tableau are all non-negative. This checking increases the 
complexity of pivot operations. If the dimension of the problem is small, the increased complexity of 
pivot operations is more than compensated by the diminished number of units to be checked. In 
Korhonen and Siitari (2007), it was reported that the early identification of inefficient units is 
generally useful if the number of variables (m + p) is not greater than ten. 
10 For example, we could select the sequence in Step 3 so that the units whose optimal basis is similar 
in Step 2 are near each other in the sequence.  
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increment 0.0025. 11  Computing times with b = 1 represent a case where the problem 
is solved in one phase (Korhonen and Siitari (2007)). In this case, the approximation 
procedure is not used and it serves as a reference to illustrate the time savings achieved 
by efficient frontier approximation approach. The procedure was implemented in Java 
and it was run using Java runtime environment 1.6.0_07. The tests were run with a 
PC-computer with one 2.4 GHz processor and 1 GB RAM. The DEA-model used was 
CCR.  

The test results are reported in Tables 1-4. In Table 1, we have reported the 
computing times when the number of inputs and outputs is twenty. In Table 2 the 
number of inputs and outputs is fifteen, in Table 3 ten and in Table 4 five. Tables 1-4 
represent the computing times in each steps together with the number of efficient (Step 
1 and Step 3) or super-efficient (Step 2) units found in each step. Column b = 1 refers 
to the time (in seconds) needed to solve the problem in one phase. Column Best  b 
represents the value for parameter b that produced the smallest total computing time in 
each problem.12 Step 1 / Time reports the time required to construct the approximated 
efficient frontier in Step 1. Column Step 1 / # of Alt represents the number of efficient 
units that were used to approximate the frontier. Column Step 2 / Time states the time 
needed to calculate the super-efficiencies when reducing the set of potentially efficient 
units (Step 2 of the procedure in section 5). Step 2 / # of Alt presents the number of 
super-efficient units found in Step 2. Column Step 3 / Time states the time that is 
needed to calculate the set of efficient units in Step 3. Step 3 /  # of Alt presents the 
number of efficient units found in the problem. Column Total / Time reports the total 
time needed to solve the problem by the efficient frontier approximation approach. 
Total / Ratio compares the required total time using the approximation procedure with 
the time using the direct calculation of efficient units (i.e. the case when b = 1). 

 

 

 

 

 

 

 

 

 

 

 

                                                
11 This interval was selected empirically. All the problems had a single best value with computation 
times increasing with a smaller or larger values around the best value (see, Figure 4. which illustrates 
the computation times as a function of b in a problem with v=20, n=20000 and d=22.9%).    
12 We use the term “best b” to refer to the value that produced the smallest computation time of all the 
parameter values tested. It is not a mathematically proven optimum, but should be a good enough 
value for practical purposes.  
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Table 1. Computing Times (s) and the Number of Alternatives When the Number of 
Inputs and Outputs is Twenty (v = 20). 

    b = 1  Step1  Step2  Step3  Total 

Density 
# of 
Alt. 

Time 
(s) Best b 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) Ratio 

  5,000 311 0.0125 1 64 4 925 9 665 14 0.045 
  10,000 1450 0.0125 4 113 15 1039 17 806 36 0.024 

6.4 % 15,000 2931 0.0100 7 131 28 993 15 829 50 0.017 
  20,000 6334 0.0075 8 134 41 1672 35 888 84 0.013 
  25,000 10838 0.0075 15 166 71 1306 35 1011 121 0.011 
  50,000 46695 0.0051 31 231 201 1970 89 1376 321 0.007 
  5,000 490 0.0175 1 87 7 819 9 586 17 0.034 
  10,000 2357 0.0175 4 176 32 1266 33 1038 69 0.029 
10.0 % 15,000 6010 0.0125 5 184 52 1940 80 1498 137 0.023 
  20,000 10209 0.0100 10 210 76 2678 154 1930 240 0.024 
  25,000 17525 0.0125 15 305 145 2936 205 2384 365 0.021 
  50,000 95605 0.0075 28 368 383 5793 845 4607 1256 0.013 
  5,000 615 0.0275 1 153 12 1315 33 1209 46 0.075 
  10,000 2665 0.0250 5 257 46 2437 111 2346 162 0.061 
22.9 % 15,000 7186 0.0225 11 333 101 3829 322 3447 434 0.060 
  20,000 14106 0.0225 19 454 195 4808 532 4517 745 0.053 
  25,000 22241 0.0175 17 443 233 6053 855 5596 1105 0.050 
  50,000 103604 0.0125 47 641 800 11932 3650 10783 4497 0.043 

 
In Table 1 we have classified the models into 6.4%, 10.0% and 22.9% average 

density categories. We can see from Table 1 that the best value for parameter b tends 
to increase when the efficiency density increases. On the other hand, b is smaller when 
the number of DMUs increases. Computation time is decreased drastically in all the 
problems. The largest proportional time savings are achieved in low density problems 
with a high number of DMUs. For example, in a problem with 50 000 units in a density 
category 6.4% the computation time needed is 321 seconds which is less than one 
percent of the reference case. 

From Table 1 we can also see that in Step 3 we actually solve a problem with high 
efficiency density, because in Step 2 the procedure is able to recognize most of the 
inefficient units of the original problem. For example, in a problem with 50 000 units in 
a density category 22.9% the number of potentially efficient units in Step 2 is 11932 
(including 641 units that are known to be efficient from Step 1) and the total number 
of efficient units is 10783. In that problem, Step 3 could be interpreted as a new high 
efficiency density problem with over 90% of units being efficient. Thus, we could 
reduce computing times even further by using in Step 3 an approach that performs 
especially well in high efficiency density problems (for example, a procedure that is 
similar to the one described in Chen and Cho (2009) might be suitable). 
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Table 2. Computing Times (s) and the Number of Alternatives When the Number of 
Inputs and Outputs is Fifteen (v = 15). 

    b = 1  Step1 Step2 Step3 Total 

Density 
# of 
Alt. 

Time 
(s) Best b 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) Ratio 

  5,000 176 0.0125 0 56 3 561 2 394 5 0.029 
  10,000 692 0.0150 2 95 8 636 3 489 13 0.019 

3.7 % 15,000 1882 0.0050 2 71 10 1072 9 474 21 0.011 
  20,000 3925 0.0050 3 92 19 1132 12 526 34 0.009 
  25,000 5145 0.0050 4 104 23 1464 19 535 45 0.009 
  50,000 26228 0.0050 18 201 104 1429 26 866 148 0.006 
  5,000 303 0.0175 1 87 5 715 4 520 9 0.031 
  10,000 1334 0.0125 2 133 13 1345 19 971 34 0.025 

9.1 % 15,000 3684 0.0125 4 184 32 1969 47 1427 83 0.023 
  20,000 6251 0.0100 6 211 51 2515 77 1858 134 0.021 
  25,000 8886 0.0075 5 206 50 2715 84 2054 139 0.016 
  50,000 42483 0.0075 25 373 238 5270 387 3885 650 0.015 
  5,000 370 0.0275 1 171 9 1282 16 1169 25 0.068 
  10,000 1768 0.0275 3 305 37 2266 53 2271 93 0.053 
21.7 % 15,000 4195 0.0175 4 265 48 3643 134 3357 186 0.044 
  20,000 7588 0.0150 6 303 79 5199 323 4385 408 0.054 
  25,000 11976 0.0150 11 372 116 5562 387 4729 514 0.043 
  50,000  57602 0.0150 40 748 588 11658 1814 10473 2442 0.042 

 

Table 3. Computing Times (s) and the Number of Alternatives When the Number of 
Inputs and Outputs is Ten (v = 10). 

    b = 1  Step1 Step2 Step3 Total 

Density 
# of 
Alt. 

Time 
(s) Best b 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) Ratio 

  5,000 35 0.0100 0 44 1 236 0 168 1 0.037 
  10,000 156 0.0100 1 46 2 481 1 166 3 0.021 

1.7 % 15,000 427 0.0050 1 55 4 931 3 236 7 0.017 
  20,000 751 0.0075 1 60 6 743 2 242 9 0.012 
  25,000 1570 0.0075 2 78 10 1291 7 317 18 0.012 
  50,000 6022 0.0050 4 111 30 1124 5 529 39 0.006 
  5,000 99 0.0150 0 74 2 616 2 430 4 0.039 
  10,000 531 0.0100 1 89 4 1378 9 793 14 0.026 

7.9 % 15,000 1304 0.0100 1 132 12 1883 20 1198 33 0.025 
  20,000 2839 0.0075 2 152 19 2232 29 1562 50 0.018 
  25,000 4192 0.0075 3 187 25 2390 29 1892 56 0.013 
  50,000 18816 0.0075 12 354 122 5234 205 3663 339 0.018 
  5,000 151 0.0225 0 104 3 1344 7 1010 11 0.070 
  10,000 771 0.0225 2 213 14 2296 30 1926 45 0.058 
18.4 % 15,000 1812 0.0175 3 246 25 3444 71 2766 98 0.054 
  20,000 3850 0.0125 3 249 31 4425 117 3555 151 0.039 
  25,000 6147 0.0125 5 314 50 5863 223 4448 278 0.045 
  50,000 29393 0.0125 20 615 238 10955 901 8404 1158 0.039 
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Table 4. Computing Times (s) and the Number of Alternatives When the Number of 
Inputs and Outputs is Five (v = 5). 

    b = 1  Step1 Step2 Step3 Total 

Density 
# of 
Alt. 

Time 
(s) Best b 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) 

# of 
Alt. 

Time 
(s) Ratio 

  5,000 0.3 0.0025 0.0 10 0.1 165 0.0 35 0.1 0.564 
  10,000 0.5 0.0025 0.1 9 0.1 3040 0.1 66 0.2 0.470 

0.6 % 15,000 1.4 0.0025 0.1 23 0.3 274 0.0 85 0.5 0.346 
  20,000 1.8 0.0025 0.1 18 0.4 1086 0.0 108 0.5 0.278 
  25,000 3.7 0.0025 0.1 13 0.3 2677 0.3 129 0.7 0.182 
  50,000 8.6 0.0025 0.5 27 0.9 3517 0.8 207 2.1 0.247 
  5,000 1.1 0.0025 0.0 22 0.1 464 0.1 216 0.3 0.285 
  10,000 4.5 0.0025 0.1 34 0.3 2829 0.8 363 1.2 0.267 

3.3 % 15,000 7.8 0.0025 0.2 33 0.8 4684 2.1 462 2.6 0.333 
  20,000 16.3 0.0025 0.3 53 0.8 2992 2.2 633 3.3 0.202 
  25,000 23.6 0.0025 0.4 54 0.9 4662 5.1 739 6.4 0.271 
  50,000 80.8 0.0025 1.0 78 3.6 9878 22.7 1185 27.4 0.339 
  5,000 2.8 0.0125 0.1 36 0.3 1067 0.6 437 0.9 0.335 
  10,000 11.5 0.0050 0.2 53 0.6 1929 2.1 702 2.9 0.255 

6.5 % 15,000 27.1 0.0175 0.3 52 1.0 3679 5.6 943 6.6 0.244 
  20,000 44.3 0.0300 0.5 87 2.0 3835 8.0 1227 10.5 0.237 
  25,000 68.8 0.0300 0.6 91 2.8 6511 21.7 1452 25.1 0.365 
  50,000 246.2 0.0025 1.5 108 5.6 13418 92.9 2416 100.0 0.406 

 

In Tables 1-4 we can see that the approximation procedure improves computation 
times more when the number of inputs and outputs (v) is large. For example, in Table 4 
(v = 5) the computation times are usually reduced only by 40 – 80 %, compared to 
Table 1 (v = 20) where the computation times are reduced by more than 92 %. There is 
not a clear connection between the best b value and the number of inputs and outputs 
in Tables 1-4.  

As is obvious, the computation time needed to solve the problem depends on the 
value of the parameter b selected.  In  addition  to  b, the complexity of the 
approximation procedure depends on n, v and d. To estimate the complexity of the 
procedure when the best b is used for each problem, the following regression model 
was used: 

fca dvnkt          (3) 

where  is an error term whose logarithm is assumed to be normally distributed, and k, 
a, c and f are parameters to be estimated. The logarithm of the model (3) was taken 
and used in a linear regression to estimate the parameters. Table 5 represents the 
results. 
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Table 5. The Estimates of the Regression Coefficients for  
Computation Times in Tables 1-4 (R2 = 0.990) 

 
Coefficient

s Standard Error Lower 95% Upper 95% 

)log(k  -7.220 0.166 -7.555 -6.885 
â  2.032 0.032 1.966 2.098 
ĉ  1.457 0.084 1.288 1.627 
f̂  1.094 0.027 1.039 1.150 

 

From Table 5 we can see that the model fitted very well with the data. The number 
of DMUs has the highest impact on computation times while the number of inputs and 
outputs has a clearly smaller effect. Interestingly, the relationship of density on 
computation times in these problems is almost linear. In Korhonen and Siitari (2007) 
the estimates for the regression coefficients were -9.175, 2.472, 1.667 and 0.435 for 
log(k), a, c and f respectively. This indicates that the computation times increase less 
with respect to growing n and v using the algorithm developed in this paper. However, 
the estimate of the regression coefficient for d is clearly higher in Table 5. This follows 
from the fact that the increased efficiency of the algorithm developed in this paper is 
dependant on finding inefficient units in Step 2. The fever there are inefficient units 
(the higher d), the smaller the usefulness of the algorithm is.13 

6.2 Adaptively Selecting the Value for Parameter b 
Tables 1-4 reports the computing times when the empirical best value for the 

parameter b is used. In practice, an optimal value for b depends on the density of the 
problem,  which  is  not  known beforehand.  That  is  why we need  a  method to  select  a  
value for b before knowing the true efficiency density.  

Figure 4 illustrates the computing times when the number of inputs and outputs is 
20, the number of units is 20000 and the density category is 22.9%. Computing times 
varies as a function of parameter b. 

                                                
13 In a hypothetical problem where all the units were efficient, the sum of computation times in Steps 
1 and 3 would approximately equal the total computing time using the approach described in 
Korhonen and Siitari (2007). The additional time spent in Step 2 calculating the super-efficiencies 
would be an extra burden, because all the units checked in Step 2 would be either efficient or super-
efficient.    
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Figure 4. Computing Times (s) as a Function of Parameter b 
 

In Figure 4 the best value for parameter b is 0.0225. With the best value of b the 
computing time needed to solve the problem is 745 seconds which is less than 6% of 
the reference case (see Table 1). Compared to the reference case, computing times are 
drastically smaller for all the b values used. Also, near “optimal” times are achieved 
using a wide range of b.  

In Figure 4, computing times first decrease rapidly as b increases. After reaching a 
threshold value 0.005 the decrease in computing times becomes less rapid. On the 
other hand, after b exceeds the best value, the time needed to solve the problem 
increases only slowly. A similar behavior is found in all the problems studied. Based on 
this, we could select a sufficiently high value for b so that it is guaranteed that b is 
greater than the threshold value regardless of the true efficiency density. For example, 
if we selected b = 0.03 for all the problems represented in Table 1 (where the number 
of inputs and outputs is twenty) the smallest reduction in computation times compared 
to the reference case would be 89 %. On the other hand, the computation times would, 
on average, be about 100 % higher compared to the situation where a best value for b 
was used (see Figures 5-7 and Table 7 below).  

 To develop a method to select a value for b before the actual efficiency density is 
known we can use the information that is available from the previous problems solved. 
From Tables 1-3 we can see that b increases when the efficiency density increases. 
Also, we see that b decreases when the number of DMUs under evaluation increases. 
The effect of the number of inputs and outputs is unclear. To evaluate the relative 
importance of these variables (the number of DMUs n, the number of inputs and 
outputs v and the efficiency density d), on the best value for parameter b, we used the 
following regression model: 

 
dvnb          (4) 

 
where  is an error term and , ,  and  are parameters to be estimated. We took the 
logarithm of the model and used linear regression to estimate the parameters. The data 
to estimate the model was taken from the Tables 1-3 (i.e. the models where the number 
of inputs and outputs were greater than five) because for small dimensional problems 
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the reference method (a case where b = 1) is fast enough for most purposes. The 
results for model (4) are represented in Table 6. 

 
Table 6. The Estimates of the Regression Coefficients for the Best Value of 

Parameter b (R2 = 0.792) 

 Coefficients 
Standard 

Error P-value Lower 95% Upper 95% 

)log(  -0.043 0.259 0.870 -0.564 0.478 
ˆ  -0.322 0.051 0.000 -0.425 -0.219 
ˆ  -0.066 0.131 0.616 0.198 -0.330 
ˆ  0.443 0.043 0.000 0.357 0.529 

From Table 6 we can see that the number of DMUs and the efficiency density has 
the highest impact on the best b. Constant  and the number of inputs and outputs v 
were not statistically significant using the data from Tables 1-3 (if  and v were 
dropped from the model, R2 would have been 0.789)14.  

Using the regression model (4) and the estimates for the regression coefficients it is 
possible to develop an algorithm that adaptively selects b using the information 
available during Step 1.1 of the procedure developed in section 5. Step 1.1 could be 
modified as follows: 

Step 1.1:  

Step 1.1.0: Evaluate the first fifteen units and append the new efficient and 
inefficient  units  into  the  sets  E  and  I  respectively.  Redefine  U :=  U –  E  –  I.  
Define ˆˆˆ ˆˆˆ dvnb , where ˆ , ˆ , ˆ  and ˆ are the regression coefficients 

estimated in Table 6 and d̂  is the proportion of units found efficient relative 
to units that have been identified efficient or inefficient. The estimate for d 
must be greater than zero so that b̂  would be non-zero. That is why a lower 

bound of 0.005 is set for d̂ . Thus,   )005.0,max(ˆ
IE

Ed  is defined. Next, 

we define b to be the proportion of units that have been diagnosed either 

efficient or inefficient relative to all units i.e. 
D

IEb . 

Step 1.1.1: Evaluate the efficiency of the next unknown unit. If the unit is 
found efficient or inefficient append it into sets E or I respectively. 
Recalculate U, d̂ , b̂ and b.  

Step 1.1.2: 

If (U = ) 

E is the set of efficient units in D. The procedure can be stopped. 

Else If ( bb ˆ ) 

                                                
14 Although  and v were not statistically significant we do not drop them from the model (4), because 
it is possible that they would become significant if a larger set of data were used.   
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 Go to Step 1.1.1 

Else 

 Go to Step 2. 

The above modification of the approximation procedure starts by evaluating 
fifteen first units to get an initial approximation for the efficiency density d̂ . After the 
initialization, the procedure compares the current proportion of DMUs evaluated (b) to 
the estimated proportion of the units that, according to model (4), should be evaluated 
( b̂ ).  If an early identification of efficient units (Theorem 2) is used, the calculated 
value for b̂ is actually a kind of an upper bound for parameter b because the procedure 
is biased to find efficient units during the initial evaluation rounds. This might be a 
desired phenomenon because having a too large b is a lesser problem than having a one 
that is below the threshold value (see, Figure 4).  

If the procedure is frequently used to solve DEA –problems, it is possible to 
update the regression coefficients using new information available from the solved 
problems. This is especially useful option if computer idle time can be used to solve the 
problems using a wide range of parameter values b around an estimated best b̂  value. 
In that case, the parameter value that in practice solves the problem fastest could be 
directly used in updating the estimates of the regression coefficients in the model (4). 

Table 7 reports the computing times for the above presented adaptive parameter 
b selection procedure. The problems solved are from the Table 1 where the number of 
inputs and outputs is twenty. As a reference, Table 7 also reports the computation 
times for the best b value (as reported in Table 1) and a case where a constant 
parameter value b = 0.03 is used for all the problems. 

Table 7. Computation Times (s) with a Different Parameter  
Value Selection (v = 20)   

    b = adaptive b = best 
b = 0.03 

(constant) 
Density # of Alt. Time(s) Time(s) Time(s) 

  5,000 16 14 17 
  10,000 40 36 55 

6.4 % 15,000 59 50 116 
  20,000 84 84 252 
  25,000 159 121 398 
  50,000 338 321 1724 
  5,000 22 17 21 
  10,000 69 69 86 

10.0 % 15,000 143 137 198 
  20,000 270 240 350 
  25,000 428 365 576 
  50,000 1260 1256 3597 
  5,000 49 46 51 
  10,000 166 162 164 

22.9 % 15,000 445 434 445 
  20,000 827 745 778 
  25,000 1121 1105 1273 
  50,000 5296 4497 6239 
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From Table 7 we can see that the adaptive procedure performs relatively well 
against the best b selection. The biggest increase is found in a problem with 25000 
units in a density category 6.4% where the computation time is increased by 31%. 
Also, the constant b selection (b = 0.03) performs quite well in all the other problems 
except the largest problems with 50000 units. 

The computing times represented in Table 7 are illustrated in Figures 5-7. In 
Figure 5 the efficiency density is 6.4%, in Figures 6 and 7 the density is 10.0% and 
22.9% respectively.  
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6.3 Using the Adaptive Selection of b with 100K Problems 
Table 7 reported the computing times using the adaptive selection of parameter 

b. However, the adaptive selection of b did not completely reflect the real-world 
situation where a best value for b is not known beforehand, because the regression 
coefficients in model (4) were calculated using the known best values of b for  these  
problems. To reflect a more realistic scenario, we used the adaptive procedure 
developed in section 6.2 with some new problems that were not used in the estimation 
of the regression coefficients. The problems had 100 000 units and twenty inputs and 
outputs. There was one problem in each density category (low, average and high). 
Table 8 reports the computing times of the three problems with 100 000 units. The 
interpretation  of  columns  in  Table  8  is  the  same  than  in  Tables  1-4,  except  that  the  
density column in Table 8 reports the true efficiency density of a problem (in contrast 
to average efficiency densities in Tables 1-4). Also the column that reports the value 
for b (Adaptive b) is not an empirically found best value but the value that the adaptive 
procedure of section 6.2 generated. 
 
Table 8. Computing Times (s) of Problems with 100 000 Units (v = 20) 
    Adaptive Step1  Step2  Step3  Total 
Density # of Alt. b Time(s) # of Alt. Time(s) # of Alt. Time(s) # of Alt. Time(s) 
1.8% 100,000 0.0050 55 256 487 5096 612 1844 1155 
8.8% 100,000 0.0065 67 402 827 14157 5528 8808 6423 

20.7% 100,000 0.0071 77 492 1016 27439 21387 20695 22481 
 
From Table 8 we can see that the adaptive procedure performed relatively well if 

we consider applying the method to real-world situations. Computing times were all 
feasible, if we consider the typical need to solve the problem only once: around 19 min, 
1 h 47 min and 6 h 15 min for low, average and high density categories respectively. 
All the problems used most of the time in Step 3. This leaves a possibility to improve 
the computing times even further by selecting the sequence of units to be solved in 
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Step3 intelligently and/or using a procedure that is especially suitable for high 
efficiency density problems.  

If we compare the Adaptive b values in Table 8 to the Best b values in Table 1, 
we can see that all the Adaptive b values are smaller than any of the Best b values. This 
reflects the influence of having a greater number of DMUs. However, compared to 
problems with 50 000 DMUs in Table 1 the Adaptive b values are fairly close to them 
(especially in the low density problem). This reflects the feature of the adaptive 
procedure to error on the upside when calculating the estimate for d if  the  early  
identification of efficient units is used. However, this is a desired phenomenon because 
we want to make sure that the adaptive b value is greater than the (unknown) 
threshold value.   

7 Using the Approximation Procedure with the Dimensional 
Decomposition Approach 

Korhonen and Siitari (2009) represented an algorithm where the identification of 
efficient units was accelerated by a dimensional decomposition procedure. The 
algorithm first partitions the original problem dimensionally into sub-problems and then 
identifies the efficient units of the sub-problems. The units (that are weakly efficient in 
the original problem) are then used as an approximation of the efficient frontier. Apart 
from building the approximated frontier the dimensional decomposition algorithm 
(henceforth procedure Dim) is similar to the approximation procedure presented in this 
paper (procedure Fract). Thus an interesting question is, if these approaches can be 
combined to further reduce the computation times. A necessary condition is that the 
methods tend to find different units to be used in the approximation of the efficient 
frontier. 

 Table 9 summarizes the approximation step of both algorithms for problems 
presented in Table 1. Column # of Fract states  the  number  of  units  that  are  used  to  
approximate the efficient frontier using the best value of parameter b for the procedure 
developed in section 5. Column # of Dim presents the number of units that are used to 
approximate the efficient frontier using the best number of decomposed problems 
(block-quantity q = 3) for the dimensional decomposition procedure (see, Korhonen 
and Siitari (2009)). Column # of Distinct states the number of distinct units found by 
the methods in the approximation step. (i.e. the cardinality of the union of the units 
found in the Fract and Dim approximation steps). Ratio compares the number of 
distinct  units  to  the  sum  of  units  found  in  Fract and Dim approximation steps ( i.e. 
Ratio = # of Distinct / (# of Fract + # of Dim)). 
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Table 9. Number of Distinct Units Found in the Approximation Steps (v = 20) 

        
Density # of Alt. # of Fract # of Dim # of Distinct Ratio 

  5,000 64 115 151 0.844 
  10,000 113 124 191 0.806 

6.4 % 15,000 131 134 206 0.777 
  20,000 134 134 204 0.761 
  25,000 166 163 273 0.830 
  50,000 231 206 364 0.833 
  5,000 87 151 205 0.861 
  10,000 176 167 304 0.886 

10.0 % 15,000 184 212 358 0.904 
  20,000 210 230 401 0.911 
  25,000 305 257 467 0.831 
  50,000 368 330 669 0.958 
  5,000 153 197 312 0.891 
  10,000 257 261 496 0.958 

22.9 % 15,000 333 293 595 0.950 
  20,000 454 328 740 0.946 
  25,000 443 323 731 0.954 
  50,000 641 445 1052 0.969 

 

As can be seen form Table 9, procedures Fract and Dim tend to use different units 
to approximate the efficient frontier when best parameter values are used. In Table 9 
around 90% of units that are found in the approximation steps are distinct. An 
explanation why these procedures tend to find different units in the approximation 
steps can be illustrated using the example first presented in section 3. In Figure 8 we 
have six DMUs each using one identical input to produce two outputs.  
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In section 3 the Fract procedure started the search from efficient unit A and next 
evaluated B. During the search, unit C entered the basis and was diagnosed efficient. 
The procedure approximated the efficient frontier using units A and C. If the Dim 
procedure was used instead, the problem would have been decomposed dimensionally 
into two sub-problems. The first problem would have variables {Input, Output1}, the 
second problem would have variables {Input, Output2}. In the first sub-problem unit F 
would be found efficient (because its projection onto Output1 (F’) is farthest from the 
origo). Similarly, the second sub-problem would have unit A as an efficient unit. Thus, 
procedure Dim would use units A and F to approximate the efficient frontier. The 
example illustrates the tendency of procedure Dim to select units that are performing 
well in some dimensionally decomposed sub-problem of the original problem (like units 
A and F). On the other hand, using procedure Fract the efficient units that  belong to 
facets onto which many inefficient units are projected (like a unit C) have a higher 
likelihood to be selected. 

The  algorithm  presented  in  section  5  could  be  modified  to  use  also  units  that  
procedure Dim selects in its approximation step. To have these units (together with the 
units that unmodified procedure Fract uses) in the efficient frontier approximation, 
Step 2 could be rewritten as follows (procedure Combined): 

Step 2: Using the Approximated Efficient Frontier to Identify Inefficient Units  

 Step 2.0: Initialization of Dim Procedure 

Divide the set of input variables M and the set of output variables P into q 
subsets M1,  M2,…,Mq and  P1,  P2,…,Pq as described in Korhonen and 
Siitari (2009). For each pair of subsets {Mi , Pi} form a new dimensionally 
decomposed DEA sub-problem Ai (i = 1, 2, …, q); q is an integer valued 
block-quantity parameter whose value must be determined beforehand (1  
q  max(m, p)).   

Step 2.1: Selecting Units Using Dim Procedure 

Solve each of the sub-problems Ai.   Get  the  union  of  efficient  units  W in  
each sub-problem. 

Step 2.2: Formulate  the  problem  as  model  (2).  Use  only  units  E  W as 
potential basic variables (Dh = E  W). 

Step 2.3: Evaluate the super-efficiencies of all the units in the set U – W (Dk = 
U - W). Append all inefficient units found in the approximated problem (2) 
into set Ik. Using Theorem 4 we can redefine I = I + Ik and U = U – Ik.   

Table 10 reports the computing times and empirically found best parameter values 
for procedures Fract, Dim and Combined.  The  problems  solved  are  from  Table  1  
where the number of inputs and outputs is twenty. Fract and Dim have only one 
parameter whose value affects the computation times (b and q respectively). In the 
Combined procedure two parameter values have to be determined (b and q). For 
procedure Fract the  computing  times  were  calculated  as  for  Table  1.  For  Combined 
the computing times were calculated using parameter values for b from 0.001 to 0.02 
with increments of 0.0005. Parameter values for q in both Dim and Combined -
procedures were 2, 3, 4, 5 and 6.  
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Table 10. Computation Times (s) Using Different Approximation Approaches (v = 20)  

   Fract Dim Combined 
Density # of Alt. Time(s) b Time(s) q  Time (s) b q 

 5,000 14 0.0125 16 3 13 0.0075 5 
 10,000 36 0.0125 42 3 31 0.0050 4 

6.4 % 15,000 50 0.0100 63 3 48 0.0035 4 
 20,000 84 0.0075 86 3 76 0.0050 5 
 25,000 121 0.0075 118 3 107 0.0015 4 
 50,000 321 0.0051 322 3 291 0.0035 5 
 5,000 17 0.0175 20 3 15 0.0025 5 
 10,000 69 0.0175 58 3 50 0.0020 4 

10.0 % 15,000 137 0.0125 124 3 105 0.0015 4 
 20,000 240 0.0100 203 3 172 0.0025 4 
 25,000 365 0.0125 299 3 290 0.0050 5 
 50,000 1256 0.0075 1205 3 1060 0.0025 5 
 5,000 46 0.0275 42 3 38 0.0100 5 
 10,000 162 0.0250 169 3 146 0.0020 4 

22.9 % 15,000 434 0.0225 370 3 352 0.0100 5 
 20,000 745 0.0225 680 3 651 0.0100 4 
 25,000 1105 0.0175 1064 3 979 0.0100 5 
 50,000 4497 0.0125 4341 3 4206 0.0075 4 

From Table 10 we can see that the Combined -procedure was fastest in all the 
problems evaluated. Compared to Fract (Dim), Combined was on average 15% (13%) 
faster. Procedure Fract tends to perform slightly better relative to Dim in density 
category 6.4%. In higher density categories procedure Dim performs better than Fract. 
The best block-quantity parameter (q) value for Dim was  3  in  all  the  problems  
evaluated. For procedure Combined the parameter b (q) values were smaller (higher) 
in all the problems compared to Fract (Dim).  

The computing times represented in Table 10 are illustrated in Figures 9-11. In 
Figure 9 the efficiency density is 6.4%, in Figures 10 and 11 the density is 10.0% and 
22.9% respectively. 
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8 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we developed an efficient frontier approximation method to reduce 
the computation times when classifying decision making units (DMUs) inefficient and 
efficient in the Data Envelopment Analysis (DEA) approach. The algorithm developed 
in this paper first identifies a subset of efficient units. This subset of efficient units 
spans the approximated efficient frontier. The subset can be rapidly identified by using 
the fact that, if the problem is kept lexicographically optimal, every unit entering the 
basis is known to be efficient. Using an appropriately sized subset of efficient units, it is 
possible to recognize most of the inefficient units swiftly by calculating their (super-) 
efficiencies with regards to the approximated frontier.  

By selecting properly the parameter value that determines the fraction of units to be 
identified in the frontier construction phase, the algorithm decreased drastically the 
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computing times in all the problems tested. The algorithm worked robustly with a wide 
range of parameter values. This fact enabled us to develop a simple adaptive procedure 
to select the parameter value during the solution process.  

We compared the computational times achieved by the algorithm developed in this 
paper to the algorithms presented in our earlier papers Korhonen and Siitari (2007) and 
(2009). We also shortly represented and tested a combined algorithm that, in the 
approximated frontier construction phase, utilizes the dimensional decomposition idea 
presented in Korhonen and Siitari (2009).  

In the future, our purpose is to study the effect of the sequence of the units to be 
checked. Selecting the sequence intelligently, it is probable that the computation times 
in the efficient unit identification problem discussed in this paper can be decreased 
further. The sequence of the units to be analyzed is also important when we calculate 
the efficiency scores using the set of efficient units.   
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