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An Estimation of Nadir Objective Vector Using a Hybrid

Evolutionary-cum-Local-Search Procedure

Kalyanmoy Deb∗, Kaisa Miettinen†, and Shamik Chaudhuri‡

Abstract

A nadir objective vector is constructed from the worst
Pareto-optimal objective values in a multi-objective
optimization problem and is an important entity to
compute because of its significance in estimating the
range of objective values in the Pareto-optimal front
and also in executing a number of interactive multi-
objective optimization techniques. Along with the
ideal objective vector, it is also needed for the purpose
of normalizing different objectives, so as to facilitate
a comparison and agglomeration of the objectives.
However, the task of estimating the nadir objective
vector necessitates information about the complete
Pareto-optimal front and has been reported to be a
difficult task, and importantly an unsolved and open
research issue. In this paper, we propose certain mod-
ifications to an existing evolutionary multi-objective
optimization procedure to focus its search towards
the extreme objective values and combine it with a
reference-point based local search approach to con-
stitute a couple of hybrid procedures for a reliable
estimation of the nadir objective vector. With up
to 20-objective optimization test problems and on a
three-objective engineering design optimization prob-
lem, one of the proposed procedures is found to be
capable of finding the nadir objective vector reliably.
The study clearly shows the significance of an evolu-
tionary computing based search procedure in assist-
ing to solve an age-old important task in the field of
multi-objective optimization.

Keywords: Nadir point, multi-objective opti-
mization, non-dominated sorting GA, evolutionary
multi-objective optimization (EMO), multiple objec-
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1 Introduction

In a multi-objective optimization procedure, the es-
timation of a nadir objective vector (or simply a
nadir point) is often an important task. The nadir
objective vector is constructed from the worst val-
ues of each objective function corresponding to the
entire set of Pareto-optimal solutions, that is, the
Pareto-optimal front. Sometimes, this point is con-
fused with the point representing the worst objec-
tive values of the entire search space, which is often
an over-estimation of the true nadir objective vector.
The importance of finding the nadir objective vec-
tor was recognized by the multiple criteria decision
making (MCDM) researchers and practitioners since
early seventies. However, even after about 40 years
of active research in multi-objective optimization and
decision making, there does not exist a reliable pro-
cedure of finding the nadir point in problems having
more than three objectives. For this reason, a re-
liable estimation of the nadir point is an important
matter to anyone interested in multi-objective opti-
mization, including evolutionary multi-objective op-
timization (EMO) researchers and practitioners. We
outline here the motivation and need for finding the
nadir point.

1. Along with the ideal objective vector (a point
constructed from the best values of each objec-
tive), the nadir objective vector can be used to
normalize objective functions [30], a matter of-
ten desired for an adequate functioning of multi-
objective optimization algorithms in the pres-
ence of objective functions with different mag-
nitudes. With these two extreme values, the ob-
jective functions can be scaled so that each scaled
objective takes values more or less in the same
range. These scaled values can be used for opti-
mization with different algorithms like the refer-
ence point method, weighting method, compro-
mise programming, the Tchebycheff method (see
[30] and references therein), or even for EMO al-
gorithms. Such a scaling procedure may help in
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reducing the computational cost by solving the
problem faster [34].

2. The second motivation comes from the fact that
the nadir objective vector is a pre-requisite for
finding preferred Pareto-optimal solutions in dif-
ferent interactive algorithms, such as the guess
method [5] (where the idea is to maximize the
minimum weighted deviation from the nadir ob-
jective vector), or it is otherwise an integral
part of an interactive method like the NIMBUS
method [30, 33]. The knowledge of a nadir point
should also help in interactive EMO procedures,
one implementation of which has been suggested
recently [14] and many other possibilities are dis-
cussed in [3].

3. Thirdly, the knowledge of nadir and ideal objec-
tive values helps the decision-maker in adjusting
her/his expectations on a realistic level by pro-
viding the range of each objective and can then
be used to aid in specifying preference informa-
tion in interactive methods in order to focus on
a desired region of the Pareto-optimal front.

4. Fourthly, in visualizing a Pareto-optimal front,
the knowledge of the nadir objective vector is
crucial. Along with the ideal point, the nadir
point provides the range of each objective in or-
der to facilitate comparison of different Pareto-
optimal solutions, that is, visualizing the trade-
off information through value paths, bar charts,
petal diagrams etc. [30, 31].

5. Above all, the task of accurately estimating the
nadir point in a three or more objective problem
is a non-trivial and challenging task, and is an
open research topic till to date. Researchers have
repeatedly shown that the task is difficult even
for linear multi-objective optimization problems.
Therefore, any new effort to arrive at a suitable
methodology for estimating the nadir point has
an intellectual and pedagogic importance, de-
spite its practical significance outlined above.

These motivations for estimating the nadir point
led the researchers dealing with MCDM method-
ologies to suggest procedures for approximating the
nadir point using a so-called payoff table [1]. This
involves computing individual optimum solutions for
objectives, constructing a payoff table by evaluating
other objective values at these optimal solutions, and
estimating the nadir point from the worst objective
values from the table. This procedure may not guar-
antee a true estimation of the nadir point for more
than two objectives. Moreover, the estimated nadir
point can be either an over-estimation or an under-
estimation of the true nadir point. For example, Is-
erman and Steuer [23] have demonstrated these dif-

ficulties for finding a nadir point using the payoff
table method even for linear problems and empha-
sized the need of using a better method. Among
others, Dessouky et al. [20] suggested three heuris-
tic methods and Korhonen et al. [27] another heuris-
tic method for this purpose. Let us point out that
all these methods suggested have been developed for
linear multi-objective problems where all objectives
and constraints are linear functions of the variables.

In [21], an algorithm for deriving the nadir point is
proposed based on subproblems. In other words, in
order to find the nadir point for an M -objective prob-
lem, Pareto-optimal solutions of all

(
M
2

)
bi-objective

optimization problems must first be found. Such a
requirement may make the algorithm computation-
ally impractical beyond three objectives, although
Szczepanski and Wierzbicki [37] implemented the
above idea using evolutionary algorithms (EAs) and
showed successful applications with up to four objec-
tive linear optimization problems. Moreover, authors
of [21] did not suggest how to realize the idea in non-
linear problems. It must be emphasized that because
the determination of the nadir point depends on find-
ing the worst objective values in the set of Pareto-
optimal solutions, even for linear problems, this is a
difficult task [2].

Since an estimation of the nadir objective vec-
tor necessitates information about the whole Pareto-
optimal front, any procedure of estimating this point
should involve finding Pareto-optimal solutions. This
makes the task more difficult compared to finding the
ideal point [27]. Since EMO algorithms can be used
to find a representation of the entire or a part of the
Pareto-optimal front, EMO methodologies stand as
viable candidates for this task. Another motivation
for using an EMO procedure is that nadir point esti-
mation is to be made only once in a problem at the
beginning of the decision making process before any
human decision maker is included. So, even if the pro-
posed procedure uses somewhat substantial computa-
tional effort (one of the criticisms made often against
evolutionary optimization methods), a reliable and
accurate methodology for estimating the nadir point
is desired.

A careful thought will reveal that an estimation of
the nadir objective vector may not need finding the
complete Pareto-optimal front, but only an adequate
number of critical Pareto-optimal solutions may be
enough for this task. Based on this concept, an ear-
lier preliminary study by the authors [15] showed that
by altering the usual definition of a crowding distance
metric of an existing EMO methodology (elitist non-
dominated sorting GA or NSGA-II [13]) to empha-
size objective-wise best and worst Pareto-optimal so-
lutions (we call here as extreme solutions), a near
nadir point can be estimated on a number of test
problems. Since this study, we realized that the pro-
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posed NSGA-II procedure alone was not enough to
find the desired extreme solutions in a finite amount
of computational effort, when applied to other more
tricky optimization problems. In this paper, we hy-
bridize the previously proposed NSGA-II approach
with a local search procedure which uses the idea
of an achievement scalarizing function utilized, for
example, in an interactive MCDM approach – the
reference point approach [38] – to enhance the con-
vergence of solutions to the desired extreme points.
This extension, by far, is not an easy task, as a local
search in any form in the context of multiple con-
flicting objectives is a difficult proposition. empirical
results of this hybrid nadir point estimation proce-
dure on problems with up to 20 objectives, on some
difficult numerical optimization problems, and on an
engineering design problem amply demonstrate the
usefulness and promise of the proposed hybrid proce-
dure.

The rest of this paper is organized as follows. In
Section II, we introduce basic concepts of multi-
objective optimization and discuss the importance
and difficulties of estimating the nadir point. In
Section III, we describe two modified NSGA-II ap-
proaches for finding near extreme Pareto-optimal
solutions. The nadir point estimation procedures
proposed based on a hybrid evolutionary-cum-local-
search concept are described in Section IV. The per-
formances of the modified NSGA-II procedures are
tested and compared with a naive approach on a num-
ber of scalable numerical test problems and the re-
sults are described in Section V. The use of the hybrid
nadir point estimation procedure in full is demon-
strated in Section VI by solving three test problems,
including an engineering design problem. Some dis-
cussions and possible extensions of the study are pre-
sented in Section VII. Finally, the paper is concluded
in Section VIII.

2 Nadir Objective Vector and
Difficulties of its Estimation

We consider multi-objective optimization problems
involving M conflicting objectives (fi : S → R) as
functions of decision variables x:

minimize {f1(x), f2(x), . . . , fM (x)}
subject to x ∈ S,

(1)

where S ⊂ Rn denotes the set of feasible solutions.
A vector consisting of objective function values calcu-
lated at some point x ∈ S is called an objective vec-
tor f(x) = (f1(x), . . . , fM (x))T . Problem (1) gives
rise to a set of Pareto-optimal solutions or a Pareto-
optimal front (P ∗), providing a trade-off among the
objectives. In the sense of minimization of objec-

tives, Pareto-optimal solutions can be defined as fol-
lows [30]:

Definition 1 A decision vector x∗ ∈ S and the cor-
responding objective vector f(x∗) are Pareto-optimal
if there does not exist another decision vector x ∈ S
such that fi(x) ≤ fi(x∗) for all i = 1, 2, . . . , M and
fj(x) < fj(x∗) for at least one index j.

Let us mention that if an objective fj is to be max-
imized, it is equivalent to minimize −fj. In what
follows, we assume that the Pareto-optimal front is
bounded. We now define a critical point, as follows:

Definition 2 A point z(j)c
is a critical point with re-

spect to the j-th objective function, if it corresponds
to the worst value of fj among all Pareto-optimal so-
lutions, i.e., z(j)c

= {f(y)|y = argmaxx∈P∗fj(x)}.
The nadir objective vector can now be defined as fol-
lows.

Definition 3 An objective vector znad =
(znad

1 , . . . , znad
M )T whose j-th element is taken

from j-th component of the corresponding critical
Pareto-optimal point znad

j = z
(j)
j

c
is called a nadir

objective vector.

Due to the requirement that the a critical point
must be an Pareto-optimal point, the estimation
of the nadir objective vector is, in general, a dif-
ficult task. Unlike the ideal objective vector z∗ =
(z∗1 , z∗2 , . . . , z∗M )T , which can be found by minimiz-
ing each objective individually over the feasible set
S (i.e., z∗j = minx∈S fj(x)), the nadir point cannot
be formed by maximizing objectives individually over
S. To find the nadir point, Pareto-optimality of so-
lutions used for constructing the nadir point must be
first established. This makes the task of finding the
nadir point a difficult one.

To illustrate this aspect, let us consider a bi-
objective minimization problem shown in Figure 1. If
we maximize f1 and f2 individually, we obtain points
A and B, respectively. These two points can be used
to construct the so-called worst objective vector, zw.
In many problems (even in bi-objective optimization
problems), the nadir objective vector and the worst
objective vector are not the same point, which can
also be seen in Figure 1. In order to estimate the
nadir point correctly, we need to find critical points
(such as C and D in Figure 1).

2.1 Payoff Table Method

Benayoun et al. [1] introduced the first interac-
tive multi-objective optimization method and used
a nadir point (although the authors did not use the
term ‘nadir’), which was to be found by using a pay-
off table. To be more specific, each objective func-
tion is first minimized individually and then a table
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Figure 1: The nadir and worst objective vectors
may be different.
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Figure 2: Payoff table may not produce the true nadir
point.

is constructed where the i-th row of the table rep-
resents values of all objective functions calculated at
the point where the i-th objective obtained its mini-
mum value. Thereafter, the maximum value of the j-
th column can be considered as an estimate of the up-
per bound of the j-th objective in the Pareto-optimal
front and these maximum values together may be
used to construct an approximation of the nadir ob-
jective vector. The main difficulty of such an ap-
proach is that solutions are not necessarily unique
and thus corresponding to the minimum solution of
an objective there may exist more than one solutions
having different values of other objectives, in prob-
lems having more than two objectives. In these prob-
lems, the payoff table method may not result in an
accurate estimation of the nadir objective vector.

Let us consider the Pareto-optimal front of a hypo-
thetical problem involving three objective functions
shown in Figure 2. The problem has a bounded
objective space lying inside the rectangular outer
box marked with solid lines. The region below the
triangular surface ABC is then removed from the
box. Since all three objectives are minimized, the
Pareto-optimal front is the triangular plane ABC.
The minimum value of the first objective function
is zero. As can be seen from the figure, there exist
a number of solutions having a value zero for func-
tion f1 and different combinations of f2 and f3 val-
ues. These solutions lie on the f1 = 0 plane, but
on the trapezoid CBB′F′C′C). In the payoff table,
when three objectives are minimized one at a time,
we may get objective vectors f (1) = (0, 0, 1)T (point
C), f (2) = (1, 0, 0)T (point A), and f (3) = (0, 1, 0)T

(point B) corresponding to minimizations of f1, f2,
and f3, respectively, and then the true nadir point
znad = (1, 1, 1)T can be found. However, if vectors
f (1) = (0, 0.2, 0.8)T , f (2) = (0.5, 0, 0.5)T and f (3) =
(0.7, 0.3, 0)T (marked with open circles) are found

from corresponding minimizations of f1, f2, and f3,
respectively, a wrong estimate z′ = (0.7, 0.3, 0.8)T

of the nadir point will be made. The figure shows
how such a wrong nadir point represents only a por-
tion (shown dark-shaded) of the Pareto-optimal front.
Here we obtained an underestimation but the result
may also be an overestimation of the true nadir point
in some other problems. Thus, we need a more reli-
able method to estimate the nadir point.

3 Evolutionary Multi-
Objective Approaches for
Nadir Point Estimation

As has been discussed so far, the nadir point is as-
sociated with Pareto-optimal solutions and, thus, de-
termining a set of Pareto-optimal solutions will fa-
cilitate the estimation of the nadir point. For the
past decade or so, EMO algorithms have been gain-
ing popularity because of their ability to find mul-
tiple, wide-spread, Pareto-optimal solutions simulta-
neously [11, 6]. Since they aim at finding a set of
Pareto-optimal solutions, an EMO approach may be
an ideal way to find the nadir objective vector. Let
us now discuss several approaches for estimating the
nadir point.

3.1 Naive Approach

In the so-called naive approach, first a well-
distributed set of Pareto-optimal solutions can be at-
tempted to find by an EMO, as was also suggested
in [15]. Thereafter, an estimate of the nadir objec-
tive vector can be made by picking the worst values
of each objective. This idea was implemented in [37]
and applied to a couple of three and four objective
optimization problems. However, this naive approach
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of first finding a representative set of Pareto-optimal
solutions and then determining the nadir objective
vector seems to possess some difficulties. In the con-
text of the problem depicted in Figure 2, this means
first finding a well-represented set of solutions on the
plane ABC and then estimating the nadir point from
them.

Recall that one of the main purposes of estimating
the nadir objective vector is that along with the ideal
point, it can be used to normalize different objective
functions, so that an interactive multi-objective op-
timization algorithm can be used to find the most
preferred Pareto-optimal solution. But by the naive
approach, an EMO is already utilized to find a rep-
resentative set of Pareto-optimal solutions. One may
think that there is no apparent reason for construct-
ing the nadir point for any further analysis. However,
representing and analyzing the set of Pareto-optimal
solutions is not trivial when we have more than two
objectives in question. Furthermore, we can list sev-
eral other difficulties related to the above-described
simple approach. Recent studies have shown that
EMO approaches using the domination principle pos-
sess a number of difficulties in solving problems hav-
ing a large number of objectives [25, 18, 7]:

1. To properly represent a high-dimensional
Pareto-optimal front requires an exponentially
large number of points [11], which, among
others, increases computational cost.

2. With a large number of conflicting objectives,
a large proportion of points in a random
initial population are non-dominated to each
other. Since EMO algorithms emphasize all non-
dominated solutions in a generation, a large por-
tion of an EA population gets copied to the
next generation, thereby allowing only a small
number of new solutions to be included in a
generation. This severely slows down the con-
vergence of an EMO towards the true Pareto-
optimal front.

3. EMO methodologies maintain a good diversity
of non-dominated solutions by explicitly using
a niche-preserving scheme which uses a diversity
metric specifying how diverse the non-dominated
solutions are. In a problem with many objec-
tives, defining a computationally fast yet a good
indicator of higher-dimensional distances among
solutions becomes a difficult task. This aspect
also makes the EMO approaches computation-
ally expensive.

4. With a large number of objectives, visualization
of a large-dimensional Pareto-optimal front gets
difficult.

The above-mentioned shortcomings cause EMO ap-
proaches to be inadequate for finding the complete

Pareto-optimal front in the first place [18]. Thus, for
handling a large number of objectives, it may not be
advantageous to use the naive approach in which an
EMO is employed to first find a representative set of
points on the entire Pareto-optimal front and then
construct the nadir point from these points.

3.2 Multiple Bi-Objective Formula-
tions

Szczepanski and Wierzbicki [37] have simulated the
idea of solving multiple bi-objective optimization
problems suggested in [21] using an EMO approach
and constructing the nadir point by accumulating all
bi-objective Pareto-optimal fronts together. In the
context of the three-objective optimization problem
described in Figure 2 for which the Pareto-optimal
front is the plane ABC, minimization of the pair f1-
f2 will correspond to one Pareto-optimal objective
vector having a value of zero for both objectives. An
easy way to visualize the objective space for the f1-f2

optimization problem is to project every point on the
above three-dimensional objective space on the f1-f2

plane. The projected objective space lies on the first
quadrant of the f1-f2 plane and the origin (the point
(0,0) corresponding to (f1, f2)) is the only Pareto-
optimal point to the above problem. However, this
optimal objective vector (f1 = 0 and f2 = 0) corre-
sponds to any value of the third objective function
lying on the line CC′ (since the third objective was
not considered in the above bi-objective optimization
process). The authors of [37] have also suggested the
use an objective-space niching technique to find a
set of well-spread optimal solutions on the objective
space. But since all objective vectors on the line CC′

correspond to an identical (f1, f2) value of (0,0), the
objective-space niching will not have any motivation
to find multiple solutions on the line CC′. Thus, to
find multiple solutions on the line CC′ so that the
point C can be captured by this bi-objective opti-
mization task to make a correct estimate of the nadir
point, an additional variable-space niching [16, 10]
must also be used to get a well-spread set of solu-
tions on the line CC′. This aspect was ignored in the
original study [37], but it is important to note that
in order to accurately estimate the nadir point, any
arbitrary objective vector on the line CC′ will not be
adequate, but the point C must be found. Similarly,
the other two pair-wise minimizations, if performed
with a variable-space niching, will give rise to sets of
solutions on the lines AA′ and BB′. According to the
procedure of [37], all these points (objective vectors)
can then be put together, dominated solutions can
be eliminated, and the nadir point can be estimated
from the remaining non-dominated points. If only
objective vectors A, B and C are found by respec-
tive pair-wise minimizations exactly, the above pro-
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cedure will result in three non-dominated solutions
A, B, and C, thereby making a correct estimate of
the nadir point.

Although the idea seems interesting and theoret-
ically sound, it requires

(
M
2

)
bi-objective optimiza-

tions with both objective and variable-space niching
methodologies to be performed. This may be a daunt-
ing task particularly for problems having more than
three or four objectives. Moreover, the outcome of
the procedure will depend on the chosen niching pa-
rameter on both objective and decision-space niching
operators.

However, the idea of concentrating on a preferred
region on the Pareto-optimal front, instead of finding
the entire Pareto-optimal front, can be pushed fur-
ther. Instead of finding bi-objective Pareto-optimal
fronts by several pair-wise optimizations, an empha-
sis can be placed in an EMO approach to find only
the critical points of the Pareto-optimal front. These
points are non-dominated points which will be re-
quired to estimate the nadir point correctly. With
this change in focus, the EMO approach can also be
used to handle large-dimensional problems, particu-
larly since the focus would be to only converge to the
extreme points on the Pareto-optimal front, instead
of aiming at maintaining diversity. For the three-
objective minimization problem of Figure 2, the pro-
posed EMO approach would then distribute its pop-
ulation members near the extreme points A, B, and
C (instead of the entire Pareto-optimal front or non-
optimal solutions), so that the nadir point can be
estimated quickly. Our earlier study [15] suggested
the following two approaches.

3.3 Worst-Crowded NSGA-II Ap-
proach

We implemented this approach on a particular EMO
approach (NSGA-II [13]), but the concept can, in
principle, be implemented on other state-of-the-art
EMO approaches as well. Since the nadir point must
be constructed from the worst objective values of
Pareto-optimal solutions, it is intuitive to think of an
idea in which population members having the worst
objective values within a non-dominated front are
emphasized. For this, we employed a modified crowd-
ing distance scheme in NSGA-II by emphasizing the
worst objective values in every non-dominated front.
We called this by the name ‘Worst-Crowded NSGA-II
Approach’.

In every generation, population members on every
non-dominated front (having Nf members) are first
sorted from minimum to maximum based on each ob-
jective (for minimization problems) and a rank equal
to the position of the solution in the sorted list is as-
signed. In this way, a member i in a front gets a rank
R

(m)
i from the sorting in the m-th objective. The so-

lution with the minimum function value in the m-th
objective gets a rank value R

(m)
i = 1 and the solu-

tion with the maximum function value in the m-th
objective gets a rank value R

(m)
i = Nf . Such a rank

assignment continues for all M objectives. Thus, at
the end of this assignment process, each solution in
the front gets M ranks, one corresponding to each ob-
jective function. Thereafter, the crowding distance di

to a solution i in the front is assigned as the maximum
of all M ranks:

di = max
{
R

(1)
i , R

(2)
i , . . . , R

(M)
i

}
. (2)

In this way, the solution with the maximum objec-
tive value of any objective gets the best crowding
distance. The NSGA-II approach emphasizes a so-
lution if it lies on a better non-dominated front and
for solutions of the same non-dominated front it em-
phasizes a solution with a higher crowding distance
value. Thus, solutions of the final non-dominated
front which could not be accepted entirely by NSGA-
II’s selection operator are chosen based on their
crowding distance value. This dual task of select-
ing non-dominated solutions and solutions with worst
objective values should, in principle, lead to a proper
estimation of the nadir point in most problems.

However, we realize that an emphasis on the worst
non-dominated points alone may have at least two
difficulties in certain problems. First, since the focus
is to find only a few solutions (instead of a complete
front), the population may lose its diversity early on
during the search process, thereby slowing down the
progress towards the true worst points. Moreover, if,
for some reason, the convergence is a premature event
to wrong solutions, the lack of diversity among popu-
lation members will make it even harder for the EMO
to recover and find the necessary worst solutions to
construct the true nadir point.

The second difficulty of the worst-crowded NSGA-
II approach may appear in certain problems, in
which an identification of critical points alone from
the Pareto-optimal front is not enough. Some spu-
rious non-Pareto-optimal points can remain non-
dominated with the critical points in a population
and provide a wrong estimate of the nadir point. Let
us next discuss this important issue with an exam-
ple problem. Consider a three-objective minimization
problem shown in Figure 3, where the surface ABCD
represents the Pareto-optimal front. The true nadir
point is at znad = (1, 1, 1)T . By using the worst-
crowded NSGA-II, we expect to find three individual
critical points: B=(1, 0, 0.4)T (for f1), D=(0, 1, 0.4)T

(for f2) and C=(0, 0, 1)T (for f3). Note that there is
no motivation for the worst-crowded NSGA-II to find
and maintain point A=(0.9, 0.9, 0.1)T in the popula-
tion, as this point does not correspond to the worst
value of any objective in the set of Pareto-optimal
solutions. With the three points (B, C, and D) in a
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Figure 3: A problem which may cause difficulty to
the worst-crowded approach.

population, a non-Pareto-optimal point E (with an
objective vector (1.3, 1.3, 0.3)T ), if found by EA op-
erators, will become non-dominated to points B, C,
and D, and will continue to exist in the population.
Thereafter, the worst-crowded NSGA-II will empha-
size points C and E as extreme points and the recon-
structed nadir point will become F=(1.3, 1.3, 1.0)T ,
which is a wrong estimation. This difficulty could
have been avoided, if the point A was included in the
population.

A little thought will reveal that the point A is a
Pareto-optimal solution, but corresponds to the best
value of f3. If the point A is present in the popula-
tion, it will dominate the point E and would not al-
low points like E to be present in the non-dominated
front. Interestingly, this situation does not occur in
bi-objective optimization problems. To avoid a wrong
estimation of the nadir point due to the above diffi-
culty, ideally, an emphasis on maintaining all Pareto-
optimal solutions in the population must be made.
But, since this is not practically viable for a large
number of objectives, we suggest another approxi-
mate approach which deals with the above-mentioned
difficulties better than the worst-crowded approach.

3.4 Extremized-Crowded NSGA-II
Approach

In the extremized-crowded NSGA-II approach, in ad-
dition to emphasizing the worst solution correspond-
ing to each objective, we also emphasized the best
solution corresponding to every objective. We refer
to the individual best and worst Pareto-optimal solu-
tions as ‘extreme’ solutions here. In the extremized
crowded NSGA-II approach, solutions on a particular
non-dominated front are first sorted from minimum

(with rank R
(m)
i = 1) to maximum (with rank = Nf )

based on each objective. A solution closer to either
extreme objective values (minimum or maximum ob-
jective values) gets a higher rank compared to that
of an intermediate solution. Thus, the rank of solu-
tion i for the m-th objective R

(m)
i is reassigned as

max{R(m)
i , Nf − R

(m)
i + 1}. Two extreme solutions

for every objective get a rank equal to Nf (number of
solutions in the non-dominated front), the solutions
next to these extreme solutions get a rank (Nf − 1),
and so on. Figure 4 shows this rank-assignment pro-
cedure. After a rank is assigned to a solution by each

f2

654456
6
5
4

5

6

4

(6)

(6)
(5)(4)

(4)

(5)

f1

Figure 4: Crowding distance computation procedure
in extremized-crowded NSGA-II approach.

objective, the maximum value of the assigned ranks is
declared as the crowding distance, as in (2). The final
crowding distance values are shown within brackets
in Figure 4.

For a problem having a one-dimensional Pareto-
optimal front (such as, in a bi-objective problem),
the above crowding distance assignment is similar
to the worst crowding distance assignment scheme
(as the minimum-rank solution of one objective is
also the maximum-rank solution of at least one other
objective). However, for problems having a higher-
dimensional Pareto-optimal hyper-surface, the effect
of extremized crowding is different from that of the
worst-crowded approach. In the three-objective prob-
lem shown in Figure 3, the extremized-crowded ap-
proach will not only emphasize the extreme points A,
B, C and D, but also solutions on edges CD and BC
(having the smallest f1 and f2 values, respectively)
and solutions near them. This approach has two ad-
vantages: (i) a diversity of solutions in the population
may now allow genetic operators (recombination and
mutation) to find better solutions and not cause a
premature convergence and (ii) the presence of these
extreme solutions will reduce the chance of having
spurious non-Pareto-optimal solutions (like point E
in Figure 3) to remain in the non-dominated front,
thereby enabling a more accurate computation of the
nadir point. Moreover, since the intermediate por-
tion of the Pareto-optimal front is not targeted in
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this approach, finding the extreme solutions should
be quicker than the original NSGA-II, especially for
problems having a large number of objectives and
involving computationally expensive function evalu-
ation schemes.

4 Nadir Point Estimation Pro-
cedure

An accurate estimation of the nadir point depends
on how accurately the critical points can be found.
For solving multi-objective optimization problems,
the NSGA-II approach (and for this matter any other
EMO approach) is usually found to come close to the
Pareto-optimal front quickly and then observed to
take many iterations to reach the exact front [28].
To accurately determine the Pareto-optimal front,
NSGA-II solutions can be improved by using a local
search approach [11, 36]. For estimating the nadir
point accurately, we propose to employ an EMO-
cum-local-search approach, in which the solutions ob-
tained by the modified NSGA-II approaches will be
attempted to be improved by using a local-search pro-
cedure.

4.1 Bilevel Local Search Approach

Recall that due to the focus of modified NSGA-II ap-
proaches towards individual objective-wise worst or
extreme solutions, the algorithms are likely to find so-
lutions close to the critical point for each objective.
The task of the local search would then be to take
each of these solutions to the corresponding critical
point as close as possible. Particularly we would like
to have following three goals of our local search proce-
dure. First, the approach must be generic, so that it,
for example, be applicable to convex and non-convex
problems. Second, the approach must guarantee con-
vergence to a Pareto-optimal point, no matter which
solutions were found by the modified NSGA-II ap-
proach. Third, the approach must find that particu-
lar Pareto-optimal solution which corresponds to the
worst value of the underlying objective. It is clear
that the above task of the local search procedure in-
volves two optimization problems (to ensure the sec-
ond and the third properties, respectively). Thus,
the local search approach must be different from the
usual local search methods employed in the EMO al-
gorithm. Somehow, both optimization tasks must be
combined together in a generic manner so that the
local search can be applied to different types of prob-
lems and is able to accurately find the critical points
leading to the nadir point.

The first two properties can be achieved by using a
well-known MCDM approach, called the augmented
achievement scalarizing function approach [38]. In

this approach, a reference point z is first chosen. By
using a weight vector w (used for scaling), the fol-
lowing minimization problem is then solved:

minimize
M

max
j=1

wj(fj(x) − zj) + ρ
∑M

j=1 wj(fj(x) − zj),

subject to x ∈ S,
(3)

where S is the original set of feasible solutions. The
right-most augmented term in the objective function
is added so that a weak Pareto-optimal solution is not
found. For this purpose, a small value of ρ (e.g., 10−4

or smaller) is used. The above optimization task in-
volves a non-differentiable objective function (due to
the max-term in the objective function), but if the
original problem is differentiable, a suitable transfor-
mation of the problem can be made by introducing an
additional slack variable xn+1 to make an equivalent
differentiable problem [30], as follows:

minimize xn+1 + ρ
∑M

j=1 wj(fj(x) − zj),
subject to xn+1 ≥ wj(fj(x) − zj), j = 1, 2, . . . , M,

x ∈ S.
(4)

If the single-objective optimization algorithm used to
solve the above problem is able to find the true op-
timum, the optimal solution is guaranteed to be a
Pareto-optimal solution [30]. In other words, achieve-
ment scalarizing functions project the reference point
on the Pareto-optimal front. Moreover, the above ap-
proach is applicable for both convex and non-convex
problems. Figure 5 illustrates the idea. For the refer-
ence point C, the optimal solution of the above prob-
lem is D, which is a Pareto-optimal point. The di-
rection marked by the arrow depends on the chosen
weight vector w. Irrespective of whether the refer-
ence point is feasible or not, the approach always finds
a Pareto-optimal point dictated by the chosen weight
vector and the reference point. The effect of the aug-
mented term (with the term involving ρ) is shown by
plotting a sketch of the iso-preference contour lines.
More information about the role of weights is given,
for example, in [29].

However, our goal for the local search is not to find
any arbitrary Pareto-optimal solution, but the crit-
ical point corresponding to the underlying objective
(like the point P for objective f2). Unfortunately
it is not obvious which reference point and weight
vector one must choose to arrive at a critical point.
For this purpose, we construct another optimization
problem to find a combination of a reference point
and a weight vector which will result in the critical
point for an objective. This requires a nested bilevel
approach in which the upper-level optimization con-
siders a combination of a reference point and a weight
vector (z,w) as decision variables. Each combina-
tion (z,w) is then evaluated by finding a Pareto-
optimal solution corresponding to a lower-level op-

8



timization problem constructed using an augmented
achievement scalarizing function given in (3) or (4)
with z and w as the reference point and the weight
vector, respectively. In the lower-level optimization,
problem variables (x) are the decision variables. As
discussed above, the resulting optimal solution of the
lower-level optimization is always a Pareto-optimal
solution (having a objective vector f∗). Since our goal
in the local search approach is to reach the critical
point corresponding to a particular objective (say j-
th objective), a solution (z,w) for the upper-level op-
timization task can be evaluated by checking the j-th
objective value (f∗

j ) of the obtained Pareto-optimal
solution.

Figure 5 further explains this bilevel approach.
Consider points A and B which are found by one
of the modified NSGA-II procedures as worst non-
dominated solutions for f2 and f1, respectively. The
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Figure 5: The bilevel local search procedure. A and
B are critical points obtained by EMO. The task of
local search is to find point P from A and point Q
from B for an accurate estimate of the nadir point.

goal of using the local search approach is to reach the
corresponding critical points (P and Q, respectively)
from each of these points. Consider point A, which is
found to be the worst in objective f2 among all mod-
ified NSGA-II solutions. The search region for the
reference point z in the upper-level optimization is
shown by the dashed box for which A is the lower-left
corner point. Each component of the weight vector
(w) is restricted within a non-negative range of val-
ues ([0.001, 1.000] is chosen for this study). For the
reference point z, say C, and weight vector w (direc-
tions indicating improvement of achievement scalar-
izing function), the solution to the lower-level opti-
mization problem (problem (3) or (4)) is the decision
variable vector x corresponding to solution D. Thus,
for the reference point C and the chosen weight vec-
tor, the corresponding function value of the upper-

level optimization problem is the objective value f2

of D. Since this objective value always corresponds
to a Pareto-optimal solution and the upper-level op-
timization attempts to maximize this objective value,
intuitively, the upper-level optimization will eventu-
ally result in finding the point P (the critical point
for f2). It is interesting to note that there may exist
many combinations of (z,w) (for example, with refer-
ence point A′ and weight vector shown in the figure)
which will also result in the same point P and for our
purpose any one of such solutions would be adequate
to accurately estimate the nadir point. Similarly, for
the modified NSGA-II solution B (worst for objective
f1), the point Q will be the outcome of the above
bilevel optimization approach, resulting from a pos-
sible combination of the reference point B′ and the
weight vector shown in the figure. Because we solve
the single-objective lower-level problems ((3) or (4))
with an appropriate local optimization algorithm and
the task of the upper-level search is also restricted in
a local neighborhood, we refer to this bilevel search
as a local search operation.

Now we are ready to outline the overall nadir point
estimation procedure in a step-by-step format:

Step 1: Supply or compute ideal and worst objec-
tive vectors by minimizing and maximizing each
objective function independently within the set
of feasible solutions.

Step 2: Apply the worst-crowded or the extremized-
crowded NSGA-II approach to find a set of non-
dominated points. Iterations are continued till
a termination criterion (described in the next
subsection), which uses ideal and worst objective
vectors computed in Step 1, is met. Say, P non-
dominated extreme points (variable vector x(i)

EA

with objective vector f (i)
EA for i = 1, 2, . . . , P ) are

found in this step. Identify the minimum and
maximum objective vectors (fmin and fmax) from
the P obtained extreme solutions. For the j-th
objective, they are computed as follows:

fmin
j =

P
min
i=1

f
(i)
j EA

, (5)

fmax
j =

P
max
i=1

f
(i)
j EA

. (6)

Step 3: Apply the bilevel local search approach for
each objective j (∈ {1, . . . , M}), one at a time.
First, identify the objective-wise worst solution
(solution x(j)

EA for which the j-th objective has
the worst value in P ) and then find the corre-
sponding optimal solution y∗(j) in the variable
space by using the bilevel local search proce-
dure, as follows. The upper-level optimization
uses a combination of a reference point and a
weight vector (z,w) as the decision variables and
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maximizes the j-th objective value of the Pareto-
optimal solution obtained by the lower-level op-
timization task (described a little later):

maximize(z,w) f∗
j (z,w),

subject to 0.001 ≤ wj ≤ 1, j = 1, 2, . . . , M,

zi ≥ f
(j)
i EA, i = 1, 2, . . . , M,

zi ≤ f
(j)
i EA + (fmax

i − fmin
i ),

i = 1, 2, . . . , M.
(7)

The term f∗
j (z,w) is the value of the j-th ob-

jective function at the optimal solution to the
following lower-level optimization problem:

minimize(y) maxM
i=1 wi

(
fi(y)−zi

fmax
i −fmin

i

)
+ρ

∑M
k=1 wk

(
fk(y)−zk

fmax
k −fmin

k

)
,

subject to y ∈ S.
(8)

This problem is identical to that in equation (3),
except that individual objective terms are nor-
malized for a better property of the augmented
term. In this lower-level optimization problem,
the search is performed on the original decision
variable space. The solution y∗(j) to this lower-
level optimization problem determines the op-
timal objective vector f(y∗(j)) from which we
extract the j-th component and use it in the
upper-level optimization problem. Thus, for ev-
ery reference point z and weight vector w, con-
sidered in the upper-level optimization task, the
corresponding optimal augmented achievement
scalarizing function is found in the lower-level
loop. The upper-level optimization is initialized
with the NSGA-II solution z(0) = f(x(j)

EA) and
w

(0)
i = 1/M . The lower-level optimization is ini-

tialized with the NSGA-II solution y(0) = x(j)
EA.

The local search can be terminated based on
standard single-objective convergence measures,
such as Karush-Kuhn-Tucker (KKT) condition
satisfaction through a prescribed limit or a small
difference in variable vectors between successive
iterations.

Step 4: Finally, construct the nadir point from the
worst objective values of the all Pareto-optimal
solutions obtained after the local search proce-
dure.

The use of a bilevel local search approach can be
computationally expensive, if the starting solution to
the local search is far away from the critical point.
For this reason, the proposed local search procedure
may not be computationally viable if started from a
random initial point. However, the use of a mod-
ified NSGA-II approach to first find a near critical
point and then to employ the proposed local search
to accurately locate the critical point seems like a

viable approach. To demonstrate the computational
viability of using the proposed local search approach
within our nadir point estimation procedure, we shall
present a break-up of function evaluations needed by
both NSGA-II and local search procedures later.

Before we leave this subsection, we discuss one fur-
ther issue. It is mentioned above that the use of
the augmentation term in the achievement scalarizing
problem formulation allows us not to converge to a
weak Pareto-optimal solution by the local search ap-
proach. But, in certain problems, the approach may
only find a critical proper Pareto-optimal solution [30]
depending on the value of the parameter ρ. For this
reason, we actually get an estimate of the ranges
of objective function values in a properly Pareto-
optimal set and not in a Pareto-optimal set. We can
control the trade-offs in the properly Pareto-optimal
set by choosing an appropriately small ρ value. For
further details, see, for example, [30]. In certain prob-
lems having a small trade-off near the critical points,
a proper Pareto-optimal point can be away from the
true critical point. If this is not desired, it is possible
to solve a lexicographic achievement scalarizing func-
tion [30, 34] instead of the augmented one suggested
in Step 3.

4.2 Termination Criterion for Modi-
fied NSGA-II

Typically, a NSGA-II run is terminated when a pre-
specified number of generations is elapsed. Here,
we suggest a performance based termination crite-
rion which causes a NSGA-II run to stop when the
performance reaches a desirable level. The perfor-
mance metric depends on a measure stating how
close the estimated nadir point is to the true nadir
point. However, for applying the proposed NSGA-
II approaches to an arbitrary problem (for which the
true Pareto-optimal front, hence the true nadir point,
is not known a priori), we need a different concept.
Using the ideal point (z∗), the worst objective vec-
tor (zw), and the estimated nadir point zest at any
generation of NSGA-II, we can define a normalized
distance (ND) metric as follows and track the con-
vergence property of this metric to determine the ter-
mination of our NSGA-II approach:

ND =

√√√√ 1
M

M∑
i=1

(
zest

i − z∗i
zw

i − z∗i

)2

. (9)

If in a problem, the worst objective vector zw (refer
to Figure 1) is the same as the nadir point, the nor-
malized distance metric value must converge to one.
Since the exact final value of this metric for finding
the true nadir point is not known a priori on an ar-
bitrary problem, we record the change in ND for the
past τ generations. Say, NDmax, NDmin, and NDavg,
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are the maximum, minimum, and average ND values
for the past consecutive τ generations. If the change
(NDmax−NDmin)/NDavg is smaller than a threshold
∆, the proposed NSGA-II approach is terminated and
the current non-dominated extreme solutions are sent
to the next step for performing the local search.

However, in the case of solving some academic test
problems, the location of the nadir objective vector
is known and a simple error metric (E) between the
estimated and the known nadir objective vectors can
be used for stopping a NSGA-II run:

E =

√√√√ M∑
i=1

(
znad

i − zest
i

znad
i − z∗i

)2

. (10)

To make the approach pragmatic, in this paper, we
terminate a NSGA-II run when the error metric E be-
comes smaller than a predefined threshold (η), when-
ever the true nadir point is known.

5 Results on Benchmark Prob-

lems

We are now ready to describe the results of numerical
tests obtained using the proposed hybrid nadir point
estimation procedure. We have chosen problems hav-
ing three to 20 objectives in this study. In this sec-
tion, we use benchmark problems where the entire
description of the objective space and the Pareto-
optimal front is known. We have chosen these prob-
lems to test the working of our procedure. Thus, in
these problems, we do not perform Step 1 explicitly.
Moreover, if Step 2 of the nadir point estimation pro-
cedure successfully finds the nadir point (using the
error metric (E ≤ η) for determining termination of
a run), we do not employ Step 3 (local search). The
complete hybrid procedure will be tested in its total-
ity in the next section.

In all runs here, we compare three different ap-
proaches:

1. Naive NSGA-II approach in which first we find a
set of non-dominated solutions using the original
NSGA-II and then estimate the nadir point from
the obtained solutions.

2. NSGA-II with the worst-crowded approach, and

3. NSGA-II with the extremized-crowded ap-
proach.

To make a fair comparison, parameters in all three
cases are kept fixed for all problems. We use the
SBX recombination operator [12] with a probability
of 0.9 and distribution index of ηc = 10. The polyno-
mial mutation operator [11] is used with a probability

of 1/n (n is the number of variables) and a distribu-
tion index of ηm = 20. The population size is set
according to the problem and is mentioned in respec-
tive subsections. Each algorithm is run 11 times (odd
number of runs are used to facilitate the recording of
the median performance of an algorithm), each time
starting from a different random initial population.
However all proposed procedures are started with an
identical set of initial populations to be fair. The
number of generations required to satisfy the termi-
nation criterion (E ≤ η) is noted for each run and
the corresponding best, median and worst number of
generations are presented for a comparison. For all
test problems, η = 0.01 is used.

5.1 Three and More Objectives

To test Step 2 of the nadir point estimation proce-
dure on three and more objectives, we choose three
DTLZ test problems [19] which have different char-
acteristics. These problems are designed in a man-
ner so that they can be extended to any number
of objectives. The first problem, DTLZ1, is con-
structed to have a linear Pareto-optimal front. The
true nadir objective vector is znad = (0.5, . . . , 0.5)T

and the ideal objective vector is z∗ = (0, . . . , 0)T .
The Pareto-optimal front of the second test problem,
DTLZ2, is a quadrant of a unit sphere centered at
the origin of the objective space. The nadir objec-
tive vector is znad = (1, . . . , 1)T and the ideal objec-
tive vector is z∗ = (0, . . . , 0)T . The third test prob-
lem, DTLZ5, is somewhat modified from the original
DTLZ5 and has a one-dimensional Pareto-optimal
curve in the M -dimensional space [18]. The ideal ob-
jective vector is z∗ = (0, . . . , 0)T and the nadir objec-
tive vector is znad =

(
( 1√

2
)M−2, ( 1√

2
)M−2, ( 1√

2
)M−3,

( 1√
2
)M−4, . . . , ( 1√

2
)0

)T

.

5.1.1 Three-Objective DTLZ Problems

All three approaches are run with 100 population
members for problems DTLZ1, DTLZ2 and DTLZ5
involving three objectives. Table 1 shows the num-
bers of generations needed to find a solution close
(within an error metric value of η = 0.01 or smaller)
to the true nadir point. It can be observed that the
worst-crowded NSGA-II and the extremized crowded
NSGA-II perform in a more or less similar way when
compared to each other and are somewhat better
than the naive NSGA-II approach. In the DTLZ5
problem, despite having three objectives, the Pareto-
optimal front is one-dimensional [19]. Thus, the naive
NSGA-II approach performs almost as well as the
proposed modified NSGA-II approaches.

To compare the working principles of the two
modified NSGA-II approaches and the naive NSGA-
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Table 1: Comparative results for DTLZ problems with three objectives.

Test Pop. Number of generations
problem size NSGA-II Worst-crowd. NSGA-II Extr.-crowd. NSGA-II

Best Median Worst Best Median Worst Best Median Worst
DTLZ1 100 223 366 610 171 282 345 188 265 457
DTLZ2 100 75 111 151 38 47 54 41 49 55
DTLZ5 100 63 80 104 59 74 86 62 73 88
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Figure 6: Populations obtained using extremized-
crowded and naive NSGA-II for DTLZ1. Extrem-
ized crowded NSGA-II finds the objective-wise ex-
treme points, whereas naive NSGA-II approach
finds a distributed set of points.
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Figure 7: Populations obtained using extremized-
crowded and naive NSGA-II for DTLZ2. Extrem-
ized crowded NSGA-II finds objective-wise extreme
points.

II approach, we show the final populations for the
extremized-crowded NSGA-II and the naive NSGA-
II for DTLZ1 and DTLZ2 in Figures 6 and 7, respec-
tively. Similar results are also found for the worst-
crowded NSGA-II approach, but are not shown here
for brevity. It is clear that the extremized-crowded
NSGA-II concentrates its population members near
the extreme regions of the Pareto-optimal front, so
that a quicker estimation of the nadir point is possible
to achieve. However, in the case of the naive NSGA-
II approach, a distributed set of Pareto-optimal solu-
tions is first found using the original NSGA-II (as
shown in the figure) and the nadir point is con-
structed from these points. Since the intermediate
points do not help in constructing the nadir objective
vector, the naive NSGA-II approach is expected to be
computationally inefficient and also inaccurate, par-
ticularly for problems having a large number of objec-
tives. There is not much of a difference in the perfor-
mance of the original NSGA-II and modified NSGA-
IIs for DTLZ5 problem due to two-dimensional na-
ture of the Pareto-optimal front. Hence, we do not
show the corresponding figure here.

To investigate if the error metric (E) deteriorates
with generations, we continue to run the two modified

NSGA-II procedures till 1,000 generations. For the
DTLZ1 problem, the worst-crowded approach set-
tles on an E value in the range [0.000200, 0.000283]
for 11 independent runs and the extremized-crowded
approach in the range [0.000199, 0.000283]. For
DTLZ2, both approaches settle to E = 0.000173 and
for DTLZ5, worst-crowded and extremized-crowded
NSGA-IIs settle in the range [0.000211, 0.000768] and
[0.000211, 0.000592], respectively. Since a threshold
of E ≤ 0.01 was used for termination in obtaining
results in Table 1, respective NSGA-IIs terminated
at a generation smaller than 1,000. However, these
results show that there is no significant change in the
nadir point estimation with the extra computations
and the proposed procedure has a convergent prop-
erty (which will also be demonstrated on higher ob-
jective problems through convergence metrics of this
study in Figures 8 to 10, 13, 15 and 17).

5.1.2 Five-Objective DTLZ Problems

Next, we study the performance of all three NSGA-II
approaches on DTLZ problems involving five objec-
tives. In Table 2, we collect information about the
results as in the previous subsection. It is now quite
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Table 2: Comparative results for five and ten-objective DTLZ problems.

Test Pop. Number of generations
problem size NSGA-II Worst-crowd. NSGA-II Extr.-crowded NSGA-II

Best Median Worst Best Median Worst Best Median Worst
Five-objective DTLZ problems

DTLZ1 100 2,342 3,136 3,714 611 790 1,027 353 584 1,071
DTLZ2 100 650 2,142 5,937 139 166 185 94 114 142
DTLZ5 100 52 66 77 51 66 76 49 61 73

Ten-objective DTLZ problems
DTLZ1 200 17,581 21,484 33,977 1,403 1,760 2,540 1,199 1,371 1,790
DTLZ2 200 – – – 520 823 1,456 388 464 640
DTLZ5 200 45 53 60 43 53 57 45 51 64

evident from Table 2 that the modifications proposed
to the NSGA-II approach perform much better than
the naive NSGA-II approach. For example, for the
DTLZ1 problem, the best NSGA-II run takes 2,342
generations to estimate the nadir point, whereas the
extremized-crowded NSGA-II requires only 353 gen-
erations and the worst-crowded NSGA-II 611 genera-
tions. In the case of the DTLZ2 problem, the trend is
similar. The median generation counts of the modi-
fied NSGA-II approaches for 11 independent runs are
also much better than those of the naive NSGA-II ap-
proach.

The difference between the worst-crowded and
extremized-crowded NSGA-II approaches is also clear
from the table. For a problem having a large num-
ber of objectives, the extremized-crowded NSGA-II
emphasizes both best and worst extreme solutions
for each objective maintaining an adequate diversity
among the population members. The genetic opera-
tors are able to exploit a relatively diversified popula-
tion and make a faster progress towards the extreme
Pareto-optimal solutions needed to estimate the nadir
point correctly. However, on the DTLZ5 problem,
the performance of all three approaches is similar due
to the one-dimensional nature of the Pareto-optimal
front. Figure 8 shows the convergence of the error
metric value for the best runs of the three algorithms
on DTLZ2. The figure demonstrates the convergent
property of the proposed algorithm. The superior-
ity of the extremized-crowded NSGA-II approach is
clear from the figure. Similar results are also observed
for DTLZ1. These results imply that for a problem
having more than three objectives, an emphasis on
the extreme Pareto-optimal solutions (instead of all
Pareto-optimal solutions) is a faster approach for lo-
cating the nadir point.

So far, we have demonstrated the ability of the
nadir point estimation procedure in converging close
to the nadir point by tracking the error metric value
which requires the knowledge of the true nadir point.
It is clear that this metric cannot be used in an ar-

bitrary problem. We have suggested a normalized
distance metric (equation (9)) for this purpose. To
demonstrate how the normalized distance metric can
be used as a termination criterion, we record this
metric value at every generation for both extremized
crowded NSGA-II and the naive NSGA-II runs and
plot them in Figure 9 for DTLZ2. Similar trends were
observed for the worst-crowded NSGA-II and also for
test problem DTLZ1, but for brevity these results are
not shown here. To show the variation of the met-
ric value over different initial populations, the region
between the best and the worst normalized distance
metric values is shaded and the median value is shown
with a line. Recall that the normalized distance met-
ric requires the information of the worst objective
vector (zw). For the DTLZ2 problem, the worst ob-
jective vector is found to be zw

i = 3.25 for i = 1, . . . , 5.
Figure 9 shows that the normalized distance metric
(ND) value converges to around 0.286, which is iden-
tical to that computed by substituting the estimated
nadir objective vector with the true nadir objective
vector in equation (9). Thus, we can conclude that
the convergence of the extremized-crowded NSGA-II
is on the true nadir point. Despite the large variabil-
ity in normalized distance value in different runs, all
11 runs of the extremized-crowded NSGA-II converge
to the critical points at around 100 generations, in-
dicating the robustness of the procedure. Similarity
of this convergence pattern (at generation 100) with
that in Figure 8 indicates that the normalized dis-
tance metric signifies convergence to the nadir point
and can be used in arbitrary problems. The rate of
convergence is also interesting to note from Figure 9.
The extremized-crowded NSGA-II is able to find the
nadir point much quicker (almost an order of magni-
tude faster) than the naive NSGA-II approach.

5.1.3 Ten-Objective DTLZ Problems

Next, we consider the three DTLZ problems for 10
objectives. Due to the increase in the dimension-
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Figure 8: The error metric for best of 11 runs on five-
objective DTLZ2. Extremized crowded NSGA-II is
about an order of magnitude better than the naive
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Figure 9: Variation of normalized distance metric in
11 runs for two methods on five-objective DTLZ2.
Extremized crowded NSGA-II is about an order of
magnitude better than the naive NSGA-II approach.

ality of the objective space, we double the popula-
tion size for these problems. Table 2 presents the
numbers of generations required to find a point close
(within η = 0.01) to the nadir point by the three
approaches for the DTLZ problems with ten objec-
tives. It is clear that the extremized-crowded NSGA-
II approach performs an order of magnitude better
than the naive NSGA-II approach and is also better
than the worst crowded NSGA-II approach. Both the
DTLZ1 and DTLZ2 problems have 10-dimensional
Pareto-optimal fronts and the extremized-crowded
NSGA-II makes a good balance of maintaining di-
versity and emphasizing extreme Pareto-optimal so-
lutions so that the nadir point estimation is quick. In
the case of the DTLZ2 problem with ten objectives,
the naive NSGA-II could not find the nadir objective
vector even after 50,000 generations (and achieved an
error metric value of 5.936). Figure 10 shows a typ-
ical convergence pattern of the extremized-crowded
NSGA-II and the naive NSGA-II approaches on the
10-objective DTLZ1 problem. The figure demon-
strates that for a large number of generations the es-
timated nadir point is away from the true nadir point,
but after some generations (around 1,000 in this prob-
lem) the estimated nadir point comes quickly near the
true nadir point. To understand the dynamics of the
movement of the population in the best performed ap-
proach (the extremized-crowded NSGA-II) with the
generation counter, we count the number of solu-
tions in the population which dominate the true nadir
point and plot this quantity in Figure 10. Points
which dominate the nadir point lie in the region be-
tween the Pareto-optimal front and the nadir point.
Thus, a task of finding these points is important to-
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Figure 10: Performance of two methods on 10-
objective DTLZ1. Extremized crowded NSGA-II is
about an order of magnitude better than the naive
NSGA-II approach. Convergence becomes faster af-
ter a solution dominating the nadir point is discov-
ered.

wards reaching the critical points and therefore in es-
timating the nadir point. It is extremely unlikely to
create such important points at random. But an op-
timization algorithm, starting with random solutions,
must work towards finding such important points first
before converging to the Pareto-optimal front. In
DTLZ1, it is seen that the first point dominating
the true nadir point appears in the population at
around 750 generations with the extremized-crowded
approach, whereas the naive NSGA-II needed about
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10,000 generations. Thereafter, when an adequate
number of such solutions start appearing in the pop-
ulation, the population very quickly converges near
the critical points for correctly estimating the nadir
point.

5.2 Scale-up Performance

Let us next investigate the overall function evalua-
tions required to get near the true nadir point on
DTLZ1 and DTLZ2 test problems having three to
20 objectives. As before, we use the stopping crite-
rion E ≤ 0.01. Here, we investigate the scale-up per-
formance of the extremized crowded NSGA-II alone
and compare it against that of the naive NSGA-II
approach. Since the worst-crowded NSGA-II did not
perform well on 10-objective DTLZ problems com-
pared to the extremized-crowded NSGA-II approach,
we do not apply it here.

Figure 11 plots the best, median, and worst of
11 runs of the extremized-crowded NSGA-II and the
naive NSGA-II on DTLZ1. First of all, the figure
clearly shows that the naive NSGA-II is unable to
scale up to 15 or 20 objectives. In the case of 15-
objective DTLZ1, the naive NSGA-II’s performance
is more than two orders of magnitude worse than that
of the extremized-crowded NSGA-II. For this prob-
lem, the naive NSGA-II with more than 200 mil-
lion function evaluations obtained a front having a
poor error metric value of 12.871. Due to the poor
performance of the naive NSGA-II approach on the
15-objective problem, we did not apply it to the 20-
objective DTLZ1 problem.

Figure 12 shows the performances on DTLZ2. Af-
ter 670 million function evaluations, the naive NSGA-
II was still not able to come close (with an error met-
ric value of 0.01) to the true nadir point on the 10-
objective DTLZ2 problem. However, the extremized-
crowded NSGA-II took an average of 99,000 evalua-
tions to achieve the task. Because of the computa-
tional inefficiencies associated with the naive NSGA-
II approach, we did not perform any run for 15
or more objectives, whereas the extremized-crowded
NSGA-II could find the nadir point up to the 20-
objective DTLZ2 problem.

The nature of the plots for the extremized-crowded
NSGA-II in both problems is found to be sub-
linear on logarithmic axes. This indicates a lower
than exponential scaling property of the proposed
extremized-crowded NSGA-II. It is important to em-
phasize here that estimating the nadir point requires
identification of the critical points. Since this re-
quires that an evolutionary approach essentially puts
its population members on the Pareto-optimal front,
an adequate computational effort must be spent to
achieve this task. However, results shown earlier for
three to 10-objective problems have indicated that

the computational effort needed by the extremized
crowded NSGA-II approach is smaller when com-
pared to the naive NSGA-II. It is worth pointing out
here that decision makers do not necessarily want to
or are not necessarily able to consider problems with
very many objectives. However, the results of this
study show a clear difference even with smaller prob-
lems involving, for example, five objectives.

6 Results of Tests with the Full

Hybrid Nadir Point Estima-
tion Procedure

Now, we apply the complete hybrid nadir point es-
timation procedure which makes a serial applica-
tion of the extremized-crowded NSGA-II approach
followed by the bilevel local search approach on
three optimization problems. Since in the previous
problems we identified difficulties with the worst-
crowded NSGA-II, we do not employ the worst-
crowded NSGA-II procedure here. The first two
problems are numerical test problems taken from the
MCDM literature on which the payoff table method
is reported to have failed to estimate the nadir
point accurately, and the third problem is a non-
linear engineering design problem. All these problems
adequately demonstrate the usefulness of the pro-
posed hybrid procedure with the extremized-crowded
NSGA-II approach. For all problems of this section,
we use a population size of 20n, where n is the number
of variables and keep other NSGA-II parameters as
they were used in the previous section. For both up-
per and lower-level optimizations in the local search,
we have used the fmincon routine (implementing the
sequential quadratic programming (SQP) method in
which every approximated quadratic programming
problem is solved using the BFGS quasi-Newton pro-
cedure) of MATLAB with default parameter values.

6.1 Problem KM

We consider a three-objective optimization problem,
which provides difficulty for the payoff table method
to estimate the nadir point. This problem was used
in [26]:

minimize




−x1 − x2 + 5
1
5 (x2

1 − 10x1 + x2
2 − 4x2 + 11)

(5 − x1)(x2 − 11)


 ,

subject to 3x1 + x2 − 12 ≤ 0,
2x1 + x2 − 9 ≤ 0,
x1 + 2x2 − 12 ≤ 0,
0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 6.

(11)
Individual minimizations of objectives reveal the
following three objective vectors: (−2, 0,−18)T ,
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Figure 12: Function evaluations versus number of
objectives for DTLZ2.

(0,−3.1,−14.25)T and (5, 2.2,−55)T , thereby iden-
tifying the vector z∗ = (−2,−3.1,−55)T as the ideal
objective vector. The payoff table method will then
find (5, 2.2,−14.25)T as the estimated nadir point
from these minimization results. Another study [22]
used a grid-search strategy (computationally possible
due to the presence of only two variables and three
objectives) of creating a number of feasible solutions
systematically and constructing the nadir point from
the solutions obtained. The estimated nadir point
was (5, 4.6,−14.25)T for this problem, which is dif-
ferent from that obtained from the payoff table. We
now employ our nadir point estimation procedure to
find the nadir point for this problem.

Step 1 of the procedure finds z∗ =
(−2,−3.1,−55)T and zw = (5, 4.6,−14.25)T by
minimizing and maximizing the objective functions
individually.

In Step 2 of the procedure, we employ the
extremized-crowded NSGA-II. As a result, we obtain
four different non-dominated extreme solutions, as
shown in the first column of Table 3. The extremized-
crowded NSGA-II approach is terminated when the
normalized distance metric does not change by an
amount ∆ = 0.0001 in a consecutive τ = 50 genera-
tions. It is interesting to note that the fourth solution
is not needed to estimate the nadir point, but the
extremized principle keeps this extreme solution cor-
responding to f1 to possibly eliminate spurious solu-
tions which may otherwise stay in the population and
provide a wrong estimate of the nadir point (see Fig-
ure 3 for a discussion). Figure 13 shows the variation
of the normalized distance metric value with genera-
tion, computed using the above-mentioned ideal and
worst objective vectors. The NSGA-II procedure gets
terminated at generation 135, due to the fall of the

normalized distance value below the chosen threshold
of 0.0001. At the end of Step 2, the estimated nadir
point is znad = (5, 4.6,−14.194)T , which seems to dis-
agree on the third objective value with that found by
the grid-search strategy.

To investigate if any further improvement is pos-
sible, we perform Step 3 and three times, each time
starting with one of the first three solutions presented
in Table 3, as they are the worst non-dominated so-
lutions. The minimum and maximum objective vec-
tors from these solutions are: (−1,−3.1,−55)T and
(5, 4.6,−14.194)T , respectively. Recall that the local
search method suggested here is a bilevel optimiza-
tion procedure in which the upper-level optimization
uses a combination of a weight vector and a reference
point as decision variable vector (z,w) with an objec-
tive of maximizing the objective value for which the
corresponding NSGA-II solution is the worst. The
lower-level optimization loop uses variable vector x
and minimizes the corresponding achievement scalar-
izing function with ρ = 10−5. To give an example,
solution 1 from Table 3 corresponds to the worst value
of the first objective. Thus, the upper-level optimiza-
tion task maximizes objective f1. The final three
columns from the table show the outcome of the op-
timization run. Since this NSGA-II solution happens
to already be the desired extreme solution, the upper-
level optimization terminates after two iterations and
declares the same solution as the outcome of the local
search.

Table 3 clearly shows that solution 2 (the objec-
tive vector (0.023,−3.100,−14.194)T , obtained by
the extremized-crowded NSGA-II), was not a Pareto-
optimal solution. The local search approach starting
from this solution is able to find a better solution
(0,−3.1,−14.25)T . This shows the importance of em-
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Table 3: extremized-crowded NSGA-II and local search method on Problem KM.

xNSGA−II Objective vector, fNSGA−II w z Extreme point

1 (0, 0)T (5, 2.2,−55)T (0.333, 0.333, 0.333)T (5, 2.2,−55)T (5, 2.2,−55)T

2 (3.511, 1.466)T (0.023,−3.100,−14.194)T (0.335, 0.335, 0.334)T (0.023,−3.085,−14.114)T (0,−3.1,−14.25)T

3 (0, 6)T (−1, 4.6,−25)T (0.333, 0.333, 0.333)T (−1, 4.6,−25)T (−1, 4.6,−25)T

4 (2.007, 4.965)T (−1.973,−0.050,−18.060)T Not worse in any objective, so not considered
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Figure 13: Variation of normalized distance
metric with generation for problem KM.
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Figure 14: Pareto-optimal front with extreme points for
problem KM. Point 4 is best for f1, but not worst for
any objective. Thus, it is redundant for estimating the
nadir point.

ploying the local search approach in obtaining the
exact nadir point. Because the extremized-crowded
NSGA-II was able to find other two extreme solutions
exactly, they could not be improved further by the
local search procedure. Figure 14 shows the Pareto-
optimal front for this problem. These three extreme
Pareto-optimal points are marked on the front with a
shaded circle. The fourth point is also shown with a
star. Finally, in Step 4, the nadir point estimated by
the combination of the extremized-crowded NSGA-II
and local search is (5, 4.6,−14.25)T , which is identi-
cal to that obtained by the grid search strategy [22].
As discussed earlier, the grid search strategy is not
scalable to large problem sizes due to an exponential
increase in computations.

The extremized-crowded NSGA-II approach took
5,440 solution evaluations and the three local search
runs took a total of 1,583 solution evaluations,
thereby requiring a total of 7,023 solution evalua-
tions. Thus, the NSGA-II approach needed a ma-
jor share of the overall computational effort of about
77% and the bilevel local search approach took only
about 23% of the total effort.

6.2 Problem SW

Next, we consider another problem presented in [37]:

minimize




9x1 + 19.5x2 + 7.5x3

7x1 + 20x2 + 9x3

−(4x1 + 5x2 + 3x3)
−(x3)




,

subject to 1.5x1 − x2 + 1.6x3 ≤ 9,
x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(12)

The true nadir point for this problem is znad =
(94.5, 96.3636, 0, 0)T . In [37], a close point
(94.4998, 95.8747, 0, 0)T was found using multiple, bi-
objective optimization runs. The estimation is differ-
ent in its second objective value by about 0.5%. In
the following, we show the results of our hybrid pro-
cedure.

In Step 1 of the procedure, we find the ideal
and worst objectives values: (0, 0,−31,−5.625)T and
(97.5, 100, 0, 0)T , respectively. (These values are ob-
tained by using the SQP routine of MATLAB.)

Thereafter, in Step 2, we apply the extremized-
crowded NSGA-II procedure initializing the popu-
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Table 4: Extremized-crowded NSGA-II and local search method on Problem SW.

xNSGA−II Objective vector, fNSGA−II

1 (0.0001, 0, 5.6249)T (42.1879, 50.6249,−16.8752, −5.6249)T

2 (0.0001, 3.1830, 3.6336)T (89.3219, 96.3635,−26.8164, −3.6336)T

3 (3.9980, 2.9998, 0.0003)T (94.4810, 87.9854,−30.9920, −0.0003)T

4 (0, 0, 0)T (0, 0, 0, 0)T

w z Extreme point

1 Not worse in any objective, so not considered

2 (1.0000, 0.9844, 0.7061, 0.8232)T (183.8020, 192.7266, −26.8004,−3.6336)T (89.3182, 96.3636, −26.8182, −3.6364)T

3 (0.2958, 0.2540, 0.2006, 0.2486)T (188.9619, 184.3489, −30.9920, 5.6246)T (94.5000, 88.0000, −31.0000, 0.0000)T

4 (0.25, 0.25, 0.25, 0.25)T (0, 0, 0, 0)T (0, 0, 0, 0)T

lation around xi ∈ [0, 10] for all three variables.
The NSGA-II is terminated when the change in the
normalized distance value in the past 50 genera-
tions is below the threshold of ∆ = 0.0001. Fig-
ure 15 shows the change in the normalized dis-
tance value with the generation counter and in-
dicates that the NSGA-II run was terminated at
generation 325. We obtain four different non-
dominated solutions, which are tabulated in Ta-
ble 4. The minimum and maximum objective vec-
tors are: (0.0000, 0.0000,−30.9920,−5.6249)T and
(94.4810, 96.3635, 0.0000, 0.0000)T , respectively. No-
tice that this maximum vector is close to the true
nadir point mentioned above. We shall now inves-
tigate whether the proposed local search is able to
improve this point to find the nadir point more accu-
rately.
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Figure 15: Variation of normalized distance metric
with generation for problem SW.

We observe that the first solution does not corre-
spond to the worst value for any objective. Thus, in
Step 3, we employ the bilevel local search procedure
only for the other three solutions. The resulting solu-
tions and corresponding z and w vectors are shown in
the table. For solutions 2 and 3, we maximize objec-

tives f2 and f1, respectively. Since solution 4 is worst
with respect to both objectives f3 and f4, we max-
imize a normalized composite objective: −[(f3(x) −
fmin
3 )/(fmax

3 − fmin
3 )+ (f4(x)− fmin

4 )/(fmax
4 − fmin

4 )],
where maximum and minimum objective values are
those obtained by the modified NSGA-II in Step 2.

From the obtained local search solutions (the last
column in the table), in Step 4, we estimate the nadir
point as (94.5000, 96.3636, 0, 0)T , which is identical to
the true nadir point for this problem. In this prob-
lem, the NSGA-II approach required 12,640 solution
evaluations out of an overall 13,032 solution evalu-
ations. Thus, the bilevel local search required only
392 solution evaluations (only about 3% of the over-
all effort). Thus, the use of the extremized-crowded
NSGA-II allowed near critical points to be found by
taking most of the computational effort and the use
of the bilevel local search ensured finding the critical
points by taking only a small fraction of the overall
computational effort, despite the bilevel nature of the
optimization procedure.

6.3 Welded Beam Design Optimiza-
tion

So far, we have applied the hybrid nadir point esti-
mation procedure to numerical test problems. They
have given us confidence about the usability of our
procedure. Next, we consider an engineering design
problem related to a welded beam having three objec-
tives, for which the exact nadir point is not known. In
this problem, we compare our proposed nadir point
estimation procedure with the naive NSGA-II ap-
proach for number of computations needed by each
procedure and also to investigate whether an identi-
cal nadir point is estimated by each procedure.

This problem is well-studied [11, 35] having four de-
sign variables, x = (h, �, t, b)T (dimensions specifying
the welded beam). Minimizations of cost of fabrica-
tion, end deflection, and normal stress are of impor-
tance in this problem. There are four non-linear con-
straints involving shear stress, normal stress, a phys-
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ical property, and buckling limitation. The mathe-
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Figure 16: The welded beam design problem.

matical description of the problem is given below:

minimize

8<
:

f1(x) = 1.10471h2� + 0.04811tb(14.0 + �)
f2(x) = δ(x) = 2.1952/t3b
f3(x) = σ(x) = 504, 000/t2b

9=
; ,

subject to g1(x) ≡ 13, 600 − τ (x) ≥ 0,
g2(x) ≡ 30, 000 − σ(x) ≥ 0,
g3(x) ≡ b − h ≥ 0,
g4(x) ≡ Pc(x) − 6, 000 ≥ 0,
0.125 ≤ �, t ≤ 10,
0.125 ≤ h, b ≤ 5,

(13)
where the terms τ(x) and Pc(x) are given as

τ (x) =
ˆ
(τ ′(x))2 + (τ ′′(x))2 + �τ ′(x)τ ′′(x)/

p
0.25(�2 + (h + t)2)

˜1/2
,

Pc(x) = 64, 746.022(1 − 0.0282346t)tb3 ,

where

τ ′(x) =
6, 000√

2h�
,

τ ′′(x) =
6, 000(14 + 0.5�)

p
0.25(�2 + (h + t)2)

2 [0.707h�(�2/12 + 0.25(h + t)2)]
.

In this problem, we have no knowledge on the ideal
and worst objective values. Since these values will
be required for computing the normalized distance
metric value for terminating the extremized-crowded
NSGA-II, we first find them here.

6.3.1 Step 1: Computing Ideal and Worst
Objective Vectors

We minimize and maximize each of the three ob-
jectives to find the individual extreme points of the
feasible objective space. For this purpose, we have
used a single-objective real-parameter genetic algo-
rithm with the SBX recombination and the polyno-
mial mutation operators [12, 11]. We use a differ-
ent set of parameter values from that of our multi-
objective NSGA-II studies: population size = 100,
maximum generations = 500, recombination proba-
bility = 0.9, mutation probability = 0.1, distribution
index for recombination = 2, and distribution index

for mutation = 20. These values are usually followed
in other single-objective real-parameter GA studies
[17, 9]. After a solution is obtained by a GA run, it
is attempted to improve by a local search (LS) ap-
proach – the SQP procedure coded in MATLAB is
applied with default parameter values to minimize
individual objective functions in the feasible set. Ta-
ble 5 shows the corresponding extreme objective val-
ues before and after the local search approaches. In-
terestingly, the use of the local search improves the
cost objective from 2.3848 to 2.3810. As an outcome
of the above single-objective optimization tasks, we
obtain the ideal and worst objective values, as shown
below:

Cost Deflection Stress
Ideal 2.3810 0.000439 1008

Worst 333.9095 0.0713 30000

6.3.2 Step 2: Applying Extremized-Crowded
NSGA-II

First, we apply the extremized-crowded NSGA-II ap-
proach with an identical parameter settings as used
above, except that for the SBX recombination ηc =
10 is used, according to the recommendation in [11]
for multi-objective optimization. The suggested ter-
mination criterion on the normalized distance (ND)
metric is used with the above ideal and worst ob-
jective values. Figure 17 shows the variation of the
ND metric with generation. It is interesting to note
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Figure 17: Variation of normalized distance metric
with generation for the welded beam design problem.

how the normalized distance metric, starting from a
small value (meaning that the estimated nadir point
is closer to the worst objective vector), reaches a sta-
bilized value of 0.5587. The NSGA-II procedure gets
terminated at generation 314.
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Table 5: Minimum and maximum objective values of three objectives. The values marked with a (*) for
variables x1 and x2 can take other values without any change in the optimal objective value and without
making the overall solution infeasible.

Cost Deflection Stress x1 x2 x3 x4

Minimum 2.3848 0.2428 6.2664 8.2972 0.2443
Min. after LS 2.3810 0.2444 6.2175 8.2915 0.2444

Maximum 333.9095 5 10 10 5
Max. after LS 333.9095 5 10 10 5

Minimum 0.000439 (*)4.4855 (*)9.5683 10 5
Min. after LS 0.000439 (*)4.4855 (*)9.5683 10 5

Maximum 0.0713 0.8071 5.0508 1.8330 5
Max. after LS 0.0713 0.8071 5.0508 1.8330 5

Minimum 1008 (*)4.5959 (*)9.9493 10 5
Min. after LS 1008 (*)4.5959 (*)9.9493 10 5

Maximum 30000 2.7294 5.7934 2.3255 3.1066
Max. after LS 30000 0.7301 5.0376 2.3308 3.0925

Table 6: Two population members obtained using the extremized crowded NSGA-II approach.

Sol. No. Cost Deflection Stress x1 x2 x3 x4

extremized-crowded NSGA-II
1. 36.4347 0.000439 1008 1.5667 0.5389 10 5
2. 2.8235 0.0169 28088.3266 0.3401 4.6715 7.2396 0.3424

After local search
1. 36.4209 0.000439 1008 1.7345 0.4789 10 5
2. 2.3810 0.0158 30000 0.2444 6.2175 8.2915 0.2444

Interestingly, only two non-dominated extreme
points are found by the extremized-crowded NSGA-
II. They are shown in Table 6. From these two so-
lutions, the estimated nadir point after Step 2 is
(36.4347, 0.0169, 28088.3266)T . In a three-objective
problem, the presence of only two extreme points sig-
nifies that two of the three objectives may be corre-
lated to each other on the Pareto-optimal front. We
shall discuss this aspect more later.

6.3.3 Step 3: Applying Local Search

The two solutions obtained are now attempted to be
improved by the bilevel local search approach, one at
a time. The minimum and maximum objective vec-
tors obtained from the NSGA-II solutions (from Ta-
ble 6) are as follows: fmin = (2.8235, 0.000439, 1008)T

and fmax = (36.4347, 0.0169, 28088.3266)T . Since the
first solution corresponds to the worst of objective
f1, the upper-level loop of the local search for Solu-
tion 1 maximizes f1. The resulting solution is shown
in Table 6 under the heading ‘After local search’. A
slightly better solution is obtained using the local
search.

For solution 2 of Table 6, objectives f2 and f3

are both worst. Thus, we maximize a normalized
quantity arising from both objectives:

∑3
i=2(fi(x) −

fmin
i )/(fmax

i − fmin
i ). The local search finds a

non-dominated solution which seems to be bet-
ter in terms of the first two objectives but worse
in the third objective. The weight vector ob-
tained by the upper-level loop of the local search is
(0.2470, 0.3333, 0.4196)T and the corresponding ref-
erence point is (2.8235, 0.0169, 55168.65)T. An in-
vestigation will reveal that the local search utilized a
reference point which has identical values for the first
two objectives and a much worse f3 value than the
NSGA-II solution. Then, by using a weight vector
which has more or less equal value for all three ob-
jectives, the upper loop is able to locate the critical
point corresponding to the second and third objec-
tives. Interestingly, this critical point corresponds to
the minimum f1 value which is exactly the same as
that obtained by the minimization of the cost objec-
tive alone in Table 5. It is clear that the extremized
NSGA-II approach in Step 2 found a solution close
to an extreme Pareto-optimal solution and the appli-
cation of Step 3 helps to move this solution to the
extreme Pareto-optimal solution.

Observing these two final solutions, in Step 4, we
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can now estimate the nadir point (cost, deflection,
stress) for the welded beam design problem as

Nadir point: (36.4209, 0.0158, 30000)T.

Note that this point is different from the worst ob-
jective vector of the entire feasible search space com-
puted earlier. Out of a total of 31,551 solution evalu-
ations, the bilevel local search required only 51 solu-
tion evaluations, thereby demanding a tiny fraction
of 0.16% of the overall computational effort.

6.3.4 Comparison with the Naive NSGA-II
Approach

We now apply the naive NSGA-II approach to the
same problem to investigate whether an identical
nadir point is obtained. In the naive approach, we
first generate a set of Pareto-optimal points by a com-
bination of the original NSGA-II and a local search
approach. The range of the Pareto-optimal front,
thus found, will provide us information about the
nadir point of the problem. We use an identical pa-
rameter setting as used in the extremized-crowded
NSGA-II run. The local search approach used here is
applied to NSGA-II solutions one at a time and is de-
scribed in Chapter 9.6 of [11]. We employed fconmin
routine of MATLAB for this purpose. In Figure 18,
we show the NSGA-II solutions with circles and their
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Figure 18: Pareto-optimal front and estimation of the
nadir point.

improvements by the local search method with di-
amonds. Two non-dominated extreme solutions ob-
tained using our nadir point estimation procedure are
marked using squares. Both approaches find an iden-
tical nadir point, thereby providing confidence to our
approach proposed. However, the overall function
evaluations needed to complete the naive NSGA-II
and local searches for obtaining the distributed set
of Pareto-optimal points was 102,267, compared to
a total of 31,551 function evaluations needed with
our proposed nadir point estimation procedure. For

a four-variable, three-objective problem, a reduction
of about 70% computations with our proposed ap-
proach to find an identical nadir point is a significant
achievement.

It is also interesting to note that despite the use
of three objectives, the Pareto-optimal front is one-
dimensional in this problem. If the obtained front
is projected on the deflection-stress (f2-f3) plane, it
can be seen that these two objectives are correlated
to each other. Therefore, in addition to finding the
nadir point, the number of extreme solutions xEA

found by the extremized-crowded NSGA-II procedure
may provide ideas about the dimensionality of the
Pareto-optimal front – an added benefit which can
be obtained by performing the nadir point estimation
task before attempting to solve a problem for multi-
ple Pareto-optimal solutions. A significant amount of
research efforts is now being made in handling many-
objective problems using evolutionary algorithms and
in automatically identifying redundant objectives in a
problem [18, 4, 24]. An analysis of critical points ob-
tained by the proposed extremized crowded NSGA-II
procedure for identifying possible redundancy in ob-
jectives is worth pursuing further and remains as a
viable approach in this direction.

7 Discussions and Extensions

In this paper, we have combined the flexibility in
an EMO search with an ingenious local search pro-
cedure. By redirecting the focus of an EMO’s
diversity-preserving operator towards the extreme
non-dominated solutions, we have suggested an
extremized-crowded NSGA-II procedure which is
able to find representative points close to extreme
points of the Pareto-optimal front, not only to three
or four-objective problems, but to as many as 20-
objective problems. By proposing a bilevel local
search procedure of choosing an appropriate refer-
ence point near an obtained NSGA-II solution and
a suitable weight vector for finding the critical point
corresponding to the worst non-dominated solutions
obtained by the NSGA-II procedure, we have demon-
strated the working of the hybrid procedure to a
number of challenging test and practical optimization
problems.

To make NSGA-II’s search more efficient, a mat-
ing restriction strategy can be added so that a better
stability of multiple extreme solutions is maintained
in the population. Restricting recombination among
neighboring solutions in the objective space may also
allow a focused search, thereby finding a better ap-
proximation of extreme solutions. For this purpose,
the emphasis for extreme solutions can also be imple-
mented on other EMO procedures, such as SPEA2
[39] or PESA [8] or others.
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In the upper-level local search approach (problem
(7)), the upper bound on the reference point z is cho-
sen rather conservatively. Since the task is to perform
a local search, a tighter and more problem-informatic
upper bound, such as a more relaxed bound on the
worst objective value and a more restricted bound on
the other objectives can be used for a computation-
ally faster procedure. Similarly, the bounds on the
weight vector can also be chosen with some problem
information derived from the location of the partic-
ular NSGA-II solution vis-a-vis other solutions. In
fact, the inclusion of the weight vector w as a part
of the decision variable vector of the upper-level op-
timization may not be needed. By fixing the weight
vector based on the location of the NSGA-II solu-
tion, the upper-level optimization may be used to find
an optimal z corresponding to the extreme Pareto-
optimal solution. This task may require less compu-
tational effort due to the reduction in decision vari-
ables on the upper-level optimization loop.

In another approach, the bilevel local search pro-
cedure suggested here can be integrated within the
NSGA-II procedure as an additional operator. The
local search can be applied to a few selected solutions
of a NSGA-II population after every few generations.
This on-line procedure will guarantee finding (locally)
Pareto-optimal solutions whenever the local search is
applied. However, the computational advantage, if
any, compared to the proposed hybrid approach of
this study will be an interesting future research worth
pursuing.

8 Conclusions

We have proposed a hybrid methodology involving
evolutionary and local search approaches to address
an age-old yet open research issue of estimating the
nadir point accurately in a multi-objective optimiza-
tion problem. By definition, a nadir point is con-
structed from the worst objective values correspond-
ing to the solutions of the Pareto-optimal front. It
has been argued that the estimation of the nadir
point is an important task in multi-objective opti-
mization. Since the nadir point relates to the criti-
cal Pareto-optimal points, the estimation of a nadir
point is also a difficult and challenging task. Since
intermediate Pareto-optimal solutions are not impor-
tant in this task, the suggested modified NSGA-II ap-
proaches have emphasized their search for finding the
worst or extreme solutions corresponding to each ob-
jective. To enhance the convergence properties and
make the approaches reliable, the modified NSGA-
II approaches have been combined with a reference
point based bilevel local search approach. The upper-
level search uses a combination of a reference point
and a weight vector as a variable vector, which is

then evaluated by using a lower-level search of solving
the corresponding achievement scalarizing function.
While the lower-level search ensures converging to a
local Pareto-optimal solution, the upper-level search
drives the procedure to converge to the critical point
of an objective function.

The extremized-crowded approach has been found
to be capable of making a quicker estimate of the
nadir point than a naive approach (of employing the
original NSGA-II approach to first find a set of non-
dominated solutions and then construct the nadir
point) on a number of benchmark problems having
three to 20 objectives and on other problems includ-
ing a difficult engineering design problem involving
non-linear objectives and constraints. Emphasizing
solutions corresponding to the extreme objective val-
ues on a non-dominated front has been found to be
a better approach than emphasizing solutions having
the worst objective values alone. Since the former ap-
proach maintains a diverse set of solutions near both
best and worst objective values, thereby not allowing
spurious dominated solutions to remain in the pop-
ulation, the result of the search is better and more
reliable than that of the worst-crowded approach.

The computational effort to estimate the nadir
point has been observed to be much smaller (more
than an order of magnitude) for benchmark test
problems having a large number of objectives than
the naive NSGA-II approach. Moreover, since the
extremized-crowded NSGA-II approach has been able
to find solutions close to the critical points, the local
search procedure has been found to take only a frac-
tion of the overall computational effort. Thus, the
bilevel nature of the proposed local search procedure
does not seem to affect much the overall computa-
tional effort of the hybrid approach.

Despite the algorithmic challenge posed by the task
of estimating the nadir point in a multi-objective op-
timization problem, in this paper, we have listed a
number of reasons for which nadir objective vectors
are useful in practice. They included normalizing ob-
jective functions, giving information about the ranges
of objective functions within the Pareto-optimal front
to the decision maker, visualizing Pareto-optimal so-
lutions, and enabling the decision maker to use dif-
ferent interactive methods. What is common to
all these is that the nadir objective vector can be
computed beforehand, without involving the decision
maker. Thus, it is not a problem if several hundred
function evaluations are needed in the extremized-
crowded NSGA-II in most problems. Approximating
the nadir point can be an independent task to be ex-
ecuted before performing any decision analysis.

One of the reasons why it may be advisable to
use some interactive method for identifying the most
preferred solution instead of trying to approximate
the whole set of Pareto-optimal solutions is that for
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problems with several objectives, for example, the
NSGA-II approach requires a huge number of evalua-
tions to find a representative set. For such problems,
the nadir point may be estimated quickly and reli-
ably using the proposed hybrid NSGA-II-cum-local-
search procedure. The extremized-crowded NSGA-
II approach can be applied with a coarse termina-
tion requirement, so as to obtain near extreme non-
dominated solutions quickly. Then, the suggested lo-
cal search approach can be employed to converge to
the extreme Pareto-optimal solutions reliably and ac-
curately. Thereafter, an interactive procedure (like
NIMBUS [30, 33, 32], for example) (using both ideal
and nadir points obtained) can be applied interac-
tively with a decision-maker to find a desired Pareto-
optimal solution as the most preferred solution.

This study is important in another aspect, as well.
The proposed nadir point estimation procedure uses
a hybridization of EMO and a local search based
MCDM approach. The population aspect of EMO
has been used to find near extreme non-dominated so-
lutions simultaneously and the reference point based
local search methodology helped converge to true
extreme Pareto-optimal solutions so that the nadir
point can be estimated reliably and accurately. Such
collaborative EMO-MCDM studies may help develop
efficient hybrid procedures which use best aspects of
both contemporary fields of multi-objective optimiza-
tion. Hopefully, this study will motivate researchers
to engage in more such collaborative studies for the
benefit of either field and, above all, to the triumph
of the field of multi-objective optimization.
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