
Cost estimation in global software development - Review
of estimation techniques

Information Systems Science

Master's thesis

Juha Koskenkylä

2012

Department of Information and Service Economy
Aalto University
School of Economics

Powered by TCPDF (www.tcpdf.org)

http://lib.aalto.fi
http://www.tcpdf.org

Cost estimation in global software

development

Review of estimation techniques

���������	
�����

�

�������������

�
�
�������������

������������ ���� ��� �!��
�����������

�""�� �������
��#�"������������������������������ �!��$!�����!����%%%%%%%%%%%%%�
������&�������
��������%%%%%%%%%%%%%%%�

�

%%%%% %% %%%%%%%%%%�

�������"�!����������������������������� �������"�!�����������������������������

 1

AALTO UNIVERSITY SCHOOL OF ECONOMICS ABSTRACT

Department of Information and Service Economy August 1st, 2012

Master’s thesis

Juha Koskenkylä

ABSTRACT

Objectives of the Study

The objective of this research is to review existing software costs estimation techniques and to
understand how these techniques can be applied in global software development considering its
specific nature. The research problem is formulated with following questions: What factors
impact software development cost in global software development? How these factors are
considered in the available software cost estimation techniques? How available software
estimation techniques can be applied in global software development?

Findings and conclusions

Geographic and temporal distance, differences in language and culture, social factors, problem
arising from organization structure, processes and projects, barriers deriving from infrastructure
and product architecture have an impact, usually increasing, on the costs and effort in global
software development. These cost factors can also have a compounding effect on each other,
increasing the overall negative impact on the software development.

These cost factors are not considered in the evaluated software cost estimation techniques except
for few techniques and factors. COCOMOII takes into account some impact of geographic
distance, cultural differences and social factors. In addition, there are four adaptations of
COCOMOII or CoBRA techniques which have been developed to especially address the
characteristics of global software development. These techniques contain almost all global
software development related cost factors.

Most of the evaluated software cost estimation techniques are still suitable and applicable for
estimation of global software development, but they require set-up and calibration work. Only
expertise-based techniques and global software development related adaptations of COCOMOII
or COBRA can be directly used. Almost all techniques require data from past global software
development projects as a precondition for set-up or calibration.

Keywords

Global Software Development, Cost Estimation, Effort Estimation

 2

AALTO-YLIOPISTON KAUPPAKORKEAKOULU TIIVISTELMÄ

Tieto- ja palvelutalouden laitos 01.08.2012

Pro gradu-tutkielma

Juha Koskenkylä

ABSTRAKTI

Tutkimuksen tavoitteet

Tämän tutkielman tavoitteena on käydä läpi olemassaolevia ohjelmistokehityksen kustannusten
arviointimenetelmiä ja ymmärtää kuinka näitä menetelmiä voidaaan soveltaa globaaliin
ohjelmistokehitykseen huomioiden sen erityispiirteet. Tutkimusongelma voidaan muotoilla
seuraavin kysymyksin: Mitkä tekijät vaikuttavat kustannuksiin globaalissa
ohjelmistokehityksessä? Miten nämä tekijät on huomioitu olemassaolevissa
ohjelmistokustannusten arviointimenetelmissä? Miten olemassaolevia ohjelmistokustannusten
arviointimenetelmiä voidaan soveltaa globaalissa ohjelmistokehityksessä?

Tulokset ja päätelmät

Maantieteellinen ja aikavyöhykkeiden etäisyys, kieli- ja kulttuurierot, sosiaaliset tekijät,
ongelmat organisaatiossa, prosesseissa ja projekteissa, rakenteet infrastruktuurissa ja
ohjelmistoarkkitehtuurissa vaikuttavat, yleensä kasvattavasti, kustannuksiin ja työmääriin
globaalissa ohjelmistokehityksessä. Näillä kustannustekijöillä voi myös olla yhteisvaikutus, joka
edelleen lisää negatiivista kokonaisvaikutusta ohjelmistokehitykseen.

Näitä kustannustekijöitä ei ole huomioitu olemassaolevissa ohjelmistokehityksen kustannusten
arviointimenetelmissä muutamaa poikkeusta lukuunottamatta. COCOMOII -menetelmä huomioi
maantieteellisen etäisyyden, kulttuurierot sekä sosiaaliset tekijät jollain tasolla. Lisäksi on
olemassa neljä sovitettua versiota COCOMOII tai CoBRA -menetelmistä, jotka on kehitetty
erityisesti huomioimaan globaalin ohjelmistokehityksen piirteet. Nämä menetelmät sisältävät
melkein kaikki globaaliin ohjelmistokehityksen liittyvät kustannustekijät.

Valtaosaa olemassaolevista ohjelmistokehityksen kustannusten arviointimenetelmistä voidaan
kaikesta huolimatta käyttää globaalin ohjelmistokehityksen kustannusten arviointiin, mutta
näiden menetelmien käyttäminen vaatii alustus- ja kalibrointityötä. Vain osaamisperusteisia
menetelmiä ja erityisesti globaaliin ohjelmistokehitykseen kehitettyjä COCOMOII ja CoBRA –
menetelmien versioita voidaan käyttää suoraan globaalin ohjelmistokehityksen kustannusten
arviointiin. Lähes kaikki menetelmät vaativat myös toteutuneista globaaleista
ohjelmistoprojekteista menetelmien alustamista ja kalibrointia varten.

Avainsanat

Globaali ohjelmistokehitys, Kustannusten estimointi, Työmäärän estimointi

 3

ACKNOWLEDGEMENTS

To Katri and Meri Helfrid.

Thank you for the love and support during this long research and journey.

 4

TABLE OF CONTENTS

TABLE OF CONTENTS ..4

LIST OF FIGURES ..7

LIST OF TABLES ..9

1. Introduction ..11

1.1. Background...11

1.2. Research Problem and Method..13

1.3. Research Structure ..14

2. Software Cost Estimation..14

2.1. What Is a Cost Estimate? ..14

2.2. Activity Cost Estimates...15

2.3. Basis of Estimate ..16

2.4. When Software Costs Are Estimated? ...17

2.5. Why Software Cost Estimates Are Inaccurate?..18

3. Software Cost Estimation Process ...21

4. Software Cost Estimation Techniques ...23

4.1. Overview ..23

4.2. Model-Based Techniques ..23

4.2.1. Putnam Model / Software Life-Cycle Model ...24

4.2.2. Function Point Analysis ..26

4.2.3. Constructive Cost Model...28

4.3. Expertise-Based Techniques ...35

 5

4.3.1. Delphi Technique..35

4.3.2. Work Breakdown Structure...37

4.3.3. Analogy ..40

4.3.4. Work Distribution Technique..42

4.3.5. Top-Down ..44

4.3.6. Bottom-Up..45

4.4. Learning-Based Techniques ..45

4.4.1. Case-Based Reasoning ..46

4.4.2. Neural Networks...47

4.5. Dynamics-Based Techniques ..49

4.6. Regression-Based Techniques...52

4.6.1. Ordinary Least Square Technique ...52

4.6.2. Robust Regression ..54

4.7. Composite Techniques ..56

4.7.1. Bayesian Approach ...56

4.7.2. Cost Estimation, Benchmarking, and Risk Analysis ..57

5. Global Software Development ..59

5.1. Overview ..59

5.2. Overhead Factors ..61

5.2.1. Geographic Distance ...62

5.2.2. Temporal Dispersion...65

5.2.3. Cultural Differences..67

5.2.4. Language Differences ...68

5.2.5. Social Factors ...69

5.2.6. Organization, Management and Process Issues..70

 6

5.2.7. Barriers due to Infrastructure...72

5.2.8. Barriers due to Product Architecture ...73

5.3. Cost Estimation Techniques ..74

5.3.1. Refinement of COCOMOII by Keil, Paulish and Sangwan......................................75

5.3.2. Amplification of COCOMOII by Betz and Mäkiö ...75

5.3.3. Extension of COCOMOII by Madachy ...76

5.3.4. Extension of CoBRA by Lamersdorf et al. ..78

6. Evaluation...80

6.1. Evaluation Questions ..80

6.2. Results ..81

6.2.1. Model-Based Techniques ..81

6.2.2. Expertise-Based Techniques ...83

6.2.3. Learning-Based Techniques ..84

6.2.4. Dynamics-Based Techniques ..86

6.2.5. Regression-Based Techniques...87

6.2.6. Composite Techniques ..88

6.2.7. GSD Specific Techniques ...89

6.3. Discussion ..91

7. Conclusions ..93

7.1. What Factors Impact Costs in Global Software Development?................................94

7.2. How These Cost Factors Are Considered in the Available Software Cost Estimation
Techniques? ..96

7.3. How Available Software Cost Estimation Techniques Can Be Applied in Global
Software Development?...97

REFERENCES ...100

 7

LIST OF FIGURES

Figure 1: Cost estimation in project management (PMBOK, 2000) ...15

Figure 2: Cost estimation as part of software development activities (McConnell, 2006)18

Figure 3: The Cone of Uncertainty (Boehm, 1981) ..19

Figure 4: Software estimation techniques (Chulani et al., 1999) ..23

Figure 5: Software development effort as function of time in Putnam model (Putnam, 1978)26

Figure 6: Overview of Function Point Analysis (Albrecht, 1979) ..27

Figure 7: Product hierarchy ...38

Figure 8: Activity hierarchy ..38

Figure 9: The work distribution technique (Roberts, 1997)..43

Figure 10: Spreading the proportions spent on projects across different types of resource

(Roberts, 1997) ...43

Figure 11: A top-down estimate (Roberts, 1997) ...44

Figure 12: A top-down and bottom-up estimate (Roberts, 1997)..45

Figure 13: Neural network for software cost estimation (Boehm et al., 2000b)48

Figure 14: Madachy’s System Dynamics Model of Software development (Madachy, 1994)50

 8

Figure 15: System dynamics model for software cost estimation (Abdel-Hamid and Madnick,

1991)...52

Figure 16: Difference of Least Mean Squares and Least Median Squares methods (Gray and

MacDonell, 1997) ...55

Figure 17: A causal model for software cost estimation (Lamersdorf et al., 2010)58

Figure 18: A taxonomy of structural arrangements for software development (Carmel and

Agarwal, 2001) ...60

Figure 19: Impact of distance (Carmel and Agarwal, 2001) ...64

Figure 20: The time zone effects on speed and accuracy of communication (Espinosa et al., 2007)

...66

Figure 21: Causal model for cost estimation of global software development (Lamersdorf et al.,

2010) ..79

 9

LIST OF TABLES

Table 1: Cost elements of software development (NASA, 2003) ...16

Table 2: Reasons for inaccurate software cost estimates identified in research literature............20

Table 3: Software cost estimation process from Barry Boehm (Boehm, 1981)...........................22

Table 4: Software cost estimation process from NASA (NASA, 2003)......................................22

Table 5: Basic COCOMO coefficients...30

Table 6: Effort multipliers in Intermediate COCOMO...31

Table 7: Intermediate COCOMO coefficients..32

Table 8: Effort multipliers in COCOMOII...34

Table 9: An example of work distribution statistics (NASA, 2003)..44

Table 10: Identified barriers for global software development (Noll et al., 2010).......................62

Table 11: Additional cost factors used by Keil, Paulish and Sangwan in COCOMOII75

Table 12: Cost factors impacted by offshore outsourcing setting based on Betz and Mäkiö76

Table 13: Additional cost factors used by Betz and Mäkiö in COCOMOII76

Table 14: Cost factors with values for global software development in CoBRA80

Table 15: Evaluation questions..80

Table 16: Evaluation results for model-based techniques...81

Table 17: The evaluation results for expertise-based techniques ..83

 10

Table 18: The evaluation results for learning-based techniques ...85

Table 19: The evaluation results for system dynamics technique ...87

Table 20: The evaluation results for regression-based techniques ..88

Table 21: The evaluation results for composite techniques ..89

Table 22: The evaluation results for GSD specific techniques ...90

Table 23: Suitability and application of different techniques for estimation of GSD projects98

 11

1. INTRODUCTION

1.1. BACKGROUND

Globalization of the software industry has grown rapidly during the recent decade and it is

expected to continue to grow. The advances and changes in communication technology,

standardization of software platforms and applications, digitalization of work, reorganization of

work processes for outsourcing, new business models, and global political, educational and free

trade factors have driven the rapid shift to a global software industry in which globally

distributed software development is a reality (ACM, 2006).

Globally distributed software development, or global software development (GSD), refers to

software development done by multiple teams in different geographic locations. This is different

to the tradition software development, i.e. local software development, which has been done by

one or multiple teams located in same country and usually even in the same physical location.

The number of global software development projects has been steadily increasing. In 2006, thirty

percent of the World’s 1000 largest firms are offshoring work and this percentage was expected

to still increase. The amount of work offshored is expected to grow by 20 to 30 percent for the

offshoring industries in India and China. (ACM, 2006)

Many western companies choose to development their software in Eastern Europe, South

America, and Asia to gain substantial cost savings due to the lower labor rates offered by these

regions. The other often stated reasons for global software development also include (Herbsleb

and Moitra, 2001, Noll et al., 2010):

• The need to capitalize on the global resource pool to successfully and cost-competitively use

scarce resources, wherever located;

• The business advantages of proximity to the market, including knowledge of customers and

local conditions, as well as the good will engendered by local investment;

• The quick formation of virtual corporations and virtual teams to exploit market opportunities;

 12

• Severe pressure to improve time-to-market by using time zone differences in “round-the-

clock” development;

• The need for flexibility to capitalize on merger and acquisition opportunities wherever they

present themselves.1

Although all these reasons can be seen as important for increase in the global software

development, I will focus on the software development costs in this research as the lower costs

of software development are very often used as the main justification for the decision to develop

software globally instead of developing it locally.

There seems to be a strong business reason to develop software globally due to the lower labor

costs in developing regions. However this can be misleading considering the challenges in the

global software development. Studies report that compared to single-site work, cross-site work

takes much longer, and requires more people for work of equal size and complexity (Carmel,

1999, Herbsleb and Grinter, 1999, Herbsleb et al., 2001). Recent studies also indicate that the

benefits in global software development are neither clear-cut nor can their realization be taken

for granted as many people seem to believe (Conchúir et al., 2009).

In software development the physical separation, especially across several time zones and

between different cultures and languages, requires additional activities and effort. For example

the separation increases the needs for team building, knowledge transfer for asynchronous

collaboration, creating an architecture that is easily distributed and that minimizes cross-site

communication, and facilitating communication among teams working on parts of the

architecture that are interrelated.

Global software development can also increase the requirements regarding development

processes, project management practices, architecture, quality, collaboration tools and so forth.

All this translates into a substantial overhead in the day-to-day operations of global software

development projects which can exceed the benefits from the lower labor rates in the developing

1 In this research, bullet list is used for unordered list of items

 13

countries. Hence it is crucial to be able to understand and estimate the total costs for global

software development in order to evaluate whether it is more beneficial compared to local

software development.

There is a very large variety of different software cost estimation techniques. However many of

these techniques have been developed before the trend of global software development and

hence they might not take into account the additional challenges in global software development

to accurately estimate the costs needed to develop software in global manner.

It also remains unclear if there are any new estimation techniques or adaptations of existing

techniques created to address these additional challenges in global software development. If such

techniques exist, it is uncertain if they consider all the necessary aspects of global software

development in the estimation.

Hence this research focuses on studying the suitability of existing software cost estimation

techniques to global software development. The research tries to improve the understanding on

how costs can be estimated for global software development.

1.2. RESEARCH PROBLEM AND METHOD

This research studies software cost estimation in global software development. The purpose of

this research is to review existing software costs estimation techniques and to understand how

these techniques can be applied to global software development considering its specific nature.

The research problem is formulated with following questions:

1. What factors impact software development cost in global software development?

2. How these factors are considered in the available software cost estimation techniques?

3. How available software estimation techniques can be applied to global software

development?2

2 In this research, numbered list is used for ordered list of items

 14

The research is conducted by reviewing available research on the software cost estimation and

global software development. The primary sources of information for this research are the

databases of Institute of Electrical and Electronics Engineers (IEEE) and Association of

Computing Machinery (ACM).

1.3. RESEARCH STRUCTURE

This research has seven sections. The first section, this section, works as an introduction to the

research. It also defines the research problem, method and structure.

The following two sections focus on the software cost estimation. The second section presents an

overview on software cost estimation. It describes what software cost estimation is, how and

when it is done, and why software cost estimates are usually very inaccurate. In the third section,

an example of software cost estimation process is presented.

In the fourth section, different categories of software cost estimation techniques are presented

and few examples from each category are described in more details.

The fifth section focuses on global software development and describes the additional barriers in

global software development. The section also presents recent software cost estimation

techniques which have been created especially for global software development.

In the sixth section, we evaluate how different software cost estimation techniques consider the

additional cost factors in global software development. We will also discuss how the techniques

can be applied to the global software development.

The seventh and final section concludes the research and its findings.

2. SOFTWARE COST ESTIMATION

2.1. WHAT IS A COST ESTIMATE?

In project management, cost estimation is the process of developing an approximation of the

monetary resources needed to complete project activities (PMBOK, 2000). Usually software is

developed in projects and hence software cost estimate can be considered as an approximation of

 15

the monetary resources needed to complete software. The inputs, tools, techniques and outputs

for a generic cost estimate are shown in the figure below (PMBOK, 2000).

Figure 1: Cost estimation in project management (PMBOK, 2000)

The key outputs are activity cost estimates, basis of estimates and project document updates.

Project documents are project management related outputs which include updates to the project

documents such as the risk register (PMBOK, 2000).

In the research literature of software effort estimation, there is usually no difference made

between effort and costs. This is mainly caused by the fact that in software development,

practically all costs are personnel costs, which are directly dependent on effort. In global

software development, however, cost rates might differ between different sites, meaning that

effort at one site might cause significantly higher costs than effort at another site (Conchúir et al.,

2009). Even though, in this research effort and costs are used as synonyms unless otherwise

specified.

2.2. ACTIVITY COST ESTIMATES

The activity costs estimates are quantitative assessments of the costs required to complete

software related work (PMBOK, 2000). Costs are estimated for all resources that will be needed

for development the software. This includes, but is not limited to, labor, materials, equipment,

services, and facilities, as well as special categories such as an inflation allowance or

risk/contingency costs.

 16

Cost estimates are expressed in units of some currency (i.e., dollars, euro, yen, etc.); although in

some instances other units of measure, such as man days or man months, are used to facilitate

comparisons by eliminating the effects of currency fluctuations.

NASA’s guide on software cost estimation gives the following as the basic equation for software

costs (NASA, 2003):

Total SW Costs=SW Development Labor Costs+Other Labor Costs+Non Labor Costs

Below table summarizes key elements which NASA includes in the software cost estimates

(NASA, 2003).

Table 1: Cost elements of software development (NASA, 2003)

2.3. BASIS OF ESTIMATE

The Basis of Estimate should provide a clear and complete understanding of how the cost

estimate was derived (PMBOK, 2000). The amount and type of additional details supporting the

 17

cost estimate varies per application area. Supporting detail for activity cost estimates may

include:

• Documentation of the basis of the estimate (i.e., how it was developed)

• Documentation on the coverage of the estimate (i.e. what was estimated)

• Documentation of all assumptions made

• Documentation of any known constraints

• Indication of the range of possible estimates (e.g., $10,000 (±10%) to indicate that the item is

expected to cost between a range of values)

• Indication of the confidence level of the final estimate.

It is very important that all information related to the estimation is documented clearly in the

basis of estimate as this enables more thorough reviews, makes it easier to revise estimates at

future dates when assumptions may need to be revised. Without a clear basis of estimate, the

activity estimates become useless as there will not be a clear understanding on what those

estimates include.

2.4. WHEN SOFTWARE COSTS ARE ESTIMATED?

Software cost estimation is not an independently and individual activity performed once in a

software project. Instead it is an iterative process which continues during the different phases

and which is heavily linked to the other activities in the software development. The estimates are

derived in large part from the requirements of the software, and they will be strongly affected by

the tools, process, and other attributes associated with the project. The costs estimation as part of

software development activities is illustrated in the figure below (McConnell, 2006).

 18

Figure 2: Cost estimation as part of software development activities (McConnell, 2006)

The estimates should be refined during the course of the software development to reflect

additional details as those become available. For any project larger than trivial, multiple cost

estimates will be prepared during the course of development, including but not limited to the

following:

• A rough pre-requirements guesstimate

• An initial formal estimate derived from the project requirements

• One or more midlife estimates, which reflect requirements changes

• A final cost accumulation using project historical data.

In the early life-cycle phases, software cost estimation is closely related to design activities,

where the interaction between these activities is iterated many times as part of doing design trade

studies and early risk analysis. Later on in the life-cycle, cost estimation supports management

activities – primarily detailed planning, scheduling and risk management.

2.5. WHY SOFTWARE COST ESTIMATES ARE INACCURATE?

It seems to be an industry wide problem that the software costs are very inaccurately estimated

and these cause huge problems in software development projects. These problems are mentioned

 19

in many of the research literature software cost estimation (Brooks, 1975, Boehm, 1981,

Heemstra, 1992, McConnell, 2006). There are even ”industry jokes” on humoristic estimation

methods like one in which the real effort in a project can be found by multiplying the work

estimate with Phi and adding 30% extra on top. In reality it is not very rare that some work

amounts are estimated this much below the actual effort (Haikala and Märijärvi, 1997).

Software development is a process of gradual refinement. A project starts out with a very general

vision of the software. The concept of the software is refined based on the product requirement

and project goals. The accuracy of a project estimate will increase as the work progresses

through the software development life cycle. With respect to estimation inaccuracy as a cause of

cost growth, Barry Boehm found that cost estimates made in the early stages of the software life-

cycle could be off by as much as a factor of four. This inaccuracy is primarily due to the lack of

clear understanding of the software requirements. (Boehm, 1981)

The below figure shows the rate at which the accuracy of cost estimates improves as

requirements specificity increases. Estimates cannot be more accurate than requirements at any

point. This graph is known as ”the Cone of Uncertainty” (Boehm, 1981).

Figure 3: The Cone of Uncertainty (Boehm, 1981)

 20

The table below summarizes some of the common reasons identified in the research literature for

the inaccuracy of software cost estimates.

Table 2: Reasons for inaccurate software cost estimates identified in research literature

There does not seem to be any simple solution for improving the accuracy of software cost

estimates. The key to establish reliable estimates is to use a variety of methods and tools and then

analyze the results by different techniques to understand why the estimates provided by one

might differ significantly from those provided by another (Boehm, 1981). If the estimator can

explain such differences to a reasonable level of satisfaction, then it is likely that he or she has a

good understanding of the factors which are driving the costs of the project at hand; and thus will

be better equipped to support the necessary project planning and control functions performed by

management.

 21

3. SOFTWARE COST ESTIMATION PROCESS

In order to establish a reliable cost estimate for software, a structured approach with significant

amount of work is needed. The software cost estimation can be seen as a small size project which

needs to be carefully planned, managed and followed-up.

Many organizations have different processes for software cost estimation. These processes vary

in many aspects and there does not seem to be one common process which is used in all

organizations and in research. Two processes for software cost estimation have been presented

below as examples. These originate from Barry Boehm’s Software Engineering Economics

(Boehm 1981) and NASA’s Handbook for Software Cost Estimation (NASA, 2003).

 22

Table 3: Software cost estimation process from Barry Boehm (Boehm, 1981)

Table 4: Software cost estimation process from NASA (NASA, 2003)

 23

4. SOFTWARE COST ESTIMATION TECHNIQUES

4.1. OVERVIEW

The software cost estimation techniques can be categorized in different ways. One way is to

divide the techniques into six major categories as shown in the figure below (Chulani et al.,

1999). This section describes these categories and presents some examples from each category.

Figure 4: Software estimation techniques (Chulani et al., 1999)

Each category and/or technique within a category tends to its relative strengths and weaknesses.

For example regression and model-based techniques give good results when they can be

calibrated with high-quality data available from similar past experiences, but they fail to deal

with exceptional conditions and with poor low-quality input and calibration data.

There exists a wide variety of research on different software cost estimation techniques and on

their accuracy. Most of the researchers think that there is no superior technique compared to

others in all aspects and that the strengths and weaknesses of different techniques are often

complementary (Boehm, 1981, Heemstra, 1992, NASA, 2003). Hence it is important to use a

combination of techniques, and to carefully compare and iterate the software cost estimates

obtained from each in order to produce the most realistic estimates. The particular combination

of techniques can be chosen based on the objectives of cost estimation.

4.2. MODEL-BASED TECHNIQUES

The model-based techniques contain a mathematical model which uses certain cost factors in

determining effort, cost and/or schedule for software development project. Theory or

 24

experimentation determines usually the functional form of the mathematical models. In many

cases the model needs to be calibrated with the historical data from past projects.

The model-based techniques are objective and they are not influenced by human factor like

desire to win or please. They are also repeatable and they often support sensitive analysis on the

estimates. In addition, they can give accurate results when they are calibrated with high-quality

data available from similar past experience.

On the other hand, the model-based techniques are unable to consider exceptional conditions

with for example personnel and teamwork. In addition, they cannot compensate for poor and

inaccurate input data. As the models are calibrated with data from past projects, it is uncertain to

what extent the models can predict future projects using new technology, program languages, etc.

Next sub-sections present three different model-based techniques: Putnam / Software Life-cycle

Model (SLIM), Function Point Analysis (FPA) and Constructive Cost Model (COCOMO). There

are also many other popular model-based techniques like Price-S (Freiman and Park, 1979),

Estimacs (Rubin, 1983), SEER-SEM (Jensen, 1983), and Checkpoint (Jones, 1997).

4.2.1. PUTNAM MODEL / SOFTWARE LIFE-CYCLE MODEL

The Putnam model was developed by Larry Putnam in the late 1970s (Putnam, 1978). It

describes the time and effort required to finish a software project of specified size using Rayleign

curve function. Software Life-cycle Model (SLIM) is the name given by Larry Putnam to the

proprietary suite of tools his company, QSM Inc, has developed based on the Putnam model.

The central part of Putnam's model is called software equation:

3
4

3
1

)(dtEffortES ×=

, where td is the software delivery time in years, E is the environment factor that reflects the

software development capability. The size, S, is in effective source lines of code (ESLOC) which

includes new and modified programming lines without blanks and comments. Effort is the total

effort applied to the project in person-years. The second important relation is:

 25

3
0 d

tDEffort ×=

, where D0 is a parameter called manpower build-up which ranges from 8 (entirely new software

with many interfaces) to 27 (rebuilt software). New systems of a given size that interact with

other systems will have the greatest entropy and take longer to develop. Rebuilds of old systems

or composites where large portions of the logic and code have already been developed (and

hence have reduced the entropy) will take the least time to develop. New stand-alone systems

and other combinations will fall in between.

Combining these two equations, the following models for effort and schedule estimation can be

obtained:

7
9

7
9

7
4

0)(SEDEffort ××=
−

and

7
3

7
3

7
1

0)(SEDtd ××=
−−

The environment factor, E, can be replaced with a scaling factor, B, and process productivity.

The scaling factor is a function of project size and the process productivity is the ability of a

particular software organization to produce software of a given size at a particular defect rate.

The Putnam Model can be used to plot software development effort as a function of time as

shown in figure below. The points along the curve represent the estimated total effort to

complete the project at some time. The curves show that the total effort decreases as the time to

complete the project is extended which is one of the distinguishing features of the Putnam model.

 26

Figure 5: Software development effort as function of time in Putnam model (Putnam, 1978)

The Putnam model can be calibrated with data from past completed projects or if data is not

available then a set of calibration questions. One of the key advantages to the model is the

simplicity with which it is calibrated. Most software organizations, regardless of maturity level

can easily collect size, effort and duration (time) for past projects.

4.2.2. FUNCTION POINT ANALYSIS

Function points and function point analysis (FPA) was developed by Allan Albrecht (Albrecht,

1979). Albrecht was looking for a method to measure productivity in software development and

the functional point analysis was developed as an alternative measure to the number of lines of

code. A function point is a unit of measurement to express the amount of business functionality

an information system provides to a user.

The functional point analysis is simple method that is based on the number of functions in the

software. It is programming language or fourth generation tool independent. In the method,

functions of the software are identified and each one is categorized into one of the five types:

 27

• The external input type

• The external output type

• The external inquiry type

• The logical internal file type

• The external interface file type.

Once a function is identified and categorized into a type, it is then assessed for complexity

(simple, average, or complex) and assigned a number of function points based on complexity and

type. The total sums function points for all functions is the unadjusted number of function points.

This indication for nominal size is then adjusted, using 14 technical characteristics. The software

development cost (in money or hours) of a single unit is calculated from past projects.

Figure 6: Overview of Function Point Analysis (Albrecht, 1979)

 28

Each identified function maps to an end-user business functionality, such as a data entry for an

input or a user query for an inquiry. This distinction is important because it tends to make the

functions measured in function points map easily into user-oriented requirements, but it also

tends to hide internal functions (e.g. algorithms), which also require resources to implement.

Later the function point analysis technique has been refined and/or extended several times. For

example feature point analysis extends the function points to include algorithms as a new class

(Jones 1997) to better include internal functionalities into technique. An algorithm is defined as

the set of rules which must be completely expressed to solve a significant computational problem.

Each algorithm is given a weight ranging from 1 (elementary) to 10 (sophisticated algorithms)

and the feature point is the weighted sum of the algorithms plus the function points. This

measurement is especially useful for systems with little input/output and high algorithmic

complexity.

4.2.3. CONSTRUCTIVE COST MODEL

The Constructive Cost Model (COCOMO) is an algorithmic cost estimation technique developed

by Barry Boehm (Boehm, 1981). It is based on a study of 63 software development projects at

TRW Aerospace during 1970’s. These software development projects used waterfall model of

software development and procedural programming languages like Assembly and COBOL. In

1990’s the COCOMO was enhanced to COCOMOII in order to meet the requirements for

estimating modern software development projects and processes (Boehm et al., 2000a).

COCOMO uses a simple regression formula where parameters have been derived from past

project data and are adjusted based on the current project characteristics. The original COCOMO

has three increasingly more detailed and accurate forms (Basic, Intermediate, and Detailed).

These form and COCOMOII are presented in the following sub-sections.

4.2.3.1. MODES OF SOFTWARE DEVELOPMENT

COCOMO identifies three different modes of software development. These are organic, semi-

detached and embedded. The different software development modes have cost-estimating

relationships which are similar in form, but which yield different cost estimates for software

products of the same size and hence it is important to distinguish between these different modes.

 29

In the organic mode, relatively small team develops software in a highly familiar, in-house

environment. Most people connected with the project have extensive experience in working with

related systems within the organization, and have a thorough understanding of how the system

under development will contribute to the organization’s objectives. An organic-mode project is

relatively relaxed about the way the software meets its requirements and interface specifications

which is another reason for both the higher productivity and the smaller diseconomy of scale on

an organic-mode project. Other factors characteristic of organic-mode software projects are:

• A generally stable development environment with very little concurrent development of

associated new hardware and operational procedures

• Minimal need for innovative data processing architectures or algorithms

• A relatively low premium on early completion of the project

• Relative small size (<50 KDSI).

These factors usually correlate with higher project productivity and smaller project diseconomies.

The semidetached mode of software development represents an intermediate stage between the

organic and embedded modes in either of two ways:

• An intermediate level of the project characteristic

• A mixture of the organic and embedded mode characteristics.

The embedded mode is distinguished by the factor that it needs to operate within very tight

constraints. The software product must operate within a strongly coupled complex hardware,

software, regulations, and operational procedures. In general, the costs of changing the other

parts of this complex are so high that their characteristics are considered unchangeable and the

software is expected both to conform to their specifications and to take up the slack on any

unforeseen difficulties encountered or changes required within the other parts of the complex.

These factors contribute both to lower productivity and to greater diseconomies of scale on larger

projects.

 30

4.2.3.2. BASIC COCOMO

Basic COCOMO can be applied to small-to-medium size software development projects in a

familiar in-house environment. It includes phase distributions of effort, schedule, and activities.

It is quick and easy to use, but its accuracy is very limited due its simplicity. It can be used for

early and rough estimation of software costs.

Basic COCOMO estimates software development effort (and cost) as a function of program size.

Program size is expressed in estimated thousands of delivered source instructions (KDSI). The

basic COCOMO equations take the following forms:

bb

b
KDSIaManMonthsEffort)()(×=

bd

b
EffortcMonthstTimeDevelopmen)()(×=

EffortKDSIyroductivit /P =

tTimeDevelopmenEffortffingAverageSta /=

The coefficients ab, bb, cb and db are defined per project mode and they are given in the following

table:

Table 5: Basic COCOMO coefficients

Basic COCOMO doesn’t take into account any cost factors like hardware constraints, personnel

quality, experience and other project attributes which might have a significant influence on

software development costs.

 31

4.2.3.3. INTERMEDIATE COCOMO

Intermediate COCOMO estimates software development effort as function of program size and a

set of 15 cost factor attributes. These cost factor attributes are grouped into four categories:

software product attributes, computer attributes, personnel attributes, and project attributes. Each

of the cost factor attributes determines a multiplying factor which estimates the effect of the

attribute on the software development effort. These multipliers are applied to a nominal

COCOMO development effort estimate to obtain a refined estimate of software development

effort.

In the intermediate COCOMO estimation begins by generating a nominal effort estimate, using

scaling equations of the same form as in the Basic COCOMO. This nominal estimate is then

adjusted by applying effort multipliers determined from the project’s ratings with respect to the

other 15 cost drivers. Each of the 15 attributes receives a project rating on a scale of importance

that ranges from "very low" to "extra high". An effort multiplier from the table below applies to

the rating. The product of all effort multipliers results in an effort adjustment factor (EAF).

Typical values for EAF range from 0.9 to 1.4.

Table 6: Effort multipliers in Intermediate COCOMO

Intermediate COCOMO formula takes the form:

EAFKLoCaEffort ib

i
××=)(

 32

, where E is the effort applied in person-months, KLoC is the estimated number of thousands of

delivered lines of code for the project, and EAF is the factor calculated based on the cost drivers.

The Development time, D, calculation uses E in the same way as in the Basic COCOMO.

Intermediate COCOMO uses the same estimating relationship for development schedule, phase

distribution, and activity distribution as Basic COCOMO.

The coefficient ai and the exponent bi are given in the next table.

Table 7: Intermediate COCOMO coefficients

4.2.3.4. DETAILED COCOMO

Detailed COCOMO incorporates all characteristics of the Intermediate COCOMO with an

assessment of the cost driver's influence on individual project phases. This is done by using

different efforts multipliers for each cost drivers attribute in each phase. These multipliers are

called Phase Sensitivity Effort Multipliers and these determine the amount of effort required to

complete each phase of the project.

4.2.3.5. COCOMOII

As software engineering changed, Boehm continued to developed COCOMO model and

COCOMOII was published in 2000 (Boehm et al., 2000a) The COCOMOII enables the use of

source code lines and function points as reference parameters for the calculation of the projects’

Size (S). There are three different COCOMOII-variations, which are Applications Composition,

Early Design and Post-Architecture.

The Application Composition model is used to estimate effort and schedule on projects that use

Integrated Computer Aided Software Engineering tools for rapid application development. These

projects are too diversified but sufficiently simple to be rapidly composed from interoperable

components. Typical components are GUI builders, database or objects managers, middleware

 33

for distributed processing or transaction processing, etc. and domain specific components such as

financial, medical or industrial process control packages. The Application Composition model is

based on object point estimation which is similar to Function Point Analysis.

The Early Design model involves the exploration of alternative system architectures and

concepts of operation. It is used in the early stages of a software project when very little may be

known about the size and nature of the software to be developed. Usually there is not enough

information available to make a detailed fine-grain estimate and hence the model is based on

function points (or lines of code when available) and a set of five scale factors and seven effort

multiplier (cost factors).

The Post-Architecture model involves the actual development and maintenance of a software

product. It is used when top level design is complete and detailed information about the project is

available. It estimates the entire development life-cycle and is a detailed extension of the Early-

Design model. This model is similar to the Intermediate COCOMO '81. It uses Source Lines of

Code and/or Function Points for the sizing parameter, adjusted for reuse and breakage; a set of

17 effort multipliers and a set of five scale factors which determine the economies/diseconomies

of scale of the software under development. The five scale factors replace the development

modes in the COCOMO '81 model.

 34

Table 8: Effort multipliers in COCOMOII

The effort equation of COCOMOII is:

∏
=

××=
17

1

)(
i

i

E
EMSizeAhPersonMontEffort

, where A is a constant, Size is measured in KSLOC or Function Points, E is a scale factor and

EMi are effort multipliers.

The constant A is a calibration factor that portrays the dimension of the productivity (standard

value 2.94), but it can be calibrated with the company’s past project data.

The scale factors (E) depends on five factors: development flexibility, architecture/ risk

resolution, team cohesion, process maturity and precedentedness. Scale factors exponentially

influence the effort of a software development project. These scale factors are cost factors in the

same way as the effort multipliers (EM).

 35

Effort multipliers are characteristics of the software development and they have a direct impact

on the effort. Effort Multipliers are classified into categories ranging from very low to extra high.

Numerical values have been assigned to these categories.

4.3. EXPERTISE-BASED TECHNIQUES

In the expertise-based techniques, the software cost estimates are based on expert opinions and

judgmental processes. These techniques capture the knowledge and experience of subject matter

experts familiar within a domain of interest, providing estimates based upon a synthesis of the

known outcomes of all the past projects and theory.

Expertise-based techniques are usually very good for unprecedented projects and in the absence

of quantified, empirical data from past projects. Experts can factor in differences between past

project experiences and the new techniques, architectures, or applications involved in the future

project. They can also take into account exceptional personnel characteristics and interactions, or

other unique project considerations. Expert judgment has also been found relatively accurate if

the estimator has significant recent experience in the software domain and estimation process

(Hihn and Habib-agahi, 1991).

The weaknesses include lack of sensitivity analysis, dependency on experienced estimators,

human-errors and objectivity of the estimators who may be biased, optimistic, pessimistic, or

unfamiliar with key aspects of the project.

In the following sub-sections, five different expertise-based techniques are presented. These are

Delphi, Work-Breakdown Structure (WBS), Analogy, Work distribution, Top-Down and

Bottom-Up techniques,

4.3.1. DELPHI TECHNIQUE

One of the most famous expertise-based techniques is the Delphi technique. The Delphi

technique, named after ancient Oracle of Delphi, seeks to develop a consensus among expert

group through meetings, questionnaires and surveys. Although it was originally developed by the

Rand Corporation in the late 1940s to forecast the impact of technology on warfare (Helmer,

 36

1966), it has been applied to many other areas including cost estimation for software

development projects.

The original Delphi technique avoided group discussion, but the Wideband Delphi technique

accommodated group discussion between each assessment rounds (Boehm, 1981). This is a

useful technique for coming to a conclusion regarding an estimate when the only information

available is based more on “expert opinion” and there is no empirical data available.

The Wideband Delphi technique can be used for cost estimation of a software development

project in the following way:

1. Project manager presents product specifications and an estimation form to each expert.

2. Project manager calls a group meeting in which the experts discuss estimation issues with

the project manager and each other.

3. Experts fill out forms anonymously.

4. Project manager prepares and distributes a summary of the estimates.

5. Project manager calls a group meeting, specifically focusing on having the experts discuss

points where their estimates vary widely.

6. Experts fill out forms, again anonymously, and steps 4 to 6 are iterated for as many rounds

as appropriate.

During the iteration process the range of the estimates should shrink as the experts seek an

estimate they can all agree to. If complete agreement is impossible, average scores can be used to

obtain what will still be a quite reliable estimate.

Software development projects have a considerable specialist aspect in them and the project

manager cannot be expected to be expert in software development. Therefore the Delphi

technique can be used to obtain quite reliable estimates based on the expert consensus. As the

Delphi process takes some time and requires many experts to participate, it could be reserved for

 37

areas in which the project manager has little expertise or where the range of initial estimates

provided by experts is wide.

4.3.2. WORK BREAKDOWN STRUCTURE

Almost a standard of engineering practice in the development of software, the Work Breakdown

Structure (WBS) is delivery-oriented grouping of project elements into a hierarchy that organizes

and defines the total work scope of a project (PMBOK, 2000).

WBS is developed by starting with the end objective and successively subdividing it into

manageable elements in terms of size, duration, and responsibility (e.g., systems, subsystems,

components, tasks, subtasks, and work packages) which include all steps necessary to achieve

the objective. Each descending level in the hierarchy represents an increasingly detailed

definition of the project work. The lowest level elements, work packages, provide a logical basis

for defining activities or assigning responsibilities to a specific person or organization.

WBS helps to determine what work products are needed and what costs are being estimated.

Without such definitions, software cost estimates and data lose precision and meaning. When

costs are associated with each individual work package, an overall expected value can be

determined from the bottom up for total project development cost. The expertise in the WBS

method is needed in the determination of the most useful specification of the work packages

within the structure and of those estimates and probabilities associated with each work package.

A software WBS consists of two structures, one representing the software product itself, and the

other representing the activities needed to build that product (Boehm, 1981). The product

hierarchy (Figure 7) describes the fundamental structure of the software, showing how the

various software components fit into the overall system. The activity hierarchy (Figure 8)

indicates the activities that may be associated with a given software component.

 38

Figure 7: Product hierarchy

Figure 8: Activity hierarchy

 39

Developing the WBS is a four-step process (Haugan, 2001):

1. Specifying the project objectives and focusing on the products, services or results to be

provided to the customer

2. Identifying specially the products, services and results (deliverables or end items) to be

provided to the customer

3. Identifying other work areas in the project to make sure that 100 percent of the work is

covered and to identify areas that cut across the deliverables, represent intermediate

outputs, or complement the deliverables

4. Subdividing each of the items in step 2 and 3 into successive, logical subcategories until

the complexity and money value of the elements become manageable units for planning

and control purposes (work packages)

The 100% rule is one of the most important principles guiding the development, decomposition

and evaluation of the WBS. It states the WBS includes 100% of the work defined by the project

scope and captures all deliverables – internal, external, and interim – in terms of the work to be

completed, including project management. The rule applies at all levels within the hierarchy: the

sum of the work at the “child” level must equal 100% of the work represented by the “parent”

and the WBS should not include any work that falls outside the actual scope of the project, that is,

it cannot include more than 100% of the work. It is also important to remember that the 100%

rule also applies to the activity level. The work represented by the activities in each work

package must add up to 100% of the work necessary to complete the work package. (Haugan

2001)

Besides helping in the cost estimation, WBS assists during the project life cycle in following

ways (MIL-HDBK-881, 1998):

• It segregates a material item into its component parts, clarifying the relationship among the

parts, and clarifying the relationship of the tasks to be completed —to each other and to the

end product

 40

• It facilitates effective planning and assignment of management and technical responsibilities

• It aids status tracking of technical efforts, risks, resource allocations, expenditures, and

cost/schedule/technical performance

• It helps ensure that contractors are not unnecessarily constrained in meeting item

requirements.

Another use of the WBS is to serve as the basis for software cost collection and reporting. Each

of the WBS elements can be given a project budget and a job number for people to use in

reporting the amount of time they have spend on different project activities. If an organization

consistently uses a standard WBS for all of its projects, over time the organization will build up a

valuable database reflecting its software development cost distributions. This data can be used to

develop a software cost estimation model tailored to the organization’s own experience and

practices or as an input to the parametric software cost estimation methods. (Boehm, 1981)

4.3.3. ANALOGY

Estimation by analogy is done by comparing a project or some aspects of it with something

similar (Boehm, 1981). The comparison can be one or more completed projects to relate their

actual costs to an estimate of the cost of a similar project.

For example, an organization wants to estimate costs for software that can handle 5 million

online shopping transactions per day. The organization has earlier developed similar software for

another customer that can handle 10 million online shopping transactions per day. Using analogy,

the costs can be estimated to be roughly 50% of the actual costs of the earlier project.

Estimating by analogy can be done either at the project level or at a subsystem level. The project

level has the advantage that all components of the system cost will be considered while

subsystem level has the advantage of providing a more detailed assessment of the similarities and

differences between the new project and the completed project.

The main strength of estimation by analogy is that the estimate is based on actual experience on

a project. This experience can be studied to determine specific differences from the new project,

and their likely cost impact. The main weakness of estimation by analogy is that it is not clear to

 41

what degree the previous project is actually representative of the constraints, techniques,

personnel, and functions to be performed by the software on the new project. (Boehm, 1981)

Shepperd and Schofield have developed a formal five-step process and software tool, ANGEL

(ANaloGy Estimation tool2), for estimation by analogy (Shepperd et al., 1996). This technique

contains following steps:

1. Identify the data or features to collect

2. Agree data definitions and collections mechanisms

3. Populate the case base

4. Tune the estimation method

5. Estimate the effort for a new project.

In the ANGEL technique, organization takes a new project for which effort need to be estimated,

and attempts to find other similar completed projects. Since these projects are completed,

development effort will be known and can be used as a basis for estimating effort for the new

project. Similarity is defined in terms of project features, such as number of interfaces,

development method, application domain and so forth. Clearly the features used will depend

upon what data is available to characterize projects. The number of features is also flexible.

In the first step, the data that is used to characterize analogies between projects is identified for

collection. Factors to be considered include beliefs as to what features significantly impact

development effort (and are measurable at the time the estimate is required) and what features

can easily be collected. These can be for example programming language or number of interfaces

in software.

The second step is to agree definitions as to what is being collected. Even within organizations

there may be no shared understanding of what is meant by effort. Any estimation program will

be flawed, possibly fatally, if different projects are measuring the same features in different ways.

It is also important to identify who is responsible for the data collection and when they should

 42

collect the data. Sometimes it can be beneficial to have the same person collecting the data

across projects in order to increase the level of consistency.

In the third step, the case base must be populated. In general, more data is preferable although, in

most cases, data collection will be an on-going process as projects are completed and their effort

data becomes available. However, there appear to be some tradeoffs between the size of the

dataset and homogeneity. Some experiences suggest that there is merit in the strategy of dividing

highly distinct projects into separate datasets.

The fourth step is to tune the estimation method. The user also will need to experiment with the

optimum number of analogies searched for, and whether to use a subset of variables, since some

features may not usefully contribute to the process of finding effective analogies. Tuning can

make quite a difference to the quality of predictions— typically tuning can yield a twofold

improvement in performance—and for this reason the ANGEL tool provides automated support

for this process.

The final step is to estimate for a new project. It must be possible to characterize the project in

terms of the variables that have been identified at the first stage of the estimation process. From

these variables, ANGEL can be used to find similar projects and the user can make a subjective

judgment as to the value of the analogies. The value of estimation by analogy as an independent

source of prediction will be somewhat reduced if the users discount values that are not consistent

with their prior beliefs and for this reason there was no expert intervention or manipulation in

any of the foregoing analysis.

4.3.4. WORK DISTRIBUTION TECHNIQUE

Some types of software development project are repeated multiple times within organizations

and similar activities are repeated every time a project is implemented. The work distribution

technique relies on data gathered from similar past project, which it apportions across the

standard project life cycle to arrive at the proportions of effort or budget required by each stage

(Roberts 1997). The work distribution can be done in many different ways including distribution

based on project phases or resources. Two examples of a work distribution in a software project

are presented in figure below.

 43

Figure 9: The work distribution technique (Roberts, 1997)

Figure 10: Spreading the proportions spent on projects across different types of resource (Roberts,

1997)

The success and accuracy of work distribution technique depends on the reliability of data or

experiences from past projects and the projects themselves being similar. If data from past

projects can be recorded and improved over time, the work distribution technique can be used

quite flexibly and accurately. Many organizations and experts have also thumb rules for the work

distribution in a software project. For example work distribution statistics from NASA (NASA,

2003) for new, modified and converted software are given in the table below.

 44

Table 9: An example of work distribution statistics (NASA, 2003)

4.3.5. TOP-DOWN

A top-down cost estimate for a project is derived from the global properties of the software

product. The total cost is then split up among the various components or stages. (Boehm, 1981)

An example top-down estimate is shown in the figure below. Top-down estimating can be done

in conjunction with other techniques.

Figure 11: A top-down estimate (Roberts, 1997)

The main strength of top-down estimation is its system level focus. To the extent that the

estimate is based on previous experience on entire completed projects, it will not miss the costs

of system level functions such as integration, users’ manuals, configuration management etc.

(Boehm, 1981)

The major disadvantages of top-down estimating are that it often does not identify difficult low

level technical problems that are likely to escalate costs; that it sometimes misses components of

the software to be developed; that it provides no detailed basis for cost justification and iteration;

and that it is less stable than a multicomponent estimate, in which estimation errors in the

component have a chance to balance out (Wolverton, 1974).

 45

4.3.6. BOTTOM-UP

Bottom-up estimation is complementary to top-down estimation. In the bottom-up estimation,

the cost of each component or work product is estimated individually and then these costs are

summed to arrive at an estimated cost for the overall software product (Boehm, 1981). Before

the bottom-up estimation, the overall software product should be first decomposed into a set of

smaller work products or components, for example using work breakdown structure.

An example Bottom-up estimate is shown in the figure below. Bottom-up estimating can also be

done in conjunction with other techniques.

Figure 12: A top-down and bottom-up estimate (Roberts, 1997)

The strengths and weaknesses of bottom-up estimation are complementary to the top-down

estimation. The bottom-up estimate tends to focus on the costs associated with developing

individual components and hence it may overlook many of the system level and other project

costs. It also requires more effort than does a top-down estimate, but it yields more stable

estimates, since the estimation errors in the various components have a change to balance out.

(Boehm, 1981)

4.4. LEARNING-BASED TECHNIQUES

Learning-based techniques use prior and current information to develop a software cost estimate.

These techniques include Artificial Neural Networks and Case-Based Reasoning.

 46

4.4.1. CASE-BASED REASONING

Case-Based Reasoning (CBR) is very similar to software cost estimation by analogy. Analogy

has actually been identified as a simple form of Case-Based Reasoning (CBR) (Aamodt and

Plaza, 1994). The CBR estimation technique contains usually four primary steps:

1. Retrieve the most similar case or cases, i.e., previously developed projects

2. Reuse the information and knowledge represented by the case(s) to solve the estimation

problem

3. Revise the proposed solution

4. Retain the parts of this experience likely to be useful for future problem solving.

In the context of software cost estimation, a CBR model is based on the analogy assumption that

similar software projects have similar costs. Initially, each software project (both historical and

candidate projects) must be described by a set of attributes (environment conditions, constraints,

technologies, decision, success, cost spent, effort used) that must be relevant and independent of

each other. Subsequently, the similarity between the candidate project and each project in the

historical database is determined. Finally, the known development effort values of historical

(previously developed similar) projects is used to derive, i.e., case adaptation, an estimate for the

new project. (Idri et al., 2002)

The source of case studies can be either internal or external to the estimator’s own organization.

Internal cases are likely to be more useful for the purposes of estimation because they will reflect

the specific engineering and business practices likely to be applied to an organization’s projects

in the future, but well-documented cases studies from other organizations doing similar kinds of

work can also prove very useful. (Boehm et al., 2000b).

The formal five-step process and software tool, ANGEL (ANaloGy Estimation tool2), developed

by Shepperd and Schofield (Shepperd et al., 1996) can also be categorized as Case-Based

Reasoning technique instead of a simple Analogy technique. The ANGEL was presented in

section 4.2.3.

 47

Idri and others have created a Case-Based Reasoning technique which is based on analogy-based

reasoning, fuzzy logic, and linguistic quantifiers. In the Fuzzy Analogy approach, both linguistic

and numerical data are represented by fuzzy sets. Furthermore, by using the linguistic quantifier

to guide the aggregation of the individual similarities between two projects, the Fuzzy Analogy

approach can easily be adapted and configured according to the requirements and specifications

of each environment. (Idri et al., 2002)

4.4.2. NEURAL NETWORKS

Neural networks are based on the principle of learning from example; no prior information is

specified. Neural networks are characterized in terms of three entities, the neurons, the

interconnection structure and the learning algorithm (Karunanithi et al., 1992).

Most of the software models developed using neural networks use backpropogation trained feed-

forward networks. The neural networks are created with an appropriate layout of neurons, or

connections between network nodes. This includes defining the number of layers of neurons, the

number of neurons within each layer, and the manner in which they are all linked. The weighted

estimating functions between the nodes and the specific training algorithm to be used must also

be determined. The network is then trained with a series of inputs and the correct output from the

training data so as to minimize the prediction error. Training data should originate from past

projects. Once the training is complete, and the appropriate weights for the network arcs have

been determined, new inputs can be presented to the network to predict the corresponding

estimate of the response variable. (Gray and MacDonell, 1997)

 48

Figure 13: Neural network for software cost estimation (Boehm et al., 2000b)

Neural networks operate as ‘black boxes’ and they do not provide any information or reasoning

about how the outputs are derived. And since software data is not well-behaved it is hard to

know whether the well known relationships between parameters are satisfied with the neural

network or not.

Wittig and Finne developed a software estimation model using neural networks and derived very

high 29 prediction accuracies (Wittig and Finne, 1994). They also reported accuracies of within

10% for a model of this type when used to estimate software development effort (Wittig and

Finne, 1997).

Neural networks are often subject to the same kinds of statistical problems with the training data

as are the standard regression techniques used to calibrate more traditional models. In particular,

extremely large data sets are needed to accurately train neural networks with intermediate

structures of any complexity. Also, for negotiation and sensitivity analysis, the neural networks

 49

provide little intuitive support for understanding the sensitivity relationships between cost factors

and estimation results. (Gray and MacDonell, 1997)

4.5. DYNAMICS-BASED TECHNIQUES

Dynamics-based techniques acknowledge that software project effort or cost factors change over

the duration of the software development process (Boehm et al., 2000b). Hence the effort and

cost factors are dynamic rather than static with regards to time. This is a significant difference

compared to many other techniques which use only static models and factors. In practice, cost

and effort factors like functional requirements, project team, budgets, etc change during the

software development process and hence they cause changes in the productivity of the project

team. This has consequences, which are quite often negative, in the project schedule, quality and

costs.

Dynamics-based techniques are often based on the system dynamics originated from Jay

Forrester (Forrester, 1961). System dynamics is a methodology and computer simulation

modeling technique for framing, understanding, and discussing complex system, issues and

problems. In system dynamics, models are represented as networks modified with positive and

negative feedback loops, stocks, flows, and information that changes over time and dynamically

affects the flow rates between the feedback loops. Below figure from Madachy (Madachy, 1994)

shows an example of a system dynamics model demonstrating the Brooks’ Law. The Brooks’

Law states that adding manpower to a late software project makes it even later (Brooks, 1975).

 50

Figure 14: Madachy’s System Dynamics Model of Software development (Madachy, 1994)

The system dynamics approach involves the following concepts (Richardson et al., 1991):

1. Defining problems dynamically over time

2. Striving for an endogenous, behavioral view of the significant dynamics of a system

3. Thinking of all real systems concepts as continuous quantities interconnected in

information feedback loops and circular causality

4. Identifying independent levels in the system and their inflow and outflow rates

5. Formulating a model capable of reproducing the dynamic problem of concern by itself

6. Deriving understandings and applicable policy insights from the resulting model

7. Implementing changes resulting from model-based understandings and insights.

 51

Mathematically, system dynamics simulation models are represented by a set of first order

differential equations (Madachy, 1994):

),()(' pxftx = ,

where

x = a vector describing the levels (states) in the model

p = a set of model parameters

f = a nonlinear vector function

t = time

The system dynamics technique has been quite successfully applied to software engineering

estimation models by Abdel-Hamid and Madnick (Abdel-Hamid and Madnick, 1991). They have

built models that will predict changes in project cost, staffing needs and schedules over time, as

long as the initial proper values of project development are available to the estimator. In addition,

they have found out initially beneficial relationship between the reuse of software components

and project personnel productivity, since less effort is being spent developing new code (Abdel-

Hamid and Madnick, 1993).

 52

Figure 15: System dynamics model for software cost estimation (Abdel-Hamid and Madnick, 1991).

4.6. REGRESSION-BASED TECHNIQUES

Regression-based techniques provide one or more mathematical algorithms which produce a

software cost estimate as a function of number of variables which are considered to be the major

cost driver. The pure regression techniques include ordinary least squares method and Robust

regression.

4.6.1. ORDINARY LEAST SQUARE TECHNIQUE

Ordinary Least Squares (OLS) technique is a classical mathematical method for estimating the

unknown parameters using a linear regression model. It is presented in most of the advanced

statistical and econometric books (for example: Keating, 1985). It is one of the common

techniques used in the research literature due to its simplicity and easy accessibility from

statistical software packages (Gray and MacDonell, 1997).

 53

 The Ordinary Least Squares method aims to find the best linear model that fits the dataset by

minimizing the sum of squared residuals. Residuals are the distance between the observed in the

dataset, and the responses predicted by the linear approximation.

A simple data set consists of n points (data pairs) (xi,yi), i = 1, ..., n, where xi is an independent

variable and yi is a dependent variable whose value is found by observations (for example past

project data). The model function has the form f(x,�), where the m adjustable parameters are held

in the vector �. The goal is to find the parameter values for the model which "best" fits the data.

The least squares method finds its optimum when the sum, S, of squared residuals is at its

minimum:

�
=

=
n

i

i
rS

1

2min

The residuals ri is defined as the difference between the value predicted by the model and the

actual value of the dependent variable:

),(β
iii

xfyr −=

Denoting the intercept as �0 and the slope as �1, the linear model function is given as:

xxf 10),(βββ +=

The values for m adjustable parameters (�optimum), which minimize the sum of squared residuals,

can be found through simple first order derivation. Once the optimum valus are found, the model

function, f(x, �optimum), can be used for estimation.

There are also other variations from the Ordinary Least Squares method. These include Weighted

Least Squares and Non-linear Least Squares methods. The Weighted Least Squares method aims

to minimize the weighted sum of squared residuals. Hence it allows having different weights for

the different cost factors which are represented by the adjustable parameters in the model. In

Non-linear Least Squares method the data is fitted to a non-linear model function f(x, �).

Least squares regression is well suited for use in situations (Gray and MacDonell, 1997):

 54

• Many degrees of freedom are available i.e. there are many more observations than

parameters to be estimated

• The data is well-behaved (in the statistical sense, for example there are no outliers or

significant heteroscedasticity)

• A small number of independent variables are sufficient, after transformations if necessary, to

linearly predict the possibly transformed output variable(s) so as to enable an interpretable

representation

• There is no missing data.

These place a severe restriction on the use of this technique for software engineering data sets

that rarely meet all of these conditions. In software engineering, collecting data is often difficult

due to lack of funding by higher management, coexistence of several development processes,

and lack of proper interpretation of the process. Extreme cases are also very often reported and

many variables are correlated with each other. In addition, there is often data missing or

incorrectly gathered from the past projects. (Boehm et al., 2000b)

4.6.2. ROBUST REGRESSION

Robust Regression is an improvement of Ordinary Least Squares (OLS) method which is not

impact by extreme values often found in software engineering data sets. The main difference in

robust regression compared to OLS is the residual measure (error term). In Robust Regression it

is usually the mean median error, but it can also be other available measures of error or on some

middle portion of the errors (for example, ignoring the top and bottom five percent of errors).

The use of robust regression can be especially attractive in software development data sets since

they can be very small, and therefore extremely sensitive to the abnormal observations they

contain, and often contain errors in measurement. Software project data can also have a lot of

outliers due to disagreement on the definitions of software metrics, coexistence of several

software development processes and the availability of qualitative versus quantitative data. (Gray

and MacDonell, 1997)

 55

An example of Robust Regression method is the Least Median Squares method. It is very similar

to the OLS method described in the previous section. The only difference is that the method

minimizes the median of all residuals:

2min
i

i
rmedian

θ
�

Least Median Squares regression provides estimates that cannot be affected to an arbitrary

degree by up to 50 percent contamination (i.e. data values that do not reflect the underlying

system being modeled for reasons that may include measurement error and an unusual system).

This compares to least squares regression's estimates which can be arbitrarily affected by a single

outlying observation. Example difference between Least Media Squares and Ordinary Least

Squares method is presented in picture below (Gray and MacDonell, 1997)

Figure 16: Difference of Least Mean Squares and Least Median Squares methods (Gray and

MacDonell, 1997)

 56

4.7. COMPOSITE TECHNIQUES

Composite techniques incorporate a combination of two or more techniques to formulate the

most appropriate functional form for estimation.

4.7.1. BAYESIAN APPROACH

One of these composite techniques is the Bayesian approach (Chulani et al., 1999) which

combines expertise-based and model-based (COCOMOII) techniques. In the Bayesian approach,

the estimation is done by combining the sample (historical project data) and prior (expert-

judgment) information. By using Bayes’ theorem, the prior information is transformed to post-

data or posterior view:

)(

)()(
)(

Yf

fYf
Yf

ββ
β =

, where ß is the vector of parameters to be clarified and Y is the vector of sample observations

from the joint density function f (�|Y). f (� |Y) is the posterior density function for ß

summarizing all the information about ß, f (Y| ß) is the sample information and is algebraically

equivalent to the likelihood function for ß, and f (b) is the prior information summarizing the

expert-judgment information about ß. This transformation process can be viewed as a learning

process.

The Bayesian approach described above can be used in the calibration of COCOMOII to

improve its prediction accuracy. With the Bayesian approach, the COCOMOII can be calibrated

to produce estimates within 30% of the actual 75% of the time compared to the earlier 52% of

time (Chulani et al., 1999).

The Bayesian approach has similar advantages as “Standard” regression, but it also includes

prior knowledge of experts. It aims to reduce the risks associated with imperfect data gathering

which is a usual problem with software engineering data area. Usually a lot of good expert

judgment based information is available on software processes and the impact of several

parameters on effort, cost, schedule, quality etc.

 57

4.7.2. COST ESTIMATION, BENCHMARKING, AND RISK
ANALYSIS

The Cost Estimation, Benchmarking, and Risk Analysis method (CoBRA) was developed by

Fraunhofer IESE (Institut für Experimentelles Software Engineering) in 1996 and it has been

applied in several studies (Briand et al., 1998, Ruhe et al., 2003, Trendowicz et al., 2006). It

combines expert-driven and data-driven cost estimation methods in order to provide a technique

that can be used in organizations where only little data is available.

The basic formula used in CoBRA is following:

ADCOSTOVERHESIZEDUCTIVITYNOMINALPROCOST +×=

The nominal productivity determines the productivity in an optimal case (~in a project in which

all cost factors are at optimal values). The cost overhead describes additional costs that occur in

projects that are not done in an optimal environment. Thus the overhead is driven by set of

influencing factors (e.g. team capability, requirements stability, etc). The overhead factors are

organized into a causal model that determines their impact on project costs. An example of such

causal model is shown in figure below.

 58

Figure 17: A causal model for software cost estimation (Lamersdorf et al., 2010)

The cost factors in a causal model can have a positive or negative impact in two ways. Direct

relationships describe direct impact on costs overhead, which means that an increase of these

factors will directly increase cost overhead. Indirect relationships determine the impact of

another factor on cost overhead. Some factors can have both a direct and indirect impact on cost

overhead.

 59

In CoBRA, the development and quantification of the causal model is done by experts. Selection

of the factors and determination of their causal relationships is done in group discussions. The

nominal productivity is computed using data from past projects.

The CoBRA process can be summarized as follows:

1. Collect possible cost factors: A set of possible factors influencing cost overhead is

collected

2. Rank and select cost factors: Each expert ranks the cost factors individually according to

their impact on cost overhead. Ranking can be done within factor categories. The

aggregated results of the ranking are presented to the experts, and the most important cost

factors are selected in a group discussion

3. Build causal model: In another group discussion among the experts, the direct and indirect

influences of the factors on cost overhead are determined and a causal model is developed

4. Quantify causal relationships: Based on the causal model, a questionnaire is prepared

asking each expert to quantify the impact of the factors on cost overhead. In every

judgment, each expert is asked to name minimum, most likely, and maximum overhead in

percent over a nominal case

5. Analyze past projects: for a set of past projects, size and effort data is collected and the

experts are asked to characterize them with respect to the cost overhead drivers. Based on

these results, the nominal productivity is determined.

5. GLOBAL SOFTWARE DEVELOPMENT

5.1. OVERVIEW

Global software development (GSD) refers to software development that is done by multiple

teams in different geographic locations. The teams are separated physically and they are located

in different countries within one region or around the world. The teams can be from one

organization or from multiple different organizations for example in outsourcing or collaboration

scenarios.

 60

For example a Finnish company can use software development teams located in headquarters in

Finland and in a subsidiary in China. The same company could also outsource some parts of the

software development directly from a company in India.

Figure 18: A taxonomy of structural arrangements for software development (Carmel and Agarwal,

2001)

Global software development is usually considered to be much more difficult than local software

development due to the many different challenges associated with the development of software

in a globally distributed setting. These challenges include negative impact of physical distance,

cultural differences and many other complexity factors which are elaborated in the following

subsections.

 61

Past studies have shown that tasks take about 2.5 times longer to complete in a distributed setting

versus a collocated setting (Herbsleb et al., 2001). Other studies reported that about 40 percent of

GSD projects fail to deliver the expected benefits, due to the lack of theoretical basics and

difficult complications in GSD project (Betz and Mäkiö, 2007). On the other hand, Stephanie

Teasley and her colleagues reported that in colocated teams, productivity and job satisfaction are

much higher (Teasley et al., 2002).

The additional activities and difficulties in global software development require additional effort

for substantial planning, coordination and control overhead in the day-to-day governance of

global software development. This additional effort should be considered in the effort and cost

estimation. Hence the effort and cost estimation in global software development (GSD) is more

complex than in local development.

5.2. OVERHEAD FACTORS

There are many challenges associated with global software development. Physical separation

among project members has diverse effects on many levels. The following factors have been

gathered from research literature (Noll et al., 2010) to have an impact on the amount of effort

and cost required for global software development:

• Geographic distance

• Temporal dispersion due to being located in different time zones

• Differences in language and culture

• Social factors such as fear and trust

• Problems stemming from organizational structure

• Process issues

• Barriers deriving from infrastructure

• Barriers due to product architecture.

 62

The above overhead factors are discussed in more details in the following sub-sections.

The below table summarizes a review of the 26 research papers on collaboration barriers in

global software development (Noll et al., 2010). These results indicate that the most of the

barriers are widely analyzed in the research literature except for product architecture which has

been discussed only in few researches.

Table 10: Identified barriers for global software development (Noll et al., 2010)

Perhaps more critical to global software development is the observation that the overhead factors

can have a compounding effect on each other, increasing the possibility of a negative impact on

the development process (Noll et al., 2010). For example knowledge transfer will not occur

smoothly unless a team spirit exists between the individuals or communication difficulties arise

if roles and responsibilities have not been explicitly defined.

The barriers identified commonly in the research do not include factors which rise outside of

software engineering. These include factors like set-up factors (contracting to a foreign country,

founding an office in foreign country), illegal (corruption in many developing countries) and

international trade related factors (export and import taxes and tariffs). These factors might also

have significant impact on the overall costs of a software development project.

5.2.1. GEOGRAPHIC DISTANCE

Software development, particularly in the early stages, requires much communication (Perry et

al., 1994). Kraut and Streeter (Kraut and Streeter, 1995) found that formal communication (e.g.,

structured meetings, specifications, inspections) is useful for routine coordination while informal

 63

communication (e.g., hallway conversations, telephone calls, workshops) is needed in the face of

uncertainty and unanticipated problems, which are typical of software development. They

observed that the need for informal communication increases dramatically as the size and

complexity of the software increases (Kraut and Streeter, 1995). In a large software organization,

developers can spend on average up to 75 minutes per day for informal unplanned

communication (Perry et al., 1994). Hence it seems that much of the vital coordination,

communication and interaction in a software development project occurs in an informal “ad hoc”

manner.

It appears that the ability to be able to discuss face to face and work closely improves the

development of a shared understanding on the software being developed. This shared

understanding is required indicating the level of completeness of documentation and

specification and the common knowledge about goals (McChesney and Gallagher, 2004).

Shared understanding also increases productive and quality in software development. As a result

of numerous informal interactions and discussions, team members are much more aware of the

details of pieces of software developed, and are much more likely to communicate with those

who work on them.

Geographic distance introduces many barriers to communication and collaboration, the most

immediate being the lack of informal encounters that provide not only the opportunity to

exchange implicit knowledge and build shared understanding, but also to develop personal

relationships and avoid conflict, misalignments and rework. (Herbsleb and Grinter, 1999,

Herbsleb et al., 2001, Carmel and Agarwal, 2001). In addition, geographic distance also

increases organizational complexity (Carmel and Agarwal, 2001) and reduces the frequency of

communication across all media (Sosa et al., 2002).

 64

Figure 19: Impact of distance (Carmel and Agarwal, 2001)

Herbsleb and others (Herbsleb et al., 2001) reported in their research that the absence of ongoing

conversations leads to surprises from distant sites, and results in misalignment and rework,

which impacted coordination and control. It became difficult to synchronize the activities of all

the teams because of the inability to obtain accurate effort and status information.

The physical separation requires additional activities and effort in software development

especially across geographic distances, but even a short physical separation can have an impact

as well. In a study of engineering organizations, Tom Allen (Allen, 1984) reported that the

frequency of communication among engineers decreased with distance. Furthermore; he noticed

that when engineers’ offices were about 30 meters or more apart, the frequency of

communication dropped to nearly the same low level as people with offices separated by many

miles.

To reduce these risks related to geographic distance, many organizations increase the travel

between different sites, which then increase other costs such as travel costs.

 65

5.2.2. TEMPORAL DISPERSION

Second frequently identified overhead factor for global software development is the temporal

dispersion. It refers to the time zone differences among project members, when development

team is distributed around the world.

Temporal dispersion reduces the possibilities of synchronous interaction, which is a critical

communicational attribute for real-time problem solving and design activities. In practice, the

teams in different time zones have fewer hours in the work day when multiple sites can

participate in a joint synchronous meetings and discussions. Temporal dispersion also makes

misunderstandings and errors significantly more likely to happen. (Espinosa et al., 2007)

This leads to delay in response to asynchronous communication. For example an e-mail sent

from one site arrives after working hours at the destination; as a consequence, the response

cannot be sent until the next day begins and it will be visible to the sender only when he/she

comes to office on the following day.

Herbsleb and colleagues observed a mean delay in receiving a response to an inquiry in a

distributed development context that was over two-and-a-half times as long as that seen in a

single-site context (Herbsleb and Mockus, 2003). Similarly, they observed that “modification

requests” (requests for changes to a software component) took over twice as long to be

completed in a distributed context (Herbsleb et al., 2005).

Espinosa and his colleagues have studied the effect on temporal dispersion further and they

found that the a small time separation has no effect on accuracy, but that more time separation

has a significant effect on accuracy. In addition, they found that a small amount of time

separation has a significant effect on production speed, but surprisingly further increases in

partial overlap have less significant effects on speed, and when there is no overlap speed actually

increases, hence time difference had a “U-shaped” effect on productivity. (Espinosa et al., 2007)

 66

Figure 20: The time zone effects on speed and accuracy of communication (Espinosa et al., 2007)

The above results suggest that the frustrations experienced by team members when working

across time zones may not necessarily translate into actual declines in performance levels. On the

contrary, the effect of time separation on speed could be explained with the fact that when the

tasks are relatively simple, teams can work efficiently and uninterrupted when they have no

overlap and can articulate and interpret instructions clearly. However, when teams need to

constantly change their interaction mode from synchronous to asynchronous they need to make

mental adjustments in their work styles and coordination tactics, thus reducing their efficiency.

(Espinosa et al., 2007)

 67

5.2.3. CULTURAL DIFFERENCES

Global software development requires close cooperation of individuals with different cultural

backgrounds which often creates another barrier for efficient work. Cultures differ on many

critical dimensions, such as the need for structure, attitudes toward hierarchy, sense of time, and

communication styles (Hofstede, 1997). These differences have been recognized as major

barriers to communication (Leonard et al., 1997, Ebert and De Neve, 2001, Herbsleb et al., 2005).

Culture also affects interpretation of requirements; domain knowledge used to fill in gaps or

place requirements in context varies considerably across national culture (Herbsleb et al., 2005).

The cultural difference manifests itself in one of two forms: organizational culture and national

culture (Carmel and Agarwal, 2001).

While many people find such cultural differences enriching, these can lead to serious and

frequent misunderstandings and communication problems, especially among people who do not

know each other well. For example, an e-mail from someone in a culture where communication

tends to be direct might seem abrupt or even rude to someone from a different background.

Collectivist cultures, such as Asian countries, find even the telephone as less rich communication

medium than the business memo, which is contrary to the rating provided by respondents from

“individualist” countries, such as Western countries (Rice et al., 1998).

Culture also interferes with collaboration when cultural norms result in conflicting approaches to

problem solving (Herbsleb et al., 2005). For example, American and European engineers were

observed to have different views on the value of “up front” design, with Europeans tending

toward more initial design effort, and Americans preferring to proceed quickly to

implementation; the difference in approach caused conflict and negative impressions. A

different sense of time can lead to acrimony over the interpretation and seriousness of deadlines.

Polite expressions of acknowledgement by Asian engineers could be misinterpreted as agreement

or commitment by their European and American colleagues.

Organizational culture encompasses the unit’s norms and values, where the unit could range

from a small technology company to a multinational enterprise. Organizational culture includes

the culture of systems development, such as the use of methodologies and project management

practices. Differences in “corporate culture” can lead to conflicting approaches to problem

 68

solving and communication, which in turn might be misinterpreted as rudeness or incompetence

even when teams share a common language and nationality (Herbsleb et al., 2005).

On the other hand cultural differences can have a positive impact as well. A major positive

effect is innovation. Engineers with all types of cultural backgrounds actively participate to

continuously improve the product, innovate new products, and make processes more effective.

Achievements are substantial if engineers of entirely different educations and cultures try to

solve problems. Best practices can be shared, and sometimes small changes within the global

development community can have big positive effects. (Ebert and De Neve, 2001)

5.2.4. LANGUAGE DIFFERENCES

The lack of a common native language (known as “linguistic distance”) creates further barriers to

communication (Herbsleb and Grinter, 1999, Niinimäki et al., 2009). Linguistic distance limits

the ability for coherent communication to take place (Casey and Richardson, 2006).

Language differences do not only affect the quality of communication, but the choice of

communication media and style. The lack of proficiency in the chosen language can lead to a

preference for asynchronous communication, which can be an impediment if video and

teleconferencing are important communication media. (Niinimäki et al., 2009). In cases where

people considered their language skills inadequate, they also preferred to use text-based medium

for communication. Using text based communication medium allowed them to have some extra

time to formulate their messages, even if they were using near-synchronous instant messaging as

the communication tool. But text-based media do not convey the visual or auditory queues that

convey important information such as how well a participant truly understands a conversation

(Sosa et al., 2002, Niinimäki et al., 2009).

The probability of using written-asynchronous communication media, such as e-mail, rather than

verbal-synchronous communication media, such as telephone, increases with cultural and

language difference. Team members located in countries that do not share the same first

language show higher probability of using e-mail communication than telephone communication

(Sosa et al., 2002). They also find e-mail much more effective way. As one described it, “it’s

 69

hard to explain something to someone you don’t know in your second language.” (Herbsleb and

Grinter, 1999).

Language skills can impede communication in more subtle ways. When parties to a conversation

have different levels of proficiency the stronger party occupies a more powerful position and can

appear to be more powerful, and thus suppress important communication through unintended

intimidation (Lutz, 2009), (Niinimäki et al., 2009). This can cause conversations to become

frequently very emotional, and take a great deal of time and energy (Herbsleb and Grinter, 1999).

5.2.5. SOCIAL FACTORS

Another fundamental challenge in global software development is the social factors like fear and

trust. Fear and distrust can negatively impact the motivation, desire to work with, trust, cooperate,

communicate and share knowledge with remove colleagues and hence it has a direct bearing on

the success of implementing global software development (Casey and Richardson, 2008).

It is very difficult for individuals and groups to trust and build relationships with people who

they fear are ultimately going to replace their jobs. On-site teams in expensive countries, are

fearful of their job security when off-site teams are added in less expensive locations, this creates

to mistrust to their off-site colleagues as well as their own management’s motives. This can

result in clear examples of not wanting to cooperate and share knowledge with remote colleagues

(Casey and Richardson, 2008, Piri et al., 2009).

In some cases, people who have successfully worked together for up to year in a collocated

situation, once a virtual team strategy was fully implemented these problems soon came to the

fore (Casey and Richardson, 2008).

The organization’s resistance to global software development often surfaces because of

misalignment between senior and middle management on the intent and perceived benefits of

global software development. Many individuals might believe their jobs are threatened,

experience a loss of control, and fear the possibility of relocation and the need for extensive

travel (Herbsleb and Moitra, 2001).

 70

Geographic, temporal, and cultural distances have a significant impact on trust among globally

distributed team members. The main sources of distrust derive mainly from the rather weak

interpersonal relations between employees at onsite and offsite, more specifically the lack of

informal and interaction face-to-face means team members have less opportunity to form

personal relationships and develop emotional bonds that improve trust among individuals. Also

the lack of or short history of collaboration prevents developing trust. (Piri et al., 2009)

These issues are even more complex in outsourcing, collaboration and partnership arrangements.

The fear of loss of intellectual property or other proprietary information about products or

schedules leads to restricted or filtered communication, often seriously impairing this critical

channel (Herbsleb and Moitra, 2001).

5.2.6. ORGANIZATION, MANAGEMENT AND PROCESS ISSUES

Organizational, management and process issues are related to when, by whom and how should

development activities be performed and tasks allocated. Once a particular set of project sites has

been determined, deciding how to divide up and execute the work across sites is very difficult.

Solutions are constrained by the resources and tools available at the sites, their levels of expertise

in various technologies, the infrastructure, and so on.

The work organization highly impacts globally distributed software development. Ebert and De

Neve (2001) reported that collocated teams achieved an efficiency improvement during initial

validation activities of over 50 percent in global software development. They also found that

allocation directly impacts overall project efficiency as small projects with highly scattered

resources showed less than half the productivity compared to projects with fully allocated staff.

Cycle time is similarly impacted—people switching between tasks need time 2 to 3 times the

original effort to adjust to the new job.

Collocation means that engineers working on such a set of coherent functionality should sit in

the same building, perhaps within the same room. Full allocation implies that engineers working

on a project should not be distracted by different tasks in other projects. Coherence means

splitting the work during development according to feature content and assembling a team that

can implement a set of related functionality.

 71

Distribution development may split the groups with decision-making and project-execution

power, and the group with the knowledge of the stakeholder needs. Hence distributed teams

require a more rigorous requirements change-management process (which increases overhead),

as the information-handoff points and separation between decision makers increase (Bhat et al.,

2006).

Lack of implicit knowledge resulting from limited informal communication means processes like

change management, if not explicitly and thoroughly defined, can be applied differently at

different sites. Lack of informal communication also limits process visibility, leading to

misunderstandings and frustration on the part of remote teams (Bhat et al., 2006).

Distributed development also introduces the possibility of different (and incompatible) processes

and tools at various sites. Having multiple processes, tools, templates, and methodologies that

don’t integrate or interoperate can lead to wasteful rework or loss of data during transfer from

one tool to another, which can decreases quality (Bhat et al., 2006).

Organizational structure also establishes boundaries within the organization. People within such

boundaries are subjected to organizational bonds which promote the development of a language

and an identity inherent to the group. Allen (Allen, 1984) found that organizational bonds

increased the probability of two team members engaging in technical communication.

When analyzing the effects of organizational bonds on communication, Sosa and others (Sosa et

al. 2002) found that both telephone and e-mail communication frequencies are much more

sensitive to the presence of strong organizational bonds. Additionally, organizational bonds

explain a greater portion of variation of telephone and e-mail communications than they do for

face-to-face communications. Both interdependence (as measured by the importance of the task-

related relationship) and organizational bonds were positively correlated with communication

frequency across all media (Sosa et al., 2002). Even when team members were not collocated,

higher communication frequencies were observed for highly interdependent pairs.

Project management and processes also create barriers. The lack of synchronization, especially

the lack of commonly defined milestones and clear entry and exit criteria across work

assignment units, can cause a lot of difficulties in the global software development (Herbsleb and

 72

Moitra, 2001). The complex, usually uncertain, and highly interdependent nature of project tasks,

together with geographical, temporal, structural and cultural gaps fundamental to distributed

teams, make management of virtual projects a relatively complex undertaking (Paré and Dubé,

1999).

5.2.7. BARRIERS DUE TO INFRASTRUCTURE

Geographic distance creates communication barriers due to information technology setup and

differences (such as different availability and accessibility schemes, different levels of familiarity

with the systems, and incompatible information systems) which need to be overcome to facilitate

electronic information transfer between interdependent team members. Inadequate knowledge

management infrastructure can inhibit the formation of a shared understanding among project

teams (Bruegge et al., 2006).

Distributed teams must rely on video and teleconferencing infrastructure to communicate; even

intermittent failures of these technologies can mean that communication simply does not take

place and in addition, it takes time and effort to resolve the issue with the communication

systems (Taweel et al., 2009). Tools and infrastructure used in all sites require often training as

some users might not be familiar with these systems (Taweel et al., 2009). There might also be

potential ramp-up and operational costs for setting up the infrastructure in remote sites (Keil et

al., 2006).

Since networks spanning globally dispersed locations are often slow and unreliable, tasks such as

configuration management that involve transmission of critical data and multisite production

must be meticulously planned and executed (Herbsleb and Moitra, 2001).

A project with multiple distributed teams introduces the possibility of multiple data repositories

which need to be integrated. There is also a risk of having incompatible data repositories, which

can increase risk of data loss or interoperability issues (Bhat et al., 2006), and create additional

effort in data conversion and transfer due to incompatible data formats (Herbsleb and Moitra,

2001).

The lack of effective information sharing mechanisms, poorly maintained documentation, and

lack of collaboration on artifacts all exacerbate the issue of managing knowledge in a way so as

 73

to harness the true potential of global software development. This was evident from the

difficulties experienced by the remote teams in understanding the requirements and the

architecture (Herbsleb et al., 2001)

5.2.8. BARRIERS DUE TO PRODUCT ARCHITECTURE

The software architecture and modularity has major influence on the effort needed to coordinate

the development phase. In his research, Parnas defined a software module as “a responsibility

assignment rather than a subprogram” to clearly show that dividing a software system is

simultaneously division of labor (Parnas, 1972).

In global software development, the drastically attenuated communication across sites makes it

difficult to manage dependencies among developers working on the same modules. Keil and

others used the term architectural adequacy for this with indicators like modularity, interface

match and dependencies, communicability of the architecture, etc. (Keil et al., 2006)

A good software architecture and design is one in which design decisions about each component

can be made in isolation from decisions about other components. If the organizational design and

work distribution follows the software architecture it helps to minimize the need for

communication and coordination among geographic teams (Herbsleb and Grinter, 1999). The

allocation of different components to the geographic teams has been found to increase the

productivity of distributed development. Architecture that require multiple sites to implement a

change increase the time required to complete the change. (Herbsleb et al., 2001, Ebert and De

Neve, 2001)

Unstable architecture can cause confusion among distributed teams as to what their

responsibilities are and it can cause integration tests to become out-of-sync with the emerging

product, resulting in spurious test failures and re-work (Mullick et al., 2006). If the original

design, plan, and development processes are unstable, substantial communication between teams

and across organizational boundaries will be required in global software development (Herbsleb

and Grinter, 1999).

Keil and others (2006) identified the novelty of the software as a factor for additional cost

overhead. Highly innovative solutions and architectures usually require a high level of

 74

spontaneous communication, specific domain knowledge and they increase the frequency of

unforeseen changes.

Product structure can also introduce subtle obstacles among collaborating teams: when a

component contains high-visibility functionality, cooperation may be replaced by competition

among teams to claim ownership of the component; the inverse would be true if a component is

risky or error-prone (Herbsleb et al., 2005).

5.3. COST ESTIMATION TECHNIQUES

The cost estimation has been in the focus of software engineering research for many decades and

hence a high number of different estimation techniques have been developed as discussed in

Section 4. Unfortunately most of techniques for software cost estimation have been developed

before the recent trend on global software development. Hence many techniques assume that the

software is developed locally and therefore they do not take into account the additional

challenges of global software development discussed in previous section 5.2.

Cost estimation of global software development differs from cost estimation of local software

development at least in two different ways. Firstly, there is a large overhead effort or cost caused

by several cost factors such as language differences, cultural barriers, or time shifts between sites,

etc. Secondly, many cost factors (such as the skills and experience of the workforce) are site-

specific and cannot be considered globally for a project. In many projects, the development sites

have very different characteristics and thus the productivity and cost rate is different between

sites. A standard effort prediction model consisting only of global cost factors cannot account for

these differences.

In the recent research, available cost estimation techniques have been developed further to

address the additional challenges and characteristics in global software development. Many of

these techniques are based on the COCOMOII. Four different techniques found for cost

estimation of global software development are described in the following sub-sections.

 75

5.3.1. REFINEMENT OF COCOMOII BY KEIL, PAULISH AND
SANGWAN

Keil, Paulish and Sangwan (Keil et al., 2006) refined COCOMOII technique to take into account

additional complexities of global software development. These complexities were included as

effort-multipliers into COCOMOII Post-Architecture model. The complexity factors identified

by Keil and others were categorized into product, personnel, and project factors according to the

original COCOMOII categorization. These factors are presented in table below.

Table 11: Additional cost factors used by Keil, Paulish and Sangwan in COCOMOII

The calibration and estimation is done in the same way in the refined COCOMOII model as in

the original version.

5.3.2. AMPLIFICATION OF COCOMOII BY BETZ AND MÄKIÖ

Betz and Mäkiö (Betz and Mäkiö, 2007) studied how COCOMOII could be enhanced to meet the

requirements of global software development in the outsourcing setting, i.e. when software

development is done by a 3rd party in a foreign country.

Betz and Mäkiö analyzed the existing cost factors of the COCOMOII Post-Architecture model

and found that several factors were affected by offshore outsourcing. These factors are presented

in table below:

 76

Table 12: Cost factors impacted by offshore outsourcing setting based on Betz and Mäkiö

Betz and Mäkiö also used the modular composition of the COCOMOII to integrate the additional

cost factors into the model. These additional cost drivers included new cost factors typical for

offshore outsourcing software development. These factors were grouped into 4 groups:

Outsourcing Factors, Buyers Outsourcing Maturity, Providers Outsourcing Maturity and

Coordination Factors. The factors were added to the COCOMOII as additional Effort Multipliers.

Table 13: Additional cost factors used by Betz and Mäkiö in COCOMOII

The calibration and estimation is done in the same way in the amplification of COCOMOII as it

is done in the original COCOMOII.

5.3.3. EXTENSION OF COCOMOII BY MADACHY

Madachy (Madachy, 2007) presented a totally different solution for extending COCOMOII for

the needs of global software development. Based on the fact that different sites in a GSD project

 77

might have different characteristics, his model allows the variation of effort multipliers by phase

and a separation of factors for local vs. global project attributes. The model partitions the cost

factors between local team-level and global project-level attributes. It also allows team-level

labor category distributions per phase with local hourly rates and currencies to be defined.

The model refines COCOMOII formulas for phase-specific effort multipliers, team work

distributions and local team attributes. The standard top level effort formula for COCOMOII is

first used:

∏
=

××=
N

i

i

B EMSIZEAEFFORT
1

,

Where effort is in person-months, A is a constant derived from historical project data, size is in

KSLOC (thousand source lines of code), or converted from other size measures, B is an

exponent for the diseconomy of scale dependent on additive scale factors, EMi is an effort

multiplier for the ith cost factor. The geometric product of N multipliers is an overall effort

adjustment factor to the nominal effort.

Next the top level effort is decomposed in the new model for each phase, team, labor category,

and then aggregated across the same dimensions and time periods determined by the schedule

outputs. The changed effort algorithms sum the effort across phases, where each phase accounts

for effort multipliers unique per phase. The resulting effort phase distribution may differ from

the default lifecycle distribution due to differences in the team cost factors being unevenly

weighted within the phases.

To get phase-level estimates, first the nominal (unadjusted) effort for each phase in a project is

determined with

B

PNOMINAL SIZEAEFFORTEFFORT
P

××= %

, where Effort%p is the nominal percent of lifecycle effort in phase p. Madachy’s model then

uses the team distributions per phase and their local effort multipliers to calculate an adjusted

effort for each team in each phase per:

 78

∏
=

××=
N

i

itptNOMINALADJUSTED
EMEFFORTEFFORTEFFORT

ppt

1
,,%

,

where Effort%t,p is the percent of lifecycle effort for team t in phase p, and the effort multipliers

are those unique to team t. The adjusted effort outputs from above equation are summed up

across teams for each phase, matrixed with their labor distributions, and then finally spread over

time per the phase schedule spans to get detailed labor outputs.

The approach addresses the problem of having site-specific characteristics in global software

development. It also provides a comparison between the effort required for traditional local and

global software development. This is often very important for decision making. On the other

hand, this extension model does not regard the additional overhead in distributed development

that is caused by global cost factors such as cultural or time zone differences.

5.3.4. EXTENSION OF COBRA BY LAMERSDORF ET AL.

Lamersdorf, Münch, Viso Torre, Sánchez, and Rombach developed a model using CoBRA

techniques for cost estimation of global software development. As a result of their research,

necessary cost factors for the specific global software development context were identified and

their impact was quantified on an empirical basis. This model was based on initial development

of a cost overhead model for a Spanish global software development organization. (Lamersdorf

et al., 2010)

The cost factors indentified by (Lamersdorf et al., 2010) are presented in the causal model below

(Figure 21). It shows that ultimately, 14 factors were selected with 12 of them directly

influencing effort overhead and 2 having indirect influences on all other factors. Out of the 14

factors, there were 3 characteristics of sites, 4 of tasks, 3 of project and process, and 4

relationships between sites.

 79

Figure 21: Causal model for cost estimation of global software development (Lamersdorf et al.,

2010)

Table 14 below shows the aggregated estimation on the quantitative impact of each factor on

effort overhead. It can be seen that process maturity, formality of the task description, and

requirements stability are seen as the effort drivers with the highest impact – however, with

different sensibilities towards language and cultural differences: While the impact on task

description formality is rather small (only 10% distance between high and low cultural and

language differences), the overhead of a low process maturity is very much dependent on

language and cultural differences (nearly 20% distance). The individual rankings of the factors

and especially the quantitative impact on productivity overhead are organization-specific and can

be very different in different environments.

 80

Table 14: Cost factors with values for global software development in CoBRA

6. EVALUATION

6.1. EVALUATION QUESTIONS

This research aims to understand if and how the additional cost factors in global software

development are included in the existing software cost estimation techniques. To evaluate this,

eight different questions, i.e. evaluation criteria, were used. These are given in the table below.

Table 15: Evaluation questions

The evaluation questions were selected based on the overhead factors identified for global

software development in the section 5.2

 81

6.2. RESULTS

Next the different software cost estimation techniques were evaluated using the evaluation

questions. The evaluation was performed by the researcher himself. The results and discussion

for the results are described in the following sub-sections.

6.2.1. MODEL-BASED TECHNIQUES

The model-based techniques evaluated included Putnam model (SLIM), function point analysis

and different versions of COCOMO (basic, intermediate, detailed, II).

The evaluation results for these techniques are presented in the table below.

Table 16: Evaluation results for model-based techniques

With one exception, the evaluated model-based techniques did not consider GSD related cost

factors in the estimation. Only COCOMOII contains two factors which can partially measure

some of the overhead arising from global software development. These were effort multiplier

called “Multisite Development” and scale factor called “Team Cohesion”.

“Multisite Development” is assessed by averaging the two factors: multisite collocation (ranges

from fully collocated to international) and multisite communications (ranges from some mail to

 82

interactive multimedia). It is intended to measure the impact of geographic distance and it has a

linear impact on the estimate.

“Team Cohesion” is a scale factor with exponential impact on the estimate. It accounts for the

sources of project turbulence and entropy due to difficulties in synchronizing the project’s

stakeholders: users, customers, developers, maintainers, interfaces, others. These difficulties may

arise from differences in stakeholder objectives and cultures; difficulties in reconciling

objectives; and stakeholder’s lack of experience and familiarity in operating as a team. Hence the

scale factor considers the impact of cultural differences and social factors on some level.

Putnam model (SLIM) uses software size, manpower build-up (combination of software and

project type), scaling factor and process productivity as the cost factors for estimation. The

process productivity is intended to measure the ability of a particular organization to produce

software of a given size at a particular defect rate and it could be used as combined factor to

reflect the overall productivity impact in GSD related estimation.

In Function point analysis, the number and type of different functionalities are used to estimate

costs. Hence it does not include any GSD related factors. However it is possible to reflect

differences in productivity at different sites (local or remote) by applying different cost

multipliers for difference functionalities based on the location of planned development.

COCOMO variations have increasing number and complexity of cost factors. The basic version

uses only software size and predefined project mode as the cost factors. The intermediate and

detailed versions have 15 different cost factors and the COCOMOII contains 17 cost factors.

Unfortunately all these factors are such that they cannot reflect the characteristics of GSD except

for the mentioned “Multisite Development” and “Team Cohesion” factors in COCOMOII Post-

Architecture model.

In general, the model-based techniques do not seem to be suitable for GSD related estimation as

they do not reflect the additional overhead factor available in GSD. Hence these techniques

cannot be used to explain the impact of GSD in the estimate or to compare cost differences

between different GSD scenarios.

 83

6.2.2. EXPERTISE-BASED TECHNIQUES

The expertise-based techniques evaluated were Delphi, Work-Breakdown Structure (WBS),

Analogy, Work distribution, Top-Down and Bottom-Up techniques. The evaluation results for

these techniques are presented in the table below.

Table 17: The evaluation results for expertise-based techniques

None of the expertise-based techniques forces to consider GSD related cost factors in the

estimation. All expertise-based techniques describe only a way how the costs can be estimated

by the experts, but they leave the estimation and possible cost factors impacting the estimate to

be determined by the experts. Hence it is up to the experts to provide the estimate based on their

experience, skills and knowledge on theory.

Delphi technique describes a process that seeks to develop a consensus among expert group

through meetings, questionnaires and surveys. Top-down and bottom-up techniques describe

how to split costs between different parts of the software. As such these techniques can be

applied to any software development project, local or global, in the same way.

Work-break down structure aims to organize project elements into a hierarchy (product or

activity hierarchy) that is then estimated by the experts. It offers a way to take organizational,

process and project management related additional activities into account through the activity

hierarchy and product architecture related factors through the product hierarchy, but actually

doing so is again left completely to the experts.

 84

In analogy and work distribution techniques, the estimates are derived partly based on historical

data and partly based on expert opinion. If the organization has experience and historical data

from past GSD projects and these are used for the estimation, the techniques should be directly

applicable and suitable for GSD. Without past experience and data from GSD projects, these

techniques will not be useful for GSD projects.

In general, the expertise-based techniques are very good for unprecedented projects like GSD

projects and in the absence of quantified, empirical data from past projects. As the accuracy and

strength of these techniques relays completely on the judgment of the experts, these techniques

required experts with past experience and knowledge on global software development.

Experts with solid knowledge and experience in GSD are able to consider all GSD specific

overhead factors into the cost estimate. Good estimation experts can also factor in differences

between past project experiences and the new techniques, teams, development sites,

infrastructure involved in the project.

Without previous knowledge and expertise in GSD, these techniques do not provide any support

for considering the impact of GSD related cost factors. In addition, the expertise-driven

techniques are subject to human-errors and objectivity. In some cases, the experts might be

biased towards GSD especially if they feel that their roles in the organization are threatened by

the global software development.

6.2.3. LEARNING-BASED TECHNIQUES

The learning-based techniques include Case-Based Reasoning (CBR) and Artificial Neural

Networks (ANN). The evaluation results for these techniques are presented in the table below.

 85

Table 18: The evaluation results for learning-based techniques

In the Case-Based Reasoning (CBR) software projects (historical and future candidate projects)

are described by a set of attributes (environment conditions, constraints, technologies, decision,

success, cost spent, effort used) which are used in the estimation process. The CBR technique

does not tell what attributes should be used to describe the software projects, but this is left to the

person doing the estimation. Hence GSD related cost factors are not explicitly mentioned in the

technique, but neither are any other cost factors.

All GSD related cost factors can be included as part of the describing attributes in CBG

technique so that they are considered in the estimation. If the organization does not have past

experience with GSD projects, external reference cases need to be found and used to produce

accurate estimates. It is still recommended to use internal reference cases as those reflect the

organization better.

Artificial neural network technique can also be used to estimate costs for GSD projects if the

neural network is built to include the GSD specific cost factors as inputs. The neural network

must also be trained with a set of data from past GSD projects.

As a draw-back neither of these techniques, CBR nor ANN, forces to use GSD related cost

factors in the estimation. Both techniques describe only how the estimation model needs to be

built, but they leave it up to the person doing the estimation to determine what attributes, inputs

 86

or structure is used in the estimation. Hence it is up to the expertise of the estimator to include all

relevant cost factors into the estimation.

Both learning-based techniques also require calibration, i.e. training, with data from past GSD

projects. Unfortunately the amount of data needed for calibration increases with the complexity

of the model (for example number of neurons or attributes). As there are many new cost factors

involved in the GSD projects, these techniques require much more data from past GSD projects

for calibration.

Unlike expertise-based techniques, learning-based techniques do not have problems with human-

error and objectivity after the model (case attribute or the neural network) has been build. The

estimation itself happens automatically once the model has been built.

6.2.4. DYNAMICS-BASED TECHNIQUES

In system dynamics, an estimation model is represented as a network with positive and negative

feedback loops, stocks, flows, and information that changes over time and dynamically affects

the flow rates between the feedback loops. This network represents cost and effort related factors

and how they impact the productivity of the project team.

System dynamic models can be used for cost estimation of GSD projects if the additional cost

factors are included to the used model. The system dynamics model for software cost estimation

created by Abdel-Hamid and Madnick (Abdel-Hamid and Madnick 1991) does not include any

of the GSD related cost factors, but it contains items like potential and actual productivity,

workforce experience mix, error rate and software development rate which can be used to reflect

some portion of the additional overhead in GSD projects.

 87

Table 19: The evaluation results for system dynamics technique

In order to fully use system dynamics technique for estimation of GSD project, one must build a

new system dynamics models, which includes the additional GSD related cost factors. Hence it is

again up to the expertise of the person doing the estimation to include all relevant cost factors

into the estimation process.

It is important to note that system dynamics technique also requires that initial values of all cost

factors are known. Hence these initial values need to be determined based on data from past

GSD projects or by experts with experience and knowledge on global software development.

6.2.5. REGRESSION-BASED TECHNIQUES

The regression-based techniques use mathematical algorithms which produce a software cost

estimate as a function of variables which represent the major cost factors. The regression-based

techniques evaluated in this research were Ordinary Least Squares and ”Robust” regression.

Neither of these techniques defines what variables should be used in the estimation and hence

they do not force to have the GSD related cost factors as part of the regression variables.

However it is, again, totally possible to include all these cost factors into the regression model as

 88

variable, but this is left to the person doing the estimation. Hence this person needs to have

expertise and knowledge to have GSD related cost factors as part of the regression model.

Table 20: The evaluation results for regression-based techniques

Regression-based techniques also require data from past GSD projects. This data is used to

determine the regression coefficients. The amount of data required increases with the number of

regression variables and hence GSD related projects will require much more data from past GSD

projects compared to simpler models used for estimation of local software development.

6.2.6. COMPOSITE TECHNIQUES

Bayesian approach used by Chulani is based on COCOMOII and hence it includes the “Multisite

development” and “Team Cohesion” as cost factors which reflect on some level the impact of

geographic distance, cultural difference and social factors in GSD projects. Bayesian approach

allows using other model-based techniques for the estimation as well and hence it can be used for

GSD projects by selecting such technique which already includes all GSD related cost factors.

This can be for example one of the GSD specific modifications of COCOMOII presented in

Section 5.3.

CoBRA technique does not include GSD specific factors by default in the causal model, but

those can be included into the model as already done by Lamersdorf and other (Lamersdorf et al.,

2010). CoBRA has the benefit of visualizing the relationship and impacts of different cost factors

as the factors are organized into a causal model that determines their impact on the project costs.

 89

Through variation of these factors, it also enables an easy comparison between different GSD

scenarios. In addition, it provides a simple way to compare the nominal productivity (optimal

scenario) to the estimated scenario with the cost overhead.

Table 21: The evaluation results for composite techniques

6.2.7. GSD SPECIFIC TECHNIQUES

The GSD specific techniques are extensions or modifications to COCOMOII or CoBRA

techniques. All of them have been created to especially address the challenges and characteristics

of global software development. The evaluation results for these techniques are given in the table

below.

 90

Table 22: The evaluation results for GSD specific techniques

COCOMOII extensions, from Keil, Paulish and Sangwan as well as from Betz and Mäkiö,

include all GSD related cost factors in the estimation model. Keil, Paulish and Sangwan have not

themselves considered the social factors in their extension, but it has been addressed partly

through “team cohesion” – scale factor in the original COCOMOII. Keil, Paulish and Sangwan

have also added an additional cost factor for initial costs of setting up the global software

development structure.

Betz and Mäkiö have included all GSD related cost factors except product architecture. Betz and

Mäkiö use the perspective of outsourcing in their amplification of COCOMOII and hence they

have included many additional cost factors for service provider’s and buyers outsourcing

maturity and capabilities.

Extension of COCOMOII from Madachy does not contain any new cost factors. Hence it has

only “Multisite Development” and “Team Cohesion” factors which are already available in

COCOMOII. However Madachy’s extension enables to determine all effort multipliers and scale

factors of COCOMOII separately for different sites. Hence for example personnel continuity can

be set differently for local and remote sites. By doing so the extension allows considering site

specific difference properly, but at the same time neglects the generic global overhead factors

like cultural or language differences or infrastructure overhead in the estimation.

 91

CoBRA extension from Lamersdorf and others contains all GSD related cost factor except for

temporal distance and social factors. In addition their model has many other cost factors like

requirement stability, common experiences, task criticality, task complexity, technical

experience and project experience which are applicable to any software development projects,

local or remote. The CoBRA extension highlights that the cultural and language differences have

an impact on all other cost factors instead of having direct impact on the effort / productivity.

All other GSD specific techniques except for CoBRA require more data from past GSD projects

for calibration. This is due to the more complex models which require more parameters to be

defined. The amount of data needed for CoBRA does not increase with the complexity of the

causal model as CoBRA only uses the data for calibration of the nominal productivity. It is not

used for the calibration of causal model.

6.3. DISCUSSION

When most of the software cost estimation techniques have been developed before the trend of

global software development, it was assumed initially that these techniques would not be

applicable and suitable for estimation of global software development. However the evaluation

results in this research show differently which is rather surprising.

Based on the evaluation, it seems that the model-based techniques are the biggest group of

techniques which cannot be used for estimation of global software development projects. Only

the COCOMOII and function point analysis are applicable from model-based techniques, but

COCOMOII might give inaccurate results as it does not take into account all GSD related cost

factors. Function point analysis requires using different cost multipliers for difference

functionalities based on the location of planned development.

Other categories of techniques, and techniques within different categories, are suitable and

applicable for global software development projects. For example, most of the expertise-based

techniques can be used directly for GSD projects, but they require experts to have theoretical

knowledge or past experience in global software development.

Other techniques including learning-based techniques, system dynamics, regression-based and

composite techniques, can be used in global software development, but unfortunately these

 92

techniques are quite theoretical. This means that the techniques present an approach for

estimation and show an example how to use the approach, but they do not give an explicit list of

cost factors to be used. This is left to the person using the technique. Hence these techniques

require a person with experience and knowledge on global software development for the setup

and calibration work before they can be used for estimation of GSD projects. Without solid

experience and knowledge on GSD, it is unlikely that the estimation model would include all

necessary GSD related cost factors.

It is also important to note that there might be quite a significant amount of effort in the setup

and calibration of these techniques, but it is required only once before applying the model for

future projects.

The recent research on cost estimation for global software development has emerged few GSD

specific techniques which contain almost all of the common GSD related cost factors. Two of

these techniques have a little bit different perspective and approach for the cost estimation of

global software development. Betz and Mäkiö have taken the outsourcing perspective in their

extension of COCOMOII and hence their model includes additional offshore outsourcing related

cost factors. Madachy’s extension of COCOCOII differs from the other techniques by having a

totally different approach as it enables to determine all multipliers and factors in COCOMOII

separately for different sites. Keil, Paulish and Sangwan have only added the GSD related cost

factors to COCOMOII where as Lamersdorf and others have done the same for CoBRA

technique.

It is very unfortunate that all GSD specific techniques are model-based techniques. Three of

them are even based on the same COCOMOII where as one is based on CoBRA. The similarity

of these techniques is rather unfortunate as the model-based techniques have common pros &

cons and hence they are not suitable for all scenarios. For example, they are unable to consider

exceptional or unexpected conditions, or they cannot compensate for poor and inaccurate input

or calibration data. It also always remains an open questions how the models can represent future

projects with new techniques and technology when they are calibrated with data from past

projects.

 93

As it is usually recommended to utilize multiple different techniques as part of the estimation

process, there definitely seems to be a need and room for new adaptations on different types of

estimation techniques for global software development. These could be for example adaptations

of expertise or learning-based techniques for global software development.

Another important observation is the necessity of historical data from past projects as a

precondition to use most of the techniques. It seems that almost all techniques require historical

data for set-up or it is at least recommended for the model calibration. For example all model-

based techniques are recommended to be calibrated with data from past projects. Also neural

network, case-based reasoning, regression, system dynamics techniques require calibration or

training before they can be used. Even some of the expertise based techniques like analogy and

work distribution are useless without data from past projects.

In order to get accurate results, the data should be from similar past experiences, which means

that it should originate from past global software development projects. This might create

significant difficulties for many organizations as they are either lacking experience in GSD

projects or have not collected data from their earlier projects. It might also be very difficult to

find suitable data from external sources.

The need for data becomes more difficult for many of the techniques with global software

development as it complicates the estimation model (neural network, regression model, set of

describing attributes in CBR, COCOMOII’s effort multipliers and scale factors). As the

estimation models get more complicated with GSD related cost factors, more data is required to

determine values for the different factors in the models.

7. CONCLUSIONS

This research is one of the first systematic reviews on applicability of different software cost

estimation techniques to global software development. There does not seem to be any other

researches available which systematically evaluate how global software development related

overhead factors are considered in the different software cost estimation techniques.

 94

In this research, a high number of different software costs estimation techniques have been

reviewed which has led to a good understanding on how these techniques can be applied to the

special conditions of global software development. In the beginning, the research problem was

formulated with three questions. The answers based on this research for the research questions

are summarized below.

7.1. WHAT FACTORS IMPACT COSTS IN GLOBAL SOFTWARE
DEVELOPMENT?

There seems to be many different factors which impact the costs in global software development.

The most important factors include geographic and temporal distance, differences in language

and culture, social factors, problems arising from organization structure, processes and projects,

barriers deriving from infrastructure and product architecture.

Most of the global software development related cost factors have usually a negative impact on

productivity and hence they increase the effort and costs required for a software development

project. The factors can also have a compounding effect on each other, increasing the possibility

of a negative impact on the development process.

Geographic distance has a significant negative impact on the coordination, communication and

interaction which occur in an informal “ad hoc” manner when team is located in the same

physical location. These are vital for successful software development as a lot of coordination,

communication and interaction is required to develop a shared understanding on the software

being developed. The physical separation has an impact even on a very short physical separation

as well, for example when team members are in different buildings.

Temporal distance reduces possibilities for synchronous communication, which is a critical

communicational attribute for real-time problem solving and design activities. The temporal

distance has a “U”- shape effect on productivity and production speed is best when there is either

no temporal distance or these is no overlap between the teams. Temporal distance has also an

increasing negative impact on accuracy of communication.

Cultural and language differences have a wider impact as these differences have been recognized

as major barriers to communication. These differences can lead to serious and chronic

 95

misunderstandings and communication problems. The cultural and language differences also

increase the amount of time and effort used for communication itself. Cultural problems are

manifested in two forms: organizational and national culture. Hence the problems can arise even

within the same country.

Fear and distrust can have negatively impact the motivation, desire to work with, trust, cooperate,

communicate and share knowledge with remote colleagues and hence they have a direct bearing

on the success of implementing global software development. Geographic, temporal, and cultural

distance makes these social problems worse due to the weaker interpersonal relations between

different teams. These issues are even more complex in outsourcing, collaboration and

partnership arrangements.

Organizational, process and project issues are related to when, by whom and how should

activities be performed and tasks allocated. Collocated and coherent teams have been reported to

have the best productivity. Organization structure also establishes communication boundaries

and barrier within the organization. Different project management practices and processes can

introduce re-work or loss of data due to misunderstandings, integration and interoperability

problems.

Infrastructure setup and differences create communication barriers which need to be overcome to

facilitate information transfer between interdependent team members. Inadequate knowledge

management infrastructure can inhibit the formation of a shared understanding among project.

The lack of effective information sharing mechanisms, poorly maintained documentation, and

lack of collaboration on artifacts increases possible issues in managing knowledge, which can

lead to lower productivity, quality and other difficulties.

The software architecture and modularity has an influence on the effort needed to coordinate the

development phase. In global software development, the drastically attenuated communication

across sites makes it difficult to manage dependencies among developers working on the same

modules. If the organizational design and work distribution follows the software architecture it

helps to minimize the need for communication and coordination among geographic teams, which

increases productivity.

 96

The cost factors identified in the research literature for global software development do not

include cost factors which rise outside of software engineering. These include factors like set-up

factors (contracting to a foreign country, founding an office in foreign country), illegal

(corruption in many developing countries) and international trade related factors (export and

import taxes and tariffs). These factors might also have significant impact on the overall costs of

a software development project.

7.2. HOW THESE COST FACTORS ARE CONSIDERED IN THE
AVAILABLE SOFTWARE COST ESTIMATION TECHNIQUES?

The global software development related cost factors are not properly considered in the

evaluated software cost estimation techniques. Almost all techniques do not take any of the

additional cost factors into account by default. Only COCOMOII technique contains two factors,

“Multisite Development” and “Team Cohesion” which take into account some impact of

geographic distance, cultural differences and social factors.

There are also four adaptations to COCOMOII and CoBRA techniques which have been

developed to especially address the challenges and characteristics of global software

development. Three of these adaptations (Keil et al., 2006, Betz and Mäkiö, 2007, Madachy,

2007) are for COCOMOII and one (Lamersdorf et al., 2010) is for CoBRA techniques.

COCOMOII extension from Keil, Paulish and Sangwan contains all GSD related cost factors in

the estimation model. It has also an additional cost factor for initial costs of setting up the global

software development structure.

Betz and Mäkiö have included all GSD related cost factors except product architecture. Betz and

Mäkiö have taken the perspective of outsourcing in their adaptation and hence they have

included many additional cost factors for service provider’s and buyer’s outsourcing maturity

and capabilities.

Extension of COCOMOII from Madachy has only “Multisite Development” and “Team

Cohesion” cost factors included from the standard COCOMOII, but the extension enables to

determine all effort multipliers and scale factors separately for different sites. Hence it allows

 97

considering site specific differences and characteristics very well, but at the same time it ignores

the general global overhead factor like cultural and language differences.

CoBRA extension from Lamersdorf and others (Lamersdorf et al., 2012) contains all GSD

related cost factors except for temporal distance and social factors. The CoBRA extension

highlights that the cultural and language differences have an impact on all other cost factors

instead of having direct impact on the effort / productivity.

7.3. HOW AVAILABLE SOFTWARE COST ESTIMATION TECHNIQUES
CAN BE APPLIED IN GLOBAL SOFTWARE DEVELOPMENT?

Even though most of the evaluated software cost estimation techniques do not have any of the

GSD related cost factors included by default, these techniques are still suitable and applicable for

estimation of global software development project with some set-up and calibration work.

Techniques like learning-based techniques, system dynamics, regression and composite

techniques can be applied to global software development if the person doing the estimation

model set-up is experienced in global software development and hence the person is able to

include all necessary cost factors into the estimation model.

Also all expertise-based techniques can be directly applied for GSD projects, but they require

experts with experience and knowledge on global software development. The four available

GSD specific techniques can naturally be also directly applied for GSD projects.

Most of the model-based techniques cannot be used for estimation of global software

development projects. Only COCOMOII and function point analysis, by varying cost multipliers

for sites, seem to be applicable on some level for GSD projects.

As the earlier research on GSD has focused on the model-based techniques and as the older

model-based techniques seems to be inadequate for estimation of GSD projects, it is new and

unexpected to find that many of the other techniques are actually suitable and quite easily

applicable to GSD projects.

 98

Table 23: Suitability and application of different techniques for estimation of GSD projects

Most of the software cost estimation techniques require data from past projects as a precondition

for set-up or calibration. In order to get accurate results from these techniques, the data should

originate from past experiences similar to the new project being estimated. This means that the

data should originate from past global software development projects, which might create

significant difficulties for many organizations as they are either lacking experience in GSD

projects or have not collected data from their past projects. It might also be very difficult to find

suitable data from external sources. This prerequisite is often forgotten or ignored in the research.

The need for historical data becomes more difficult with global software development as it

complicates the estimation model (neural network, regression model, set of describing attributes

in CBR, new effort multipliers and scale factors in COCOMOII adaptations). As the estimation

models get more complicated, more data is required to determine or calibrate values for the cost

factors.

 99

In order to get accurate results and understand the estimates for a software development project,

it is recommended to use multiple different techniques as part of the estimation process. As all

techniques especially developed to address the challenges and characteristics of global software

development are model-based techniques, it becomes more difficult to do so. The similarity of

the GSD specific techniques is rather unfortunate also due to the fact that the model-based

techniques have their own pros & cons which makes them suitable only for certain scenarios.

Hence it seems that there is a strong need for new adaptations on different type of estimation

techniques for global software development. For example creation of neural network or system

dynamics model, or defining and verifying a regression model for global software development.

 100

REFERENCES

Aamodt, A. and Plaza, E. (1994). “Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches”, AI Communications, IOS

Press, 1995, vol. 7:1, pp. 39-59.

Abdel-Hamid, T. and Madnick, S. (1991). Software Project Dynamics, Prentice-Hall,

1991.

Abdel-Hamid, T. and Madnick, S. (1993). “Modeling the Dynamics of Software Reuse:

an Integrating System Dynamics Perspective”, Presentation to the 6th Annual Workshop

on Reuse, Owego, NY, November 1993.

ACM (2006). Globalization and Offshoring of Software – A report of the ACM Job

Migration Task Force. Association for Computing Machinery, 2006.

Albrecht, A. J. (1979). ”Measuring application development productivity”, Proceeding of

the Joint SHARE, GUIDE and IBM application development symposium, IBM

Corporation, 1979.

Allen, T. (1984). Managing the Flow of Technology: Technology Transfer and the

Dissemination of Technological Information within the R&D Organization, MIT Press,

Cambridge, MA, 1984.

Betz, S. and Mäkiö, J. (2007). “Amplification of the COCOMO II regarding offshore

software projects”, Workshop on Offshoring of Software Development-Methods and

Tools for Risk Management at the second International Conference on Global Software

Engineering, 2007.

 101

Bhat, J. M., Mayank, G. and Murthy, S. N. (2006). “Overcoming requirements

engineering challenges: Lessons from offshore outsourcing”, IEEE Software, Vol. 23:1,

pp. 38–44, 2006.

Boehm, B. (1981). Software Engineering Economics, Prentice Hall, 1981.

Boehm, B., Abts, C. A., Chulani, S., Clark, B. K., Horowitz, E., Madachy, R., Reifer, D.

J. and Steece, B. (2000a). Software cost estimation with COCOMO II, Prentice Hall,

2000.

Boehm, B., Abts, C. A. and Chulani, S. (2000b). “Software Development Cost

Estimation Approaches – A Survey”, Annals of Software Engineering, Vol 10:1-4, pp.

177-205, 2000.

Briand, L., Emam, K., El, and Bomarius, F. (1998). “COBRA: A hybrid method for

software cost estimation, benchmarking, and risk assessment”, International Conference

on Software Engineering, ICSE, pp. 390-399, 1998.

Brooks, F. (1975). The Mythical Man-Month, Addison-Wesley, Reading, MA, United

States, 1975.

Bruegge, B., Dutoit, A. H. and Wolf, T. (2006). “Sysiphus: Enabling informal

collaboration in global software development”, In Proceedings of the IEEE international

conference on Global Software Engineering (ICGSE ’06), IEEE Computer Society,

Florianopolis, Brazil, pages 139–148, 2006.

Carmel, E. (1999). Global Software Teams: Collaborating across Borders and Time

Zones, Prentice Hall, Upper Saddle River, NJ, 1999.

Carmel, E. and Agarwal, R. (2001). “Tactical approaches for alleviating distance in

global software development”, IEEE Software, Vol 1:2, pp. 22–29, 2001.

 102

Casey, V. and I. Richardson. (2006). “Uncovering the Reality within Virtual Software

Teams”, in First International Workshop on Global Software Development for the

Practitioner, ICSE 2006, Shanghai, China, 2006.

Casey, V. and Richardson, I. (2008). “The impact of fear on the operation of virtual

teams”, In Proceedings Proceedings of the 2008 IEEE International Conference on

Global Software Engineering (ICGSE ’08), IEEE Computer Society, Bangalore, India,

pages 163–172, 2008.

Chulani, S., Boehm, B. and Steece, B. (1999). “Calibrating Software Cost Models Using

Bayesian Analysis,” IEEE Transactions on Software Engineering, Special Issue on

Empirical Methods in Software Engineering, 1999.

Conchúir, E. Ó., Ågerfalk, P.J., Olsson, H.H., and Fitzgerald, B. (2009). “Global

Software Development: Where are the Benefits?”, Communications of the ACM, Vol.

52:8, August 2009.

Ebert, C. and De Neve, P. (2001). “Surviving global software development”, IEEE

Software, vol. 18:2, pp. 62-69, March-April 2001.

Espinosa, J.A, Nan, N. and Carmel, E. (2007). “Do Gradations of Time Zone Separation

Make a Difference in Perfomance? A First Laboratory Study”, International Conference

on Global Software Engineering (ICGSE), IEEE Software Society, Munich, Germany,

August 2007.

Forrester, J. (1961). Industrial Dynamics, MIT Press, Cambridge, MA, 1961.

Freiman, F.R. and Park, R.E. (1979). The Price software cost model: RCA government

systems division., IEEE, 1979.

 103

Gray, A. R. and MacDonnell, S.G. (1997). “A Comparison of Techniques for Developing

Predictive Models for Software Metrics”, Information and Software Technology, Vol 39,

1997.

Haikala, I. and Märijärvi, J. (1997). Ohjelmistotuotanto, Suomen Atk-kustannus Oy,

1997.

Haugan, G. (2001). Effective work breakdown structures, Project Management Institute,

2001.

Heemstra, F. J. (1992). “Software cost estimation”. Information and Software

Technology, vol. 34:10, pp. 627-639, 1992.

Helmer, O. (1966). Social Technology, Basic Books, NY, 1966.

Herbsleb, J. D., and Grinter, R. E. (1999). “Splitting the organization and integrating the

code: Conway’s law revisited”, Proceedings of the 21st international Conference on

Software Engineering (ICSE 99), IEEE Computer Society Press, Los Alamitos, CA, pp.

85-95, May 16-22, 1999.

Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E. (2001). ”An empirical

study of global software development: Distance and speed”, International Conference on

Software Engineering (ICSE 2001), pp 81-90, 2001.

Herbsleb, J. D. and Mockus, A. (2003). “An empirical study of speed and communication

in globally distributed software development”, IEEE Transactions on Software

Engineering, Vol. 29:6, pp. 481–494, 2003.

Herbsleb, J.D. and Moitra, D. (2001). “Global Software Development”, IEEE Software,

Vol. 18:2, pp. 16-20, 2001.

 104

Herbsleb, J.D., Paulish, D., and Bass, M. (2005). “Global software development at

Siemens: experience from nine projects,” Proceedings of the 27th International

Conference on Software Engineering, St. Louis, MO, USA, pp. 524–533, 2005.

Hihn, J. and Habib-agahi, H. (1991). “Cost Estimation of Software Intensive Projects: A

Survey of Current Practices”, Proceedings of the 13th International Conference on

Software Engineering (ICSE), IEEE Computer Society Press, pp. 276-287, 1991.

Hofstede, G. (1997). Cultures and organizations: software of the mind, McGraw-Hill,

London, 1997.

Idri, A., Abran, A. and Khoshgoftaar T. M. (2002). Fuzzy Case-Based Reasoning Models

for Software Cost Estimation”, Soft Computing in Software Engineering, Springer-

Verlag, 2002.

Jensen, R. (1983).”An Improved Macrolevel Software Development Resource Estimation

Model”, Proceedings 5th ISPA Conference, pp. 88-92, April 1983.

Jones, C. (1997). Applied Software Measurement, McGraw Hill, 1997.

Jørgensen, M. and Moløkken-Østvold, K. (2004). ”Reasons for Software Effort

Estimation Error: Impact of Respondent Role, Information Collection Approach, and

Data Analysis Method”, IEEE Transactions on Software Engineering, Vol. 30:12,

December 2004.

Karunanithi, N., Whitley, D., and Malaiya, Y. K. (1992). “Using Neural Networks in

Reliability Prediction”, IEEE Software, vol. 9:4, pp. 53-59, July 1992.

Keating, G. (1985). The Production and Use of Economic Forecasts, Methuen & Co Ltd,

London, 1985.

 105

Keil, P., Paulish, D. J., and Sangwan, R. (2006). “Cost estimation for global software

development”, International workshop on Economics Driven Software Engineering,

Shanghai, China, pp 7-10, 2006.

Kraut, R. E. and Streeter, L. A. (1995).”Coordination in software development”,

Communications of the ACM, Vol. 38:3, March 1995.

Lamersdorf, A., Münch, J., Viso Torre, A. F., Sánchez, C. R. and Rombach, D. (2010),

“Estimating the Effort Overhead in Global Software Development”, International

Conference on Global Software Engineering (ICGSE ’10), IEEE Computer Society, pp.

267-276, 2010.

Lederer, A.L. and Prasad, J. (1995). “Causes of Inaccurate Software Development Cost

Estimates”, Journal of Systems and Software, Vol. 31, pp. 125-134, 1995.

Leonard, D. A., Brands, P. A., Edmondson, A. and Fenwick, J. (1997). “Virtual teams:

Using communications technology to manage geographically dispersed development

groups,” in Sense and Respond: Capturing Value in the Network Era, S. P. Bradley and R.

L. Nolan, Eds. Cambridge, MA: Harvard Business School Press, 1997.

Lutz, B. (2009). “Linguistic challenges in global software development: Lessons learned

in an international SW development division”, In Proceedings of the 2009 Fourth IEEE

International Conference on Global Software Engineering (ICGSE ’09), IEEE Computer

Society, Limerick, Ireland, pp. 249–253, 2009.

Madachy, R. (1994). “A Software Project Dynamics Model for Process Cost, Schedule

and Risk Assessment”, Ph.D. dissertation, Madachy, R., University of Southern

California, United States, 1994.

 106

Madachy, R. (2007). “Distributed global development parametric cost modeling”, in

Software Proces Dynamics and Agility, Lectures notes in Computer Science, Springer,

Vol. 4470/2007, pp. 159-168, 2007.

McChesney, I. and Gallagher, S. (2004). “Communication and co-ordination practices in

software engineering projects”, Information and Software Technology, vol. 46:7, 473-

489, 2004.

McConnell, S. (2006). Software Estimation: Demystifying the Black Art, Microsoft Press,

Redmond, Washington, 2006.

MIL-HDBK-881 (1998). Work Breakdown Structures for Defence Material Items,

Department of Defence, United States of America, 1998.

Mullick, N., Bass, M., Houda, Z. E., Paulish, D. J., Cataldo, M., Herbsleb, J. D., Bass, L.

and Sangwan, R. (2006). “Siemens global studio project: Experiences adopting an

integrated GSD infrastructure”, In Proceedings of the IEEE international conference on

Global Software Engineering (ICGSE ’06), IEEE Computer Society, Florianopolis,

Brazil, pp. 203–212, Oct. 2006.

NASA (2003) – Handbook for Software Cost Estimation, NASA, Jet Propulsion

Laboratory, Pasadena, California, 2003.

Niinimäki, T., Piri, A. and Lassenius, C. (2009). “Factors affecting audio and text-based

communication media choice in global software development projects”, In Proceedings

of the 2009 Fourth IEEE International Conference on Global Software Engineering

(ICGSE ’09), IEEE Computer Society, Limerick, Ireland, pp. 153–162, 2009.

Noll, J., Beecham, S., and Richardson, I. (2010). “Global software development and

collaboration: barriers and solutions”, ACM Inroads, Vol. 1:3, pp. 66-78, ACM, New

York, NY, USA, September 2010.

 107

Paré, G. and Dubé, L. (1999). “Virtual teams: an exploratory study of key challenges and

strategies”, In P. De and J. I. De Gross, editors, Proceedings of the 20th International

Conference on Information Systems, Association for Information Systems, Charlotte,

North Carolina, USA, pp. 479–483, December 1999.

Parnas, D.L. (1972). "On the Criteria to be Used in Decomposing Systems into Modules,"

Communications of the ACM, Vol. 15:12, pp. 1053-1058, 1972.

Perry, D. E., Staudenmayer, N. A. and Votta, L. G. (1994). “People, Organizations, and

Process Improvement”, IEEE Software, Vol 11:4, pp. 36-45, 1994.

Phan, D. (1990). Information Systems Project Management: an Integrated Resource

Planning Perspective Model, in Department of Management and Information Systems,

Arizona: Tucson, USA, 1990.

Piri, A., Niinimäki, T. and Lassenius, C. (2009). ”Descriptive analysis of fear and distrust

in early phases of GSD projects”, In Proceedings of the 2009 Fourth IEEE International

Conference on Global Software Engineering (ICGSE ’09), IEEE Computer Society,

Limerick, Ireland, pp. 105–114, 2009.

PMBOK (2000). A Guide to the Project Management Body of Knowledge, Project

Management Institute, 2000.

Putnam, L. (1978). ”A general empirical solution to the macro software sizing and

estimating problem”, IEEE Transaction on Software Engineering, pp. 345-361, July 1978.

Rice, R.E., D’Ambra, J. and More, E. (1998). “Cross-cultural comparison of

organizational media evaluation and choice,” Journals of. Communications, vol. 48:3, pp.

3–26, 1998.

 108

Richardson, G. P, Fishwick, P.A. and Luker, P.A. (1991). System Dynamics: Simulation

for Policy Analysis from a Feedback Perspective, in Qualitative Simulation Modeling and

Analysis, Springer Verlag, New York, USA, 1991.

Roberts, P. (1997). Guide to project management, Profile Books Limited/The Economist,

1997.

Rubin, H. (1983). “Interactive macro-estimation of software life cycle parameters via

personal computer: a technique for improving customer/developer communication”, in

Proc. Symp. on application & assessment of automated tools for software development,

IEEE, San Francisco, 1983.

Ruhe, M., Jeffrey, R., and Wieczorek, I. (2003). “Cost Estimation for Web Applications”,

25th International Conference on Software Engineering (ICSE 2003), pp. 285-294, 2003.

Shepperd, M., Schofield, C., and Kitchenham, B. (1996). ”Effort Estimation Using

Analogy”, Proceedings of the 18th international conference on Software engineering

(ICSE ‘96), Berlin, Germany, p.170-178, March 25-29, 1996.

Sosa, M., Eppinger, S., Pich, M., McKendrick, D. and Stout, S. (2002). “Factors that

influence technical communication in distributed product development: an empirical

study in the telecommunications industry”, IEEE Transactions on Engineering

Management, vol. 49:1, pp. 45-58, February 2002.

Subramanian, G. H. and Breslawski, S. (1995). “An Empirical Analysis of Software

Effort Estimate Alterations,” Journals of Systems and Software, vol. 31:2, pp. 135-141,

1995. (OK)

Taweel, A., Delaney, B., Arvanitis, T.N. and Zhao, L. (2009). “Communication,

knowledge and co-ordination management in globally distributed software development:

Informed by a scientific software engineering case study”, In Proceedings of the 2009

 109

Fourth IEEE International Conference on Global Software Engineering (ICGSE ’09),

IEEE Computer Society, Limerick, Ireland, pages 370–375, 2009.

Teasley, S.D., Covi, L.A, Krishnan, M.S. and Olson, J.S. (2002). “Rapid Software

Development through Team Collocation”, IEEE Transactions on Software Engineering,

vol. 28:7, pp. 671–683, 2002.

Trendowicz, A., Heidrich, J., Münch, J., Ishigai, Y., Yokoyama, K., and

Kikuchi, N. (2006). “Development of a hybrid cost estimation model in an iterative

manner”, 28th International Conference on Software Engineering (ICSE 2006), pp. 331-

340, 2006.

Van Genuchten, M. (1991). “Why is Software Late? An Empirical Study of Reasons for

Delay in Software Development,” IEEE Transactions on Software Engineering, vol. 17:6,

pp. 582-590, June 1991.

Wittig, G.E. and Finne, G.R. (1994). ”Using Artificial Neural Networks and Function

Points to Estimate 4GL Software Development Effort”, Australian Journal of Information

Systems, 1994.

Wittig, G.E. and Finne, G.R. 1997. “AI tools for software development effort estimation”,

Software Engineering and Education and Practice Conference, IEEE Computer Society

Press, pp. 346-353, 1996.

Wolverton, R W. (1974). ”The Cost of Developing Large-Scale Software”, IEEE Trans

Computers, pp. 615-636, June 1974.

