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Abstract 
The constantly changing business needs and the requirement for faster time to market with software 
of present day has created a paradigm shift towards a 3rd generation Software Development 
philosophy called Devops. The lack of collaboration between IT Operations and Software 
Development as well as mismatch in configuration between development, testing and production 
environment has made deploying software releases slow and painful for many organizations. 
Different incentives between teams makes it difficult to work towards a common goal of bringing 
added value to customers. 

A Devops approach to software development brings down the walls between the teams and align 
incentives through a collaborative culture, automation, lean principles, measurement practices and 
sharing. The benefits of Devops have been shown to be substantial with a significantly faster time to 
market and increased software stability. The organizational change is substantial which makes the 
challenges in adopting Devops an interesting topic to research. This thesis studies the challenges of 
Devops by interviewing nine experts who had been involved with Devops initiatives in their 
companies.  

The qualitative study was conducted by semi-structured theme interviews on nine industry 
professionals who had hands-on experience with Devops implementations. 

The findings were divided into four main challenge categories based on their topic. Due to the 
novelty of the approach, the concept of Devops for many is unknown or biased which hurts the 
overall implementation of practices. The lack of support in both management and organizational 
levels is a hindrance, since especially changing culture needs strong support and organizational buy-
in in order to succeed. The toolset needed for Devops is particularly diverse and finding the fit, 
correct usage and attitudes towards that technology is challenging. Finally, when shifting to Devops 
that requires a certain level of lean principles and agility, aligning existing organizational processes 
such as the change management process to accommodate the new way of working was found 
challenging.  

The implications of study yield four action points to help overcome the challenges found. Clearing 
misconceptions and spreading the knowledge of Devops helps overcome the lack of awareness 
challenge. Additionally, building commitment and trust in both management and team-levels 
getting Devops through the door in an organization. Establishing common ways of working and 
leading by example helps to overcome the challenge of fragmented technologies and reluctant 
attitudes towards it. Finally, ensuring the flexibility of the organization is key in order to prevent 
bottlenecks from forming in the delivery process. 
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1 Introduction  

This section will give the reader a background overview of the topic, as well as the motivation 

for the research. It will shed light on the existing research gap in Devops research and also 

define the research questions the thesis will base on. 

1.1 Background 

In the age of high-availability monolithic IT systems and increasing demands springing 

from competition and business, there is pressure to develop new software features at an 

accelerating pace. In addition to rapid development, the systems require zero downtime and 

error-free operation at any given time. While technological advancement has been rapid, the 

quality of application development process has been lagging behind (Menzel 2015). 

Staying ahead of competition puts an increasing pressure on software developers to produce 

new features at an increasing speed. New software development practices such as Agile 

Software Development encourage small, incremental changes which means developers need 

to deliver code changes frequently - often several times in one day. 

On the other hand, operations personnel are in charge of taking these new features and 

improvements, deploying them into production and keeping them running indefinitely - at the 

same time making sure there are no system failures or outages caused by these deployments. 

Operations tend to naturally resist deployments since they know changes to the systems are a 

major cause of outages. In other words, developers want to release software more frequently; 

operations professionals want to protect the stability of the infrastructure. (Hussaini 2014). 

If and when problems occur, IT Operations might not necessarily have enough knowledge 

about the inner workings of the deployment to see what is wrong on the other side. 

Development might not have paid much attention to the performance of the developed feature 

in an actual production system while designing it. This leads to software performance issues 

that are overcompensated by expensive hardware that is ultimately never used (Humble & 

Molesky 2011). 

As a result, there exists a "Wall of Confusion" between development and operations personnel 

which manifests in throwing blame around, much to the irritation of management and the 

business, which obfuscates their ability to predict when releases are coming out and delivering 

business value as expected and required (Humble & Molesky 2011). In addition, this results in 
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stiffer competition, de-motivated teams and excessive time overruns of delivering changes 

(Hussaini 2014), ultimately leading to rising costs in both application development and 

deployment. As Patrick Debois (2011), one of the fathers of Devops puts it, "Delivering a 

project to production still feels like going to war".  

Devops is an answer to these challenges. The word is an acronym for "development" + 

"operations" = "Devops". Devops is an umbrella concept that refers to a wide array of tools 

and practices to smooth out interaction between development and operations. Despite the term 

being loosely defined, the ideas behind the concept, however, run much deeper than that. From 

a slightly different point of view, Devops can also be seen as a collision between a trend of 

"Agile System Administration" or "Agile Infrastructure" and the aforementioned collaboration 

between Development and Operations throughout the entire application lifecycle (Agile Admin 

2011).  

The main idea is to bring down the Wall of Confusion to get developers and operations 

professionals to work together. What started out as a collaboration effort has manifested into a 

new kind of work profile: a Devops expert that can handle both the development of a 

functionality and the deployment of it. (Earnshaw, 2013). 

From the business side, Devops is a business strategy that seeks to create an environment where 

the development and operations lanes are merged and cross-pollinated in order to maximize 

the outcomes of investments and to ensure that customers continuously get increased service 

quality and features in a manner that satisfies their needs. Additionally, it aims to reduce risk 

of IT deployments with tools that maximize predictability, visibility and flexibility. 

(Capgemini 2015). 

Devops is not merely a philosophy but also demands an array of tools to automate processes 

and helps to facilitate collaborative change and integration. The principles are not entirely new. 

Many parts of Devops have been around long before the term ‘Devops’ was coined. (Eficode). 

The main components of this toolkit are release management and deployment tools (Azoff, 

2011). Since Devops is not standardized to any given toolset, individual setups might vary 

considerably across organizations. 

1.2 Motivation 

This section outlines why it is useful to study Devops. 
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Devops is a relatively new term that first appeared in 2009. Many people argue that while the 

term is new, the concepts have been around for quite some time. While there is no clear-cut 

specification or standardization of Devops practices, the emerging philosophy has been noted 

as one of the rising tech trends in the first half of the decade.  

 

Figure 1: Google Trends graph for Devops. 

 

On the 2015 Gartner Hype Cycle of Enterprise Architecture, Devops appears to be right on the 

top of the curve. The Cycle is a map that shows the adoption and expectations of emerging 

technology trends in enterprises. It is divided into five steps: Innovation Trigger, Peak of 

Inflated Expectations, Trough of Disillusionment, Slope of Enlightenment and Plateau of 

Productivity. In essence, emerging trends go through the hype cycle, gaining momentum and 

expectations as they go up the curve and hitting the peak point where it is considered a silver 

bullet. Investments are made. Next, when investments are not showing nearly as much return 

as expected, the trend comes down the curve and hits the Trough of Disillusionment. Only after 

expectations have settled to a realistic level and the organizations have been starting to learn 

how to apply the trend in their own specific contexts, the trend moves onward towards the real 

productivity gains. (Gartner 2015). 
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Figure 2: Gartner Hype Cycle of Enterprise Infrastructure.  

 

A recent study by Rackspace (2014) shows 55% of the 700 IT decision makers had already 

adopted Devops and are looking for enhancement, while 31% of them plan to adopt Devops in 

the next 2 years. This adoption is among the largest in the side of technology for the initial 

implementation of tools.  

Because Devops is now on the peak of inflated expectations, I find it very important to study 

the real-world implications and challenges of Devops to perhaps clarify some of the 

expectations and realities behind the approach. 

As stated above, Devops is not only a philosophy. It requires a certain degree of tools and 

practices to work efficiently. These tools, for example Continuous Deployment and Release 

Management and Configuration Automation tools, are also evolving because of Devops. The 

rapid evolution creates a remarkable market for these tools and subsequently a lucrative market 

to enter as an enterprise application developer. Many of these tools have existed as a part of 

the regular toolset of IT development and operations already before Devops came about but 

the emphasis in support of Devops currently has started to transform how these tools are 

positioned and perceived in the marketplace (Azoff, 2011). 
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There are many benefits in embracing Devops in an organization. According to a CA 

Technologies (2014) research, organizations were able to reduce their development and 

maintenance costs by 18% after shifting to a Devops-style development lifecycle.  

Additionally, Devops was found to be the key reason behind increases in revenue and number 

of new clients. This translates to a 20% increase in business.  

A State of Devops report (2013) recently quoted that failure rates have been cut down by half 

in their surveyed organizations. The same source also reported considerably faster release 

times: surveyed organizations were releasing code 30 times more frequently and 8000 times 

faster than before shifting to Devops. 

In light of these figures it can be clearly seen that there exists real value in managing the 

development lifecycle in this manner.  

1.3 Research Gap 

There has been relatively little academic research on Devops considering the amount of 

Devops-related investments. Current literature is mainly based on describing the phenomenon 

and sharing best practices that are based on more or less subjective experiences of the authors. 

Moreover, the method is maintained by the community and can best be characterized as a set 

of best practices. The academic articles on the subject are extremely scarce, and the field lacks 

a common framework and even a quotable definition. Research circles around trying to 

describe the phenomenon. The solutions can be viewed through different perspectives and 

therefore can result in different implementations. According to a survey by Eficode, 66% of 

Finnish IT decision-makers see Devops as an interesting project for their company. 

In light of these motivations, the key questions of this research are 

1. What are the key components of Devops? 

2. What are the main challenges organizations face with Devops? 

Additionally, the research tries to answer the following sub-question: 

3. What are the ways to overcome these challenges? 
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2 Overview of Development and Operations 

This chapter’s purpose is to give an overview of what is meant by Development and IT 

Operations respectively. The traditional functions of each area is described in order to gain 

understanding of how the functions change when shifting to Devops. 

2.1 Software Development Lifecycle 

A software development lifecycle (SDLC) adheres to important phases that are essential 

for developers, such as planning, analysis, design and implementation. Since software has 

become a key component in almost all aspects in life, the associated risks have grown 

considerably. To mitigate this risk and to structure the development process in a manner that it 

produces only anticipated outcomes, a number of software development models have been 

created: Waterfall, Spiral, V-model, Rapid prototyping, Incremental, Stabilize and Agile.  

The Waterfall model is the oldest of the group, while Agile software development presents the 

modern trend of development. Devops can be seen as the most recent addition in a continuum 

presented in Figure 3. Some call Devops the 3rd generation software development method, a 

continuation from the 2nd generation Agile methods (Eficode). 

 

Figure 3: Devops: 3rd generation software development method. (Based on Eficode) 

 

The next sections will focus on each end of the Waterfall – Agile spectrum. Starting with the 

traditional Waterfall model, the aim is to familiarize the reader with the rigid development 

processes that have been problematic for some IT organizations even nowadays. Next, Lean 

and Agile are discussed which are especially relevant from a Devops point of view. "Some 

consider Devops picking up where ‘traditional agile’ left off. After all, software doesn't bring 

value unless it is deployed in production; otherwise it's just inventory." (Debois 2011) 

 

Waterfall 

Focused on the 

agreement 

Agile methods 

Focused on the 

customer 

Devops 

Focused on the 

delivery 
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2.1.1 Traditional Software Development: Waterfall model 

 
Figure 4: 9 sequential stages of software development by Benington (1956) 

 

The Waterfall model is a sequential design process and is recognized as the oldest 

standardized way of doing software development. The first ideas were presented by Benington 

(1956) who identified 9 stages for software development that can be seen in Figure 4.  

The idea behind the model is that a carefully planned and documented application results in a 

higher quality application that is easier to code than an application that has constantly changing 

specifications and requirements. This tedious "code-it, fix-it, code-it-some-more-until-it's-

quickly-not-maintainable" pattern was not acceptable. (Leffingwell 2007). Each of these stages 

are meant to be executed sequentially in contrast to a degree of parallelism present in modern 

development. Benington (1956) gives an example where the first 4 specification steps take 

53% of engineering manpower, actual coding takes only 7% and testing takes the rest. The 

actual Waterfall model is usually credited to Winston Royce (1970), rather ironically, as he 

stated that "it has never worked on large software development efforts." Surprisingly, the model 

was widely accepted to use.  

The Waterfall model is very strict about project scope. Once the specifications are made, the 

model is prohibitive about changing anything. As a result, the model is poor at responding to 

change. The foundation of the project is based on a fixed scope, and the costs and schedule are 

estimated and fixed thereafter. This results in what is called an "Iron Triangle Trap". 

(Leffingwell 2007). Since the scope cannot change, the software either needs to be delivered 
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in poor quality to meet the fixed budget and schedule or finally when either schedule and/or 

costs gets out of hand.  

The sequential nature of Waterfall also means that the application has to be completed in terms 

of code before even a single test can be run (Hin 2006). In a complex application that has a lot 

of dependencies, tracing errors in this manner could prove to be very difficult. 

2.1.2 Lean Software Development 

Over the years the problems with the Waterfall model were realized and practitioners 

started to look for alternative ideas and methods from elsewhere. 

The Lean way of thinking evolved from trends that started in manufacturing, such as Toyota 

Production System and Total Quality Management. Lean methodologies are designed to reduce 

waste and improve operational efficiency. Specifically, eliminating repetitive tasks that have 

no added value in the value chain became a goal. The Lean mindset can be applied to Software 

Development and IT Operations and is one of the key components in the CALMS model for 

Devops discussed later. It has also played a major part in the theoretical groundwork of Agile 

Software Development discussed in the next section.  

Mary and Tom Poppendieck (2003) have formulated a set of principles for the application of 

Lean thinking into software development. Eliminating waste is the first principle. Waste is 

anything that does not add value to a product. Furthermore, the value is always perceived from 

the customer point-of-view. Waste might mean excess documentation, excess features that are 

not explicitly asked by a customer, and handing off development from one group to another. 

The key is delivering exactly what customers want. Excess development time is also considered 

waste. The second and third principles are Amplifying learning and Deciding as late as 

possible. In a software development context, it means iterative cycles of development and 

making definitive design decisions only when it is necessary. Learning is amplified by constant 

assessment and improvement. Deciding as late as possible is an options-based approach and is 

effective especially in situations that involve a level of uncertainty. In a dynamic market, better 

decisions are made based on facts rather than assumptions. In software terms, systems should 

include capabilities for change. (Poppendieck & Poppendieck, 2003). 

Deliver as fast as possible is the fourth principle. Traditionally, a mistake-free approach has 

been favored over rapid development. However, Womack et al. (1990) argue that speed is not 

a cost factor. Swift delivery has a faster feedback loop and is better equipped to improve the 

product. This is one of the key components of Devops. 
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The fifth and sixth principles are Empowering the team and Building integrity in. Technical 

decisions should involve the people that are responsible for the execution of the plans. Because 

decisions are deferred to the last possible minute, there is no time for higher authorities to 

orchestrate the activities of workers. Integrity in software translates to reliable architecture, 

high usability and fitness for purpose, among maintainability, adaptability and extensibility. 

(Poppendieck & Poppendieck, 2003). 

The final principle is seeing the whole. Integrity in complex systems requires a deep expertise 

in many diverse areas. From a Devops perspective, Development and Operations traditionally 

have siloed thinking that leads them to optimize only their respective ends of the development 

cycle rather than overall performance. This results in suboptimal end product or service. 

Lean software development principles have been used to lay the groundwork for frameworks 

that are more agile for software development. Agile development can respond to changing 

requirements faster than the traditional models.  

2.1.3 Agile Software Development 

Agile Software Development springs from the so-called "Agile methods" that are a 

reaction to traditional ways of developing software: Waterfall, for instance. In response to 

heavyweight, documentation-driven development processes, Agile methods have increased in 

popularity since the beginning of the new millennium (Beck et al., 2001). Developers found 

that designing a software from a complete set "locked-in" requirements and documentation 

lead to frustration (Highsmith, 2002). According to Highsmith (2013) requirements "change at 

rates that swamp traditional methods". Customers and business owners were unable to state the 

full requirements of a system that was only going to be in production 2-3 years after the tedious 

and often lengthy process of "locking" the requirements down. This lead to people coming up 

with their own methods to respond to the traditional way of doing things. 

Many of the ideas of Agile software development were already conceived as early as the 70's: 

Agile methods are partly based on Iterative Enhancement that was introduced by Basili and 

Turner (1975). Before Agile, the Waterfall model had evolved into Incremental techniques that 

broke the Waterfall model down into smaller pieces, namely allowing several functionalities 

to be worked on in parallel across the project. Incremental techniques brought some reductions 

to the development time but requirements were still frozen during the whole development cycle 

(Boehm, 1988). Iterative development and the subsequent Spiral Model also started to 
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introduce the risk management and changing requirements to the development process but 

failed to cut down on planning time and heavy documentation. 

Finally, the capability of quick change was recognized. Schwaber, the developer of Scrum, 

realized that rather than stressing predictability, development needs to accept change in order 

to be Agile. Also, stressing the importance of creativity in managing complex software 

development problems rather than heavy documentation (Highsmith & Cockburn, 2001) was 

necessary and stressing techniques that would allow responding to changes as quickly as they 

arose (Turk et al., 2002). These ideas, coupled with Lean Manufacturing discussed earlier 

eventually lead to the Agile Manifesto. 

The Agile Manifesto is an agreement made by seventeen representatives of the alternative 

software development movement that came together in 2001 to discuss new ways of 

developing software. The manifesto concentrates on individualism and interaction, working 

software over extensive documentation in addition to collaboration and responsive change 

(Beck et al., 2001). The emphasis on individualism was based on the fact that development was 

too caught up in its emphasis on the process. The manifesto embraces working software since 

it was the final product rather than large volumes of documentation that were never maintained. 

Collaboration is valued over contract negotiation since business value is only delivered after 

the project has been started (Abrahamsson et al. 2002). Finally, the Agile Manifesto highlights 

responding to change because "Requirement change was one of the most common causes of 

project failure" (Glass, 2001). The Agile way prioritizes features constantly in response to 

changing demands and even released features can be modified. 

The aim of Agile in practice is to develop and release application functionalities in small 

proportional batches instead of releasing the finalized product all at once. According to Ambler 

(2002), there is no requirement for excessive planning ahead or documentation.  

Instead, Agile strives to keep the development as simple and planning as adaptive as possible, 

focusing on continuous improvement and communication between people. People are the 

primary source of creativity and value. (Highsmith & Cockburn 2001).  

Highsmith & Cockburn (2001) note that software is tested throughout the development cycle 

(in contrast to a separate testing phase later in the cycle). Customer participation also plays a 

key part in validating the constantly-released features. Concurrent testing and customer 

participation keeps the feedback loop tight and allows the teams to be better focused and to 

notice errors in the software sooner. 
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Agile software development is a philosophy rather than a standard set of practices. There are 

several detailed processes that apply Agile methods, the most popular of them being Scrum 

and Kanban.  

The main idea of Scrum is based on sprint-oriented thinking. Sprints are development periods 

that typically last 1-4 weeks, however no longer than one month. During these sprints the 

features are coded, tested and integrated into the existing product. Daily sessions or "scrums" 

are held to track progress and to create a plan for the next 24 hours. The items that Scrum teams 

work on are arranged into a backlog of items or "stories" that are prioritized according to their 

perceived value at each point of time. Stories in Scrum refer to descriptions of features how 

they are perceived by the customer. (Scrum Guide; Mayer 2009). 

At the start of the Scrum process, the Product Owner gathers input from customers and other 

stakeholders. These features are arranged into the product backlog. The Scrum team decides 

how much work is needed per feature and decides how much work it can do in the next sprint. 

Once the sprint is started, requirements and items in the sprint cannot be changed. The progress 

of the sprint is monitored closely with burndown charts and no changes can be introduced 

during an ongoing sprint. The teams have a special Scrum Master whose job is to facilitate the 

work of the team and to remove any obstacles in the way of their work. Scrum teams have very 

low hierarchy by design and the whole team is responsible for delivering the predefined 

outcome by the end of the sprint which may mean sudden reallocation of tasks at an individual 

level if its beneficial to the team. (Mayer, 2009). Scrum has been seen to increase productivity, 

induce higher quality and reduce lead times1. (Schwaber, 2004) 

Kanban was developed in Japan by Taiichi Ohno after World War II for manufacturing 

purposes while working at Toyota. The main goals of Kanban were to keep up a high level of 

production and to continuously improve the process. (Ohno, 1988; Gross & McInnis, 2003). 

Kanban was first used in a software development process by David Anderson in 2006. 

Kanban’s goal is incremental change rather than radical change. Respecting the current process 

and the elements worth preserving in addition to embracing current roles, responsibilities and 

titles minimizes change resistance. Concurrently, agreeing to strive for continuous 

improvement constantly changes the process towards a more efficient one but takes a slow and 

gentle approach. (Anderson, 2010). 

                                                                    
1 The duration between the initiation of development of an item and the completion of it. 
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Kanban focuses on the flexibility of planning. The development team focuses only on one item 

at a time: the one that is prioritized first in the product backlog. This ensures that the team is 

providing maximum value back to the business.  The product manager is free to re-prioritize 

work in the backlog if it is not currently actively worked on. There is no need for fixed-length 

iterations such as sprints used in Scrum. The key is to concentrate on the constant “flow” of 

value rather than fixed delivery dates. (Atlassian). 

Kanban visualizes the workflow. At the very basic level, items of work are represented by 

cards. The cards are attached to a board with different columns for different stages of the 

process (the word kanban stands for “signal board” in Japanese). Typically, these columns are 

labeled Pending, Analysis, Development, Test, Deploy or something similar. Visualizing work 

in this manner makes it more tangible and therefore easier to focus on and prioritize (Anderson 

2010). 

Work-in-progress is limited to a set amount of items at a time. Kanban utilizes the Theory of 

Constraints where a bottleneck is found and protected with buffers (Goldratt 1990; Goldratt & 

Cox 2004). In Kanban, the buffers are the artificial card limits per each column. Even though 

items in other columns upstream might be finished, they cannot “pull in” new work from 

previous steps before some of their items are pulled forward. This highlights bottlenecks in the 

process and makes workers at other stages idle, allowing them to help completing the tasks at 

the bottleneck station. (Kanban blog).  

Measuring the outputs of a process before making changes and mirroring the results to the ones 

measured after the change makes it easier to see how the process is evolving. Keeping the steps 

small and the feedback loop tight is essential for continuous improvement. It is necessary, 

however for the whole team to understand the process in the same way before changes can be 

made, which calls for open communication. (Everyday Kanban). Kanban is known to reduce 

lead-times and velocity of development, since focus is always crystal clear. Limiting work in 

progress, according to Little’s Law, leads to decreased lead-times, affecting the number of 

software defects such as bugs in code and therefore improving the quality of the product.  

The problems with the Waterfall model and their solutions using Agile development is 

summarized in Table 1. 
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Table 1: The problems with the Waterfall model and their Agile Solutions (based on Eficode). 

Problem with the waterfall model Agile Development Solution 

Software is planned like buildings: before 
any actual work is done. Changing plans later 
is expensive or impossible. 

Software is developed in small iterations and 
in cooperation with the customer throughout 
the project 

Porjects often have a fixed agreement with 
regard to price and requirements. 
Negotiations are slow and based on 
guesswork. 

The agreement made at the beginning of the 
project concerns common procedures and a 
prioritized list of requirements, not the final 
product. 

Software is developed in stages where testing 
starts after the development is “ready”. 

Software is developed in small, independent 
iterations, the contents of which can be 
altered before an iteration begins. 

Visibility into the development process is 
poor. 

The customer sees the actual status of the 
project at regular intervals. 

Changes that occur during the development 
process are not prepared for. 

Changes are welcome and they are 
prioritized as parts of the future iterations. 

The system is only tested at the end of the 
execution phase when making changes is 
expensive. Some of the necessary fixes may 
even be impossible to implement. 

The functionality of the system is already 
tested during the execution phase to ensure 
that the requirements selected for an iteration 
may all be done from start to finish during 
the iteration. 

 

In the next section, traditional IT operations function is described. 

2.2 IT Operations 

IT Operations is the area of IT responsible for managing the IT infrastructure of an 

organization. Gartner defines IT operations as "the people and management processes 

associated with IT service management to deliver the right set of services at the right quality 

and at competitive costs for customers." (Gartner IT Glossary) Furthermore, IT Operations 

Management is split into different components by the Information Technology Infrastructure 

Library (ITIL). According to the ITIL Service Operation, "IT operations management executes 

the daily operational activities needed to manage IT services and the supporting IT 

infrastructure" (Steinberg 2011). In other words, IT Operations performs a defined sequence 

of daily activities in order to keep IT going. A traditional operations role is measured by its 

ability to provide a reliable, optimized infrastructure. In effect, that means ensuring as little 



 Overview of Development and Operations 
 

 14  
 

change as possible in order to guarantee that network resources are available so users can be 

more productive. 

The main areas of IT Operations are console management, job scheduling, backup and restore, 

print and output and maintenance activities. Console management refers to monitoring the IT 

infrastructure through various logging tools, reporting engines and IT controls. Job scheduling 

still plays an important role in IT organizations, where integrations, cleaning operations and 

other batch jobs have to be triggered manually at scheduled times. Backup and restore remains 

a key operation even though IT has been moving to central server control and management 

through various virtualization solutions and backup is therefore easier to perform. (Steinberg 

2011). The role of printing and output has been shifting away from IT Operations to various 

print management solutions maintenance, but there are still plenty of IT Operations 

organizations that maintain printers and other output devices. 

Infrastructure maintenance activities comprises of the two functions Application and Technical 

management. This means provisioning new servers, migrating them and deploying applications 

to them. Operations is usually organized to work in shifts, so it can perform assigned after-

hours tasks.  

Facilities management is in charge of the physical sites where the infrastructure is located: 

server rooms, data centers and disaster recovery sites. This involves cooling, power, humidity, 

etc. as well as actual network infrastructure and servers.  

Depending on the size of the organization, IT Operations is usually organized in three ways. It 

can either be a department or a sector in large organizations. In mid-sized IT organizations, it 

can be a virtual team that consists of also Application and Technical management team 

members. Finally, in small-size IT organizations, Service Desk operators can perform IT 

Operations tasks during their normal shifts. More complex tasks are escalated to on-call 

engineers or technical account managers. 
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3 What is Devops? 

This section will detail Devops at a more in-depth level. First, I will cover the short history 

of Devops and the main trends that lead to the inception of the philosophy. Then, I will take a 

more practical approach in describing the methodologies behind Devops. Finally, there is a 

section about the discovered benefits of the approach. The main goal of this section is to give 

an overview to support the succeeding research and to answer research question 1: What are 

the key components of Devops? 

3.1 History of Devops 

The Devops movement is so widespread that it is surprising to think that it is only a few 

years old. Devops has formed out of a fundamental need and it is based on a simple yet 

powerful philosophy: business works best when efforts are coordinated and when they are 

based on collaboration. As a result, its growth has been rapid. 

Before the current evolution of Devops, there was no direct connection between development 

and operations. One of the early influencers of Devops was a Belgian consultant named Patrick 

Debois. Debois had assumed several IT roles in large organizations. In 2008, at an Agile 

Conference in Toronto he brought up the problems associated with the segregation of 

Development and Operations and the fact that projects were assumed to be always late and the 

final product underperforming. (Rapaport 2014) This talk lead to the forming of the Agile 

Systems Administration Group (Paul 2014). 

Next year, the first Devops speech was given by Flickr employees titled "10+ Deploys per Day: 

Dev and Ops Cooperation at Flickr". This helped IT professionals look at the problem from a 

different point of view and showed the world what can be achieved with a highly transparent 

and integrated development-operations collaboration. Debois and a few interested 

professionals were inspired to organize a conference called Devopsdays. Simultaneously the 

name of the movement was coined to the portmanteau "Devops". Devopsdays soon became a 

regular global series of community-organized conferences and a major force driving the 

Devops community forward.  Thereafter, the Twitter hashtag #Devops became an essential 

source of information. (Rapaport 2014). 

In 2011, beginning with Vagrant, a tool to create and configure virtual deployment 

environments, the Devops community started building open-source tools to facilitate the 

philosophy from its technical requirements. 
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Two years after, Devops had started to formulate from a set of ideas and buzz to a more 

coherent, standardized practice. A plethora of seminal literature was released such as "What is 

Devops?" by Mike Loukides (2013), "Implementing Lean Software Development" 

(Poppendiek & Poppendiek, 2013) and even a business fiction novel called "The Phoenix 

Project" (Kim et al., 2013) that brings forward the problems of current IT organizations and 

the benefits of making the shift to Devops in an engaging and inspiring way.  

What was first thought to be a simplistic idea of creating a communications channel between 

developers and Operations has been expanding to include the whole development lifecycle. 

This includes "automation from the beginning of the process through the deployment of the 

solution in a system of incremental builds" (Dodson 2013). 

Currently, organizations have started reaping the benefits of this new approach, with several 

well-known organizations such as Netflix, Amazon and Target (Null 2015).  

3.2 Trends Behind the Evolution of Devops 

There are several trends that have contributed to and encouraged the rise of the Devops 

paradigm. In this section I will describe each paradigm in detail.  

One of the reasons behind the ever-increasing requirements for software is the consumerization 

of IT. Consumerization of IT stands for describing the cycle of IT first emerging in the 

consumer market and then spreading to business or government environments. This is largely 

due to employees using consumer market technology and devices at home and then bringing 

them to the workplace. (Webopedia)  

The field in consumer IT is changing quickly. For instance, Apple and Google need to keep 

pushing out new features in all their services, mobile operating systems and hardware. From 

major yearly updates to minor quarterly ones, consumers have grown accustomed to expect 

these releases. Bug fixes and other critical improvements are made even more quickly and 

deployed at once to millions upon millions of devices and software. If the providers are unable 

to keep up with this pace, consumers are quick to react and switch to competitors. Marketing 

process is also changing from driving consumer behavior to one responding to it. (Sussna 

2013). 

In business IT, these consumer expectations are also "consumerized" and they apply to 

software as well. This also requires the software development and application delivery process 

to be consumerized as well. However, with enterprise IT, there is a higher level of complexity, 
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moving parts and integrations involved which prevent lead times from improving naturally. 

This calls for embracing Devops practices. (Elgan 2013). 

Another factor in the evolution of Devops is the evolution of IT infrastructure. IT infrastructure 

is described as the foundation of shared IT capabilities. The foundation provides the base 

capabilities for other business systems. These capabilities consist of internal technical expertise 

such as equipment, software, cabling and managerial expertise that are required to provide 

reliable services (McKay & Broadway 1989). 

Traditionally, IT infrastructure has been viewed as a significant barrier or enabler in the 

practical options available for planning and changing business processes (Grover et al. 1993). 

IT infrastructure and related issues have consistently been identified as a key concern of 

Information Systems Management (Niederman et al. 1991; CSC Index 1994). 

Furthermore, Grossman and Packer (1989) argue that IT infrastructure differs from 

applications in its purposes as a foundation also for future applications in addition to current 

business functionality, and in the way in which it must cope with the uncertainty of future 

needs. Therefore, the financing of IT infrastructure has traditionally been different from 

applications and their benefits have been difficult to quantify, requiring board-level or 

executive management approval (Weill 1993).  According to a research, about 55% of the total 

IT budget goes towards technology, processes and human resources that comprises IT 

infrastructure (Weill 1991). 

Major IT infrastructure components include hardware platforms, base software platforms, 

communications technology, client-server technology and other software components, 

common handling mechanisms for different data types and methods, standards and tools 

(Turnbull 1991; Darnton & Giacoletto 1992). These capabilities can be provided either in-

house by the corporate IT function (Weill & Broadbent 1994) or by an outsourced service 

provider (PE International 1995).  

Finally, providing the IT components as a service to business and application stakeholders 

requires a human infrastructure that has the knowledge and experience to provide the policies, 

architectures, planning, design, construction and operations capability necessary for a viable 

IT infrastructure (McKay & Brockway 1989; Keen 1995). The key elements of IT 

infrastructure are visualized in Figure 5. 
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Figure 5: The elements of IT infrastructure (from Broadbent et al., 1996) 

 

In the 21st century, IT infrastructure started to evolve into ubiquitous cloud infrastructure. 

Cloud computing is not a prerequisite of Devops but it is a major part of most Devops 

initiatives.  "Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction." (NIST 2011) 

Cloud enables servers to be accessed from anywhere over the Internet. Cloud infrastructure is 

ubiquitous by definition which means many providers introduce multi-location redundancy in 

case of site failures. As a result, a faster and more reliable service is realized. (Buyya et al., 

2009). 

When IT infrastructure is provisioned in the cloud, IT operations can provision new servers in 

a matter of minutes to host an application or a service. It has implications to agility and 

flexibility since traditionally server hardware needed to be purchased, set up in a physical 

location and configured separately. To accommodate peak times, additional hardware needed 

to be procured which resulted in servers that were idle most of the time and it was impossible 

to use this extra capacity for other workloads. (Cervone 2010). 
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Cloud computing is also much cheaper than traditional hardware resources. Smaller and newer 

organizations with simple needs often get the most dramatic and immediate results from public 

cloud services. They avoid "sunk costs" in existing infrastructure and have fewer internal 

applications to integrate with cloud platforms.  

The emergence of cloud computing is related to service economy. In service economy the 

nature of software has changed from being customer-operated products to vendor-operated 

services. Furthermore, payment is based on consumption and utility rather than one-off 

purchases. (Buyya et al., 2009). 

The main services cloud computing can offer are Infrastructure as a Service (IaaS), Platform 

as a Service (PaaS) and Software as a Service (SaaS). They differ in the amount of abstraction 

they offer. Infrastructure as Service, such as Amazon AWS, provides servers that can be 

configured in the same manner as traditional server hardware. Platform as a Service, such as 

Heroku, provides a platform to run an application on. There are usually several PaaS 

applications running on a PaaS server which is configured and managed by the service provider 

in its entirety. The configuration of servers is therefore abstracted away from the customer. 

Finally, in the other end of the spectrum lies Software as a Service that abstracts away also the 

application platform. Sussna (2013) concludes that cloud vendors are playing an increasing 

Figure 6: The elements of Cloud Services (from Buyya et al., 2011) 
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role within Enterprise IT, freeing up internal IT to focus on value added services. Figure 6 

exhibits the elements of cloud services. 

A major component of cloud computing is server virtualization. Rather than offering a physical 

server for each deployment, the resources of one physical machine can be split into multiple 

"virtual server" operating systems running simultaneously on the host. Subsequently, 

economies of scale are realized in addition to better utilization of resources. Services seldom 

require even the most minimum amount of resources that a physical machine purchased in 

present day can provide.  

In addition to better utilization of resources, virtual servers are "sandboxed", meaning that their 

configuration has no effect on other virtual servers running on that instance or even the host, 

for that matter. Virtual server images can also be migrated to other physical instances in order 

to scale up, prevent failure if the physical machine goes down or to ensure continuous 

deployment. The physicality of virtual servers is diminished. As a result, no one needs to know 

the exact location of the machine running the software any more. (Cervone 2010).  

Virtual servers are a key component in the automated deployment process used in Devops. 

Changes to a system pass through a pre-defined deployment pipeline involving a complex 

framework of different tools ranging from version control 2  through automated testing 

frameworks to configuration management tools. (Humble & Molesky, 2011). The idea behind 

deployment automation is to reduce user errors in each of the phases and to increase 

deployment speed and visibility. Everyone who has access to the pipeline can immediately see 

which step a release is currently in. The feedback loop is very tight: the developer is 

immediately notified when the deployment passes through each phase or if there are problems 

with the build. The automated deployment pipeline is shown in Figure 7. 

 

Figure 7: The automated deployment pipeline (from Humble & Molesky, 2011) 

                                                                    
2 Version control, eg. Git, is a ”system that records changes to a file or set of files over time so 
that you can recall specific versions later”. (Chacon & Straub, 2014) 
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Automated testing is an essential component of deployment automation and releasing quality 

software in rapid increments. Test automation reduces the need for manual testing and speeds 

up the testing process significantly. Additionally, it ensures testing is carried out exactly the 

same way every time, minimizing the risk of user errors and oversights.  

Another common component in many automated deployment pipelines is Infrastructure as 

Code. Infrastructure as Code (IaC) is a method for managing IT infrastructure following the 

same principles as software development. This involves version control, testing and 

incremental change. 

Infrastructure as Code automates the provision and configuration of application servers and 

middleware using pre-defined automation logic. IaC automations are expected to be repeatable 

by design, so that the infrastructure can be brought up to a desired state from any arbitrary 

state. This process is facilitated by IaC tools such as Chef and Puppet.  

The key notion of IaC is idempotence. Idempotence means that tasks can be executed multiple 

times always yielding the same results. IaC removes human error and makes sure that all 

machines in an infrastructure are configured how they are intended and all scripts are executed 

in the same exact order, every time. (Hummer et al., 2013). This differs from infrastructure 

automation which just involves replicating steps on multiple servers.  

IaC is easy to write and debug: similar environments can be brought up even on the laptop of 

the developer. Version control allows tracking changes to configuration over time with the 

possibility to roll back quickly to the last working configuration. The are caveats present in IaC 

as well. It takes an extended amount of time to plan the configuration. Additionally, bad 

configurations are duplicated everywhere once they are executed. Finally, there is a 

requirement that all configurations made to an environment must be present on the 

configuration template, otherwise the environments will differ and produce unexpected results. 

(Sitakange, 2014). 

3.3 Challenges that Devops attempts to overcome 

Devops came into existence because of certain problems in the traditional way of managing 

development and operations. This section will give an overview of the main challenges that 

sparked the evolution of Devops. 
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First, I will describe problems with traditional IT project settings. In an IT-project it is not 

unheard of to have an individual or individuals who fail to document and share their code and 

decisions with the rest of the team. In doing so, this person creates a hero cult and this "hero" 

is the only one who knows how to make a software work and to apply changes to it. 

Emphasizing titles is problematic, since titles usually correspond to team members' duration 

working for a company. Seniority does not correlate with development skills, let alone 

interpersonal skills. Shadow responsibilities, such as tending to pet projects and other 

ambiguous areas, manifest as a mismatch between role descriptions and what is actually done 

resulting in problems with planning and coordination. Finally, favoring plan over planning 

isolates the intended results from the project goals. Alterations to the original plan are rarely 

made or even authorized since the goal has changed to following the plan rather than delivering 

value-adding software in a timely manner. This holds especially true in the Waterfall model 

discussed earlier. (Hütterman 2012). 

Organizational and cultural barriers are one of the most definitive challenges Devops hopes to 

address. Having development and operations siloed in their respective teams or "some loosely 

coupled working groups" is a major impediment in achieving a unified goal of releasing value-

added software quickly.  In addition to separate teams, dev and ops might not share a common 

language in communicating their ideas and challenges. This leads to misunderstandings, 

confusion and extra work on either sides as well as on the business side. The final barrier is 

fear: negative attitudes toward sharing knowledge and a common goal coincides with old habits 

and fear of losing power, reputation or influence. (Hütterman 2012). 

Several researchers mention the misalignment of goals and incentives as one of the 

predicaments of Devops (Hütterman 2012; Humble & Molesky 2011; Hussaini 2014). While 

Agile methodologies have done a lot to increase collaboration and transparency within the 

development group and quality assurance, operations are traditionally still left out of the 

equation.  

Agile teams have goals of delivering an increasing number of features at an increasing speed. 

Business depends on them to respond to fast changing business and technology needs. Because 

of this intimate relationship, Development is often expected to bring in as much change as 

possible. (Hussaini 2014).  
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On the other hand, Operations is tasked with delivering these features into production with 

additional nonfunctional requirements of service stability. These requirements often conflict 

with delivery requirements (Hütterman 2012). 

Stability is defined as "a resilient system that keeps processing transactions, even if transient 

impulses (rapid shocks to the system), persistent stresses (force applied to the system over an 

extended period), or component failures disrupt normal processing (Nygard, 2007). 

Traditionally, it has been the responsibility of Operations to ensure software availability in 

production. Its success is often measured with metrics that calculate server uptimes, software 

availability, security measures, capacity and response times. Together these attribute to Service 

Level Agreements (SLA’s) that express the users’ expectations that all of the software features 

are fully available. (Hütterman 2012).  

It is established that changes to production systems are the main cause of system failures 

(Humble & Molesky 2011; Hussaini 2014). When downtime is experienced, operations are 

blamed for the outage directly, resulting in operations shying away from changes to the 

production system. The main goal of operations is stable and working software with high 

availability. Therefore, SLAs and delivery requirements have traditionally had a tendency to 

conflict (Hütterman 2012). 

Another issue described in this context is described as the "Blame game" (Hütterman 2012), or 

"A Toxic Blame Storm" (Turnbull 2010), a mistrust and juxtaposition between development 

and operations. The conflicts are often due to time pressures and they manifest in several ways.  

A common scenario goes accordingly: developers hand in a release that worked well in an 

isolated test environment, however failing to run in production. Operations blame developers 

for bad design and developers blame operations for poor implementation and out-of-date 

infrastructure (Turnbull 2010).  This cycle continues until the root cause is found out to be a 

mismatch between configurations or some minor detail that neither party knew about 

(Hütterman 2012).  

The reason behind this conflict lies in the fact that developers never have to run the systems 

they build. Therefore, they do not understand the tradeoffs in scalability, reliability, 

performance and quality. Due to a lack of influence over the design of the application, 

operations tend to overcompensate the aforementioned by acquiring more expensive hardware 

that ultimately is never used. (Humble & Molesky 2011). 
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As mentioned before, Agile Software Development embraces frequent and small deployments. 

Furthermore, Agile promotes collaboration but this does not normally extend to the Operations 

people. Frequent deployment puts pressure on the Operations side, widening the gap even more 

(Debois 2011). The advantages of Agile processes are often "nullified because of the obstacles 

to collaboration, processes, and tools that are built up in front of operations". Software is 

released only in test environments and the releases queuing to production grows. Operations 

are reluctant to deploy in such a pace, often referring to previous bad experiences of hasty 

deployment. There is often a heavy mismatch between completed functions and planned 

release dates. This mismatch is also influenced by horizontal optimization where the operations 

have a higher priority in optimizing the infrastructure than delivering releases more frequently. 

(Hütterman 2012).  

The lack of contemporary feedback is also an issue. One of the principles of Lean Software 

Development is eliminating waste. It is a common notion that features that are not directly 

needed to get the customers' current work done should not be implemented (Poppendieck & 

Poppendieck 2007). Subsequently, the knowledge of whether or not to implement a feature 

needs a working feedback loop between development and the customer. Humble and Molesky 

(2011) argue that there is a lack of contemporary feedback to base the feature development 

decisions on - introducing decisions based on out-of-date or incomplete data. This lack of 

information is a result of long lead times associated with non-Devops organizations. 

Finally, the overwhelming complexity of systems makes it difficult to determine what systems 

are redundant. Decommissioning a system that still plays a part in the inter-related and fragile 

network of systems can have catastrophic consequences. Therefore, to play it safe, systems are 

kept running thus increasing the cost of maintaining systems. (Humble & Molesky 2011). 

Table 2 summarizes the problems with agile development and exhibits a Devops solution to 

them. 

Table 2: Problems with Agile development and their Devops solution (based on Eficode) 

Problem with agile development Devops solution 

Delivery of new features to the customer is 
often delayed. 

Devops tools are used to test and release new 
features as they are completed. 

Completed software components are not 
compatible with each other. 

Open interfaces and test automation make it 
possible to divide development into 
independent yet compatible parts. 
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Quality of the product is not ensured properly 
prior to release. 

Devops tools and practices help automating 
quality assurance and reduce the need for 
repetitive manual work. 

New features break old functions. The quality of existing functions is ensured 
quickly and automatically after each change. 

Budget goals and deadlines are missed. The tools and procedures of Devops increase 
the transparency and predictability of the 
development work. 

Developer teams and IT operations crews are 
not cooperating. 

Developer teams and IT operations crews 
agree upon responsibilities together. Their 
goals are unified. 

 

3.4 The key areas of Devops 

This section will detail the key areas of Devops. Devops is no longer considered as a 

trendy subject of those working with the latest development tools. Present thinking goes 

beyond technology into processes and people, and there are many different approaches to 

bringing them together (Riley, 2014). 

Humble and Molesky (2011) purpose that Devops consists of four dimensions: Culture, 

Automation, Measurement and Sharing. These four dimensions each target the specific 

problems discussed in the previous section, the main goal being the alignment of incentives of 

all stakeholders, particularly Development, Quality Assurance (QA) and Operations personnel. 

Furthermore, several sources add Lean to the definition as well (Riley, 2014; van Ommeren et 

al.). Collectively this has been dubbed as the “CALMS” model: Culture, Automation, Lean, 

Measurement and Sharing respectively. This model defines the most essential points-of-view 

of Devops. These areas also describe Devops as a “flow” (Riley 2014). 

 

 

 

 

Figure 8: The CALMS model and its flow (based on Riley 2014). 

3.4.1 Culture 

The adoption of Devops approaches begins from culture. While the tangible parts of 
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“Devops” is merely just another buzzword if the organizational culture doesn’t embrace all the 

things that come in the package (Wilsenach 2015). 

An essential part of Devops is changing the organizational culture from a collection of silos 

into an openly collaborative way of working. It entails involving Operations personnel in the 

design and transition process of an application. Furthermore, they should attend necessary 

planning meetings, retrospectives and showcases of project teams in order to share their 

insights and knowledge already early on in the process. Humble and Molesky (2011) note that 

rotating through operations teams is necessary for developers and they should be equally 

available for root cause analysis and remedy in case of incidents in production.  

Shifting from project- and responsibility-oriented teams into product teams is suggested by 

Humble and Molesky (2011). In essence, it means that teams are responsible for the entire life 

cycle of an application or service. The development team easily becomes disinterested in the 

operation and maintenance of a system if they employ a strict handover process to another team 

that will look after the system. Rather than having development that throws a deployable 

package “over the wall” to the operations team, operating the software becomes the duty of the 

team (Wilsenach 2015). Looking after the system becomes the product team’s pain. Doing so 

forces the team to take interest in optimizing the software code to run as smoothly as possible 

in production, as well as streamlining the testing and deployment phases of the product through 

automation and improved monitoring mechanisms for instance. 

The product team might consist of developers, operators and quality assurance personnel. The 

often-used dogma “You build it, you run it” applies especially in this context. This involves 

building quality into the product via automated tests. In addition to shifting the composition of 

talent in teams the responsibilities also change. The traditional operations team no longer 

carries the responsibility of keeping all things running: rather it merely provides the necessary 

infrastructure solutions for teams to run their software on. (Humble 2012). 

Co-locating development and operations staff will help them to work together. Handovers and 

sign-off processes discourage sharing between individuals and also contributes to the “blame 

game” mentioned earlier. In contrast, viewing system successes (and failures) as a team effort 

effectively reduces the culture of blame. (Wilsenach 2015).  

Devops culture blurs the line between the roles of developers and operations staff. In some 

cases, the blurring eliminates the distinction altogether. The extreme manifestation of this 
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paradigm is “NoOps”, a model where the developer role has taken over all operations 

responsibilities through effective automatization and IaC or PaaS (CenturyLink 2013). 

A common anti-pattern is the introduction of a Devops role or a separate “Devops team”. This 

kind of approach has an adverse effect on the silos Devops aims to break down as well as the 

spreading of culture and practices inside the organization. (Humble 2012). 

While development and operations talent consolidate to form product teams and new tools are 

introduced to the workflow of these teams, the need for control is also diminished. In order for 

the team to perform effectively, it has to be able to make their own decisions without the extra 

overhead of a convoluted change management process that is common in large enterprises that 

promote ITIL for instance. Shifting to autonomous teams involves building trust between 

managers and team executives as well as changing the way risk is managed. (Wilsenach 2015). 

New tools help facilitate these changes. Introducing version control to infrastructure, for 

instance, increases transparency and auditability in changes. There is no need to associate 

changes to infrastructure to change management tickets anymore since every change and the 

accountable individual is visible in version control.  

3.4.2 Automation 

In order to build the new kind of culture into an organization, processes need to change. 

According to Humble & Molesky (2011), it is made possible by various Devops tools and 

Infrastructure as Code covered in the previous section. The goal behind the automation 

practices in Devops lies in achieving low lead times and rapid feedback. This implies using a 

deployment pipeline that covers all changes that are to be made to a system by any team. As 

mentioned earlier, the pipeline models the entire process of developing, building, testing and 

deploying a system.  

This "single path to production" is not just application code, rather it encompasses everything 

including the infrastructure (as code), different environments, database schemas, reference data 

and configuration. The pipeline acts as one of the gatekeepers into production - most of the 

time there is a wide coverage of automated tests that are executed against each change to catch 

any potential bugs, errors or conflicts in the change. Once the change passes all tests it moves 

onward to the next stage in the deployment pipeline. When the fitness-for-release has been 

established, actual deployment is a just a button-push away if automated provision of different 

environments is enabled. The upside of automated provision is clear: any environment (at any 
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point of time) can be recreated should emergency rollback be necessary. (Humble & Molesky 

2011). 

3.4.3 Lean 

As described earlier, Lean methodologies are a major building block of Devops. 

Limiting Work-in-progress (WIP) and cutting down batch sizes is handled through Agile 

Development: no extra work is done unless it is included in the sprint or if the Kanban columns 

are limited. Furthermore, automation reduces waste efficiently and adds respect of people since 

no manual repetitive tasks need to be done any more, making work more enjoyable. Test 

automation builds quality in, delivers fast and optimizes the whole.   

3.4.4 Measurement 

Humble and Molesky (2011) define measurement in Devops as “monitoring high-level 

business metrics such as revenue or end-to-end transactions per unit time”. At a lower level, it 

requires careful choice of key metrics in the delivery process such as lead time and the effect 

of releases on system stability. Measurement affects the way people work and visualization of 

these metrics is important so people have a clear view of how well the team is doing at any 

given point of time. Metrics also have an influence on discovering the bottlenecks in the 

process – an important step in keeping the process lean.  

Another point of view to measurement is application monitoring in production. Traditionally 

in Waterfall-type of delivery models, application monitoring is only built downstream at the 

end of the development process, a step that is performed by operations to ensure application 

stability. A crucial approach in Devops is to build monitoring capabilities in parallel with the 

application – this is a requirement of the “you build it, you run it” –type of thinking. This might 

entail building health endpoints for easy status queries of a service etc. As applications are 

broken up to even smaller units (i.e. microservices), built-in monitoring mechanisms that can 

be automatically triggered play an ever-increasing role in measuring application stability. 

(Ursin 2016). 

3.4.5 Sharing 

The final component of the CALMS model is Sharing. A transparent culture with 

effective mechanisms of spreading knowledge across teams is essential in bringing down the 

walls between Development and Operations. Humble and Molesky (2011) mention celebrating 

successful releases together and sharing tools and techniques as effective sharing mechanisms. 
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Co-location, and face-to-face meetings with other teams further enhance social aspect of 

Devops.  

Finally, giving developers time to experiment with new things fuels the discovery process and 

encourages people to share these findings with the rest of the organization benefiting the 

organization as a whole (Puppet Labs, 2015). 

Like most components of the CALMS-model, sharing is also facilitated with new collaboration 

tools. In addition to improved auditability, introducing version control to everything and 

sharing the code repositories across teams helps keeping all teams on track in terms of what 

techniques and technologies are being used, what code commits are made etc.  

Patrick Debois, (2011) one of the “fathers” of Devops, also notes that shared workflow is a key 

element. When an organization has a deployment pipeline that is visible to everybody, all team 

members know what deployments are in which stages in the workflow. In other tools chat, 

wikis and newsletters are also mentioned. 

Already mentioned in the Culture section of CALMS, shared responsibility is a key element in 

motivating people to break down silos. Shifting operational responsibility to the developer side 

and reorganizing teams into product teams fosters collaboration. Previously, the pains of 

deployment were experienced solely by operations. In Devops, the pain is shared by the whole 

team and it is in everyone’s interest to make deployments as painless as possible. Instead of 

just having operations on call in case of emergencies, developers also carry pagers and are 

alerted if something goes wrong (Debois 2011). Having a shared monitoring system for all 

application instances further increases transparency and encourages other teams to review what 

is going on in the infrastructure as a whole. 

Finally, the introduction of Infrastructure as Code makes it possible to share existing setups 

with all teams. Having all teams commit to shared practices, unified operating systems and 

languages makes life easier for everyone. Using Docker as a tool allows the further unification 

of systems so all server instances can have the same setup without limiting the choice of 

technology when developing an application. 

3.5 Benefits of Devops 

There are clear benefits that can be drawn from the different components of Devops. This 

section will give an outline of the most important aspects of Devops benefits. 
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The main benefit of Devops is reduced lead time and enhanced deployment frequency. Lead 

time is defined as “Time required for changes to go from “code committed” to code 

successfully running in production.” Additionally, deployment frequency stands for “How 

frequently the organization deploys code.” (Puppet Labs 2015). Applying Lean methodologies 

to cut down batch sizes and the use of automatization in the delivery process are key 

contributors in these metrics. According to the 2015 State of Devops report (Puppet Labs 

2015), high-performing IT organizations have 200 times faster lead time than low-performing 

organizations. Also, by minimizing the bottlenecks and reducing the pains of deployment, high 

performing organizations deploy 30 times more frequently than low-performing ones. In this 

context, high-performing organizations use Devops approaches. 

More deploys means faster time-to-market and an enhanced feedback loop. With an enhanced 

feedback loop, organizations have a better idea of customer reactions to features and 

consequently, better means of continuous improvement.  

Another benefit of Devops is an enhanced change success rate. With a well set-up continuous 

development pipeline in place, organizations have seen a reduction of pains in the deployment 

phase. Change success rate is defined as the percentage of changes that succeed when rolled 

out into production. The 2015 State of Devops research states high-performing organizations 

have 60 times higher rate of success in deployments than low-performing ones. (Puppet Labs 

2015). 

The key to realizing this benefit is the use of version control, infrastructure as code, automated 

testing and common build mechanisms for different environments to prevent errors in code and 

differences in configuration.  A high change success rate attributes to employee satisfaction as 

well as a lower level of burnouts in staff when unplanned, meaningless work and related stress 

decreases.  

Devops also contributes to stability enhancements. Stability in this context stands for error-free 

operation of a system and the ability to keep processing requests.  Enhanced stability is realized 

by building quality into the system by utilizing automated tests, building applications with 

testability and deployability in mind and creating a culture for continuous improvement. 

Stability is often measured with availability. As an example of enhanced stability, Fonecta’s 

systems went from 95 % availability to 99.95% availability after adopting Devops approaches 

(Halkosaari 2016). 
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Another metric that is used to quantify performance is the Mean Time to Recover (MTTR). It 

stands for the time needed to recover from a service incident. With version control and 

automated deployment in place, rolling back to previous versions is easier as mentioned before. 

High-performing organizations using Devops can have 168 times faster recovery time than 

low-performing organizations that do not (Puppet Labs, 2015).  

Finally, Devops reduces costs. A survey by CA Technologies (2013) found that 46% of 

respondents had seen a reduction in spend on Development and Operations, with 45% of 

respondents expecting to see a reduction in the near future. On a side note, only 17% of the 

survey regarded cost reduction as a driver for Devops adoption.  

A path diagram of Devops and its benefits is shown in Figure 9. 

 
Figure 9: Path diagram showing relationships between Devops and its benefits (from: Eficode)  
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4 Research Design 

The chapter will detail how the research is designed. First, the overall research strategy and 

approaches taken in the study are explained. The second part describes how data collection was 

carried out and the reasons for selecting the approach. Finally, in the last subsection the quality 

of the research is discussed. 

 

4.1 Research Strategy 

This research is an empirical study of a relatively new approach to software development and 

delivery in the field of IT. Uusitalo (1991) states that an empirical study has to focus on a real 

world phenomenon and information needs to be acquired with a systematic method. Due to a 

scarce amount of prior research in the field, the empirical data collection for this thesis was 

carried out by a systemic qualitative method. The thesis consists of rich insights to the topic 

with an aim to describe and explain the phenomenon. This supports the view of Miles and 

Huberman (1994). Further, the goal of qualitative research is to describe a phenomenon or an 

event with the goal to understand a certain activity or give a interpretation to a phenomenon 

that is meaningful in a theoretic point of view.(Eskola and Suoranta 1996). 

The sampling data is chosen by judgement sampling. According to Hirsjärvi et al. (2009), using 

judgement sampling data is an important feature in qualitative research. By hand-picking the 

suitable interviewees, the best understanding of the phenomenon can be reached and the 

challenging areas of Devops uncovered. One of the contributions of qualitative study is 

describing a phenomenon in depth rather than making extensive, generalized assumptions 

based on statistical analysis of data (Koskinen et al., 2005). Therefore, based on the amount of 

the available data, the thesis favors this research strategy. 

Theme interviews were chosen as the method of data collection for this research. In order to 

zoom in to potential challenges in the Devops approach without making any assumptions 

beforehand, the data collection method needed to be flexible. According to Tuomi and 

Sarajärvi (2006), interviews are the recommended method of data acquisition where flexibility 

is important.  

Additionally, the value of interviews also lies in the ability to ask for clarification and to find 

out more about specific issues mentioned. This holds especially true for themes that have not 

been previously explored. (Hirsjärvi et al., 2009). 
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Theme interviews are adaptive in the sense they support making follow-up questions and 

modifications if an interesting topic comes up. The aim of this research was to find out and 

understand potential challenges in the field of Devops. Therefore, targeting questions and 

predefined discussion topics were decided with the overall aim of the research in mind (Tuomi 

& Sarajärvi, 2006). 

Finally, an abductive approach was chosen to carry out the interviews. According to Dubois & 

Gadde (2002), abductive approach stands for first exploring and analyzing the existing theory 

followed by the empirical phase of the research. The abductive approach was necessary for this 

study to first find out the main components Devops so all necessary areas could be covered in 

the interviews.  

4.2 Data Collection 

The data collection was carried out by semi-structured theme interviews with nine Finnish IT-

professionals with previous in-depth experience of Devops initiatives. The interviews were 

structured by the CALMS-model described in the theory part of this thesis. Each section of 

CALMS was supported by targeting questions. However, conversations were allowed to 

develop freely in any direction in order to learn more about the different aspects of Devops as 

well as to uncover new sources of challenges and points-of-view. 

4.2.1 Interviews 

The study consists of nine semi-structured theme interviews with industry experts. The experts 

mainly come from organizations that have seen a Devops-transition and many of these 

interviewees were key sponsors of these transitions. Additionally, two of the experts come from 

companies that work with Devops transitions as a business. While the number of interviewees 

is low, they have extensive knowledge on the subject and some of them can be considered key 

players in the field of Devops in Finland. Gomm et al. (2009) state the quality of the study is 

not influenced by statistical significance. Taking a deep scope, rather than scratching the 

surface, allows to concentrate on the reasons and the ways to overcome challenges in Devops 

implementations, as supported by Dubois and Gadde (2002).  

The data collection interviews were carried out between February 19th and March 8th of 2016. 

The interviewees were contacted through LinkedIn and e-mail and they were carried out at 

company premises or their nearby restaurants. On two occasions, two people were 
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interviewed simultaneously. The length of the interviews varied between 47 minutes and 1 

hour 7 minutes. The average length of the interviews was 59 minutes. The interviews were held 

in Finnish and were recorded on the permission of the interviewees. The interview questions 

were based on the key areas of Devops, aiming to guide the interview. Most of the questions 

asked to describe a Devops transition process while a minority of them asked specifically to 

name challenges in related areas.  

A summary of the interviews is displayed in Table 3. 

The interviews were transcribed on March 14-March 20. The transcribed content was analyzed 

and given a title based on the topics mentioned in the interviews. The categories were coded 

thematically using Microsoft Excel. Further, the findings were grouped and categorized by 

axial coding into separate categories based on their similarity. The table of the categories is 

displayed in chapter six. The individual nuances are not included in the table due to space 

limitations. However, most of them emerge in the analysis section. 

Table 3: Summary of the interviews 

Date Name Title Company Location Duration 

19.2.2016 Lauri Halkosaari CTO Schibster Media / Tori.fi Helsinki 1h 2min 

22.2.2016 Juha Lehtosalo & Kalle 
Ylä-Anttila 

Portfolio Manager, 
Software Architect 

YLE Helsinki 1h 2min 

22.2.2016 Erno Aapa Swiss Army Knife Sharper Shape Helsinki 1h 0min 

23.2.2016 Niilo Ursin & Tomi Vainio CTO, Senior Production 
Manager 

Alma Talent / 
Kauppalehti 

Helsinki 1h 07min 

2.3.2016 Pasi Katajainen Head of Technology Nordcloud Helsinki 51 min 

8.3.2016 Joakim Sandström Software Architect Aktia Helsinki 47 min 

8.3.2016 Marko Klemetti CTO Eficode Helsinki 1h 07min 

 

4.2.2 Interviewees 

A total of nine people were interviewed in the data collection phase. The interviewees were 

picked by first identifying Devops initiatives in Finland (Commitcom, 2014). Next after getting 

responses from the first interviewees, I got recommendations from their personal networks for 

additional people. All interviewees are top professionals in the Finnish Devops-scene and have 

been deeply involved with Devops transformations in their respective companies. 

The remainder of this section will give an overview of the interviewees and their involvement 

with Devops. 
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Erno Aapa 

Erno Aapa is the founder of Devops Finland, a community of 750+ members attending 

Devops-related meetups and promoting discussion about the approach. Originally a 

developer, Aapa has experience in Devops consulting to companies such as Rovio and 

Elisa. Currently Aapa is working at Sharper Shape with focus on management and team 

leadership. 

Lauri Halkosaari 

Lauri Halkosaari is the CTO/CIO of Schibster Media / Tori.fi. With a backround in full-

stack development, web services and project management, Halkosaari was leading the 

Devops transformation at Fonecta before going to Schibster.  

Pasi Katajainen 

Pasi Katajainen is the Head of Technology at Nordcloud, a leading cloud architecture 

and Devops consultancy company in Finland. Originally a developer, Katajainen has 

experience at Nokia’s HERE-unit in managing its cloud transformation where he got 

acquainted with challenges of Continuous Integration and Devops generally. Nowadays 

working closely with Devops-workshop-based solutions.  

Marko Klemetti 

Marko Klemetti is the CTO of Eficode. Eficode is one of the leading Devops consultancy 

service providers in Finland. Klemetti has been involved in many Devops 

implementations starting from the early days of Devops. 

Juha Lehtosalo 

Juha Lehtosalo is Portfolio Manager at YLE, the Finnish national radio. His area of 

responsibility is the development of YLE.fi web service. Lehtosalo has played a key role 

in the Devops transformation at YLE web services. 

Joakim Sandström 

Sandström is an application architect in Aktia. Aktia is a large bank in Finland. 

Sandström became involved with Devops through the banking renewal project in Aktia, 

that aims to renew all basic banking services with the use of 3rd generation software 

development. 

Niilo Ursin 
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Niilo Ursin is the CTO of Alma Talent / Kauppalehti. With both developer and operations 

background, his team is responsible for the technology behind digital content. Ursin has 

been of the key drivers in Devops transformation at Kauppalehti. 

Tomi Vainio 

Tomi Vainio is Senior Production manager at Alma Talent / Kauppalehti. Before his 14-

year career at Alma Talent, Vaino has also worked at Elisa and Sonera. Along with CTO 

Niilo Ursin, Vainio has driving the Devops initiative at Alma Talent / Kauppalehti. 

Kalle Ylä-Anttila 

Kalle Ylä-Anttila is Application Architect at YLE, the Finnish national radio. With 9 

years of experience at YLE, his responsibilities lie in leading the operations-team and 

Ylä-Anttila has been deeply involved with the Devops-transformation at YLE.fi. 

4.3 Quality of the Research 

The quality of the research refers to validity and reliability of the research. Validity describes 

how well the research is mirroring the claimed research objectives. Reliability is referred to the 

repeatability of the results in methodology research. Tuomi and Sarajärvi (2006) claim that 

there are no specified rules to measure validity and reliability. Measuring validity and 

reliability in quantitative study is considered easier than in qualitative study since all findings 

are quantified and the research can be repeated using different sets of data. Using numbers to 

measure validity and reliability makes it easy to test the research (Hirsjärvi et al. 2009; Uusitalo 

1991).  

Qualitative research complicates the measuring of reliability and validity. According to 

Hirsjärvi (2009), the reliability and validity should still be addressed in all types of research. 

In order to increase research reliability and validity, a detailed description of how the research 

is conducted should be present. Koskinen et al. (2005) also argue that concentrating on a limited 

number of observations in qualitative research enhances reliability. Taking these points into 

account, this research follows the aforementioned guidelines to improve the quality of the 

study.  
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5 Analysis 

This section analyzes the information derived from the interviews. The thesis uses a data driven 

analysis for the purpose of creating a theoretic body of the qualitative data that is acquired by 

means of theoretical research. Data driven analysis can be divided into three phases (Miles & 

Huberman 1984). This research leans on these three phases in processing the acquired data. 

1) Reduction of the data (simplification) 

2) Clustering of the data (categorization) 

3) Abstraction of the data (creating theoretic concepts) 

In order to reduce the data into manageable entities, I first identified the broad concepts of 

different challenges and linked similar stories from different individuals together. I created an 

Excel-spreadsheet to manage the data and prioritized the challenges according to the frequency 

they were mentioned in interviews.  

Next, the data was clustered into different categories. There were 16 sub-challenges identified. 

Further grouping resulted in four general-level challenges that are listed below: 

 Challenge 1: Lack of Awareness in Devops 

 Challenge 2: Lack of support for Devops 

 Challenge 3: Implementing Devops technology 

 Challenge 4: Adapting organizational processes to Devops 

The following section describes each channel in detail. 

5.1 Lack of Awareness in Devops 

As anticipated, the lack of clear definition of Devops brings forth confusion. The concept 

of Devops is not well understood, since the concept has not yet sufficiently matured. Also since 

Devops is such a hot word currently, a certain amount of resistance to ‘buzzwords’ was also 

identified in the interviews. The lack of awareness inside an organization creates bottlenecks 

and people-dependencies. 

5.1.1 Maturity of the concept 

One of the main challenges in bringing Devops to an organization was found to be the 

actual concept of Devops. The lack of definition for Devops was found to be confusing in six 
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of nine interviews. This creates problems in getting organizations aboard to start embracing the 

approach and selling Devops-consultancy services to customers.  

According to Ylä-Anttila, a common misconception about Devops is that it is a “product” or a 

“toolset” that “one can buy straight from IBM and be done with it”. Mentioned both by Ylä-

Anttila and Halkosaari, some configuration management software companies seem to be 

selling their products as a “Devops suite” that further promotes the confusion. As I mentioned 

earlier, the market for tools that can facilitate the automation part of Devops is growing rapidly 

and these companies are taking full advantage of the buzzword Devops. Furthermore, 

Halkosaari mentioned that consulting companies are also trying to capitalize on the buzzword 

by offering Devops as a package to customers whereas the real advantage of Devops is 

organizational and process change. 

Another common misconception was that Devops is either a “Devops guy or a Devops team” 

(Katajainen) or a “separate operations team that is doing some coding” (Ylä-Anttila). Neither 

is it a role or a title (Aapa). The problem is that everybody is using Devops the way they see it 

and how their organization has been inspired by it. Aapa stated that the usage of the term is 

also dependent on the size of the organization: for startups Devops might entail radically 

different things than for large enterprises. For instance, startups are usually born cloud-native 

and are operating on a pure PaaS infrastructure, for example Heroku 3, which is closer to a 

NoOps-model where all operations are automated and handled by the service provider. In 

contrast, large enterprises might operate on a mixture of self-hosted and IaaS infrastructure that 

requires more configuration management, coding infrastructure and automation. To conclude, 

Devops for startups might mean pure development with no operations while Devops for 

enterprises might mean the whole product development process going even further over the 

boundaries of both development and operations to involve product owners as well as quality 

assurance. 

On the other hand, Halkosaari brought forth an alternative point of view: it can also be seen as 

a great freedom and strength for Devops that it is not centrally directed by any foundation in 

contrast to Scrum foundation or ITIL and the British Military. Devops gets its trends and best 

practices directly from the community and interested industry professionals – everything is 

kept lean and therefore true to the approach.  

                                                                    
3 Heroku is a leading PaaS (Platform-as-a-Service) provider that offers an automated platform 
to host applications without the developer having to worry about the underlying infrastructure. 
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5.1.2 Allergy to buzzwords 

There are several interviewees who see a problem with the Devops-buzzword. Partly 

due to the fact that Devops is currently such a hot word and partly due to its ambiguity and 

“wild” usage, the value of the word has decreased and Devops is now met with a certain kind 

of reluctance. Aapa mentioned that the “allergy” can be seen in people that are naturally against 

trend phenomena, people who think “it is too mainstream, I am against it even though I do not 

know what it is really about”. This is important to mention because it affects how to sell the 

idea and how it is received on the other end.   

Many of the interviewees suggest a strategy of dropping the umbrella term ‘Devops’ and 

talking about reducing lead time and introducing automation instead, while others say the 

“hotness” of Devops actually works to its advantage or that the reluctance can be used to 

educate the other party. 

5.1.3 Lack of Awareness 

Devops is a new concept for many people. As mentioned before, it is a challenge to 

grasp the whole concept of Devops. According to Vainio, for management, it might not be even 

necessary to understand Devops but for the people inside the IT organization where the change 

is taking place, the concept needs to be shared and communicated in order for everyone to work 

together with the level of collaboration Devops requires for it to work.  

The overall lack of awareness about Devops is viewed as a challenge by several interviewees. 

Even though the majority of the organization might already be Devops-oriented, there are 

always areas in the organization where Devops has not reached yet. Not limited to the concept 

of Devops, the components such as Continuous Delivery or Continuous Integration may be 

unknown.  

In an organization that is moving fast with these technologies, training all necessary people can 

be easily overlooked. Formal training is not enough. Klemetti noted that sponsors for Devops 

are usually the key people that share knowledge inside and across teams. Often they do not 

have higher position in a team and therefore they are a bit more difficult to find. Moreover, 

managers might not even know that these people are key resources in the teams for sharing and 

educating their colleagues. If the specific knowledge needed to use the tools is not readily 

available, the people dependencies required to operate them become bottlenecks and risks for 

continuity, as mentioned by Aapa. 
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Finally, sharing and spreading the knowledge of Devops is considered easy in the start when 

large changes are happening in parts of the organization. Once an equilibrium is reached and 

business is going as usual, sharing and spreading common practices may easily be forgotten. 

Sandström claimed that implementing a Devops-approach in new teams usually re-ignites 

active sharing but promoting sharing as a routine can be difficult. 

5.2 Lack of Support for Devops 

Another central challenge identified was the lack of support for Devops. The lack of support 

may show on several levels: on the management level, on the team level or as an overall lack 

of trust. 

5.2.1 Lack of management support 

Lack of management support is considered one challenge in Devops. Because Devops 

has to do with lots of changes to the ways different teams are working on a daily basis, a high 

commitment and support at the top level of the organization is necessary to change the company 

culture. Klemetti says that The role of the managers is to “untie the knots executive personnel 

cannot untie themselves”, to “break down the walls” and allocate more time for communication 

and sharing.  

According to Klemetti, there are three profiles of managers that each reflect their attitudes 

towards Devops: tech-savvy, open to ideas and teflon. Tech-savvy managers are the easiest 

ones to convince. First of all, they usually have heard of Devops and are open to discuss it. If 

the argumentation is made correctly, the ideas will usually go through without problems. For 

instance, Ursin described the management at Alma-Talent tech-savvy and therefore IT could 

get their initiatives to develop infrastructure even at the cost of a longer overall project lifecycle 

approved easily. 

Managers open to ideas are usually willing to discuss an idea but they are more concerned 

about the financial side of the changes. It might be challenging for a development organization 

to translate the improvements into cost reductions and other financial gains. Therefore, 

argumentation must be well thought out for it to pass. Fortunately, Devops can be tried out 

with small initial commitments. Finally, managers with teflon profiles are the most difficult to 

deal with. In many cases, these managers are not even aware of the issues a Devops initiative 

is trying to solve. Thinking that the organization is doing just fine with current methods is quite 

common, or the notion that current systems are so complex they cannot be developed in the 
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proposed way. Klemetti argued that it might end up in a sort of “guerilla warfare” with the 

teflon managers, training people to do things differently one person at a time without any help 

from the management. These kinds of endeavors may still end up in failure, Klemetti said, 

giving an example of an anonymous company where the main sponsor for Devops was lost 

when the management saw the person as a burden and decided to let the person go, even though 

the person contributed to Devops in that organization significantly. 

Table 4: Manager profiles as described by Klemetti 

Manager profile Description Strategy to gain support 

Tech-savvy Prior knowledge of Devops, open to new 

technologies 

Reasonable argumentation 

Open to ideas No prior knowledge of Devops, open to 

new ideas 

Argumentation based on 

financial gains 

Teflon No prior knowledge, no realization of 

issues 

“Guerilla warfare” 

 

The lack of “real” support from management is also an issue once the decision to adopt Devops 

has already been made. Klemetti stated that more often than not, management does not 

understand the scope of the change. Simply throwing money at Devops does not lead to much, 

rather there are several aspects that the management needs to address. First of all, according to 

Katajainen, change is often mistakenly viewed as a R&D change where, for instance, an 

automation pipeline is set up. Klemetti explained that the change in culture needs to be 

facilitated by empowering different boxes with different communication tools and practices 

and seeing this as a value-adding measure: not just wasted time away from “actual” 

development work. Along with culture, staff needs to be properly trained to new processes and 

tools and it needs to be determined whether any 3rd party consultants are needed in any part of 

the change process. Moreover, the nature of product development changes from iterative work 

to continuous development and therefore, for example feature specifications need to generated 

accordingly. 

5.2.2 Lack of team-level support 

Lack of support can also be seen on the team level. The main reasons for lack of support lie in 

the change of working methods, change of roles and the organizational readiness to 



 Analysis 
 

 42  
 

communicate.  The change of working methods is perhaps the most profound change in 

Devops. As mentioned in the literature review, developers take more responsibility in running 

software, operations take more responsibility in building coherent, preferably code-driven 

infrastructure and quality assurance can focus on actual quality and not manual testing. As 

many tasks are automatized, the fear of a machine replacing jobs is a common one that raises 

opposition on the executive level.  

There are roughly 3 types of issues related to this: lack of trust, lack of skills and lack of 

readiness to communicate. Lack of trust can be found anywhere where work gets shifted away 

from people. Aapa explained that in some cases, especially when development is tasked with 

coding infrastructure, operations do not trust that development have the required skills to do 

this adequately, for instance setting up proper security measures etc. Moreover, Sandström 

added that people might be reluctant to let automation handle tasks that would require 

administrative rights – doing these tasks manually through change management processes 

ensure that it has been approved by the required people and not by an automated sequence.  

Lack of skills is a very common issue when dealing with new tools and processes. Katajainen 

and Klemetti both realized an issue where there might be some people in the organization, 

especially operations and QA people that are intimidated by these new tools and skill 

requirements and instead of striving to learn them, they initially choose to oppose change. The 

key to solving this issue is to communicate that the change is necessary and once the skills 

have been acquired, the job will actually be more enjoyable. At the same time the members of 

staff have increased their market value by learning new skills. Among the interviewees, the 

fear of operations or QA staff losing their jobs was not encountered, although Devops can be 

sold to an organization as a means to reduce the need of manual work.  

Finally, Halkosaari pointed out that inertia at the team level may rise from outside development 

and operations, namely from stakeholders who rely on traditional means of communication 

such as ITIL and release management, change advisory board (CAB) meetings and steering 

committees. While many of these practices prevail in a Devops organization, the nature of 

communication changes from a structured set of practices to free and transparent ones, with 

the aid of new tools and processes. Sandström added that the organizational structure might 

also be an impediment to free collaboration. 
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5.2.3 Lack of trust 

Somewhat related to the challenges with managerial support, Lehtosalo and Ylä-Anttila 

identified a challenge more widely related to Devops adoption: earning and keeping up trust 

with stakeholders who are not involved with day-to-day operations. 

The challenge is the clearest at the very top level of the organization. In the traditional model, 

the services are developed in steering committees and CAB meetings and other agreements 

where deployment dates are set and approved. However, Ylä-Anttila noted that in a Devops 

approach the batch sizes are smaller and releases more frequent so many of these meetings can 

only deal with more abstract, higher level changes. This shifts responsibility more towards the 

development team and the teams are getting more and more autonomous. In the process, a lot 

of the information and documents produced by the development teams to bring to these 

meetings are not produced anymore (such as weekly reports mentioned by Ylä-Anttila).  

Without these agreements and reports, all stakeholders do not have a clear view of the day-to-

day operations which may lead to situations where they are doubting whether the development 

teams “know what they are doing” according to Lehtosalo. This requires a certain level of trust 

between stakeholders and development teams without having to “constantly remind everyone 

that they are professionals and letting them do their work”.  

Another related challenge is contracting external operations resources to work in teams that are 

doing Devops. Previously work was contracted on a transactional basis where a contractor 

would offer a certain service based on agreements such as SLA or deliverable based on a 

specification document. What Lehtosalo noticed at YLE was that it became significantly more 

difficult to contract people to work in teams, and managing these contracts were more difficult 

because they were now based on trust and not hard deliverables such as service availability or 

some feature in a product.  The performance of these resources could not be determined in the 

same manner as in the agreement-based model. 

5.3 Implementing Devops technology 

The key technological breakthroughs in Devops is the creation of an automated continuous 

delivery pipeline. This new way of delivering software has a profound impact on the processes 

in development, quality assurance and operations. “Automatizing inefficient processes leads to 

automatizing inefficiency.” (Jyrki Kasvi) Sandström used the quote to point out that setting up 

automation technology alone is not sufficient. While automation promises benefits in lead 
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times, application stability etc., implementing this technology and processes is not entirely 

challenge-free. 

5.3.1 Automated testing 

7 of 9 interviewees found challenges with building automated testing inside the development 

process. Many of these challenges are people- and skill-related, while others are more related 

to the way testing is organized in the new approach. In pre-Devops models, testing is usually 

handled downstream, that is, after features have been developed and handed off to the next 

person. Devops automation requires tests to be written simultaneously as a part of the 

development process. As a result, the need for manual click-based testing is reduced, testing 

time is minimized and possible breaking errors can be noticed more easily since tests are run 

more often and in the exact same manner each time.  

One challenge mentioned by several interviewees was the attitudes of developers towards 

writing automated tests. First of all, Katajainen and Vainio both pointed out that even though 

new practices regarding testing have been agreed upon, there are developers that have a hard 

time embracing these practices and continue to develop without writing tests. According to 

Katajainen, writing tests is not considered fun nor a part of developers’ role. It might even be 

considered waste. Ylä-Anttila added that many still assume testing is someone else’s 

responsibility. Finally, developers might not have adequate skills to do testing properly. For 

instance, the lack of knowledge and know-how of different testing frameworks is quite 

common but somewhat surprisingly there have been cases where some developers did not 

know automated testing frameworks even existed.  

Aapa named a few measures that can be taken to combat these reluctant attitudes towards 

testing. Leading by example is effective: writing a few tests that the team can take a look at 

makes the team understand what is expected of them. Additionally, when the team is making 

pull requests4, the person who makes the approval should not do so before test coverage is 

adequate. By making it clear that no changes go through to production without the agreed level 

of tests forces developers to make writing tests a part of their development routine. In doing 

so, it is also made clear that the responsibility of testing lies on the developer, and not the 

quality assurance people whose job is not to click through the application every time there is a 

change ready to be delivered. 

                                                                    
4 A pull request is used to request a finished code commit to be merged into the common code 
branch of a product 
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Another aspect is defining the added value of writing automated tests. Since writing tests is 

also a financial issue it is often a challenge to find the correct level of test coverage.  As Vainio 

put it, tinkering with tests is not their core business. Ursin reminded that all software is not 

equal: critical functionalities such as functionalities that handle monetary transactions should 

be tested thoroughly while others, such as components for internal use should only have a 

rudimentary coverage. It is up to the developer to understand the required level. In some cases, 

specifically in the banking industry, Sandström claimed it might be cheaper to have a manual 

tester do the job rather than spending too much development time in complex test cases. 

5.3.2 Automation tool challenges 

Five out of nine interviewees identified challenges with automation tools, namely determining 

which tools are right for the project and the maturity of automation tools. The challenges with 

automation tools were not considered technical -  the configuration of these tools to work in a 

proper continuous deployment pipeline was considered a laborious task but not a challenge per 

se. 

Determining the suitable tools was considered a challenge since the industry is young and there 

are numerous different options. Katajainen highlighted the main decision points: will the 

company go with open source tools that are easier to replace or will they commit and pay for 

these tools? Additionally, should the tools be hosted locally in some environment or should 

they be cloud-based? Are there restrictions to which tools an organization can use? For 

instance, if an organization is already using a test framework, is it “Devops-friendly” and if 

not, can it be replaced? 

The other challenge related to tools is their maturity. Since many of them are quite new, they 

do not always work as intended, they do not support all needed environments or they might 

become outdated too fast. Unfortunately, the most common solution seems to be waiting for 

new versions to come out or trying to find workarounds using other tools. Aapa said it is not 

necessarily a bad thing: building a toolset out of various pieces that are easily replaceable also 

prevents vendor lock. However, the downside there is the ever-increasing skill requirements 

for different software. 

5.3.3 The type of the application 

The final set of challenges in automation is related to the type of the application that is 

the target of automatization. Three interviewees of nine identified this challenge. The most 

common problem is that the application architecture is not at all suitable for virtualization. 
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Klemetti mentioned mainframe computers that are still quite common in banking- and 

insurance industry, while Halkosaari mentioned the type of architecture that has negative 

scalability – this can be databases that only have a limited amount of socket connections etc.  

One response to these kind of architectural limitations is splitting down the application into 

small units, sometimes called microservices, and virtualizing as many of them as possible. This 

leaves only the core fraction of the service to run on the legacy hardware, and other parts of 

the service can now be developed with a Devops-approach. While all of this might be possible, 

many interviewees (eg. Halkosaari) reminded that all transitions of this magnitude should only 

be considered if the business case is well-established. Klemetti noted that in some cases, it 

might be wiser to use the allocated automation money on developing a new, modern system 

from scratch. 

5.3.4 Fragmentation of tools and practices 

Another related set of challenges lie in common practices both inside and across teams. First 

of all, the use of various technologies and tools across teams is considered a challenge. Ylä-

Anttila and Vainio claimed that having different environments for continuous integration and 

not having a common deployment pipeline is an anti-pattern for the very foundation Devops is 

built on. 

There are several ways of overcoming this. Keeping all application code in version control and 

available for everybody to audit and review makes all application development transparent and 

prevents reinventing the wheel effectively. Moreover, people from all teams can contribute to 

the code if they need a specific functionality implemented. This is especially true with 

infrastructure. Aapa explained that rather than making a different version of the infrastructure 

to use with a specific application, the enhancements made are available for all other 

applications that use the same infrastructure template as well. Subsequently, it prevents 

fragmentation and people dependencies.  

Sometimes it is necessary to use different technologies for application development. With the 

help of containerization, different software components written in different languages can 

function on the same infrastructure. Ylä-Anttila and Halkosaari both mentioned the use of 

Docker which is a platform containerization software to address this issue. As a result, the 

programming language can be chosen somewhat freely by the developer. In other situations 

where the use of containerization is limited (especially with legacy systems), building common 

Application Programming Interfaces (API’s) around the special software helps isolate it from 
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the common architecture while still providing the same kind of programmability as other 

common software do.  

Additionally, the use of different communication channels across teams is to be avoided. All 

but one interviewee said their IT organization has started using Slack to counter this issue. In 

addition to basic chat functionalities, it’s beneficial to be able to follow and subscribe to 

conversations based on their topic, which promotes cross-team communication. 

5.3.5 Finding the right scope for monitoring 

With the help of Devops and new tools such as the cloud-based New Relic, it becomes easier 

to monitor different services in a consolidated view. However, when more and more operations 

duties are shifted towards development, “No-Ops” being at the far end of the spectrum, it 

becomes also increasingly important to monitor the right things. 

Many of the systems are better-equipped to raise alerts when a defect is found but this has 

introduced a problem with prioritization: with an increasing number of alerts it is often difficult 

to find which ones are critical and which ones need attention. Vainio and Sandström noted that 

receiving hundreds of different alerts daily from different sources is sub-optimal and costly to 

inspect. Therefore, setting ground rules for incident severity prioritization, used channels and 

which people are notified is necessary to overcome this challenge. 

 

5.4 Adapting organizational processes to Devops 

Devops promises speed and flexibility in the delivery of software. The speed and flexibility 

might not be fully realized, however, if the organizational processes do not accommodate it. 

The processes have to do with Devops initiation, software development mode, change 

management processes, metrics and team-related challenges. 

5.4.1 Starting with the correct scope 

A challenge that was frequently mentioned was the notion of starting with the correct 

scope in regard to Devops transition. As explained in the literature review, Devops calls for the 

virtualization of IT infrastructure. For existing applications, it means the server stack needs to 

be converted to code that is able to provision the functional equivalents of previous hardware 

servers in order to run the application. For new applications the process is much easier: starting 

with a clean slate the infrastructure can be configured without any limitations using the latest 
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available technologies and industry standards. Furthermore, the monetary investment is a 

significantly cheaper than in a traditional setting since no new hardware is usually needed. 

While the application may be at the core of Devops, Klemetti reminded that the process and 

practice changes related also to software development, culture and IT governance have such 

high significance that trying to start off with too much can become overwhelming.  

Katajainen elaborated that starting off with several applications may result into reinventing the 

wheel when solving similar problems among projects. Additionally, solving the same problems 

in an uncoordinated manner can also lead to different solutions that cannot be later unified. A 

small scope proof of concept ensures that the automation is set up in a way that it can be reused 

later in other projects and that the governance model works the way it is intended before any 

of it is rolled out to the rest of the organization. Also Halkosaari noted that a proof of concept 

works: using only a fraction of the cost of a traditional software project, a successful Devops-

oriented initiative can easily gain traction in the organization since it is possible to realize early 

wins and thanks to new measuring practices, the results can also be quantified. 

Klemetti named four factors affecting how much an organization can do at the start of their 

Devops-initiative. The most important factor is effective agreements. If, for instance, the 

organization’s Operations is outsourced to an external vendor, there is little an organization 

can do to existing applications before their current contract expires or is renegotiated. The 

second factor is the type and scope of IT-infrastructure. There are still many companies that 

use mainframe computers or other special hardware as key components in their infrastructure 

that are not easily virtualized. Thirdly, application architecture also affects the outcome: using 

software technologies that are easily containerized makes them very flexible for Devops 

approaches. On the other hand, using complex application architecture that have a lot of 

dependencies in various places might make the job more difficult. Finally, Klemetti named 

company culture as the last factor. The level of communication in the organization is a major 

component. The key question is: Does the organizational culture make it possible for 

developers, quality assurance, IT operations and those responsible for product specifications 

to come together and develop the product or service? Are they even in the same country? As 

stated above, taking a small-scale approach to Devops with early wins decreases the risk 

considerably and buys time for the rest of the organization to adjust to the new ways of working 

without having to make a considerable leap of faith. 
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5.4.2 The mode of Software Development 

There was a very common challenge associated with Scrum as an Agile software 

development method. The main challenge with Agile, according to Klemetti, is that many 

organizations are developing the software in sprints without the goal of releasing the features 

immediately when they’re finished. “You can do agile forever without ever releasing your 

software. Agile itself does not translate to added value for customers”, Klemetti explained. 

Moreover, Aapa claimed that doing Scrum by the book is too rigid for the purposes of Devops. 

The model where a release package is created at the end of each (2-week) sprint does not fit 

well into the Devops-approach where the goal is to release once a feature is completed, often 

several times a day. This is the reason why Kanban fits into the Devops approach better. 

Many interviewees explained that their organization started out with Scrum by the book. 

However, according to Lean principles many teams were allowed to modify and cut down on 

the ceremonies that were considered waste. After the process, many organizations found 

themselves doing “something similar to Kanban” (Vainio). Teams got to decide autonomously 

the best ways of working after having experimented what works in Scrum. For instance, at 

Alma Talent, the daily Scrum check-up meeting was considered useful but not necessary to 

meet face-to-face every day. It was therefore moved over to the chat-tool Slack instead. Aapa 

noted that a good feature of Scrum is that it is better-equipped to guide overall product 

development on a longer time frame, however there are other tools that can be used to tackle 

that. 

Other challenging aspects with software development methods were identified when working 

with 3rd party vendors. Working methods between the two parties may conflict: the 3rd party 

might not be able to deliver features reasonably at the same pace the procuring organization 

expects it to. Also specification changes in a market-driven, volatile environment may prove 

to be challenging for the vendor to make if they work in a non-agile mode that does not allow 

specifications to change. 

For instance, some of YLE’s development is procured from third parties and the agreements 

were traditionally made on delivery-basis. According to Lehtosalo, this means that YLE was 

paying vendors to develop features and these features were considered as investments, which 

in turn had pressure to increase YLE’s value. In a continuous delivery setting, however, batch 

sizes are smaller and delivery is much more incremental, it was challenging to determine the 

price and value for each small increment. Therefore, the agreements were renegotiated to 
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procure development work instead of features which also had major implications on budgeting: 

instead of release-based budgeting, budgets had to be converted into accommodating a 

reasonable amount of continuous development. 

5.4.3 Change Management Processes 

The other major challenge with Devops-style continuous delivery is how it fits into the 

organizations current change and release management processes. Very often enterprises follow 

for example ITIL processes by the book. The processes are not necessarily designed to handle 

the amount of changes and the velocity of development Devops can bring to an organization.  

Klemetti offered a point of view where ITIL is especially good for “writing in stone” who to 

blame when something goes wrong with a change. The approvers are usually held responsible. 

However, Devops changes the situation and brings responsibility back to those that actually 

develop the software. Aapa stressed that it is extremely important that the developer is the one 

who takes the code into production. Not wanting to break anything, developers are forced build 

quality and integrity into their code. The reasons are transparent: every change can be tracked 

at the source code level – who changed and what (in the Git version control system a view that 

shows line-by-line code changes is actually called “Blame”) in the delivery pipeline. There is 

no longer a need for rigid change processes.  

Ylä-Anttila described their solution to the challenge: making own adjustments to the process 

to better serve the product development is necessary. Therefore, at YLE they introduced 

“Domain CAB” –thinking where there is a person close to the team that is responsible for 

change management related to their specific domain. As long as the domain CAB-person has 

a holistic view of what is going on with their respective service the approval chain does not 

extend further. For larger releases such as a new version a more formal process is in place but 

other than that changes are mostly business as usual. Aapa’s views are in line with Ylä-

Anttila’s: the change ticket is informative, describing the change that was already deployed to 

production. According to Lehtosalo they have solved the problem in a manner that there is one 

change ticket that “basically says we’re going to make changes all the time. So far the 

arrangement has worked out fine with the management, but if something goes wrong then 

we’re back at the discussion whether these models should be based on trust or more formal 

agreements”, Lehtosalo noted. 

All interviewees that saw change management as a challenge agree that ITIL, for instance, is 

still considered a well-thought library of principles but the prescriptive nature of some practices 
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does not support Devops in all cases.  Therefore, local adjustments and flexibility is necessary 

to overcome the challenge. 

5.4.4 Adopting new metrics 

Finding common metrics for both development and operations as well as quality assurance was 

considered challenging. Traditional metrics such as uptime and the amount of tasks completed 

in a Scrum sprint, for instance, are still viable but the focus is shifting. The “Devops” metrics 

such as lead time, code quality and overall system health can be measured with new kinds of 

tools. Once the metrics are in place, it may take time for the numbers to be comparable with 

other applications. According to Klemetti, there are managers who might be over-enthusiastic 

with these new metrics. When these metrics are first put in place for an application that has 

been in development for several years, it is natural for these metrics, such as code quality, to 

be below average. The challenge is finding the balance between improving the score of the 

metrics and keeping up a rapid pace in development. Over-emphasizing the metrics can have 

an adverse effect on the development since a lot of time goes to refactoring code and making 

the application perform better from a metrics-point of view. 

5.4.5 Team challenges 

When development and operations are brought together to form Devops, the idea is that the 

amount of collaboration and communication between the two increases. Several aspects, such 

as location, the time spent together with other teams and product teams have some associated 

challenges. 

Several interviewees recognized that having development and operations in separate locations 

is challenging for Devops. Unfortunately, an organization structure usually mirrors the way 

software is built (Conway’s law) which is an impediment to open communication. The same 

goes with other areas of the product development as well. Klemetti mentioned a worst case 

scenario where some organizations still send their product specifications over from another 

building as printed documents without meeting with development in order to explain it all. In 

cases where co-location is not an option, Katajainen suggested visiting other teams at least 

once a day. Klemetti said that the only logical solution is the simple one: Co-locate 

development and operations.  

While co-location serves as an informal medium of communication, there is a need for other, 

arranged meetings with teams as well. Ursin, Vainio and Ylä-Anttila all mention demo days 

where teams come together to show other teams what they have been working on. Moreover, 



 Analysis 
 

 52  
 

hackathons (intense coding periods where something functional is built from scratch) work 

towards educating people about different tools and technologies as well as getting to work with 

different kinds of people from different teams.  
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6 Findings and Discussion 

The purpose of this section is to summarize the findings relevant to the research questions:  

1. What are the key components of Devops? 

2. What are the main challenges organizations face with Devops? 

The secondary research question attempts to describe how these challenges can be overcome: 

3. What are the ways to overcome these challenges? 

The main function of the literature review in chapters 2 and 3 was to answer research question 

1. The second and third questions was based on the qualitative research analyzed in chapter 5. 

Further, chapter 7 presents implications that contribute to answering question 3. 

There were 16 notable challenges mentioned in the interviews. The four main challenges that 

emerged from these findings are: Lack of Devops Awareness, Lack of Support, Implementing 

Devops Technology, Adapting organizational processes to Devops 

The following table summarizes the findings for each main challenge. 

Table 5: Summary of challenges found in the study 

CHALLENGE SUB-CHALLENGES REFERENCE FREQUENCY 

Lack of Awareness 

in Devops 

Maturity of the Concept Halkosaari, Lehtosalo, Ylä-

Anttila, Aapa, Sandström, 

Katajainen 

6 

Allergy to Buzzwords Halkosaari, Aapa, Ursin, 

Sandström, Klemetti, Katajainen 

6 

Lack of Awareness Halkosaari, Ylä-Anttila, Aapa, 

Klemetti, Katajainen 

5 

Lack of Support Lack of management 

support 

Halkosaari, Lehtosalo, Vainio, 

Klemetti, Katajainen 

5 

Lack of team-level 

support 

Halkosaari, Ylä-Anttila, Aapa, 

Vainio, Sandström, Klemetti, 

Katajainen 

7 

Lack of trust Lehtosalo, Ylä-Anttila, Aapa 3 

Implementing 

Devops Technology 

Automated testing Ylä-Anttila, Aapa, Ursin, Vainio, 

Sandström, Klemetti, Katajainen 

7 
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Automation tool 

challenges 

Aapa, Ursin, Sandström, 

Klemetti, Katajainen 

5 

The type of application Halkosaari, Vainio, Klemetti, 

Katajainen 

4 

Fragmentation of tools 

and practices 

Ylä-Anttila, Aapa, Ursin, Vainio, 

Sandström  

5 

Finding the right scope 

for monitoring 

Ylä-Anttila, Vainio, Sandström 3 

Adapting 

organizational 

processes to 

Devops 

Starting with the correct 

scope 

Halkosaari, Ylä-Anttila, Vainio, 

Sandström, Klemetti, Katajainen 

6 

Mode of Software 

Development 

Halkosaari, Aapa, Ursin, Vainio, 

Sandström, Klemetti, Katajainen 

7 

Change Management 

Process 

Halkosaari, Lehtosalo, Ylä-

Anttila, Aapa, Klemetti 

5 

Adopting new metrics Ylä-Anttila, Katajainen, Klemetti 3 

Team challenges Halkosaari, Aapa, Vainio, 

Katajainen 

4 

 

The first main challenge of Devops is the lack of awareness. The novelty of Devops as a 

concept results in ambiguity, confusion and the word meaning different things to different 

people. Moreover, Because Devops is a hot buzzword at the moment, people can grow 

reluctance towards it which hurts organizational buy-in and the sales of Devops-related 

consultancy services. Additionally, Devops is not adequately known throughout the IT 

organization and training these people is often overlooked. Joe Hendren agrees in his blog that 

Devops has a marketing problem: “Clearly, the concept of Devops has a marketing problem, 

and it's making the hurdle to entry for new participants in the Devops community needlessly 

high.” (Hendren). Another blogger, Topher Marie (2014) notes that an organization’s business 

drivers change the definition of Devops in their respective organization. In resonance with 

many interviewees, Hendren advises to “Leave buzzwords at home”.  However, Spikelab notes 

that labeling phenomena with buzzwords is necessary to cross the Chasm in the Technology 

Adoption Lifeycle where the majority of adopters are risk averse and require enough 

momentum and bandwagon effect to adopt a technology. Therefore, “being able to identify a 
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set of good practices and tools with a word like Devops is a necessity if we want to hope for 

larger adoption in the industry” (Spikelab). Spreading Devops to all parts of the organization 

needs proper management effort, where training and the identification of key sponsors is 

imperative for success.  

The second main challenge of Devops is the lack of support. The subchallenges consist of lack 

of management support, lack of team-level support and the lack of trust. The main problems 

with management are “teflon” managers mentioned by Klemetti where Devops sponsors have 

to exercise “guerilla warfare” inside the IT organization, training individuals one person at a 

time to embrace the new ways of working. Many times management does not understand the 

scope of change: Devops is viewed as an R&D project instead of a major organizational shift 

(Moss-Bolaños, 2016). The 2013 State of Devops report (Puppet Labs, 2013) is in line with 

these findings: According to the report, 48% of the respondents stated that the value of Devops 

is not understood outside their group.  

On a team level, the change of working methods and roles leads to inertia where automation 

that replaces manual tasks is not trusted. Joy Ma (2014) from New Relic also lists these 

challenges in her blog “5 Things You Need to Know When Implementing Devops”. Both the 

interviewees and Ma suggest that showing concrete ways of making daily jobs easier and more 

meaningful via Devops is the key of overcoming this challenge. 

Additionally, the readiness to communicate without fixed CAB meetings and change 

management processes can be an issue. Finally, without these fixed managerial tools the clear 

view of day to day operations is obstructed and needs more trust. The lack of trust between 

management and teams is considered an impediment.  

The 2015 State of Devops report (Puppet Labs, 2015) states that IT managers play a critical 

role in any Devops transformation. Building trust and enabling the teams to fulfill strategic 

objectives is the key to Devops success. Ensuring that work is not wasted and investing in 

developing capabilities inside teams is necessary to overcome this challenge. Both the earlier 

2013 report and the e-book by New Relic (2014) suggests that building open channels of 

communication between teams is essential to Devops success. 

The third main challenge identified is Implementing Devops Technology. With automated 

testing, it was noted that there lies an initial challenge of team member buy-in. The attitudes 

behind automated testing need to be changed and training to write tests promoted. This can be 
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done with leading by example and setting the correct kind of approval gates to control and 

ensure that tests are indeed written in the required way.  

Organizations have challenges choosing the correct tools, due to the related risks of application 

maturity. When choosing tools for automation, the risks of changing them often need to be 

taken into account. Therefore, the use of a setup where tools can be replaced and interchanged 

is recommended to overcome the challenge.  

The type of application was found to be an issue since not all applications are suitable for 

virtualization. When either legacy applications or applications using special, non-common 

technologies are fitted into Devops, the use of microservices-architecture and containerization 

is essential. Finally, when establishing a culture for sharing and collaboration, extra attention 

needs to paid to common practices and tools. Riley (2014b) also identifies the challenge with 

fragmented tools when the original adopter leaves and more importantly in a governance 

aspect. To overcome the challenge, there is a need for common tools, rules and practices with 

both infrastructure and communications. Riley (2014b) also mentions tool management and 

the use of shared services. Using common infrastructure code, common API’s and abstraction 

via the use of containers in order to use the same infrastructure for all applications regardless 

the technology used is necessary to prevent a fragmented landscape.  

Finally, monitoring scope was also an issue to some interviewees. They speak of “alert 

fatigue”, also mentioned by Bass et al. (2015). Aligning practices used in monitoring across 

different applications combats ‘alert fatigue’.  

The fourth and final main challenge relates to Adapting organizational practices to Devops. 

Firstly, establishing the correct scope when starting with a Devops initiative can be 

challenging, since there are no practices in place. The risk with doing too much results in 

reinventing the wheel with different applications in an organization structure that is not yet 

equipped to handle a large scale Devops transition. This view is supported by a blog post by 

Moss-Bolaños (2016), who suggests creating a tiger team with a focus to show early results in 

order to facilitate management buy-in. 

The mode of software development is also considered a challenge. Doing Agile development 

without the goal of releasing features as soon as they are ready does not create value for 

customers. This is especially a problem where the goal is to release only when a Scrum sprint 

ends. Also, working with outside vendors in different mode of development is also problematic. 

These views are supported by a blog post “Devops and Kanban – a Match Made in Heaven” 
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(Upguard), where taking the “time box” out of the equation is deemed beneficial for Devops 

because it enables the team to work on a feature exactly the amount of time required with the 

required amount of resources. Additionally, reducing ceremonies that are considered wasteful 

and renegotiating contracts with 3rd parties to fit the development mode of the team are ways 

to overcome this challenge. 

Heavy change management and approval processes such as those suggested by ITIL are 

considered challenging in a fast-moving development environment if they are followed by the 

book. Levitan (2016) notes in his blog post that these should be aligned carefully with the 

development velocity in order to prevent bottlenecks in delivery. Supporting the views of the 

interviewees, the processes need flexibility in order to make Devops work (Techbeacon, 2015). 

Further agreeing with the findings of this research an article by Forbes (Bloomberg, 2015) 

quotes that “many organizations have been able to modify ITIL to work within the Devops 

context, but it’s unclear whether such rework will provide much value long-term. ‘ITIL isn’t 

part of the success patterns for the fastest moving, most innovative organizations,’” Finally, 

Chris Jackson, CTO of Rackspace sums this challenge up: “We have seen a trend proliferated 

by ITIL and post-Enron legislation that led to the operations teams becoming mired in 

managing risk and compliance. For them it wasn’t possible to think about doing things quickly. 

As a result, operations could find themselves bypassed by developers who wanted, and 

probably needed, to take risks and speed up deployment so they started to use shadow IT. 

Ultimately they were no longer aligned and working to completely different outcomes.” 

(Rackspace 2014) 

Adopting new metrics in all aspects of product development was further considered a 

challenge. When these metrics have been found, there needs to be a balance where the metrics, 

such as quality of code, can be improved without the cost of slowing down the speed of 

development. 

Finally, the challenges related to collaboration between teams were mentioned. When 

development and operations are brought together to collaborate in Devops, it is considered 

challenging if these teams are physically located in different premises. Additionally, the 

scarcity of random and free encounters with people from other teams constricts the flow of 

ideas and co-operation. To overcome these challenges, the interviewees stated that co-location 

is somewhat a necessity, and arranged meetings such as demo days help to “cross-pollinate” 

between teams to foster the kind of exchange that is required by Devops. 
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7 Conclusions 

7.1 Research Summary 

The constantly changing business needs and the requirement for faster time to market 

with software of present day has created a paradigm shift towards a 3rd generation Software 

Development philosophy called Devops. The lack of collaboration between IT Operations and 

Software Development as well as mismatch in configuration between development, testing and 

production environment has made deploying software releases slow and painful for many 

organizations. Different incentives between teams makes it difficult to work towards a common 

goal of bringing added value to customers. 

A Devops approach to software development brings down the walls between the teams and 

align incentives through a collaborative culture, automation, lean principles, measurement 

practices and sharing. The benefits of Devops have been shown to be substantial with a 

significantly faster time to market and increased software stability. The organizational change 

is substantial which makes the challenges in adopting Devops an interesting topic to research. 

This thesis studied the challenges of Devops by interviewing nine experts who had been 

involved with Devops initiatives in their companies.  

The findings were divided into four main challenge categories based on their topic. Due to the 

novelty of the approach, the concept of Devops for many is unknown or biased which hurts the 

overall implementation of practices. The lack of support in both management and 

organizational levels is a hindrance, since especially changing culture needs strong support and 

organizational buy-in in order to succeed. The toolset needed for Devops is particularly diverse 

and finding the fit, correct usage and attitudes towards that technology is challenging. Finally, 

when shifting to Devops that requires a certain level of lean principles and agility, aligning 

existing organizational processes such as the change management process to accommodate the 

new way of working was found challenging.  
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7.2 Implications for practice 

This part of the thesis provides a foundation to evaluate the implications of the results and 

conclusions related to the challenges of adopting Devops. There are four categories to address 

each of the main challenges and provide means to overcome the challenges. 

 

1. CLEARING MISCONCEPTIONS AND SPREADING THE KNOWLEDGE 

2. BUILDING COMMITMENT AND TRUST 

3. ESTABLISHING COMMON WAYS OF WORKING AND LEADING BY 

EXAMPLE 

4. ENSURING THE FLEXIBILITY OF THE ORGANIZATION 

 

7.2.1 Clearing misconceptions and spreading the knowledge 

The main challenge behind Devops is the novelty of the concept. The findings related to the 

challenge encourage clearing any confusion related to Devops early on. It is necessary to 

highlight the gravity of the change: Devops is not merely a product or a toolset. Neither is it a 

team or a role. The entire IT organization should adapt to the new culture and processes that 

follow. Another takeaway of the study suggests dropping the term Devops at first where 

reluctance and biases are met. It is easier to talk about the benefits of eg. collaboration and 

automation before mentioning Devops. Finally, training and educating the entire IT 

organization across the board early on helps to combat the awareness challenge. Finding the 

key sponsors inside teams is also important since these people are very efficient in spreading 

knowledge in teams. 

7.2.2 Building commitment and trust 

An organizational change can rarely happen without the full commitment of management and 

teams. In getting management aboard, the findings conclude that identifying the type of 

management profiles, whether they are tech-savvy, open to ideas or teflon, helps choosing a 

strategy to onboard management. It is also a question of attitude: Devops needs to be 

communicated as a major change and not just a R&D endeavor. Similar to management, teams 

need to be engaged as well. The change of roles and new skill requirements should be 

communicated as a factor of increased job satisfaction as well as an increase to employee 

market value, considering that there is an increasing demand of “Devops skills” in the job 
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market. Finally, promoting trust and autonomy both horizontally across teams and vertically 

with management is important because many of the agreement-based models such as rigid 

change management processes and CAB meetings are not necessarily valid anymore. Devops 

needs organizational flexibility and velocity in decision-making.  

7.2.3 Establishing common ways of working and leading by example 

The main challenge with Devops technology is applying it correctly across the organization 

without fragmentation or varying practices and ways of working in teams. Highlighting the 

responsibility of single developers in playing by the rules (eg. writing automated tests) and 

leading by example was found efficient in establishing common principles. To further prevent 

fragmentation, being as transparent as possible helps to prevent reinventing the wheel with 

most technologies. This entails source code repositories and version control visible to 

everybody, with the possibility of everyone making changes to the code as well as common 

infrastructure and shared communication channels such as Slack, which enables topic-based 

conversation across teams. Where special technology is required, such as legacy systems, the 

application can be split up into separate services and further virtualizing them. Abstracting 

technology layers as far as possible is recommended in order to maintain a common 

architecture, with the help of containerization tools such as Docker. The challenge with the 

maturity of “Devops tools” such as configuration management tools can be overcome by 

keeping the tools interchangeable in order to prevent vendor-lock. 

7.2.4 Ensuring the flexibility of the organization 

As mentioned several times before, Devops needs a certain amount of flexibility in an 

organization to succeed. The findings of this study suggest that starting a Devops initiative 

with a quick proof of concept is essential to Devops success. Not only does it create traction in 

the rest of the organization by being able to show early wins, decisions can be made quickly 

and flexibly, leaving the rest of the organization to follow when the “coast is clear”. Flexibility 

is needed also in the Software development mode the company uses: overcoming this challenge 

entails ensuring that the development mode fits into the Continuous Delivery approach with a 

goal of releasing features as soon as they are ready (instead of waiting for the sprint to finish). 

With change management flexibility is needed: a rigid RFC process with CAB meetings for 

instance, might need some adaptation to get the most out of Devops. For example, the Domain 

CAB –mentality used at YLE is a way to overcome the challenge. Finally, adding informal 

time spent together with teams and co-location improves communication. 
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7.3 Limitations and suggestions for further research 

The study is limited to only nine industry experts. Although the interviewees all have 

considerable experience in this field, the amount of interviewees is quite small. Moreover, all 

the interviews were done in a Finnish context. A large part of Devops is connected to company 

culture. Therefore, the Finnish company culture might influence culture in the targeted 

companies and might have resulted in somewhat different implications if the study had been 

conducted in a different country. The lack of academic research in the field of Devops had an 

effect on the literature review and therefore many of the sources used in especially the literature 

review of this study were non-academic.  

Although the results of this study are not directly generalizable, they do provide implications 

of what the main challenges of adapting a Devops approach to Software Development and 

Operations might be. In addition, the means to overcome these challenges are based on the 

experiences of the interviewees.  

For further research I suggest expanding the amount of respondents and carrying the research 

out as a quantitative analysis. A larger research material could give a better overall picture of 

the challenges and finding out which of them are the most common ones. Moreover, a study 

carried out at a later point of time might give a more mature picture of Devops. 

7.4 Own reflections 

A new concept such as Devops is always met with a certain amount of skepticism in the 

beginning. For me, Devops seemed like a great suggestion for improvement of rigid processes 

in an organization, although grasping the concept in its entirety took a considerable amount of 

time. It wasn’t until the very final interview with Klemetti when I thought I knew enough about 

Devops to actually write a thesis about it. Bearing this in mind, it’s no wonder that 

understanding Devops also proved to be one of the main challenges in the findings.
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