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THE DETERMINANTS OF DEFAULT IN CONSUMER CREDIT MARKET 

 
 
PURPOSE OF THE STUDY 

This  thesis  uses  empirical  observations  on  consumer  credit  behavior  to  study  the  
determinants of default in Finland. The main objective is to investigate if both socio-
demographical and behavioral variables have effect on default. In the thesis I construct 
three different models to show which variables have predictive power the most. The 
models are compared in terms of efficiency and power to discriminate between low and 
high risk customers. The purpose of this study is also to provide practical information 
for credit companies to create more up-to-date and reliable credit scoring models. I also 
illustrate how such a model can be constructed to achieve the strategic objectives of the 
credit institution. 

  
 
 
DATA & METHODOLOGY 

The data set of this paper is from an anonymous consumer credit company who offers 
loans to retail customers. I have 14 595 observations of customers of which 29% turned 
out to default their loan. All the applications were received between May 2008 and 
September 2009 and the default information was captured in December 2009. Out of 30 
explanatory variables 23 were socio-demographical and the rest, 7 were behavioral. 
There are several unique and important features of this data set that enables me to test 
the impact of both socio-demographical and behavioral variables. The analyses are 
performed using logistic regression, forward and backward stepwise analysis and 
several tests with SPSS program. 

  
 
 
RESULTS 

The main findings are that both socio-demographical and behavioral variables have a 
notable effect on default. Consistent with previous literature the most significant socio-
demographical variables are income, time since last moving, age, possession of credit 
card, education and nationality. Some behavioral variables seemed to have even more 
predictive power. Those are the amount of scores the customer obtained, loan size and 
the information if customer has been granted a loan earlier from the same company. 
Interestingly,  the  results  have  variation  to  some  extent  when  excluding  few  of  the  
variables outside the model. The predictive power of all three models is adequate and 
thus can be employed as a reliable credit scoring model for the credit institutions. 
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ASIAKKAIDEN MAKSUKYKYYN VAIKUTTAVAT TEKIJÄT 
KULUTUSLUOTTOMARKKINOILLA 

 
 
TUTKIELMAN TAVOITTEET 

Tämä pro gradu – työ tutkii kuluttajien maksukykyyn vaikuttavia tekijöitä suomalaisilla 
kulutusluottomarkkinoilla. Päätavoitteena on tutkia onko sekä sosio-demograafisilla, 
että asiakassuhteeseen liittyvillä muuttujilla vaikutuksia luoton laiminlyönnissä. Tässä 
työssä muodostan kolme eri mallia osoittaakseni millä muuttujilla on eniten 
ennustuskykyä. Mallien hyvyyttä vertaillaan niiden tehokkuudella ja ennustuskyvyllä 
erottaa matala- ja korkeariskiset asiakkaan toisistaan. Tämän pro gradu – tutkielman 
tavoitteena on myös antaa käytännön hyötyä ja uutta informaatiota kulutusluottoa 
tarjoaville yrityksille päivitetyn ja luotettavan credit scoring – mallin rakentamisessa. 

 
 
LÄHDEAINEISTO 

Käytän tutkimuksessa suomalaisen anonyymin kulutusluottoa tarjoavan yrityksen 
aineistoa. Minulla on havaintoja 14 595 kuluttajasta, joista 29 % jätti maksamatta 
luottonsa takaisin. Kaikki hakemukset rekisteröitiin toukokuun 2008 ja syyskuun 2009 
välillä, ja takaisinmaksuinformaatio otettiin ulos joulukuussa 2009. Tutkimuksessa 
käytettiin 30 selittävää muuttujaa, joista 23 oli sosio-demograafisia ja 7 
asiakassuhteeseen liittyviä muuttujia. Aineistossa on useita tärkeitä ominaisuuksia, jotka 
edesauttavat selvittämään sekä sosio-demograafisten, että asiakassuhteeseen liittyvien 
tekijöiden vaikutuksia maksukyvyn ennustamisessa. Analyysi toteutettiin logistisen 
regressioanalyysin avulla SPSS -ohjelmalla. 

 
 
 
TULOKSET 

Tulosten mukaan sekä sosio-demograafisilla, että asiakassuhteeseen liittyvillä 
muuttujilla on vaikutusta maksuvaikeuksiin kulutusluottomarkkinoilla. Tutkimuksessa 
esille  tulleet merkittävimmät muuttujat vastasivat aiempaa kirjallisuutta ja ne olivat: 
tulot, aika edellisestä muutosta, ikä, luottokortin omistaminen, koulutustaso ja 
kansallisuus. Jotkin asiakassuhteeseen liittyvät muuttujat olivat vieläkin 
merkitsevämpiä. Näitä olivat luottoyhtiön antamien pisteiden määrä, lainan koko ja tieto 
siitä, onko asiakkaalla ollut yrityksestä aiemmin luottoa. Tuloksissa oli jonkin verran 
eroavaisuuksia kun osa merkityksettömimmistä tai tärkeimmistä muuttujista poistettiin 
mallista. Kaikkien kolmen mallin selittämiskyky on riittävä muodostaakseen luotettavan 
credit scoring –mallin luottoyhtiöille. 

 
 
 
AVAINSANAT 

maksukyky, maksuhäiriö, kulutusluotto, credit scoring – malli, kulutusluottomarkkinat, 
sosio-demograafinen, käyttäytyminen, asiakassuhde 
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1 Introduction 
 

The introduction section familiarizes the reader with the topic of this thesis and gives an 

overview of the main issues, which will be covered in the following chapters. Firstly, I will 

explain the background and motivation to this study. Secondly, I will introduce the objective 

and the main findings as well as the contribution to existing literature and to the industry. 

Thirdly, I will mention limitations regarding to this topic. At the end of the introduction 

chapter, I will briefly explain the structure of the rest of the paper. 

 

1.1 Motivation to the study 

 

Consumer credit and default prediction have been studied relatively little - if at all - in 

Finland. We have several  companies who offer consumer credit  or small  loans.  No wonder,  

consumer credit has become more popular than ever (e.g. Brown et al., 2005). Sudden change 

in income level, unemployment and other unexpected occasions are reasons1 to  apply  for  a  

consumer loan to maintain the consumption at the same level. There has also been intense 

conversation about the nature and morality of consumer credit due to the high costs related to 

it. The real annual interest rates can reach up to 300%2 but  which  are  nowadays  more  

transparent due to actions taken by Finnish Consumer Agency3. This may come as a surprise 

for some customers who are not familiar with the terms and conditions of consumer credit and 

might thus lead to increased level of insolvency, payment troubles and default. Brown et al. 

(2005) document that unsecured debt is associated with an increased level of psychological 

distress when compared to secured loans like mortgages, due to the loans’ surprisingly high 

levels of interest.  

 

The  need  of  consumer  credit  today  is  at  it’s  highest,  but  at  the  same  time  the  default  rates  

have risen and from the banks’ perspective the riskiness of these loans is usually higher than 

that of a regular bank loan. As Ko enda and Vojtek (2009) show as much as 50% of the 

                                                
1 Compare to the use of small instant loan (Autio et al., 2009): typical purposes are buying 
alcohol, cigarettes, partying, buying food and repaying credit or interest. 
2 See www.lainatieto.fi/kulutusluotot. 
3 See Finnish Consumer Agency (Kuluttajavirasto in Finnish): www.kuluttajavirasto.fi. 
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granted loans they analyzed defaulted. For the lending institution such a default rate affects to 

its financial performance significantly. The phenomenon of consumer credit has shown rapid 

growth over the last years also in Finland. The total amount of consumer debt today4 is 13,6 

billion  Euros  showing  a  growth  of  4,3%  in  comparison  with  last  year’s  equivalent  and  8%  

between the years 2007 and 20085.  At  the  same  time  more  than  7%  of  Finnish  capita  had  

defaulted in 2009 (Suomen Asiakastieto6, 2009). In the light of these numbers I can conclude 

that studying the default predictability is particularly important. 

 

Credit risk measurement has evolved dramatically over the last 20 years in response to a 

number of secular forces that have made its measurement more important than ever before. 

According to Altman and Saunders (1997) these forces have been: a worldwide structural 

increase in the number of bankruptcies, a trend towards disintermediation by the highest 

quality and largest borrowers, more competitive margins on loans, a declining value of real 

assets (and thus collateral) in many markets and a dramatic growth of off-balance-sheet 

instruments with inherent default risk exposure. After launching the Basel II framework banks 

have started to upgrade their credit risk management approaches (Claenssens et al., 2005) and 

vendors have started to offer more and more improved models to banks for calculating their 

regulatory capital requirements. Especially in the consumer credit market no securities are 

needed when applying for a loan. Due to the nature of small loans there is a great amount of 

asymmetric information i.e. the lender has a risk of a customer defaulting the loan.  Basel II 

framework was built based primarily for large commercial credits including credit card loans, 

mortgage loans, home equity lines of credit, auto loans, and other consumer loans. The 

implementation of Basel II was mainly due to retail lenders’ great reliance on statistical 

models only. Regardless of the negative acceptance of Basel II the banks and other credit 

institutions have worked out and improved their risk management. Bofondi and Lotti (2006) 

state that the diffusion of credit scoring is likely to be boosted by the introduction of the New 

Basel Capital Accord7, which encourages improvements in banks’ risk assessment capabilities 

by closely linking capital requirements with portfolios’ risk level. 

 

                                                
4 Based on statistics 30.9.2009. 
5 See Statistics Finland, 2010 and Federation of Finnish Financial Services, 2010. 
6 A private held credit bureau that keeps record of both Finnish corporate and private credit 
defaults. 
7 See Basel Committee on Banking Supervision (2001) for details. 
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The loan granting decision is carried out by banks and other credit institutions. Traditional 

methods of deciding whether to grant loan to an individual are based on human judgment and 

experience of previous decisions. However, to consider every small loan as a separate loan is 

time consuming and expensive. Usually the lender doesn’t have information about the 

solvency or credit behavior of a new potential customer and especially in consumer credit 

business customers are often persons who are applying for a loan for the first time. Thus, to 

determinate the customer’s expected probability of default the lender must estimate his ability 

to pay back from his current characteristics, as default can only be observed afterwards. To 

evaluate the customers’ solvency banks often use behavioral and demographical 

characteristics as predictors of default. The most common variables are often income, age and 

education8. Also determinants that characterize the relationship between the lender and the 

customer, like the amount of resources and length of the relationship, are seen to have a clear 

connection with default.  

 

Allen et al. (2004) notes that the trend in retail credit decision-making is strongly toward 

increased reliance on statistical, databased models of credit risk measurement. Retail lending 

has gradually shifted from relationship lending to transactional (portfolio-based) lending. To 

measure the level of risk managers in banks and credit companies use loan default predicting 

models or credit scoring models (CSMs), which tend to be the easiest and most common 

methods to utilize.  CSM is an analytic technique, which combines the current and historical 

information of the customer to make predictions whether the customer will repay the debt. In 

CSM customers are given points by their socio-economic features and behavior and thus their 

default  probabilities are estimated based on the default  behavior of previous customers who 

have either paid their loan full or defaulted. After all characteristics are given points and the 

managers have decided the cut-off value the new customers are either accepted or rejected 

based on their total points. The goal of CSM is to predict default in order to make a rational 

decision in approving or rejecting a new loan application and to apply a suitable pricing 

policy. The CSM should optimize the likelihood of bad obligor being rejected and the good 

one being accepted. Not being able to optimize this can lead to underpricing the bad loans and 

overpricing the good loans.  

 

                                                
8 See Table 1. 
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Being able to define which characteristics are those that affect default and picking up the 

customers who perform well is relatively difficult. Warren (2002) shows that most of the 

people who file for bankruptcy in the US come from a middle-class family. She emphasizes 

that only 30% of the defaulted Americans in her sample were from the lowest income quintile 

and the rest were the so-called “nearby neighbors”, as she illuminates. The characteristics are 

thus not obvious in a sense and cannot be estimated and scored based on pure intuition. The 

performance of the credit company depends on how successful it is in predicting customer 

default based on behavioral and demographic characteristics of the customer. From a lenders 

perspective it is highly important to study the determinants of default in order to minimize the 

credit losses. The difficulty of constructing a suitable model can be pointed out with an 

example of actual default rates: the dataset in question is from a company who received 103 

037 applications during the observation period9, accepted only 14% of those based on a CSM 

of good quality and yet faces a default rate of 29%. 

 

It can be seen that it is also in the interest of customers who are not granted the loan they 

couldn’t afford and thus ending up to a national default register (Suomen Asiakastieto). The 

trustworthiness of the whole industry is also partly based on the evaluation systems of its 

actors. Thus, the core of this thesis is not only to investigate the socio-demographical and 

behavioral determinants that have an effect on the customers’ ability to pay but also to help 

lenders consider their scoring models more carefully. 

 

1.2 Objective 

 

While the improving of the prediction accuracy and comparison of different methods has been 

the prime mover of bankruptcy and default prediction studies, this study focuses on analyzing 

the predictive power of variables. The objective of this thesis is to study the determinants of 

default; which behavioral and socio-demographical variables have effect on default, how 

important are they and how do the results change when I exclude some of the irrelevant or 

most significant variables to create a new model. This paper concentrates especially on socio-

demographical variables as determinants of default. By constructing three different logistic 

models employing a large dataset I am able to provide reliable results and proposals for a new 

                                                
9 Observation period was May 27th, 2008 to September 1st, 2009. 
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CSM for the company. A logistic regression model is used to develop a numerical scoring 

system for consumer credit. 

 

This thesis answers the following research questions: 

 

1. Can both socio-demographical and behavioral variables predict default behavior? 

 

2. Which characteristics are to be used in the scoring model as variables that can 

discriminate between a “good” and a “bad” loan? 

 

3. How to obtain the score for each characteristic? 

 

In addition to these three main questions this thesis compares the results to previous studies 

and gives attention to both socio-demographical and behavioral variables in creating practical 

CSM. This paper answers to the company’s needs to improve its scoring model and provides 

practical and up-to-date information. 

 

The dataset employed in this study consists of 14 595 observations, of which 4 191 were 

defaulted or “bad” loans and the rest, 10 404 were non-defaulted or “good” loans. The unique 

data is provided by one of the largest consumer credit companies in Finland that wishes to 

stay anonymous for the thesis.  

 

The initial sample consisted of 31 variables of which 30 were employed to the analysis. In 

this thesis I use parametric logistic regression, which has given reliable results (Arminger et 

al., 1997 and Hand & Henley, 1997) in creating CSMs. In addition, I construct two other 

models that focus on the drawbacks of the initial model.  

 

The objective of this study is both to be one of the first studies accomplished in Finland in the 

area of consumer credit and to evaluate different alternatives to the traditional scoring system 

the company in question uses. 
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1.3 Results 

 
The main findings are that both socio-demographical and behavioral variables have an effect 

on default. Consistent with previous literature the most significant socio-demographical 

variables are income, time since last moving, age, possession of credit card, education and 

nationality. Some behavioral variables seemed to have more predictive power than others. 

Those are the amount of scores the customer obtained, loan size and the information whether 

the customer had been granted a loan earlier from the same company. Interestingly, the results 

have variation to some extent when excluding few of the variables outside the initial model. 

The predictive power of all three models is adequate and thus each of them can be employed 

as a reliable credit scoring model for the credit institutions. 

 

1.4 Contribution to the existing literature 

 

This thesis contributes to existing literature in various ways and with a two different point of 

view: from the perspective of research and from the perspective of the whole credit industry. 

The following two sections describe the benefits for both of them. 

 

1.4.1 Contribution to the industry 

 

This study gains added value by using data from an older and stable EU country with more 

matured markets (compare to Ko enda and Vojtek, 2009). By the means of the new 

information and results it can also be adapted to European and Nordic countries, in which no 

similar analyzes have been produced in the area of consumer credit before. 

 

Credit companies often buy the CSM they use outside. The model is usually very expensive 

and above all, the information goes out-of-date because of macro-economical changes, 

possible recessions and general economic conditions. It would be important for the credit 

companies to use an up-to-date scoring model that has been conducted with real historical 

customer data from the same nationality and population. This paper provides topical 

information of socio-demographical variables that affect default. By utilizing the models I 

build, the companies are able to minimize the default rate that could be caused by asymmetric 
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information. Jaffee and Russel (1976) as well as Stiglitz and Weiss (1981) studied the 

traditional loan market from the perspective of asymmetric information and adverse selection 

and found them to have significant negative impact on default rates. This paper provides 

important information for credit companies encouraging them to take the socio-demographic 

variables into more precise analysis. 

 

1.4.2 Contribution to the research 

 

This thesis contributes to the existing default literature in the following ways. First, due to the 

fact that no similar documents have been written on the Finnish markets in the area of CSM, I 

am able to provide interesting results with sensitive dataset. Consumer credit and default are 

relatively new areas of research in Finland and also in the Nordic countries. However, in the 

United  States,  CSM  and  default  have  been  studied  to  some  extent,  or  at  least  more  widely  

than in Europe of Nordic. This is mainly due to the more matured consumer credit market in 

U.S,  the  availability  of  sensitive  data  and  the  size  of  the  customer  base.  The  data  and  

information required for these kinds of studies are difficult to obtain. 

 

Second, this study is comprehensive and broad with a large dataset: 14 595 observations and 

31 variables, which is more than many of the previous studies, have been used10. The 

empirical analysis is also very detailed: I study default predictors with three different models 

as most of the studies focus only on one.  

 

Thirdly, most of the studies have focused on finding the best possible technique to build a 

CSM. However, no major differences have been found and using logistic regression for 

example has proven to give just as reliable results as the other techniques such linear 

discriminant analysis, neural networks or CART analysis. In my opinion it is more important 

to study the significance and predictive power of different variables rather than the techniques 

themselves. Therefore the issue of variable selection is a crucial and challenging problem to 

solve before different credit scoring techniques are used to develop the best performing 

model. Hence, to provide reliable results the number of input variables has to be adequate. 

 

                                                
10 See Table 1 for details. 
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1.5 Limitations 

 

The  limitation  of  the  study  is  the  data  that  contains  default  information  only  from  the  first  

year. Default information used in this study has been captured on December 15th, 2009. The 

customers can choose the repayment period to be as long as 4 years, which means that default 

can  also  occur  later  on.  To  be  able  to  have  default  rates  from  the  full  period  this  analysis  

should be remodeled when all the loans have expired. However, having a significantly large 

amount of data, I am able to draw reliable conclusions. In addition, I can make the assumption 

that customers who will not default during the first year are considered “good” ones. 

 

As the data includes only the observations where customers were granted credit, there is a 

sample selection bias when not taking all the applications in to examination. However, this is 

common in the literature. It has been studied (Banasik et al., 2003) that the difference between 

rejected and accepted customers is small and thus has no large effect when analyzing the 

characteristics of customers. In addition, several variables could not be used as an explanatory 

variable because no data on these variables is available for rejected applicants. 

 

1.6 The structure of the study 

 

The first chapter of the research introduced the topic, the research objectives and background. 

The rest of this paper is divided into five sections. In the second chapter I describe the 

consumer credit market in practice and summarize the previous studies. Chapter three 

introduces the data used in the paper and presents the variables with descriptive statistics. The 

fourth chapter begins the empirical part of the study by justifying the choices of techniques 

and presenting the methods and tests. Chapter 5 presents the findings of the research, 

including the empirical results, as well as their analysis and interpretation. The last chapter 

discusses the main implications and concludes. It also gives suggestions for managerial 

implementation and for further research in the area of default and consumer credit. 
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2 Theoretical and practical background for consumer 
credit, CSM and default 

 

This chapter presents an overview of the main issues related to consumer credit. The concept 

of consumer credit, application process and the nature of Finnish consumer credit markets 

will be covered in this chapter. Also the previous literature related to determinants of default, 

consumer loan markets and CSM are discussed here. 

 

2.1 General information about consumer credit 

 

This section familiarized the reader with the concept of consumer credit and the process of 

applying loan. It also presents the idea of constructing a credit scoring model. 

 

2.1.1 Special features of consumer credit 

 

The concept of consumer credit is broad and in a sense unclear. In general, consumer credit is 

granted to finance the purchase of commodities and services. Financing of car, home 

appliance, traveling and furniture is often understood as consumer credit. Instant loans are 

sometimes ambiguously understood as consumer credit. However, in this study they are 

treated separately and the division is made based on the amount, maturity and the application 

process.  

 

The application for consumer credits requires, unlike the one for instant loans, a bank account 

and more information of the customer. Some companies that offer instant loans accept an 

application sent via mobile phone. Consumer credit cannot be obtained based on an SMS 

application but requires registration to the lender’s web pages or a personal phone call. The 

instant loans are often smaller, amounting up to a maximum of 1 000 euros and have a 

maturity of few months, while in consumer loans the loan period can usually be as long as 

four years11. The process of applying for a consumer loan is, however, made easier than 

                                                
11 See www.kulutusluotto.org for details (service available only in Finnish). 
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applying for example a mortgage. The concept of consumer credit is more commercial and 

more available, making it possible for customers to obtain a loan outside office hours and 

without collateral. This flexible nature of consumer credit reflects to the higher interest rates. 

Whereas mortgages and other traditional loans involve fixed amounts and payment schedules, 

in consumer credit market the customer has extensive authority on deciding the debt 

repayment with the minimum monthly repayment being a fixed percentage of the total 

balance.  

  

Consumer loans are granted by banks, financial and credit institutions, credit card companies, 

commercial stores and mail-order firms.  

 

2.1.2 The application process 

 

The process of applying consumer credit is quite straightforward. First, the applicant logs in 

to the lenders web page with his bank username and password so that the lender can identify 

the applicant’s identity. Through logging in the lender is also able to have the applicant’s 

social security number in order to define if the applicant has credit standing in the Finnish 

credit register or whether the applicant has had credit before and has default notification in the 

company’s own database. Also the applicant’s address can be confirmed from the Finnish 

Population Register12. Once the applicant has logged in, he fills in an application online. The 

application includes several questions about the applicant’s identity, which are further treated 

in this study as variables. The service is available 24/7 and the credit decision can be given 

instantly. If applicant is granted the credit he will have the money on his account in few 

minutes13. No collateral or guarantor is needed. To be able to continue he must agree on the 

terms and conditions and thus promise to provide true information. Customers are also able to 

apply for a loan by phone, which is less common nowadays.  The credit  is  a type of annuity 

loan where the customer can define the maturity, however, not exceeding the maximum of 

four years. 

 

                                                
12 See www.vaestorekisterikeskus.fi for details. 
13 In accordance with the new Finnish Law of Consumer Protection (Kuluttajansuojalaki in 
Finnish) the credit companies are not allowed to transfer any money between 11pm and 7am 
since the first of February 2010. 
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2.1.3 The concept of credit scoring model 

 

Consumer loans are relatively small and granted to unrated borrowers. Therefore it is not 

usually cost effective to evaluate each loan on an individual loan-by-loan basis. The small 

size of each consumer credit implies that the absolute size of the credit risk of a one loan is 

minimal. Due to economies of scale associated with information gathering, risk management 

and loan monitoring, limited resources are devoted to analyzing the risk for an individual 

loan. Hence, lenders typically rely on scoring models and automation for approving loans. 

Mester  (1997)  documents  that  97  percent  of  banks  use  CSM  to  approve  credit  card  

applications, whereas 70 percent of the banks use CSM in their small business lending. 

 

Although the first credit scoring system implemented for banks and mail order firms occurred 

already in the fifties in the U.S, in housing finance the turning point was not until in the 1990s 

with the growth of automated statistical credit and mortgage scoring as a method for 

underwriting and approving loans (Straka14, 2000). Automated underwriting was previously 

used in credit card and auto lending but after 1995 also mortgage business and consumer 

credit started to benefit from it. The oldest and most commonly used traditional scoring model 

was the multiple discriminant credit scoring analysis for companies pioneered by Altman 

(1968). Since then also other techniques have been employed widely. For example Allen et al. 

(2004) summarize the four suitable methods to create a CSM; 1) the linear probability model, 

2) the logit model, 3) the probit model, and 4) the multiple discriminant analysis model. All of 

these models identify financial variables that have statistical explanatory power in 

differentiating defaulting firms from non-defaulting firms. 

 

The objective of such models is to minimize the credit risk and default rates and to prevent 

granting loan to ”bad” customers and to avoid giving false rejection to ”good” customers. 

Scoring models use historical data combined with a statistical technique to identify which 

customer characteristics such as age, income and marital status are the ones that distinguish 

between customers who default and those who perform well. Credit score is not a percentage 

                                                
14 Straka provides a comprehensive study of moving to automated credit evaluations in 1990s. 
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nor is there an amount presenting the cut-off value for proper scoring. Each credit bureau, 

bank and other lending institution can determine its own CSM being used. 

 

The modeling of CSM is not definite and for example Basel II does not impose any standards 

on the process. A lender can purchase the model or construct one itself. In general, the 

modeling is based on historical information. Creditors can construct the classification rules 

based on the data of the previous accepted and rejected applicants. First, the old customers are 

divided into two groups: those who defaulted the loan and those who did not. Second, their 

socio-demographic and behavioral characteristics are evaluated with the help of empirical 

modeling. Information such as income or age can be kept as continuous variable but most 

often is transformed into categorical value. After deciding suitable thresholds each variable or 

category is given scores. Every new customer is evaluated based on these subscores and the 

summed score value is compared to the cut-off value. The managers need to determine a 

suitable cut-off value to correspond their business and risk management. The value indicates 

how much risk they can adopt and what their presumption of the default rate is. If a customer 

is given more points than the fixed cut-off value he is admitted credit.  

 

2.2 The nature of Finnish consumer credit market 

 

The importance of the study may be illustrated by the expenditure of consumer loans. Finnish 

consumers have become more open to the use of credit. Federation of Finnish Financial 

Services15 (2010) reports that the amount of consumer credit in euros rose 4,3% from 2008 to 

200916 totaling up to 13,6 billion euros (see Figure 1). During November 2009 and October 

2009 new consumer credit was granted worth 222 and 305 million euros, respectively. The 

decrease is explained by the seasonality of applications; new consumer loan is applied mostly 

from spring to autumn. The proportion of consumer credit from the total household debt was 

13% in the end of November 2009. 

 

                                                
15 Finanssialan Keskusliitto in Finnish. 
16 Granted by financial institutions (here: credits from banks, credit card companies and other 
financial institutions). Observation period is 30.11.2008-30.11.2009. 
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According to a survey conducted by Federation of Finnish Financial Services (2010) as much 

as 28% of 18-74 year olds had consumer credit. The mean loan amount in consumer credit 

market is between 1000 to 4000 euros with a repayment period from one month to four years. 

 

The amount of consumer credit in Finland
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Figure 1: The amount of consumer credit in Finland 
Source: Finanssivalvonta (2010). 
The total amount of consumer credit has increased continuously. At the time of the study the year-end 
information  for  2009  was  not  published  but  it  can  be  seen  that  the  amount  at  the  end  of  September  2009,  
anyhow, was higher (13,6 billion Euros versus 13,4 billion Euros) compared to the year before.  The amount of 
loan granted by credit card companies and other financial institutions has remained quite the same while banks 
have increased their market share constantly. 
 

 

Suomen Asiakastieto reports that in the end of December 2009 305 00017 private persons18 

had defaulted. This corresponds to 4,4% more than in 2008. The amount of new payment 

troubles was even larger, amounting up to 645 000 defaults19 during 2009, which is 18% more 

than a year earlier (547 000) and twice the amount of the year 2000 (see Figure 2).  

  

                                                
17 Includes often several notes to one person. On average one person had six defaults at the 
same time. 
18 Persons over the age of 18. 
19 Including both retail market and companies. 
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Figure 2: New defaults 
Source: Suomen Asiakastieto (2010). 
The amount of new defaults in Suomen Asiakastieto’s register. It is common that most of these defaults will 
mass  to  same persons.  On average  a  person in  the  register  has  six  defaults  and only  every  sixth  has  only  one  
default. The amount of new payment troubles increased with 100 000 defaults (18%) from year 2008. On 
average two third of defaulted are men. 
 

 

The interest rates differ significantly depending on the lender. Collateralized consumer credit 

granted by banks had an average interest rate of 7,82% in the end of November 2009. Other 

credit companies have a broad spectrum of interest, fluctuating between 7 and 15%. The most 

expensive consumer loans are the ones granted by mail-order companies having an average 

interest of 20 to 30%. Worth noticing is the fact that the real annual interest rate can reach up 

to hundreds of percentages.  

 

2.3 Related studies 

 

Consumer credit markets have been studied relatively little due to the confidential nature of 

the customer data and the difficulty of measuring the risk appropriately. Most of the studies 

conduct U.S data but the literature and research is evolving also in Asia. The evidence from 

Finnish and even European markets is minimal.  
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However, the literature of credit scoring systems and default rate approximation started 

already  when  the  first  consumer  loans  were  granted.  To  study  default  risk  is  extremely  

important due to the automation of decision-making process and the easiness of applying for 

the loan. According to Straka’s (2000) study of automated credit evaluations, development of 

CSMs has proven to reduce defaults. 

 

In this chapter I will go through the most relevant early literature divided into four different 

markets facing default: corporate loan markets, credit card industry, mortgage markets and 

consumer credit markets as itself. Table 1 in section 2.4 shows the most employed variables 

of some of the studies presented next. 

 

There are several studies that concentrate on comparing different techniques to create CSM. 

Those are not discussed comprehensively here but are covered in Chapter five. 

 

2.3.1 Default in corporate loan markets 

 

Quantitative CSMs were developed for consumer credit purposes much later than those for 

corporate credit mainly due to problem of availability of data. In many countries legal and 

other reasons prevented the buildup of publicly available databases. Data were limited to the 

own databases of financial institutions. Nowadays, the data on personal loans is still highly 

delicate but information on corporate defaults is often publicly available to help institutions 

and researchers to develop quantitative CSMs. Most of the credit risk literature (Altman, 

1968, Neophytou & Charitou, 2000, Carvalho & Dermine, 2003 and Altman et al., 2007) 

deals  with  corporate  loans  where  it  is  possibly  to  define  the  size,  asset  turnover,  solvency,  

leverage and other historical key ratios of the company and construct a reliable CSM based on 

historical performance of the companies. In consumer markets the case, however, is more 

difficult. In addition to the information the credit bureaus offer the lenders have to trust the 

information a customer gives in the application.  

 

Laitinen and Kankaanpää (1999) are one of the only Finnish authors who have discussed the 

default behavior. They assessed six alternative methods20 (LDA, LR, RPA, survival analysis, 

                                                
20 See section 4.1 for details. 
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NN and HIP) that have been applied to financial failure prediction. The main objective was to 

study whether the results stemming from the use of alternative methods differ from each 

other. They used only three financial ratios (total debt to total assets, the ratio of cash to 

current liabilities and the operating income to total assets) due to methodological issues. The 

results of 76 randomly selected Finnish small and medium sized failed firms indicate that no 

superior method has been found but the predictive power of logistic analysis was best 

resulting a 89,5% prognostic accuracy. Laitinen continued the work with Laitinen (2000) by 

testing whether Taylor’s series expansion can be used to solve the problem associated with 

the functional form of bankruptcy prediction models. To avoid the problems associated with 

the normality of variables, the logistic model to describe the insolvency risk was applied. 

Several financial ratios were employed with estimation sample including 400 firms and the 

results suggest that the cash to total assets, cash flow to total assets, and shareholder’s equity 

to total assets ratios operationalize the factors affecting the insolvency risk. The usefulness of 

Taylor’s model in bankruptcy prediction was evaluated applying the logistic regression model 

to the data from the Compustat database. 

 

Allonen (2010) analyzed the key ratios of companies similar to Laitinen and Laitinen (2000), 

with logistic regression to make assumptions about the determinants of default in business. 

His master’s thesis confirmed the findings of earlier literature: the insolvencies of small and 

medium-sized companies are able to predict with a rather high level of confidence using 

logistic regression and employing financial ratios (describing profitability, indebtedness, 

liquidity and operational magnitude). He employed 1 094 Estonian companies’ default 

information from 2001 to 2009 taking into consideration the economic recession and its 

consequences to default prediction. The results suggest that the predictive power of the model 

weakened slightly at the time of economic downturn. 

 

Wilson et al. (2000) studied payment behavior prediction of 7 034 UK companies with 

logistic regression. They found that history of payment behavior is more predictive than 

accounting data. The evaluation was implemented with two aspects; that of predicting future 

payment behavior and that of corporate failure prediction. 
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2.3.2 Default in credit card and instant loan markets 

 

Agarwal et al (2009) assessed the role of individual social capital information characteristics 

on household default and bankruptcy outcomes. They used monthly panel data set of more 

than 170 000 credit cardholders for a period of over 24 months. With the observations of each 

borrower’s default and bankruptcy filing status they were able to find distress factors such as 

riskiness, spending, debt, income, wealth, economic conditions, legal environment and socio-

demographical characteristics that affect default (see Table 1). The study was conducted with 

Cox proportional hazard model. The results show that borrowers who migrate from their state 

of  birth  default  more.  Another  suggestion  was  that  a  borrower  who  is  married  and  owns  a  

house  of  his  own has  a  lower  risk  of  default.  With  respect  to  age,  observation  was  that  the  

youngest (30 years or younger) and oldest (60 years or older) groups of consumers had the 

lowest bankruptcy risk. Income and wealth were also relatively significant indicating that 

cardholders with high income and high wealth are 17 and 22 percent, respectively, less likely 

to default on their debt. 

 

Dunn and Kim (1999) studied household credit card use to investigate the determinants of 

default with a monthly random household telephone survey conducted by the Center for 

Survey Research Center at the Ohio State University in each of the 12 months per year from 

the period February 1998 through May 1999. The sample consists of at least 500 households 

throughout the state of Ohio. It focused on the relationship between default and the outcomes 

of financial choices consumers make within the constraints of the contract terms set by credit 

card issuers. They found the three most significant variables to be: 1) the ratio of total 

minimum required payment from all credit cards to household income, 2) the percentage of 

total credit line which has been used by the consumer, and 3) the number of credit cards on 

which the consumer has reached the borrowing limit. They also found that socio-

demographical variables like age, marital status and number of children are strongly related to 

default whereas income, education and home-ownership did not have expected effect (see 

Table 1). 

 

There are few studies whose main focus is not in minimizing the misclassifications between 

“good” and “bad” accounts but in the profit maximization. Boyes et al. (2002) document that 

traditional  view  of  default  probability  is  too  narrow.  According  to  Boyes  et  al.  the  goal  of  



 23

credit assessment should be to provide accurate estimates of each applicant’s probability of 

default  and  the  pay-offs  that  will  be  realized  in  the  event  of  default  or  repayment.  They  

demonstrate in credit card lending how maximum likelihood estimates of default probabilities 

can be obtained from a bivariate censored probit framework using a choice based sample 

originally intended for discriminant analysis. Through this framework they were able to 

obtain a more meaningful model of credit assessment.  Out of 4 632 credit card applicants 1 

773 (47,8%) turned out to default their loan. Variables that were significant (at 5% level) 

were age, number of dependants, education, home ownership, expenditures to income ratio, 

finance company reference and several credit bureau variables. Lieli and White (2008) had 

also doubts about the CSM as such and they examined a profit- or utility-maximizing lender’s 

decision about extending or denying credit in consumer credit markets. Lieli and White 

suggest that lenders should measure the probability of a loan by its net present value (NPV) 

defined as the revenue stream of the loan, discounted at an appropriate rate, minus the amount 

of the loan. 

 

Autio et al. (2009) conducted a comprehensive study of the use of small instant loans21 in 

Finland among 1 951 young adults. An open online survey for 18- to 29-year-olds included 

questions about age, gender, financial situation, such as income, employment and 

occupational status, and family structure. They were also asked what kind of credit they have: 

a credit card, a mortgage, a student loan, small loans etc. Their attitudes towards borrowing 

were also examined. The results showed that the 18- to 23-year-olds use small instant loans 

more than the 24- to 29-year-olds. The latter group, on the other hand, use consumer credit 

more, because of their higher income and occupational status. Gender does not seem to have 

an effect on the number of loans taken, but occupational status, income and household 

structure do.  

 

2.3.3 Default in mortgage markets 

 

Default has been mostly studied in the area of corporate loans followed by mortgages. No 

generalization between these markets and consumer credit markets can be done since for 

example mortgages usually require collateral, which is not the case in the Finnish consumer 

                                                
21 Autio et al. uses the concept of consumer credit when studying instant loans. 
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credit market. In addition, the default of mortgage-related loans is not as straightforward as in 

consumer credit. Customers are often affected by the volatility in prices and interest rates 

when it comes to mortgages and other long-term loans (Zorn and Lea, 1989). 

 

Vasanthi and Raja (2006) estimated the likelihood of default risk associated with income and 

other factors with Australian data (Australian Bureau of Statistics, ABS 2001) in a sample of 

3 431 households. The goal was to establish the relationship between the default risk of 

homeowners and their socio-economic and housing characteristics. The repayment rate is 

substantially high compared to consumer credit, amounting to 93,03%. Vasanthi and Raja 

find that the age of the head of the household is significant: the younger households tend to be 

adversely affected by the increasing burden of mortgage payments. Income as socio-

demographic variable show to have predictive power: lower income is one of the major 

contributory factors for default. Another important factor was the loan to value ratio 

indicating that higher loan to value ratio would increase the probability of default. Also the 

educational level of the head of household and marital status had significance impact on 

default. Vasanthi and Raja draw a conclusion that the probability of default is higher with an 

uneducated, younger and divorced as head of the family compared to others. The other 

variables employed in the study can be found in Table 1. 

 

2.3.4 Default in consumer credit markets 

 

Credit default predictors have been studied through several financial models. One of the most 

common methods is logistic regression that was also employed by Ko enda and Vojtek 

(2009). They show that socio-demographic data is a useful predictor of future characteristics 

relevant to the loan granting process tested with both logistic analysis and CART analysis. 

Ko enda and Vojtek use dataset of 3 403 observations and 21 variables (see Table 1). With 

both methods the most important financial and behavioral characteristics of default behavior 

were: the amount of resources a client owns, the level of education, marital status, the purpose 

of the loan, and the years of having an account with the bank. The dataset Ko enda and 

Vojtek analyzed was relatively small for CSM with only 3 403 observations but showed that 

most variables had reliable information value and were able to give information to construct a 

good scoring model based on both the traditional parametric as well as the non-parametric 

method. This study provides evidence that non-parametric methods can also be successful and 
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are able to create good models. Following Kocenda and Vojtek this thesis constructs several 

models to evaluate the performance of also variables with lower predictive power. 

 

Arminger, et al. (1997) analyzed the three different techniques; logistic discriminant analysis, 

classification tree analysis and a feedforward network in finding the best method in predicting 

the determinants of default. Their data consisted of 8 163 observations provided in 1991 and 

1992 by a major bank in Germany specializing in consumer loans. The predictor variables 

they employed were sex, starting year of current job, year of birth, car ownership and marital 

status. They report that the predictive power is about equal for all techniques with logistic 

discrimination providing the best estimates. The logistic discriminant analysis suggests that 

the probability of paying back the loan without problems is greater for telephone owners and 

older people. People with longer employment at current job, car owners, female and people 

who are married rather than single are also less likely to default (see Table 1). 

 

Another interesting prospect is defined by Musto and Souleles (2006) by taking a portfolio 

view of consumer credit. They used a unique panel dataset of credit files from one of the 

major U.S. credit bureaus, Experian which includes approximately 100 000 randomly 

sampled consumers monthly from March 1997 to March 2003, a total of 37 months. Unlike 

most of the default studies Musto and Souleles computed also the risk-adjusted returns, as 

lenders also need to know the covariances of the returns on their loans with aggregate returns. 

They measured the covariance risk of individual consumers, i.e., the covariance of their 

default risk with aggregate consumer default rates. This is to analyze the cross-sectional 

distribution  of  credit,  including  the  effect  of  credit  scores.  Musto  and  Souleles  found  that  

consumers with high covariance risk tend to have low credit scores (high default 

probabilities) and that amount of credit obtained by consumers significantly increases with 

their credit scores and significantly decreases with their covariance risk. Covariance risk tends 

to be higher for younger and single consumers, lower-income consumers, those who rent 

rather than own, and those from states with higher raters of divorce and lower rates of health-

insurance coverage (see Table 1). 

 

Jacobson and Roszbach (2003) contribute to the existing literature by taking into account the 

sample-selection bias that credit scoring models are suffering from. Therefore the basic value-

at-risk measure is not reliable enough but they suggest using unbiased scoring model such as 

bivariate probit approach that takes into account also the rejected loans. In their work they 
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used a data set consisting of 13 338 applications for a loan at a major Swedish lending 

institution between September 1994 and August 1995. All loans were granted in stores where 

potential customers applied for instant credit to finance the purchase of a consumer good. The 

dataset contained extensive financial and personal information on both rejected and approved 

applicants (Table 1). They had 57 variables available but employed only 16 because they 

lacked a univariabte relation with the variables of interest of displayed extremely high 

correlation with another variable. Income, age, change in annual income and amount of 

collateral-free credit facilities had significant impact on default. 

 

Roszbach continues the study in 2004 with the same Swedish sample to show that not only 

the default on loan matters but also the timing of default. Roszbach (2004) contribute to the 

existing literature by presenting a multiperiod character in a credit default topic and at the 

same – questioning the usage of CSM. By illustrating this aspect, a loan is usually a multi-

period contract and thus generates a flow of funds until it either is paid off or defaults. The net 

present value of a loan is thus not determined by whether it is paid off in full or not but by the 

duration of the repayments, amortization scheme, collection costs and possible collateral 

value. Roszbach emphasizes that it may still be profitable to provide a loan, even if the lender 

is  certain  that  it  will  default  since  the  goal  of  the  lender  is  to  maximize  profit.  Roszbach  

observed the exact survival time for the loans in the dataset by constructing a Tobit model 

with sample selection and variable censoring threshold. The results show that financial 

institutions are not acting rationally when taking into consideration both the default risk and 

higher returns. The lending policy of companies does not favor people that survive longer and 

thus would provide higher rates of return. Roszbach also found that lenders are indifferent 

between loans of different sizes. This study provides evidence that banks are behaving in a 

way that is not consistent with profit-maximization. By using Tobit model banks would be 

able to pick out future defaults and select applicants with longer survival times and thus create 

a more efficient policy.  

 

Dinh and Kleimeier (2007) used a database of one of the Vietnam’s commercial banks and 

had access on sample of 56 037 loans. They used forward stepwise selection to select among 

22 variables (see Table 1). Applying stepwise methods, 16 variables were included in the 

model. Their paper addressed the lack of information on retail credit scoring by identifying 

which borrower characteristics a bank needs to collect. Dinh and Kleimeier developed a 

flexible approach that is built on the principles of transactional lending but leaves room for 
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relationship lending. The most important predictors they found were time with bank, followed 

by gender, number of loans, and loan duration. Dinh and Kleimeier suggest companies to 

update their CSMs regularly to answer to the economic changes. 

 

Updegrave (1987) found that there were eight variables that affected consumer credit risk: the 

number of variables, the historic repayment record, bankruptcy history, work and resident 

duration, income, occupation, age and the state of savings account. Similar results were found 

by Steenackers and Goovaerts (1989) who collected data on personal loans in Belgian credit 

company. The loans dated from November 1984 till December 1986 and contained 995 good 

loand, 1257 bad loans and 693 refused loans. They were able to use 19 characteristics (see 

table 1) of which 11 were employed to construct a CSM. By using logistic regression and for 

the final selection a stepwise analysis they found following results: age, resident and work 

duration, the number and duration of loans, district, occupation, phone ownership, working in 

the public sector or not, monthly income and housing ownership have a significant 

relationship with repayment behavior.  

 

Özdemir’s work (2004) explored the relationship between consumer credit clients’ credit 

default risk and some demographic and financial variables with a logistic binary regression. 

Data to examine this relationship was obtained from the customer records of a private bank in 

Turkey. Interestingly, Özdemir does not find significant relationship between any of the 

demographic variables and the risk of default. Residential status seemed to be the most 

important demographical variable with relatively high p-value, however. Instead, the financial 

variables had significant predictive power. Interest rate and maturity both positively affected 

the credit default risk, thus, the longer the maturity or the higher the interest, the higher the 

risk for clients not paying their loans on time. 

 

Hand and Henley (1997) made a wide review of different statistical methods in consumer 

credit scoring. They compared LDA, OLS regression, LR, mathematical programming 

methods, recursive partitioning, expert systems, NN, nonparametric methods and time varying 

models22. Hand and Henley stated that there is no overall “best” method but it depended on 

the details of the problem: on the data structure, the characteristics used, the extent to which it 

                                                
22 The abbreviations are represented as LDA: Linear Discriminant Analysis (also known as 
DA: Discriminant Analysis), OLS: Ordinary Least Squares, LR: Logistic Regression, NN: 
Neural Networks. 
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is  possible  to  separate  the  classes  by  using  those  characteristics  and  the  objective  of  the  

classification. The variables employed in this study are presented in Table 1. Followed by 

Hand and Henley, Tsai et al. (2009) constructed a consumer loan default predicting model 

using dataset from a Taiwanese financial institution. They studied both the consumers’ 

demographic variables and money attitude and constructed four predicting methods, DA, LR, 

NN and DA to compare the suitability of these methods. They found that the predictive 

efficiency with all these four methods was more than 75%. 

 

2.4 Summary of the variables used in earlier studies 
 
Table 1 shows the most used variables in previous literature. The most common socio-

demographical variables seem to be age, time in current address, gender, income, marital 

status,  occupation,  number  of  other  loans,  residential  status,  time in  present  job  and  region.  

The correspondent customership-based or behavioral variables are length or relationship, loan 

size and duration of the loan. 

 

From these age, marital status, number of other loans, residential status, loan size and duration 

of the loan seem to have the best predictive power in determining default and are the ones to 

form a reliable CSM for credit institutions. 



Table 1: Variable comparison 
This table presents the most common variables employed in previous literature. The table does not cover exactly the same variable expression as the authors have used but is 
meant to provide summary of the most significant variables. Neither is the division to socio-demographical and behavioral variables based on any of the mentioned studies 
but is for the purposes of this thesis. Csm stands for variables that are used in credit scoring model or considered as the most significant variables in the certain studies. Desai 
et al. as well as Hand & Henley and Lieli & White do not document the importance of variables but concentrate on investigating the best technique. 
 

  
Agarwal et 
al. 

Desai 
et al. 

Dinh & 
Kleimeier 

Dunn & 
Kim 

Hand & 
Henley 

Jacobson & 
Roszbach 

Kocenda & 
Vojtek 

Lieli & 
White 

Steenackers & 
Goovaerts 

Vasanthi & 
Raja 

Özdemir & 
Boran 

Socio-demographical variable 2009 1996 2007 1999 1997 2003 2009 2008 1989 2006 2004 
age csm x x csm x csm x x csm csm x 
big city      x      
credit card ownership  x  csm x       
credit history        x    
current address / time in current addres x x csm  x   x csm   
education   csm    csm   csm  
foreign worker        x    
gender   csm   x x x x  x 
government assistance          x  
income / change in income csm x x x x csm   csm csm x 
marital status csm  csm csm x x csm  x csm x 
migrating out of state of birth csm           
monthly expenses x x       x   
nationality         x   
nr of children   csm x     x x  
occupation / type of employment   x x x  x x csm x x 
old loans / nr of other loans x x csm   csm  x csm   
phone   csm  x   x csm   
principal           x 
residential status / housing csm x x x x csm  x csm  (csm) 
sector of employment       csm     
state of birth x           
wealth csm           
working in private / public sector         x   
years of employment / time in present job x x  x  csm x x   
zip code / region x   csm   x   x   csm     
            
Behavioral variable                       
collateral type / value   csm         
cosigner / guarantor      x  x    
credit type       x    x 
interest / interest rate           csm 
length of relationship  x csm  x  csm     
loan size / credit limit csm   x  csm csm x x  x 
loan to value ratio          csm  
maturity / duration of the loan   csm     x csm  csm 
monthly payments  x          
nr of payments           x 
own resources / savings   csm    csm x    
payment performance           x 
purpose of loan            
score / points   x         csm         



 

2.4.1 The weakness of previous literature 
 

In previous literature the number of variables has usually been between 10 and 20 variables or 

less. Excluding the study of Ko enda and Vojtek (2009) several studies do not concentrate on 

selecting the most reliable CSM between variables but settle for one model. The excellence of 

this thesis is to have high number of explanatory variables and evaluating the importance of 

variables with the help of several models. 

 

There are certain socio-demographical variables that would be easy to include in the model 

and are proven to have significant results but are not used as a predictive variable in the 

previous studies. Such are income, ownership of a real estate and time since last moving. 

Previous studies have mostly concentrated on having a reliable technique in determining 

default but have not tested those with up to date, broad sample with essential variables. This 

study employs a unique set of variables such as housing type, military service and time of 

applying a loan, which have not been used in previous studies before. 

 

Most  of  the  studies  have  employed  data  from  U.S  or  Asia.  There  is  not  much  evidence  on  

European not to mention Nordic determinants on default (note Jacobson & Roszbach, 2003). 

Especially the socio-demographical variables may give varying results depending on 

nationality. For example income is not purely comparable between nationalities. Housing 

type, education and number of household vary depending on culture and thus are not 

necessarily comparable between continents or even between countries.  

 

Many previous academic studies have been lacking the credibility and practicability due to 

the small size of the sample used in model estimation. This thesis, instead, is able to provide 

applicable results with a sample of 14 595 observations. 
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3 Data description and summary statistics 
 

In this chapter I will present the data for the empirical study and analysis. After describing the 

dataset I will introduce the variables and give some statistical information about them. 

 

3.1 Data 

 

This study uses a unique dataset from one of Finland’s largest and well-known consumer 

credit companies who has over 150 000 customers. The lender has specialized in providing 

small- and medium-sized loans to retail customers. The collected data includes several socio-

demographic variables such as education, marital status, size of household etc. I also have 

information on the customership or here: behavioral variables including for example the 

scores based on which the customer has been evaluated and the length of relationship between 

the customer and the lender.  

 

The initial sample consisted of 103 03723 applications received between May 27th, 2008 and 

September 1st, 2009. Out of these 14 595 were accepted and 88 442 rejected. From the 

accepted 29%24 turned out to default and 71% performed well. Each customer is allowed to 

have only one loan at the same time. So there is no need to aggregate several loans for one 

individual, as is often the case for scoring companies. 

 

From the empirical analysis I have excluded observation of customers who applied for a loan 

but were rejected due to small credit scores evaluated by the company. The dataset itself 

would have been larger but the amount of defaulted loans would have remained the same. The 

true creditworthiness status of the rejected applicants is unknown and their characteristics 

might  differ  from  those  who  were  granted  the  loan.  The  exclusion  might  cause  a  potential  

selection bias but is common in the literature and according to Banasik et al. (2003) has only a 

minimal effect on results. 

                                                
23 Same customer is allowed to apply for a loan three times during a 90-day period. After the 
third rejected application this customer is blocked from getting an approval. Therefore, the 
sample may include maximum of three applications for the same applicant. 
24 The amount of defaulted customers was by December 15th, 2009. 
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The information for socio-demographical variables is given by the customer at the time of 

filling loan application online. Along with the terms and conditions the company has placed, 

the customer is obligated to give true and fair information. The behavioral variables are 

observed at the time of application and customership. 

 

The following sections describe the variables. 

3.1.1 Variables 

 

Table 2 lists variables and their definitions. The variables are divided based on their socio-

demographical or behavioral characteristics in the analysis. I employ 30 explanatory variables 

out of which 23 are socio-economical and 7 behavioral describing the relationship between 

the  customer  and  the  lender.  The  same  data  has  been  used  for  the  company’s  own  scoring  

model  and  customer  evaluation  and  thus  all  of  the  categories  are  taken  as  given.  The  

classification is a common practice (Ko enda and Vojtek, 2009) in modeling CSM and 

especially when using logistic regression as empirical analysis classes to determine if either 

one has more explanatory power. The categories for variables can be found in Table 14 

(Appendix). 
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Table 2: Variable definition 
This table presents the definitions for each variable in the analysis. Variables are divided into two categories: 
socio-demographical and behavioral. The column Definition describes whether the variable is dummy i.e. is 
possible to have two binomial values or categorical i.e. has three or more values. The categories for each 
variable can be found in Table 14. 
 

Variable Definition Socio-demographical Behavioral 
AGE categorical, age of applicant x  
CITY dummy, takes value 1 if applicant lives in one of the 5 largest cities x  
COTTAGE dummy, takes value 1 if applicant owns a cottage x  
CREDIT dummy, takes value 1 if applicant has one or more credit cards x  
DEFAULT dummy, takes value 1 if applicant has defaulted the loan  x 
EDUCATION categorical, education x  
EMPLOYMENT categorical, the type of employment x  
FREEEMAIL dummy, takes value 1 if applicant has given a free email address x  
GENDER dummy, takes value 1 if applicant is female x  
HOUSING categorical, the residential type x  
HOUSINGTYPE categorical, housing type x  
INCOME categorical, monthly income (in EUR) x  
LEVEMPL categorical, level of employment x  
LOANSIZE categorical, the amount of loan in euros   
MARITAL categorical, marital status x  
MILITARY dummy, takes value 1 if applicant has completed military service x  
MONTHLY categorized, the amount applicant repays per month (in EUR)  x 
MOVING categorical, years since last moving x  
NATIONALITY dummy, takes value 1 if applicant isn't a finnish citizen x  
NATIVE categorical, native of applicant x  
NRADULTS categorical, nr of adults in household x  
NRCHILDREN categorical, nr of children in household x  
PAYBACK categorized, the time of payback (in months)  x 
PHONE dummy, takes value 1 if applicant has called to have credit  x 
POSTAL categorical, in which postal area the applicant lives in x  
PREVLOAN dummy, takes value 1 if has had loan earlier from the company  x 
REPAYMENTBEH dummy, takes value 1 if applicant has had payment problems  x 
SCORE categorical, the scores applicant has received given by the lender x  
SIZEHOUSEH categorical, nr of persons in household x  
TIME categorical, the time of day applying a loan  x 
TIMEFIN categorical, nr of years the applicant has lived in Finland x   
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3.1.2 Variable definition and descriptive statistics 

 

To illustrate the properties of the whole dataset I include Table 3 that presents the statistics 

when both the defaulted and non-defaulted observations are included.  

 

Table 3: Descriptive statistics for whole sample 
This table presents the descriptive statistics for the whole sample. The definitions for categories can be found in 
Table 14 (Appendix). 
 

Variable Nr of observations Mean Stdev Min Max 
AGE 14595 2,38 0,752 1 5 
CITY 14595 0,27 0,445 0 1 
COTTAGE 14595 0,17 0,379 0 1 
CREDIT 14595 0,66 0,474 0 1 
DEFAULT 14595 0,29 0,452 0 1 
EDUCATION 14595 1,27 0,995 0 3 
EMPLOYMENT 14595 0,78 0,416 0 1 
FREEEMAIL 14595 0,82 0,387 0 1 
GENDER 14595 0,44 0,496 0 1 
HOUSING 14595 0,49 0,725 0 3 
HOUSINGTYPE 14595 0,89 0,923 0 3 
INCOME 8229 2,36 1,119 0 4 
LEVEMPL 14595 3,36 1,917 0 10 
LOANSIZE 14595 1,57 1,179 0 3 
MARITAL 14595 1,01 1,108 0 5 
MILITARY 14595 0,44 0,497 0 1 
MONTHLY 14595 1,57 1,05 0 3 
MOVING 14595 4,23 2,727 0 8 
NATIONALITY 14595 0,07 0,486 0 4 
NATIVE 14595 0,06 0,293 0 2 
NRADULTS 14595 0,4 0,523 0 2 
NRCHILDREN 14595 0,42 0,843 0 3 
PAYBACK 14595 3,93 2,196 0 6 
PHONE 14595 0,07 0,257 0 1 
POSTAL 14595 3,19 3,072 0 9 
PREVLOAN 14595 0,31 0,461 0 1 
REPAYMENTBEH 14595 0,16 0,368 0 1 
SCORE 14595 1,71 1,498 0 4 
SIZEHOUSEH 14595 0,82 1,184 0 4 
TIME 14595 2,24 0,753 0 4 
TIMEFIN 14595 0,05 0,378 0 4 
 

 

The dataset is divided into two parts, the loans that turned out to be good (at the time of the 

study) and the ones that turned out to be bad. On December 15th, 2009 4 191 of those who 

obtained a loan had defaulted while 10 404 borrowers still fulfilled their minimum repayment 

obligations at that time. The magnitudes of estimated means and corresponding standard 
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errors in Table 4 imply that a formal test for differences in means between the two groups of 

defaulted and non-defaulted loans will not yield significant test statistics for any variable. To 

formalize the distributions of the explanatory variables a logistic regression is conducted and 

the results are interpreted in Chapter 5. 

 

Table 4: Descriptive statistics 
This table shows the descriptive statistics for both defaulted and non-defaulted customers. 
 
  Defaulted loans (N=4191)   Non-defaulted loans (N=10404) 

Variable Mean Stdev Min Max  Mean Stdev Min Max 

AGE 2,21 0,76 1 5  2,44 0,74 1 5 

CITY 0,30 0,46 0 1  0,26 0,44 0 1 

COTTAGE 0,15 0,36 0 1  0,18 0,39 0 1 

CREDIT 0,60 0,49 0 1  0,68 0,47 0 1 

DEFAULT 1,00 0,00 0 1  0,00 0,00 0 1 

EDUCATION 1,24 0,95 0 3  1,29 1,01 0 3 

EMPLOYMENT 0,79 0,41 0 1  0,77 0,42 0 1 

FREEEMAIL 0,83 0,38 0 1  0,81 0,39 0 1 

GENDER 0,34 0,47 0 1  0,47 0,50 0 1 

HOUSING 0,58 0,72 0 3  0,45 0,73 0 3 

HOUSINGTYPE 1,05 0,92 0 3  0,83 0,91 0 3 

INCOME 2,27 1,08 0 4  2,42 1,14 0 4 

LEVEMPL 3,41 1,86 0 10  3,35 1,94 0 10 

LOANSIZE 1,71 1,16 0 3  1,51 1,18 0 3 

MARITAL 1,12 1,08 0 5  0,97 1,12 0 5 

MILITARY 0,48 0,50 0 1  0,43 0,49 0 1 

MONTHLY 1,55 1,03 0 3  1,58 1,06 0 3 

MOVING 3,59 2,67 0 8  4,49 2,71 0 8 

NATIONALITY 0,03 0,18 0 1  0,02 0,13 0 1 

NATIVE 0,07 0,34 0 2  0,05 0,27 0 2 

NRADULTS 0,50 0,54 0 2  0,36 0,51 0 2 

NRCHILDREN 0,53 0,90 0 3  0,37 0,81 0 3 

PAYBACK 4,23 2,10 0 6  3,81 2,22 0 6 

PHONE 0,07 0,25 0 1  0,07 0,26 0 1 

POSTAL 3,09 3,05 0 9  3,23 3,08 0 9 

PREVLOAN 0,48 0,50 0 1  0,24 0,43 0 1 

REPAYMENTBEH 0,00 0,00 0 0  0,23 0,42 0 0 

SCORE 1,33 1,45 0 4  1,86 1,49 0 4 

SIZEHOUSEH 1,03 1,23 0 4  0,74 1,15 0 4 

TIME 2,24 0,77 0 4  2,25 0,75 0 4 

TIMEFIN 0,06 0,43 0 4   0,04 0,35 0 4 
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To illustrate the descriptive characteristics more the Appendix (Table 14) provides cross-

tabulated data on variables against default. 

 

Next, more precise definitions are given to the variables. 

 

3.1.2.1 Response variable 

 

The response or dependent variable is called DEFAULT, which describes the customer’s 

repayment  ability.  The  company’s  definition  of  default  is  identical  to  the  Basel  II  

framework25: the borrower is in default if he is more than 90 days overdue with any 

payment26 connected  with  the  loan.  After  this  time  period  the  loan  is  forwarded  to  a  debt-

collection agency and the customer is prevented for having another credit from the company. 

Suomen Asiakastieto who registers defaults will also get the information after the municipal 

court27 has given its decision of default. Depending of the type of the default the tag in 

customer’s default register will remain from two to five years. This will affect the customer’s 

credit standing in the future. For example getting a bank loan or credit card without 

guarantors is difficult or even impossible and even renting an apartment or applying a new job 

will become difficult28. 
 

Response variable is a binary or dummy variable and thus can have two values: 0 and 1. 

Customers who have performed well will receive value 0 and customers who have defaulted 

their payments will receive value 1. Table 3 gives the mean and standard error of the variables 

used in the study. The mean value of DEFAULT is 0,29, which implies that 71% of 

customers on an average repay their loans as scheduled while 29% default on their payments. 

  

 

 

                                                
25 See www.basel-ii-association.com for details. 
26 Any payment includes principal or interest. 
27 Käräjäoikeus in Finnish. 
28 The Finnish Law of Credit Reference (luottotietolaki) regulates issues of default and credit 
references. The grounds for default are also regulated. 
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3.1.2.2 Explanatory variables 

 

This section presents the explanatory or predictor variables in the study. Explanatory 

variables are further divided to socio-demographical and behavioral categories. 

 

Each explanatory variable has 14 595 observations29.  The  division  of  amounts  between  

defaulted and non-defaulted among different categories can be found in Table 14 (Appendix). 

 

3.1.2.2.1 Socio-demographical variables 

 

The socio-demographical30 variables characterize the customer and his features at the time of 

the application. 

 

AGE defines the age of an applicant in years and is described as a categorical variable ranging 

from 0 (under 20 years) to 5 (over 70 years) with mean 2,38 (std. error = 0,75) showing the 

average age of a customer to be between 26-45 years. The first category includes customers 

under 20 years old but has no observations, as the company’s policy is not to grant loan for 

under 20-year-olds at the moment. It is often assumed that older borrowers are more risk 

averse and will therefore be less likely to default. Dunn and Kim (1999), Arminger et al. 

(1997) as well as Agarwal et al. (2009) can confirm this empirically. They found that 

probability to perform well is greater for older people. Similarly, I expect the risk of default to 

decline in the later stage of life. 

 

 

                                                
29 INCOME in an exception and has only 8 231 observations due to companies policy to not 
to require this information in the beginning. 
30 Socio-demographic refers to different groups of people within the society. 
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Figure 3: Percentage of default risk among different age groups 

 

Figure 3 presents the percentage of default risk among different age groups. It can be seen 

that 20-25-year-olds have the most defaults. Almost 45% of customers in this group will 

default on their payment. Age group 26-45 has also defaulted more than an average customer 

(29%).  This  is  consistent  with  Statistics  Finland31 (2010): 25-49 years old have the most 

payment troubles.  

 

Autio et al. (2009) analyzed the use of instant small loans among young people (18-29 years) 

in Finland and found that the young customers, who borrow money pay bills overdue, have 

weaker financial position and recognize overall flaws in their money management. Often the 

reason for applying an instant loan is to cover a rent that is already overdue. Young people are 

also  seen  to  take  new loans  to  pay  off  previous  ones.  These  facts  might  reflect  also  on  the  

behavior of customers in consumer credit market. 

 

The variable CITY divides customers into two groups: those who live in one of the five 

largest cities32 and those who live elsewhere. The division is based on to the postal code 

applicant has given in the application. Rosbach (2004) has employed big city variable and 

found that people living in one of the three metropolitan areas in Sweden seem to default 

more and thus have significantly smaller chance of being granted a loan. 

 
                                                
31 Tilastokeskus in Finnish. 
32 Five largest cities are Helsinki, Espoo, Tampere, Turku and Oulu. Information is based on 
the amount of population. 
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COTTAGE is a dummy variable having a value 1 if an applicant owns a cottage. This is a 

sign of owning a real estate and thus having more financial wealth. Those with high wealth 

are 19 percent less likely to default their debt (Agarwal et al., 2009) compared to those with 

low wealth. 

 

The ownership of a credit card is defined with variable CREDIT. Agarwal et al. (2009) found 

that borrowers with higher amount of other debt are significantly less likely to default on their 

credit card debt. This might be consequence of several credit institutions of monitoring the 

applicant’s financial standing and repayment behavior.  

 

Regarding education I expect that better educated people have more stable, higher-income 

employment and thus default less. This characteristic is represented with EDUCATION that 

has four subcategories. Steenackers and Goovaerts (1989) show that customers with high-

educated professions were less likely to default on their loans. Figure 4 presents the 

percentage of default risk among different education categories. It can be seen that no major 

differences in default rates exist but those who have went to college default less (25%) 

compared to others.  
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Figure 4: Percentage of default risk among different education categories 
 

EMPLOYMENT describes the type of employment. Variable has four subcategories but has 

observations only in two categories. In Finland, the type of employment may not be a suitable 

proxy today as many employments begins with fixed-term agreement and often will not even 

turn to permanent agreement. Only 22 percentages of customers had fixed-term agreement. 
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FREEEMAIL is to define whether having a free email address can affect on default. Having a 

free email address instead of a purchased one or an email provided by employer might 

indicate the customer is not afford to purchase one or is not employed. 

 

GENDER in addition to age is one of the most used socio-demographical variables to 

differentiate the predictive power between men and women. There is clear evidence that 

women default less frequently on loans (Arminger et al., 1997) possibly because they are 

more risk averse. Figure 5 describes the default rate differences between men and women. It 

can be seen that 34% of male customers defaulted while only 23% of female customers had 

payment troubles. 
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Figure 5: Percentage of default risk between male and female 

 

HOUSING describes the residential type of applicant. As shown by Steenackers and 

Goovaerts (1989) and Agarwal et al. (2009) residential status can indicate financial wealth in 

particular in the case of home ownership. Agarwal et al. show evidence that an individual 

who  owns  a  home  is  17  percent  less  likely  to  default  and  25  percent  less  likely  to  file  for  

bankruptcy. I expect the risk of default to be lower for a debtor who owns a home compared 

to those who rent, have employment relationship apartment or partial ownership of an 

apartment. 
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HOUSINGTYPE defines if applicant lives in a house, a row house, an apartment or another 

type of accommodation. Housing type might indicate a level of financial wealth and thus have 

an  effect  on  default.  HOUSINGTYPE  does  not  include  the  information  of  ownership  but  I  

expect people with more wealth to live in a house as renting a house rather than an apartment 

is often more expensive. 

 

INCOME presents the borrower’s monthly income in Euros and is categorized in five 

subcategories. INCOME has only 8 229 observations due to company’s policy not to require 

income in its application form until 2009. According to Jacobson and Roszbach (2003) and 

Agarwal et al. (2009) among others, income has significant predictive power and those with 

high income and high wealth are less likely to default on their debt. Note, that in my study, 

the average (median) monthly income is under 2 500 Euros. In contrast, the average monthly 

income in Finland is about 2 876 Euros33. Thus the bank’s borrowers – including the 

defaulted ones – have an income that lies clearly below the national average. 

 

LEVELEMPL is a variable to define in which of the 11 level of education an applicant is. 

Occupation is one of the commonly incorporated variables since it is highly correlated with 

income (Dinh & Kleimeier, 2007). 

 

LOANSIZE is the amount of credit the applicant is granted. The customer may have applied 

for larger amount but has been denied the loan. He is able to try lower amount for maximum 

of three times. Several studies use loan size as a predictor variable but the overall results are 

ambiguous and thus no clear expectations can be formed. Jacobson & Roszbach (2003) show 

that loan size has no significant influence on default risk. In the study of Kocenda and Vojtek 

(2009) small loans appear to be more risky if variable ‘own resources’ is included. However, 

if this information is not used, the regression identifies that the larger loans as more risky. 

 

MARITAL is to investigate whether different marital status can predict default as it is often 

seen as sign of responsibility, reliability or maturity of borrowers. It is very common variable 

in default literature and for example Agarwal et al. (2009) suggest that a borrower who is 

married is 24 percent less likely to default on his credit card debt and 32 percent less likely to 

file for bankruptcy. This is consistent with the statistics of this study (see Figure 6). A 

                                                
33 See www.stat.fi for details. 
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customer who is married defaults in 24% of the cases while single customers tend to default 

most often, in 36% of the cases. Similar to Arminger et al. (1997) other categories than single 

are not significantly different from the category married. Hence, I expect the risk of default to 

increase for single customers.  
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Figure 6: Percentage of default risk among different marital status groups 

 

The accomplishment of military service is defined with MILITARY. As only men tend to 

fulfill military service compared to women, this variable is highly correlated with GENDER 

and I except those who have not accomplished military service to default less.  

 

Moving has shown to predict default (Agarwal et al., 2009): the risk of personal bankruptcy 

and default is higher for an individual who migrates out of his state of birth. This paper 

employs MOVING to investigate whether years since last moving has expected effect on 

default behavior. Steenackers and Goovaerts (1989) give evidence that the less time since last 

moving the more likely the customer is to default. 

 

The Finnish nationality is not a requirement for applying a consumer credit whereas holding a 

Finnish social security number is. NATIONALITY is divided in two: those who have the 

Finnish nationality and those who have another origin. Nationality as predictor variable is 

employed also by Steenackers and Coovaerts (1989) but does not seem to have significant 

results on default. Figure 7 show that customers who are not Finnish citizens seem to default 

in 44% of the cases while the default rate for Finnish is 28%. 
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Percentage of default among nationalities
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Figure 7: Percentage of default among nationalities 

 

Customers who have Finnish as their native language default as much as an average customer, 

29% of the cases (see Figure 8).  Those who have Swedish as their  mother language tend to 

have  a  default  rate  of  24%.  NATIVE  might  correlate  with  NATIONALITY  as  those  with  

mother language other than Finnish or Swedish tend to default in 46% of the cases. 
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Figure 8: Percentage of default depending on mother language  

 

NRADULTS defines the number of grown-ups in household. Similar to variable MARITAL 

this is seen as sign of responsibility and support from the spouse in financially uncertain 
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times. Interestingly, the default rate seems to increase with the number of adults in the 

household (see Table 14 in Appendix).  

 

NRCHILDREN represents  the  number  of  children  that  the  borrower  has  to  support.  As  the  

number of children increases, so does the pressure on the borrower’s income due to higher 

expenses such as food and day care fees. For example, moving from zero to one child 

increases the default percentage from 26% to 39%. Dunn and Kim (1999) found that default is 

somewhat less likely for married cardholders, but its likelihood increases with number of 

children. 

 

The geographical area of customer living in is defined with POSTAL. According to 

Steenackers and Goovaerts (1989) the geographical region is significant predictor of default. 

In most of the studies region is to find people with similar wealth as they tend to live in the 

same location and might thus indicate borrower’s level of financial wealth. In this study the 

categorization is based on zip codes and thus may not be a suitable criterion as the categories 

are as much as 10 and have both cities and country sides within them. 

 

SCORE is the amount of points the customer has received at the time of application. Agarwal 

et al. (2009) found that borrowers who have lower FICO risk score are more likely to default 

on their credit card debt, which is consistent also with findings of Gross and Souleles (2001). 

Consistent with how the SCORE is determined, the fewer scores the customer has the more 

often he defaults (Figure 9). SCORE is based on the previous customers’ socio-

demographical characteristics and as supposed the characteristics related to default are 

somewhat similar.  
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Percentage of default among score classes
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Figure 9: Percentage of default among score classes 

 

SIZEHOUSEHOLD describes the number of people in household. This expresses the 

variables of NRADULTS and NRCHILDREN but is included in the analysis as combined 

variable to reflect also the information of single custody. Figure 10 describe that a household 

size of three increases the risk of default significantly. 
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Figure 10: Percentage of default among household sizes 
 

TIMEFIN describes the time in months spent in Finland. The default percentage is extremely 

high, 71%, for those who have lived in Finland for only 1-3 months (Figure 11).  This might 

be consequence for travelers to return home out of money and as unemployed. Consistent 

with findings of Agarwal et al. (2009) people who migrate from their birth state are more 
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likely to default and file for bankruptcy. The statistics of this paper show that those who have 

always lived in Finland default less, 29%, than those who have moved from elsewhere.  
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Figure 11: Percentage of default depending on years in Finland 

 

3.1.2.2.2 Behavioral variables 

 

The behavioral variables characterize the relationship between the customer and the bank. In 

some of the studies (Ko enda and Vojtek, 2009) behavioral variable defines the behavior on 

customer’s own current account. Bank-related variables are for example the amount of 

resources, date of account opening and whether a collateral has been placed. However, the 

organization I am utilizing does not operate as a bank and thus client deposits cannot be made 

and no account-related information of the customer is usually available. Though I use 

behavioral variables they primarily describe the behavior of the customer related to the credit 

taking and payment matters. Nevertheless, there are two variables that describe the history of 

customers’ current behavior on customership: 

 

Variable PREVLOAN describes whether the customer has had consumer credit or any other 

loan from the company earlier. Steenackers and Goovaerts (1989) find the number of previous 

credits to be significant determinant of default. Dinh and Kleimeier (2007) document the 

default to be least frequent for repeat borrowers. PREVLOAN can be indication of the 

relationship with the bank. In Kocenda and Vojtek’s (2009) work the length of the 
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relationship between client and the bank is the most important behavioral characteristic 

indicating that the longer the history with the bank the less likely it is for them to default. 

 

Company has its own register for customers who have had some payment troubles during the 

customership but have repaid until the 90 days has passed. A variable to describe this is called 

REPAYMENTBEH.  However,  for  any  of  the  defaulted  customer  there  is  not  default  

information. In order to avoid this variable from interfering with the results and increase the 

number of degrees of freedom I will exclude this variable from the empirical analysis.  

 

PAYBACK measures the maturity of loans in months. Usually in consumer credit markets the 

loan duration is proposed by the borrower and thus reflects the borrower’s intention, risk 

aversion, or self-assessment of repayment ability. Dinh and Kleimeier (2007) found loan 

duration to have significant effect on default prediction. The limit for loan duration is four 

years. Özdemir’s work (2004) show evidence that the longer the maturity the higher the 

default risk. 

 

Customer is able to define the amount in Euros he is willing to repay per month. This is 

described with variable MONTHLY. MONTHLY can be seen correlated with PAYBACK: 

The longer the payback period customer is willing to have the smaller the monthly repayment 

amount. I expect customers with smaller monthly amount to default more often compared to 

those with larger payback entries. 

 

Customers are able to apply loan by phone, which is a characteristics defined with PHONE. 

Only 7 percentages of granted customers used phone as an application channel. 

 

Customers are able to apply loan regardless of the time of the day. TIME reflects the time the 

application has been placed in. Customers who have applied for a loan between 11pm and 

5am tend to default more than those who apply for a loan during office hours (Figure 12). 

This might be component of the Finnish law to deny creditors to transferring any money 

between 12am and 7am. This regulation is rationalized with weakened discretion of a 

borrower in certain situations.  
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Figure 12: Percentage of default depending on application time 

 

MONTHLY, PAYBACK, PHONE and TIME could be considered as socio-demographical 

variables but are related to credit and to the company offering the loan are thus represent 

behavioral variables. 
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4 Methodology and analysis 
 

This section provides justification and describes the methods I am going to use. Firstly, I 

rationalize the choice of logistic regression from the broad spectrum of different techniques. 

Similar to Ko enda and Vojtek (2009) I then define backward stepwise as empirical method 

information  values  to  determine  the  most  significant  variables.  At  the  end  of  this  chapter  I  

present the means of determining the quality of the model. 

 

4.1 The most employed techniques 

 

To study determinants of default the three most common predicting methods in the previous 

literature  have  been  discriminant  analysis  (DA -  also  known as  linear  discriminant  analysis  

LDA), logistic regression (LR) and linear regression (usually OLS). The following – both 

parametric and non-parametric - techniques have also been used in CSM: neural networks 

(NN) and classification trees (CT). The following section briefly summarizes some of the 

previous literature in the area of these techniques. 

 

Arminger et al. (1997) have compared three different methods concerning credit risk. Those 

are LR, CT analysis and NN. In the study they used sex, job duration, age, car ownership, 

telephone ownership and marital status as predictor variables. The large dataset from a major 

bank in Germany specializing in consumer loans is divided into two subsamples to compare 

the techniques: the cross validation sample and the test sample. They report that predictive 

power is about equal for all techniques with the LR as the best technique. First, the 

performance  of  each  method is  analyzed  by  means  of  a  test  sample.  The  results  for  the  CT 

analysis are slightly worse than the LR and NN. The results for the performance of the NN in 

cross  validation  sample  are  similar  or  slightly  improved  compared  to  the  results  of  the  test  

sample, whereas the two other technique have a slightly lower performance compared to the 

test sample. 

 

Desai et al. (1996) compares NN, LDA and LR in building credit scoring models in the credit 

union environment and defining the predictive power of each model. They used data from 
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three different credit unions34 in the Southeast United Stated for the period 1988 through 

1991. The variables employed can be found in Table 1. The results are ambiguous: NN 

provides good estimate if the measure of performance is percentage of bad loans correctly 

classified. If the measure of performance is percentage of good and bad loans correctly 

classified, LR models are comparable to the NN approach. In any case LR does better than 

LDA. No attention to the significance of variables was given in this study. By comparing 

LDA, LR, NN and neural discriminant model Lee et al. (2002) found similar results: all four 

models provide on average the same classification rate between default and non-default 

customers. 

 

Ko enda and Vojtek (2009) estimate determinants of default via parametric and non-

parametric techniques, LR and CT. Both methods give reliable results and they state that non-

parametric model i.e. CT can also be successful and able to create good models. Although 

literature indicates that also other techniques like CT and NN prove to have good estimates, 

there is a lot of evidence (Luo and Lei, 2008 and Yang et al., 2009) that logistic regression is 

very successful and often the best in determining default predictors and default probability. 

 

According to Hand and Henley (1997) there is no overall best method. What is best will 

depend on the details of the problem: on the data structure, the characteristics used, the extent 

to which it is possible to separate the classes. Amarnath has prepared a short summary of the 

techniques. As well as Hand and Henley (1997) Armarnath’s opinion is not to classify these 

but to consider each case separately. He describes that classification methods such as LR, 

nearest neighbour and tree-based methods are easy to understand and are thus appealing to the 

users. Amarnath suggest that neural networks are well suited to situations where we have a 

poor understanding of the data structure. 

 

Several studies (Chen & Huang, 2003, Lawrence & Arshadi, 1995 and Laitinen & Laitinen, 

2000) stand for logistic regression due to its high predictive power as an empirical model. 

Thomas (2000) as well as Ko enda and Vojtek (2009) have used logistic regression while 

analyzing credit defaults. It seems to be a method that is very successful when determining 

low and high-risk loans. Logistic regression is the most common technique for predicting 

default. There is a lot of critique against logistic regression (as well as LDA) due to the fact 
                                                
34 962 observations for credit union L, 918 observations for credit union M, and 853 
observations for credit union N. 
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that unlike OLS regression, logistic regression does not assume linearity in relationship 

between the independent variables and the dependent does not require normally distributed 

variables. However, several studies like Chen and Huang (2003) show that most of the credit 

scoring datasets are only weakly non-linear and thus give an appropriate estimate. It has been 

noted (Aldrich and Nelson, 1984, Lo, 1986 and Wilson et al., 2000) that the use of logit or 

probit  estimators is  more efficient compared to estimation based on DA. If  the performance 

measure is the percentage of good and bad loans accurately classified, LR is as good as NN 

(Chen & Huang, 2003). The percentage of bad loans correctly classified in an important 

performance measure for CSMs since the cost of granting a loan to a defaulter is much larger 

than that of rejecting a good applicant. 

 

It can be seen that all of these predicting methods have their own special features. By far the 

dominant methodologies, in terms of JBF35 publications has been LDA followed by LR 

(Altman & Saunders, 1997). Martin (1977) uses both LDA and LR to predict bank failures in 

the 1975-76 period, when 23 banks failed. He found that both models gave similar 

classifications in terms of identifying failures and non-failures. However, one of the basic 

underlying assumptions in LDA is the assumption of normally distributed variables, which is 

violated in this case as most of the variables used in a CSM are categorical variables. 

 

4.2 Logistic regression 

 

Justificated by the facts presented in the previous section and continued in this section I 

decided to select logistic regression in this study. Logistic regression36 is a parametric 

approach and a type of predictive model where the response variable is dichotomous and thus 

able to have only two exclusive values (usually coded as 0 or 1) – in this case default or non-

default. The explanatory variables will have values that are either continuous or categorical. 

Logistic regression estimates the probability of a certain event occurring by fitting data to a 

logistic curve. The technique applies maximum likelihood estimation after transforming the 

dependent into a logit variable. Thus, logistic regression estimates the probability of a certain 

event – here: default - occurring. Logit analysis uses a set of variables to predict the 

probability of borrower default, assuming that the probability of default is logistically 
                                                
35 JBF stands for Journal of Banking and Finance. 
36 Logistic regression is also called logistic or logit model. 



 52

distributed i.e. the cumulative probability of default takes a logistic functional form and is 

constrained to fall between 0 and 1. The advantage in logistic regression is that the 

coefficients of explanatory variables are able to describe directly their predictive power and 

importance in the model.   

 

Unlike ordinary linear regression, logistic regression does not assume that the relationship 

between a response variable and explanatory variables is a linear one. Even if logistic 

regression is considered as a generalized linear model, it is used for binomial regression only. 

Nor does it assume that the response variable or the error terms are distributed normally (see 

Ohlon, 1980 and Altman and Sabato, 2007). 

 

The goal of the logistic regression is to predict the category of outcome for individual cases 

and to find the best fitting model to describe the relationship between the response variable 

and explanatory variables: explanatory variables are to predict changes in the response 

variable. In this study a model is created that includes only explanatory variables that are 

useful in predicting default.  

 

The probability p that a loan will default given the predictors is the computed with the logistic 

distribution: 

 

logit (p i ) = ln 
i

i

p
p

1
 = 0  + x 1i  1  + ... + x in n  

 

where p is the probability that p = 1 (loan will default), 0  is the regression constant and 1 … 

n  are  the  regression  coefficients  which  are  to  be  estimated  from  the  data.  x i  are  the  

explanatory (categorical or dummy) variables (predictors).  

 
 

4.2.1.1 Odds ratio 

 

With odds ratio I am able to define whether the probability of a certain event is the same for 

two groups. Odds ratio is a relative measure of risk, describing how much more likely it is 

that someone in one group (defaulted) is exposed to the factor compared to someone in 
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another group (non-defaulted). It can also be understood as a measure of effect size, 

describing the strength between two binary data values. Odds ratio is defined as 

 

Odds i  = 
defaulted
defaulted i

idefaultednon
defaultednon  

 

Where defaulted and non-defaulted are the total number of defaulted and non-defaulted and 

defaulted i and non-defaulted i are the number of defaulted and non-defaulted observations in 

the i:th category of a variable. The odds of an event occurring is the probability that the event 

will occur divided by the probability that the event will not occur. An odds ratio of 1 implies 

that the event is equally likely in both groups and that the variable is not able to discriminate 

between defaulted and non-defaulted. An odds ratio greater than one implies that the event is 

more likely in the first group. 

 

The odds ratios for each category of variables from the dataset can be found in the Appendix 

(Table 14).  

 

4.2.2 Information value 

 

Odds ratios as well as information value plays an important role in logistic regression. Both 

factors show the degree of the ability of the variable to discriminate between defaulted and 

non-defaulted loans. 

 

By the means of odds ratios calculated in previous section I have computed the information 

values for each category. The total information value for each variable was then computed by 

summing up the category values. The information value analysis describes the information 

value of a variable and is defined as 

 

IV i =ln  (Odds i ) 
defaulted
defaulted i

defaultednon
defaultednon i  

 

It tells us what is the predictive power of each variable. The higher the information values the 

higher the predictive power of the variable in the certain category. I am employing the 
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information value to exclude those variables from the analysis that have the lowest 

information values and thus small predictive power. Logistic regression gives the best results 

if the number of variables is not too large. Ko enda and Vojtek (2009) consider 20 variables 

to be the highest number of variables to employ. With information value evaluation I am able 

to select variables with some predictive power to the analysis. According to Ko enda and 

Vojtek information value above 0,2 is taken as a sign of the strong predictability of a variable 

in banking practice. 

 

Information values for the categories of variables can be found in the Appendix (Table 14). 

Variables that have the most predictive power are INCOME, PREVLOAN, SCORE, 

MOVING and AGE37. Unlike findings of Ko enda and Vojtek (2009) and Anderson (2007) 

no clear division between socio-demographic and behavioral importance can be done.  

However, behavioral variables PREVLOAN and SCORE as two of the three most predictive 

variables have high predictive power as behavioral variables.  

 

Furthermore, even if the information values are not high compared to banking practice and to 

the results of Ko enda and Vojtek (2009), they behave logically. SCORE is obviously one of 

the most predictive variables as it already includes the information of other variables. 

Consistent with findings of Ko enda and Vojtek, and Özdemir (2004) the socio-demographic 

variables have on average significantly lower information values than those who characterize 

the relationship between the lender and the customer. 

 

In my analysis I decided to employ variables with information value higher than 0,01 and not 

for example 0,02 or 0,05 so that I could include more socio-demographic variables into the 

analysis. Thus PHONE, EMPLOYMENT, FREEEMAIL, TIME, MONTHLY, COTTAGE 

and CITY were removed from the model as insignificant variables. 

 

4.3 Forward and backward stepwise selection 

 

The optimal set of explanatory variables is usually obtained with a forward or backward 

selection. The idea behind backward selection is to compare the likelihood of a model when 
                                                
37 As the dataset consisted only of categorical variables the results might change substantially 
if the categories were reconsidered. 
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one variable at a time is included or excluded. Ko enda and Vojtek (2009) as well as Hand 

and Henley (1997) and Steenackers and Goovaerts (1989) suggest using stepwise selection to 

select characteristics to use in CSM. 

 

Stepwise regression is a method where some of the variables are eliminated from the full 

model to achieve better suitability.  Forward stepwise method sequentially adds variables to 

maximize the model’s predictive accuracy. The fit of the model is tested after addition or 

elimination of specific variables to ensure the model still fits the data. At each step, the 

variable that leads to the greatest improvement in predictive accuracy – in terms of the highest 

score statistic conditional upon a significance level of less than 5% can be found. When no 

more variables can be added to the model or eliminated from the model, the analysis is 

complete. 

 

Regarding the consumer credit market this method may be relevant due to the costs related to 

data collection. The application form may be considered to be too broad and time consuming 

and it could be improved by selecting only the most critical variables. This could increase the 

competitiveness against competitors. 

 

The forward stepwise analysis begins with having first a model with a constant only, which is 

followed by adding variables one by one. In this thesis I decided to include variables whose 

information value is above 0,1. As conducted forward stepwise selection I ensure the 

backward stepwise selection gives the same results. 

 

When having several variables it is critical to extract the results with more than one model. 

The selection of a model is done based on the Akaike Information Criterion (AIC) to employ 

forward-backward stepwise model selection. AIC is discussed in section 4.4.1. 

 

4.4 Quality of the model 

 
Due to the ordinal -instead of cardinal- nature of explanatory variables, I am not able to take 

correlation into account. Instead, the quality of the model and goodness-of-fit of a logistic 

regression is often measured with the three tests introduced next. 
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4.4.1 Akaike Information Criterion (AIC) 

 

The AIC is a way of selecting a model from a set of models. The chosen model is the one that 

minimizes  the  Kullback-Leibler  distance  between  the  model  and  the  truth.  It's  based  on  

information theory, but a heuristic way to think about it is as a criterion that seeks a model 

that has a good fit to the truth. I start with the simplest model, with a regression on a constant 

only, which is a common procedure. From the first model each variable is left out one by one. 

After each step the model is tested with information criterion. Whether the information 

criterion improves it is safe to include more variables. The procedure is continued in a way 

the AIC does not worsen critically. AIC is defined as 

 

AIC = - 2 ( ln ( L)) + 2 K 
 
 
where L is the maximized likelihood function for the estimated model and K is the number of 

free parameters in the statistical model. 

 

In all my models I employed only variables with information above 0,01. If I would include 

more variables the AIC would increase more than 200%. I first estimate model 1, which is the 

output of forward stepwise technique, restricted the p-value to be between 0,05 and 0,1 for 

variables included in the stepwise procedure. The score for each customer can be calculated 

by summing the respective coefficient values, where the coefficient has a value of 0 for 

reference category. In addition to the first model, I construct two other models to define how 

the information criterion changes due to high number of categories in several variables. This 

leads to high number of degrees of freedom. Insignificant variables or meaningless 

coefficients are also reasons to construct additional models. 

 

4.4.2 Log-likelihood ratio (LR) test 

 

LR test is often used as a substitute for a standard F-test. The F-test is usually employed in the 

cases of OLS regressions but cannot be used in this study due to the fact that the response 

variable is not normally distributed. The LR test is performed by subtracting the residual 

deviances of constrained and unconstrained models. The likelihood ratio test uses the ratio of 
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the maximized value of the likelihood function for the full or alternative model over the 

maximized value of the likelihood function for the simpler or null model. The formula for the 

LR test statistic is 

D = – 2 ( ln L(m1)) – ( ln ( L(m2)) = – 2 ln 
)2(
)1(

mL
mL  

 

where L(m1) denotes the likelihood of the null model (here: Model 1) and L(m2) the 

likelihood for alternative model (here: Models 2 and 3, respectively).  

 

4.4.3 Pearson Chi-Square test 

 

In logistic regression chi-square test is the most appropriate in testing goodness-of-fit. 

Pearson Chi-Square test allows me to test the independence and goodness-of-fit of two 

categorical variables and are based upon a chi-square distribution. Chi-square is a statistical 

test commonly used to compare observed data with data we would expect to obtain according 

to a specific hypothesis. 

 

Chi-Square is calculated by finding the difference between each observed and theoretical or 

expected frequency, squaring them, dividing by the theoretical frequency, and taking the sum 

of the results: 

 

X 2  = sum
E

EO 2)(  

 
where: 

O = an observed frequency 
E = an expected (theoretical) frequency, asserted by the null hypothesis. 
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5 Empirical results 
 

This chapter gives justification for the selection of variables into the three models. After 

creating the models the results will be interpreted and the models will be tested with three 

tests of goodness-of-fit. 

 

5.1 Model selection 

 

The first model was selected as the ideal model using the forward and backward technique. 

For the first model I included all the explanatory variables that have information value above 

0,01 so that not too many variables would be excluded in the beginning38. The estimates for 

the Model 1 are presented in Table 11 (Appendix), which also contains the list of variables 

used. Applying the forward stepwise method, 12 variables are included in the Model 1. The 

amount of variables is surely small enough to produce reliable results.  

 

The total information values can be found in Table 14. It also contains the chosen variables in 

each of the models. 

 

Model 1 has few weaknesses: firstly, some of the variables have insignificant coefficients and 

high p-values. Secondly, the initial model has a high number of degrees of freedom39 

concerning these specific variables. Due to these drawbacks, Model 2 is constructed. 

 

There is no reason to increase information value above 0,01, to 0,02 or 0,05 since having 0,01 

as a cut-off value will already drop 7 variables. AIC would decrease 10%40 or 20%41 when 

having 0,05 or 0,02, respectively, as cut-off values for information value selection. Decreases 

are desirable but at this point we do not know which variables are significant and how will 

they behave if we exclude some of the strongest predictors outside the model. In addition 

LEVEMPL gives irrational coefficients when it comes to group laid off. The variable is also 

                                                
38 To have 0,02 or 0,05 as the cut-off value, stepwise selection would exclude too many 
variables outside the model and include only 6 or 9 variables instead of current 12 variables. 
39 Model 1 has 46 degrees of freedom as the amount decreases to 21 in Model 2. 
40 From 10 270 to 9 222. 
41 From 10 270 to 8 309. 
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highly insignificant. Even if INCOME doesn’t seem to give significant results I decided to 

employ it to the Model 2 since it has high information value and a explicit odds ratio. Model 2 

is better in the sense that it has a lower number of variables and thus may give more reliable 

results. Therefore, I keep 0,01 as the cut-off value and exclude the weakest variables 

LEVEMPL,  PAYBACK and POSTAL from Model  2  to  decrease  the  number  of  degrees  of  

freedom. The coefficients of the Model 2 can be found in Table 12 (Appendix). 

 

Finally, I estimate Model 3. The justification for the third model is driven by the fact that 

INCOME, PREVLOAN and SCORE are very strong default predictors compared to other 

variables. Therefore it is important to analyze the properties of other variables and define 

what is the capability of the model without strongest predictors. By excluding the strongest 

behavioral variables PREVLOAN and SCORE I can analyze the socio-demographical 

variables more carefully. Further, the SCORE is connected to every other variable in the 

model hence it is initially built based on other variables and thus may be highly correlated 

with those. Therefore it is interesting to see whether it is possible to discriminate successfully 

without the knowledge of how much scores the customer has received. The justification to 

have INCOME included in the model is that it is a socio-demographical variable and dropping 

it from the model would increase AIC substantially42.  I  employ  all  the  other  variables  that  

have information value higher than 0,01 and ones that were included in the Model 1.  

 

The coefficients of the Model 3 are presented in Table 13 and suggest that Model 3 is able to 

discriminate among customers without knowledge of the scores the customer had and whether 

he has had a loan from the company previously. 

 

It turns out that excluding PREVLOAN and SCORE the AIC decreases against Model 1 but 

increases against Model 243. 

 

 

 

                                                
42 Dropping INCREASE, PREVLOAN and SCORE would let AIC to increase to 15 920 
while dropping only PREVLOAN and SCORE AIC decreases to 9 633 compared to the 
Model 1. 
43 To exclude only PREVLOAN from Model 1 the AIC reaches 8 919 while excluding 
SCORE the AIC increases to 10 250. 
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Table 5: Information values for variables 

 

Variable Information Value Model 1 Model 2 Model 3 
INCOME 0,400923 x x x 
PREVLOAN 0,251429 x x   
SCORE 0,145415 x x  
MOVING 0,113234   x 
AGE 0,106136   x 
SIZEHOUSEH 0,092787   x 
HOUSING 0,088212 x x x 
NRADULTS 0,074267    
GENDER 0,072071 x x x 
HOUSINGTYPE 0,062405   x 
MARITAL 0,061146    
REPAYMENTBEH 0,058092    
NRCHILDREN 0,050342       
PAYBACK 0,042453 x  x 
LEVEMPL 0,031372 x  x 
CREDIT 0,029561 x x x 
LOANSIZE 0,028570 x x x 
TIMEFIN 0,013839    
EDUCATION 0,012677 x x x 
NATIONALITY 0,012487 x x  
NATIVE 0,011350    
POSTAL 0,011152 x   
MILITARY 0,010219       
CITY 0,008176    
COTTAGE 0,007222    
MONTHLY 0,006397    
TIME 0,004698    
FREEEMAIL 0,001536    
EMPLOYMENT 0,001160    
PHONE 0,000567       
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5.2 Variable interpretation 

 

Statistical analysis was performed using SPSS 17. Tables 11, 12 and 13 (Appendix) shows the 

results of logistic regression with Wald significance44. I now turn to assessing and interpreting 

the results.  

 

Since I model the probability of default, a higher coefficient reflects a higher default 

probability. The score for each client can be calculated by summing the respective coefficient 

values, where the coefficient has a value 0 for reference category. 

 

5.2.1 Socio-demographical variables 

 

Similar to Arminger et al. (1997) gender seems to be one of the strongest indicators of default. 

In  all  three  models  GENDER  is  a  significant  variable  showing  that  female  customers  have  

much less difficulty in paying their debts and seem to default less than man. According to 

odds ratios the customers who haven’t served in the military tend to fail less often to repay the 

loan on time. This is logical as women present 44% of the population in this specific group. 

According to Suomen Asiakastieto (2009) the proportion of men and women among those 

who default has remained the same for over ten years. However, no generalization can be 

made since this study presents only the determinants in consumer credit market as Suomen 

Asiakastieto reports the ratio related loan markets in general. 

 

Another  strong  predictor  is  CREDIT;  customers  who have  one  or  more  credit  cards  tend  to  

default less compared to those who do not have one. Customers who have a credit card have 

been evaluated by a credit institution and hence provide some kind of guarantee for the 

consumer  credit  company.  Nowadays  it  might  be  difficult  to  obtain  a  credit  card  and  many 

credit card providers require the customer to be employed, have a regular income and to not 

have default information in Suomen Asiakastieto’s register. According to Dunn and Kim 

                                                
44 A Wald test is used to test the statistical significance of each coefficient (b) in the model. A 

Wald test calculates a Z statistic, which is z = 
SE
B . This z value is then squared, yielding a 

Wald statistics with a chi-square distribution. 
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(1999) the ownership of one credit card compared to not having a card decreases the risk to 

default but as having two or more credit cards the risk to default increases substantially. 

 

In my analysis INCOME is not as significant as expected. This is consistent with findings of 

Warren (2002): the median American who files for bankruptcy comes from the middle-class 

and is not categorized as a poor. Other variables like education, occupation and home 

ownership matter instead, according to her study. However, in Models 1 and 2 I can draw the 

conclusion that customers who have the highest income class and earn 2500 euros per month 

or more tend to default less. Interestingly, it seems that income class <1000 euros tend to 

default  less  than  those  who  earn  more,  anyhow  below  2500  euros.  This  might  be  a  

consequence of customers announcing their income to be higher as it is in reality. Therefore, 

the scoring model takes the dishonesty into account and revises the scores, which damages the 

granting likelihood of customers who have announced the real income. According to Vasanthi 

and Raja (2006) income of a customer is the most important socio-demographic 

characteristic. Evidence from their study shows that the main cause for mortgage default is a 

fall in household income. Customers who earn more than 2 500 euros per month seem to have 

a smaller default rate than those with lower level of income. According to Van Order and 

Zorn (2000) loans in low- and moderate income borrowers default more, but not by a very 

large factor.  

 

As expected, NATIONALITY show predictive power in Model 1 suggesting that customers 

who are Finnish citizens tend to default less compared to those who have other citizenship. 

This is consistent with findings of Steenackers and Goovaerts (1989). 

 

POSTAL is included in Model 1 but does not give reliable indication of default. This is 

presumable as each category includes both large and small cities. This variable also has a high 

number of degrees of freedom due to several categories and thus might result in providing 

insignificant results. However, I can draw the conclusion that customers living in Helsinki 

metropolitan area (postal code 00000-09999), Turku (20000- 29999), Tampere (30000-

39999) and Pohjois-Karjala and Pohjanmaa (80000-89999) tend to default more than 

customers from other areas. 

 

LEVEMPL  doesn’t  seem  to  be  a  significant  predictor  in  the  Model  1  or  Model  3  but  may  

result from the high number of degrees of freedom. The coefficients imply that every other 
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category is more likely to pay their loans at a time compared to the reference category, which 

is agriculture entrepreneur. One exception there is, however, and it is students. This is 

consistent with findings of Autio et al. (2009): students and other young people recognize 

flaws in their money management. One can make the assumption that both agriculture 

entrepreneurs and students have irregular income and a seasonal working time and thus may 

have troubles paying their loans back. Group laid off has a coefficient of -21,17, which is 

highly irrational and insignificant and excluding it from the Model 2 is thus justified. 

 

As  expected,  HOUSING  is  partly  a  strong  predictor  of  default  in  all  models.  It  seems  that  

customers  who have  a  home of  their  own default  more  often  than  those  who rent.  It  is  not  

surprising that a home via employment relationship or partial ownership are not significant 

categories as they are quite uncommon among the customers and cannot differentiate 

customers. This finding is consistent with the study of Agarwal et al (2009): an individual 

who owns a home is significantly less likely to file for bankruptcy compared to those who do 

not have real estate of their own. 

 

Though the variable EDUCATION is not a significant predictor, its B coefficients have the 

expected signs. Consistent with findings of Ko enda and Vojtek (2009) education level is a 

significant predictor of default. Customers with a higher level of education have much less 

difficulty paying their loans. People with university degrees seem to be less risky than those 

with lower education: primary school, technical school or high school. The default rate seems 

to be highest when it comes to primary school. Also Burrows (1998), Vandell and Thibodean 

(1985) and Quercia and Stegman (1992) found similar results from the mortgage industry: 

households who defaulted their mortgage were often in an unskilled manual occupation, or 

were uneducated persons who are unemployed most of the year. There are also empirical 

studies that differ from these (see for example Mills and Lubuele, 1994): households who are 

skilled had performed equally well compared to uneducated ones.  

 

When excluding the most important behavioral variables PREVLOAN and SCORE, new 

socio-demographical variables emerges into the analysis. Those are MOVING, AGE, 

SIZEHOUSEH and HOUSINGTYPE. 

 

Consistent with early literature MOVING is a relatively important variable showing that the 

longer the time since last moving the less likely the customer is to default. Agarwal et al. 
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(2009) found that a borrower who migrates from his state of birth is 17 percent more likely to 

default, while a borrower who continues to live in his state of birth is 14 percent less likely to 

default. 

 

In Model 3 AGE suggest that age group 61-70 year-olds are more likely to pay their credit 

while  20-25-year-olds  tend  to  default  more  often.  This  is  consistent  with  the  statistics  of  

Suomen Asiakastieto (2010): the age group of 25-49 year-olds had the most payment troubles. 

Most of these were due to consumer credit. The majority of notes from instant loans were 

from age group 18-24. The oldest group also seems to have more payment troubles but is 

insignificant. Several studies (Dunn & Kim, 1999, Jacobson & Roszbach, 2003 and Agarwal, 

2009) confirm my finding of age being a determinant of default. The results suggest that 

customers of age 46-60 (and 26-45) default less than age group 20-25. Significant changes in 

odds ratio (see table 14) show that AGE is successful in discriminating between defaulted and 

non-defaulted especially in age group 20-25.  

 

SIZEHOUSEHOLD suggest that households with two or four members default the least. 

Interesting would be to study whether the households of three members include two adults 

and one child or one adult and two children and thus default more often. Variables 

NRADULTS,  NRCHILDREN  etc  don’t  seem  to  have  significant  predictive  power  or  

significance in any of the models, which suggest that a combination of these three variables 

should be employed to find out how the results differ. 

 

As expected the type of housing seems to matter, according to HOUSINGTYPE. Those living 

in a house tend to default  less than those living in a row house or an apartment.  Houses are 

typically more expensive both to own and to rent and thus indicated of having more wealth. 

 

5.2.2 Behavioral variables 

 

Similar to findings of Ko enda and Vojtek (2009), LOANSIZE show that small loans appear 

to be more risky in all three models.  

 

As predicted, SCORE behaves logically: the higher the SCORE, the more likely it is for 

customers to perform well compared to those who have lower SCOREs. As predicted, the 
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SCORE is a relatively important variable. Customers who are given the highest scores tend to 

default less than those with fewer scores. 

 

PREVLOAN is also a strong predictor and highly significant (at 90% confidence level) 

showing that those who have had a loan from the company before tend to fail their payments 

compared to new customers. From the company’s point of view it is critical to monitor the 

payment behavior of its current customers in order to prevent them from defaulting later. This 

is incoherent with the results of Ko enda and Vojtek (2009) who show that the longer the 

relationship between the customer and the lender the more likely it is for the customer to pay 

back. One explanation is obviously the fact that the company I’m studying doesn’t operate as 

a bank and thus can’t follow the customers’ account behavior. According to Autio et al.:s 

(2009) study those young people who take consumer credit once are likely to do it again. 

Inconsistent with findings of Dinh and Kleimeier (2007) default is more frequent for repeat 

borrowers. However, my analysis does take stance on the number of previous loans per one 

customer. 

 

PAYBACK is partly significant suggesting that customers who have chosen to pay their loan 

pack in 18 to 48 months seem to default more than those who have chosen to repay within 12 

months. A conclusion is that those who perform well with their loan need a short-time 

financing to survive sudden costs but are solvent in long-term. 

 

5.3 Quality quantification 

 

Next I will compare the quality of the three models using Akaike Information Criterior test, 

Log Likelihood ratio test and Pearson Chi Square test. I have also included the classification 

tables at the end of this section.  
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5.3.1 Akaike Information Criterior (AIC) 

 

Table 6: AIC test 

  Akaike Information Criterior (AIC) 

Model 1 10 270 

Model 2 6 370 

Model 3 9 633 

 

As discussed earlier, AIC decreased substantially to Model 2 when I excluded the variables 

with insignificancy and with high number of degrees of freedom. When excluding 

PREVLOAN and SCORE from Model 3 AIC reaches to 9 633 again. A conclusion can be 

drawn that it is not recommendable to exclude the most significant variables due to AIC but is 

needed, however, to increase the importance of some socio-demographical variables. As can 

be seen from Table 6, Model 2 is best model to discriminate between good and bad customers 

according to AIC.  

 

5.3.2 Log Likelihood Ratio Test 

 

Table 7: LR test 

  Log Likelihood DEV 

Model 1 -5 072,30 10144,60 

Model 2 -5 112,29 10224,58 

Model 3 -5 212,99 10425,98 

 

The LR test was performed by subtracting the residual deviances of constrained (both Models 

2 and 3) against unconstrained models (Model 1) using the log-likelihood ratio test (LR test). 

When comparing Model 1 with Model 2 the test statistics is LR = 79,98 with 25 degrees of 

freedom, and statistics comparing Model 1 with Model 3 is LR = 281,38 with 4 degrees of 

freedom. Both ratios are highly statistically significant. According to LR test, the power of all 

the models is approximately the same and thus all the models can be used as a CSM. 
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5.3.3 Pearson Chi-Square Test 

Table 8: Pearson Chi-Square test 

  Pearson Chi-Square df Sig. 

Model 1 918,61 46 0,000 

Model 2 838,61 21 0,000 

Model 3 637,22 50 0,000 

 

According to Pearson Chi-Square Test all the Models present have efficient results. The 

significance is 0,000 and the magnitude of Chi-Square is high for all, being highest for Model 

1. 

 

5.3.4 Classification Tables 
 

Table 9: Classification tables 
   Predicted  
   Non-default Default Percentage Correct 
Model 1 Observed Non-default 4001 957 80,7% 
  Default 1920 1353 41,3% 
    Overall Percentage     65,0% 
      
      
   Predicted  
   Non-default Default Percentage Correct 
Model 2 Observed Non-default 3956 1002 79,8% 
  Default 1945 1328 40,6% 
    Overall Percentage     64,2% 
      
      
   Predicted  
   Non-default Default Percentage Correct 
Model 3 Observed Non-default 4094 864 82,6% 
  Default 2157 1116 34,1% 
    Overall Percentage     63,3% 

 

From the classification tables can be seen that goodness-of-fit is adequately good for all three 

models. The performance of correct predictions by category suggest that good credit risks 

(non-default) are more likely discovered whereas the performance in the bad credit risk 

(default) is significantly lower suggesting the Model 1 to give most reliable results. Hand and 

Henley (1997) got bad risk rate to vary between 43,09% and 43,77% differing between five 

methods. The overall performance is about equal for all models being slightly lower for 
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Model 2 and Model 3. I can draw a conclusion that all three models can be employed as CSM 

due to the fact that they provide similar percentages and better fit45 than a random model. 

 

5.3.5 Comparing models 
 

Table 10: Model comparison 
Test Model 1 Model 2 Model 3 
AIC  x  
LR  x x 
Chi Square x   
Classification tables x     

 
According to model comparison there are no substantial differences between models and thus 

all three models could be employed to have a reliable CSM. However, as PREVLOAN and 

SCORE indicate high predictive power it might not always be recommendable to exclude 

those from the model. The risk management department and management of a lender are to 

decide which model is the most suitable for the purposes of that particular credit institution. 

                                                
45 Assuming a random fit provides 50 percentages fit when there are two binary alternatives. 
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6 Conclusions 
 

This is the final part of my thesis, which will finish the thesis by summarizing the results and 

concluding the study by giving theoretical and managerial implications. In the end of the 

chapter  I  will  also  give  suggestions  for  further  research  in  the  area  of  consumer  credit  and  

default predicting. 

 

6.1 Summary of the Research 
 

This paper has empirically investigated determinants of consumer credit default with a new 

set of survey data taken from May 2008 through September 2009. This data set contains a 

representative sample of more than 14 500 individual consumer credit accounts that have not 

previously been available in Finland. Consumer credit default is examined in a logistic 

regression analysis where the number of defaulted payments is fitted to key behavioral 

aspects of company and a variety of socio-demographical variables. 

 

The data set included unique and sensitive information such as income, age, education and 

marital status reported by a well-known Finnish consumer credit company. In total I disposed 

of 31 variables. Table 2 contains definitions for the variables that have been selected for the 

estimation of the empirical model in Chapter 3. Of the 31 variables, 15 were not used in any 

of the final models. Most were disgarded because they lacked a univariate relation with 

response variable.  

 

To improve the first analysis I form two additional models and control some of the weakest as 

well as the strongest variables. I also test the efficiency of these methods, report the most 

important determinants of default behavior and compare these models in terms of the power 

in discriminating between “good” and “bad” customers. 

 

I obtain interesting key sets of results. First of all, the uncontrolled model show evidence that 

both socio-demographical and behavioral variables have predictive power. I find the most 

significant determinants: the ownership of a credit card, level of education, gender, housing 

status, income and nationality. Also the behavioral variables, size of a loan, previous loan and 
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score,  seem  to  have  notable  effect  on  default.  For  the  Model  2  I  controlled  the  three  most  

insignificant variables and found that it is possible to reach significantly lower AIC with 

fewer  variables.  In  Model  2  the  significant  predictor  variables  remain  the  same.  As  the  

behavioral variables, previous loan and score are highly strong, I control these and include the 

rest of the variables in the third model.  It can be seen that while controlling the two strongest 

variables, other socio-demographical variables emerge to the model. I find that also the time 

since last moving, age, size of household and housing type have predictive power in the 

analysis. 

 

One  of  the  contributions  of  this  thesis  is  that  in  terms  of  a  logistic  regression  model  I  

identified a specification that does not contain the two most important financial variables 

(PREVLOAN and SCORE) but still performs only marginally worse than the initial model. 

 

This  paper  contributes  to  the  growing  literature  in  several  ways.  I  find  that  both  socio-

economical and behavioral variables have predictive power and can thus be considered as 

determinants of default. The predictive variables show similar evidence as previous studies. 

Updegrave (1987) as well as Steenackers and Goovaerts (1989) and Dunn and Kim (1999) 

and Agarwal et al. (2009) show similar results regarding income and age. Housing ownership 

has seen to be predictor of default (Steenackers & Goovaerts, 1989 and Agarwal et al. (2009). 

Relationship with the lender has often seen a reliable variable according to Rock (1984). He 

also found that income and housing ownership could be considered as predictive variable, 

which is consistent to this study. Similar to this study, Ko enda and Vojtek (2009) have 

shown education, amount of loan and number of scores to be relatively important when 

studying default. Arminger (1997) show evidence on gender being one of the most important 

predictors of default. 

 

Kocenda and Vojtek (2009) as well as Özdemir (2004) suggest that financial or behavioral 

rather than socio-demographical variables have more influence on customer’s payback 

performance. This is consistent with findings of this thesis. However, only two of the 

behavioral variables show significant predictive power and thus also the need for socio-

demographical variable is justified. Neither type of variable group alone is adequate. 
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6.2 Theoretical and managerial implications of the research 

findings 

 

Combined with a dramatic growth of consumer credit and increased regulartory attention to 

risk management, the development of a reliable CSM is essential.  

 

This  study  assumes  that  customers  who haven’t  defaulted  during  the  first  year  will  perform 

well also during the rest of the loan period (following three years). However, the default rate 

regarding for only the first year is already 29%, which means that it could reach higher rate 

during  the  next  years.  Sullivan  et  al.  (2001)  show  evidence  of  the  two  major  causes  of  the  

increase in default and bankruptcy filings in the U.S.: increases in credit card and mortgage 

debt; an unexpected adverse events (such as unemployment, divorce, health problems, or 

medical debts) have reduced the ability of households to repay their debt and eventually 

compel them to file for bankruptcy. To have a reliable CSM is critical, as the competition 

between financial institutions has come to a tightened stage. According to Allen et al. (2004) 

banks  that  use  CSMs  appear  to  be  more  productive  at  lower  costs.  Companies  are  seeking  

better strategies with the help of improved credit scoring models. As managerial implications 

the scoring system could be reconstructed and updated regularly. The cut-off value could be 

raised hence the data set of this study show that as much as 40% of the customers in the 

lowest score class defaulted. 

 

Through optimizing the lending activity and minimizing the costs of default the lenders would 

be able to provide smaller interest, which would in turn improve the general performance 

compared  to  competitors.  As  stated  in  the  introduction  chapter,  the  morality  of  consumer  

credit has been out in the air. The real annual interest rate can reach up to hundreds of 

percentages. By means of more accurate CSM the default rates could be brought down and 

this would in turn make it possible for lenders to decrease the high interest rates related to 

consumer loans. The Federal Reserve Board (2007) in the U.S published a study that noted 

that CSMs have increased the availability of credit and reduced the cost of credit. Brill (1998) 

document that creating and improving CSM has following benefits: cost reduction in credit 

analysis, faster credit evaluation, closer monitoring of existing accounts and improvement in 

cash flow and collections. Chen and Huang (2003) state that with sizable loan portfolios, even 
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a slight improvement in credit scoring accuracy can reduce the creditors’ risk and translate 

considerably into future savings.  

 

In  order  to  have  several  variables  in  the  scoring  model  it  requires  the  online  application  to  

also be broad. From the customers’ perspective this may be time-consuming and frustrating. 

As shown in this study it is not necessary to use all the 30 explanatory variables to find the 

probability of default of a customer. To be able to create a model with fewer variables not 

only the costs would decrease from paying to the CSM vendor but also the application would 

become more customer-friendly.  

 

Many of the previous studies have employed the same variables as do this thesis. However, 

there are some additional variables that could be also investigated and applied  in this thesis 

and in the company in question. Especially financial or behavioral variables could be added. 

The purpose of the loan is studied by Dinh and Kleimeier (2007) and Lieli and White (2008). 

Loan purpose might indicate the consuming behavior and financial situation of a borrower. 

The length of relationship with the credit institution is difficult to observe as the company 

does not operate currently as a bank and thus does not have savings accounts for the borrower 

but could already be calculated from the time of applying the first loan. In the context of 

relationship banking, it can be assumed that the longer the relationship, the more the company 

knows about the customer and the lower the default risk becomes. Peltoniemi (2004) studied 

the role of relationship banking between small business firms and both bank and large 

financial institution in Finland. He found that a longer relationship tends to lower the cost of 

the credit and a long-lasting bank-firm relationship is beneficial, especially to high-risk firms. 

Number and duration of outstanding loans (including car loan, mortgage and home equity 

credit) – both within the company and from other financial institutions – might reflect the 

indebtedness of a customer. On the other hand, this would also describe the trustworthiness of 

customer in other banks: if borrower is able to have loan from a bank and thus might need to 

place collateral, he is likely to have credit standing and is thus less likely to default. Agarwal 

et al. (2009) found that borrowers with higher other debt are significantly less likely to 

default. The amount of resources the client has would be an interesting variable to study but 

like length of relationship requires a bank account. 

 

Some socio-demographical variables are worth noticing also. Rock (1984) suggests using 

debt-income ratio as predictor variable. Another variables that could be employed are 
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residential and work duration, city of birth or moving from the city of birth, Arminger et al. 

(1997) found car ownership and employment duration to affect on default. Time with 

employer matters because it might reflect the borrower’s job satisfaction, the more stable his 

employment will be and the higher his ability to repay his loan. Time at present address might 

be a proxy for the borrower’s maturity, stability or risk aversion but also a signal that a 

borrower’s financial wealth has improved. 

 

Early literature shows evidence of attitudes affecting on default rates (see Banasik & Crook, 

2007 and Chiang et al., 2002 and Roberts & Sepulveda, 1999 and Hayhoe, 1999). Consumers’ 

attitude on credit and default is difficult to measure but could be highly significant regarding 

the default rates. 

 

In this thesis I do not have any specific information of the timing of default; hence I have only 

the division of “non-default” and “default”. However, to investigate the timing of default is 

highly significant regarding the performance of the companies (see Roszbach, 2004). 

According to Boyes et al. (1989) it would be necessary to study population survival times 

more hence improved estimates of time-to-default will increase the ability to measure 

expected earnings. 

 

As it is obvious for some customers, especially those with low credit scores, to default more, 

it could be profitable to differentiate the interest rates between customer segments. People 

with higher credit scores would pay lower interest rates. In the light of these results consumer 

credit companies are able to target the marketing to those customer groups that are less likely 

to default. Bertrand et al. (2010) show that advertising contents significantly affects demand 

in the consumer credit market46. Bofondi and Lotti (2006) show supportive evidence: banks 

that are able to exploit scale economies and have larger market shares operating in more 

concentrated markets turn out to be early adopters in finding the most reliable CSMs. Today 

the loan market is highly competitive and especially in banks customers often have the same 

                                                
46 Bertrand et al. (2009) used a large-scale direct-mail field experiment to study the effect of 
advertising content on real decisions of applying for consumer credit in South Africa. An 
advertisement was sent to 53 000 former clients of a company with variation in advertising 
content. Results suggest for example that showing fewer example loans, not suggesting a 
particular use for the loan, or including a photo of an attractive female increase loan demand 
by about as much as 25% reduction in the interest rate. 
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margin even if some are riskier than others. With default predictive models lenders would be 

able to price the customers based on their risky socio-demographic characteristics. 

 

In response to increased number of defaults and bankruptcies companies should move away 

from only analyzing the credit-risk of individual loans and securities towards developing 

measures of credit concentration risk such as the measurement of portfolio risk of fixed 

income securities (Altman & Saunders, 1997). An example of measuring risk differently 

provides a work of Musto and Souleles (2005) by measuring covariance risk of individual 

consumers to determine the determinants of default.  Altman and Saunders (1997) show that 

their model for portfolio risk measurement is promising of estimating the optimal 

composition of loan portfolio. 

 

6.3 Limitations and suggestions for further research 

 

As data on defaulted and non-defaulted loans are collected from a portfolio that already 

passed a credit scoring procedure in the credit company, a CSM that is based only on these 

data gives biased results if it is used for the selection of new loans. Due to the selection bias it 

would be important to also take the customers who were rejected into the analysis. This could 

be conducted by classifying the rejected loans into “good” and “bad” rejected loans. Of 

course no guarantee will be given whether a rejected loan would have been good or bad. 

 

Credit companies often use scoring models that tend to classify customers to be either ”good” 

or ”bad”. The problem here is that the scoring system doesn’t take into account the state of the 

economy. In following papers it could be interesting to study how default behavior changes 

when there are hits in the economy. 

 

The dataset of this paper included categorical variables which were taken as given. In 

following studies it might be worthwhile to reconsider the categories or also include 

continuous variables if they are available and when it is appropriate. If the variables would be 

continuous also the correlation between variables would be determined. This might also have 

an impact on total information values possibly making them higher and causing odds ratios 

between different categories to be more discriminated. In this paper some of the insignificant 

variables had more than five categories, which leads them to have high number of degrees of 
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freedom47 and the results to be often insignificant. Thus the number of categories could also 

be lowered. Data used in empirical analysis is usually categorical (see Hand & Henley, 1997 

and Crook et al., 1983). However, the alternative approach of coding categorical variables 

into numeric form and using continuous data models is becoming more common. For 

example, one strategy is to use logarithms of likelihood ratios. Categories as such may not be 

informative enough. Instead variables could be combined in order to differentiate between 

customer types. For example education and age could be combined to compare if an educated 

20-25-year-old is more likely to perform well than an unskilled person of the same age group.  

For example Dunn and Kim (1999) found that married customers’ probability to default is 

lower if they do not have children but the likelihood to default increases with number of 

children. 

 

In  this  study  I  modeled  the  probability  of  default.  A higher  score  reflected  a  higher  default  

probability. In general, in CSMs the higher the score the more likely the customer is to 

perform well.  To be able to compare these models to the model the company uses I  should 

scale the coefficients to match current categories. 

 

There are not many academic studies that look to predict payment behavior, despite its 

importance in trade credit management decision-making. The approach in empirical studies of 

default has generally been to determine if socio-demographical and behavioral information 

can provide signals to predict default. Credit companies could predict default as Wilson et al. 

(2000) and investigate their payment behavior and not just their characteristics. 

 

                                                
47 Such a high number of degrees of freedom is implied by the fact that each class of 
categorized variable adds one degree of freedom. 
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Appendixes  

Table 11: Coefficients for Model 1 

Model 1 
Variable Value Coefficient Std. Error p-value Wald 
CREDIT no         
 yes -,238 ,052 ,000 20,488 
EDUCATION primary school         
 technical school ,002 ,065 ,980 ,001 
 high school -,024 ,084 ,777 ,080 
  college -,314 ,087 ,000 13,059 
GENDER man     ,000 19,697 
  woman -,232 ,053 ,000 19,161 
HOUSING own     ,000 32,563 
 rented ,294 ,054 ,000 29,864 
 employment relationship ,372 ,187 ,047 3,958 
  partial ownership ,001 ,126 ,993 ,000 
INCOME <1000     ,005 14,727 
 1000-1500 ,091 ,152 ,549 ,360 
 1501-2000 ,113 ,155 ,465 ,534 
 2001-2500 ,108 ,161 ,503 ,449 
  >2501 -,143 ,165 ,387 ,750 
LEVEMPL agriculture entrepreneuer         
 entrepreneuer -,089 ,124 ,474 ,512 
 upper employee -,031 ,120 ,793 ,069 
 lower employee -,194 ,117 ,096 2,779 
 employee -,172 ,099 ,084 2,993 
 student ,080 ,197 ,685 ,164 
 pensioner -,018 ,141 ,897 ,017 
 maternity / parental leave -,641 ,263 ,015 5,925 
 unemployee -,593 ,296 ,045 4,021 
 laid off -21,170 22255,647 ,999 ,000 
  other ,204 ,211 ,333 ,938 
LOANSIZE 1000-1500     ,000 41,846 
 2000-2500 ,128 ,074 ,083 3,009 
 3000-3500 ,360 ,083 ,000 18,941 
  4000 ,462 ,079 ,000 34,468 
NATIONALITY finnish         
  other ,390 ,153 ,011 6,518 
PAYBACK 12     ,000 41,333 
 18 ,173 ,129 ,181 1,791 
 24 ,010 ,106 ,928 ,008 
 30 ,345 ,129 ,007 7,163 
 36 ,210 ,109 ,053 3,748 
 42 ,353 ,139 ,011 6,422 
  48 ,440 ,096 ,000 21,059 
POSTAL 00000-09999     ,040 17,586 
 10000-19999 -,083 ,096 ,386 ,751 
 20000-29999 ,068 ,082 ,403 ,699 
 30000-39999 ,050 ,082 ,542 ,372 
 40000-49999 -,207 ,101 ,040 4,214 
 50000-59999 -,056 ,124 ,650 ,207 
 60000-69999 -,203 ,106 ,055 3,672 
 70000-79999 -,158 ,121 ,191 1,708 
 80000-89999 ,205 ,117 ,080 3,073 
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  90000-99999 -,015 ,091 ,872 ,026 
PREVLOAN no         
  yes ,780 ,049 ,000 252,522 
SCORE <400     ,000 120,958 
 400-450 -,094 ,073 ,200 1,641 
 451-500 -,340 ,077 ,000 19,533 
 501-550 -,648 ,085 ,000 57,982 
 >551 -,694 ,073 ,000 91,216 
constant   -,755 ,205 ,000 13,555 
AIC = 10 270      

 

Table 12: Coefficients for Model 2 
Model 2 

Variable Value Coefficient Std. Error p-value Wald 
CREDIT no         
 yes -,227 ,052 ,000 19,281 
EDUCATION primary school     ,000 18,402 
 technical school -,013 ,064 ,838 ,042 
 high school -,031 ,082 ,702 ,146 
  college -,295 ,082 ,000 13,100 
GENDER man         
  woman -,238 ,052 ,000 20,791 
HOUSING own     ,000 35,000 
 rented ,297 ,052 ,000 32,239 
 employment relationship ,382 ,185 ,039 4,250 
  partial ownership ,011 ,124 ,931 ,008 
INCOME <1000     ,001 17,587 
 1000-1500 ,091 ,142 ,519 ,416 
 1501-2000 ,098 ,139 ,481 ,497 
 2001-2500 ,090 ,144 ,533 ,389 
  >2501 -,169 ,147 ,251 1,319 
LOANSIZE 1000-1500     ,000 119,751 
 2000-2500 ,206 ,069 ,003 8,796 
 3000-3500 ,509 ,075 ,000 46,205 
  4000 ,676 ,067 ,000 101,811 
NATIONALITY finnish         
  other ,379 ,151 ,012 6,336 
PREVLOAN no         
  yes ,773 ,049 ,000 252,510 
SCORE <400     ,000 126,313 
 400-450 -,071 ,072 ,327 ,962 
 451-500 -,324 ,076 ,000 18,262 
 501-550 -,631 ,083 ,000 57,429 
 >551 -,671 ,069 ,000 93,222 
constant   -,730 ,153 ,000 22,728 
AIC = 6 370      

 

Table 13: Coefficients for Model 3 
Model 3 

Variable Value Coefficient Std. Error p-value Wald 
AGE <20         
 20-25   ,000 42,783 
 26-45 -,083 ,076 ,276 1,185 
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 46-60 -,440 ,084 ,000 27,187 
 61-70 -,406 ,160 ,011 6,441 
  >70 ,811 1,432 ,571 ,321 
CREDIT no     
 yes -,228 ,052 ,000 19,283 
EDUCATION primary school   ,000 28,794 
 technical school -,052 ,065 ,419 ,654 
 high school -,055 ,084 ,515 ,424 
  college -,414 ,088 ,000 22,212 
GENDER man     
  woman -,368 ,051 ,000 51,724 
HOUSING own   ,000 28,298 
 rented ,299 ,060 ,000 24,646 
 employment relationship ,420 ,183 ,022 5,250 
  partial ownership -,012 ,125 ,921 ,010 
HOUSINGTYPE house   ,028 9,132 
 rowhouse ,122 ,070 ,083 3,009 
 apartment ,184 ,067 ,006 7,668 
  other ,297 ,168 ,077 3,134 
INCOME <1000   ,000 31,792 
 1000-1500 ,054 ,150 ,719 ,130 
 1501-2000 ,046 ,153 ,762 ,092 
 2001-2500 -,018 ,159 ,908 ,013 
  >2501 -,337 ,163 ,038 4,294 
LEVEMPL agriculture entrepreneuer   ,022 20,830 
 entrepreneuer -,041 ,122 ,739 ,111 
 upper employee -,128 ,118 ,279 1,171 
 lower employee -,211 ,115 ,066 3,376 
 employee -,046 ,097 ,634 ,227 
 student -,015 ,196 ,940 ,006 
 pensioner ,165 ,148 ,266 1,238 
 maternity / parental leave -,583 ,262 ,026 4,960 
 unemployee -,392 ,292 ,179 1,802 
 laid off -20,844 22756,416 ,999 ,000 
  other ,359 ,208 ,085 2,975 
LOANSIZE 1000-1500   ,000 38,682 
 2000-2500 ,112 ,073 ,122 2,397 
 3000-3500 ,342 ,081 ,000 17,644 
  4000 ,430 ,077 ,000 31,022 
MOVING under one year   ,000 48,067 
 2 -,028 ,087 ,750 ,102 
 3 -,098 ,090 ,280 1,169 
 4 -,116 ,099 ,244 1,357 
 5 -,079 ,100 ,429 ,626 
 6 -,329 ,111 ,003 8,821 
 from 7 to 10 -,374 ,094 ,000 15,853 
 from 11 to 15 -,409 ,106 ,000 14,816 
 >15 -,495 ,100 ,000 24,602 
PAYBACK 12   ,000 41,013 
 18 ,190 ,127 ,135 2,238 
 24 ,002 ,104 ,983 ,000 
 30 ,348 ,127 ,006 7,531 
 36 ,218 ,107 ,042 4,148 
 42 ,298 ,137 ,030 4,737 
  48 ,432 ,095 ,000 20,830 
SIZEHOUSEHOLD 1   ,000 22,077 
 2 -,204 ,061 ,001 11,092 
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 3 ,045 ,079 ,565 ,331 
 4 -,236 ,079 ,003 8,903 
  5+ -,171 ,104 ,102 2,670 
constant   -,160 ,207 ,438 ,603 
AIC = 9 633      



Table 14: Information Values for variables 
Variable Value Non-default Default Total %non-default %default odds information value 

AGE <20 0 0 0     

 20-25 882 702 1584 0,08478 0,16750 1,97584 0,05634 

 26-45 4665 2087 6752 0,44839 0,49797 1,11059 0,00520 

 46-60 4234 1233 5467 0,40696 0,29420 0,72293 0,03658 

 61-70 605 166 771 0,05815 0,03961 0,68114 0,00712 

 >70 18 3 21 0,00173 0,00072 0,41374 0,00090 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,10614 

         

Variable Value Non-default Default Total %non-default %default odds information value 

CITY in small city 7696 2930 10626 0,73972 0,69912 0,94512 0,00229 

 in one of the 5 largest cities 2708 1261 3969 0,26028 0,30088 1,15598 0,00588 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,11431 

         

Variable Value Non-default Default Total %non-default %default odds information value 

COTTAGE no 8498 3556 12054 0,81680 0,84848 1,03879 0,00121 

 yes 1906 635 2541 0,18320 0,15152 0,82705 0,00602 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,12153 

         

Variable Value Non-default Default Total %non-default %default odds information value 

CREDIT no 3297 1673 4970 0,31690 0,39919 1,25968 0,01900 

 yes 7107 2518 9625 0,68310 0,60081 0,87953 0,01056 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,15110 

         

Variable Value Non-default Default Total %non-default %default odds information value 

EDUCATION primary school 2325 883 3208 0,22347 0,21069 0,94280 0,00075 

 technical school 4693 2057 6750 0,45108 0,49081 1,08809 0,00335 
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 high school 1445 622 2067 0,13889 0,14841 1,06858 0,00063 

 college 1941 629 2570 0,18656 0,15008 0,80447 0,00794 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,01268 

         

Variable Value Non-default Default Total %non-default %default odds information value 

EMPLOYMENT permanent 2356 890 3246 0,22645 0,21236 0,93777 0,00091 

 fixed-term 8048 3301 11349 0,77355 0,78764 1,01822 0,00025 

 part-time    0,00000 0,00000 0,00000 0,00000 

 unemployee    0,00000 0,00000 0,00000 0,00000 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,00116 

         

Variable Value Non-default Default Total %non-default %default odds information value 

FREEEMAIL official email address 1954 724 2678 0,18781 0,17275 0,91981 0,00126 

 free email address 8450 3467 11917 0,81219 0,82725 1,01854 0,00028 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,00154 

         

Variable Value Non-default Default Total %non-default %default odds information value 

GENDER man 5471 2755 8226 0,52586 0,65736 1,25008 0,02935 

 woman 4933 1436 6369 0,47414 0,34264 0,72265 0,04272 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,07207 

         

Variable Value Non-default Default Total %non-default %default odds information value 

HOUSING own 6769 2143 8912 0,65062 0,51133 0,78592 0,03355 

 rented 3047 1806 4853 0,29287 0,43092 1,47139 0,05332 

 employment relationship 156 81 237 0,01499 0,01933 1,28897 0,00110 

 partial ownership 432 161 593 0,04152 0,03842 0,92518 0,00024 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,08821 
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Variable Value Non-default Default Total %non-default %default odds information value 

HOUSINGTYPE house 5259 1609 6868 0,50548 0,38392 0,75951 0,03344 

 rowhouse 1845 848 2693 0,17734 0,20234 1,14099 0,00330 

 apartment 3147 1652 4799 0,30248 0,39418 1,30315 0,02428 

 other 153 82 235 0,01471 0,01957 1,33047 0,00139 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,06240 

         

Variable Value Non-default Default Total %non-default %default odds information value 

INCOME <1000 5612 1022 6634 0,53941 0,24386 0,45208 0,23464 

 1000-1500 965 705 1670 0,09275 0,16822 1,81361 0,04493 

 1501-2000 1622 1211 2833 0,15590 0,28895 1,85343 0,08210 

 2001-2500 1031 699 1730 0,09910 0,16679 1,68307 0,03524 

 >2501 1139 516 1655 0,10948 0,12312 1,12463 0,00160 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,39850 

         

Variable Value Non-default Default Total %non-default %default odds information value 

LEVEMPL agriculture entrepreneuer 905 329 1234 0,08699 0,07850 0,90246 0,00087 

 entrepreneuer 870 342 1212 0,08362 0,08160 0,97586 0,00005 

 upper employee 1613 549 2162 0,15504 0,13099 0,84493 0,00405 

 lower employee 1340 459 1799 0,12880 0,10952 0,85034 0,00313 

 employee 4102 1965 6067 0,39427 0,46886 1,18919 0,01292 

 student 243 116 359 0,02336 0,02768 1,18504 0,00073 

 pensioner 897 279 1176 0,08622 0,06657 0,77214 0,00508 

 maternity / parental leave 106 33 139 0,01019 0,00787 0,77284 0,00060 

 unemployee 148 42 190 0,01423 0,01002 0,70448 0,00147 

 laid off 15 1 16 0,00144 0,00024 0,16550 0,00216 

 other 165 76 241 0,01586 0,01813 1,14344 0,00030 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,03137 
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Variable Value Non-default Default Total %non-default %default odds information value 

LOANSIZE 1000-1500 2809 891 3700 0,26999 0,21260 0,78742 0,01372 

 2000-2500 2612 962 3574 0,25106 0,22954 0,91429 0,00193 

 3000-3500 1849 821 2670 0,17772 0,19590 1,10227 0,00177 

 4000 3134 1517 4651 0,30123 0,36197 1,20163 0,01116 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,02857 

         

Variable Value Non-default Default Total %non-default %default odds information value 

MARITAL married 5011 1543 6554 0,48164 0,36817 0,76441 0,03048 

 single 2106 1181 3287 0,20242 0,28179 1,39211 0,02626 

 cohabitation 2137 988 3125 0,20540 0,23574 1,14772 0,00418 

 devorced 944 392 1336 0,09073 0,09353 1,03085 0,00009 

 widow 180 74 254 0,01730 0,01766 1,02057 0,00001 

 other 26 13 39 0,00250 0,00310 1,24123 0,00013 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,06115 

         

Variable Value Non-default Default Total %non-default %default odds information value 

MILITARY no 5950 2186 8136 0,57190 0,52159 0,91204 0,00463 

 yes 4454 2005 6459 0,42810 0,47841 1,11750 0,00559 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,01022 

         

Variable Value Non-default Default Total %non-default %default odds information value 

MONTHLY 0-60 2434 964 3398 0,23395 0,23002 0,98319 0,00007 

 61-80 1585 676 2261 0,15235 0,16130 1,05877 0,00051 

 81-95 4237 1817 6054 0,40725 0,43355 1,06458 0,00165 

 >96 2106 731 2837 0,20242 0,17442 0,86167 0,00417 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,00639 
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Variable Value Non-default Default Total %non-default %default odds information value 

MOVING under one year 989 609 1598 0,09506 0,14531 1,52863 0,02133 

 2 1036 634 1670 0,09958 0,15128 1,51919 0,02162 

 3 1065 546 1611 0,10236 0,13028 1,27270 0,00673 

 4 900 394 1294 0,08651 0,09401 1,08677 0,00062 

 5 898 417 1315 0,08631 0,09950 1,15277 0,00187 

 6 880 309 1189 0,08458 0,07373 0,87168 0,00149 

 from 7 to 10 1595 498 2093 0,15331 0,11883 0,77509 0,00878 

 from 11 to 15 1070 324 1394 0,10285 0,07731 0,75170 0,00729 

 >15 1971 460 2431 0,18945 0,10976 0,57937 0,04349 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,11323 

         

Variable Value Non-default Default Total %non-default %default odds information value 

NATIONALITY finnish 10231 4054 14285 0,98337 0,96731 0,98367 0,00026 

 other 173 137 310 0,01663 0,03269 1,96588 0,01086 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,01112 

         

Variable Value Non-default Default Total %non-default %default odds information value 

NATIVE finnish 10000 3997 13997 0,96117 0,95371 0,99224 0,00006 

 swedish 277 87 364 0,02662 0,02076 0,77969 0,00146 

 other 127 107 234 0,01221 0,02553 2,09152 0,00983 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,01135 

         

Variable Value Non-default Default Total %non-default %default odds information value 

NRADULTS 1 6810 2183 8993 0,65456 0,52088 0,79577 0,03054 

 2 3438 1921 5359 0,33045 0,45836 1,38709 0,04185 

 3+ 156 87 243 0,01499 0,02076 1,38445 0,00188 
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  Total 10404 4191 14595 1,00000 1,00000 Total 0,07427 

         

Variable Value Non-default Default Total %non-default %default odds information value 

NRCHILDREN 0 8296 2945 11241 0,79739 0,70270 0,88125 0,01197 

 1 763 495 1258 0,07334 0,11811 1,61051 0,02134 

 2 908 531 1439 0,08727 0,12670 1,45175 0,01470 

 3+ 437 220 657 0,04200 0,05249 1,24975 0,00234 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,05034 

         

Variable Value Non-default Default Total %non-default %default odds information value 

PAYBACK 12 1356 376 1732 0,13033 0,08972 0,68835 0,01517 

 18 567 204 771 0,05450 0,04868 0,89316 0,00066 

 24 1646 516 2162 0,15821 0,12312 0,77822 0,00880 

 30 582 244 826 0,05594 0,05822 1,04076 0,00009 

 36 1477 555 2032 0,14196 0,13243 0,93281 0,00066 

 42 453 221 674 0,04354 0,05273 1,21109 0,00176 

 48 4281 2072 6353 0,41148 0,49439 1,20151 0,01522 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,04236 

         

Variable Value Non-default Default Total %non-default %default odds information value 

PHONE hasn't called 9643 3909 13552 0,92686 0,93271 1,00632 0,00004 

 has called 761 281 1042 0,07314 0,06705 0,91665 0,00053 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,00057 

         

Variable Value Non-default Default Total %non-default %default odds information value 

POSTAL 00000-09999 3141 1321 4462 0,30190 0,31520 1,04404 0,00057 

 10000-19999 812 311 1123 0,07805 0,07421 0,95080 0,00019 

 20000-29999 1227 535 1762 0,11794 0,12765 1,08241 0,00077 
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 30000-39999 1162 534 1696 0,11169 0,12742 1,14082 0,00207 

 40000-49999 823 269 1092 0,07910 0,06419 0,81140 0,00312 

 50000-59999 414 180 594 0,03979 0,04295 1,07933 0,00024 

 60000-69999 762 260 1022 0,07324 0,06204 0,84703 0,00186 

 70000-79999 567 184 751 0,05450 0,04390 0,80560 0,00229 

 80000-89999 530 215 745 0,05094 0,05130 1,00704 0,00000 

 90000-99999 966 382 1348 0,09285 0,09115 0,98168 0,00003 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,01115 

         

Variable Value Non-default Default Total %non-default %default odds information value 

PREVLOAN no 7916 2196 10112 0,76086 0,52398 0,68867 0,08836 

 yes 2488 1995 4483 0,23914 0,47602 1,99056 0,16307 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,25143 

         

Variable Value Non-default Default Total %non-default %default odds information value 

REPAYMENTB no delays 8049 4191 12240 0,77364 1,00000 1,29258 0,05809 

 delays 2355 0 2355 0,22636 0,00000 0,00000 0,00000 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,05809 

         

Variable Value Non-default Default Total %non-default %default odds information value 

SCORE <400 2683 1776 4459 0,25788 0,42377 1,64326 0,08239 

 400-450 2113 843 2956 0,20309 0,20115 0,99040 0,00002 

 451-500 1818 575 2393 0,17474 0,13720 0,78516 0,00908 

 501-550 1575 407 1982 0,15138 0,09711 0,64150 0,02409 

 >551 2215 590 2805 0,21290 0,14078 0,66124 0,02983 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,14542 

         

Variable Value Non-default Default Total %non-default %default odds information value 



 93

SIZEHOUSEHOLD 1 6497 1970 8467 0,62447 0,47005 0,75272 0,04386 

 2 1890 1032 2922 0,18166 0,24624 1,35550 0,01964 

 3 705 489 1194 0,06776 0,11668 1,72188 0,02658 

 4 887 482 1369 0,08526 0,11501 1,34898 0,00891 

 5+ 425 218 643 0,04085 0,05202 1,27336 0,00270 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,10169 

         

Variable Value Non-default Default Total %non-default %default odds information value 

TIME 0-5 141 87 228 0,01355 0,02076 1,53173 0,00307 

 6-8 842 308 1150 0,08093 0,07349 0,90807 0,00072 

 9-16 6413 2599 9012 0,61640 0,62014 1,00607 0,00002 

 17-20 2343 905 3248 0,22520 0,21594 0,95887 0,00039 

 21-23 665 292 957 0,06392 0,06967 1,09004 0,00050 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,00470 

         

Variable Value Non-default Default Total %non-default %default odds information value 

TIMEFIN always 10265 4084 14349 0,98664 0,97447 0,98766 0,00015 

 1-3 months 13 31 44 0,00125 0,00740 5,91972 0,01093 

 4-6 months 32 23 55 0,00308 0,00549 1,78427 0,00140 

 7-12 months 48 24 72 0,00461 0,00573 1,24123 0,00024 

 13+ months 46 29 75 0,00442 0,00692 1,56503 0,00112 

  Total 10404 4191 14595 1,00000 1,00000 Total 0,01384 

 


