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Abstract 

 

AALTO UNIVERSITY SCHOOL OF ECONOMICS        5.5.2011 
Economics department 

Otto Olsson 
 
 
Estimating the Demand and Market Power of a Firm in Sawn Wood Markets 
 The high concentration levels and the static structure of the sawn wood markets in Finland 
give reason to believe that the firms in the market have market power. The aim of this study is to 
investigate whether UPM-Kymmene has market power in Finnish sawn wood markets by analyzing 
the elasticity of its residual demand. Based on this analysis UPM-Kymmene will get better 
information on the environment it operates in and can improve its sales strategies. 
 The study is based on empirical research using time series data from UPM-Kymmene’s sales 
databases and also from other public sources. Based on the UPM-Kymmene’s sales volumes, four 
separate product groups are chosen for the analysis. The product groups include one center good and 
one board product for both redwood and whitewood. 

In the empirical part, the study follows the residual demand literature starting from Baker 
and Bresnahan (1988) and uses two stage least squares method to take into account the 
simultaneous relation between quantity sold and price.  

The current literature has neglected nonstationarity issues in its analyses. This study 
expands on the current literature and takes into account the nonstationarity inherent in economic 
time series by estimating also a vector error correction model using Johansen’s (1988) method. 
 Based on the results, UPM-Kymmene does not have market power in Finnish sawn wood 
markets and the prices are determined by industry-wide cost and demand factors. Thus UPM-

Kymmene should not try to influence the prices by cutting its production. 
 
Keywords: residual demand, elasticity of demand, market power, two stage least squares, Johansen’s 
method. 

  



 

 

 

 

 

Tiivistelmä 

 

AALTO-YLIOPISTON KAUPPAKORKEAKOULU        5.5.2011 
Kansantaloustieteen laitos, pro gradu -tutkielma 

Otto Olsson 

 

Sahatavaramarkkinoilla toimivan yrityksen kysynnän ja markkinavoiman 
estimointi 
 Suomen sahatavaramarkkinoiden korkea keskittyneisyysaste ja staattinen markkinarakenne 
antavat syyn epäillä siellä toimivilla yrityksillä olevan markkinavoimaa. Tämä tutkielma pyrkii 
selvittämään, onko UPM-Kymmenellä markkinavoimaa Suomen sahatavaramarkkinoilla. Analyysin 
perusteella UPM-Kymmene saa paremman käsityksen toimintaympäristöstään ja voi mahdollisesti 
parantaa myyntistrategiaansa. 
 Tutkielma pohjautuu empiiriseen analyysiin UPM-Kymmenen myyntitietokantojen ja muiden 
julkisten lähteiden dataa käyttäen. Analyysiin on valittu neljä UPM-Kymmenen myynnin volyymien 
perusteella merkittävää tuoteryhmää. Tuoteryhminä ovat yksi sydänpuu- ja yksi lautatuoteryhmä 
sekä mänty- että kuusipuulajeista.   
 Tutkielman empiirinen osuus seuraa tarkasti jäännöskysyntäkirjallisuutta, jonka pohjan loi 
Baker ja Bresnahan (1988), ja käyttää two stage least squares –menetelmää, joka huomioi hinnan ja 
myyntimäärän välisen simultaanisuuden.  

Nykyinen jäännöskysyntäkirjallisuus jättää aikasarjojen epästationäärisyyden huomiotta. 
Tämä tutkielma laajentaa nykyistä kirjallisuutta ja huomioi taloudellisille aikasarjoille ominaisen 
epästationäärisyyden estimoimalla kysyntää myös vektorivirheenkorjausmallilla Johansenin (1988) 
menetelmällä.  
 Tulosten perusteella UPM-Kymmenellä ei ole markkinavoimaa Suomen 
sahatavaramarkkinoilla. Hinnat määräytyvät koko toimialaa koskevien kustannus- ja 
kysyntätekijöiden perusteella. Täten UPM-Kymmenen ei tule pyrkiä vaikuttamaan hintoihin 
tuotantopäätöksillään. 

 
Avainsanat: jäännöskysyntä, kysynnän hintajousto, markkinavoima, two stage least squares, 
Johansenin menetelmä. 
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1. Introduction 

Residual demand is the demand facing a single firm. A residual demand curve describes 

how price and the firm’s own quantity sold interact, taking into account competitors’ 

strategic responses. Landes and Posner (1981) decompose the elasticity of residual 

demand into three components: the elasticity of demand of the whole market, the 

elasticity of supply of the competitive fringe and the market share of the firm in interest. 

All these components are important in determining the residual demand of a single firm. 

The link between the market power of a firm and its elasticity of demand has been 

established already in Lerner index (Lerner, 1934). The Lerner index is a generally 

accepted measure of market power. It describes a firm’s market power as the power to 

price with a markup over marginal costs. Still, using the Lerner index to measure market 

power is hard because of the abstract nature of marginal costs; an increase in costs 

resulting from a marginal increase in quantity produced is difficult to estimate especially 

with only public data available.  

The Lerner index can also be expressed using the elasticity of residual demand. 

Estimating this elasticity from a system of Marshallian demand equations requires 

taking into account all the relevant substitutes and competitors. Neglecting substitutes 

or defining the markets too broadly can result in an over- or underestimation of the true 

market power. The main contribution of Baker and Bresnahan (1988) to the market 

power literature is in developing a way to estimate the elasticity of the demand curve 

facing a single firm, i.e. the residual demand curve, without the need to separately and 

explicitly take into account all the substitutes and reactions of competitors. 

Residual demand analysis is usually used in the context of antitrust related cases. Using 

statistical estimations has been a growing trend in antitrust courts in the United States. 

This is due to two main reasons. Firstly, computers and their computing power has 

increased tremendously making it easy to apply methods that in the past were time 

consuming and hard to carry out. Secondly, the antitrust courts in the US have had a 

growing interest in statistical evidence of the effects of mergers and abuse of monopoly 

power. (Baker and Rubinfeld, 1999.)  
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The statistical tools available to antitrust authorities focus mainly on identifying the 

existence of market power. As the elasticity of residual demand is closely related to the 

Lerner index, it is one of the few tools that antitrust courts have to measure the actual 

size of market power. This makes it a useful tool in antitrust cases and it is why it has 

been widely applied. The Finnish competition authorities have also included residual 

demand analysis in their framework for competition analysis (Björkroth et al. 2006a). 

Although residual demand analysis is usually used in the context of antitrust related 

cases, it can also be a useful tool for a firm that wants to gain understanding of its 

business environment, markets and the nature of its demand. For example, a firm that 

knows the elasticity of the demand curve it faces can use this information to improve its 

sales planning and forecasting to determine how an increase in sales quantities affects 

its price. Econometric estimations also provide more general information on how costs 

and macroeconomic variables will influence the demand. Firms often have tacit 

knowledge on these issues, but statistical analysis can support this knowledge or, in 

some cases, correct common misconceptions within the firm.  

In this paper residual demand analysis is used to investigate the demand and market 

power of a case company, UPM-Kymmene, (from hereon UPM) which operates in the 

forest industry and is a large multinational forest integrate. It produces traditional forest 

products such as pulp, paper and sawn wood and, in addition, many other products that 

use raw materials extracted from forests, such as biofuels.  

This study focuses on coniferous sawn wood markets in Finland. The sawn wood 

industry has a high level of product differentiation. The products are differentiated 

based on, for example, wood types, the quality of raw material, different moisture levels 

and dimensions of the product. In addition, product differentiation is done by further 

processing the sawn wood.  

Sawn wood markets are greatly influenced by the raw material markets. Raw material 

for Finnish sawn wood producers comes mainly from domestic markets. The defining 

feature of these markets is that the Finnish forest reserves are mostly in the hands of 

small private owners who are generally not professionals in forestry. The demand for 
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sawn wood comes mainly from construction industry and industries related to 

construction, such as joinery. As construction is generally known as an industry 

sensitive to economic fluctuations, these fluctuations are also transferred to the sawn 

wood industry.  

In Finland, the sawn wood market is dominated by three large players: Metsäliitto, Stora 

Enso and UPM. Due to the high concentration in the market, UPM has a large market 

share and one might expect it to also have a large market power. Using the elasticity of 

residual demand, this study aims at measuring UPM’s market power in four different 

submarkets for four different product groups.  

The main research questions this paper tries to answer are: 

- Does UPM have market power in the Finnish sawn wood markets? 

- How can UPM take the potential market power into account in its sales planning? 

This study uses both public and private data in its analyses. This is a major advantage to 

some of the earlier literature that has had to rely on public data only. The observation 

period used in this study is from January 2004 to December 2010. The data is monthly 

and there are 84 observations included in the estimations. Like previous residual 

demand literature, starting from Baker and Bresnahan (1988), this study uses 

simultaneous equations methods (two stage least squares or 2SLS) to estimate the 

elasticity of residual demand.  

According to Froeb and Werden (1999) the current residual demand literature has 

neglected nonstationarity issues and dynamic features of the time series in its 

econometric analyses. This may have led to spurious regressions in 2SLS regressions 

and can be considered a major flaw in the residual demand literature. This study 

expands the current literature by analyzing residual demand with Johansen’s (1988) 

method. The vector error correction model used in these estimations accounts for both 

nonstationarity issues and dynamics and allows us to test the robustness of 2SLS 

estimation results. 
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The estimations done show that the prices are not significantly affected by UPM’s 

quantity sold and the residual demand is perfectly elastic. Thus, the results of this study 

are clear regardless of the estimation method: UPM does not have market power in 

Finnish sawn wood markets. The prices of sawn wood seem to be determined solely by 

industry-wide cost and demand factors.  

In part two of this study we shortly describe the main characteristics of the Finnish 

sawn wood markets. Part three defines residual demand more formally and derives the 

model that is estimated later in the empirical part. Part four presents the main empirical 

methods used in this study and part five goes through some of the residual demand 

literature to see what has been taken into account in the previous works and what has 

been neglected. In parts six and seven present the data and the results. Part eight 

concludes and discusses the results.  
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2. Finnish Sawn Wood Industry 

In this part, we will present some of the defining features of Finnish sawn wood 

industry. The most influential features of the industry are the raw material market, the 

role of sawn wood production as subordinate to paper and pulp production and the 

nature of demand for sawn wood. This part also presents some of the earlier literature 

regarding the industry and presents an approach to analyzing its demand. 

2.1. Trends in Sawn Wood Production 

The forest industry has historically been an important industry for the Finnish economy. 

However, since the seventies the share of labor in sawn wood production compared 

with the whole labor force in Finland has had a slight decreasing trend. As can be seen in 

Figure 1, the share of workers in production of sawn wood and wood products 

compared with all the workers in industrial production fell from 8.5% in 1975 to 6.5% 

in 2009 and compared with the whole economy, the share of workers in production of 

sawn wood and wood products was under 1% in 2009 (www.stat.fi, 10.08.2010). 

 

Figure 1. The amount of labor in Finland in wood products industry compared to the amount of 

labor in industrial production and the whole economy. (Source for data: www.stat.fi, 10.08.2010).. 
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Although the amount of labor in sawn wood production has been decreasing, the 

production levels of Finnish coniferous sawn wood grew steadily until the year 2004. 

The rising levels of production and decreasing share of labor are a sign of more 

concentrated production. This trend of concentration of production into bigger units has 

been seen for a long time also in central Europe (Nilsson, 2001).  Since 2004 the 

production has been decreasing partly due to the tougher competition from Swedish 

producers (see Figure 2.)  

 

Figure 2. The quarterly production of sawn wood in Finland. (Source: Finnish Forest Industries, 

20.4.2011) 

When studying the sawn wood industry, it is important to understand that sawn wood is 

often produced as a part of a much bigger industry, the whole forest industry. The 

Finnish forest sector is dominated by three large players – Stora Enso, Metsäliitto and 

UPM that produce all the main forest products – paper, pulp and sawnwood.  

The incentives for the integrated production of paper, pulp and sawn wood can be many. 

When the forest companies buy their raw material, they have to buy it as a bundle of all 

the trees in a specific area of the forest. Unbundling this package of forest would result 

in high transaction costs so a company that can use the whole bundle can operate with 

Quarterly Production 4Q Moving Average 
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lower costs. The role of sawn wood production in forest integrates is to use the most 

expensive part of this bundle, the sawlog. This material is too expensive to be used in 

pulp and paper production or as energy.  

Generally in large multinational forest companies, sawn wood production is subordinate 

to pulp and paper production. One of the main functions of sawmilling in this setup is 

producing high-quality wood chips for pulp and paper mills (Kallio, 2001). Kallio (2001) 

proposes that because of its role in producing wood chips as a by-product, there is even 

overproduction in sawmilling. This means that sawmills could be run with a loss to 

enable the production of pulp and paper.   

2.2. Raw Materials Market 

The costs and availability of raw material are some of the most defining factors of sawn 

wood production. The main materials for sawn wood products are coniferous, redwood 

or whitewood logs and the stumpage prices for these wood types drive the prices for 

sawn wood products. Prices for coniferous logs are generally more volatile than those 

for fiberwood (see Figure 3). Fiberwood, regardless of the wood type, is cheaper and as 

its supply is larger, increased demand does not result in large peaks in its prices. 

 Figure 3. The development of stumpage prices in Finland between 2005 and 2011. The two 

RW Log WW Log RW Fiber WW Fiber 
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highest lines represent redwood and whitewood log stumpage prices, and the lowest lines 

represent the prices for fiberwood. (Source: Finnish Forest Industries) 

As only 14% of the raw wood used by the Finnish forest cluster is imported (Finnish 

Forest Industries) the relevant market for raw material for Finnish sawn wood industry 

is the Finnish raw wood market. As can be seen in Figure 4, the reserves for Finnish 

coniferous raw timber have been increasing steadily since the Second World War 

increasing the supply of raw material.  

 

Figure 4. Finnish forest reserves measured in millions of cubic meters. The lowest part of the 

histogram represents the reserves of redwood, the middle part the reserves of whitewood and the 

top part the reserves of birch. For sawn wood industry and this study, the most important wood 

types are whitewood and redwood, and as can be seen from the picture, the reserves have 

experienced steady growth since WWII. (Source: Finnish Forest Industries.) 

The division of forest ownership in Finland affects the availability and price setting in 

the raw material markets. Most of the supply of raw timber comes from privately owned 

forests and the ownership is widely scattered. As can be seen in Figure 5., the Finnish 

forests are mostly in the hands of private owners.  Finland has over 900 000 forest 

owners (Finnish Forest Industries) making the seller side of raw wood highly dispersed.  

Nonconiferous Whitewood Redwood 
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Figure 5. Structure of ownership of Finnish forest reserves. 65% of Finnish are owned by private 

owners, 25% of the forests are state owned and the forest companies, municipalities and other 

agents own 10% of the forests. (Source: Finnish Forest Industries.) 

Because of their small size, the forest owners cannot have a lot of market power in the 

raw wood market - especially when the buyer side in roundwood market is highly 

concentrated. The three largest buyers, Metsäliitto Osuuskunta, Stora Enso Metsä and 

UPM Metsä buy 82% of all the raw wood (Björkroth et al., 2006b). Furthermore, the 

possibility for these large companies to import wood from neighboring countries, even if 

the amount of imports is only 14%, should increase their buyer power and help drive 

the price of raw wood down.  

Björkroth et al. (2006b) find statistically significant differences between raw wood 

prices in different areas of Finland indicating that the markets for raw wood are, at least 

partly, geographically separated. Hänninen et al. (2006) find significantly different 

elasticities of demand for raw wood in different parts of the country supporting the idea 

of separate markets inside the country. According to Björkroth et al. (2006b) findings, 

the prices in Finnish timber markets are low when compared with the Swedish markets 

and the prices experience small variances.  
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The high concentration, low prices, small variances in prices and differences in prices 

inside the country all give rise to suspect collusion in the market, and indeed, in 2009 a 

buyer side cartel between the three large players in the Finnish raw wood market was 

revealed to have been operating between 1997 and 2004. However, Kallio (2002) claims 

that in normal economic times the forest companies do not have a reason to limit their 

demand of raw wood to cut prices. Thus a cartel, which only later was found to actually 

exist in the market, would not cause major welfare losses. This is largely because of the 

supply elasticities that limit the companies’ ability to use oligopsony power. The short-

run elasticities of supply for raw wood, estimated for different parts of Finland were 

between 0.86–3.54 making the supply elastic in most parts of the country but in the 

long-run, supplies were found to be inelastic (Hänninen et al., 2006).  

Even without a functioning cartel, one would think that the increasing forest reserves 

and low concentration levels of forest ownership and the large size of the buyers would 

force the prices for raw wood down. Still, a constant complaint of the Finnish forest 

cluster is the insufficient supply and high prices of domestic raw material. The forest 

industry’s typical argument is that as the usual forest owner is not a professional in 

forestry and his or her livelihood is not dependent on selling the wood, the owners are 

able to wait out periods of low prices without significant waiting costs. At the same time, 

the industry whose operations are completely dependent on the availability of raw 

material and that has significant waiting costs has to offer high prices to induce selling. 

This, according to the usual argument of forest industry, can drive up the stumpage 

prices and cause high costs for the whole industry. Basically, the forest industry’s 

argument goes along the lines of Hänninen et al. (2006) results that the elasticity of 

supply of raw wood prohibits the use of oligopsony power. 

2.3. Demand for Sawn Wood 

The sawn wood market does not have a single market place where a spot price would be 

set. Instead, the sales prices and quantities are negotiated directly with the customers. 

This means that negotiating power and long relationships with customers are likely to 

affect the prices.  
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For our case company, UPM, there are two easily identifiable customer groups in the 

market: industrial buyers and distributors. Industrial buyers that buy goods for their 

own production value a stable supply of goods even more than a low price and they are 

often described as less sensitive to prices. Distributors, on the other hand are described 

as more speculative buyers and they are likely to be more sensitive to prices.  

Based on the standard deviations on prices and quantities of selected products 

presented in Table 1, there is no reason to believe that the demand for one group is 

more fluctuating than for the other, but of course this does not mean that the two groups 

could not have different elasticities of demand. 

Table 1. Variances of prices and quantities for industrial end-users and distributors for the 

different product groups analyzed in this study. 

Type A Product 1 Product 3 

 
Industrial Distribution Industrial Distribution 

 
Price 
(€/m3) 

Quantity 
(m3) 

Price 
(€/m3) 

Quantity 
(m3) 

Price 
(€/m3) 

Quantity 
(m3) 

Price 
(€/m3) 

Quantity 
(m3) 

St.Dev. 13,4 % 77,4 % 14,9 % 57,4 % 18,1 % 40,2 % 19,2 % 59,9 % 

Type B Product 2 Product 4 

 
Industrial Distribution Industrial Distribution 

 
Price 
(€/m3) 

Quantity 
(m3) 

Price 
(€/m3) 

Quantity 
(m3) 

Price 
(€/m3) 

Quantity 
(m3) 

Price 
(€/m3) 

Quantity 
(m3) 

St.Dev. 14,1 % 80,6 % 13,3 % 66,6 % 19,3 % 38,5 % 21,0 % 55,8 % 

One reason why setting a spot price for sawn wood products is difficult is that the 

industry has a high level of product differentiation. First of all, the coniferous sawn 

wood products are divided between redwood and whitewood products based on the 

type of wood they are made of. Another significant factor in determining the value of the 

product is the part of the tree used in production. The terms used are boards and center-

good products, where boards are produced from cheaper parts of the tree. Different 

moisture levels, the dimensions of the end-product and the overall quality of the raw 

material used bring other means of differentiating the products.  
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In this study, four product groups are chosen for analysis based on the size of sales. The 

chosen product groups are the same as in table 1: products 1 and 2 represent center-

good products of both wood types and products 3 and 4 are boards of both wood types. 1 

On the demand side, it is important to recognize that the demand for sawn wood is in 

essence derived demand. In other words, sawn wood is always used for producing 

something else. The demand for sawn wood ultimately depends on the demand for the 

goods that sawn wood is used to produce. Thus, the demand for sawn wood is a function 

of variation and activity levels in different sectors that use sawn wood and of the 

intensity of utilization of sawn wood.  

Usually, sawn wood is used as a material in construction, furniture manufacturing or in 

production of joinery products such as windows and doors. The most significant and 

widely acknowledged demand driver for sawn wood products in any market is the 

construction industry (Finnish Forest Industry). As can be seen in Figure 6, sawn wood 

demand closely follows the number of new construction projects. Thus, factors that 

affect the number of new construction projects are likely to affect the demand of sawn 

wood as well. These factors include e.g. the general economic activity and, especially in 

the long-run, demographic factors such as the birthrate and flows of migration. 

Construction is generally considered very sensitive to economic cycles and this 

sensitivity is carried on to the sawn wood industry. 

                                                        

1 Due to privacy reasons, closer specification of the products studied in the empirical part cannot be given 
and instead of different woodtypes and product specifications the empirical part speaks only of 
woodtypes A and B and products 1, 2, 3 and 4. 
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Figure 6. Consumption of sawn wood and further processed wood and the number of new housing 

projects (Source: Finnish Forest Industries). The grey pillars depict the amount of new 

construction projects (left scale) and the green line the consumption of sawn wood in thousands of 

cubic meters. The demand for sawn wood and further processed wood products follows closely the 

new housing starts.  

Although Finland is the single biggest market for coniferous sawn wood products for our 

case company UPM, exports play a major role for all the large multinationals Stora Enso, 

UPM and Metsäliitto. In 2009, for example, approximately half of the Finnish sawn wood 

and plywood production was exported to outside the Eurozone. The large share of 

exports makes exchange rates an important driver of both demand and costs.  

The effect of exchange rates was clearly seen during almost the whole previous decade, 

as Swedish producers experienced a significant competitive advantage due to 

developments in EUR/SEK exchange rate. Another factor that decreased the 

competitiveness of Finnish sawn wood products during that time was the 2004 storms 

in Sweden that cut down large areas of forests, increased the availability of raw wood 

and decreased the costs for Swedish producers. This shows up especially when looking 

at the production and exports of redwood and whitewood separately as is done in 

Construction Starts 
Domestic consumption of Sawngoods 
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Figure 7. While the exports of whitewood have experienced a severe drop since 2004, 

exports of redwood remained remarkably steady (Hänninen & Viitanen, 2010).  

 

Figure 7. Production, exports (m3) (left scale) and export’s unit prices (€/m3) (right scale) for 

redwood and whitewood. (Source: Metsätieteen aikakauskirja 2/2010). Exports and also the 

production of whitewood decreased substantially after 2004. 

Figure 7 also shows that from 2005 to 2007 the unit price of both redwood and 

whitewood increased as the production could not meet the increase in demand and, in 

addition, the costs rose rapidly. The financial crisis led to a decrease in exports in 2008 

due to a slowdown in global construction. (Hänninen & Viitanen, 2010.) 

2.4. Modeling the Derived Demand in Sawn Wood Markets 

Economic analyses of sawn wood products are not easy to find and it seems that this 

market is not analyzed as often as other forest product markets such as pulp and paper, 

RW Sawngoods 

WW Sawngoods 

Prod. Exp. Unit Price of Exp. 

Prod. Exp. Unit Price of Exp. 
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or the markets for raw wood. There can be many reasons for this, for example the 

industry’s subordinate status or the high number of different products that the industry 

produces that complicates the analysis.  

Baudin (2003) summarizes several attempts to model the market so as to take into 

account the nature of the demand as derived from the demand for other markets. The 

models used are constructed from end-use perspective so that they first look at the 

developments of different sectors that use sawn wood and then combine this 

information to analyze the development of sawn wood markets. This kind of analysis 

provides a better understanding how, for example, the substitution between sawn wood 

and other products work. For example, for the UK market Baudin (1992 and 1993) tried 

to estimate how the number of new housing projects would develop and then combine 

this information with the information on how much sawn wood is used per new house. 

Similar analysis was done for 19 different sectors for the UK (Baudin, 1992 and 1993).  

In studies summarized by Baudin (2003), for each sector m producing a single product, 

the production function is of the following form: 

                   

where ymt is the output of sector m during time t, vmt is sawn wood used as input in 

production, zmt is a vector of other production input in sector m and t is an index of time 

representing technological change, t = 1, …, T.  

Minimizing costs subject to the production function above and using Shepard’s lemma, 

the demand for sawn wood at time t can be expressed as 

                                  

where p0t is the unit price of sawn wood during period t and pit are the unit prices of 

other inputs in sector i at time t when i = 1, …, k and the unit prices of other goods during 

time t when i = k+1, …, n. 
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Now, the total production of sawn wood is determined by consumer demand. For 

consumer j, the demand for product m is a function of prices for all products, both sawn 

wood products and other goods and the income consumer j receives, Ij. 

         (                       ) 

and for the whole sector m, taking into account time as consumers do not react to 

changes immediately, the aggregated demand is then 

                                 

where Yt is GDP at time t.  

These sector models are then estimated as Seemingly Unrelated Regression Equations 

(SURE) (Zellner and Theil, 1962) to capture the underlying similarities between the 

models - for example general trends, business cycles and the effects of construction 

industry. These similarities between the models show up in the covariances of errors 

between the different equations. SURE-method captures the covariances and can offer 

more precise estimates.2 The sector models are estimated in log-linear form so that the 

coefficients can be interpreted as elasticities.  

Baudins end-use approach finds the elasticities of substitution between different 

products and provides closer information on consumers’ preferences. Compared to 

Baudin’s analyses, residual demand analysis that we will focus on in the next part loses 

some of this information of the buyers preferences, but on the other hand, it provides a 

view of the strategic response of buyers and competitors to firm’s sales decisions.  

  

                                                        

2 For further discussion on SURE-method, refer to e.g. Greene (2000) 
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3. Residual Demand Analysis 

Residual demand analysis has been mostly used by competition authorities in antitrust 

cases to analyze, for example, mergers or potential collusion in oligopoly situations. Also 

the Finnish competition authorities use residual demand analysis as part of their 

framework for competition analysis (Björkroth et al. 2006a). Although residual demand 

analysis is typically used to detect market power by outside authorities, it also provides 

valuable information for the firms themselves. The aim of this study is to analyze the 

residual demand for UPM to provide more information on the business environment 

they operate in and to improve their sales planning processes.  

In this chapter, we will first define residual demand more formally and then present the 

theoretical background which residual demand analysis rests on. After this we can 

derive a residual demand model that is estimated by econometric means in the later 

parts of this paper. 

3.1. Theoretical Background and Definition 

Residual demand is defined as that part of the market demand that competitors do not 

satisfy. In essence, it is the demand that a firm faces taking into account the supply 

responses of other firms in the market. More formally residual demand can be expressed 

as a function of price level p. Defining S(p) as the supply of other firms in the market and 

D(p) as the market demand, residual demand for firm i, Ri(pi), can be expressed as 

                   

Residual demand is thus the horizontal distance between supply of other firms and the 

market demand in (P,Q) space. This can be seen in Figure 8. 
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Figure 8. Residual demand in (P,Q) space. Residual demand at price p is the horizontal distance 

between supply of other firms in the market, S0(p) and the market demand D(p). This is the part of 

the demand that is not satisfied at price p, i.e. the demand that the firm in interest can satisfy. 

(Edited from Björkroth et al. 2006a picture.) 

For a monopolist, the supply curve S(pi) in Figure 8 is naturally non-existent as there are 

no other suppliers and its residual demand equals the market demand. For a firm with 

no market power, the residual demand curve is flat, as the firm is a price taker - any 

decrease in firm’s output is fully compensated by an increase in the output of other 

firms. For an oligopolist with some market power, the residual demand curve is 

somewhere in between these two extremes.  

Residual demand analysis rests on the theoretical decomposition of Landes and Posner 

(1981) of the relation between a dominant firm’s market power and its own market 

share adjusted with the market demand elasticity and the fringe supply elasticity. 

Landes and Posner’s (1981) decomposition, on the other hand, is closely related to 
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Lerner index (Lerner, 1934), which measures the firm’s market power as a markup over 

marginal costs. The Lerner index can be written as follows:  

   
      

  
  

where Li is the Lerner index for firm i, and Pi and MCi are the price and marginal costs for 

firm i. The equation above can also be expressed in terms of elasticity of demand the 

firm faces. To see more clearly why markup and firm’s elasticity of demand depend on 

each other, let’s look more closely at the Lerner-index (Lerner, 1934). Firm i is 

maximizing its profit and thus the profit maximizing condition must apply: 

       . 

As MRi is the first derivative of total revenue, we can write for a dominant firm 

         

   

   
  

where Qi is the quantity sold for firm i. Noting that MRi = MCi and substituting MCi in 

Lerner index with the above equation for MRi, we get 

 

   
      

  
 

 

                
     

   
⁄

  
 

  
      

  

      

   
 

   
   

⁄  

      
   

⁄ , 

where edi is the firm’s elasticity of demand.  
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If the residual demand is completely elastic, i.e. elasticity is minus infinity, the firm has 

no possibility to overcharge and Pi = MCi. We can conclude that the firm is a price taker 

and increasing the price will cause the quantity sold to collapse. On the other hand, a 

firm with market power will not produce in the inelastic part of the residual demand 

curve, as it is profitable to cut production as long as the residual demand is elastic, so we 

can conclude that the range for firm’s elasticity of demand ranges from -1 to minus 

infinity.  

It is important to understand that the relevant elasticity here is the elasticity of demand 

that the firm faces, not the elasticity of market demand. To show more clearly the 

components that affect the firm’s elasticity of demand, Landes and Posner (1981) derive 

the elasticity of residual demand for firm i. Starting from the definition of residual 

demand, the quantity demanded for firm i    is the difference between total quantity 

demanded   and the quantity supplied by other firms    .    

         

Differentiating this with respect to price and multiplying both sides with      ) yields 

 
     

  

       

  
  

     

  

     

  
 

     

  

       

  
 

Denoting market share for firm i with S, the quantity demanded for firm i can be 

expressed as       and the quantity supplied by other firms can be expressed as 

          . Multiplying the second term on the right-hand side of the above 

equation with 
        

     
 and doing the necessary substitutions, we get 

 
     

  

       

  
  

     

  

     

  
 

          

  

     

    

       

  
  

Noting that 
     

 

     

  
 is the market elasticity of demand and 

     

    

       

  
  the elasticity of 

supply of firms other than i, the elasticity of residual demand on the left-hand side can 

be expressed as follows: 
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where the elasticity of firm’s demand is expressed as a combination of, edm, the elasticity 

of market demand, and esj , the elasticity of supply of the other firms in the market and 

the market share firm i has, S.  

Remember that the inverse elasticity of residual demand is positively correlated with 

market power, so the smaller the elasticity of demand, the higher the firms market 

power. From this equation, Landes and Posner (1981) draw four main conclusions 

regarding the firm’s market power: 

1) The higher the market demand elasticity, the higher firm’s demand elasticity 

and lower its market power. The higher the market elasticity of demand, the better 

substitutes the product has and this limits firm’s ability to overcharge 

2) The more elastic the supply of competitors, the higher firm’s demand elasticity 

and the lower its market power. With the highly elastic supply of other firms, the firm 

in interest has to cut its quantity more to maintain a price increase. 

3) The higher the market share, the lower firm’s demand elasticity and higher its 

market power. This comes from both the first term and second terms in the above 

equation. Firstly, the larger proportion of the market the firm has, the less it has to cut 

its production proportionally to have the same effect on the market. Secondly, the larger 

firm i’s market share is, the smaller the market share of its competitors. Thus, the 

competitors’ increase in supply will have a smaller effect on the market when firm i cuts 

its quantity. 

4) The market share alone does not tell about the market power. Market share is 

only one of the three components affecting firm’s market power and elasticities should 

always be considered as well. 

Landes and Posner (1981) note that although the Lerner index (Lerner, 1934) is a good 

measure of the size of market power, it is extremely hard to estimate. Firstly, marginal 

costs are an abstract concept and, especially for outside competition authorities trying 

to measure the markups, it is hard to get a good estimate for the marginal increase in 

costs resulting from a marginal increase in production when these marginal increases 
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do not happen in reality. A second problem for using the Lerner index is getting reliable 

measures of elasticities.  

Baker and Bresnahan (1988) tackled this problem of measuring the firm’s elasticity of 

demand and in the following we will see how residual demand model for a single firm is 

derived and what its main advantages are. In addition, we focus our attention on the 

model’s assumptions and bring up some limitations and complications that stem from 

these assumptions. 

3.2. Deriving the Model 

Consider the Marshallian demand for firm i offering products Qi. The demand for the 

product of the firm in question depends on the price of that product, the prices of all 

other goods that affect its demand and exogenous demand shifters. 

             , 

where Qi and Pi are the quantity and price of good i respectively, Y includes exogenous 

demand shifters and P is a vector of prices for other goods affecting Qi. These other 

prices include e.g. the prices of competitors and substitutes and these variables depict 

the supply reaction of other firms. This Marshallian demand function is hard to apply in 

econometric estimations, as the right-hand side of the equation includes several 

endogenous variables, Pi and the variables in P, and would thus require an estimation of 

several simultaneous equations. The amount of equations required could be huge in an 

industry with product differentiation and due to data limitations the system may be 

impossible to estimate. 

Baker and Bresnahan (1988) developed a way to simplify this equation so that the 

estimation is made easier and only an estimation of one equation is needed. In the 

following, we loosely follow Baker and Bresnahan’s (1988) derivation of residual 

demand facing a single firm. The model is made up of three components, the same 

component that Landes and Posner (1981) recognized as affecting the firm’s market 

power: 1) the inverse demand for the firm in interest, firm 1, 2) the demand equations 

for all other relevant products affecting the demand of firm 1 and 3) the supply behavior 
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of firms in the market. The quantities of all other relevant products are treated 

symmetrically, so their supply and demand reactions can be expressed with a single 

equation. According to Baker and Bresnahan (1988), as the derivation is made for 

arbitrary demand curves, it can be applied to cases with or without product 

differentiation. Furthermore, the supply reactions of other firms can vary from perfect 

competition to that of a cartel. 

The inverse demand for firm 1, producing good 1, is 

                 

where P1 and Q1 are the price and quantity for firm 1’s product. Q is a vector of 

quantities for all other relevant products, i.e. the quantities of competitors and 

substitutes. These quantities can be set either strategically or independent of firm 1’s 

quantity. Y is a vector of exogenous variables affecting the demand for firm 1. The 

parameters of the model are contained in α1. 

The second component of Baker and Bresnahan’s (1988) model are the equations 

depicting the inverse demand for all other relevant products, Q 

                     . 

The third component, supply side equations are included in the model assuming that the 

other firms are maximizing their profits possibly taking into account the supply of firm 

1. Because of profit maximization, marginal revenue must equal marginal costs and we 

can write the supply side equations as 

                                        . 

PMRi or perceived marginal revenue is the derivative of total revenue and can be written 

as 

                    ∑
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Vector W in marginal costs depicts industry-wide factor prices affecting all companies 

and Wi depicts the firm-specific costs. Cost parameters are included in β. In addition to 

the inverse demand function, the marginal revenue depends on strategic conduct 

variables included in   , that describe how the supply response of firms other than i 

affect the price firm i gets from the market. 

Taking the supply equations and inverse demand equations of relevant products we can 

solve for equilibrium quantities in all markets, i≠1. 

                          

where the notation I is a union of all variables and parameters for firms i excluding those 

for the firm in interest. EI is a vector depicting the equilibriums in each market, i.e. Q is a 

vector of the equilibrium quantities in all the markets. It should be noted that all 

elements Ei of EI are partial reduced form with only one endogenous variable Qi on the 

right-hand side and Qi = Ei for all i ≠ 1. Thus, the elasticities of these equilibrium 

quantities Ei with respect to the quantity of the firm in interest Q1 denoted ε1i can be 

written as: 

    
     

     
 

As Q = Ei (.), we can substitute it into the inverse demand function for firm 1 and get 

         
                             

From this, we substitute out the redundancies in variables and use the notation α for the 

union of αI and α1 so that we can write the inverse residual demand function for firm 1 

as 

                       . 

Here we have expressed the price for firm 1 as an inverse residual demand function R(.), 

i.e. as a partial reduced form function of own quantity, demand shifters and both firm- 

and industry-wide factor prices. The parameter vectors α, βI, ϑI are functions of the 

parameters of the structural equations. 
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As we are interested in the elasticity of residual demand, denoted 1/  
 , we differentiate 

the previous equation in logarithms. 

  
  

    

     
  

     

     
 ∑

   

   

   

   
   

 

so that 

  
      ∑   

   

     

where   
  is the inverse elasticity of residual demand i.e. the reciprocal of firm’s 

elasticity of demand that we explained to represent the markup percentage. The first 

term on the right-hand side of equation captures the direct effect the quantity changes 

have on the price firm 1 gets in the market. The second term on the RHS is reciprocal of 

the sum of the supply elasticities of all the other firms in the market and it captures the 

competitive response of other firms to the quantity changes of firm 1.  

We see that elasticity of residual demand depends on the market elasticity of demand 

and the price elasticity of supply of other firms, identical to Landes and Posner (1981). 

Here we can note the same characteristics between elasticity and market power as we 

did earlier.  

As stated earlier, a non-zero elasticity of residual demand implies market power and a 

positive markup. However, Baker and Bresnahan (1988) point out that the relationship 

between markups and   
  are not always clear. According to Baker and Bresnahan 

(1988), firms in consistent conjectures equilibrium will assume correctly their 

competitors’ reactions and the effect the reactions will have on their demand, so the 

elasticity of residual demand is a correct measure for their markup.  

The term “consistent conjectures”, as defined by Bresnahan (1981), relates to the 

assumptions a firm in an oligopoly setup has about the strategic decision making of its 

competitors. The conjectures are consistent when they are correct not only on the levels 

of strategic variables but also on the decision-making process leading to these levels. 

When setting prices, the firms set their prices according to the demand curve they think 
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they are facing. For firms in Consistent Conjectures Equilibrium, this demand curve is 

the same as the one they face in reality, and thus for these firms we can state that 

   
  

      

  
  

The right-hand side of this equation is the Lerner-index (Lerner, 1934) that measures 

market power with the markup percentage. To see more clearly why this relationship 

does not always hold, let’s look back to the equation for   
  

  
      ∑          . 

We may think of ε1i as the conjectures firm 1 has about the reaction of competitive 

supply fringe to changes in firm 1’s quantity. When these conjectures are not consistent 

with reality, the firm does not set its markup according to elasticity of residual demand 

that we get from our estimations. Instead, the firm acts as if ε1i was something else.  

A common example of non-consistent conjectures equilibrium is the basic Cournot-case 

with constant marginal costs. Here the firms take the supply of other firms as constant 

and maximize their quantities subject to this quantity. Quantities are assumed to be 

independent, when in reality, the supply of the other firm depends on the supply of the 

other firms as defined by reaction curves. In other words, the firms act like ε1i = 0 when 

in reality it is a function of the other firms output. If one firm deviates from the 

equilibrium, it has a wrong idea about the reaction the other firm will have on this 

deviation. 

Consistent conjectures literature has faced much criticism and the whole idea is claimed 

paradoxical. For the conjectures to be correct, one player should perfectly predict the 

actions of the other player. These actions, in turn, are based on perfectly predicting the 

actions the other player.  If one player deviates from the Nash equilibrium, the other 

player has already wrongly predicted the actions and there cannot be any consistency in 

conjectures. If, on the other hand, the players stay in the Nash equilibrium, the 

conjectures of constant output are locally correct. (Lindh, 1992). 
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From all this we conclude that while the elasticity of residual demand might not give a 

perfect picture of the market power in all oligopoly setups, it does give us a close 

estimate of the markups firms charge. For a dominant firm, the estimate is correct and 

for others, the estimate is the upper limit of market power the firm can have (Baker and 

Bresnahan, 1988).  

3.3. Estimation Specification 

In the previous, the following inverse residual demand function was derived 

                        

and it was explained how the elasticity of this function with respect to Q1 can be used to 

infer market power in terms of markup. The residual demand equation is often 

estimated in the inverse form, but it could be derived and estimated with quantity as the 

left-hand side variable as well. The inverse demand is chosen more often, as this allows 

us to conduct a one-sided hypothesis test of no market power, i.e. the null hypothesis of 

dP1/dW1 = 0 (Björkroth et al., 2006). This null hypothesis implies that there are no 

possibilities for a potential monopolist to raise prices when firm-specific costs change. 

To get the elasticities, the above equation is usually estimated in double logarithms. 

Denoting natural logarithms of variables with a lower case letter, the common equation 

for estimation, presented for example in Baker and Bresnahan (1988), is of the form 

                    , 

where σ and δ are the parameter vectors for cost and demand variables respectively and 

W is a matrix containing all the cost-side variables, both firm-specific (W1) and industry 

wide (WI). Y is a matrix containing all the demand side variables and ud1 is an IID error 

term. 

 It should be noted that the equation has an endogenous variable on the right-hand side 

as the price and quantity are determined simultaneously by supply and demand 

functions and they affect each other. This breaks the basic assumptions of ordinary least 

squares (OLS) estimations and will cause problems in the estimators. In the next part, 
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we will discuss these and other problems related to estimations and how we may 

address them.  
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4. Methods 

As always when analyzing demand, simultaneous equations methods are important, and 

in this study we will focus especially on two stage least squares methods (2SLS). In the 

residual demand literature, also three stage least squares (3SLS) has frequently been 

used and it will be reviewed shortly in this section as well. Unlike other papers written 

about residual demand, this paper also focuses on stationarity - one of the most 

important topics in current time series econometrics. We will discuss that and related 

topics that help us in taking into account potential nonstationarity in the series.  

4.1. Simultaneous Equations Methods 

Simultaneity bias, or simultaneous equations bias, is caused when two or more variables 

in classical OLS estimation have a two-way relationship so that they both affect each 

other. In the case of demand analysis, price and quantity are simultaneously determined, 

and thus affect each other. Using OLS in our setup, the error term would be correlated 

with both the price and quantity and this breaks the basic assumptions of OLS and 

makes the estimators biased. 

Simultaneity bias can be avoided by doing the estimations with an instrumental variable 

(IV) method or as a 2SLS estimation. 2SLS will provide asymptotically unbiased 

estimators. In IV-estimation one or more exogenous variables correlated with the 

endogenous variable on the right-hand side, but not with the error term, are used as an 

instrument for an endogenous variable. Thus, the instrument, denoted z, must satisfy the 

following conditions 

            

and 

          , 

where x is the problematic endogenous variable that is instrumented with z and u is the 

error term in the original estimation equation. In other words, to identify the reduced 
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form equation for the endogenous variable, we need a variable that we find only in the 

equation for that specific endogenous variable and not in the original equation.  

In 2SLS, the IV-estimation is done in two stages: at the first stage, the endogenous 

variable on the right-hand side is regressed with OLS on all the exogenous variables on 

the right-hand side plus the instrumental variables. The fitted value from this 1st stage 

estimation provides us with a reduced form expression of the problematic variable, i.e. 

that variable expressed in terms of exogenous variables. By definition, the exogenous 

variables are uncorrelated with the error term and as the fitted value is a linear 

combination of these variables, it too must be uncorrelated with the error term. At the 

second stage of the estimation, the endogenous variable is replaced by its fitted value. 

To see this process more clearly, let’s consider the residual demand model presented by 

Baker and Bresnahan (1988): 

                    . 

As stated earlier, q1 is endogenous and correlated with the error term ud1 because of 

simultaneity of p1 and q1. The other variables are exogenous. 

At the first stage, we regress q1 with all the exogenous variables on the right-hand side, 

including the constant term, and the instrumental variables. 

                     , 

where Z is a vector of instrumental variables and αi, i = 0,1, 2, 3, are parameter vectors. 

As all the variables on the RHS of the above equation are exogenous, the covariance 

between them and the error term must be zero. Thus, the fitted value of   ,   
  is 

expressed as a linear combination of independent exogenous values. Now we can 

substitute the quantity variable in the original model with the fitted value and get: 

          
           . 

As    
  is clearly exogenous, this equation does not have any endogenous variables on the 

right-hand side and it can be estimated normally using single-equation techniques. 
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As stated earlier, instrument variables must be exogenous. If there are more than one 

instrumental variable per an endogenous variable, Sargan’s test for overidentification 

restrictions can be used. In Sargan’s test, the null hypothesis is that all the instruments 

are exogenous. The alternative hypothesis then is that at least some of the IVs are not 

exogenous. The test is conducted in the following way: 

1. Estimate the structural equation by 2SLS and save the residuals. 

2. Regress the saved residuals on all exogenous variables, including the 

instruments. Obtain R2 from this equation. 

3. Compute nR2. 

Now, the critical values are obtained from chi-squared distribution, nR2 ~ χ, where the 

degrees of freedom is the number of exogenous variables from outside the model less 

the total number of endogenous variables. If the chi-squared value exceeds the critical 

value, H0 is rejected. The intuition is that we want to check whether there is significant 

correlation between the instruments and the residuals, as this would tell us that the 

hypothetical exogenous variables are in fact endogenous. It should be noted that if the 

overidentification restrictions are rejected by Sargan’s test, we do not know which of the 

restrictions failed the test, only that the combination is not working.3  

In addition to the above condition of exogeneity, the instruments must also have high 

relevance - the instruments should be able to explain the instrumented variables. 

Otherwise the fitted value given by the first stage estimation will be only a linear 

combination of the exogenous values and there will be a problem of multicollinearity at 

the second stage. Multicollinearity will result in high standard errors in the estimates 

and make the estimates less reliable, meaning that small changes in the sampled data 

can lead to large changes in the coefficient values.  

It should be noted that as IV and 2SLS provide only asymptotically unbiased estimators, 

and with small samples, the estimators can still be biased. However, the direction of 

                                                        

3 For examples and further discussion consult e.g. Brooks (2008) 
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2SLS bias in residual demand estimations can be chosen by choosing the left-hand side 

variable correctly. If the variance of costs is greater than or equal to the variance of the 

error term, the OLS coefficients are biased towards zero (Froeb and Werden, 1999). This 

will lead to more conservative results with respect to the existence of market power. 

Three stage least squares (3SLS) method, originally presented by Zellner and Theil 

(1962) is often used in residual demand estimations (see e.g. Baker and Bresnahan, 

1988 or Yang, 2001). 3SLS combines 2SLS with seemingly unrelated regression 

equations (SURE) that takes into account the covariances between the errors in each 

residual demand function estimated. SURE method generally provides more efficient 

estimates when the errors are correlated also the 3SLS estimators are generally more 

efficient.4   

In many studies, e.g. Baker and Bresnahan (1988), 2SLS is found to provide results very 

similar to 3SLS but this naturally depends on the relationship between the equations at 

hand. 

4.2. Stationarity 

Much of the statistical inference regarding stochastic processes, also those done with the 

above mentioned simultaneous equations methods, depend on the assumption that key 

summary statistics of the data generating process – its mean, variance and covariance - 

remain constant through time. This feature of the stochastic process is referred to as 

covariance stationarity.5 Stationarity is also one of the underlying assumptions of linear 

regression. For nonstationary processes, linear regression can lead to a spurious 

regression, where the residuals contain a stochastic trend, the power of t-test is 

diminished and hypothesis testing cannot be conducted reliably (Granger and Newbolt, 

1974). 

                                                        

4 For further discussion on 3SLS, see e.g. Greene (2000) 
 Stationarity and Unit Root Testing chapters are largely based on Enders (2010) and Brooks (2008) 
5 From here on, covariance stationarity and stationarity are used interchangeably, as weak stationarity is a 
sufficient condition for the analysis done in this paper. 
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For a stochastic process to be stationary, the following conditions must hold for all time 

periods t: 

         

            

                (           )              , 

where µ, σ and γs are constants. 

4.3. Unit Root Testing 

The stationarity of a series is usually tested with unit root tests, as a series with a unit 

root is always nonstationary.  A series is said to have a unit root if the root of its 

characteristic equation lies outside of the unit circle. A basic example of a series with a 

unit root is the series developed by a random walk process. The random walk process is 

defined as follows: 

              . 

The characteristic equation of this process, denoting lag operator with L, is 

      

and it clearly has a unit root. The random walk process is thus nonstationary. 

Nonstationary series can sometimes be made stationary by differencing them.6 For 

example, the random walk process is made stationary by differencing it once, i.e. 

subtracting yt from both sides of the equation: 

          . 

                                                        

6 Note that this is not the case if the series is trend stationary, i.e. the process has a deterministic trend. In 
such a case, differencing will lead to unwanted behavior in the errors. However, we will focus on 
difference stationary series as generally economic and financial series are found to be such. 
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As errort follows a white noise process, the first difference of random walk is clearly 

stationary. As the random walk can be made stationary by differencing it once, the series 

is said to be integrated of order 1, denoted yt ~ I(1). More generally, an I(d) process has 

to be differenced a minimum of d times to make it stationary.7  

The existence of unit root in a stochastic process can be tested by Dickey-Fuller (DF) 

type tests. DF tests test an equation of the following type 

                        , 

 

where a0, a1 and γ are parameters and D is the difference operator. Depending on the 

specification of the test, a0 and a1 can be either set to zero or included in the equation. 

The null hypothesis of DF test is that γ = 0, i.e. that the process has a unit root and is 

nonstationary. The alternative hypothesis is that γ < 0 and the process is I(0). The 

equation is estimated using OLS and the test statistic is calculated as: 

  
 ̂

          ̂ 
  

where  ̂ is the OLS estimator for γ. The test statistic follows a Dickey-Fuller distribution 

and the critical values, drawn from simulations, depend on the specification of the test 

and of course on the degrees of freedom. 

DF-test assumes that the true data generating process is a first order autoregressive 

process, denoted AR(1). This means that the current value of the series depends only on 

the previous value of that series. DF test can be further augmented by including lagged 

difference terms to account for a more complicated data generating processes. 

Neglecting the true complexity of the process would result in autocorrelation in the 

residuals, but with the augmented test the autocorrelation can be avoided. This sort of 

                                                        

7 Note, however, that I(0) is only a necessary condition for stationarity, not a sufficient condition. Still, a 
I(0) series is usually considered stationary in econometric analyses. 
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test is called Augmented Dickey Fuller (ADF) test and the test equation is of the 

following form: 

                  ∑       

     

     

        

where a0, a1, γ and σ are parameters and a0 and a1 can be again either set to zero or 

included in the equation. Again, t refers to time period and p is the number of lagged 

differences included in the test. The test procedure and the hypothesis tested are the 

same as with regular DF-test.  

The ADF test is sensitive to choosing the correct number of lags. Too few lags do not 

remove all the autocorrelation in the process, and too many, on the other hand, lead to a 

lower power of the test as the degrees of freedom are eaten up by unnecessary lags. 

Optimal lag length can be chosen by using an information criterion, for example Schwarz 

Bayesian Information Criterion (BIC), so that the lag length that minimizes the criterion 

is considered optimal. Some sources (e.g. Brooks, 2008) suggest a simple rule of thumb 

of using 12 lags for monthly data, 4 for quarterly and so on.  

4.4. Cointegration and Error Correction Models 

Differencing can provide a solution to problems related to stationarity, but it can also 

lead to a loss of information. Consider the following model: 

                   

Differencing it once gives: 

                   

By definition, in the long-run steady state  

           

and 
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for all t, so  

         . 

Thus, differencing loses all information about a long run solution. In many economic 

models, the long-run equilibrium is of great interest, and loosing this information can be 

a significant loss to analysis. 

Generally, if two series are integrated, their linear combination has an order of 

integration equal to that of the largest order of integration of the two. However, for two 

cointegrated series, the linear combination is of lower order of integration than the 

series themselves. Engle and Granger (1987) defined cointegration in the following way: 

“The components of the vector xt are said to be co-integrated of order d, b, denoted xt ~ 

CI(d,b), if (i) all components of xt are I(d); (ii) there exists a vector α(α≠0) so that zt=α'xt ~ I(d-

b), b>0. The vector α is called the cointegrated vector.“ 

Thus, for series to be cointegrated, they must have the same order of integration and 

there must be one or more linear combinations of those series that have an order of 

integration lower than the order of integration that those series have independently. 

Cointegration is in essence a long run relationship that series have and that ties them 

together in the long run.  

Engle and Granger (1987) proposed a 2-step procedure to test for cointegration, find the 

cointegrated vector and building an error correction model: 

1. Estimate a static cointegrated vector. Obviously, the series in the vector should be 

of the same order of integration to fulfill the conditions set in the definition 

above. Next, the estimated residuals are tested for no cointegration. This can be 

done by, for example, an ADF test. As the test is done for estimated error terms 

and not actual series, the usual critical values for ADF given by, for example, most 

statistical software will not do, but one should use those simulated by 

MacKinnon(1991).  

2. Include the lagged residuals from step one in the error correction model. This is 

the same as including the cointegrated vector in the model.  
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If a cointegrated vector is found, a so-called error correction model including that vector 

and the integrated variables in their differenced forms can be built. If, on the other hand, 

no cointegrated vector is found, no long-run solution exists and using a basic differenced 

model loses no information. 

Brooks (2008) has summarized the critique for the above mentioned procedure. 

1. The unit root and cointegration tests are not powerful in finite samples so that 

one cannot be certain whether there is a cointegrating relationship or not. 

2. The cointegrated vector treats the variables asymmetrically, assuming a direction 

of causality. This might influence the results, i.e. the residuals saved from the first 

step even if theoretically there should be no difference between the chosen 

dependent variable. 

3. Hypothesis tests cannot be done with the actual cointegrating relationship in step 

1.  

In addition, the Engle-Granger 2-step method is sensitive to misspecification in the first 

step as any mistakes in this step are carried on to the second step. Johansen’s (1988) 

method estimates the CI vector simultaneously with the error correction model and thus 

counters the misspecification problem. It also avoids problems 2 and 3 in Brooks (2008) 

list. Furthermore, it allows for more than one cointegrating relationship between the 

variables in cases where there are more than two variables in the model.  

Johansen’s method is based on vector autoregressive (VAR) specification. VAR models 

can be viewed as hybrids between simultaneous equations and univariate time series 

models. Whereas in univariate cases we assume that the current value depends only on 

the processes values in different time periods, in VAR there are several variables that 

depend on their own past values and the past values of other variables. This also means 

that VAR models do not discriminate between endogenous and exogenous variables - all 

variables are considered endogenous and determined simultaneously. 

For example, a VAR model with g variables and k lags might look the following: 
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          +                   , 

where βj is a (gxg) matrix of parameters for variables at time t-j and yi is a (gx1) matrix 

of variables at time i, i = t-1, …, t-k. Assuming that yt ~I(1), the above VAR model can be 

turned into a vector error correction model (VECM) (Johansen, 1988).  

          ∑        

   

   

     

where   ∑          
 
    and     ∑          

 
   , Ig being an (gxg) identity vector  

To find the number of cointegrated vectors, we inspect the rank of π. The rank of a 

matrix is equal to the number of its eigenvalues, so the number of nonzero eigenvalues π 

has equals the number of cointegrated vectors the process has. If the rank of π is zero, it 

has no elements and there is no cointegrating relationship between the variables.  

Johansen’s (1988) tests of cointegration focus on finding these non-zero eigenvalues for 

π, denoted λ(i), where i refers to the ith eigenvalue when they are ordered in ascending 

order. Johansen (1988) presents two test statistics: 

             ∑        ̂    

 

     

 

and  

                      ̂    , 

where T is the sample size, r is the number of cointegrated vectors under the null 

hypothesis and  ̂ 
̂  is the estimated value for ith largest eigenvalue. A significantly 

positive eigenvalue indicates a significant cointegrated vector.  

The first test, a so-called trace test, tests the joint significance of  

                                

In other words, the null hypothesis is that the number of cointegrated vectors is less 

than or equal to r.  The second test, maximum eigenvalue tests, tests each eigenvalue 
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separately and has a null hypothesis that the number of cointegrated vectors is r against 

an alternative that there are r+1 vectors. The test procedure in maximum eigenvalue 

test is such that at first, the null hypothesis is H0: r=0 vs. H1: 0<1 ≤g. If the null is not 

rejected, the value of r is increased as long as the null is not rejected or that the null is 

r=g-1. 

The critical values for both these tests can be found in Johansen and Juselius (1990) and 

they depend on the number of variables in the model and the rank of π. Similar to DF-

tests, constant and drift terms can be included in the model and these again affect the 

critical values.  

Although Johansen’s methodology is typically used in a setting where all variables in the 

system are I(1), having stationary variables in the system is theoretically not an issue 

(Johansen, 1995) . Thus, there is little need to pre-test the variables in the system to 

establish their order of integration. If a single variable is I(0) instead of I(1),  it will 

reveal itself through a cointegrated vector made up of only the stationary variable. 
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5. Earlier Residual Demand Estimations 

The concept of residual demand was first applied in econometric estimations for US 

brewing industry by Baker and Bresnahan (1988) when they estimated the elasticity of 

residual demand for three big beer producers in US. After that, residual demand has 

been used in many situations. For example, Yang (2001) evaluated the market power of 

US primary and secondary aluminum industry and estimated the residual demand curve 

for the whole industry, not a single firm. In this part, we focus on problems in residual 

demand analysis and solutions to them found in literature. 

5.1. Instrumental Variable Choice 

Firm’s own quantity, which is endogenous according to the model specification, needs to 

be instrumented to avoid simultaneity bias as we discussed in part 4. Not taking into 

account the endogenous own quantity, the OLS estimates would be biased downwards 

and provide conservative estimates for market power, i.e. market power would be 

disproved more easily (Baker and Bresnahan, 1988).  

Typically the variables used as instruments for firm’s own quantity have been proxies 

for firm-individuated factor prices. Baker and Bresnahan (1988), for example, used both 

capacity and average capacity as instruments. These instrument variable choices are 

well justified: as capacity investments are done infrequently and in large amounts, 

capacity is exogenous in the short-run. Capacity is also correlated with marginal costs as 

with high capacity, the marginal costs are lower than when capacity is constrained. 

Average capacity, on the other hand, represents the use of plant level economies of scale 

that also alter marginal costs. As one of the firms had production facilities only in one 

region, the regional manufacturing wages in that region could be used as an instrument 

for that firm. They represented the independent movements in costs for that firm, as the 

industry-wide wages were included in the cost variables as well. Baker and Bresnahan 

emphasized that if firm-individuated factor prices are not available, the residual demand 

curve will not be identified. (Baker and Bresnahan, 1988.)  

5.2. Unstable Market Environment and Dynamics 
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Foreb and Werden (1999) point out how nonstationarity is a problem for the utility of 

residual demand analysis. By nonstationarity, Froeb and Werden (1999) do not directly 

refer to the statistical concept that we discussed and noted as a flaw in the residual 

demand estimations in the previous part. In their setup, nonstationarity refers to more 

general instability in the demand and cost conditions in the market. If we cannot assume 

that the market conditions remain the same in the future, it limits the inferences that we 

can draw from the residual demand estimations.  

In a stable environment with steady demand and cost conditions, nonstationarity 

regarding the future values might not be a big problem. However, Froeb and Werden 

(1999) present two reasons why the instability of the market environment should be 

considered especially in merger cases. Firstly, changing market conditions can make 

mergers profitable and thus mergers can be seen as a result of changes in the market. 

Secondly, a merger proposal is more likely to get an approval from the antitrust 

authorities when the conditions are changing. This is because it is more difficult for the 

antitrust authorities to estimate the effects of the merger on market power based on 

historical data when the environment is turbulent. What these two points mean is that 

mergers themselves can be viewed as a sign of an unstable environment regarding 

demand and costs and nonstationarity issues should be taken into consideration when 

using the elasticity of residual demand in predicting the future.  

Dynamics bring yet another problem into residual demand analysis. Each observation of 

prices and quantities is easily assumed to be a static equilibrium between supply and 

demand when in reality the observations can be a result of a dynamic process where 

past prices or quantities or expected future prices can affect the prices in the current 

period.  

Froeb and Werden (1999) give the following example of how buyers’ ability to inventory 

can show up as spikes in demand. If a price increase seems temporary, a buyer with 

inventories will cut its demand drastically. When the price level remains high for a 

longer time, the buyer will increase its demand as its inventories start to run low. 

Similarly, we can see how expected lower prices in the future, caused for example by 

events that decrease producers’ costs and increase the supply, can cause a buyer with 
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inventories to postpone its demand for the next period. Persisting higher prices will also 

affect buyers’ willingness to find substitutes and suffer potential switching costs, which 

again lead to larger quantity reductions in the long-term than what a short-term 

demand analysis might suggest. Thus buyers’ ability to inventory and learn can either 

under- or overestimate firm’s ability to affect prices through quantity reductions. 

Estimates that do not correctly and explicitly account for these dynamic effects will be 

biased. (Froeb and Werden, 1999).  As the true dynamic process can never be truly 

known, some bias is bound to exist in any estimate for the elasticity of residual demand. 



43 

 

6. Data and Tests 

In this part, the data is presented and several tests and summary statistics are calculated 

based on that data. Probably the most interesting tests in this part, from the point-of-

view of our analysis, are the ADF tests done in the latter parts of this chapter. These tests 

are generally neglected in the literature.  

6.1. Data 

The analysis is done with monthly data ranging from January 2004 to December 2010 

and including 84 observations. All the sales prices and quantities come from UPM’s 

databases. Cost side data used in this study are public, coming from the Finnish Forest 

Institutes statistics databases or from Statistics Finland. Demand side data for Finnish 

markets come from Statistics Finland. To capture the elasticities straight from the 

estimations, all the variables are transformed into logarithms. 

All the variables used in this study can be found in the Table 2 below. Note that all the 

variables are in logarithms. Real prices and costs were generated by deflating the 

nominal counterparts with consumer price index. For estimations with Johansen’s 

method, we used nominal prices and costs instead of real ones.  

Table 2 Variables used in the study 

 Variable Name Meaning 

Prices price 1 
Real Price of Wood type A Center 
Good Product Group (Product 1) 

 price 2 
Real Price of Wood type B Center 
Good Product Group (Product 2) 

 price 3 
Real Price of Wood type A Board 

Product Group (Product 3) 

 price 4 
Real Price of Wood type B Board 

Product Group (Product 4) 

UPM’s 
Quantities 

quantity 1 
Quantity Sold of Wood type A Center 

Good Product Group ( Product 1) 
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 quantity 2 
Quantity Sold of Wood type B Center 

Good Product Group (Product 2) 

 quantity 3 
Quantity Sold of Wood type A Board 

Product Group (Product 3) 

 quantity 4 
Quantity Sold of Wood type B Board 

Product Group ( Product 4) 

Demand fin_bkt Real GDP for Finland 

 fin_const_permits_quartal 
The Number of Construction Permits 

Issued in the Current Quarter 
(Extrapolated for each month) 

 fin_construction_starts_quartal 
The Number of Construction Starts 

Issued in the Current Quarter 
(Extrapolated for each month) 

Costs real_stumpagep_Alog 
Real Stumpage Prices of Wood type A 

Log 

 real_stumpagep_Blog 
Real Stumpage Prices of Wood type B 

Log 

 real_stumpagep_Alog_ks 
Real Stumpage Prices of Wood type A 

Log in Kymi-Savo Region 

 real_stumpagep_Afiber 
Real Stumpage Prices of Wood type A 

Fiberwood 

 real_stumpagep_Bfiber 
Real Stumpage Prices of Wood type B 

Fiberwood 

 real_man_costs_saw 
Real Production Price Index for 

Sawmilling 

 real_man_costs_industry 
Real Production Price Index for 

Industrial Production 

Instruments production UPM’s Total Production of Sawn wood 

 production_B 
UPM’s Total Production of Wood type 

B Sawn wood 

 production_A 
UPM’s Total Production of Wood type 

A Sawn wood 

 sek EUR/SEK Exchange Rate 

 gbp EUR/GBP Exchange Rate 
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The relevant cost variables for UPM’s residual demand model are assumed to be 

stumpage prices for sawn wood logs and the producer price index for sawmilling that 

represent industry wide costs. For wood type A, UPM’s major sawmill located in 

Lappeenranta allows us to use the stumpage prices of that specific region to identify 

UPM-specific costs. The prices in that region are naturally closely correlated with the 

overall prices in Finland, but not perfectly. From the demand side the number of 

construction permits can be assumed to affect prices of sawn wood as construction is 

one of the major demand drivers and construction permits anticipate the future 

demand. Another related variable, the number of housing starts is tested as well, but 

found to be less significant. Real GDP can also be seen as a major influence on sawn 

wood prices as sawn wood markets are generally described as sensitive to economic 

cycles.  

As discussed earlier, there is reason to believe that stumpage prices are endogenous, i.e. 

depend on the price of sawn wood, as UPM is one of the three large buyers in the raw 

material market. Also some of the earlier studies point in this direction. To account for 

this possible endogeneity, the lagged values of cost factors are used. Using lagged values 

can be justified also by the fact that production happens in earlier periods than sales and 

thus, the lagged values of costs are in fact the relevant cost side variables. Still, all the 

endogeneity might not be removed from this, since an expected rise in the future sawn 

wood prices can increase UPM’s willingness to pay for sawn wood, which may drive up 

the stumpage prices.  

All the insignificant variables are not removed from the model as in some cases the zero 

results can be interesting as well. This is the case especially when a variable we assumed 

to be significant turns out insignificant. Some of the variables might experience 

collinearity. Removing collinear variables can change the coefficients of other variables 

and this is something that should be taken into account already when building the 

model. 

From Table 3. we see that the correlations between prices and their respective 

quantities are rather low ranging from -0,35 to near zero. Especially for board products, 

products 3 and 4, the correlations between prices and quantities are practically zero. 
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Without correlation there cannot be any causality, so there cannot be any pricing power 

either. Still, estimations are done for those products as well to see how cost variables 

affect the prices and to further verify this result of no market power.  

 Table 3. Correlations between prices and quantities sold. 

| Product 1_m3   Product 2_m3  Product 3_m3  Product 4_m3 

-------------+-------------------------------------- 

price 1     |  -0.3538          -0.2422       0.1741       0.2498 

price 2     |  -0.1618          -0.1602       0.2670       0.2801 

price 3     |  -0.2976          -0.4408       0.0481       0.1491 

price 4     |  -0.4162          -0.4175       0.0166       0.0627 

In Table 4 below, summary statistics for the variables used can be found. Note that the 

variables are in logarithms. The center goods (products 1 and 2) are more expensive and 

have a higher variance in prices than boards. 

Table 4. Summary statistics for the main variables; UPM’s quantity sold and real prices 

  Variable |       Obs        Mean    Std. Dev.       Min        Max 

quantity 1 |        84    6.459491    .9560774   4.352945   7.894813 

quantity 2 |        84    6.933079    .9839156   2.415735   8.537629 

qauntity 3 |        84    7.545965      .39088    6.56943   8.217656 

quantity 4 |        84    7.972111    .4805967   5.519026   8.715787 

   price 1 |        84    4.924614    .1233624   4.558481   5.197965 

   price 2 |        84    5.069521    .1297663   4.720509   5.395073 

   price 3 |        84    4.516862    .1593114   4.341677   4.976228 

   price 4 |        84    4.661632    .1761075   4.407116   5.083102 

 

6.2. Instrumental Variables 

To account for the simultaneity between prices and quantities, instrumental variables 

need to be found. If firm individuated factor prices are not observed, no instruments will 

be available to estimate firm’s elasticity consistently. Using OLS will result in parameter 

estimates that are subject to simultaneous equation bias, as explained earlier. 

A potential instrumental variable in our study is the total amount of sawn wood 

produced by UPM. UPM’s total production describes how costly the production of sawn 
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wood is, and thus describes how the marginal costs for a specific product develop. 

Furthermore, the correlation of total production with the price of a specific product is 

likely to be low assuming that the prices for different products move independently. 

Exchange rates between Euro and other currencies are exogenous for a single firm but 

still affect the costs of production. This can make them good instrumental variables. The 

reasons why separate exchange rates might work as instruments must be judged case-

by-case. 

Woodchips are a significant by-product in sawn wood production. The internal and 

external sales of wood chips make up a significant share of the total sales of UPM’s sawn 

good production making it a significant factor in determining the costs of sawmilling. 

UPM’s woodchip prices are not available for the whole observation period of our study 

and we cannot use them as instruments. The price of fiberwood, on the other hand, can 

be seen as proxy for the price of woodchips as woodchips and fiberwood are close 

substitutes in pulp production. Thus fiberwood stumpage prices may be good 

instrumental variables. Especially from the point-of-view of boards, the connection 

between woodchip, fiberwood and sawn wood prices is extremely interesting, as low 

quality boards can be turned into woodchips if the price of woodchips and fiberwood 

climbs high enough. The price of fiberwood can thus be seen as determining a price floor 

for the lowest quality products. 

A correlation matrix, presented in Table 5, was calculated to see how different variables 

would fulfill the conditions for an instrumental variable. The matrix clearly shows that 

total production and exchange rates could be good instruments. Unfortunately the 

fiberwood stumpage prices were highly correlated with the sawn wood price and could 

thus not be used as instruments. Still, it might be worthwhile to include them in the 

estimations for boards. For the lagged values of the same variables, the correlations 

were similar but generally the current period values were found more correlated with 

quantity and less with price suggesting that current values would be better instruments 

in our 2SLS estimations. Still, as the lagged values are more likely to be exogenous based 

on the above argumentation, we will test both as instruments and base our decision of 

instrumental variables on postestimation tests. 
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Table 5. Correlations between prices, quantities and the chosen instrumental variables. 

6.3.  Stationarity Tests 

Regardless of the importance of stationarity, it is not taken into account in residual 

demand literature. This study expands the current residual demand literature by 

offering a way to account for this.  

ADF is not a very powerful test and one should be cautious when drawing inferences 

when the test statistic is close to critical values. If the tests are not clear, the robustness 

of inferences can be tested by treating the variables as both stationary and 

nonstationary and seeing how this affects the results. In our estimations, we will treat 

the series as both I(1) (Johansen’s method) and I(0) (2SLS) to see how this affects the 

results. 

Stationarity was tested with DF-GLS test where the ADF test equation is turned into GLS 

form before estimation. The tests, found in Appendix 1, were done for lags 1-11, where 

the maximum lag was decided with Schwert criterion. The optimal lag length was 

decided based on two information criterion: BIC and MAIC. Usual ADF tests were also 

done, although not presented here, using twelve lags as suggested by Brooks (2008). 

The tests showed how sensitive ADF tests are to different lag lengths and specifications; 

including a trend or leaving out a constant provided conflicting results.   

Graphical examination was also needed to determine the order of integration of the 

variables. The large spike in the middle of our observation period that is due to 

overheating in the sawn wood markets can also affect our ADF tests results. Graphical 

Correlations production production_B production_A sek gbp 

price 1 0.02 -0.04 0.06 -0.19 0.11 

price 2 0.13 0.07 0.16 -0.38 -0.12 

price 3 0.01 -0.06 0.05 0.01 0.12 

price 4 0.00 -0.06 0.04 -0.11 0.15 

quantity 1 0.41 0.44 0.35 -0.40 -0.70 

quantity 2 0.44 0.48 0.38 -0.57 -0.58 

quantity 3 0.49 0.45 0.47 -0.62 -0.71 

quantity 4 0.54 0.53 0.50 -0.53 -0.55 
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examination of price series in Figure 9 shows that at least the boards (the lowest two 

lines of the upper picture) experience a slight upwards trend. The differenced series in 

the lower picture, on the other hand, are clearly stationary. The graphs of other 

variables can be found in Appendix 1.  Depending on the information criteria used, the 

ADF tests sometimes showed conflicting results, but based on both the ADF tests and 

graphical examinations (see Appendix 1), the variables used in this study were found to 

be I(1).  

Although the autocorrelation (ACF) and partial autocorrelation functions (PAC) are not 

defined for nonstationary series, we can still try to use them to give us hints of the data 

generating process at hand. The correlograms in Appendix 1 show that the first lag of 

real prices seems to have a high spike in the PAC and the ACF is slowly decaying to zero. 

This can point to an AR(1) process and we will later take this into account in our 2SLS 

estimations by including a lagged price variable on the RHS of the equation.  
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Figure 9. Plot of levels and first differences of real prices. Note that the y-axis is not the same for 

the different products as the data is highly sensitive for our case company. 
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7. Results 

As Froeb and Werden (1999) already point out, the typical residual demand estimations 

do not usually take into account nonstationarity of the variables, and this is a major flaw 

in residual demand literature. With 2SLS or 3SLS, the typical methods used in the 

literature, taking nonstationarity of variables into account is generally not possible and 

as Granger and Newbold (1974) find, not taking into account stationarity leads to 

spurious regression and is against the assumptions of linear regressions.  

Acknowledging this, we will still apply 2SLS in this study to see how the outcomes differ 

compared with Johansen’s method that treats the variables as I(1). With Johansen’s 

method, we are also able account for the dynamic features of the time series, which 

previously have been neglected in residual demand literature (Froeb and Werden, 

1999).  

7.1. Two Stage Least Squares Estimations 

In 2SLS estimations we follow Baker and Bresnahan (1988) and use real prices in our 

estimations. For both center goods products, the estimated equation was of the 

following form: 

                                     , 

where p is the real price for the good, q is the quantity sold of that good, PPISaw is the 

producer price index for sawmilling representing industry wide costs, SP is the real 

stumpage price for the wood type in question, CP is the number of construction permits 

in the current month and Y is the real GDP for Finland. L is a lag operator. For board 

products, product 3 and 4, also the respective fiberwood stumpage price was included in 

the regressions. For wood type A products, the regional stumpage price for wood type A 

logs in Kymi-Savo region was used to better capture the firm-specific costs.  

In estimations for wood type B products, product 2 and 4, we use UPM’s total production 

of wood type B as an instrument. For wood type A products, UPM’s total production of 

all sawn wood was found to be a better instrument based on the postestimation tests. 
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For wood type B boards we use SEK/EUR exchange rate as an instrument, whereas for 

the other product groups, EUR/GBP was found to be a stronger instrument.  

The results from the estimations can be seen in the tables below. The first stage 

estimations show that R-squared values and the F-statistic are high indicating that the 

instruments are strong. Minimum eigenvalue statistics presented in Appendix 2 pass the 

nominal 5% Wald test at 10% rejection rate further reinforcing the idea of strong 

instruments.  Postestimation Sargan’s tests for overidentifying restrictions confirm that 

the instruments are valid (see Appendix 2).  

Table 6. Summary statistics from 1st stage regressions. The R-squared values and F tests are high. 

                             |                   Adjusted   Partial 

           Variable  |  R-sq.         R-sq.         R-sq.         F(2,76)        Prob > F 

         quantity 1 |  0.6631      0.6365       0.4255     28.1395       0.0000 

         quantity 2 |  0.6861      0.6613       0.3523     20.671          0.0000 

         quantity 3 |  0.6056      0.5687       0.3657     21.6198       0.0000 

         quantity 4 |  0.5556      0.5141       0.2890     15.2442       0.0000 

Table 7.  Second-stage regression results and summary statistics for center goods. The high R2 

would indicate that the model fits the data. 

VARIABLES price 1 VARIABLES price 2 

quantity 1 -0.0231* quantity 2 -0.0123 

  (0.0118)   (0.0126) 

L.real_man_costs_saw 0.593** L.real_man_costs_saw 0.355 

  (0.263)   (0.267) 

L.real_stumpagep_Alog 1.419** L.real_stumpagep_Blog 0.733*** 

  (0.556)   (0.124) 

L.real_stumpagep_Alog_ks -0.960* fin_const_permits_quartal 0.129*** 

  (0.533)   (0.0264) 

fin_const_permits_quartal 0.135*** fin_bkt -0.192 

  (0.0217)   (0.188) 

fin_bkt 0.0751 Constant 1.326 

  (0.145)   (2.144) 

Constant -1.357     

  (1.673)     

        

        

        

Observations 83 Observations 83 

R-squared 0.838 R-squared 0.798 
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Adj.R-Squared 0.825 Adj.R-Squared 0.784 

RSS 0.204 RSS 0.283 

F-Test . F-Test . 

Standard errors in parentheses   

*** p<0.01, ** p<0.05, * p<0.1   

As can be seen in the table above, for both of the center good products the coefficient for 

quantity is not significantly different from zero at 10% significance level, i.e. the 

elasticity of residual is perfectly elastic. The prices are determined by costs and demand 

side variables. The signs of the coefficients are as expected: the industry-wide costs 

variables increase costs for all companies and the increased costs are then transferred 

into prices. Increased demand shown by an increase in the number of construction 

permits issued increases the prices. Rather surprisingly, the coefficient for real GDP is 

found insignificant.  

Table 8.  Second-stage regression results and summary statistics for boards. The regressions Cost-

side factors remain significant; stumpage price of both logs and fiberwood together with PPI of saw 

milling explain most of the price movements. The high R2 would indicate that the model fits the 

data. 

VARIABLES price 4  VARIABLES price 3 

quantity 4  -0.00226 quantity 3 -0.106*** 

  (0.0453)   (0.0385) 

L.real_man_costs_saw 1.255*** L.real_man_costs_saw 2.132*** 

  (0.346)   (0.366) 

L.real_stumpagep_Blog 0.918*** L.real_stumpagep_Alog 1.676*** 

  (0.174)   (0.583) 

L.real_stumpagep_Bfiber -0.775*** L.real_stumpagep_Alog_ks -1.194** 

  (0.128)   (0.535) 

fin_const_permits_quartal 0.0859* L.real_stumpagep_Afiber -0.645*** 

  (0.0473)   (0.213) 

fin_bkt 0.241 fin_const_permits_quartal 0.0347 

  (0.224)   (0.0329) 

Constant -5.454** fin_bkt 0.563*** 

  (2.420)   (0.197) 

    Constant -10.39*** 

      (2.279) 

        

Observations 83 Observations 83 

R-squared 0.775 R-squared 0.844 

Adj.R-Squared 0.758 Adj.R-Squared 0.829 

RSS 0.576 RSS 0.326 

F-Test . F-Test . 
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Standard errors in parentheses   

*** p<0.01, ** p<0.05, * p<0.1  

For board products all the cost side variables are found significant at 5% significance 

level and the signs of these costs are as previously: industry wide cost increases lead to 

an increase in price. Notice that the increase in the price of fiberwood leads to a 

decrease in price of boards. This supports the idea that fiberwood, acting as a proxy for 

woodchips, decreases the costs of production when its price increases. For product 4, 

the demand side variables are not significant at 5% level, although their signs are logical. 

Thus, only the costs determine the price of product 4. Surprisingly, for product 3 the real 

GDP is significant when for all the other products the coefficient is insignificant.  

For product 4, the coefficient for own quantity is insignificant as expected. For product 

3, the estimations show that UPM is able to earn small markups over marginal costs, the 

markup being 10%. Based on the correlation matrix presented in the data section, there 

should be no causality between the price and quantity of product 3 and this casts doubt 

on this result.  
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Figure 10. Plot of the 2SLS residuals. The residuals clearly do not follow a white noise process and 

show signs of autocorrelation. 

To check for the validity of the results, the residuals are examined. From the residual 

plot in Figure 10 it is clear that the residuals are not IID.  Also the Ljung-Box Q-tests for 

white noise (see Appendix 2) reject the null hypothesis of no autocorrelation. In other 

words, the test statistic shows that the residuals experience autocorrelation similar to 

Baker and Bresnahan (1988) findings and the results are not reliable.  

To remove the autocorrelation, we introduce a lagged price term on the right hand side 

of the equation. This does indeed remove the autocorrelation in all estimations except 

for those for product 3 (see Appendix 3). The residual plot in Figure 11 shows that the 

residuals behave better in all the product groups than without the lagged price term. 

Removing the autocorrelation by adding a lagged variable on the RHS of the equation 

does not change the qualitative results for products 1, 2 and 4; the inverse elasticity of 

residual demand is still close to zero indicating that UPM’s quantity decisions do not 

affect the prices it receives from the market. For product 3, this improved model 

removes the slight market power that the earlier estimations showed.  
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Figure 11. Plot of the 2SLS residuals when lagged price is introduced as a regressor. The residuals 

clearly do not follow a white noise process and show signs of autocorrelation. 

The models in this section have strong and valid instruments and the residuals are quite 

well behaved. There is still one issue not addressed by these models: nonstationarity. 

However, it should be noted that the bias in spurious regressions is in the direction of 

rejecting a true null hypothesis (Grange and Newbold, 1974), i.e. finding a connection 

between series that in reality are independent.  In these estimations, no connection was 

found and this should not be due to spurious regression problem. Thus, the results 

should not be affected even if the nonstationarity had been addressed properly.  

Based on the 2SLS estimations UPM has no market power. To check for the robustness 

of these results, we will tackle the spurious regression problem next using a Vector 

Error Correction Model (VECM) that we described earlier. 

7.2. Johansen’s Method Estimations 
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The purpose of the VAR-estimations in this paper is to test the robustness of 2SLS 

results. The estimated VAR models do not include a trend term but do include a 

constant. The models are thus of the following form: 

               ∑           
   
   , 

where xt is a vector containing the variables in the model, α is a vector including the 

adjustment parameters and its dimensions depend on the amount of CI vectors. The size 

of the adjustment parameter, as explained earlier, is interpreted as the speed of 

convergence towards equilibrium. Vector ce includes the lagged residual terms of the CI 

vectors. Parameter k is the amount of lags included in the model.  

The variables included in x are 

 Price and quantity sold of the specific wood type 

 Nationwide stumpage price for the wood type in question 

 Real GDP in Finland  

 PPI for sawmilling 

In addition, for board products (products 3 and 4) the stumpage price of fiberwood for 

that specific wood type is included in the model.   

Lag length is chosen using information criteria. Tables of these statistics are provided in 

Appendix 4. When there was a conflict between different criteria, the lag length 

indicated by BIC was chosen. If Lagrange Multiplier test found autocorrelation in the 

postestimation tests, the lag length was increased as advised by Gonzalo (1994). 

Increasing the lag length removed the autocorrelation and the null hypotheses of no 

autocorrelation were not rejected at 5% in any of our models.  

Ranks of the cointegrating matrices are then estimated using the optimal lag length. The 

rank of the matrix is chosen based on the trace and maximum eigenvalue statistics (see 

Appendix 4 for details). After this, the VECM is fitted. As we are mostly interested in the 

long-run equilibrium elasticities, the dynamics of the VECM are not shown and we focus 

only on the cointegrated vectors and the adjustment parameter vectors. The elasticity of 
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residual demand is calculated based on the CI vectors and as the variables are in 

logarithms, the coefficients can again be interpreted as elasticities. 

For both center-good products, one cointegrated vector is found in Johansen’s tests and 

for product 3, the rank tests suggest two CI vectors. For product 4, the trace test and 

maximum eigenvalue test results conflict. The trace test rejects the existence of two CI 

vectors whereas the maximum eigenvalue test suggests that there would be two CI 

vectors. The results of the trace test are taken and the model is fitted assuming the 

relevant rank to be 1.  

The CI vectors tha can be interpreted as demand equations are presented below. Note 

that the insignificant parameters are removed from the model.  

                                                                 

                                                

                                                              

                                                                     

For product 1, 2 and 3 the main results are similar to 2SLS estimations: the coefficients 

for the quantity variables (Qi) are close to or exactly zero and the stumpage prices of 

logs are positively correlated with the prices of the products themselves. For products 1 

and 2, the signs of production price index variable (         are counterintuitive. The 

signs indicate that industry wide increase in costs would decrease the prices. For 

product 4 the coefficient for real GDP (Y) is also counterintuitive; an increase in demand 

through increased economic activity would decrease price.  

For the dynamic equation for price, the adjustment coefficients (α) for the relevant CI 

vectors are small and the standard errors for the coefficients are high:  
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This means that price adjusts to the long-run equilibrium very slowly if at all.  

The results give some support to the findings of 2SLS results: the inverse elasticity of 

residual demand is close to zero. For product 3, no market power is found and this 

conflicts with the results in 2SLS estimations with no lagged price variable but supports 

the findings in the improved model with lagged price variable on the right hand side. On 

the other hand, product 4 is found to have some market power with the Johansen’s 

method, whereas with 2SLS, no connection between prices and quantities is found. If 

market power does exist in the long-run, it does not affect the dynamics of prices much 

as the alfa-coefficient is so small. As the correlation matrix already showed that there is 

no correlation in the prices and quantities for product 4 and the 2SLS estimations show 

no signs of causality, the whole existence of market power can be ruled out. 
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8. Conclusions 

The current residual demand literature uses mainly two and three stage least squares 

(2SLS and 3SLS) methods in its estimations. With these methods, nonstationarity is an 

issue. Applying 2SLS or 3SLS methods to nonstationary time series can lead to spurious 

regressios. Still, as Froeb and Werden (1999) point out, residual demand literature has 

not taken this into account.  

As Baker and Rubinfeld (1999) state, using statistical evidence has been a growing trend 

in US antitrust courts. If this trend is to continue, more emphasis should be put on the 

robustness of the estimations. The idea that results from potentially spurious 

regressions could have been used as statistical evidence in antitrust courts is 

frightening. This study expands the existing literature and offers a robustness check for 

the results of 2SLS estimations: a vector error correction model estimation using 

Johansen’s method.  

Already when analyzing UPM’s sales data and the correlations between prices and 

quantities, it became clear that at least in the board product categories, products 3 and 

4, UPM has no significant market power as the correlations between prices and 

quantities were practically zero. The 2SLS estimations supported this and the quantity 

coefficients were found close to or exactly zero for UPM for all product groups in 2SLS 

estimations.  

The instrumental variable choices made in the 2SLS estimations were found relevant 

and valid, which further supports the findings. Still, the reliability of the results could 

have been further improved if more firm-specific cost data was available. For example, 

data on the prices at which UPM sells its woodchips, a significant by-product in sawn 

wood production, would have been an even more valid instrument. 

Although our results from 2SLS estimations may be spurious, it should be noted that the 

bias in spurious regression estimators is in the direction of rejecting a true null 

hypothesis, the null hypothesis being that there is no connection between the two series 

at hand. In other words, spurious regressions find relationships between series that are 

in reality independent. As in our estimations no connections between the prices and 
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quantities were found, i.e. the null hypothesis was not rejected, we may conclude that 

the results should not be affected even if the nonstationarity issues had been addressed 

properly.  

Johansen’s method mostly supported these findings as no significant market power was 

found for products 1, 2 or 3. Although some market power was found for product 4, this 

result can be ruled out as misspecification based on the results from the correlation 

matrix.  If market power had been found in the 2SLS estimations, using Johansen’s 

method would have been more informative in this study. 

The results indicate that UPM’s residual demand is perfectly elastic and a one-sided 

price increases by UPM will lead to severe decreases in demand making them 

unprofitable. Similarly, if UPM was to cut its quantity sold, the price would be left 

unaffected and UPM would experience smaller revenues. UPM should take the prices of 

sawn wood as given and focus only on optimizing the quantity it wants to supply at the 

current prices. 

The results of this study are interesting and opposite to what we assumed before the 

actual estimations. As UPM is a large player in an industry that has a static market 

structure, it was thought to have at least some market power. To look for reasons for no 

market power, one has to look at the components that make up the elasticity of residual 

demand: the elasticity of market demand and the elasticity of supply of competitors 

(Landes and Posner, 1981). Here, a significant factor for the lack of market power is 

likely to be the elasticity of supply. As a large part of Finnish sawn wood production is 

exported, competitors can react to price increases in the domestic markets by increasing 

their domestic supply and selling less to export markets. Export markets are always 

secondary to domestic markets as the transportation costs for sawn wood are high. 

Another reason for no market power can be price competition that will force the 

markups to zero. In theory, product differentiation should allow firms in price 

competition to have markups, and the products seem to be highly differentiated in the 

sawn wood industry. Still, this differentiation can be only superficial, as all the major 
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players in Finland are able to produce the same products. Thus, price competition can be 

thought of as one reason for no markups and market power.  

The sawn wood industry is an interesting industry for economic analysis as it has many 

sides to it. The raw material markets that greatly influence the sawn wood industry are 

already closely analyzed, but the industry’s subordinate status relative to paper and 

pulp production and how this affects the motives and profit maximization could make 

for interesting research. As Kallio (2002) points out, there might be even 

overproduction in the field.  

Another interesting topic for further research would be the price setting behavior in the 

field. As there is a clear oligopoly setup between Stora Enso, UPM and Metsäliitto, 

analyzing the dynamics of price setting in the field would be interesting. Based on our 

results, it seems that UPM is not the one setting the prices in the markets but Stora Enso 

as the biggest player could have a large influence on the markets.  
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Appendix 1. Data 

Plots of Data 

  

  

Figure 12. Scatter Plots of Quantity and Price 
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Figure 13. Plot of levels and first differences for quantities (m3) for different products. The y-axis 

is not the same for each line for privacy reasons. The levels seem to have a decreasing trend for all 

the products, but the differences seem to follow a white noise process. 
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Figure 14. The real costs seem stationary in levels but DF tests show that  they may be  I(1) 

2004m1 2006m1 2008m1 2010m1
period

real_man_costs_industry real_man_costs_saw

real_stumpagep_rwlog real_stumpagep_wwlog

real_stumpagep_rwfiber real_stumpagep_wwfiber

real_stumpagep_rwlog_ks real_stumpagep_wwlog_ks

real_stumpagep_rwfiber_ks real_stumpagep_wwfiber_ks
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Figure 15. Construction permits and starts are extremely cyclical and there is a large peak on the 

2nd quarter of the year. The data suffers from extrapolation as the monthly values are drawn from 

quarterly data. 

Correlograms for Prices 

                                          -1       0       1 -1       0       1 

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor] 

------------------------------------------------------------------------------- 

1        0.9026   0.9057   70.914  0.0000          |-------           |-------  

2        0.8274   0.0334   131.22  0.0000          |------            |         

3        0.7485  -0.0422    181.2  0.0000          |-----             |         

4        0.6623  -0.1108    220.8  0.0000          |-----             |         

5        0.5649  -0.1414   249.98  0.0000          |----             -|         

6        0.4661  -0.0883    270.1  0.0000          |---               |         

7        0.3629  -0.0971   282.45  0.0000          |--                |         

8        0.2756   0.0318   289.67  0.0000          |--                |         

9        0.1897  -0.0496   293.13  0.0000          |-                 |         

10       0.1170   0.0383   294.47  0.0000          |                  |         

Figure 16. Correlogram for real price of Product 1 

                                          -1       0       1 -1       0       1 
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 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor] 

------------------------------------------------------------------------------- 

1        0.9431   0.9484   77.407  0.0000          |-------           |-------  

2        0.8828  -0.0708   146.07  0.0000          |-------           |         

3        0.8169  -0.0778   205.58  0.0000          |------            |         

4        0.7171  -0.3474   252.01  0.0000          |-----           --|         

5        0.6199   0.0002   287.15  0.0000          |----              |         

6        0.5223  -0.0700   312.42  0.0000          |----              |         

7        0.4273   0.0111   329.55  0.0000          |---               |         

8        0.3110  -0.3772   338.74  0.0000          |--             ---|         

9        0.2036  -0.0369   342.74  0.0000          |-                 |         

10       0.1038   0.0203   343.79  0.0000          |                  |         

Figure 17. Correlogram for real price of Product 2 

                                          -1       0       1 -1       0       1 

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor] 

------------------------------------------------------------------------------- 

1        0.9563   0.9572     79.6  0.0000          |-------           |-------  

2        0.9235   0.1259   154.73  0.0000          |-------           |-        

3        0.8842  -0.0808   224.46  0.0000          |-------           |         

4        0.8050  -0.5789   282.97  0.0000          |------        ----|         

5        0.7397  -0.0417   333.01  0.0000          |-----             |         

6        0.6674   0.0248   374.26  0.0000          |-----             |         

7        0.5830   0.1514   406.15  0.0000          |----              |-        

8        0.5111   0.0091   430.98  0.0000          |----              |         

9        0.4316  -0.1194   448.92  0.0000          |---               |         

10       0.3533  -0.0950   461.11  0.0000          |--                |         

Figure 18. Correlogram for real price of Product 3 

                                          -1       0       1 -1       0       1 

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor] 

------------------------------------------------------------------------------- 

1        0.9563   0.9572     79.6  0.0000          |-------           |-------  

2        0.9235   0.1259   154.73  0.0000          |-------           |-        

3        0.8842  -0.0808   224.46  0.0000          |-------           |         

4        0.8050  -0.5789   282.97  0.0000          |------        ----|         

5        0.7397  -0.0417   333.01  0.0000          |-----             |         

6        0.6674   0.0248   374.26  0.0000          |-----             |         

7        0.5830   0.1514   406.15  0.0000          |----              |-        

8        0.5111   0.0091   430.98  0.0000          |----              |         

9        0.4316  -0.1194   448.92  0.0000          |---               |         
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10       0.3533  -0.0950   461.11  0.0000          |--                |         

Figure 19. Correlogram for real price of Product 4 

ADF –Tests for Stationarity 

The Dickey-Fuller test used was DF-GLS test where the ADF test equation is first turned 

into GLS before estimation. The results were calculated for lags 1-11, where the 

maximum lag was calculated with Schwert criterion and the optimal lag length was 

decided based on the two information criterion: Schwarz Bayesian Information Criterion 

and Akaike Information Criterion. 

         
Critical values 

Lag Price 1 Price 2 Price 3 Price 4 D.Price 1 D.Price 2 D.Price 3 D.Price 4 1 % 5 % 10 % 

11 -2.184 -2.500 -1.999 -2.452 -1.479 -1.933 -1.842 -1.781 -3.641 -2.745 -2.471 

10 -2.211 -2.558 -1.807 -2.112 -1.794 -2.284 -1.948 -2.083 -3.641 -2.783 -2.508 

9 -1.987 -2.522 -1.853 -2.272 -1.862 -2.270 -2.198 -2.462 -3.641 -2.822 -2.545 

8 -2.152 -2.739 -1.739 -2.115 -2.225 -2.332 -2.215 -2.344 -3.641 -2.859 -2.581 

7 -2.145 -2.829 -1.573 -2.338 -2.199 -2.168 -2.441 -2.590 -3.641 -2.896 -2.616 

6 -2.313 -2.021 -1.620 -1.838 -2.367 -2.100 -2.808 -2.403 -3.641 -2.932 -2.649 

5 -2.215 -2.127 -1.996 -1.879 -2.339 -3.003 -2.902 -3.224 -3.641 -2.966 -2.681 

4 -2.118 -2.064 -2.136 -1.823 -2.615 -3.014 -2.503 -3.401 -3.641 -2.998 -2.710 

3 -1.931 -2.163 -2.158 -2.031 -3.013 -3.282 -2.414 -3.858 -3.641 -3.027 -2.737 

2 -1.785 -1.527 -1.097 -1.827 -3.824 -3.329 -2.471 -3.789 -3.641 -3.054 -2.762 

1 -1.778 -1.442 -1.017 -1.513 -5.268 -5.470 -5.766 -4.848 -3.641 -3.077 -2.783 

SC 1 3 3 1 1 2 2 1   
 

  

MAIC 1 1 3 1 11 6 2 6       

Figure 20. ADF tests with different lags for different lags for prices. The bolded figures are those 

suggested by information criteria. All price series seem difference stationary 

     
Critical values 

  
D.Quantity 
1 

D.Quantity 
2 

D.Quantity 
3 

D.Quantity 
4 1 % 5 % 10 % 

11 -1.203 -1.957 -2.568 -2.730 -3.645 -2.742 -2.468 

10 -1.351 -2.040 -3.579 -3.053 -3.645 -2.781 -2.506 

9 -1.603 -2.193 -3.215 -3.192 -3.645 -2.820 -2.543 

8 -1.863 -2.405 -2.795 -2.844 -3.645 -2.858 -2.580 

7 -2.311 -2.572 -3.069 -3.428 -3.645 -2.896 -2.616 

6 -3.053 -3.181 -3.721 -3.907 -3.645 -2.932 -2.650 

5 -3.407 -4.208 -4.889 -5.278 -3.645 -2.967 -2.682 

4 -3.718 -4.608 -5.064 -6.119 -3.645 -2.999 -2.712 
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3 -4.628 -6.628 -6.260 -8.479 -3.645 -3.029 -2.739 

2 -5.420 -7.539 -7.714 -8.074 -3.645 -3.056 -2.764 

1 -7.099 -8.051 -9.533 -8.460 -3.645 -3.080 -2.785 

SC 1 2 1 3   
 

  

MAIC 11 11 1 1       

Figure 21. ADF tests with different lags for quantities. The series are difference stationary based 

on Schwarz Bayesian Information Criterion (SC) but  MAIC shows conflicting results. 

          
Critical value 

 

D.PPI 
sawing 

D.ks_~
_Alog 

D.fin_~
_Alog 

D.fin_~
_Blog 

D.real_
~Alog 

D.real_
~Blog 

D.real_
s~Afibe

r 

D.real_
s~Bfibe

r 

D.real_
~Alog_

ks 1 % 5 % 10 % 

11 -1.916 -1.464 -1.526 -1.686 -1.505 -1.697 -1.826 -2.214 -1.435 -3.641 -2.745 -2.471 

10 -1.642 -2.025 -1.933 -1.928 -1.929 -1.923 -2.103 -2.570 -2.042 -3.641 -2.783 -2.508 

9 -1.882 -2.849 -2.361 -2.294 -2.225 -2.183 -2.107 -2.819 -2.699 -3.641 -2.822 -2.545 

8 -2.113 -2.645 -2.540 -2.606 -2.530 -2.593 -2.623 -2.891 -2.658 -3.641 -2.859 -2.581 

7 -1.934 -3.381 -2.917 -2.885 -2.916 -2.861 -3.088 -2.795 -3.361 -3.641 -2.896 -2.616 

6 -1.965 -3.267 -3.153 -3.469 -3.023 -3.342 -2.623 -2.619 -3.187 -3.641 -2.932 -2.649 

5 -1.857 -2.999 -3.050 -3.172 -3.041 -3.198 -2.729 -2.546 -2.964 -3.641 -2.966 -2.681 

4 -2.195 -2.913 -3.298 -3.529 -3.380 -3.474 -2.587 -2.959 -2.937 -3.641 -2.998 -2.710 

3 -2.515 -3.115 -3.073 -3.105 -2.904 -3.044 -2.858 -3.239 -3.026 -3.641 -3.027 -2.737 

2 -3.298 -2.860 -2.535 -2.855 -2.662 -2.926 -3.178 -3.528 -2.911 -3.641 -3.054 -2.762 

1 -4.492 -4.074 -3.582 -3.491 -3.397 -3.354 -4.342 -5.811 -3.935 -3.641 -3.077 -2.783 

SC 2 1 2 1 1 1 1 2 1   
 

  

M
AIC 2 11 2 2 2 2 4 5 11       

Figure 22. ADF tests with different lags for cost side variables. Based on SC all series are difference 

stationary. 

    
Critical value 

  D.GDP const_permits D.const_permits 1 % 5 % 10 % 

11 -1.138 -1.055 -1.977 -3.641 -2.745 -2.471 

10 -3.911 -1.052 -4.709 -3.641 -2.783 -2.508 

9 -4.500 -1.049 -5.975 -3.641 -2.822 -2.545 

8 -5.480 -2.747 -9.301 -3.641 -2.859 -2.581 

7 -3.153 -2.611 -4.165 -3.641 -2.896 -2.616 

6 -3.443 -2.497 -4.881 -3.641 -2.932 -2.649 

5 -3.826 -4.067 -6.110 -3.641 -2.966 -2.681 

4 -5.077 -3.666 -4.126 -3.641 -2.998 -2.710 

3 -6.432 -3.372 -4.827 -3.641 -3.027 -2.737 

2 -10.147 -4.008 -6.023 -3.641 -3.054 -2.762 

1 -6.201 -3.647 -5.917 -3.641 -3.077 -2.783 
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SC 9 11 9   
 

  

MAIC 9 9 1       

Figure 23. ADF tests with different lags for demand side variables. Based on SC all series are 

difference stationary. 
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Appendix 2. 2SLS Outputs 
. //================== Product 1 ======================== 

    

First-stage regressions 

       ----------------------- 

       
 

                                                          Number of obs   =         83 

                                                    F(   7,     75) =      23.15 

                                                    Prob > F        =     0.0000 

                                                    R-squared       =     0.6836 

                                                    Adj R-squared   =     0.6540 

                                                    Root MSE        =     0.5638 

  
 

        ------------------------------------------------------------------------------ 

  quantity 1   |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

  -------------+---------------------------------------------------------------- 

  real_man_c~w | 

                L1. |   7.311325   3.065089     2.39   0.020     1.205355     13.4173 

               | 

       real_s~Alog | 

                L1. |  -15.07522   5.289865    -2.85   0.006    -25.61317    -4.53727 

               | 

       rea~Alog_ks | 

                L1. |    10.4327   5.255406     1.99   0.051    -.0366066    20.90201 

               | 

       fin_const_~l |   .0744463   .2431461     0.31   0.760    -.4099255    .5588181 

       fin_bkt |  -.3582646    1.63092    -0.22   0.827    -3.607225    2.890696 

       ln_prod |   .1479721   .1849057     0.80   0.426    -.2203789     .516323 

           gbp |   -5.74854   .8601022    -6.68   0.000    -7.461951   -4.035128 

         _cons |  -10.47564   19.28449    -0.54   0.589    -48.89231    27.94103 

  ------------------------------------------------------------------------------ 

  
 

        
 

        Instrumental variables (2SLS) regression               Number of obs =      83 
                                                         Wald chi2(6)  =  412.83 

                                                         Prob > chi2   =  0.0000 

                                                         R-squared     =  0.8382 

                                                         Root MSE      =  .04962 

  
 

        ------------------------------------------------------------------------------ 

   price 1     |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

  -------------+---------------------------------------------------------------- 

  fin_Ac_q~1   |  -.0230783   .0118252    -1.95   0.051    -.0462553    .0000986 

               | 

       real_man_c~w | 

                L1. |   .5930955   .2629189     2.26   0.024     .0777839    1.108407 

               | 

       real_s~Alog | 

                L1. |   1.419117   .5558302     2.55   0.011     .3297096    2.508524 

               | 

       rea~Alog_ks | 

                L1. |   -.960133   .5332896    -1.80   0.072    -2.005361    .0850954 

               | 

       fin_const_~l |   .1349977   .0217061     6.22   0.000     .0924545    .1775408 

       fin_bkt |    .075066   .1445864     0.52   0.604    -.2083181    .3584501 

  



76 

 

       _cons |  -1.356753   1.672848    -0.81   0.417    -4.635474    1.921968 

  ------------------------------------------------------------------------------ 

   

 

. //================== Product 2 ======================== 

 

First-stage regressions 

    ----------------------- 

    
 

                                                       Number of obs   =         83 

                                                  F(   6,     76) =      25.49 

                                                  Prob > F        =     0.0000 

                                                  R-squared       =     0.6680 

                                                  Adj R-squared   =     0.6418 

                                                  Root MSE        =     0.5902 

 
     ------------------------------------------------------------------------------ 

quantity 2   |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

real_man_c~w | 

             L1. |  -6.752262   2.494633    -2.71   0.008    -11.72075    -1.78377 

             | 

    real_s~Blog | 

             L1. |    .384768   1.303988     0.30   0.769    -2.212349    2.981885 

             | 

    fin_const_~l |   .3746891   .2498342     1.50   0.138    -.1228988     .872277 

     fin_bkt |  -2.714606    1.79643    -1.51   0.135    -6.292507    .8632946 

  ln_prod_B |   .8988047   .1669396     5.38   0.000     .5663156    1.231294 

         gbp |   -2.76474   .8348386    -3.31   0.001    -4.427466   -1.102015 

       _cons |   48.69835   18.82995     2.59   0.012     11.19526    86.20145 

------------------------------------------------------------------------------ 

 
     

 
     Instrumental variables (2SLS) regression               Number of obs =      83 

                                                       Wald chi2(5)  =  323.65 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.7975 

                                                       Root MSE      =  .05839 

 
     ------------------------------------------------------------------------------ 

 price 2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

fin_Bc_4~3   |  -.0123168   .0126261    -0.98   0.329    -.0370635    .0124299 

             | 

    real_man_c~w | 

             L1. |   .3545382   .2667805     1.33   0.184     -.168342    .8774184 

             | 

    real_s~Blog | 

             L1. |   .7325875   .1235806     5.93   0.000      .490374    .9748011 

             | 

    fin_const_~l |   .1288891   .0263611     4.89   0.000     .0772224    .1805559 

     fin_bkt |  -.1922062    .188389    -1.02   0.308    -.5614418    .1770294 

       _cons |   1.325886   2.144101     0.62   0.536    -2.876475    5.528247 

------------------------------------------------------------------------------ 
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. //================== Product 3 ======================= 

First-stage regressions 

   

 

 

-----------------------     
      
                                                  Number of obs   =         83 

                                                  F(   8,     74) =      15.62 

                                                  Prob > F        =     0.0000  

                                                  R-squared       =     0.6281 

                                                  Adj R-squared   =     0.5879 

                                                  Root MSE        =     0.2500 

      
------------------------------------------------------------------------------ 

price 3      |      Coef.   Std. Err.      t    P>|t|     [95% 

Conf. Interval] 

 

  

  -------------+----------------------------------------------------------------   

  real_man_c~w |   

           L1. |   2.921611   1.409057     2.07  0.042     .1140041    5.729217   

 

 

             | 

  

  
real_s~Alog  |    

 

 

         L1. |   2.484093    2.37581     1.05   0.299    -2.249812    7.217998  

              | 

  

  
rea~Alog_ks  | 

    

 

         L1. |  -4.312253   2.331841    -1.85   0.068    -8.958548    .3340425  

             |     
real~Afiber | 

    

 

         L1. |   1.214746   .9394751     1.29   0.200    -.6571993    3.086691  

                | 

    fin_const_~l |  .3167015    .1134855     2.79   0.007     .0905768    .5428263 

   

 

     fin_bkt |  -.7796894    .776625    -1.00   0.319    -2.327149    .7677698 

     ln_prod |    .142773   .0828185     1.72   0.089    -.0222465    .3077924 

         gbp |   -2.52433   .4402783    -5.73   0.000    -3.401603   -1.647056 

       _cons |   .1204325   9.124526     0.01   0.990    -18.06058    18.30145 

------------------------------------------------------------------------------ 

 
     

 
     Instrumental variables (2SLS) regression               Number of obs =      83 

                                                       Wald chi2(7)  =  448.96 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.8440  

                                                          Root MSE      =  .06269 

 
    

 
------------------------------------------------------------------------------  

    price 3 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+----------------------------------------------------------------  

   fin_Ab_6~3   |  -.1060776   .0385319    -2.75   0.006    -.1815988   -.0305563  

                |     
real_man_c~w | 

             L1. |   2.131729   .3664718     5.82   0.000     1.413457        2.85  

                |     
real_s~Alog  | 

             L1. |   1.675598   .5830885     2.87   0.004     .5327659    2.818431 

             |     
rea~Alog_ks  |     
         L1. |  -1.193512   .5347726    -2.23   0.026    -2.241647   -.1453774 

             |     
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real~Afiber  |     
         L1. |  -.6447715    .212782    -3.03   0.002    -1.061817   -.2277265 

   

 

             | 

    

 

fin_const_~l |    .034675   .0328511     1.06   0.291     -.029712    .0990619 

     fin_bkt |   .5632416    .196835     2.86   0.004     .1774521    .9490311 

       _cons |  -10.39102   2.278622    -4.56   0.000    -14.85704   -5.925005 

------------------------------------------------------------------------------ 

 
     

  First-stage regression summary statistics 

  

 

   -------------------------------------------------------------------------- 

               |            Adjusted      Partial 

  

 

       Variable |   R-sq.       R-sq.        R-sq.       F(2,74)   Prob > F  

 

 

   -------------+------------------------------------------------------------ 

  fin_Ab_6~3   |  0.6281      0.5879       0.3639       21.1682    0.0000  

 

 

   --------------------------------------------------------------------------  

 

 

  

. //================== Product 4 ======================== 

 

First-stage regressions 

    ----------------------- 

    
 

                                                       Number of obs   =         83 

                                                  F(   7,     75) =      13.39 

                                                  Prob > F        =     0.0000 

                                                  R-squared       =     0.5555 

                                                  Adj R-squared   =     0.5140 

                                                  Root MSE        =     0.3370 

 
     ------------------------------------------------------------------------------ 

fin_Bb_6~3  |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

real_man_c~w | 

             L1. |   -.757646   1.497139    -0.51   0.614    -3.740099    2.224807 

             | 

    real_s~Blog  | 

             L1. |  -.1151047   .8017102    -0.14   0.886    -1.712193    1.481984 

             | 

    real~Bfiber  | 

             L1. |   .8809104   .4653348     1.89   0.062    -.0460839    1.807905 

             | 

    fin_const_~l |    .560717   .1490482     3.76   0.000     .2637977    .8576363 

     fin_bkt |   1.426089   .9657021     1.48   0.144    -.4976883    3.349866 

  ln_prod_B  |   .4838348   .0987007     4.90   0.000     .2872128    .6804568 

         sek |  -.3443261   1.127766    -0.31   0.761    -2.590951    1.902299 

       _cons |  -13.66809   10.11207    -1.35   0.181    -33.81236    6.476183 

------------------------------------------------------------------------------ 

 
     

 
     Instrumental variables (2SLS) regression               Number of obs =      83 

                                                       Wald chi2(6)  =  286.32 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.7754 

                                                       Root MSE      =  .08328 
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     ------------------------------------------------------------------------------ 

price 4      |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

fin_Bb_6~3   |  -.0022627    .045267    -0.05   0.960    -.0909844    .0864591 

             | 

    real_man_c~w | 

             L1. |   1.255416    .346274     3.63   0.000     .5767314    1.934101 

             | 

    real_s~Blog  | 

             L1. |   .9177936    .173673     5.28   0.000     .5774008    1.258186 

             | 

    real~Bfiber  | 

             L1. |  -.7749727   .1283053    -6.04   0.000    -1.026446    -.523499 

             | 

    fin_const_~l |   .0859443   .0473208     1.82   0.069    -.0068028    .1786914 

     fin_bkt |   .2410355   .2241285     1.08   0.282    -.1982483    .6803193 

       _cons |  -5.453625   2.420185    -2.25   0.024     -10.1971   -.7101494 

------------------------------------------------------------------------------ 

 

Postestimation Tests 

Results for minimum eigenvalue statistics 

 

 

 

 

 

 

Tests of overidentifying restrictions 

Dependent Variable  
in the 2SLS Estimation 

Sargan (score) chi2(1) 

 Product 1 .000376  (p = 0.9845) 
 Product 2 .284638  (p = 0.5937) 
 Product 3 .029923  (p = 0.8627) 
 Product 4 .63301    (p = 0.4263) 

Dependent Variable  
in the 2SLS Estimation 

Minimum Eigenvalue Statistic 

 Product 1 27.6952 
 Product 2 30.6963 
 Product 3 21.1682 
 Product 4 14.8979 
 
 10% 15% 20% 30% 
Nominal 5% Wald test critical values 19.93 11.59 4.42 3.92 
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Here are the results for Ljung-Box Q-tests for no autocorrelation 

Dependent Variable 
in 2SLS estimations 

Portmanteau (Q) statistic Prob > chi2(12) 

 Product 1 40.1315 0.0001 
 Product 2 110.0361 0.0000 
 Product 3 66.5416 0.0000 
 Product 4 145.0022 0.0000 
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Appendix 3. 2SLS Outputs with Lagged Price on RHS 

 
. //================== Product 1 ======================== 

Instrumental variables (2SLS) regression               Number of obs =      83 

                                                       Wald chi2(7)  =  484.67 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.8532 

                                                       Root MSE      =  .04725 

 ------------------------------------------------------------------------------ 

 price 1     |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

fin_Ac_q~1   |   .0033144   .0151222     0.22   0.827    -.0263245    .0329534 

             | 

    price 1  | 

         L1. |   .5959535   .1456131     4.09   0.000      .310557    .8813499 

             | 

real_man_c~w | 

         L1. |   .2167066   .2729701     0.79   0.427     -.318305    .7517183 

             | 

real_s~Alog  | 

         L1. |   1.019431   .5127607     1.99   0.047     .0144387    2.024424 

             | 

rea~Alog_ks  | 

         L1. |  -.8876645   .5033851    -1.76   0.078    -1.874281    .0989522 

             | 

fin_const_~l |   .0694731   .0285228     2.44   0.015     .0135695    .1253768 

     fin_bkt |    .161347   .1420889     1.14   0.256    -.1171421     .439836 

       _cons |  -1.679305   1.599093    -1.05   0.294    -4.813469     1.45486 

------------------------------------------------------------------------------ 

   First-stage regression summary statistics 

  -------------------------------------------------------------------------- 

               |            Adjusted      Partial 

      Variable |   R-sq.       R-sq.        R-sq.       F(2,74)   Prob > F 

  -------------+------------------------------------------------------------ 

  fin_Ac_30~3 |  0.7321      0.7031       0.3261       17.9016    0.0000 

  -------------------------------------------------------------------------- 

 
. //================== Product 2 ======================== 

Instrumental variables (2SLS) regression               Number of obs =      83 

                                                       Wald chi2(6)  = 1029.85 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.9261 

                                                       Root MSE      =  .03526 

 ------------------------------------------------------------------------------ 

 price 2     |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

fin_Bc_q~2   |  -.0154625   .0076339    -2.03   0.043    -.0304247   -.0005003 

             | 

    price 2  | 

         L1. |   .8388245   .0701231    11.96   0.000     .7013858    .9762631 

             | 

real_man_c~w | 

         L1. |  -.1726402    .167306    -1.03   0.302    -.5005539    .1552735 
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             | 

real_s~Blog  | 

         L1. |   .1776885   .0876217     2.03   0.043     .0059532    .3494238 

             | 

fin_const_~l |   .0766851   .0164789     4.65   0.000      .044387    .1089831 

     fin_bkt |  -.0776432   .1141045    -0.68   0.496    -.3012838    .1459975 

       _cons |   1.084262   1.294951     0.84   0.402    -1.453796    3.622321 

------------------------------------------------------------------------------ 

   First-stage regression summary statistics 

  -------------------------------------------------------------------------- 

               |            Adjusted      Partial 

      Variable |   R-sq.       R-sq.        R-sq.       F(2,75)   Prob > F 

  -------------+------------------------------------------------------------ 

  fin_Bc_q¨2   |  0.6681      0.6371       0.4463       30.2323    0.0000 

  -------------------------------------------------------------------------- 

 
. //================== Product 3 ======================== 

Instrumental variables (2SLS) regression               Number of obs =      83 

                                                       Wald chi2(8)  = 1047.29 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.9265 

                                                       Root MSE      =  .04302 

 ------------------------------------------------------------------------------ 

 price 3     |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

fin_Ab_q~3   |   .0059821   .0332774     0.18   0.857    -.0592405    .0712047 

             | 

    price 3  | 

         L1. |    .900003   .1112751     8.09   0.000     .6819078    1.118098 

             | 

real_man_c~w | 

         L1. |   .0798236   .3756126     0.21   0.832    -.6563636    .8160109 

             | 

real_s~Alog  | 

         L1. |   .2503862   .4349563     0.58   0.565    -.6021126    1.102885 

             | 

rea~Alog_ks | 

         L1. |  -.1433267   .3841735    -0.37   0.709    -.8962929    .6096396 

             | 

real~Afiber | 

         L1. |  -.1873891   .1627269    -1.15   0.250    -.5063279    .1315498 

             | 

fin_const_~l |   .0034186    .023456     0.15   0.884    -.0425544    .0493916 

     fin_bkt |   .1848156   .1407279     1.31   0.189     -.091006    .4606372 

       _cons |  -1.668366   1.913271    -0.87   0.383    -5.418308    2.081576 

------------------------------------------------------------------------------ 

   First-stage regression summary statistics 

  -------------------------------------------------------------------------- 

               |            Adjusted      Partial 

      Variable |   R-sq.       R-sq.        R-sq.       F(2,73)   Prob > F 

  -------------+------------------------------------------------------------ 

  fin_Ab_6~3  |  0.6482      0.6048       0.2764       13.9408    0.0000 

  -------------------------------------------------------------------------- 
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. //================== Product 4 ======================== 

 Instrumental variables (2SLS) regression               Number of obs =      83 

                                                       Wald chi2(7)  =  884.92 

                                                       Prob > chi2   =  0.0000 

                                                       R-squared     =  0.9149 

                                                       Root MSE      =  .05127 

 ------------------------------------------------------------------------------ 

price 4      |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

fin_Bb_q~4   |  -.0231331   .0282648    -0.82   0.413     -.078531    .0322648 

             | 

    price 4  | 

         L1. |   .9806031   .0875376    11.20   0.000     .8090326    1.152174 

             | 

real_man_c~w | 

         L1. |  -.2016753   .2531914    -0.80   0.426    -.6979214    .2945707 

             | 

real_s~Blog  | 

         L1. |   .0171817   .1318825     0.13   0.896    -.2413032    .2756666 

             | 

real~Bfiber  | 

         L1. |    .037542   .1121887     0.33   0.738    -.1823439    .2574279 

             | 

fin_const_~l |    .047064   .0288708     1.63   0.103    -.0095218    .1036497 

     fin_bkt |   .0785296   .1387076     0.57   0.571    -.1933324    .3503915 

       _cons |  -.1314181   1.563516    -0.08   0.933    -3.195853    2.933017 

------------------------------------------------------------------------------ 

   First-stage regression summary statistics 

  -------------------------------------------------------------------------- 

               |            Adjusted      Partial 

      Variable |   R-sq.       R-sq.        R-sq.       F(2,74)   Prob > F 

  -------------+------------------------------------------------------------ 

  fin_Bb_q~4   |  0.5617      0.5144       0.2815       14.4944    0.0000 

  -------------------------------------------------------------------------- 

 

Postestimation Tests 

Results for minimum eigenvalue statistics 
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Tests of overidentifying restrictions 

Dependent Variable  
in the 2SLS Estimation 

Sargan (score) chi2(1) 

 Product 1 .009126  (p = 0.9239) 
 Product 2 2.69132  (p = 0.1009) 
 Product 3 .360599  (p = 0.5482) 
 Product 4 .077433  (p = 0.7808) 

 

Table 9. Ljung-Box tests for no autocorrelation 

Dependent Variable 
in 2SLS estimations 

Portmanteau (Q) statistic Prob > chi2(12) 

 Product 1 6.7413 0.8742 

 Product 2 11.5054 0.4862 

 Product 3 31.6010 0.0016 

 Product 4 12.9972 0.3692 

 

  

Dependent Variable  
in the 2SLS Estimation 

Minimum Eigenvalue Statistic 

 Product 1 17.9016      
 Product 2 30.2323      
 Product 3 13.9408 
 Product 4 14.4944      
 
 10% 15% 20% 30% 
Nominal 5% Wald test critical values 19.93 11.59 4.42 3.92 
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Appendix 4. Estimations with Johansen’s Method 

Choosing Lag Length and Rank 

Table 10. Choosing Lag for product 1. 

Selection-order criteria 

Sample:  2004m5 - 2010m12                    Number of obs      =        80 

+---------------------------------------------------------------------------+ 

|lag |    LL      LR      df    p      FPE       AIC      HQIC      SBIC    | 

|----+----------------------------------------------------------------------| 

|  0 |  382.414                      5.5e-11  -9.43534  -9.37565  -9.28646  | 

|  1 |  666.283  567.74   25  0.000  8.5e-14  -15.9071   -15.549  -15.0138* | 

|  2 |  706.903   81.24   25  0.000  5.8e-14  -16.2976   -15.641  -14.6599  | 

|  3 |  740.263  66.719   25  0.000  4.8e-14  -16.5066  -15.5515  -14.1245  | 

|  4 |  783.821  87.116*  25  0.000  3.1e-14* -16.9705*  -15.717* -13.8441  | 

+---------------------------------------------------------------------------+ 

 

Table 11. Choosing Lag for product 2. 

   Selection-order criteria 

   Sample:  2004m5 - 2010m12                    Number of obs      =        80 

  +---------------------------------------------------------------------------+ 

  |lag |    LL      LR      df    p      FPE       AIC      HQIC      SBIC    | 

  |----+----------------------------------------------------------------------| 

  |  0 |   377.99                      6.1e-11  -9.32475  -9.26506  -9.17587  | 

  |  1 |  668.115  580.25   25  0.000  8.1e-14  -15.9529  -15.5947  -15.0596* | 

  |  2 |  720.721  105.21   25  0.000  4.1e-14   -16.643  -15.9865  -15.0054  | 

  |  3 |  753.346  65.249   25  0.000  3.5e-14  -16.8336  -15.8786  -14.4516  | 

  |  4 |  799.581  92.471*  25  0.000  2.1e-14* -17.3645* -16.1111* -14.2381  | 

  +---------------------------------------------------------------------------+ 
 

 
         

Table 12. Choosing Lag for product 3.  

   Selection-order criteria 

   Sample:  2004m5 - 2010m12                    Number of obs      =        80 

  +---------------------------------------------------------------------------+ 

  |lag |    LL      LR      df    p      FPE       AIC      HQIC      SBIC    | 

  |----+----------------------------------------------------------------------| 

  |  0 |  618.471                      9.0e-15  -15.3118  -15.2402  -15.1331  | 

  |  1 |  965.771   694.6   36  0.000  3.8e-18  -23.0943  -22.5929  -21.8437* | 

  |  2 |  1014.43   97.32   36  0.000  2.8e-18  -23.4108  -22.4796  -21.0883  | 

  |  3 |  1068.03   107.2   36  0.000  1.9e-18  -23.8508  -22.4898  -20.4564  | 

  |  4 |  1136.93  137.81*  36  0.000  8.8e-19* -24.6734* -22.8827* -20.2071  | 

  +---------------------------------------------------------------------------+ 

Table 13. Choosing Lag for product 4.  

   Selection-order criteria 

   Sample:  2004m5 - 2010m12                    Number of obs      =        80 

  +---------------------------------------------------------------------------+ 

  |lag |    LL      LR      df    p      FPE       AIC      HQIC      SBIC    | 

  |----+----------------------------------------------------------------------| 

  |  0 |  500.206                      1.7e-13  -12.3552  -12.2835  -12.1765  | 

  |  1 |  936.256   872.1   36  0.000  7.9e-18  -22.3564   -21.855  -21.1058* | 
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  |  2 |  995.073  117.63   36  0.000  4.5e-18  -22.9268  -21.9957* -20.6043  | 

  |  3 |  1042.32  94.498   36  0.000  3.5e-18*  -23.208  -21.8471  -19.8137  | 

  |  4 |  1080.54  76.428*  36  0.000  3.6e-18  -23.2634* -21.4727  -18.7971  | 

  +---------------------------------------------------------------------------+ 

Trace and Maximum eigenvalue tests for Rank 

    rank    parms       LL       eigenvalue   trace stat  value 

Product 1 Trace     1      9       669.64902     0.39323     29.3533*   39.89 

 Max     1      9       669.64902     0.39323     20.4502    23.80 

Product 2 Trace     1      9       666.02261     0.36533     32.8582*   39.89 

 Max     1      9       666.02261     0.36533     19.2662    23.80 

Product 3 Trace     2      128     1110.8936     0.42712     37.6436*   39.89 

 Max     2      128     1110.8936     0.42712     20.3706    23.80 

Product 4 Trace     1      11      934.56362     0.63608     53.6770*   59.46 

 Max     2      20      950.25494     0.31484     16.1854    23.80 

       

 

Fitting the VECM 

Table 14. CI vector and Adjustment parameters for  Product 1 

Cointegrating equations 
 

------------------------------------------------------------------------------ 

        beta |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

_ce1         | 

price 1      |          1          .        .       .            .           . 

quantity 1   |   .0599754   .0172451     3.48   0.001     .0261756    .0937753 

stumpageAlog |  -.9616463   .1893601    -5.08   0.000    -1.332785   -.5905073 

fin_man_co~g |   .7753336   .4594765     1.69   0.092    -.1252238    1.675891 

     fin_bkt |   -.892871   .3866691    -2.31   0.021    -1.650728   -.1350136 

       _cons |    3.17827          .        .       .            .           . 

------------------------------------------------------------------------------ 

 Adjustment parameters 

 Equation           Parms    chi2     P>chi2 

------------------------------------------- 

D_price 1            1   .0921779   0.7614 

D_quantity 1               1   .3138968   0.5753 

D_fin_stumpagep_Alog      1   10.55633   0.0012 

D_fin_man_costs_sawing     1   2.658702   0.1030 

D_fin_bkt                  1   .0129483   0.9094 

------------------------------------------- 

------------------------------------------------------------------------------ 

       alpha |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

D_price 1    | 

        _ce1 | 

         L1. |  -.0471444   .1552804    -0.30   0.761    -.3514884    .2571996 

-------------+---------------------------------------------------------------- 

D_quantity 1 | 
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        _ce1 | 

         L1. |   1.030623   1.839528     0.56   0.575    -2.574785    4.636031 

-------------+---------------------------------------------------------------- 

D_stumpageAlog | 

        _ce1 | 

         L1. |   .1718687   .0528981     3.25   0.001     .0681903    .2755471 

-------------+---------------------------------------------------------------- 

D_fin_man_~g | 

        _ce1 | 

         L1. |  -.0616375   .0378016    -1.63   0.103    -.1357273    .0124523 

-------------+---------------------------------------------------------------- 

D_fin_bkt    | 

        _ce1 | 

         L1. |   .0092276   .0810925     0.11   0.909    -.1497108    .1681659 

------------------------------------------------------------------------------ 

Table 15. CI- Vector and Adjustment parameters for Product 2 

Cointegrating equations 

 
------------------------------------------------------------------------------ 

        beta |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

_ce1         | 

fin_price 2  |          1          .        .       .            .           . 

fin_quantity2|   .1481524   .1987342     0.75   0.456    -.2413595    .5376643 

stumpageBlog |  -5.584426    1.63444    -3.42   0.001    -8.787871   -2.380982 

fin_man_co~g |   13.77695   3.821131     3.61   0.000     6.287668    21.26623 

     fin_bkt |  -12.62461   3.342243    -3.78   0.000    -19.17529   -6.073939 

       _cons |   70.56577          .        .       .            .           . 

------------------------------------------------------------------------------ 

 Adjustment parameters 

 Equation                Parms    chi2     P>chi2 

------------------------------------------- 

D_fin_Bc_Product 2_p           1   1.869031   0.1716 

D_fin_Bc_Product 2_m3          1   .9207072   0.3373 

D_fin_stumpagep_Blog      1   15.87171   0.0001 

D_fin_man_costs_sawing     1   5.161405   0.0231 

D_fin_bkt                  1   .1954027   0.6585 

------------------------------------------- 

------------------------------------------------------------------------------ 

       alpha |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

D_fin_Bc_~p | 

        _ce1 | 

         L1. |   .0131798   .0096406     1.37   0.172    -.0057153     .032075 

-------------+---------------------------------------------------------------- 

D_fin_Bc~3  | 

        _ce1 | 

         L1. |   .1628075   .1696734     0.96   0.337    -.1697462    .4953612 

-------------+---------------------------------------------------------------- 

D_fin_stum~g | 

        _ce1 | 

         L1. |   .0204013   .0051209     3.98   0.000     .0103645     .030438 

-------------+---------------------------------------------------------------- 

D_fin_man_~g | 

        _ce1 | 

         L1. |  -.0073092   .0032172    -2.27   0.023    -.0136149   -.0010035 

-------------+---------------------------------------------------------------- 

D_fin_bkt    | 
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        _ce1 | 

         L1. |  -.0029117    .006587    -0.44   0.658     -.015822    .0099985 

------------------------------------------------------------------------------ 

Table 16. CI- Vector and Adjustment parameters for Product 3 

Cointegrating equations 

 
------------------------------------------------------------------------------ 

        beta |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

_ce1         | 

fin_Ab_p3    |          1          .        .       .            .           . 

fin_Ab_q3    |  (omitted) 

fin_~p_Alog  |   -.535058    .117555    -4.55   0.000    -.7654616   -.3046545 

fin_~Afiber  |  -.3609724   .2161605    -1.67   0.095    -.7846392    .0626944 

fin_man_co~g |  -1.180033   .3398398    -3.47   0.001    -1.846107    -.513959 

     fin_bkt |   .7173811   .3066497     2.34   0.019     .1163587    1.318403 

       _cons |  -2.789207          .        .       .            .           . 

-------------+---------------------------------------------------------------- 

_ce2         | 

fin_Ab_p3    |  (omitted) 

fin_Ab_q3    |          1          .        .       .            .           . 

fin_~p_Alog  |  -6.877328   1.197765    -5.74   0.000    -9.224904   -4.529751 

fin_~Afiber  |   9.163112   2.202454     4.16   0.000     4.846381    13.47984 

fin_man_co~g |  -2.231863   3.462619    -0.64   0.519    -9.018472    4.554746 

     fin_bkt |  -3.974351   3.124446    -1.27   0.203    -10.09815    2.149451 

       _cons |   43.26995          .        .       .            .           . 

------------------------------------------------------------------------------ 

 Adjustment parameters 

 Equation                 Parms    chi2     P>chi2 

------------------------------------------- 

D_fin_Ab_p3                2   9.629575   0.0081 

D_ fin_Ab_q3               2   3.978025   0.1368 

D_fin_stumpagep_Alog       2   4.702254   0.0953 

D_fin_stumpagep_Afiber     2   3.784687   0.1507 

D_fin_man_costs_sawing     2   31.74703   0.0000 

D_fin_bkt                  2   4.403364   0.1106 

------------------------------------------- 

------------------------------------------------------------------------------ 

       alpha |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

D_fin_Ab_~p | 

        _ce1 | 

         L1. |   .1319247   .1710388     0.77   0.441    -.2033052    .4671545 

             | 

        _ce2 | 

         L1. |   .0609136   .0221431     2.75   0.006      .017514    .1043133 

-------------+---------------------------------------------------------------- 

D_fin_Ab~3  | 

        _ce1 | 

         L1. |   1.613964   1.374313     1.17   0.240    -1.079641    4.307569 

             | 

        _ce2 | 

         L1. |  -.0736016   .1779219    -0.41   0.679    -.4223221    .2751189 

-------------+---------------------------------------------------------------- 

D_fin_stum~g | 

        _ce1 | 

         L1. |   .1930013   .0910851     2.12   0.034     .0144779    .3715248 

             | 
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        _ce2 | 

         L1. |   .0126632   .0117921     1.07   0.283    -.0104489    .0357753 

-------------+---------------------------------------------------------------- 

D_fin_stum~r | 

        _ce1 | 

         L1. |  -.0181838   .1125044    -0.16   0.872    -.2386884    .2023208 

             | 

        _ce2 | 

         L1. |  -.0225725   .0145651    -1.55   0.121    -.0511196    .0059745 

-------------+---------------------------------------------------------------- 

D_fin_man_~g | 

        _ce1 | 

         L1. |   .2436645   .0434854     5.60   0.000     .1584346    .3288943 

             | 

        _ce2 | 

         L1. |   .0186158   .0056297     3.31   0.001     .0075817    .0296498 

-------------+---------------------------------------------------------------- 

D_fin_bkt    | 

        _ce1 | 

         L1. |  -.2442562   .1166362    -2.09   0.036    -.4728591   -.0156534 

             | 

        _ce2 | 

         L1. |  -.0226402      .0151    -1.50   0.134    -.0522356    .0069553 

------------------------------------------------------------------------------ 

 

Table 17. CI- Vector and Adjustment parameters for Product 4 

Cointegrating equations 
 

------------------------------------------------------------------------------ 

        beta |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

_ce1         | 

fin_Bb_p4    |          1          .        .       .            .           . 

fin_Bb_q4    |   .2441327   .0717378     3.40   0.001     .1035292    .3847362 

fin_~p_Blog  |  -2.002433   .3088251    -6.48   0.000     -2.60772   -1.397147 

fin_~Bfiber  |   .4383245   .1532694     2.86   0.004      .137922     .738727 

fin_man_co~g |  -.3748467   .5031428    -0.75   0.456    -1.360988     .611295 

     fin_bkt |   1.713941   .4251489     4.03   0.000     .8806646    2.547218 

       _cons |  -14.60324          .        .       .            .           . 

------------------------------------------------------------------------------ 

 Adjustment parameters 

 Equation                      Parms    chi2     P>chi2 

------------------------------------------- 

D_ fin_Bb_p4                    1   .6282691   0.4280 

D_ fin_Bb_q4                    1    1.68324   0.1945 

D_fin_stumpagep_Blog            1   13.21967   0.0003 

D_fin_stumpagep_Bfiber          1   2.228365   0.1355 

D_fin_man_costs_sawing          1   15.44842   0.0001 

D_fin_bkt                       1   3.924896   0.0476 

------------------------------------------- 

------------------------------------------------------------------------------ 

       alpha |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

D_ fin_Bb_p4 | 

        _ce1 | 

         L1. |   .0956979    .120734     0.79   0.428    -.1409364    .3323323 
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-------------+---------------------------------------------------------------- 

D_ D_ fin_Bb_q4| 

        _ce1 | 

         L1. |    1.34779   1.038841     1.30   0.194    -.6883018    3.383882 

-------------+---------------------------------------------------------------- 

D_fin_stum~g | 

        _ce1 | 

         L1. |   .1622117   .0446141     3.64   0.000     .0747697    .2496537 

-------------+---------------------------------------------------------------- 

D_fin_stum~r | 

        _ce1 | 

         L1. |   .0822209   .0550794     1.49   0.135    -.0257327    .1901745 

-------------+---------------------------------------------------------------- 

D_fin_man_~g | 

        _ce1 | 

         L1. |   .1085463   .0276168     3.93   0.000     .0544184    .1626741 

-------------+---------------------------------------------------------------- 

D_fin_bkt    | 

        _ce1 | 

         L1. |  -.1216103   .0613842    -1.98   0.048    -.2419211   -.0012996 

------------------------------------------------------------------------------ 

Postestimation Tests 

   Lagrange-multiplier test 
   +---------------------------------------+ 

  | lag  |      chi2    df   Prob > chi2   | 
  |------+---------------------------------| 
  |   1  |   22.9814    25     0.57865   | 
  |   2  |   23.8540    25     0.52782   | 
  |   3  |   26.0044    25     0.40736   | 
  |   4  |   19.2298    25     0.78597   | 
  |   5  |   31.2592    25     0.18058   | 
  |   6  |   28.2749    25     0.29535   | 
  +----------------------------------------+ 
H0: no autocorrelation at lag order 

Figure 24. LM-test for  Product 1 

 

   Lagrange-multiplier test 
   +--------------------------------------+ 

  | lag  |      chi2    df   Prob > chi2 | 
  |------+-------------------------------| 
  |   1  |   30.7814    25     0.19636   | 
  |   2  |   18.4621    25     0.82215   | 
  |   3  |   33.7607    25     0.11312   | 
  |   4  |   29.1457    25     0.25787   | 
  +--------------------------------------+ 
H0: no autocorrelation at lag order 

Figure 25. LM-test for  Product 2 

   Lagrange-multiplier test 
   +----------------------------------------+ 

  | lag  |      chi2    df   Prob > chi2   | 
  |------+---------------------------------| 
  |   1  |   25.8905    36     0.89345   | 
  |   2  |   35.4389    36     0.49510   | 
  |   3  |   40.6485    36     0.27301   | 
  |   4  |   35.8937    36     0.47363   | 
  |   5  |   26.0178    36     0.88997   | 
  |   6  |   37.8865    36     0.38327   | 
  +----------------------------------------+ 
   H0: no autocorrelation at lag order 

Figure 26. LM-test for  Product 3 

   Lagrange-multiplier test 
  +----------------------------------------+ 
  | lag  |      chi2        df  Prob > chi2 | 
  |------+---------------------------------| 
  |   1  |   30.1302    36     0.74332   | 
  |   2  |   45.6442    36     0.13018   | 
  |   3  |   48.7414    36     0.07629   | 
  |   4  |   40.4553    36     0.28004   | 
  |   5  |   30.0970    36     0.74474   | 
  |   6  |   50.2230    36     0.05799   | 
  |   7  |   42.5231    36     0.21063   | 
  +----------------------------------------+ 
   H0: no autocorrelation at lag order 

Figure 27. LM-test for  Product 4 
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