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Abstract 

This thesis aims to provide contribution to further development of Value at Risk (VaR) 
models utilized in the risk measurement and management of financial instruments. More 
specifically, this study concentrates on VaR measurement of swaptions by employing 
Historical Simulation and its variations. Furthermore, the objective is to find out whether 
or not it is worth the added measurement system complexity to incorporate fluctuations in 
the observed shape of swaption volatility smile as a risk factor into VaR estimation 
process.    
 
A set of interest rate and swaption implied volatility data from the period between March 
8, 2011 and February 1, 2013 is used in this study to generate VaR estimates, the validity of 
which are evaluated using a variety of backtesting methods that compare the estimates 
with actual profit and loss figures. The VaR estimates are computed for swaption contracts 
including maturity-tenor -pairs of 1x2, 1x5, 5x2, 5x5, 10x2 and 10x5. Moreover, the 
considered contract strike rates in addition to at-the-money (ATM) level comprise the 
following:  +25 bps, +50 bps, +100 bps and +200 bps with respect to the ATM levels. The 
different main VaR models employed are Historical Simulation (HS), Filtered Historical 
Simulation (FHS) and Time-Weighted Historical Simulation (TW). These models are 
applied with modifications regarding the method used for incorporating different implied 
volatility fluctuations into the simulation. The VaR estimates are generated using a 
historical observation period of 250 trading days, which leaves 228 trading as the 
backtesting period. 
 
The backtesting results show partial support with mixed evidence for the validity of the 
considered VaR models. None of them is able to pass each of the backtests with all tested 
swaption contracts, but some models could be considered sufficiently accurate in terms of 
regulatory boundaries. Overall, TW models seem to yield best results, but the estimates 
suffer from clustering of VaR exceptions, which leads to rejection by Christoffersen’s 
(1998) test of conditional coverage. All of the considered models perform adequately well 
when tested with short positions, but the number of VaR breaches for long positions is in 
most cases clearly above the acceptable region. 
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Tiivistelmä 

Tutkimuksen tavoitteena on kehittää Value at Risk (VaR) -perusteista markkinariskien 
mittausta ja hallintaa tukevia malleja. Tutkimus kohdistuu erityisesti swap-optioiden 
markkinariskin mittaamiseen soveltuvien historialliseen simulaatioon perustuvien VaR -
mallien kehittämiseen. Tarkoituksena on lisäksi arvioida ns. at-the-money (ATM) -tasolta 
laskettujen historiallisten implisiittisten volatiliteettimuutosten riittävyyttä 
riskilaskennassa sellaisille optioille, joiden toteutushinta poikkeaa ATM -tasosta. Tällöin 
mallin oletuksena on, että implisiittisissä volatiliteeteissa havaittavissa oleva vinouma (nk. 
smile-efekti) pysyy muodoltaan vakiona. Tutkimuksen pitäisi siis vastata kysymykseen, 
voiko kyseistä oletusta pitää oikeellisena, vai olisiko mahdolliset muutokset smile-
efektissä syytä huomioida riskilaskennassa. 
 
Tutkimuksen aineisto koostuu pääasiassa koronvaihtosopimusten korkodatan sekä swap-
optioiden historiallisten implisiittisten volatiliteettien avulla lasketuista swap-optioiden 
päivittäisistä hintamuutoksista. Hintamuutosten aikasarjoja käytetään riskimallien 
validoinnissa eli ns. back-testauksessa. Tutkimus perustuu aikaväliltä 8.3.2011 – 1.2.2013 
poimittuun dataan. VaR -laskenta on toteutettu yhteensä kuudelle eri maturiteetti-tenori -
parille ja kullekin näistä viidelle eri toteutushinnalle. Maturiteetti-tenori -parit ovat 1x2, 
1x5, 5x2, 5x5, 10x2 ja 10x5, sekä toteutushinnat suhteessa ATM -tasoon ovat +0, +25 bps, 
+50 bps, +100 bps ja +200 bps. Riskilaskenta kyseisille sopimuksille toteutetaan erilaisilla 
historialliseen simulointiin perustuvilla VaR malleilla. Käsiteltävät mallit ovat 
painottamaton, volatiliteettipainotettu sekä aikapainotettu historiallinen simulointi. 
Malleja sovelletaan vaihtoehtoisilla metodeilla smile-efektin huomioimisen suhteen. 
 
Mallien validoinnin perusteella tutkimuksessa käsitellyt mallit eivät tuota kaikkien 
määrittelyiden mukaan hyväksyttäviä riskiarvioita. Yksikään malleista ei läpäise kaikkia 
testejä kaikilla sovelletuilla optiosopimuksilla. Sen sijaan osa malleista läpäisee kaikilla 
sopimuksilla sääntelyyn perustuvan testin, joten näiden käyttö riskilaskennassa olisi 
periaatteessa mahdollista säännösten puitteissa. Aikapainotettujen mallien tulokset ovat 
suurimmaksi osaksi hyväksyttäviä, mutta myös näiden arviot tuottavat tietyillä 
sopimuksilla liian ryhmittyneitä VaR-ylityksiä. Kaikki tutkittavat mallit tuottavat 
hyväksyttäviä arvioita myydyille optiopositiolle, mutta suurin osa malleista tuottaa 
selvästi liian paljon VaR-ylityksiä ostetuille optioille.  
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1 INTRODUCTION 

 

1.1 Background 

Risk management is an essential concern to any participant who operates in financial markets. 

The need for practical yet accurate risk management methods increases as both the external 

requirements arising from increased regulation as well as internal demand for more timely 

reports continue to create challenges to risk managers. Moreover, simultaneously increasing 

complexity of financial instruments and positions generates additional challenges to risk 

management in financial institutions. As a result, the combination of these factors set partially 

conflicting demands for risk management systems, and avoiding trade-offs is difficult. 

A case of such trade-off arises when balancing between the performance and practicality of a 

risk measurement system: whilst accounting for a higher number of risk factors in market risk 

computation enhances the accuracy of the estimates by default, it correspondingly adds to the 

complexity of the system. Increased complexity in turn leads to slower performance despite 

the constant increase in computational power. Moreover, further investments into the system 

are needed, and both of these consequences are undesired effects from the managerial 

viewpoint. 

Option contracts in general present a more specified example of the complexities associated 

with market risk measurement. Option value is determined by a function of several variables, 

which accordingly translates to several sources of risk. The risks are often quantified in terms 

of option price sensitivities with respect to changes in the different variables, the most 

important of which are usually considered to be the sensitivities to changes in the price of the 

underlying asset and the level of implied volatility. However, in addition to describing the 

market risk of a given instrument using differential calculus, a common metric that is used for 

both regulatory and internal reporting of portfolio risk is Value at Risk (VaR).  

VaR is designed to provide an aggregated estimate of a portfolios risk by combining the 

effects of different risk factors into a single figure. It represents the lower percentile of an 

assumed profit and loss distribution that is based on the movements of an appropriate set of 
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market risk factors over a given time horizon. Nevertheless, depending on the instruments in a 

portfolio, it is not always straightforward to determine the relevant risk factors to be used. A 

special case in point is swaption risk measurement. Obvious risk factors for swaptions include 

the underlying swap rates and the general level of implied volatilities, which are often referred 

to as delta and vega risks respectively. However, whilst the level of the implied volatility 

represents a first order source of risk, the volatility of the implied volatility presents a risk 

source of a second order. Although Malz (2001) introduces a general means for incorporating 

vega risk into VaR framework by presenting an example for FX options, the importance of 

the risk related to the volatility in implied volatilities for swaptions has so far received no 

attention in the literature. More specifically, Malz (2001) illustrates two methods that can be 

applied with Monte Carlo simulation. The first method takes into account only the general 

level of the implied volatilities whereas in the second method also the volatility of implied 

volatility is accounted for. The fundamental idea of these two methods is translated into 

Historical Simulation based VaR estimation in this study and then employed to provide 

insight whether or not it would be worth the extra efforts to include the so called smile risk 

into the swaption VaR framework. 

1.2 The research problem 

The purpose of this study is to first examine the suitability of Historical Simulation (HS), 

Filtered Historical Simulation (FHS) and time-weighted (TW) methods for swaption VaR 

estimation with different combinations of risk factors that are accounted for. The risk factors 

include the following: 

- interest rate curves: Euribor 6M for projection and EONIA for discounting 

- implied volatilities for swaptions   

The second and perhaps more interesting question to be answered is if the addition of risk 

factor depth through accounting for historical changes in out-of-the-money volatilities 

significantly improves the swaption VaR estimation accuracy or not compared to the base 

case of using merely changes in at-the-money volatilities. Particularly, the objective is to 

examine if the risk arising from conceivable changes in the shape of the volatility smile is 

significant enough to be included in risk measurement computations for swaptions. This 

second question embodies also practical importance, since despite the advances in IT and 
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computing power, the data management still requires substantial amount of time in many 

financial institutions. 

1.3 Motivation and contribution to the existing literature 

Despite the fact that different Value at Risk methods have been widely covered in literature, 

relatively few papers have been written about VaR application for interest rate instruments, 

and even fewer for interest rate options. However, the volume of interest rate products traded 

annually clearly surpasses for instance the volume of equity trading. In this light, it is rather 

surprising that bulk of the previous VaR articles focus on estimating equity and currency 

risks.  

Moreover, one line of earlier VaR literature focuses more on how to estimate changes in the 

risk factors, while another major line of work concentrates more on how to translate the 

estimated changes in risk factors to changes in the portfolio value. The former includes for 

instance comparisons of different volatility forecasting methods and distributional 

assumptions that can be integrated into VaR computation. As an example, ARCH family 

models are well covered. Examples of the former line of work are Eberlein et al. (1998), Billo 

and Pelizzon (2000), Giot and Laurent (2004) and Shao et al. (2009). In contrast, the 

alternative line of study pays more attention to relative performance of different VaR models, 

such as Monte Carlo simulation, Historical Simulation and so called “delta-gamma” method, 

as well as their practical implementation including different interpolation methods. Examples 

of these include Britten-Jones and Schaeffer (1999), Jamishidian and Zhu (1996), Barone-

Adesi et al. (2002).  

This study contributes to both of the aforementioned lines of exploration by providing an 

empirical investigation of VaR estimation for interest rate options through first introducing a 

set of alternative methods for incorporating volatility smile changes into swaption risk 

estimation and then evaluating the differences in VaR backtesting results depending on how 

the changes in risk factors are estimated. 
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1.4 Limitations of the study 

When reading this study, there are three key limitations that should be kept in mind. The first 

and most important is the fact that the number of backtesting days is quite limited, which 

means that the statistical power of the implemented backtests is restricted. Moreover, the 

testing period covers a time period during which the interest rates are at historically low levels 

and decline gradually throughout most of the observation period. While VaR is assumed to 

provide an estimation of the risk during so called “normal market conditions”, it is 

questionable whether interest rates very close to or even below zero can be considered 

“normal”.  

The second limitation is related to the coverage of different swaption positions. Although this 

study utilizes swaptions with six different maturity-tenor -pairs and five different strike levels, 

the moneyness levels are restricted to strike levels above at-the-money level and many 

possible maturity-tenor -pairs are left out of scope. As a result, the general applicability of the 

results for swaption positions not covered in this study is uncertain. 

The third limitation is associated with the implementation of the VaR estimation for a 

swaption position: the estimates are not computed for actual positions but for imaginary 

contracts opened and closed on a daily interval, which is a drastic simplification compared to 

real life positions. Furthermore, the position pricing accuracy is imperfect as the decline in 

time until maturity is ignored and also the calibration of the SABR model is not thoroughly 

optimized. However, since each swaption is held only for one day, the price effect stemming 

from a one day decline in time to maturity is miniscule as the minimum maturity used in this 

study is one year. Also, whereas the SABR calibration applied in this study might be 

insufficient for swaption trading purposes, it should still provide accurate enough values to be 

used in VaR backtesting as the same parameters are used in both VaR estimation and profit 

and loss computations.  

1.5 Main findings 

The main finding of this study is that while VaR models based on historical simulation are 

able to generate sufficiently accurate market risk estimates for most swaption contracts 

investigated in the empirical part of this paper, the accuracy depends on position attributes 
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and model specifications. As a result, this study is unable to present strong support for 

applicability of historical simulation based VaR estimation in swaption risk measurement. 

Even so, the results indicate that the models considered in this study are fundamentally sound 

but are swayed by the shortness of historical observation period.  

Moreover, the results do not provide evidence that would support the use of moneyness-

dependent implied volatility changes over the changes observed on at-the-money level in VaR 

estimation for out-of-the-money swaptions. Instead, the results suggest that the use of at-the-

money level changes in swaption implied volatilities is generally sufficient in VaR estimation 

for also out-of-the-money swaption positions. Furthermore, the results suggest that it is 

adequate to use implied volatility changes derived from the at-the-money level without 

considering the simultaneous change in interest rates on successive days and changes in actual 

moneyness resulting thereof.  

1.6 Structure of the study 

The rest of the paper is organized as follows. The second section combines the theoretical 

base on which the study is based on with literature review about the topic. Section 3 

introduces the hypotheses. Section 4 explains the data, VaR methods and VaR backtesting 

methods used. Section 5 presents the empirical results from VaR estimation. Section 6 

concludes the study and offers suggestions for further research. A list of frequently used 

abbreviations and model names introduced in this paper is presented in Appendix A.  

2 LITERATURE REVIEW AND THEORETICAL BACKGROUND 

This section is divided into three main parts that illustrate the cornerstones of the study. The 

first part covers VaR in risk management framework and the second introduces interest rate 

swaptions. The section concludes with a combination of the first two parts through 

introducing a selection of alternative methods for swaption VaR estimation that are compared 

in the empirical part of the study.  

2.1 Risk management and capital requirements 

The purpose of a risk management function in any enterprise is to manage the risks that are 

necessary for conducting the core business of the enterprise. Hence, the purpose is not to 
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minimize the risks as such, but to control the level of risks so that they are in line with the 

strategic objectives of the entity. While it can be argued, based on the corporate finance 

theory (Modigliani and Miller, 1958), that well-diversified investors do not gain any value 

from company-level hedging, it is still undertaken by most entities due to practical reasons 

such as minimizing taxes and costs of financial distress or due to managerial risk aversion 

(Smith and Stulz, 1985).   

While non-financial companies engage in risk management mainly in order to maximize their 

enterprise value, financial companies are also subject to regulatory requirements to do so. The 

main reason behind such rules and regulations are the adverse effects that banking crises may 

have on the economy as a whole. The regulatory requirements have been developed gradually, 

and the Basel Committee on Bank Supervision published The Accord in 1988 that was an 

agreement between bank regulators on how much a bank is required to hold capital against 

credit losses. In 1996 the Basel Committee on Bank Supervision published an amended to The 

Accord, called The Amendment, to include additional minimum capital reserves for covering 

market risks as well. Accordingly, The Amendment distinguished between a bank's trading 

book and its banking book so the market risk was defined as the risk arising from fluctuations 

in the market prices of trading positions (Basel Committee on Banking Supervision, 1996a) 

Furthermore, the 1996 Amendment included an Internal Models Approach (IMA) according 

to which a financial institution's capital requirements are based on the institution's internal 

risk measurement systems. In order to be allowed to use IMA as basis for capital requirement 

calculations, a bank is expected to fulfill certain qualitative as well as quantitative 

requirements. The qualitative requirements dictate that a bank should be able to demonstrate 

that it has a sound and sophisticated risk management system and an independent risk-control 

unit. Furthermore, the bank must also conduct regular stress test and external audits.  

The IMA is based on a bank's Value at Risk (VaR) figure computed using the following 

inputs: 

- a 99% confidence interval 

- an observation period of at least one year 
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- a horizon of 10 trading days that can be derived from daily VaR by scaling it 

up using by the square root of ten (Basel Committee on Banking Supervision, 

1996b) 

The market risk charge is then set at the average VaR over the last 60 trading days times a 

multiplier k. Naturally, this reliance on the bank's self-reported VaR to determine capital 

requirements leads to an adverse selection problem as it creates an incentive to report 

unrealistically low VaR figures in order to minimize its capital requirements. To address this 

issue, the banking regulators evaluate the quality of a bank's VaR measurements by observing 

the frequency of its VaR exceptions based on backtest reports, and adjust the multiplier k 

accordingly to penalize banks with inferior measurement accuracy (Basel Committee on 

Banking Supervision, 1996c). Therefore, the financial institutions have an incentive to report 

their VaR figures truthfully due to threat of increased future capital requirements.     

2.2 Introduction to Value at Risk  

VaR was first developed by major financial institutions in the late 1980s in order to measure 

the market risk of their trading portfolios caused by fluctuations in asset values (Linsmeier & 

Pearson, 1996). Different VaR models have gained a central role in the risk management of 

financial institutions after JP Morgan publicly introduced their internal VaR model in 1994. 

The initial model was based on the variance-covariance of past security returns and the 

method can be traced back to the early days of Markowitz's Modern Portfolio Theory.  

Taking risks is an inevitable part of conducting business, and firms face a variety of risks 

arising from their operations, financing activities and general economic, legal and regulatory 

environments. Moreover, risks related in finance can be further divided into liquidity risks, 

credit risks and market risks. Risk as a term is generally understood as "a threat of loss", 

whereas in financial theory it is defined as the dispersion of returns. As such, the measure of 

risk is the standard deviation of unexpected outcomes of financial assets that is also called 

volatility, or sigma (σ). Jorion (2007) separates the main sources of market risk broadly as 

interest rate risk, foreign exchange risk, equity price risk and commodity price risk.  Losses 

that a firm may face depend both on its exposure to these different sources of market risk and 

on the level of the underlying volatility of the financial assets that the firm is holding. VaR 

was originally designed for measuring the market risks originating from the fluctuations in 
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asset prices in a way that captures both a firm's exposure to the risks and the underlying 

volatility. 

The main purpose of a VaR model is to measure the size of possible future losses of a 

portfolio at a given probability. Stated in a more formal way, VaR is defined as the worst 

expected loss that a portfolio may suffer during a specified period under normal market 

conditions with a specified level of confidence. For instance, if an institution's daily VaR is 

stated as 12 m€ with a 99% level of confidence, the probability of facing a loss that exceeds 

12 m€ the next day should be 1%. Consequently, VaR provides a simple and easy to 

understand measure of a portfolio's downside risk. 

Following Jorion (2007), in mathematical terms, for a portfolio whose value at the end of a 

period is given by  

 𝑊 = 𝑊0(1 + 𝑅) (1) 

where 𝑊0 is the initial portfolio value and 𝑅 the portfolio's rate of return, there is a 

distribution of future portfolio value 𝑓(𝑊) and the VaR for the portfolio is defined as 

 1 − 𝑐 = ∫ 𝑓(𝑊)𝑑𝑤
𝑊∗

−∞

 (2) 

 

where 𝑐 is the specified confidence level and  𝑊 ∗ is the end of period portfolio value when 

the worst portfolio return with the given confidence level is realized. 

Consequently, assuming that asset returns are normally distributed (ie. (𝑊)~𝑁(0,1) ) VaR is 

calculated as follows:  

 𝑉𝑎𝑅𝑐 = 𝛼 ∗ 𝜎 ∗ 𝑊0 (3) 

 

where 𝛼 is the normal deviate associated with the confidence level (1 − 𝑐) , 𝜎 is the portfolio 

volatility and as before, 𝑊0 is the initial value of the portfolio. It is important to remember to 

use consistent time horizons in estimating the figures for return and its volatility with respect 
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to the VaR time period. For example, if a portfolio's value is €50 million and the annual 

volatility of its returns is 15%, a 1-day VaR at 95% confidence level would be as follows: 

 𝑉𝑎𝑅95% = −1.65 ∗ √
1

250
∗ 15% ∗ €50𝑚 = −€0.78𝑚 (4) 

The value of 𝛼 can be read off from standard normal distribution tables and the annual 

volatility is converted into daily volatility by 𝜎𝑇 = 𝜎√𝑇, where 𝑇 is time horizon expressed in 

years. 

As already stated above, VaR is a fairly simple and intuitive concept in theory, and that is one 

of the main reasons for its popularity among financial practitioners. However, its 

implementation in practice is hardly a straightforward process - at least not for portfolios that 

contain a large number and different kinds of securities - and measuring VaR is actually a 

demanding statistical problem. Following Dowd (2002), the different models used for 

estimating VaR can be divided into groups based on their approach to risk exposure and on 

how they define the distribution of risk factors. With respect to risk exposure, the models can 

be further divided into two groups: local-valuation methods and full-valuation methods. In 

local-valuation methods the risk is modeled using local derivatives to infer price movements, 

whereas in full-valuation methods the portfolio is fully repriced over a variety of scenarios. 

Local-valuation methods include delta- and delta-gamma-approximation methods. In the 

former only the first derivative is used and in the latter also the second order derivative is 

taken into account. Furthermore, different models for risk factors can be divided into 

parametric and nonparametric methods (Jorion, 2007). It should also be pointed out that the 

different methods yield somewhat differing results. Further, using same model gives naturally 

differing measures depending on the practical implementation of the model. The differences 

between the models arise from their approach to estimating the changes in value of the 

portfolio. Nevertheless, what the models have in common is that they all try to account for the 

empirical findings about financial markets that were first documented already a half a century 

ago by Mandelbrot (1963) and Fama (1965). These can broadly be summarized as follows:  

- Financial return distributions are leptokurtic (ie. the returns have fatter tails than in the 

normal distribution) 
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- Equity returns are typically negatively skewed (ie. the left side of the distribution is 

longer than the right side) 

- Volatility is typically clustered in time so that large changes in asset values are 

followed by large changes and vice versa.  

An overview of the different VaR models is presented in the subsequent chapters of this 

section and the models employed in this study are covered more comprehensively in Section 

4. 

2.3 Parametric methods 

As the name suggests, parametric models are based on parameterization of the behavior of 

financial instruments’ price changes.  Put more explicitly, these models require making an 

assumption about the statistical distribution of asset returns from which the data is drawn. 

Parametric approach can be perceived as fitting curve across the data and then reading off the 

VaR measure from that fitted curve. This is also the primary advantage of parametric models: 

computing requires relatively little information and so the practical implementation is less 

burdensome than with the other models. Furthermore, since parametric VaR figure is simply a 

multiple of the standard deviation of the distribution multiplied by an adjustment factor that 

depends on the confidence level and holding period length, normality enables simple 

rescaling of VaR figures for differing confidence levels and holding periods through changing 

the adjustment factor accordingly (Dowd, 1998). However, the problem with parametric 

models is that the chosen statistical distribution may not reflect accurately the actual 

distribution, which leads to either under- or overestimation of the actual risk. This is 

especially problematic for portfolios that contain options or other instruments whose pay-off 

is highly asymmetric as this adds to the skewness and the kurtosis of the distributions which 

again leads to more extreme price variations and, consequently, to increased probability of 

more extreme losses (Jorion, 2007).  
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2.3.1 Variance-covariance method 

Variance-covariance approach1 is one of the basic VaR computing methodologies in the class 

of parametric models. The key step in variance-covariance VaR method is the computation of 

the standard deviation of changes in portfolio value. The portfolio VaR is obtained 

multiplying the standard deviation by the normal deviate and risk factor weights as shown in 

the previous chapter. However, even if the basic idea is very simple, the practical 

implementation can become challenging as the standard deviation of portfolio depends both 

on the standard deviations of the portfolio's individual instruments and on the correlation 

between them. As a result, the total number of required parameters grows rapidly as the 

number of instruments increases (Linsmeier & Pearson, 1996).  

2.4 Non-parametric methods 

Even though parametric methods are attractive because of their theoretical simplicity, Barone-

Adesi and Giannopoulos (2000) point out that the parametric methods have materially 

underestimated the size and frequency of substantial losses due to the fact that normal 

distribution fails to accurately describe the actual distribution of portfolio returns.  Unlike the 

parametric models discussed above, non-parametric methods do not make any distributional 

assumption about portfolio returns. 

2.4.1 Historical Simulation 

Historical VaR is one of the most used and perhaps the easiest to apply within the class of 

non-parametric methods.  It is computed using past returns of the portfolio’s present assets so 

that one obtains a distribution of price changes that would have realized had the current 

portfolio been held throughout the observation period. The most important advantage of this 

model is that it accounts for also the fat tails and skewness observed in return distributions, as 

Angelidis and Benos (2006) points out. Moreover, it can be applied for basically all types of 

financial instruments (Jorion, 2007).  

                                                 
1 Also frequently referred to as the delta-normal method. 
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Nevertheless, even though historical VaR does not make explicit distributional assumptions, it 

still contains an implicit assumption that the distribution of returns stays unchanged within the 

historical estimation time window (Engle and Manganelli, 2001). This assumption leads to a 

few problems. First, if returns within the estimation window are assumed to have the same 

distribution, it means that all the returns of different time series have to be independent and 

identically distributed. The assumption of independency of returns implies that the magnitude 

of price movement in one period of time would not influence the price fluctuations that occur 

during subsequent time periods. Further, if the returns were identically distributed, or 

stationary, through time, it would imply that that the probability of a given loss was the same 

for each day. However, as already pointed out, this is empirically not true as volatility has a 

tendency to cluster so that large price fluctuations are followed by further large changes. In 

practice this entails that during periods with higher volatility one would also expect losses that 

exceed the usual level. Consequently, using a constant volatility model such as basic 

historical simulation could be misleading as it underestimates risk during highly volatile 

market conditions, which is documented by van den Gloorbergh and Vlaar (1999) and Vlaar 

(2000). Second, choosing a proper length for the time window is not a trivial task: if it’s too 

short, it is not possible to obtain statistically significant figures, and if it’s too long, the market 

fundamentals may have changed since the beginning of the period and observations from the 

past – with either too low or too high volatility – may dominate the VaR estimation yielding 

either excessively low or high VaR figures (Dowd, 2002). For instance, Hendricks (1995) 

finds that longer historical sample periods result in less variability in VaR estimates, but that 

they also result in absolutely larger VaR estimates.  

2.4.2 Time-weighted Historical Simulation 

One solution to the jumping volatility arising from historical observations being dropped out 

of the estimation window is to assign heavier weights to more recent observations as 

suggested by Boudoukh et al. (1998). This way, VaR estimates are more responsive to present 

market conditions. Moreover, as the impact of distant observations declines in time, there is 

no need to drop old data out of the estimation window, which tackles the problem of jumps 

resulting from old observations falling outside the estimation period (Dowd, 2002). A more 

detailed description of the time-weighted historical simulation is presented in 4.2.3. 
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2.4.3 Volatility Adjustment and Filtered Historical Simulation 

Nonetheless, time weighing suffers from a few shortcomings as well. For instance, Hull and 

White (1998b) show that a sequence of large gains or losses can create substantial distortions 

in the risk profile of the sample. Instead of weighing returns based on when they occurred, 

Barone-Adesi et al. (1998) and Barone-Adesi et al. (1999) suggest assigning different weights 

to observations based on their volatility, which is known as filtered historical simulation 

(FHS). Hence, the idea behind FHS is to adopt the historical simulation method to the 

prevailing level of volatility observed in the market. In this method, actual returns within the 

historical dataset are replaced with returns adjusted by forecast of volatility. As a result from 

incorporating the information from volatility forecast, the model generates estimates that are 

sensitive to current volatility and better captures the nature of current market conditions 

(Dowd, 2002). Accordingly, one of the most important advantages of FHS over basic HS is 

that the volatility filtering process increases the range of possible risk factor outcomes beyond 

the unadjusted historical record through change of scale. Thus, FHS effectively supplements 

the tails of the return distribution through generating extreme events that are not present in the 

historical record. This shortens the length of the historical period required for collecting return 

observations used in the simulation process compared to HS method. Furthermore, the 

capability of FHS to better adjust to the prevailing market conditions is also supported by 

Angelidis and Benos (2006) who propose that the FHS outperforms parametric and other non-

parametric methods at higher confidence levels. The practical implementation of FHS in this 

study is further clarified in 4.2.2 

2.4.4 Monte Carlo simulation 

Monte Carlo (MC) simulation is a highly flexible method for computing VaR as it is capable 

of simultaneously accounting for various risk sources and it can deal with time variation in 

volatility and nonlinear price exposure arising from complex pricing models (Jorion, 2007). 

Consequently, as pointed out by Ammann and Reich (2001), combination of MC simulation 

and full valuation yields most accurate VaR results for portfolios with substantial option 

positions.  

Implementation of the MC method begins with identifying the important market factors and 

assigning suitable stochastic processes for these factors. Then a future distribution of portfolio 
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returns is created through simulation of price paths for the instruments, and the different 

confidence level VaR figures are drawn from this distribution (Wiener, 1999). 

Even though MC model uses parametric inputs, such as volatility in Geometric Brownian 

Motion that is used for describing the dynamics of stochastic price process, the future 

distribution cannot be described by an analytical function and thus the model can be 

interpreted as a non-parametric method. Hence, for instance Dowd (2002) categorizes MC 

simulation as a "semi-parametric" method2.  

Despite its virtues, MC simulation has also attracted criticism. For example, Barone-Adesi et 

al. (2002) point out that the model's multivariate properties of the risk factors are based on 

historical correlations and the correlations tend to increase rapidly during crises, which may 

lead to underestimation of risk. Moreover, simulation methods require substantial computing 

capacity and are hence time consuming. This problem, however, is gradually mitigated as the 

computing capacity as well as the efficiency of simulation methods is evolving constantly. 

2.5 VaR criticism  

Despite all the positive attributes of VaR measure that explain its popularity, the model also 

has its weaknesses. For the sake of providing a comprehensive perspective on VaR, also some 

of the model’s shortcomings are discussed in the following chapter.  

Artzner et al. (1998) have proposed a list of desirable properties that measures of risk should 

have in order to be considered as “coherent” risk measures. These include 

- Monotonicity: if a portfolio A yields in every possible situation better returns than 

portfolio B, then portfolio B should be assigned with a higher risk 

- Sub-additivity: the combined risk of two portfolios cannot be higher than the sum of 

the separate risks 

- Positive homogeneity: if the size of the portfolio is doubled, the risk should double as 

well 

- Relevance: the risk of holding no assets is zero 

                                                 
2 Dowd also classifies weighted historical simulation methods under the term semi-parametric methods, as for 

instance, GARCH model that is utilized in the filtered historical method, is parametric. 
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It is a known fact that VaR fails to meet the requirement of sub-additivity, which means that 

using VaR might discourage diversification. Moreover, it could possibly lead to regulatory 

arbitrage in the sense that if the capital requirements of an institution depend on its VaR 

figure, by splitting its assets into separate subsidiaries a company would be able to appear less 

risky than it actually is. 

Furthermore, while the conceptual simplicity is perhaps the main reason why VaR has 

become such a widespread method for risk measurement, it is also one of its fundamental 

shortcomings. As all available information is condensed into a single easy-to-digest figure it 

is evident that some relevant information will be lost. For instance, two positions with 

different risk characteristics beyond the VaR confidence level can still have the same VaR 

figure. This is due to the property of VaR that it provides no information regarding the losses 

that exceed the VaR estimate, and why it is often said that VaR fails to account for the “tail 

risk”. Consequently, VaR figures solely do not provide sufficient estimate of the risks that an 

entity faces. A point in case is the $2 billion mark-to-market loss suffered by JPMorgan 

Chase’s Chief Investment Office in May 2012, while its daily average VaR in the first quarter 

of 2012 was reported to be $67 million. Indeed, this incident has fuelled the debate about the 

reliability of VaR as a risk measure especially when it was JPMorgan that originally 

developed the measurement concept.  

However, it is possible to partially overcome this shortcoming by using a so called 

“conditional VaR” method that measures the expected loss given that the VaR is exceeded. 

This method is also known as “expected shortfall” (ES) or “expected tail loss” (ETL) and it is 

gradually gaining more popularity. It should be pointed out that while ES is based on value at 

risk method, it is a coherent measure of risk while VaR is not. Also, it is expected that ES will 

take VaR’s position as a regulatory measure in the future as the Basel Committee on Banking 

Suprevision has recently stated that under the prospective Basel III the market risk capital 

requirements would be based on ES rather than VaR measurements. However, even though 

ES is a coherent risk measure and hence theoretically better than VaR, it still has its 

limitations. For instance, the challenges in its implementation exceed those of VaR, and if the 

calculation method used in ES is the same as in VaR, i.e. based on boot-strapping data from 

the past 250 days, it does not make a significant difference which method is used.  
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One further point of general VaR criticism has been the model’s intrinsic feature of merely 

considering the loss at the end of the estimation period, which, as for example Boudoukh et 

al. (2004) and Kritzman and Rich (2002) point out, becomes a problem with longer estimation 

horizons. For instance, certain investors, such as insurance companies and money managers, 

are interested not only in their long-horizon VaR but also in what happens in the interim: 

deterioration in asset prices might force them to unwind their positions already before the 

VaR horizon and hence the actual losses could become substantially worse than predicted by 

VaR. Kritzman and Rich (2002) propose using “continuous VaR” in which the normal end-of-

horizon probability of loss is transformed into intra-horizon path-dependent loss. 

Furthermore, all VaR methods are at least partially dependent on historical data, and as is well 

known, history does not predict future very well. All in all, regardless of how VaR is 

computed, it is far from being a perfect tool for risk measurement. As a result, other risk 

management techniques are required in addition to VaR estimates. These include stress tests 

and scenario analysis together with various sensitivity analyses with respect to different risk 

factors. 

2.6 VaR backtesting  

The usefulness of a VaR model for generating risk estimates is heavily dependent on the 

model's ability to accurately predict future losses. The precision of a VaR model can and 

should be backtested by comparing actual losses to corresponding VaR estimates. However, 

there exist a few different viewpoints that can be taken into account when evaluating 

goodness of a VaR model. When determining whether the model in question is accurate or 

not, some kind of a definition for accuracy is needed. For instance, accuracy could refer to the 

ability of the model to measure a particular percentile of the profit and loss distribution, or it 

could mean the model’s capability of predicting the size and frequency of portfolio losses. For 

that reason there is no one single test that provides a correct answer. The purpose of this 

chapter is to provide a brief overall view over commonly used backtesting methods, while a 

more detailed description of the statistical framework of backtesting and the specific backtests 

applied in this study is in chapter 4.4. 

As Christoffersen (1998) points out, the evaluation of a VaR model’s accuracy can be reduced 

into studying the unconditional and conditional coverage properties of the exception sequence 
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generated by the model. Hence, most backtesting methods can be divided into tests of 

unconditional coverage and into tests of conditional coverage. 

Tests of unconditional coverage measure the frequency of VaR exceptions over a specified 

time period. In short, these tests compare the actual failure rate with the model's theoretical 

failure rate. For instance, when using a 95% confidence level for daily VaR computing, one 

should expect to face losses greater than the model has predicted five times during 100 

trading days on average. Hence, even the estimates generated by a sound VaR model are 

breached occasionally but it is the number of those exceptions, or violations, that counts. 

Consequently, the most obvious determinant of a model's validity is the number of occasions 

when the actual loss for the observed period exceeds the model's respective forecast. 

While tests of unconditional coverage mainly focus on the number of VaR violations, the tests 

of conditional coverage account also for the time variation of the occurred exceptions. The 

reason behind this is that a sound VaR model is expected to generate an acceptable number of 

exceptions that are also evenly distributed in time. If a model generates an acceptable number 

of exceptions during a given backtesting period, the model could still be deemed deficient in 

case the exceptions suffer from clustering, which could be a sign of the model’s poor ability  

to capture changes in market volatility and correlations. 

In addition to conditional and unconditional tests, it is also possible to utilize the information 

provided by the size of the exception through applying a loss function that penalizes a model 

that has provided a worse estimate of the loss given that the VaR figure is estimated. 

Consequently, an expected shortfall figure is needed to use loss function based evaluation, 

and hence, the test provides indirect insight about the quality of a VaR model through 

studying the tail of the distribution used in the given model rather than the hit sequence the 

model generates. 

2.6.1 Backtesting in the regulatory framework 

Since the market risks of banks' trading books are subject to minimum regulatory capital 

requirements, supervisors are also interested in the risk figures reported by the banks. Under 

certain conditions, it is possible that the banks' internal risk measurement models are accepted 

as a tool for measuring the capital requirements. Naturally, the soundness of the internal 
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model suggested by a given institution has to be validated by supervisors before it can be 

applied as the basis for capital requirements. For this purpose, the Basel Committee has 

chosen a fairly simple test of unconditional coverage based only on the number of exceptions 

during the last 250 trading days as the official method for validating banks' internal VaR 

models. 

The regulatory backtesting procedure is aligned with the capital requirement ratio calculation 

so that it is also implemented using 99% VaR confidence level. However, the Committee has 

allowed the use of 1-day estimation horizon in backtesting although the capital requirements 

are based on 10-day VaR horizon (Basel Committee on Banking Supervision, 1996b). Also, 

the result of the backtest has an effect on the Internal Models Approach based capital charge c 

that is calculated according to the following formula: 

 𝑐 = max{𝑉𝑎𝑅𝑡−1; 𝑚𝑐 ∗ 𝑉𝑎𝑅𝑎𝑣𝑔} + 𝑚𝑎𝑥{𝑠𝑉𝑎𝑅𝑡−1; 𝑚𝑠 ∗ 𝑠𝑉𝑎𝑅𝑎𝑣𝑔} (5) 

where 𝑉𝑎𝑅𝑡−1 is a bank’s previous day’s VaR figure measured according to the parameters 

specified in above, 𝑉𝑎𝑅𝑎𝑣𝑔 is the average of daily VaR figures on each of the preceding 60 

trading days, and 𝑠𝑉𝑎𝑅𝑡−1 and 𝑠𝑉𝑎𝑅𝑎𝑣𝑔 are stressed VaR measures for the previous day and 

average of the previous 60 business days respectively. The stressed VaR metric is similar to 

the normal VaR, but it is simulated with using risk factor changes that occurred during a 

continuous 12-month period of significant financial stress relevant to the institution’s 

portfolio. The multiplication factors 𝑚𝑐 and 𝑚𝑠 have a minimum value of 3 to which a “plus” 

factor is added. The plus values range from 0 to 1 and they are set by supervisory authorities 

based on their assessment of the quality of the bank’s risk management. Moreover, the values 

of the plus factors are linked to the backtesting results, which creates an incentive for banks to 

develop the quality of their models (Basel Committee on Banking Supervision, 2011).  

The regulatory backtesting results are described by a three-zone approach that is also known 

as the “traffic-light” approach as the test results are classified into green, yellow and red zones 

based on the number of VaR exceptions that the model generates during a backtesting period 

of one year. If the backtesting results fall into the green zone, the results are not deemed to 

suggest that there were problems with the quality or accuracy of the given model. The yellow 
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zone indicates that the model’s quality or accuracy could be questioned but no definitive 

conclusions can be directly drawn from the results alone. For instance, a model’s results could 

gain a yellow classification based on bad luck even if the model was “fundamentally sound”. 

Hence, while the yellow zone generally results into heightened capital charge ratio, the 

Committee points out that the supervisor may consider revising the requirement based on the 

bank’s further demonstrations about the model’s quality. Finally, a backtesting result that falls 

into the red zone can be interpreted as sign that there are severe problems with the model: as 

Table 1 shows, the probability of an accurate model producing ten or more exceptions at 99% 

confidence level is microscopic. Consequently, red zone classification should lead to an 

almost automatic rejection of the model (Basel Committee on Banking Supervision, 2006).  
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Table 1: 

Three zone approach (Basel Committee on Banking Supervision) 

The backtesting result categories with 250 observations and 99% VaR confidence level. The cumulative probability in the 

right shows the probability of obtaining a given number or fewer exceptions when the model is accurate. 

 Zone  
Number of 

exceptions 
Increase in scaling factor Cumulative probability 

Green 

0 0.00 8.11 % 

1 0.00 28.58 % 

2 0.00 54.32 % 

3 0.00 75.81 % 

4 0.00 89.22 % 

Yellow 

5 0.40 95.88 % 

6 0.50 98.63 % 

7 0.65 99.60 % 

8 0.75 99.89 % 

9 0.85 99.97 % 

Red 10 ≤ 1.00 99.99 % 

 

2.7 Interest Rate Swaps and Swaptions 

This chapter lays down the foundations on which another central part of the thesis is built on 

through first introducing interest rate basics and then continuing with plain vanilla interest 

rate swaps and swaptions. The interest rate swaps and swaptions are covered with a practical 

viewpoint together with a short introduction on how they are treated in reality. The valuation 

of interest rate swaps and swaptions is covered subsequently. 

2.7.1 Interest rates and interest rate swap essentials 

Plain vanilla interest rate swaps (IRS) is one of the most actively traded interest rate 

instruments and thus also one of the most commonly used financial instruments in general. 

An interest rate swap is a contractual agreement between two parties to exchange fixed 

interest rate payments for floating rate payments on a specified notional during a defined time 

interval. Consequently, an IRS consists of two components: a floating leg and a fixed leg. 

Also, each party’s position in the swap contract is named relative to the fixed leg so that the 

party paying the fixed rate has entered into a payer swap and the party that pays the floating 
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rate had entered into a receiver swap. In addition, terms buyer and seller are also used. The 

swap buyer buys the floating leg for a fixed price and is thus the fixed leg payer. 

The floating leg payments are tied to a reference rate, usually to an Ibor (InterBank Offered 

Rate) rate. There are a few different Ibor rates that are fixed by different entities and the 

fixing entity is differentiated by the prefix. For instance, Libor refers to London InterBank 

Offered rate that is fixed by the British Banker’s Association and Euribor fixings are 

determined by the European Banking Federation.  

Ibor rates are quoted using the money market convention, which means that the interest paid 

is calculated as δ L N where δ is the interest rate accrual period year fraction, or coverage, L is 

the reference Ibor rate and N refers to the loan notional. Moreover, the loan coverage depends 

on the market’s day count convention that determines the exact length of the accrual period. 

Market conventions, and hence also day count conventions are slightly different in different 

currencies. The market conventions for plain vanilla interest rates in some of the main 

currencies are provided in the Table 1. The day count conventions in the table are as follows: 

- Actual/360 (ACT/360). With this convention the length of a year 

is 360 days. Hence, the year fraction between two dates is the 

actual number of days between them divided by 360:  

𝐷2 − 𝐷1

360
. 

- Actual/365 (ACT/365). The same as ACT/360 but a year is 

assumed 365 days long. 

- 30/360. In this convention each month is assumed to be 30 days 

long leading to a 360-day long year. Thus, the year fraction 

between dates 𝑑1 and 𝑑2 is computed in the following way: 

 

max(30 − 𝑑1, 0) + min(𝑑2, 30) + 360 ∗ (𝑦2 − 𝑦1) + 30 ∗ (𝑚2 − 𝑚1 − 1)

360
 

where  𝑚𝑖 refers to month and 𝑦𝑖 to year of 𝑑𝑖. 

 Furthermore, there exist different adjustments to the day count conventions regarding the 

treatment of holidays.  
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The floating leg interest rate is typically reset and paid semi-annually or four times a year 

depending on the currency in which the contract is denominated. The fixed rate (or swap rate) 

is usually paid on an annual or semi-annual basis and it is set to a level that initially makes the 

value of the swap worth zero so that the present value of the fixed leg equals the present value 

of the floating leg. One should note, however, that although the present value (PV) of the 

swap is zero it does not mean that it did not have any value: as soon as the interest rates 

change, one of the legs becomes more valuable than the other, which leads to either mark-to-

market gain or loss. Moreover, the floating rate is typically set in advance (i.e. a few days 

before each accrual period) and paid in arrears (at the end of each accrual period). The 

number of days between the interest rate swap trade date and the first fixing period start date 

is called the spot lag. Index spot lag also determines the lag between interest rate reset date 

and accrual period starting date for the floating leg rates. The length of spot lag also depends 

on the market convention.  

Table 2:  

Conventions for plain vanilla IRS contracts 

  

Fixed leg 

 

Floating leg 

Currency Spot Lag Period Convention Reference Period Convention 

USD 2 6M 30/360 Libor 3M ACT/360 

EUR: 1Y 2 1Y 30/360 Euribor 3M ACT/360 

EUR: >1Y 2 1Y 30/360 Euribor 6M ACT/360 

GBP: 1Y 0 1Y ACT/365 Libor 3M ACT/365 

GBP: >1Y 0 6M ACT/365 Libor 6M ACT/365 

JPY 2 6M ACT/365 Tibor 3M ACT/365 

JPY 2 6M ACT/365 Libor 6M ACT/360 

CHF: 1Y 2 1Y 30/360 Libor 3M ACT/360 

CHF: >1Y 2 1Y 30/360 Libor 6M ACT/360 

 

In addition to plain vanilla IRS contracts, there are also other types of swaps as well. For 

instance, a swap whose fixing date for floating rate payment is the index spot lag before the 

period end date is called an in-arrears swap. Additionally, the fixed rate does not have to be 

the same for each coupon: step-up swaps have an increasing rate and step-down decreasing 

fixed rates. Also the notional of the swap can vary between coupons. In case the notional is 

decreasing through time, the swap is called amortized swap, whereas a swap with increasing 
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notional is referred to as an accruing swap. Furthermore, if the notional first increases and 

then decreases towards the end of the contract, it is called a roller coaster.   

Even though swap principal is not usually exchanged at the end of the swap, for the sake of 

intuition it often helps to think that there is a mutual exchange of one euro at the end of the 

swap. As Longstaff et al. (2000) point out, from this perspective, the cash flows from the 

fixed leg equal to cash flows from a bond whose coupon rate is the swap rate, whereas the 

floating leg cash flows equal to those of a floating rate note. Accordingly, a swap can be 

thought as exchanging a fixed rate coupon to a floating rate note. Also, one can think of a 

swap to be a series of consecutive forward rate agreements over the swap period.  

2.7.2 Swaptions 

As the name suggests, a swaption, is an option that grants its owner the right but not the 

obligation to enter into an underlying swap at a specified future time, that is at the swaption 

maturity. Normally the swaption maturity matches with the first reset date of the underlying 

swap. The length of the underlying swap contract is called the tenor of the swaption. While it 

is possible to trade options on a variety of swaps, within the context of this study swaptions 

refer to options on interest rate swaps. Swaption contracts are divided into two types subject 

to the direction of the fixed leg of the contract: payer swaptions and receiver swaptions. A 

payer swaption grants the owner of the option a right to enter into a swap where she pays the 

fixed leg and receives the floating leg. Respectively, a receiver option gives its owner a right 

to enter into a swap where she receives the fixed leg and pays the floating leg. Analogous to 

other option positions, the party who has bought an option is said to have a long position, 

while the seller has a short position. For instance, a 4% 5x10 (“5 into 10”) receiver swaption 

gives the holder the right to receive 4% on a 10 year swap starting in 5 years. Accordingly, a 

payer swaption can be perceived as a call on paying fixed swap and a receiver swaption as a 

call on receiving fixed swap. Swaption thus allows its holder to benefit from favorable 

interest rate development while providing protection against unfavorable movements. 

Moreover, swaptions, like other options, can either be European, American or Bermudan with 

respect to their exercise style. Swaptions can also be grouped into physically settled and cash-

settled contracts. In the former, the contract parties enter into the underlying swap if the 

swaption is in the money from the buyer’s viewpoint at the maturity, while in the latter, 

merely the present value of the underlying swap is exchanged at the maturity if it is positive 
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for the buyer. In the European market, the most actively traded swaptions are cash-settled 

(Mercurio, 2008). 

As swaps and swaptions resemble more contractual obligations than securities, a substantial 

legal infrastructure is required for functional markets. Hence, primary and secondary markets 

for swaps and swaptions are made by a network of swap dealers and most of them are 

members of the International Swaps and Derivatives Association (ISDA). ISDA is an 

independent organization that has developed standards and contractual terms for swap 

markets. These standards dictate, for instance, what happens in the event of default by either 

side. Market for swaptions has grown together with interest rate swap markets: due to the 

enormous growth and size of the swap market – approximately $300 trillion as of April 20, 

2012 according to the Interest Rate Trade Repository Report published by ISDA – swaptions 

have become one of the most important fixed income derivative instruments together with 

interest rate caps and floors. Typical participants in the swaption market are banks and 

financial institutions, corporations and funds that wish either to hedge their interest rate 

exposure or to speculate on interest rate fluctuations. 

As a summary, in order to specify a swaption contract, the following properties have to be 

indicated:  

- the maturity of the option  

- the strike rate (or swap rate, i.e. the fixed rate on the underlying 

swap) 

- the tenor of the underlying swap  

- notional amount 

- option exercise style (European, American or Bermudan) 

- settlement style (physical or cash) 

2.7.3  Swap pricing 

After introducing the basics of swap and swaption contracts, it is possible to advance to their 

valuation. Furthermore, in order to value a swaption contract one must first determine an 

appropriate forward rate for the underlying swap contract to be used as the strike rate for the 

swaption, which again is based on basic IRS valuation explained in this chapter. 
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Traditionally swap rates were valued using a single forward curve for both the projection of 

the future interest rates and for discounting the interest payments. However, after the credit 

crisis this is not a valid method anymore as the swap curves with longer tenors have now an 

implicit risk element built into them arising from the incorporation of counterparty credit risk, 

whereas the discount factor in derivatives pricing is based on risk free rates. Consequently, it 

has become a market standard to apply so called dual curve method in pricing interest rate 

instruments where the reference rate for floating leg payments is still projected from Ibor 

curve and another interest rate curve is used for determining appropriate discount factors. 

Typically, overnight swap-rates, such as EONIA (Euro OverNight Index Average), are used 

for discounting (Bianchetti, 2009). The use of overnight rates as risk-free rate can be justified 

by the fact that typically interbank operations are collateralized and the collateral is assumed 

to be revalued daily. Hence, overnight rates can be deemed as close to risk-free as possible, 

whereas the forward rates derived from interbank reference rates cannot. Indeed, Pallavicini 

and Tarenghi (2010) show that market quotes of interest rate swaps are coherent with the use 

of EONIA-based discounting curve. However, the authors also find that swaptions, on the 

other hand, were still consistent with the traditional “text-book” type of pricing in which the 

same curve is used for both projection and discounting.  

Since a swap can be characterized as a portfolio of forward rate agreements, it is possible to 

value one with using the no-arbitrage principle by assuming that market-observable forward 

interest rates are realized (Hull, 2008). Thus, the valuation procedure is as follows: 

- Use the Euribor or swap zero curve to calculate forward rates for 

each of the Euribor rates that will determine the cash flows of the 

swap’s floating leg 

- Calculate swap cash flows assuming that the Euribor rates will 

equal the forward rates calculated at present time 

- Discount the swap cash flows using EONIA zero curve rates to 

obtain the present value of the swap 

The fixed rate is chosen so that the value of the swap is initially zero. This further implies that 

the sum of the underlying forward rate agreements is zero. Nevertheless, it does not mean that 

the value of each individual FRA was zero: some of the FRAs will have positive values and 



26 

 

others have negative values and the values of the FRAs at different future points depend on 

the prevailing term structure of interest rates.  

As an illustration how the fixed rate is determined, the value of an IRS to the fixed rate payer 

at time t is determined in the following way:  

 𝐼𝑅𝑆(𝑡, 𝐾) = ∑ 𝜏𝑘𝑃𝐷(𝑡, 𝑇𝑘)𝐿𝑘(𝑡) − 𝐾 ∑ 𝜏𝑗
𝑆𝑃𝐷(𝑡, 𝑇𝑗

𝑆)

𝑑

𝑗=𝑐+1

𝑏

𝑘=𝑎+1

 (6) 

where  

𝜏𝑘 denotes the year fraction between 𝑇𝑘−1 and 𝑇𝑘 

 𝑃𝐷(𝑡, 𝑇𝑘) is the value of a zero-coupon bond at t with maturity 𝑇𝑘, i.e. the discount 

factor for 𝑇𝑘 starting at t 

𝐿𝑘(𝑡) is the floating rate at k observed at t, that is, the forward rate between 𝑇𝑘−1 and 

𝑇𝑘 

K is the fixed rate 

𝑎 and 𝑏 are starting time instant and number of floating rate payments for the floating 

rate leg of the contract and 

 𝑐 and 𝑑 are the starting time instant and number of payments for the fixed rate leg. 

Therefore, the first term is the present value of the floating rate payments and the second term 

is the present value of the fixed rate payments. As a result, the corresponding forward swap 

rate that makes the swap value equal to zero at time t can be calculated, and for time t=0, it is: 

 𝑆0,𝑏,0,𝑑 =
∑ 𝜏𝑘𝑃𝐷(0, 𝑇𝑘)𝐿𝑘(0)𝑏

𝑘=1

∑ 𝜏𝑗
𝑆𝑃𝐷(0, 𝑇𝑗

𝑆)𝑑
𝑗=1

 (7) 

where 𝐿1(0) is the first floating payment known at time t = 0. 

2.7.4 Swaption pricing 

As generally in option markets, swaptions are quoted in terms of implied volatility relative to 

a standard pricing model. For European swaptions, the quoted implied volatilities are relative 

to the Black (1976) model. The Black's model was originally developed for valuing options 

on commodities based on the idea that it would be reasonable to model the forward prices 
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with a geometric Brownian motion even if it would not be a viable method for modeling the 

spot prices. Similarly, the model can be applied to forward swap rates when adjusted with an 

annuity factor that incorporates the time structure of the underlying swap into the formula. 

The Black-like formula states that the price of a European receiver swaption (RS) starting at 

t=0 with payment dates Τ, i.e. with maturity a and tenor b, is calculated as follows:  

 𝑅𝑆(0, Τ, 𝜏, 𝑁, 𝐾, 𝜎𝑎,𝑏 ) = 𝑁BL(𝐾, 𝑆𝑎,𝑏(0), 𝜎𝑎,𝑏√𝑇𝑎, −1) ∑ 𝜏𝑖𝑃(0, 𝑇𝑖)

𝛽

𝑖=𝑎+1

 (8) 

Where 

 BL(𝐾, 𝑆𝑎,𝑏(0), 𝑣, 𝜔) = 𝑆𝑎,𝑏(0)𝜔𝛷 (𝜔𝑑1(𝐾, 𝑆𝑎,𝑏(0), 𝑣)) − 𝐾𝜔𝛷 (𝜔𝑑2(𝐾, 𝑆𝑎,𝑏(0), 𝑣))  (9) 

N = swap notional 

 𝑑1(𝐾, 𝑆𝑎,𝑏(0), 𝑣) =
ln(𝑆𝑎,𝑏(0)/𝐾) + 𝑣2/2

𝑣
 (10) 

 𝑑2(𝐾, 𝑆𝑎,𝑏(0), 𝑣) =
ln(𝑆𝑎,𝑏(0)/𝐾) − 𝑣2/2

𝑣
 (11) 

 𝑣 = 𝜎𝑎,𝑏√𝑇𝑖−1 (12) 

𝑆𝑎,𝑏(0)=current forward swap rate 

t = option starting date 

T = option expiry date 

𝜎𝑎,𝑏= volatility for F that is retrieved from market quotes 

𝛷(.) = the cumulative normal distribution function  

Similarly, the formula for pricing a European payer swaption (PS) at t=0 is  

 𝑃𝑆(0, Τ, 𝜏, 𝑁, 𝐾, 𝜎𝑎,𝑏 ) = 𝑁BL(𝐾, 𝑆𝑎,𝑏(0), 𝜎𝑎,𝑏√𝑇𝑎 , 1) ∑ 𝜏𝑖𝑃(0, 𝑇𝑖)

𝛽

𝑖=𝑎+1

 (13) 
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The formulae above are used for physically settled swaptions. For cash-settled swaptions, the 

formula is the same otherwise except for the annuity term that is slightly different. The reason 

behind the adjusted annuity term is that the counterparties could end up with different prices 

for the underlying swap based on how they have bootstrapped their discounting curves. To 

prevent this, the swap rate is used for discounting as well. This way the amount due at 

swaption maturity will be unambiguously determined. 

2.7.5 Implied volatilities and volatility models 

When pricing any option, an important piece of information is some kind of measure of the 

uncertainty related to the future price of the underlying asset. Thus, a pricing method must 

include some a priori expectation regarding the asset price performance as well as an 

approximation of to what extent the price process will fluctuate. This expectation is denoted 

by the volatility factor used in the formula. However, it is not an easy task to determine an 

estimate of volatility as the results tend to depend heavily on the length of the time period 

from which the historical volatility is observed. Moreover, the magnitudes of asset price 

fluctuations have a tendency to change over time, which means that the volatility has a 

stochastic nature itself, as for instance Ball and Torous (1999) point out in their study about 

short-term interest rates. In spite of the fact that volatility is not constant, it is still assumed to 

be so in the Black-Scholes model. Despite this shortcoming, the Black-Scholes model has 

remained as a standard model in option pricing as it has the positive feature of providing a 

one-to-one relationship between volatility and monetary price of an option. As a result, it is 

possible to invert the Black-Scholes formula for the theoretical value of an option against the 

observed market price of that option, which leads to so called implied volatility3. For the vis-

à-vis link between option price and implied volatility, it has become a market practice to 

quote option prices in terms of implied volatility. 

Analogously to other options, also the implied volatilities of swaptions exhibit a so called 

“smile” or “skew” with respect to their strike rate. The reason behind the volatility smile 

arises from the above stated fact that the volatility of the underlying security is greater than 

assumed by the Black-Scholes or Black-like pricing models that are based on the assumption 

                                                 
3 The terms volatility and implied volatility are used interchangeably in this paper when associated with the 

option price. 
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that the underlying instruments follow a log-normal process and that the returns are normally 

distributed. Hence, the actual return distributions have fatter tails, and consequently, the real 

probability of an option that is far out of the money to end up being in the money is higher 

than the probability predicted by the pricing model. As a result, options that are far out of the 

money are more valuable than they should be if the model’s assumptions about return 

distributions were true. As the prices are quoted in implied volatilities, the seemingly higher 

implied volatilities for out of the money options reflect the relatively higher value of those 

options. Moreover, as the swaptions are quoted using implied Black volatilities that are based 

on a log-normal distribution of underlying interest rates, the level of implied volatilities tends 

to be inversely related to the level of interest rates if it is assumed that the changes in interest 

rates are more normally than log-normally distributed in reality. Hence, if the magnitude of 

moves in interest rates does not depend on their absolute level, the changes increase in 

relative terms when interest rates decrease. According to Corb (2012), this provides an 

explanation to higher observed implied volatilities for swaptions with lower strikes in addition 

to possible imbalances in supply and demand.  

In addition to volatility skew in strike dimension, the implied volatility depends also on the 

maturity of the option. This is called the term structure of volatility and it is driven by the 

market’s expectation about implied impact of upcoming events. When the implied volatility is 

plotted as a function of both strike price and time to maturity, it is possible to graph the 

volatility surface for a given underlying instrument.  

Brokers provide tables of implied volatilities for European swaptions with different maturity-

tenor pairs. Swaption volatilities are quoted by the different strikes 𝐾 as a difference with 

respect to the at-the-money level. That is, 

 Δ𝜎𝑎,𝑏(Δ𝐾) = 𝜎𝑎,𝑏(𝐾𝐴𝑇𝑀 + Δ𝐾) − 𝜎𝑎,𝑏
𝐴𝑇𝑀 (14) 

and Δ𝐾 ∈  {±200, ±100, ±50, ±25,0}, where Δ𝐾 are stated in basis points. 
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Figure 1: 

Swaption volatility surface 

 The figure illustrates at-the-money Euro swaption volatility surface on September 27, 2012 

 

Regardless of these well-known issues associated with the basic assumptions of Black-

Scholes and other pricing models based on it, the models can be used for option and thus for 

swaption pricing with the idea of "plugging a wrong number into a wrong formula to get a 

correct price." As a result, Black-Scholes and its versions can be argued to be merely 

sophisticated interpolation tools used by traders so that an option is priced consistently with 

the market prices of actively traded options (Hull, 2008). Moreover, implied volatilities of 

interest rates are often interpolated using sophisticated modeling techniques and the Black-

model is used only for translating the implied volatility figure into a monetary value. Hence, 

the models used for modeling the volatility play an important role: in addition to accurate 

pricing of options, it is also critical for hedging to have a model that correctly handles the 

market skews and smiles of the implied volatilities.  

The models used for describing volatility smiles and skews can be divided into local volatility 

and stochastic volatility models. In the former, volatility is treated as a function of the current 

underlying asset level and time, whereas in the latter also the volatility process itself has a 

volatility of its own. The local volatility models, most of which are based on Dupire’s (1994) 

work, are self-consistent, arbitrage free and can be calibrated to fit market skews and smiles 

exactly. However, as observed by Hagan et al. (2002), the local volatility models fail to 
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capture the actual dynamics of the implied volatility curve: local volatility models predict that 

the market skew moves in the opposite direction as the underlying asset, which is contrary to 

the actual behavior observed in the markets, in which smiles and skews tend to move in the 

same direction with the underlying. This leads to poor hedging performance, and as a 

solution, the authors introduce a “stochastic ” model, or the SABR model. The SABR 

model can be used to accurately fit the implied volatility curves observed in the marketplace, 

and as it also predicts the correct dynamics of the implied volatility curves, the SABR model 

is also an efficient means to manage smile risk. As a result, it has become widely used in the 

swaption and caplet/floorlet markets. For that reason, it is also employed in this study. Hagan 

et al. (2002) derive the following approximation for the implied volatility of the swaption 

with maturity 𝑇𝑎, strike 𝐾 and underlying forward swap rate 𝑆𝑎,𝑏(𝑡) at time t: 

 
𝜎 (𝐾, 𝑆𝑎,𝑏(0)) ≈

𝛼

(𝑆𝑎,𝑏(0))𝐾
1−𝛽

2 [1 +
(1 − 𝛽)2

24
ln2(

𝑆𝑎,𝑏(0)
𝐾

) +
(1 − 𝛽)4

1920
ln4(

𝑆𝑎,𝑏(0)
𝐾

)]

𝑧

𝑥(𝑧)
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24
] 𝑇𝑎}, (15) 

where  

 𝑧 =
𝜈

𝛼
(𝑆𝑎,𝑏(0)𝐾)

1−𝛽
2 ln (

𝑆𝑎,𝑏(0)

𝐾
) (16) 

and  

 𝑥(𝑧) = 𝑙𝑛 {
√1 − 2𝜌𝑧 + 𝑧2 + 𝑧 − 𝜌

1 − 𝜌
} (17) 

2.8 Swaption risk measurement 

Swaptions, as any other traded instruments, have exposure to a range of risk factors that 

constitute the total market risk of the instrument in question. Generally, an option’s sensitivity 

with respect to different risk factors is described by partial derivatives of the option price with 

respect to those different factors. The different derivatives are often called option Greeks. 
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Delta and gamma risks describe an option’s exposure to the changes in the price of the 

underlying asset: delta is the first order derivative and gamma is of the second order. 

Specifically, in the case of a swaption, delta describes a swaption’s sensitivity to the changes 

in the corresponding swap rate. Further, in addition to delta and gamma risks that arise from 

the interest rate fluctuations, the price of a swaption is subject to changes in implied 

volatilities as well. The volatility of an option’s implied volatility is called the vol-of-vol, and 

the sensitivity of an option price to fluctuations in implied volatility is called the vega. The 

vega exposure of a swaption position can be defined as the change in the swaption price 

resulting from an increase in the swaption implied volatility by one percentage point. 

Accordingly, the risk with respect to changes in option price due to changes in implied 

volatility is called vega risk. Vega risk is an important risk component in an option portfolio 

and it should be of interest for a risk manager overseeing a position that includes options: 

neglecting the effect of changes in implied volatilities entirely would provide an exceptionally 

optimistic picture about the risk level of a given swaption position, which is something any 

risk manager tries to avoid. However, the treatment of vega risk in portfolios is often impeded 

due to practical reasons. First, the availability of option implied volatilities is somewhat 

limited, and second, the prevalence of volatility smiles and term structures add to the 

complicatedness of nesting vega risk into a risk management framework. Yet, in certain 

option positions, the level of vega risk may well exceed the level of delta risk, which 

underlines the need for an accurate risk management model that is able to incorporate also the 

vega risk. For instance, in the following example swaption trading positions and strategies the 

proportion of vega risk is relatively high compared to the level of delta risk:  

- a delta-hedged position in which a swaption is hedged with the 

underlying forward swap contract so that the book is insulated 

against short-term interest rate changes but the option position’s 

sensitivity to general level of option prices remains, which acts as 

the source of the vega risk of the book 

- a straddle that consists of a long (short) call and a long (short) 

put with equal exercise rates and 

- a strangle  that consists of a long (short) call and a long (short) 

put with different exercise rates. 
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2.8.1 Swaption VaR 

When computing VaR for swaptions, the relevant risk factors are interest rates and implied 

volatilities. Hence, in the Historical VaR framework, the changes in both of those risk factors 

within a chosen historical period are used for simulating possible outcomes for the position. 

Then, depending on the selected confidence interval and number of simulations, the n:th 

worst simulation outcome is the VaR figure.  

It is up to the risk manager to decide whether to use absolute or relative changes in the given 

risk factors when creating a suitable distribution for VaR computations. On the one hand, 

when using relative changes in interest rates or volatilities, the possibility of generating 

negative outcomes is avoided, which is a desired trait in order to remain within the range of 

realistic scenarios. On the other hand, applying relative changes leads to implicit assumption 

that the magnitude of changes in those risk factors would depend on their absolute levels. The 

studies in that subject have not provided solid empirical evidence to support either assumption 

over the other when evaluating the dynamics of interest rates (e.g. Corb, 2012). 

While accounting for the interest rate risk in swaption VaR estimation is quite 

straightforward, enclosing the vega risk is slightly more intricate. A rather simple and 

tractable means of integrating the vega risk into VaR calculation is to treat implied volatility 

analogously to other market risk factors to which a portfolio is exposed to as Malz (2001) 

proposes.  Despite the theoretical simplicity of treating the volatility of volatility in a similar 

fashion as any other risk factor, the key difficulty involved in modeling the vega risk is 

associated with the choice of strike level to be used. Generally speaking, the use of at-the-

money (ATM) level implied volatilities provides insight on the fluctuations of option prices 

on a large scale, but due to the existence of volatility smile, option portfolios are also exposed 

the changes in implied volatility along the smile, and, moreover, due to non-parallel shifts of 

the volatility smile options are also exposed to changes in the shape of the smile. When the 

shape of the volatility smile changes, the change in the price of an out-of-the money (OTM) 

option is relatively higher or lower than the simultaneous price change of an ATM option. 

Thus, in such situation a VaR model that only incorporates ATM implied volatility changes 

generates either too optimistic or too pessimistic estimates for options whose strike prices are 

not close to the ATM level. Furthermore, even if the shape of the volatility smile remained 

constant, an option is still exposed to changes along the smile when the price of the 
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underlying asset moves away from the option’s strike level. For instance, as time passes and 

interest rates change, the strike rate of a swaption that was originally issued at ATM level 

subsequently becomes an OTM swaption, which means that the changes in ATM implied 

volatilities may no longer yield accurate predictions about the changes in its present implied 

volatility. Intuitively, it would be reasonable to take into account both exposures mentioned 

above, but in reality, the restricted access to historical implied volatilities for OTM strike 

levels together with increased computational complicatedness makes it difficult for 

institutions with limited resources to incorporate the volatility smile changes into their VaR 

models. Fortunately, the changes along the volatility smile are more straightforward to 

incorporate in VaR estimation as, after all, the present smile data are required for pricing and 

computing prevailing mark-to-market values regardless of the risk management models. 

2.8.2 Fixed smile method 

The simplest approach for incorporating vega risk into VaR computation is to ignore the 

changes in the implied volatility smile and to take into account merely the changes in the 

volatility smile as a whole, thus only allowing for parallel shifts in the smile. This is also the 

first of the models Malz (2001) presents for including vega risk into FX-option VaR 

estimation. In this approach it is assumed that the smile moves within the exercise rate – vol 

space but not in the delta – vol space. Consequently, this model assumes that the evolution of 

the implied volatility surface follows a common heuristic called sticky delta approach as 

Derman (1999) has labeled it. What this approach suggests is that if the underlying swap rate 

changes, the implied volatility of a swaption with a given moneyness does not change. Thus, 

in the fixed smile method, the changes in the implied volatility along the smile are taken into 

consideration through assigning correct implied volatilities to swaptions when their 

underlying swap rate moves away from the ATM level as a result from applying different 

historical interest rate changes as shocks to the prevailing interest rates. As a summary, in the 

fixed smile method, a number of swaption’s mark-to-market value changes are simulated by 

shocking both the swap rates and the implied volatilities, but with the limitation that the same 

volatility shocks are applied to all swaptions with the same maturity regardless of their 

respective moneyness. Moreover, the volatility shocks are derived from a history of daily 

changes in implied volatilities of ATM swaptions, which means that no history of OTM 

implied volatilities is required in estimation process. 
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However, when the volatility fluctuations are modeled using relative changes, the shifts are 

not strictly parallel, as when there is a skew in the volatilities, the absolute changes are not 

uniform across the different strikes. Nevertheless, the method assumes equivalent relative 

changes, which seriously limits the shapes that the smile may adopt. Hence, the term “fixed 

smile” is still used in this paper even if slightly stretching the actual denotation of “fixed”. 

Figure 2: 

The fixed smile method 

In the fixed smile method, implied volatilities are shocked along the prevailing smile and/or in a parallel fashion. The solid 

line represents volatility smile on May 10, 2012 for a 5x5 swaption. 

 

2.8.3 Random smile method 

A more sophisticated method to incorporate the different dimensions of vega risk into VaR 

estimation is to allow for changes in the curvature and skewness of the implied volatility 

smile in addition to the parallel changes that are included in the fixed smile approach. Hence, 

the shape of the smile is no longer assumed to be fixed but rather allowed to vary more freely 

than in the previous model. This model is principally the second proposed in Malz (2001). 

The key difference between the fixed and the random smile methods is that the moneyness of 

a given swaption is accounted for when applying different volatilities to generate required 

simulations for its price changes. Thus, for instance, the historical implied volatility changes 

used for generating prices for a swaption whose moneyness is ATM+50 bps are chosen from 
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changes that have occurred for swaptions  with that specific moneyness in the past, while in 

the fixed smile method the changes in the ATM volatilities would be used instead.  

Figure 3: 

The random smile method  

In the random smile method the shape of the smile is permitted to vary through applying volatility shocks that depend on the 

moneyness of a swaption. 

 

2.8.4 Fixed and random smile methods with observed volatility changes 

While the above presented fixed and random smile methods utilize observed simultaneous 

changes in interest rates and volatilities in scenario creation in a tractable way, it is assumed 

in both of the models that the implied volatility scenarios gained from using differences 

between implied volatilities with equal strike levels on successive days would provide a 

sufficiently accurate distribution of daily volatility changes. However, for a given swaption 

traded on day t the correct implied volatility on t+1 is most likely different from the implied 

volatility of a swaption made on t+1 with equal moneyness. Hence, the both models can be 

modified so that instead of using changes between t+1 and t for distinct swaptions with same 

strike moneyness, the distribution of volatility moves is compiled using changes between 

actual observed implied volatilities for a given swaption on the consecutive days. The implied 

volatility on t+1 is obtained using the SABR model, which means that a history of OTM 

implied volatilities is required even if using only ATM level changes since the historical 
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SABR parameters are needed to determine the volatility changes. More specifically, the 

observed difference is defined in the following way using (15): 

 ∆𝜎 = 𝜎 (𝑆𝑎,𝑏(𝑡) + Δ𝐾, 𝑆𝑎,𝑏(𝑡 + 1)) − 𝜎 (𝑆𝑎,𝑏(𝑡) + Δ𝐾, 𝑆𝑎,𝑏(𝑡)) (18) 

On the contrary, the method used in 2.8.2 and 2.8.3 can be formalized as follows: 

 ∆𝜎 = 𝜎 (𝑆𝛼,𝛽(𝑡 + 1) + Δ𝐾, 𝑆𝛼,𝛽(𝑡 + 1)) − 𝜎 (𝑆𝛼,𝛽(𝑡) + Δ𝐾, 𝑆𝛼,𝛽(𝑡)) (19) 

where 𝑆𝑎,𝑏(𝑡) is the ATM forward rate on t and Δ𝐾 is the difference between ATM level and 

the strike rate of the specific swaption. 

To distinguish the models with implied volatility estimation described in 2.8.2 and 2.8.3 from 

estimation method defined in this chapter, the models that employ (19) are labeled with a 

prefix “Proxy” and the models that utilize (18) are titled with “Direct” in the following 

sections of this paper.   

2.8.5 Skew dependent model 

An additional potential source of imprecision in each of the above presented models arises 

from ignoring the prevailing shape of the volatility smile. For instance, it the skew is steep, a 

change in the underlying swap rate leads to a higher change in implied volatility than would 

occur as a result from a similar rate change when the smile is flatter. One conceivable method 

of considering the present shape is based on separating the observed implied volatility 

changes into two components stemming from either a change in interest rates or from a 

change in general level of implied volatilities. However, the problem is that there is no 

objectively specified method for determining which proportion of the observed change stems 

from interest rate changes or from overall changes in volatilities. Nevertheless, an 

approximating segregation can be implemented using the SABR model so that the change in 

implied volatility that follows from an interest rate move between days t and t+1 is defined as 

the difference between the observed implied volatility on t and the SABR model output for 

the new interest rate level using model parameters from day t. Then, the residual difference 

between the actual implied volatility on t+1 and the figure estimated using the SABR model 

for day t represents the move due to general change in volatilities.  
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As a result, the scenarios are obtained by first shocking the interest rate with historical rate 

changes for which the theoretical corresponding implied volatilities are computed with (15). 

Next, each of these scenarios are further shocked with the previously obtained theoretical 

changes in the general level of implied volatilities to achieve the final swap rate-implied 

volatility -pairs. Figure 4 illustrates how a single scenario point is achieved under the skew 

dependent model. 

The skew dependent model is referred to with a prefix “Component” in the empirical part of 

this study based on the technique how the total VaR estimate is obtained. However, it should 

not be fixed with the risk components of VaR figures. 

Figure 4: 

Skew dependent model 

The figure illustrates the scenario creation method in skew dependent model. First, the prevailing point is moved from 

starting position (+) along the observed volatility skew to the point that matches the interest rate scenario (X). Then, the point 

is moved vertically by an amount that matches the corresponding change in implied volatilities that occurred together with 

the observed interest rate change (dot). As a result from repeating the described steps 250 times and valuating the contract in 

each of them, a distribution of mark-to-market price scenarios is achieved. When the prevailing price of the swaption is 

reduced from the price scenarios, a distribution of 250 profit and loss figures is achieved, and VaR estimate is then the 

percentile of the distribution that matches the chosen VaR confidence level (e.g. 5% percentile for 95% confidence level 

VaR). 

 

3 HYPOTHESES 

This section presents the hypotheses that are tested in the empirical part of this study. The 

hypotheses are structured in a way that facilitates finding answers to the research problems 

stated in chapter 1.2. 
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As this thesis aims to examine the importance of accounting for swaption moneyness in 

creating a distribution of historical changes in implied volatilities used in swaption VaR 

estimation based on variants of historical simulation, a relevant hypothesis to test is whether 

or not the alternative VaR methods introduced in the previous section generate differing risk 

estimates. However, before investigating differences between the alternative models, it is 

worth testing whether the VaR models are able to provide a sufficiently accurate estimates of 

swaption market risk to begin with. Therefore, the first hypothesis is aligned with the 

statistical test used for determining validity of a given VaR model and is as follows: 

Hypothesis 1: VaR models based on historical simulation generate acceptable 

estimates of swaption’s market risk. 

The second hypothesis is related to the differences between the previously mentioned 

swaption VaR models. If the changes in the shape of the implied volatility smile induce a 

relevant risk source, models with random smile method should provide better results than the 

fixed smile models. Nevertheless, due to the lack of previous empirical findings on the 

specific issue, the formulation of the second hypothesis is partially arbitrary: while Malz 

(2001) does not find evidence that the model in which smile changes are recognized as a risk 

factor would be more preferable than the model with fixed smile, the paper concentrates on 

options on FX-rates instead of swap rates. Moreover, the shape of the volatility smile is not 

fixed in reality, which supports the notion of accounting for the changes also in VaR 

estimation. Notwithstanding, the preliminary evaluation of the sample data suggests that the 

changes in OTM levels are highly correlated with the changes in ATM level, which indicates 

that the added information from considering OTM volatility changes may not improve the 

VaR precision in a notable fashion. Hence,  

Hypothesis 2: A model that employs OTM level implied volatility changes in 

swaption VaR estimation does not generate more accurate estimates than a model with 

fixed smile approach. 

4 DATA AND METHODOLOGY 

This section starts with a presentation of the data employed in this study, and then continues 

with a description of the VaR methods utilized in creating the historical daily VaR estimates. 
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The section concludes with an illustration of the methodology utilized in testing the 

hypotheses. 

4.1 Data 

The data required in this study comprises of the elements needed for swaption pricing, and 

hence, the following data are needed: 

- EONIA zero rates for discounting 

- 6 month Euribor zero rates for projection 

- Implied swaption volatilities 

The interest rate data are provided by Pohjola Bank Plc. As zero rates are not traded as such, 

the rates are bootstrapped from different market traded interest rate instruments, and the 

interest rate curve is smoothed via interpolation in order to cover also the maturities for which 

there are no market quotes. 

The implied swaption volatilities for different maturity-tenor-strike -combinations are also 

provided by Pohjola Bank Plc. However, due to the low absolute level of interest rates, quotes 

are not available for all of the moneyness levels for which there usually exist quotes as 

highest negative relative strike levels would imply negative strikes in absolute terms. Hence, 

the VaR estimation in this study concentrates on moneyness levels above the at-the-money 

level for the data below the ATM level is incomplete. Furthermore, the reliability of historical 

implied volatilities for out-of-the-money strikes is also limited as the trading is concentrated 

around at-the-money level. Nevertheless, as there is no conclusive method for separating 

erroneous observations from valid figures, merely those observations that are definitely 

incorrect, such as negative volatilities, are disregarded. However, the plausible incorrectness 

of observations for strikes far OTM should be taken into account when interpreting the 

results.  Moreover, the dataset covers dates only from March 8, 2011 onwards. Consequently, 

changes in implied volatilities needed in historical VaR estimation are available from March 

9, 2011, which truncates the length of the backtesting period shorter than desired. 

In total, the data consists of 480 daily observations of swap rates with maturities ranging from 

one month up to 60 years, and of equal number of daily swaption volatilities. Using a 

historical observation period of 250 trading days in VaR estimation, there is 228 days left for 
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backtesting.   However, due to practical reasons in spite of the abundant availability of data 

for different maturities, the number of different swaptions employed in this study is limited to 

the following set of maturity-tenor pairs: 1x2, 1x5, 5x2, 5x5, 10x2 and 10x5 with strike rates 

ranging from ATM to ATM +200 bps. Furthermore, the VaR estimates and backtesting 

results shown in this study are computed for long and short physically settled European 

receiver swaption positions with notional of 10 million EUR. To confirm the validity of the 

estimates, I also run analogous analyses for payer swaption positions.  

4.1.1 Descriptive statistics 

Swap rates during the overlapping estimation and backtesting periods are at historically low 

levels: for instance, five year rate starts at 2.98% and ends at 1.13% while maximum and 

minimum values are 3.20% and 0.74% respectively. Moreover, as Figure 5 shows, the swap 

rates decline until the end of 2012 quite steadily and then begin to climb again. Additionally, 

the shape of the yield curve stays relatively unchanged for the short end, although a minor 

twist can be observed as the long end ascends in relation to the short end during the latter part 

of the investigation period. The yield curve is presented for a few selected days from the 

beginning, middle and end of the observation period in Figure 6. 
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Figure 5: 

Euribor swap rates 

The figure shows the development of Euribor swap rates for maturities of 1, 5, 10 and 15 years under the VaR estimation 

period between March 8, 2011 and February 1, 2013. 

 

Figure 6: 

Yield curves 

Figure 6 illustrates yield curves for selected dates within the sample data. The curve ranges from one month to 60 years. The 

primary change during the period concerns the overall level of the curve, but also the shape of the yield curve has altered 

slightly so that the long end has gradually shifted upwards in relation to the short end. 

 

Table 4 collects the summary statistics of daily changes in swaption implied volatilities and 

underlying forward swap rates during the backtesting period, and the analogous statistics from 

the whole observation period are shown in Table 16 in Appendix B. 

The steady decline in swap rates illustrated in Figure 5 is corroborated by the average daily 

change of approximately -0.4 basis points for each swaption maturity-tenor pairs investigated 
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during the whole sample period. In contrast, implied volatilities tend to increase during the 

sample period and daily changes average between 0.06% and 0.14% for ATM options. 

Slightly surprisingly, however, the average daily log-returns for implied volatilities of 10x2 

and 10x5 swaptions are negative during the backtesting period.  

Table 3 shows the correlations between the risk factors during the whole observing period and 

correlations sampled from the backtesting time period are presented in Table 17. As expected 

on the basis of estimates presented in Andersen and Lund (1997), who study the dynamics of 

interest rates, the correlations between interest rates and lognormal implied volatilities are 

negative. This negative link between the risk factors indicates that neglecting the existence of 

the volatility smile by using an assumption of constant volatility in swaption VaR 

computations would lead to erroneous risk estimates as Malz (2001) puts forward. However, 

correlations between changes in implied volatilities of different strike levels are fairly high, 

which gives a reason to expect that using merely ATM volatility changes might be sufficient 

for VaR estimation also for swaptions with OTM strikes. Yet, as Figure 7 shows, the spreads 

between ATM and OTM implied volatilities are not constant, which indicates that the shape 

of the volatility skew fluctuates at least to some extent during the observation period. 

Nonetheless, as Figure 13 in Appendix B illustrates, changes in the shape of the volatility 

skew during the observation period are minimal.  

Table 5 shows summary statistics of the swaption price fluctuations for the contracts 

examined in this study. Explicitly, the statistics are computed from one day changes for the 

contracts opened and closed on a daily basis. The return distributions exhibit positive 

skewness and excess kurtosis, and according to the Lilliefors test of normality most of the 

price fluctuations do not come from a normally distributed population. On the other hand, 

Jarque-Bera test of normality cannot reject the null hypothesis of normality for 1x2, 1x5 and 

5x2 swaptions with strikes ranging from ATM to ATM +25bps. Nevertheless, these 

distributional characteristics refute the use of a parametric VaR method as it would likely 

underestimate the probability of the tail events. Consequently, the use of Historical 

Simulation is a preferable approach. 

Interestingly, the average price changes for many of the long receiver swaption positions 

considered in the study are negative although the interest rates decline on average during the 

observation period. At first this remark appears counterintuitive, as a receiver swaption has a 
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negative delta and a positive vega, which means that for the long position holder, a decline in 

the interest rates and an increase in the volatility both increase the value of the contract. 

Moreover, since the underlying forward rates and implied volatilities are negatively 

correlated, as presented in Table 3, a decline in interest rates should on average be 

accompanied by an increase in volatility, which should then deliver a double-boost to the long 

position holder. However, a closer examination of the dynamics of the risk factors reveals that 

even though the interest rates decline and implied volatilities increase in more than half of the 

days during the backtesting period, the average increase in volatility is nevertheless smaller 

than the average decrease. This asymmetry is also reflected on the negative skewness of the 

implied volatility fluctuations during the backtesting period. Furthermore, as the swaption 

sensitivities with respect to changes in interest rates and volatilities depend on the moneyness 

and maturity as well as on the tenor of the option, price changes arising from fluctuations in 

the risk factors are not equal for ATM and OTM options or for options whose time to 

maturity and tenor are not equal. In general, both delta and vega are at maximum for ATM 

options when other factors are held constant. However, their relative significance depends on 

the other factors as well, and hence pointing out which factor dominates the price movements 

requires simultaneous computations of the sensitivities.  

Nevertheless, to summarize the behavior of the considered positions, the longer the time to 

maturity, the more important the vega becomes, whereas the further away from ATM the 

strike moves, the more central the delta becomes. That is, the impact of the delta tends to 

decrease at a slower pace with respect to changes in strike dimension than that of the vega. 

Consequently, while the volatility changes dominate the price fluctuations for ATM to ATM 

+100 bps swaptions, the trend of declining interest rates is better reflected on prices of ATM 

+200 bps swaptions. Numerical4 delta and vega figures for long swaption positions are shown 

in Figure 12 (Appendix B) to illustrate the swaption sensitivities during the backtesting 

period. As a whole, the prices of the considered swaption positions do not move in unison as 

can be observed from less than perfect correlations between implied volatility fluctuations of 

different strike levels and from divergent sensitivities with respect to the risk factors.  

                                                 
4The sensitivities could be computed also analytically, i.e. they could be derived from the option pricing formula, 

but using numerical estimates often leads to more rational figures (e.g. Taleb, 1997). 
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Table 3: 

Risk factor correlations 

The table shows correlation coefficients for the swaption risk factors during the observation period from March 8, 2011 to 

February 1, 2013. F stands for the forward starting swap rate underlying the specified swaption contracts. The correlations 

are measured between absolute changes in F and log-changes in implied volatilities. 
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Table 4: 

Risk factor summary statistics 

The table presents summary statistics about risk factor returns during the backtesting period between March 5, 2012 and 

February 1, 2013. Changes in forward swap rates (F) are measured in absolute terms and presented in basis points. Changes 

in implied volatilities are measured as log-returns and presented as percentage changes.  
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Table 5: 

Swaption return statistics 

This table summarizes statistical properties of the daily price fluctuations of the long receiver swaption positions during the 

observation period of March 5, 2012 to February 1, 2013. The statistics are based on absolute returns and the number of 

observations is 228. 
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Figure 7: 

ATM volatilities and OTM spreads 

The figures below present ATM implied volatility development during the sample period for 1x5, 5x5 and 10x5 swaptions 

together with spreads for their OTM strikes above the ATM level. 
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4.2 VaR estimation 

This study employs historical VaR estimation for generating a backtesting sample that is used 

for testing the hypotheses. The choice of the VaR method is based on its suitability for option 

portfolios and on the overall incentive to avoid having to make assumptions regarding the 

parameters of return distributions.  

In VaR computation the following three methods are used: 

- basic historical simulation (HS) 

- filtered historical simulation (FHS) 

- time-weighted historical simulation (TW)  

The historical observation period is 250 trading days, which is approximately one calendar 

year. Hence, the VaR figure is computed for every day starting from March 5, 2012 until the 

end of the data set. The VaR figures are estimated using 95% confidence level and a risk 

horizon of 1 day. In addition, the figures for expected shortfall (ES) with confidence level of 

95% are computed in order to obtain data for loss function -based backtesting method. For 

computational reasons, it is assumed that a swaption position is opened and closed on a daily 

basis. Otherwise one should also take into account the changes in time value of the option, 

which would introduce another level of complexity that, however, would not contribute 

additional relevant information to the original research question of this study. Moreover, for a 

swaption whose maturity is either two, five or ten years, the change in its mark-to-market 

value resulting from a one day reduction in its time until maturity is infinitesimal compared to 

changes stemming from fluctuations in interest rates and implied volatilities. 

The historical changes in interest rates are measured in absolute arithmetic terms5 in all 

models. Therefore changes in implied volatilities are modeled using relative changes to 

maintain consistency between interest rate and implied volatility changes. In all of the 

methods the VaR calculation is implemented using full-valuation method, which means that 

the position is revalued under each of the risk factor scenarios that are created through 

applying historical swap rate and implied volatility changes to the respective prevailing 

                                                 
5   There is no clear evidence whether interest rate volatility depends on interest rate levels or not (eg. van 

Deventer et al., 2005). Consequently, arithmetic returns are used as they are more intuitively appealing when 

dealing with interest rate instruments. 
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levels. In FHS models the changes are adjusted using exponentially weighted moving average 

(EWMA) method with the lambda parameter set at 0.94 following RiskMetrics convention, 

while in models employing TW approach the lambda is set to be 0.98 as in Boudoukh et al. 

(1998).  In HS method the changes are applied without adjustments.  

4.2.1 Historical simulation  

Historical simulation is implemented by generating different scenarios using the observed 

historical changes in interest rates and implied volatilities. Each of the historical daily changes 

in swap rates and implied volatilities are added one at a time to the prevailing interest rate and 

implied volatility curves, and as a result, a distribution of 250 possible scenarios is obtained. 

Then the scenarios are used for generating respective number of new mark-to-market 

scenarios for the position from which the present value of the position is subtracted. 

Accordingly, a distribution of 250 profit and loss figures is achieved from which the 5% 

quantile (for VaR at 95% confidence level) is drawn. In the fixed smile method, each 

historical swap rate change for a given date is accompanied by the respective change in at-the-

money implied volatility on that same date, whereas in the random smile method the changes 

in implied volatility are chosen based on the moneyness of the swaption. 

4.2.2 Filtered historical simulation 

Filtered historical simulation is employed in a similar fashion as basic HS, but the actual 

returns within the historical dataset are replaced with returns adjusted by forecast of volatility 

for a variable i in the following way:  

 𝑟𝑡,𝑖
∗ =

𝜎𝑇,𝑖

𝜎𝑡,𝑖
𝑟𝑡,𝑖 (20) 

where  

𝜎𝑇,𝑖 is the most recent forecast for the volatility for i  

𝑟𝑡,𝑖 is the actual historical return in i on day t 

𝜎𝑡,𝑖 is the historical forecast of the volatility for changes in i  made on t 

The volatility forecast can be gained by for instance using the generalized autoregressive 

conditional heteroskedastic (GARCH) model originally developed by Engle (1982) and 



51 

 

Bollerslev (1986). However, as this model requires a vast number of parameters to be 

estimated, its practical implementation is usually not viable in large scale risk measurement 

process carried out on a daily basis. Hence, more commonly used approach for modeling 

volatility is exponentially weighted moving average (EWMA) forecast6 (Jorion, 2007). Stated 

in a formal way, the variance forecast for time t is 

 𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡
2 (21) 

where the parameter 𝜆 is again the decay factor that defines the weights for previous forecast 

and latest observation.  Also, 𝜆  is the only parameter that needs to be estimated in the 

EWMA approach. The value of 𝜆 defines the reactiveness of the forecast to market events: the 

lower the figure, the more reactive the forecast becomes. Following J.P. Morgan's RiskMetric 

(1996) it is frequently set at 0.94 for daily observations.  

4.2.3 Time-weighted historical simulation 

Following Boudoukh et al. (1998), the time-weighted approach is implemented in three steps:  

1. Realized return from t-1 to t is denoted by R(t). To each of the H most recent returns 

(𝑅(𝑡), 𝑅(𝑡 − 1), . . . , 𝑅(𝑡 − (𝐻 + 1)) is assigned a weight  
1−𝜆

1−𝜆𝐻 ,
1−𝜆

1−𝜆𝐻 𝜆, … ,

1−𝜆

1−𝜆𝐻 𝜆𝐻−1 respectively, where the parameter 𝜆 is the decay factor.   

2. The returns are sorted in ascending order 

3. To find the VaR figure of the portfolio, the weights are accumulated starting from the 

lowest return until the desired quantile is reached (e.g. 5% when using 95% 

confidence level). 

4.2.4 Quantile estimation 

In addition, since the quantile estimation might be rather inaccurate due to rather short 

observation period, two different percentile estimation methods are utilized for determining 

the VaR figure from the distribution. The first alternative is to use the percentile -function in 

Matlab without any additional adjustments. The second alternative is to apply a distribution 

                                                 
6 GARCH models have time-varying conditional volatility whereas EWMA models give time-varying estimates 

of the unconditional volatility (Alexander, 2008). 
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fitting method to the tail of the distribution, and to choose the value from the fitted 

distribution. The fitting is implemented using Epanechnikov kernel function following 

suggestion of Butler and Schachter (1998). Also the fitting is implemented in Matlab using 

ProbDistUnivKernel constructor. 

4.2.5 VaR components 

Moreover, the VaR estimation is divided into sub-steps in order to allow for separation of the 

total VaR figure into interest rate risk and volatility risk components. The interest rate 

component is obtained by generating scenarios using the historical changes in interest rates in 

a similar fashion as in total VaR computation, but using only the implied volatility that has 

prevailed on the given estimation date. Depending on the model in question, the historical 

changes are adjusted similarly as in total VaR computation. However, it should be pointed out 

that when computing the interest rate risk component of a swaption VaR estimate, one still 

needs to account for the changes also in the implied volatility used in Black model due to the 

existence of the volatility smile. Hence, for each interest rate scenario that is generated by 

shocking the swap curve with historical changes, the corresponding implied volatility for each 

swap rate scenario must be chosen accordingly from the volatility cube prevailing on the 

estimation day. The correct volatility is obtained with the SABR model. 

The volatility component is calculated in a similar way as the interest rate component, but 

now the swap rate on the estimation date is kept constant while historical implied volatility 

changes are applied to the volatility prevailing on the estimation day. Similar adjustments are 

applied to implied volatility changes in FHS and TW methods that are used for adjusting the 

interest rates in the respective models. 

4.2.6 Summary of VaR estimation 

The VaR figures are estimated for the different combinations of the following parameters: 

- Use of ATM or moneyness dependent historical changes in 

implied volatilities 

- Implied volatility changes derived from daily differences 

between swaptions with equal moneyness on successive days 
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(“Proxy”) or from actual differences in implied volatilities for a 

specific contract (“Direct”) 

- Swaption moneyness relative to ATM: 0, +25bps, +50bps, 

+100bps or +200bps 

- VaR confidence level: 95% and 90% 

- Quantile estimation: interpolation from the observed distribution 

or from fitted distribution 

- Volatility updating: lambda 0.94 or no weighing 

- Time weighing: 0.98 or no weighing 

- Maturity of the swaption: 2, 5 or 10 years 

- Tenor of the underlying swap: 2 or 5 years 

The ATM-moneyness is included for comparing the effect of lambda weighing. Naturally, the 

results for ATM-moneyness swaptions are the same regardless of whether the fixed smile or 

the random smile method is used.  

Different combinations of the above mentioned dimensions of models and model 

configurations would enable computation of almost 4 000 VaR series when combined also 

with swaption type being receiver or payer. However, not all possible variations are 

considered in this study. For instance, distribution fitting is not evaluated for each of the 

combinations, and VaR estimates with 90% confidence level are computed only for a limited 

number of contracts. Moreover, time weighing is not combined with volatility updating 

method utilized in FHS models. Finally, the backtesting sample consists of 1 080 different 

VaR estimate series. 

4.3 SABR -parameter estimation 

In order to compute the 1-day change in a swaption’s mark-to-market value, i.e. the profit or 

loss figure, or the interest rate risk component of the daily VaR estimate, one has to apply a 

volatility model to obtain the implied volatility needed in Black model that corresponds to the 

strike rate of the given contract. Likewise, the model is required in estimating the observed 

historical implied volatility changes to be used in models that employ “Direct” changes 

instead of “Proxy” changes. As the SABR model is able to fit the observed smile almost 
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perfectly (e.g. Hagan, 2002) and since it can be regarded as the standard method in interest 

rate option markets for modeling implied volatilities, it is also applied in this study. 

The SABR model’s parameters are calibrated for every date included in the sample data and 

for each of the maturity-tenor -pairs. In general, model calibration means finding parameters 

that minimize the error between the observed implied volatilities and the points that are fitted 

by the model. More specifically, the calibration is conducted by using Levenberg-Marquardt 

algorithm to find the parameter values that minimize the mean squared error between 

observed and fitted volatilities. Thus, the problem can be formulated as follows: 

 min
𝜈,𝛼0,𝜌,𝛽

∑((�̅�𝑖 − 𝜎𝐵(

𝑖

𝜈, 𝛼0, 𝜌, 𝛽; 𝐾𝑖, 𝑆𝑎,𝑏(0)))2 (22) 

where 𝜎𝑖 are the market observed implied volatilities and 𝜎𝐵 (𝜈, 𝛼0, 𝜌, 𝛽; 𝐾𝑖, 𝑆𝑎,𝑏(0)) are the 

fitted implied volatilities as a function of the SABR parameters, strike rates 𝐾𝑖 and ATM 

forward rate 𝑆𝑎,𝑏(0). The calibration is implemented in Matlab. 

4.4 Backtesting 

The backtesting process is implemented in two stages following the strategy of Angelidis et 

al. (2007). First, the different models are evaluated with conditional and unconditional tests 

based on the information provided by the number and frequency of VaR exceptions. Also the 

Basel traffic light test is implemented in this stage. Moreover, the first stage of backtesting 

process should provide an answer to the Hypothesis 1 by providing insight whether the used 

models are suitable for measuring swaption VaR.  

Next, the second stage of testing is implemented to the models that have passed the first stage. 

In the second stage, the risk measurement accuracy of the models is compared using the loss 

function based backtesting method described in paragraph 4.7. More specifically, models with 

different methods with respect to smile modelling but otherwise similar configurations are 

compared together by gathering data from the series that passed the first stage. For instance, a 

TW model with fixed smile method is compared against TW model with random smile 

method with the same underlying swaption contract. Nevertheless, as the loss function based 

backtest would define a model with zero exceptions as the superior model, this test will be 
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implemented by taking into account only the exceptions that have occurred on those days 

when both of the models have generated an exception. 

4.4.1 The statistical framework of backtesting 

The most straightforward method for assessing the quality of a given VaR model is to count 

the number of times when the actual portfolio losses exceed the model’s respective estimates: 

if the number of exceptions goes above the limit indicated by the used confidence level, the 

model could be too optimistic in the sense it might underestimate the actual risk. In addition, 

if the number of exceptions is less than predicted by the confidence level, the model may 

overestimate the risk, which also indicates that the quality and hence the estimates of the 

model might be questionable. Obviously, the number of exceptions is a random variable, 

which means that the amount of exceptions rarely equals the number suggested by the 

confidence interval. Consequently, the decision whether the number of exceptions is 

acceptable or not should be based on study of appropriate statistical analyses. 

Statistical tests provide valuable insight into VaR model quality estimation and, more 

importantly, a systematic approach to decision making when assessing the validity of a VaR 

model. In the tests of unconditional coverage a VaR model’s failure rate is used as a basis for 

statistical analyses when assessing the quality of the model. The failure rate is based on the 

“hit” sequence of historical losses that have exceeded the respective VaR estimates over a 

given observation period. Following Campbell (2005), when the daily profit and loss figure of 

the portfolio is denoted as 𝑥𝑡+1, the hit function can be presented as follows:  

 𝐼𝑡+1(𝛼) = {
1, 𝑥𝑡,𝑡+1 ≤  −𝑉𝑎𝑅𝑡  (𝛼)

0, 𝑥𝑡,𝑡+1 >  −𝑉𝑎𝑅𝑡 (𝛼) 
 (23) 

The failure rate is defined as the number of violations divided by the total number of 

observations T. Hence, the hit ratio is an unbiased estimator of the probability of observing a 

violation so that  

 
1

𝑇
𝐼(𝛼) = �̂� (24) 

 

where the number of exceptions is 
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 𝐼(𝛼) =  ∑ 𝐼𝑡(𝛼)

𝑇

𝑡=1

 (25) 

When the sample size increases so that �̂� converges to 𝛼, the following relation should hold 

for an accurate model: 

 𝛼 = 1 − 𝑐 (26) 

where c denotes the chosen confidence level. Thus, for example when using 95% confidence 

level, 𝛼 should equal to 5%. Hence, the backtesting procedure resembles a Bernoulli trial in 

which an action with two possible outcomes is repeated numerous times and in which each 

outcome is independent from the prior outcomes. Therefore, the number of violations follows 

binomial probability distribution as follows:  

 𝑓(𝐼(𝛼)) = (
𝑇

𝐼(𝛼)
) 𝛼𝐼(𝛼)(1 − 𝛼)𝑇−𝐼(𝛼) (27) 

With sufficiently large sample size, the binomial distribution can be approximated with the 

normal distribution so that 

 𝑧 =
√𝑇(�̂� − 𝛼)

√𝛼(1 − 𝛼)
≈ 𝑁(0,1) (28) 

The hypothesis tests could then be conducted based on the known sample distribution of 𝑧. 

However, when conducting statistical analysis in either accepting or rejecting a null 

hypothesis, there is always a tradeoff between type I and type II errors. When validating 

soundness of a given VaR model, the null hypothesis refers to the goodness of the VaR 

model, type I error stands for a rejection of a sound model, and type II error, respectively, 

refers to not rejecting a deficient model. In the field of risk management, incurring type II 

errors can be very costly and therefore a high threshold should be applied when accepting 

validity of a VaR model.  

4.5 Tests of unconditional coverage 

The purpose of tests of unconditional coverage is to determine whether the hit sequence 

generated by a VaR model satisfies the unconditional property i.e. the aim is to study if the 



57 

 

sequence contains a tolerable amount of exceptions or not. The tests employed in this study 

that belong to the category of unconditional tests include the proportion of failures tests and 

the regulatory Basel traffic light test.  

4.5.1 Proportion of failures test 

The leading idea behind tests of unconditional coverage is to test whether the observed failure 

rate is consistent with the expected failure rate indicated by the confidence level. A commonly 

used test based solely on the failure rate and confidence interval is a proportion of failures 

(POF) test proposed by Kupiec (1995). In the POF-test it is assumed that the number of 

violations follows the binomial distribution, and the null hypothesis for a correct model is  

 𝐻0: 𝛼 = �̂� =
𝐼(𝛼)

𝑇
 (29) 

Respectively, the null hypothesis is tested against an alternative hypothesis 𝐻𝐴: 

 𝐻𝐴: 𝛼 ≠ �̂� (30) 

Consequently, the test aims to provide an answer to the question whether the observed failure 

rate significantly differs from the expected rate and it can be performed as a likelihood-ratio 

test that expresses how many times more likely the observed data are under the null model 

compared to the alternative model. More specifically, the ratio to be investigated is the 

maximum probability of the observed result under the null hypothesis divided by the 

maximum probability of the observed result under the alternative hypothesis. The logarithm 

of the computed ratio is assumed to be asymptotically chi-square (𝜒2) distributed with one 

degree of freedom and thus the obtained test statistic is compared to a critical value obtained 

from 𝜒2 distribution. The smaller the ratio is, the higher the value of the test statistic becomes, 

which leads to rejection of the null hypothesis if the critical value is exceeded. 

 The POF statistic is of the following form: 

 𝐿𝑅𝑃𝑂𝐹 = 2 log (
(1 − �̂�)𝑇−𝐼(𝛼)�̂�𝐼(𝛼)

[1 − (𝛼)]𝑇−𝐼(𝛼)(𝛼)𝐼(𝛼)
) (31) 

While calculating the log-likelihood ratio is a purely quantitative exercise, choosing which 

confidence level to use in rejecting the model resembles more art than science. Therefore, 
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even though the chosen level should balance the probability of committing type I and type II 

errors, the decision is often an arbitrary one. For instance, 95% test confidence level implies 

that the model will be rejected only if the evidence against is fairly strong, and with 99% 

confidence level the evidence against a given model should be very strong before it is 

rejected.  

Table 6: 

Non-rejection ranges for Proportion of Failures –test 

This table shows non-rejection ranges for a VaR model with different chosen VaR confidence and test confidence levels with 

samples sizes of 250 and 1 000. Probability level  is the expected proportion of failures, or exceptions, under a given VaR 

confidence level. 

 

However, while POF test is relatively simple to implement, it suffers from two rather major 

shortcomings. First, the test is not statistically powerful with small sample sizes. For example, 

with 250 observations the acceptance percentage at 95% confidence level for a VaR model 

using 99% confidence level is  

[
0

250
 ,

6

250
] = [0% , 2.4%] 

whereas with sample size of 1000 the respective region is 

[
5

1000
 ,

16

1000
] = [0.5% , 1.6%] 

Hence, the relative acceptance region for the smaller sample size is substantially wider than in 

the latter case, which means that rejecting an inaccurate model becomes harder as sample size 

decreases.  

  
 Non-rejection range for number of exceptions y 

 
Test confidence level  95 % 

 
99 % 

VaR 

Confidence 

Level 

Probability  

Level p 
 T = 250 T= 1 000 

 
T = 250 T= 1 000 

99 % 1 %  0 ≤ y ≤ 6 5 ≤ y ≤ 16 
 

0 ≤ y ≤ 7 4 ≤ y ≤ 19 

95 % 5 %  7 ≤ y ≤ 19 38 ≤ y ≤ 64 
 

5 ≤ y ≤ 22 34 ≤ y ≤ 68 

90 % 10 %  17 ≤ y ≤ 34 82 ≤ y ≤ 119 
 

14 ≤ y ≤ 38 77 ≤ y ≤ 125 
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The second shortcoming is that the test does not account for time variation in the observed 

exceptions, which implies that a supposedly accurate model that generates an acceptable 

amount of exceptions could still fail in capturing market volatility and correlations. For that 

reason Christoffersen (1998) proposes complementing unconditional coverage tests with 

independence tests that take into account possible clustering of the observed exceptions. 

4.5.2 Regulatory test 

The Basel test is simple to implement as it is based only on the number of exceptions during 

the preceding 250 business days. However, since the backtesting period is shorter than 250 

days and the VaR confidence level is 95% instead of 99%, the number of exceptions that 

define the color of the category in which the model belongs are different from shown in Table 

1. As a general rule for the test, the yellow and red zones begin at the points where the 

cumulative probability of obtaining a given number or fewer exceptions when the model is 

correct exceeds 95% or 99.99% respectively. 

However, the three zone approach adopted by the Committee has the same limitations as the 

POF test by Kupiec, namely the statistical weakness as well as ignorance of possible time 

dependence of the observed exceptions. This implies that the test can hardly be used for 

comparing alternative models while it may on some level serve its purpose of providing a 

straightforward framework for model validation.  

4.6  Tests of conditional coverage 

While the POF test and the Basel three zone tests use the ratio of observed exceptions as the 

only input, tests of unconditional coverage are designed to account also for the time variation 

of the exceptions. Despite the fact that the clustering of VaR violations is not considered in 

the regulatory backtesting procedure, Christoffersen and Pelletier (2004) further emphasize 

that it should actually receive more attention since successive large losses are more likely to 

lead to a bankruptcy. Moreover, if the VaR violations are clustered in time and also across 

different banks, as Berkowitz and O'Brien (2002) find, it may be a significant source of 

systemic risk. Therefore, it can be argued that the clustering of VaR exceptions could also be 

used as basis for rejecting a given VaR model. 
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Chirstoffersen’s (1998) Markov test is one of the first tests of conditional coverage. It is 

designed to examine whether or not the probability of a VaR exception is dependent on 

whether or not a VaR exception has occurred on the previous day. For a sound model, the 

probability of a VaR exception on a given day should be independent of whether or not an 

exception has taken place on the preceding day. 

The test employs a two-state Markov process, and it is conducted through creating a 2 by 2 

contingency matrix recording portfolio’s VaR exceptions on successive days as shown below 

in Table 7. If the exceptions are independently distributed in time, the proportion of 

exceptions subsequent to a day when no exception has occurred 𝜋1 =
𝑁3

𝑁1+ 𝑁3
 should be the 

same as proportion of exceptions following a day when an exception has occurred 𝜋2 =

𝑁4

𝑁2+𝑁4
. Moreover, in order to satisfy the unconditional coverage property, the ratio of total 

number of exceptions should equal to the ratio indicated by the VaR level so that Π =

𝑁3+𝑁4

𝑁
= 𝛼. Consequently, the following null hypothesis can be evaluated:  

 𝐻0: 𝜋1 = 𝜋2 (32) 

 

Table 7: 

Contingency matrix for Markov independence test 

𝑁1 is the number of observations when VaR estimate is not exceeded subsequent to a day when an exception has not occurred 

and 𝑁2 is the number of no-exception observations subsequent to days when exceptions have occurred. Correspondingly, 𝑁3 

and 𝑁4 are the number of exceptions on days following no-exception and exception days. 

  

 𝐼𝑡−1 = 0 𝐼𝑡−1 = 1  

𝐼𝑡 = 0 𝑁1 𝑁2 𝑁1 + 𝑁2 

𝐼𝑡 = 1 𝑁3 𝑁4 𝑁3 + 𝑁4 

 𝑁1 + 𝑁3 𝑁2 + 𝑁4 𝑁 

 

The test statistic is again a log-likelihood ratio, and it is of the following form: 

 𝐿𝑅𝑖𝑛𝑑 = 2log (
(1 − 𝜋1)𝑁1+𝑁2𝜋1

𝑁3(1 − 𝜋2)𝑁2𝜋2
𝑁4

(1 − Π)𝑁1+𝑁2Π(𝑁3+𝑁4)
)  (33) 
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𝐿𝑅𝑖𝑛𝑑 is also chi-square distributed with one degree of freedom. Moreover, it can be 

combined with the POF test to obtain a joint test for studying simultaneously both the 

unconditional coverage and independence properties of the exception series. The combined 

statistic is simply the following: 

 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑃𝑂𝐹 + 𝐿𝑅𝑖𝑛𝑑 (34) 

and it is also chi-square distributed but with two degrees of freedom (Christoffersen, 1998). 

However, in order to gain more insight about the backtesting results, the tests are utilized 

separately in this study.  

4.7 Loss function based backtesting 

Using merely the information derived from the hit ratio and sequence of VaR series 

disregards substantial amount of data that could be used for evaluating the precision of a 

given model. Moreover, although testing unconditional and conditional properties assists in 

ruling out deficient models, the test results cannot be used for ranking the models. Lopez 

(1999) proposes a loss function based forecast evaluation framework in order to overcome 

this shortcoming of previous backtesting methods. The proposed loss function is as follows:  

 𝜓𝑡+1 = {
1 + (𝑉𝑎𝑅𝑡(𝛼) − 𝑥𝑡+1)2 , 𝐼𝑡+1(𝛼) = 1

0                                          , 𝐼𝑡+1(𝛼) = 0
  (35) 

The loss function is designed to account for the magnitude of the tail losses and a score of one 

is added when an exception is observed. Consequently, the model with the lowest total loss, 

∑ 𝜓𝑡
𝑇
𝑡=1 , is preferred. However, as the author suggests, the loss function result cannot be used 

for separating accurate models from inaccurate since a model that generates zero exceptions 

would be deemed as the most accurate. Hence, the loss function result should be used for 

comparing the relative accuracy of a given number of alternative models. Nevertheless, as 

Angelidis et al. (2007) point out, the loss 𝑥𝑡+1 exceeding 𝑉𝑎𝑅𝑡(𝛼) should actually be 

compared to expected shortfall 𝐸𝑆(𝛼)measure and not to VaR estimate since the latter does 

not give any indication about the magnitude of the expected loss. For that reason, the authors 

suggest the following adjustments to the loss function: 

 
𝜓1,𝑡+1 = {

|𝑥𝑡+1 − 𝐸𝑆(𝛼)(𝑖)
𝑡| , 𝐼𝑡+1(𝛼) = 1

0                                , 𝐼𝑡+1(𝛼) = 0
  

(36) 
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and 

 𝜓2,𝑡+1 = {
(𝑥𝑡+1 − 𝐸𝑆(𝛼)(𝑖)

𝑡)
2

 , 𝐼𝑡+1(𝛼) = 1

0                                   ,         𝐼𝑡+1(𝛼) = 0
  (37) 

so that for each model i the mean absolute deviation (MAD), 
1

𝑇
∑ 𝜓1

𝑇
𝑡=1 , and mean squared 

error (MSE), 
1

𝑇
∑ 𝜓2

𝑇
𝑡=1 , are computed. Moreover, the total loss value given a VaR exception 

is  

 𝐿𝑖 = ∑ 𝜓𝑙,𝑡
(𝑖)

𝑇

𝑡=1

 (38) 

The authors further propose applying Hansen's (2005) test for superior predictive ability 

(SPA) for studying the statistical significance of the differences between a benchmark model 

and an alternative model. The null hypothesis that the benchmark model i* is not 

outperformed by alternative models i, for i=1,...,M,  is tested with the following statistic:  

 
𝑇𝑙

𝑆𝑃𝐴 = max
𝑖=1,…,𝑀

√𝑀�̅�𝑙,𝑖

√𝑉𝑎𝑟(√𝑀 �̅�𝑙,𝑖)

 
(39) 

where  

 
𝑇𝑙

𝑆𝑃𝐴 = max
𝑖=1,…,𝑀

√𝑀�̅�𝑙,𝑖

√𝑉𝑎𝑟(√𝑀 �̅�𝑙,𝑖)

 
(40) 

 �̅�𝑙,𝑖 =
1

𝑇
∑ 𝐿𝑖,𝑡 − 𝐿𝑖∗,𝑡

𝑇

𝑡=1

 (41) 

Following Angelidis et al. (2007), the estimation of √𝑉𝑎𝑟(√𝑀 �̅�𝑙,𝑖) and p-values for the test 

statistic are obtained by utilizing the stationary bootstrap of Politis and Romano (1994). 

Moreover, the block-length used in the bootstrap is obtained using the automatic block-length 

selection algorithm presented by Politis et al. (2009).  
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5 RESULTS 

This section presents the empirical findings of my thesis. The section starts with an overview 

of the VaR estimation results and then proceeds to more detailed assessment of the 

differences between the tested models. A list of abbreviations used in the tables as well as 

short descriptions of the models introduced in section 2 are presented in Appendix A for a 

quick review.  

5.1 VaR results 

Table 8 and Table 9 show the average VaR figures at 95% confidence level for each of the 

swaption contracts during the backtesting period. In the following sections, models in which 

the daily volatility moves are measured from a given strike level are labeled with a prefix 

“Proxy”. Correspondingly, the models in which the implied volatility changes are determined 

from the daily differences for a specific contract are tagged with term “Direct”. Additionally, 

“ATM” and “Smile” in the column headers refer to the moneyness level from which the 

implied volatility changes are observed. Hence, “ATM” refers to the Fixed smile method and 

“Smile” refers to the Random smile method. The former table contains the estimates for long 

positions and the latter for short positions. Results for 90% confidence level are left 

unreported as they provide no additional information regarding the performance of the 

models. Furthermore, since no visible differences arise between estimates drawn from a fitted 

distribution versus those obtained by interpolating from the discrete scenarios, the results 

presented in the following chapters are acquired without the fitting method described in 4.2.4.  

While investigating the average VaR estimates tells little from the actual performance of the 

models, it reveals some information about the differing risk levels that the models report. On 

average, FHS models appear to generate the lowest estimates while HS and TW models seem 

to provide rather similar figures. The lower level of FHS estimates reflects the fact that 

changes in the risk factors tend to be quite modest for most part of the backtesting period. 

Furthermore, the estimates for short positions are universally higher than for the long 

positions. This phenomenon is explained by the skewed risk factor returns during both the 

observation and the backtesting period as a whole. The numbers could be different at least for 

HS models in case the historical observation period was longer and contained a broader scale 

of different scenarios. 
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However, average numbers provide only one perspective of the differences among the 

considered models and do not tell much about the models’ reactiveness to market fluctuations, 

for instance. 

A graphical illustration in Figure 8 provides an example of the differences between HS, TW 

and FHS models for long and short 5x2 ATM receiver positions. The figure shows how the 

estimates obtained with TW and FHS models follow more closely the realized profit and loss 

numbers, whereas the level of HS estimates is more static. 

While Figure 8 shows that the differences concerning the choice of VaR method are clearly 

visible, the differences between fixed and random models are less pronounced and depend on 

other model specifications. Figure 9 shows an instance where the difference between smile 

models is noticeable for the long position, while the VaR figures for the short position are 

nearly equal for the short position. However, when using HS model with “Proxy” method for 

implied volatility fluctuations, the difference between using ATM level or moneyness-

dependent changes is negligible. One reason behind this lies in the VaR components: the risk 

arising from interest rate fluctuations is clearly higher than that of stemming from changes in 

implied volatilities. The relative differences of the components are illustrated in Figure 10 and 

average VaR components for Proxy_HS are presented in Table 19 (Appendix C). 

Nevertheless, a more detailed assessment is still needed to systematically evaluate how the 

models succeed, which is the main theme of the subsequent chapters. 
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Table 8: 

Average long receiver swaption VaR estimates 

The table presents average VaR estimates over the backtesting period for long receiver swaption contracts and for the different models studied. VaR figures are absolute values in euros for 

swaption contracts with 10 MEUR notional. The table columns are sorted by VaR method (Historical Simulation, Time Weighted and Filtered Historical Simulation), by volatility change 

measurement (proxy, direct or component) and by used moneyness (ATM or Smile). The number of daily observations from which the averages are computed is 228. 
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Table 9: 

Average short receiver swaption VaR estimates 

The table presents average VaR estimates over the backtesting period for short receiver swaption contracts and for the different models studied. VaR figures are absolute values in euros for 

swaption contracts with 10 MEUR notional. The table columns are sorted by VaR method (Historical Simulation, Time Weighted and Filtered Historical Simulation), by volatility change 

measurement (proxy, direct or component) and by used moneyness (ATM or Smile). The number of daily observations from which the averages are computed is 228. 
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Figure 8: 

VaR estimates and actual Profit and Loss figures 

The estimates given by the HS, TW and FHS VaR models are shown with the actual daily Profit and Loss (PL) during the 

backtesting period. The long position estimates are shown below as negative numbers. The contract in question is a short 

position in 5x2 swaption with ATM strike. 

 

 

Figure 9: 

The difference between smile methods 

The graph depicts Direct_TW VaR estimtes for a 10x2 swaption with strike ATM +50 bps using fixed (“ATM”) and random 

smile (“Smile”) methods. Estimates for the long position are in the lower part of the figure and estimates for the short 

position are in the upper part. While the difference is not visually significant, the respective number of exceptions are 14 and 

7 for long position in the favour of random smile method. For the short position, the respective counts of hits are 6 and 8. 
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Figure 10: 

VaR components 

The figure illustrates the VaR risk components for long 1x5 ATM + 25 bps receiver position using HS_Proxy with fixed and 

random smile methods. IR stands for interest rate risk and ATM and Smile Vols are volatility components of the respective 

smile methods. Vol VaR Spread shows the spread between the smile methods. Interest rate risk is naturally same in the both 

methods. The average risk components over the backtesting period are shown in Table 19 (Appendix C). 

 

 

 

5.2 Stage one backtesting results 

Table 10 presents the number of exceptions observed in each of the backtesting series 

estimated for long positions using 95% VaR confidence level. As the number of backtesting 

days is 228, the expected number of hits is approximately 11. Moreover, in order to obtain 

“Green” flag as a result from the regulatory three zone test a model is allowed to generate 16 

exceptions with the parameters used. The results from the regulatory test are presented in 

Table 11. Additionally, to pass Kupiec’s (1995) proportion of failures test, the acceptable 

region for number of exceptions is from 6 to 18 using 95% test confidence level. In this light, 

the VaR estimates tend to provide rather optimistic estimates: essentially each of the FHS 

models should be rejected on the basis of regulatory backtest and many of the HS and TW are 

either in the “Yellow” -zone or at the upper end of the acceptable region for “Green” test 

outcome. On the contrary, results for the short positions are on the other end of the scale, thus 

generating rather conservative VaR estimates. The results for short positions are presented in 

Appendix C. Consequently, based on the results for short positions, each of the models would 

be acceptable in terms of the regulatory test. However, one should not feel comfortable using 
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a model whose performance depends on the direction of the position. Hence, FHS models are 

deemed inaccurate, and the rest of the analysis concentrates on the results for long positions 

models that have gained at least a “Yellow” outcome from the Basel test. 

The HS and TW models generate the highest VaR estimates on average during the backtesting 

period, as shown in Table 8, which also results into least number of exceptions among the 

different models. The low number of hits for short receiver positions, and even zero in the 

case of 1x5 swaption contracts, is due to relatively sharp interest rate moves during the fall of 

2011: the fluctuations remain in the historical distribution throughout most of the backtesting 

period for each of the considered models, but in the HS model, there is no weighing that 

would diminish the effect of older observations. However, due to the skewed distribution of 

historical returns, the estimates for long positions are correspondingly rather optimistic. On 

the contrary, TW models generate markedly more dynamic estimates that reflect and follow 

market movements more closely. Despite the noticeable rise in VaR figures during the early 

summer 2012 resulting from increased fear for further escalation of the Euro crisis, the 

numbers quickly return to lower levels, which results into lower overall VaR estimates for 

contracts with short maturities. Nevertheless, for swaptions with longer maturities there is no 

significant difference between average VaR estimates of HS and TW models. From the 

viewpoint of minimizing capital charges, it would be optimal to find a model with lowest 

average VaR estimates combined with the least number of exceptions. However, the 

differences between the models are relatively small and no such chance for optimization is 

available. Furthermore, on the one hand, VaR estimates that reflect the market fluctuations 

more closely are appropriate for monitoring the prevailing risk status, but on the other hand, 

using such vigorous numbers for risk limitation purposes is not very practical, and would 

most likely be objected by those subject to the VaR limits. 

While the skew dependent model is perhaps the most theoretically appealing of the alternative 

models covered in this study, it nevertheless fails to provide sufficiently accurate estimates as 

shown by the backtesting results. The problem is again the distributional narrowness of 

historical observations that does not contain sharp moves in volatilities. Moreover, as the 

interest rates decline and implied volatilities increase on average during the observation 

period, most scenarios are positioned below the prevailing forward rate and somewhat above 

the prevailing volatility level if no other adjustments are applied. However, as the negative 
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correlation between the interest rates and implied volatilities breaks for contracts with longer 

maturities more often during the backtesting period than within the whole observation period 

on average, this leads to profit and loss figures not covered by estimation scenarios. Hence, 

the models tend to generate excessive number of VaR breaches. Figure 11 provides an 

illustration of the scenarios formed using HS and skew dependent models with random smile 

method.   

Figure 11: 

Model scenarios 

The graphs below illustrate scenarios generated by Proxy_HS and Component_HS models on June 5, 2012. The cross (X) 

shows the present forward rate and implied volatility pair for a 10x5 +25 bps receiver swaption and the plus (+) shows the 

corresponding location on the following date. The historical observations are concentrated below the prevailing forward rate 

in both models, but the locations of volatilities differ to a greater extent. While the scenarios in Component_HS model are 

take better into account the prevailing shape of the volatility smile on the estimation day (t), the scenarios do not contain 

sufficiently large volatility jumps to match the actual change to t+1, which leads to a VaR exception. 

 

 

 

Table 12 shows the p-values from Kupiec (1995) test. The p-values represent the probability 

of a obtaining an observation that is even less likely than the number of hits found in Table 10 
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with 228 observations and 95% VaR confidence level if the model in question was accurate. 

In short, the results from proportion of failures test are similar to those of regulatory test. 

Consequently, Direct_TW with both smile methods and Proxy_TW with moneyness-

dependent smile method, as well as Proxy_HS and Direct_HS with moneyness-dependent 

implied volatility changes pass the test with each of the swaption contracts. Additionally, 

Component_HS with moneyness-dependent smile methods perform rather well, but still 

yields unacceptable test results for 5x5 and 10x5 swaptions with specific strike levels. 

In contrast to results from tests of unconditional coverage, not a single one of the studied 

models can be deemed accurate based on Christoffersen’s (1998) test of conditional coverage. 

This, however, is not that surprising as models based on historical simulation usually suffer 

from clustering of exceptions, as for instance Pritsker (2001) points out. The explanation 

arises again from the slow responsiveness to changing market conditions. On the contrary to 

HS models, unreported results for FHS models reveal that nearly all of them would pass the 

test of conditional coverage resulting from their faster responsiveness. Also TW models 

appear to perform slightly better than HS models due to their relatively more dynamic nature. 

Nevertheless, neither of the TW models pass the test with all swaption contracts. The p-values 

of Christoffersen’s (1998) test are presented in Table 13. The logic is equal to that of 

Kupiec’s (1995) test p-values: the lower the figure, the more apparent it becomes that the null 

hypothesis of model accuracy should be rejected. 
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Table 10: 

VaR exceptions 

The table shows the number of VaR exceptions for each of the series when estimated for long receiver swaption positions. VaR confidence level is 95% and the number of daily observations is 

228. Consequently, the expected proportion of exceptions is 5%, i.e. number of hits should be approximately 11. 
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Table 11: 

Basel test results 

The table displays results from the regulatory Basel test. The test result is based on the number of VaR exceptions, and to obtain a “Green” flag, 16 hits are allowed when the number of 

observations is 229 and VaR confidence level is 95%.  
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Table 12: 

Kupiec test results 

The table shows p-values of Kupiec’s proportion of failures test. The p-values refer to probability of getting the number of 

hits presented in Table 10 with given number of observations and VaR confidence level. Consequently, the lower the p-value, 

the more likely it is that the model in question fails to provide accurate estimates. Series that should be rejected at 95% test 

confidence level are tagged with a single asterisk (*) and results that should be rejected at 99% confidence level are marked 

with a double asterisk (**).  
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Table 13: 

Christoffersen test results 

The table presents p-values of Christoffersen’s test of conditional coverage. The p-values refer to probability of obtaining a 

sample that is less likely than that of observed given that the null hypothesis of accurate model is true. Series that should be 

rejected at 95% test confidence level are tagged with a single asterisk (*) and results that should be rejected at 99% 

confidence level are marked with a double asterisk (**). 
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To summarize the backtesting results from the first stage, none of the considered models pass 

all of the tests with each of the swaption series. However, as the regulatory test can be 

regarded as the ultimate limit, some models still perform well enough to be deemed accurate. 

Consequently, TW models are left on the table for further investigation. Thus, the backtesting 

is continued in the second stage more thoroughly to study the differences between the smile 

methods. Moreover, the relevance of using actual changes versus proxy changes in implied 

volatilities is also studied in the following part. 

5.3 Stage two backtesting results 

While a VaR estimate only indicates the loss figure that is not expected to be exceeded with a 

given confidence level, it does not provide any approximation about the absolute level of 

profit and loss for the position, and hence, determining whether an individual VaR figure is 

correct or not is not feasible. Consequently, unless there are distinctive differences in the 

backtesting results with respect to observed VaR exceptions, it is not possible to outright 

declare one model better than the other. On the other hand, an expected shortfall figure does 

provide a direct estimate about the loss figure on the condition that the respective VaR level is 

breached. Hence, it is possible to compare the relative accuracy of given models using the 

data from VaR exceptions and corresponding expected shortfall estimates and actual profit 

and loss figures. After all, a VaR and an expected shortfall measures are based on the same 

distribution.  

Table 14 presents the mean absolute deviations and mean squared error figures of the 

expected shortfall estimates from the days when the respective VaR estimates are exceeded. 

The table also shows the p-values of Hansen’s (2005) SPA test for each of the test series. A 

low p-value suggests that the accuracy of the alternative model is likely to outperform that of 

the benchmark model. 

In the first test set up computed for Proxy_TW models, the fixed smile method is the 

benchmark and the random smile method represents the alternative. The results based on the 

both MAD and MSE figures suggest that only in two out of 24 considered cases the random 

smile method yields more accurate results, which suggests that using OTM implied volatility 

data would not provide a measurable enhancement to risk estimation precision.  
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Additionally, Table 14 presents the results for comparison between Proxy_TW and 

Direct_TW, which provide insight whether there is a measurable difference between models 

utilizing either changes in implied volatilities for a given contract versus using approximated 

changes derived by computing the difference between different contracts but with equal strike 

rates with respect to their corresponding ATM rates. The latter is used as the benchmark 

model in the tests.  Since the alternative model, i.e. Direct_TW, yields more accurate expected 

shortfall estimate for only two of the 24 studied contracts when tested with MAD and for 

none when the differences are measured using MSE, it is unlikely that the more complicated 

method would provide any measurable enhancement in VaR estimation over the benchmark 

model. 

To summarize the stage two backtesting results, it appears that including moneyness 

considerations into VaR estimation does not have a measurable impact on the precision of the 

estimates from either of the possible perspectives. First, the difference between using implied 

volatility changes from a moneyness-dependent level versus ATM level is negligible. Second, 

there is no observable enhancement in the estimates when taking moneyness changes into 

consideration also from the viewpoint of which figures to use in compiling the distribution for 

volatility fluctuations. 

 However, while the number of VaR exceptions can be considered somewhat high from the 

viewpoint of model accuracy, the available sample for this test is apparently nonetheless 

insufficient. The p-values end up almost automatically to one or very close to zero on the 

basis of even slightest difference in the observed average differences in ES values. Hence, one 

should be careful when drawing conclusions based on these results. 
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Table 14: 

Loss function test results 

The table presents the figures from loss function based backtest. MAD stands for mean absolute deviation and MSE for mean squared error. The error terms are computed from the differences 

between the expected shortfall measures and the actual profit and loss figures from the days when VaR estimates of both of the models being compared are exceeded. A high p-value suggests 

that the benchmark model is likely to perform at least as well as the alternative model, while low p-values indicate that the alternative is preferable. P-values less than 5% and 1% are highlighted 

with single- and double-asterisks respectively. 
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6 CONCLUSION 

VaR has gained a resilient position as a tool for market risk measurement in financial 

institutions and also as a basis for capital requirements mandated by financial regulators. For 

these reasons, an ongoing development of VaR models carries its role in safeguarding the 

stability of individual financial actors and in a larger scale also the soundness of the economy 

as a whole. This paper contributes to that development with a rather specific approach 

through studying the significance of accounting for asynchronous shifts in the implied 

volatility smile when assessing the market risk of a swaption contract. Using a sample of 

swaption daily profit and loss figures with corresponding VaR estimates created by using a 

variety of models allows me to test for the impact of incorporating the moneyness-dependent 

volatility scenarios into VaR modelling on VaR estimation accuracy. This section summarizes 

my findings, draws the conclusions and finally presents some suggestions for further research.  

6.1 Summary of results and conclusions 

The main findings of this paper are recapitulated in Table 15. Overall, the results concerning 

the applicability of historical simulation for swaption VaR measurement are mixed. For the 

most part, the validity of VaR models based on historical simulation is rejected by the 

implemented backtests due to both too numerous and too clustered VaR exceptions. While it 

is difficult to provide an utterly conclusive explanation for this finding, it is obvious that VaR 

models based on historical simulation require on average a substantially longer observation 

period than the one used in this study, as for instance Pritsker (2000) points out.  

Nevertheless, HS and TW models perform adequately well in terms of regulatory backtest and 

could hence be used without additional penalty in VaR based capital charge. However, one 

should still bear in mind that even if the backtests fail to reject the validity of a given VaR 

model it does not suggest that the model actually performs well in any given situation.  

The additional key objective of this paper is to provide insight about the relevance of 

embodying volatility smile considerations into VaR estimation process. The second stage 

backtesting results suggest that employing moneyness-dependent implied volatility changes 

does not result into improved VaR estimation accuracy when both of the comparable models 

can be deemed sufficiently accurate with respect to number of VaR exceptions generated 
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during the backtesting period. This finding is in line with the observation that the fluctuations 

in OTM swaption volatilities closely resemble those occurring in ATM level. The second set 

of backtests also shows that utilizing swaption contract specific changes instead of moneyness 

specific changes in implied volatilities does not significantly improve the estimation precision 

either. 

Table 15: 

Summary of results 

This table presents a summary of the hypotheses and corresponding findings of this study. 

 

 

Consequently, it is unlikely that incorporating more advanced volatility smile methods into 

VaR estimation would result in any observable enhancement in VaR precision compared to 

using merely ATM level changes that are observed between ATM swaptions on successive 

days. Moreover, the trivial differences in the volatility components of VaR estimates suggest 

that using ATM volatility changes would be sufficient even if the interest rate risk was 

hedged. This suggests that there is no need to retrieve a sample of historical OTM swaption 

volatilities for VaR computations, which is positive news for risk managers as the availability 

of historical ATM swaption volatilities vastly exceeds that of OTM volatilities. However, the 

results from the first set of backtests show limited evidence that the number of exceptions are 

more often within the acceptable boundaries for moneyness-dependent VaR methods when 

contract and moneyness specific volatility changes are applied instead of merely moneyness 

specific volatility changes. Hence, if one wishes to go the extra mile of including volatility 
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smile’s shape considerations into VaR calculations by using a history of moneyness-

dependent changes in implied volatilities, it is advisable to utilize the information content 

available from the historical smile data and to also use actual volatility changes instead of 

proxy-changes. 

Nevertheless, the observations do not propose that a risk manager could overlook the smile 

changes as a source of risk, since the absence of major shape changes during this observation 

period does not connote that they were nonexistent at all times. Hence, rather than including 

smile changes in daily VaR estimation, it might be more efficient to assess the smile risk 

through stress testing with appropriate scenarios in which different level shifts, convexity 

changes and rotations are covered. The scenarios’ effect on the present value of the position 

provides the manager insight about the position’s risk status on the level of detail that VaR 

estimates are unable to deliver. Moreover, the stress tests could expose some risks that VaR 

fails to disclose, which also highlights the importance of stress tests as a necessary 

complement to VaR measurement regardless of how sophisticated the VaR system is. 

Linking the findings presented in this paper to previous studies is unfortunately inconceivable 

for the most part due to lack of published comparable research. A number of studies with 

regards to different VaR models and their backtesting results are naturally available, but those 

implemented for swaption VaR measurement are conspicuously absent. From that point of 

view, this study is able to contribute novel insight into practical implementation of VaR 

systems with regards to swaption market risk measurement. However, the mixed results 

highlight the need for further research in VaR based risk estimation methods as there 

obviously appears to be room for improvement in the measurement precision with the models 

presented in this study. 

A natural extension to this study would be to implement analogous VaR estimations with 

equal model specifications but with a significantly longer historical observation period if 

possible. As there does not appear to be fundamental issues with the covered models, using a 

wider spectrum of historical returns should add to the accuracy of any of the described 

models. 

Additionally, as the interest rates move close to zero, log-volatilities have a tendency to 

become extremely high. As a result, using normal volatilities becomes a viable alternative in 
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swaption modeling as they remain more stable in time. Consequently, developing swaption 

VaR estimation models based on utilizing a pricing model that assumes normally distributed 

interest rate changes as opposed to log-normal moves assumed in Black model might present 

a fruitful avenue for future research in the area of market risk management. A feasible 

alternative for such pricing model is Bachelier’s (1900) model or some of its more recent 

modifications.   
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APPENDIX A: ABBREVIATIONS AND TERMINOLOGY 

This appendix provides a list of frequently used abbreviations and terminology used in this 

study. The list contains also short descriptions of selected model names and prefixes used in 

the tables and result discussion.  

ATM: at-the-money. A situation when the strike price of an option equals to the price 

of the underlying security. For a swaption, the term “price” refers to the fixed rate 

(also called as “swap rate”) of the underlying interest rate swap, and for an ATM 

swaption, the strike rate is equal to the forward rate that would apply between the 

maturity and the tenor of the underlying swap so that the present value of the swap 

would be zero on the swaption maturity. 

In the result tables, “ATM” refers to the VaR smile method in which the historical 

implied volatility changes are observed from the ATM level. See Fixed smile method. 

“Component_”-prefix: in the result tables, refers to VaR model that utilizes Skew 

dependent smile method. 

“Direct_”-prefix: refers to VaR models where the historical changes in implied 

volatilities that have occurred for swaption contracts over a 1-day holding period are 

defined in a fashion that accounts for the simultaneous change in the interest rates. For 

instance, a contract whose strike rate is initially ATM + 25 bps on day t, the 

moneyness on t+1 may not be ATM +25 bps anymore, but more or less if the interest 

rates have changed. Hence, a new implied volatility for t+1 is first determined using 

the SABR model, and the actual change in the implied volatility is the difference 

between the implied volatility given by the SABR model and the implied volatility 

observed on t. See also “Proxy_” -prefix. 

FHS: filtered historical simulation. A variation of historical simulation in which the 

historical risk factor returns are scaled by a factor of prevailing volatility estimate 

divided by the respective historical volatility estimates. 

Fixed smile method: a VaR method in which the changes in the implied volatilities 

for swaptions with a given maturity-tenor -pair are assumed to change in parallel 

fashion, i.e. the changes for OTM swaptions are assumed to equal changes that occur 

on ATM level. Hence, the distribution of historical changes is derived from the ATM 

level only. 
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HS: historical simulation. A VaR model where the distribution of profit and loss 

scenarios is created through applying historical observed changes in risk factors to the 

prevailing values of those risk factors. 

Implied volatility: the value of the volatility of the underlying instrument to be used 

as an input in an option pricing model in order to achieve a theoretical price that 

equals to the current market price of the given option. 

IR: interest rate, (used with VaR components). 

IRS: interest rate swap. An interest rate derivative instrument in which two parties 

agree to exchange interest rate cash flows. The cash flows are based on a given 

notional amount from a fixed rate to a floating or vice versa (or one floating to another 

floating). The floating rate is often indexed to a reference rate such as Euribor. 

MAD: mean absolute deviation. 

Moneyness: the relative position of the current price of the underlying security of an 

option with respect to the strike price of the option. 

MSE: mean squared error. 

OTM: out-of-the-money. A situation when the strike price of an option is different 

from the price of the underlying security. See also ATM. 

Payer swaption: see swaption. 

“Proxy_” -prefix: refers to VaR models where the historical changes in implied 

volatilities that have occurred for swaption contracts over a 1-day holding period are 

defined as changes between implied volatilities for swpation contracts with equal 

moneyness. For instance, the change in implied volatility for a swaption whose strike 

rate is ATM +25 bps made on day t is defined as the difference between implied 

volatility for an ATM +25 bps on t+1 less the observed implied volatility for an ATM 

+25 bps on t. Consequently, the computed change in implied volatility is does not 

actually refer to the change that occurred for an ATM +25 bps made on t if the 

underlying swap rate changed also between t and t+1. See also “Direct_” -prefix.  

Random smile method: a VaR method in which the changes in the implied 

volatilities for swaptions with a given maturity-tenor -pair are not assumed to move in 

a parallel fashion. Rather, the historical observations used for compiling the 

distribution of implied volatility changes depends on the moneyness of the given 

swaption contract. For instance, in case of an ATM +50 bps swaption, the implied 
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volatility changes are taken from changes that have occurred at ATM +50 bps level 

(instead of using changes that have occurred on ATM level as in Fixed smile method). 

Receiver swaption: see swaption. 

SABR model: a stochastic volatility model used for modeling the volatility smile in 

interest rate derivative markets. The model was developed by Hagan et al. (2002). The 

name stands for “stochastic alpha, beta, rho” where the Greek letters refer to the 

parameters of the model.  

Skew dependent smile method: a VaR model where the historical interest rate 

changes are separated from respective historical changes in implied volatilities. Under 

this smile method, the interest rate - implied volatility -pair scenarios are created in 

two stages. First, a given interest rate change (“shock”) is applied to the prevailing 

rate, and for the new point, an estimate of implied volatility is computed using the 

SABR model. Then the respective implied volatility scenario that occurred 

simultaneously with the interest rate change is applied to the scenario point created in 

the previous step, which results into the final scenario to be used. 

Smile: in the result tables, “Smile” refers to the smile method in which historical 

implied volatility changes are observed from a moneyness level that depends on the 

moneyness of the swaption in question. See Random smile method. 

Generally, smile (or skew or smirk) refers to the effect observed on implied volatilities 

when plotted against different strike rates and/or maturities. 

Swaption: an option to enter into an interest swap agreement. Swaption is called a 

receiver when the holder has an option to enter into an IRS where she receives the 

fixed rate and pays the floating rate. Accordingly, a payer swaption grants the holder 

the right to enter into an IRS where she pays the fixed rate and receives the floating 

rate. 

TW: time weighted historical simulation. A variation of historical simulation in which 

more recent risk factor changes receive more weight than those occurred earlier. 

VaR: Value at Risk, the worst expected loss that a portfolio may suffer during a 

specified period under normal market conditions with a specified level of confidence. 

VaR component: VaR figure with respect to a single risk factor, e.g. IR or implied 

volatility. 
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APPENDIX B: RISK FACTOR STATISTICS AND FIGURES 

This appendix presents additional statistics and graphs about risk factors covered in 4.1.1. 

Table 16: 

Risk factor summary statistics 

The table presents the summary statistics of daily changes in swaption implied volatilities and underlying forward swap rates 

(F). The changes in F are measured in absolute terms and presented in basis points, whereas the statistics for implied 

volatilities are computed using log-changes and values are shown as percentages. The observation period is from March 8, 

2011 to February 1, 2013 and the number of observations is 479.   
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Table 17: 

Risk factor correlations during the backtesting period 

The table presents correlations between the risk factors under the backtesting period from March 5, 2012 to February 1, 2013. 

Changes in forward swap rate (F) are measured in absolute terms whilst changes in implied volatilities are measured using 

log-returns. 

 



93 

 

 

Figure 12: 

Risk factor sensitivities 

The figures on the left illustrate swaption sensitivities to interest rate changes (modified delta) during the backtesting period 

and the figures on the right depict sensitivities with respect to volatility changes (numerical vega). The modified delta 

represents a change in the present value of a contract when interest rates are shifted by 1 bps and the numerical vega denotes 

the value change resulting from 100 bps shift in implied volatilities. Both measures are computed for long receiver swaption 

positions.  The values do not reflect actual price sensitivities accurately as the computations do not entail the interaction 

between interest rates and implied volatilities. Instead, the figures provide an illustration about the impact of changes in 

moneyness and time to maturity. 
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Figure 13: 

Implied volatility skew evolution 

The figure shows how the skew for 5x5 swaption evolves during the observation period. While the level of the implied 

volatilities varies to some extent, the shape of the skew stays quite unchanged especially for strikes above ATM level. 
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APPENDIX C: ADDITIONAL VAR STATISTICS 

This appendix presents the VaR exception results for short receiver swaption positions and 

average VaR components for Proxy_HS models with fixed and random smile methods.  
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Table 18: 

VaR exceptions for short positions 

The table shows the number of VaR exceptions for each of the series when estimated for short receiver swaption positions. VaR confidence level is 95% and the number of daily observations is 

228. Consequently, the expected proportion of exceptions is 5%, i.e. number of hits should be approximately 11. 
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Table 19: 

Average VaR components 

The table presents average VaR components for Proxy_HS models with fixed (“ATM”) and random (“Smile”) smile methods. IR 

stands for interest rate and Vol for implied volatility as defined in 4.2.5. Theoretical Vol refers to implied volatility component 

obtained through applying the theoretical volatility shock in a similar fashion as in skew dependent VaR  model (2.8.5) but without 

the according interest rate change.  

 
 


