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Abstract

This thesis aims to provide contribution to further development of Value at Risk (VaR)
models utilized in the risk measurement and management of financial instruments. More
specifically, this study concentrates on VaR measurement of swaptions by employing
Historical Simulation and its variations. Furthermore, the objective is to find out whether
or not it is worth the added measurement system complexity to incorporate fluctuations in
the observed shape of swaption volatility smile as a risk factor into VaR estimation
process.

A set of interest rate and swaption implied volatility data from the period between March
8, 2011 and February 1, 2013 is used in this study to generate VaR estimates, the validity of
which are evaluated using a variety of backtesting methods that compare the estimates
with actual profit and loss figures. The VaR estimates are computed for swaption contracts
including maturity-tenor -pairs of 1x2, 1x5, 5x2, 5x5, 10x2 and 10x5. Moreover, the
considered contract strike rates in addition to at-the-money (ATM) level comprise the
following: +25 bps, +50 bps, +100 bps and +200 bps with respect to the ATM levels. The
different main VaR models employed are Historical Simulation (HS), Filtered Historical
Simulation (FHS) and Time-Weighted Historical Simulation (TW). These models are
applied with modifications regarding the method used for incorporating different implied
volatility fluctuations into the simulation. The VaR estimates are generated using a
historical observation period of 250 trading days, which leaves 228 trading as the
backtesting period.

The backtesting results show partial support with mixed evidence for the validity of the
considered VaR models. None of them is able to pass each of the backtests with all tested
swaption contracts, but some models could be considered sufficiently accurate in terms of
regulatory boundaries. Overall, TW models seem to yield best results, but the estimates
suffer from clustering of VaR exceptions, which leads to rejection by Christoffersen’s
(1998) test of conditional coverage. All of the considered models perform adequately well
when tested with short positions, but the number of VaR breaches for long positions is in
most cases clearly above the acceptable region.
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Tiivistelma

Tutkimuksen tavoitteena on kehittda Value at Risk (VaR) -perusteista markkinariskien
mittausta ja hallintaa tukevia malleja. Tutkimus kohdistuu erityisesti swap-optioiden
markkinariskin mittaamiseen soveltuvien historialliseen simulaatioon perustuvien VaR -
mallien kehittamiseen. Tarkoituksena on lisdksi arvioida ns. at-the-money (ATM) -tasolta
laskettujen  historiallisten  implisiittisten = volatiliteettimuutosten  riittavyytta
riskilaskennassa sellaisille optioille, joiden toteutushinta poikkeaa ATM -tasosta. Talloin
mallin oletuksena on, ettd implisiittisissa volatiliteeteissa havaittavissa oleva vinouma (nk.
smile-efekti) pysyy muodoltaan vakiona. Tutkimuksen pitiisi siis vastata kysymykseen,
voiko kyseistd oletusta pitad oikeellisena, vai olisiko mahdolliset muutokset smile-
efektissa syytd huomioida riskilaskennassa.

Tutkimuksen aineisto koostuu paiasiassa koronvaihtosopimusten korkodatan seka swap-
optioiden historiallisten implisiittisten volatiliteettien avulla lasketuista swap-optioiden
paivittdisista hintamuutoksista. Hintamuutosten aikasarjoja kaytetddn riskimallien
validoinnissa eli ns. back-testauksessa. Tutkimus perustuu aikavililta 8.3.2011 — 1.2.2013
poimittuun dataan. VaR -laskenta on toteutettu yhteensa kuudelle eri maturiteetti-tenori -
parille ja kullekin niista viidelle eri toteutushinnalle. Maturiteetti-tenori -parit ovat 1x2,
1X5, 5X2, 5X5, 10X2 ja 10x5, seki toteutushinnat suhteessa ATM -tasoon ovat +0, +25 bps,
+50 bps, +100 bps ja +200 bps. Riskilaskenta kyseisille sopimuksille toteutetaan erilaisilla
historialliseen simulointiin perustuvilla VaR malleilla. Kasiteltavat mallit ovat
painottamaton, volatiliteettipainotettu sekid aikapainotettu historiallinen simulointi.
Malleja sovelletaan vaihtoehtoisilla metodeilla smile-efektin huomioimisen suhteen.

Mallien validoinnin perusteella tutkimuksessa kasitellyt mallit eivat tuota kaikkien
maarittelyiden mukaan hyvaksyttavia riskiarvioita. Yksikdan malleista ei lapaise kaikkia
testeja kaikilla sovelletuilla optiosopimuksilla. Sen sijaan osa malleista lapaisee kaikilla
sopimuksilla saantelyyn perustuvan testin, joten ndiden kaytto riskilaskennassa olisi
periaatteessa mahdollista saannosten puitteissa. Aikapainotettujen mallien tulokset ovat
suurimmaksi osaksi hyvaksyttavid, mutta myos ndiden arviot tuottavat tietyilla
sopimuksilla lilan ryhmittyneitd VaR-ylityksid. Kaikki tutkittavat mallit tuottavat
hyvaksyttavia arvioita myydyille optiopositiolle, mutta suurin osa malleista tuottaa
selvasti liian paljon VaR-ylityksia ostetuille optioille.

Avainsanat Value at Risk, swap-optiot, riskienhallinta
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1 INTRODUCTION

1.1 Background

Risk management is an essential concern to any participant who operates in financial markets.
The need for practical yet accurate risk management methods increases as both the external
requirements arising from increased regulation as well as internal demand for more timely
reports continue to create challenges to risk managers. Moreover, simultaneously increasing
complexity of financial instruments and positions generates additional challenges to risk
management in financial institutions. As a result, the combination of these factors set partially

conflicting demands for risk management systems, and avoiding trade-offs is difficult.

A case of such trade-off arises when balancing between the performance and practicality of a
risk measurement system: whilst accounting for a higher number of risk factors in market risk
computation enhances the accuracy of the estimates by default, it correspondingly adds to the
complexity of the system. Increased complexity in turn leads to slower performance despite
the constant increase in computational power. Moreover, further investments into the system
are needed, and both of these consequences are undesired effects from the managerial

viewpoint.

Option contracts in general present a more specified example of the complexities associated
with market risk measurement. Option value is determined by a function of several variables,
which accordingly translates to several sources of risk. The risks are often quantified in terms
of option price sensitivities with respect to changes in the different variables, the most
important of which are usually considered to be the sensitivities to changes in the price of the
underlying asset and the level of implied volatility. However, in addition to describing the
market risk of a given instrument using differential calculus, a common metric that is used for

both regulatory and internal reporting of portfolio risk is Value at Risk (VaR).

VaR is designed to provide an aggregated estimate of a portfolios risk by combining the
effects of different risk factors into a single figure. It represents the lower percentile of an

assumed profit and loss distribution that is based on the movements of an appropriate set of



market risk factors over a given time horizon. Nevertheless, depending on the instruments in a
portfolio, it is not always straightforward to determine the relevant risk factors to be used. A
special case in point is swaption risk measurement. Obvious risk factors for swaptions include
the underlying swap rates and the general level of implied volatilities, which are often referred
to as delta and vega risks respectively. However, whilst the level of the implied volatility
represents a first order source of risk, the volatility of the implied volatility presents a risk
source of a second order. Although Malz (2001) introduces a general means for incorporating
vega risk into VaR framework by presenting an example for FX options, the importance of
the risk related to the volatility in implied volatilities for swaptions has so far received no
attention in the literature. More specifically, Malz (2001) illustrates two methods that can be
applied with Monte Carlo simulation. The first method takes into account only the general
level of the implied volatilities whereas in the second method also the volatility of implied
volatility is accounted for. The fundamental idea of these two methods is translated into
Historical Simulation based VaR estimation in this study and then employed to provide
insight whether or not it would be worth the extra efforts to include the so called smile risk

into the swaption VaR framework.

1.2 The research problem

The purpose of this study is to first examine the suitability of Historical Simulation (HS),
Filtered Historical Simulation (FHS) and time-weighted (TW) methods for swaption VaR
estimation with different combinations of risk factors that are accounted for. The risk factors

include the following:

- Interest rate curves: Euribor 6M for projection and EONIA for discounting

- implied volatilities for swaptions

The second and perhaps more interesting question to be answered is if the addition of risk
factor depth through accounting for historical changes in out-of-the-money volatilities
significantly improves the swaption VaR estimation accuracy or not compared to the base
case of using merely changes in at-the-money volatilities. Particularly, the objective is to
examine if the risk arising from conceivable changes in the shape of the volatility smile is
significant enough to be included in risk measurement computations for swaptions. This

second question embodies also practical importance, since despite the advances in IT and



computing power, the data management still requires substantial amount of time in many

financial institutions.

1.3 Motivation and contribution to the existing literature

Despite the fact that different Value at Risk methods have been widely covered in literature,
relatively few papers have been written about VaR application for interest rate instruments,
and even fewer for interest rate options. However, the volume of interest rate products traded
annually clearly surpasses for instance the volume of equity trading. In this light, it is rather
surprising that bulk of the previous VaR articles focus on estimating equity and currency

risks.

Moreover, one line of earlier VaR literature focuses more on how to estimate changes in the
risk factors, while another major line of work concentrates more on how to translate the
estimated changes in risk factors to changes in the portfolio value. The former includes for
instance comparisons of different volatility forecasting methods and distributional
assumptions that can be integrated into VaR computation. As an example, ARCH family
models are well covered. Examples of the former line of work are Eberlein et al. (1998), Billo
and Pelizzon (2000), Giot and Laurent (2004) and Shao et al. (2009). In contrast, the
alternative line of study pays more attention to relative performance of different VaR models,
such as Monte Carlo simulation, Historical Simulation and so called “delta-gamma” method,
as well as their practical implementation including different interpolation methods. Examples
of these include Britten-Jones and Schaeffer (1999), Jamishidian and Zhu (1996), Barone-
Adesi et al. (2002).

This study contributes to both of the aforementioned lines of exploration by providing an
empirical investigation of VaR estimation for interest rate options through first introducing a
set of alternative methods for incorporating volatility smile changes into swaption risk
estimation and then evaluating the differences in VaR backtesting results depending on how

the changes in risk factors are estimated.



1.4 Limitations of the study

When reading this study, there are three key limitations that should be kept in mind. The first
and most important is the fact that the number of backtesting days is quite limited, which
means that the statistical power of the implemented backtests is restricted. Moreover, the
testing period covers a time period during which the interest rates are at historically low levels
and decline gradually throughout most of the observation period. While VaR is assumed to
provide an estimation of the risk during so called “normal market conditions”, it is
questionable whether interest rates very close to or even below zero can be considered

“normal”.

The second limitation is related to the coverage of different swaption positions. Although this
study utilizes swaptions with six different maturity-tenor -pairs and five different strike levels,
the moneyness levels are restricted to strike levels above at-the-money level and many
possible maturity-tenor -pairs are left out of scope. As a result, the general applicability of the

results for swaption positions not covered in this study is uncertain.

The third limitation is associated with the implementation of the VaR estimation for a
swaption position: the estimates are not computed for actual positions but for imaginary
contracts opened and closed on a daily interval, which is a drastic simplification compared to
real life positions. Furthermore, the position pricing accuracy is imperfect as the decline in
time until maturity is ignored and also the calibration of the SABR model is not thoroughly
optimized. However, since each swaption is held only for one day, the price effect stemming
from a one day decline in time to maturity is miniscule as the minimum maturity used in this
study is one year. Also, whereas the SABR calibration applied in this study might be
insufficient for swaption trading purposes, it should still provide accurate enough values to be
used in VaR backtesting as the same parameters are used in both VaR estimation and profit

and loss computations.

1.5 Main findings

The main finding of this study is that while VaR models based on historical simulation are
able to generate sufficiently accurate market risk estimates for most swaption contracts

investigated in the empirical part of this paper, the accuracy depends on position attributes



and model specifications. As a result, this study is unable to present strong support for
applicability of historical simulation based VaR estimation in swaption risk measurement.
Even so, the results indicate that the models considered in this study are fundamentally sound

but are swayed by the shortness of historical observation period.

Moreover, the results do not provide evidence that would support the use of moneyness-
dependent implied volatility changes over the changes observed on at-the-money level in VaR
estimation for out-of-the-money swaptions. Instead, the results suggest that the use of at-the-
money level changes in swaption implied volatilities is generally sufficient in VaR estimation
for also out-of-the-money swaption positions. Furthermore, the results suggest that it is
adequate to use implied volatility changes derived from the at-the-money level without
considering the simultaneous change in interest rates on successive days and changes in actual

moneyness resulting thereof.

1.6 Structure of the study

The rest of the paper is organized as follows. The second section combines the theoretical
base on which the study is based on with literature review about the topic. Section 3
introduces the hypotheses. Section 4 explains the data, VaR methods and VaR backtesting
methods used. Section 5 presents the empirical results from VaR estimation. Section 6
concludes the study and offers suggestions for further research. A list of frequently used

abbreviations and model names introduced in this paper is presented in Appendix A.

2 LITERATURE REVIEW AND THEORETICAL BACKGROUND

This section is divided into three main parts that illustrate the cornerstones of the study. The
first part covers VaR in risk management framework and the second introduces interest rate
swaptions. The section concludes with a combination of the first two parts through
introducing a selection of alternative methods for swaption VaR estimation that are compared

in the empirical part of the study.

2.1 Risk management and capital requirements

The purpose of a risk management function in any enterprise is to manage the risks that are

necessary for conducting the core business of the enterprise. Hence, the purpose is not to



minimize the risks as such, but to control the level of risks so that they are in line with the
strategic objectives of the entity. While it can be argued, based on the corporate finance
theory (Modigliani and Miller, 1958), that well-diversified investors do not gain any value
from company-level hedging, it is still undertaken by most entities due to practical reasons
such as minimizing taxes and costs of financial distress or due to managerial risk aversion

(Smith and Stulz, 1985).

While non-financial companies engage in risk management mainly in order to maximize their
enterprise value, financial companies are also subject to regulatory requirements to do so. The
main reason behind such rules and regulations are the adverse effects that banking crises may
have on the economy as a whole. The regulatory requirements have been developed gradually,
and the Basel Committee on Bank Supervision published The Accord in 1988 that was an
agreement between bank regulators on how much a bank is required to hold capital against
credit losses. In 1996 the Basel Committee on Bank Supervision published an amended to 7he
Accord, called The Amendment, to include additional minimum capital reserves for covering
market risks as well. Accordingly, The Amendment distinguished between a bank's trading
book and its banking book so the market risk was defined as the risk arising from fluctuations

in the market prices of trading positions (Basel Committee on Banking Supervision, 1996a)

Furthermore, the 1996 Amendment included an Internal Models Approach (IMA) according
to which a financial institution's capital requirements are based on the institution's internal
risk measurement systems. In order to be allowed to use IMA as basis for capital requirement
calculations, a bank is expected to fulfill certain qualitative as well as quantitative
requirements. The qualitative requirements dictate that a bank should be able to demonstrate
that it has a sound and sophisticated risk management system and an independent risk-control

unit. Furthermore, the bank must also conduct regular stress test and external audits.

The IMA is based on a bank's Value at Risk (VaR) figure computed using the following

inputs:

- a99% confidence interval

- an observation period of at least one year



- ahorizon of 10 trading days that can be derived from daily VaR by scaling it
up using by the square root of ten (Basel Committee on Banking Supervision,

1996b)

The market risk charge is then set at the average VaR over the last 60 trading days times a
multiplier k. Naturally, this reliance on the bank's self-reported VaR to determine capital
requirements leads to an adverse selection problem as it creates an incentive to report
unrealistically low VaR figures in order to minimize its capital requirements. To address this
issue, the banking regulators evaluate the quality of a bank's VaR measurements by observing
the frequency of its VaR exceptions based on backtest reports, and adjust the multiplier &
accordingly to penalize banks with inferior measurement accuracy (Basel Committee on
Banking Supervision, 1996c¢). Therefore, the financial institutions have an incentive to report

their VaR figures truthfully due to threat of increased future capital requirements.

2.2 Introduction to Value at Risk

VaR was first developed by major financial institutions in the late 1980s in order to measure
the market risk of their trading portfolios caused by fluctuations in asset values (Linsmeier &
Pearson, 1996). Different VaR models have gained a central role in the risk management of
financial institutions after JP Morgan publicly introduced their internal VaR model in 1994.
The initial model was based on the variance-covariance of past security returns and the

method can be traced back to the early days of Markowitz's Modern Portfolio Theory.

Taking risks is an inevitable part of conducting business, and firms face a variety of risks
arising from their operations, financing activities and general economic, legal and regulatory
environments. Moreover, risks related in finance can be further divided into liquidity risks,
credit risks and market risks. Risk as a term is generally understood as "a threat of loss",
whereas in financial theory it is defined as the dispersion of returns. As such, the measure of
risk is the standard deviation of unexpected outcomes of financial assets that is also called
volatility, or sigma (o). Jorion (2007) separates the main sources of market risk broadly as
interest rate risk, foreign exchange risk, equity price risk and commodity price risk. Losses
that a firm may face depend both on its exposure to these different sources of market risk and
on the level of the underlying volatility of the financial assets that the firm is holding. VaR

was originally designed for measuring the market risks originating from the fluctuations in



asset prices in a way that captures both a firm's exposure to the risks and the underlying

volatility.

The main purpose of a VaR model is to measure the size of possible future losses of a
portfolio at a given probability. Stated in a more formal way, VaR is defined as the worst
expected loss that a portfolio may suffer during a specified period under normal market
conditions with a specified level of confidence. For instance, if an institution's daily VaR is
stated as 12 m€ with a 99% level of confidence, the probability of facing a loss that exceeds
12 m€ the next day should be 1%. Consequently, VaR provides a simple and easy to

understand measure of a portfolio's downside risk.

Following Jorion (2007), in mathematical terms, for a portfolio whose value at the end of a

period is given by
W =Wy(1+R) (1)

where W, is the initial portfolio value and R the portfolio's rate of return, there is a

distribution of future portfolio value f (W) and the VaR for the portfolio is defined as

W *
1—c= f f(W)dw (2)

where c is the specified confidence level and W = is the end of period portfolio value when

the worst portfolio return with the given confidence level is realized.

Consequently, assuming that asset returns are normally distributed (ie. (W)~N(0,1) ) VaR is

calculated as follows:

VaR, = a o *W, (3)

where a is the normal deviate associated with the confidence level (1 — c) , o is the portfolio
volatility and as before, W, is the initial value of the portfolio. It is important to remember to

use consistent time horizons in estimating the figures for return and its volatility with respect



to the VaR time period. For example, if a portfolio's value is €50 million and the annual

volatility of its returns is 15%, a 1-day VaR at 95% confidence level would be as follows:

! 4
VaRgsy, = —1.65  |-—o+ 15% * €50m = —€0.78m 4)

The value of a can be read off from standard normal distribution tables and the annual

volatility is converted into daily volatility by o7 = o+/T, where T is time horizon expressed in

years.

As already stated above, VaR is a fairly simple and intuitive concept in theory, and that is one
of the main reasons for its popularity among financial practitioners. However, its
implementation in practice is hardly a straightforward process - at least not for portfolios that
contain a large number and different kinds of securities - and measuring VaR is actually a
demanding statistical problem. Following Dowd (2002), the different models used for
estimating VaR can be divided into groups based on their approach to risk exposure and on
how they define the distribution of risk factors. With respect to risk exposure, the models can
be further divided into two groups: local-valuation methods and full-valuation methods. In
local-valuation methods the risk is modeled using local derivatives to infer price movements,
whereas in full-valuation methods the portfolio is fully repriced over a variety of scenarios.
Local-valuation methods include delta- and delta-gamma-approximation methods. In the
former only the first derivative is used and in the latter also the second order derivative is
taken into account. Furthermore, different models for risk factors can be divided into
parametric and nonparametric methods (Jorion, 2007). It should also be pointed out that the
different methods yield somewhat differing results. Further, using same model gives naturally
differing measures depending on the practical implementation of the model. The differences
between the models arise from their approach to estimating the changes in value of the
portfolio. Nevertheless, what the models have in common is that they all try to account for the
empirical findings about financial markets that were first documented already a half a century

ago by Mandelbrot (1963) and Fama (1965). These can broadly be summarized as follows:

- Financial return distributions are leptokurtic (ie. the returns have fatter tails than in the

normal distribution)
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- Equity returns are typically negatively skewed (ie. the left side of the distribution is
longer than the right side)
- Volatility is typically clustered in time so that large changes in asset values are

followed by large changes and vice versa.

An overview of the different VaR models is presented in the subsequent chapters of this

section and the models employed in this study are covered more comprehensively in Section
4,

2.3 Parametric methods

As the name suggests, parametric models are based on parameterization of the behavior of
financial instruments’ price changes. Put more explicitly, these models require making an
assumption about the statistical distribution of asset returns from which the data is drawn.
Parametric approach can be perceived as fitting curve across the data and then reading off the
VaR measure from that fitted curve. This is also the primary advantage of parametric models:
computing requires relatively little information and so the practical implementation is less
burdensome than with the other models. Furthermore, since parametric VaR figure is simply a
multiple of the standard deviation of the distribution multiplied by an adjustment factor that
depends on the confidence level and holding period length, normality enables simple
rescaling of VaR figures for differing confidence levels and holding periods through changing
the adjustment factor accordingly (Dowd, 1998). However, the problem with parametric
models is that the chosen statistical distribution may not reflect accurately the actual
distribution, which leads to either under- or overestimation of the actual risk. This is
especially problematic for portfolios that contain options or other instruments whose pay-off
is highly asymmetric as this adds to the skewness and the kurtosis of the distributions which
again leads to more extreme price variations and, consequently, to increased probability of

more extreme losses (Jorion, 2007).
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2.3.1 Variance-covariance method

Variance-covariance approach! is one of the basic VaR computing methodologies in the class
of parametric models. The key step in variance-covariance VaR method is the computation of
the standard deviation of changes in portfolio value. The portfolio VaR is obtained
multiplying the standard deviation by the normal deviate and risk factor weights as shown in
the previous chapter. However, even if the basic idea is very simple, the practical
implementation can become challenging as the standard deviation of portfolio depends both
on the standard deviations of the portfolio's individual instruments and on the correlation
between them. As a result, the total number of required parameters grows rapidly as the

number of instruments increases (Linsmeier & Pearson, 1996).
2.4 Non-parametric methods

Even though parametric methods are attractive because of their theoretical simplicity, Barone-
Adesi and Giannopoulos (2000) point out that the parametric methods have materially
underestimated the size and frequency of substantial losses due to the fact that normal
distribution fails to accurately describe the actual distribution of portfolio returns. Unlike the
parametric models discussed above, non-parametric methods do not make any distributional

assumption about portfolio returns.
2.4.1 Historical Simulation

Historical VaR is one of the most used and perhaps the easiest to apply within the class of
non-parametric methods. It is computed using past returns of the portfolio’s present assets so
that one obtains a distribution of price changes that would have realized had the current
portfolio been held throughout the observation period. The most important advantage of this
model is that it accounts for also the fat tails and skewness observed in return distributions, as
Angelidis and Benos (2006) points out. Moreover, it can be applied for basically all types of

financial instruments (Jorion, 2007).

! Also frequently referred to as the delta-normal method.
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Nevertheless, even though historical VaR does not make explicit distributional assumptions, it
still contains an implicit assumption that the distribution of returns stays unchanged within the
historical estimation time window (Engle and Manganelli, 2001). This assumption leads to a
few problems. First, if returns within the estimation window are assumed to have the same
distribution, it means that all the returns of different time series have to be independent and
identically distributed. The assumption of independency of returns implies that the magnitude
of price movement in one period of time would not influence the price fluctuations that occur
during subsequent time periods. Further, if the returns were identically distributed, or
stationary, through time, it would imply that that the probability of a given loss was the same
for each day. However, as already pointed out, this is empirically not true as volatility has a
tendency to cluster so that large price fluctuations are followed by further large changes. In
practice this entails that during periods with higher volatility one would also expect losses that
exceed the usual level. Consequently, using a constant volatility model such as basic
historical simulation could be misleading as it underestimates risk during highly volatile
market conditions, which is documented by van den Gloorbergh and Vlaar (1999) and Vlaar
(2000). Second, choosing a proper length for the time window is not a trivial task: if it’s too
short, it is not possible to obtain statistically significant figures, and if it’s too long, the market
fundamentals may have changed since the beginning of the period and observations from the
past — with either too low or too high volatility — may dominate the VaR estimation yielding
either excessively low or high VaR figures (Dowd, 2002). For instance, Hendricks (1995)
finds that longer historical sample periods result in less variability in VaR estimates, but that

they also result in absolutely larger VaR estimates.

2.4.2 Time-weighted Historical Simulation

One solution to the jumping volatility arising from historical observations being dropped out
of the estimation window is to assign heavier weights to more recent observations as
suggested by Boudoukh et al. (1998). This way, VaR estimates are more responsive to present
market conditions. Moreover, as the impact of distant observations declines in time, there is
no need to drop old data out of the estimation window, which tackles the problem of jumps
resulting from old observations falling outside the estimation period (Dowd, 2002). A more

detailed description of the time-weighted historical simulation is presented in 4.2.3.
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2.4.3 Volatility Adjustment and Filtered Historical Simulation

Nonetheless, time weighing suffers from a few shortcomings as well. For instance, Hull and
White (1998b) show that a sequence of large gains or losses can create substantial distortions
in the risk profile of the sample. Instead of weighing returns based on when they occurred,
Barone-Adesi et al. (1998) and Barone-Adesi et al. (1999) suggest assigning different weights
to observations based on their volatility, which is known as filtered historical simulation
(FHS). Hence, the idea behind FHS is to adopt the historical simulation method to the
prevailing level of volatility observed in the market. In this method, actual returns within the
historical dataset are replaced with returns adjusted by forecast of volatility. As a result from
incorporating the information from volatility forecast, the model generates estimates that are
sensitive to current volatility and better captures the nature of current market conditions
(Dowd, 2002). Accordingly, one of the most important advantages of FHS over basic HS is
that the volatility filtering process increases the range of possible risk factor outcomes beyond
the unadjusted historical record through change of scale. Thus, FHS effectively supplements
the tails of the return distribution through generating extreme events that are not present in the
historical record. This shortens the length of the historical period required for collecting return
observations used in the simulation process compared to HS method. Furthermore, the
capability of FHS to better adjust to the prevailing market conditions is also supported by
Angelidis and Benos (2006) who propose that the FHS outperforms parametric and other non-
parametric methods at higher confidence levels. The practical implementation of FHS in this

study is further clarified in 4.2.2

2.4.4 Monte Carlo simulation

Monte Carlo (MC) simulation is a highly flexible method for computing VaR as it is capable
of simultaneously accounting for various risk sources and it can deal with time variation in
volatility and nonlinear price exposure arising from complex pricing models (Jorion, 2007).
Consequently, as pointed out by Ammann and Reich (2001), combination of MC simulation
and full valuation yields most accurate VaR results for portfolios with substantial option

positions.

Implementation of the MC method begins with identifying the important market factors and

assigning suitable stochastic processes for these factors. Then a future distribution of portfolio
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returns is created through simulation of price paths for the instruments, and the different

confidence level VaR figures are drawn from this distribution (Wiener, 1999).

Even though MC model uses parametric inputs, such as volatility in Geometric Brownian
Motion that is used for describing the dynamics of stochastic price process, the future
distribution cannot be described by an analytical function and thus the model can be
interpreted as a non-parametric method. Hence, for instance Dowd (2002) categorizes MC

simulation as a "semi-parametric" method?.

Despite its virtues, MC simulation has also attracted criticism. For example, Barone-Adesi et
al. (2002) point out that the model's multivariate properties of the risk factors are based on
historical correlations and the correlations tend to increase rapidly during crises, which may
lead to underestimation of risk. Moreover, simulation methods require substantial computing
capacity and are hence time consuming. This problem, however, is gradually mitigated as the

computing capacity as well as the efficiency of simulation methods is evolving constantly.
2.5 VaR criticism

Despite all the positive attributes of VaR measure that explain its popularity, the model also
has its weaknesses. For the sake of providing a comprehensive perspective on VaR, also some

of the model’s shortcomings are discussed in the following chapter.

Artzner et al. (1998) have proposed a list of desirable properties that measures of risk should

have in order to be considered as “coherent” risk measures. These include

- Monotonicity: if a portfolio A yields in every possible situation better returns than
portfolio B, then portfolio B should be assigned with a higher risk

- Sub-additivity: the combined risk of two portfolios cannot be higher than the sum of
the separate risks

- Positive homogeneity: if the size of the portfolio is doubled, the risk should double as
well

- Relevance: the risk of holding no assets is zero

2 Dowd also classifies weighted historical simulation methods under the term semi-parametric methods, as for
instance, GARCH model that is utilized in the filtered historical method, is parametric.



15

It is a known fact that VaR fails to meet the requirement of sub-additivity, which means that
using VaR might discourage diversification. Moreover, it could possibly lead to regulatory
arbitrage in the sense that if the capital requirements of an institution depend on its VaR
figure, by splitting its assets into separate subsidiaries a company would be able to appear less

risky than it actually is.

Furthermore, while the conceptual simplicity is perhaps the main reason why VaR has
become such a widespread method for risk measurement, it is also one of its fundamental
shortcomings. As all available information is condensed into a single easy-to-digest figure it
is evident that some relevant information will be lost. For instance, two positions with
different risk characteristics beyond the VaR confidence level can still have the same VaR
figure. This is due to the property of VaR that it provides no information regarding the losses
that exceed the VaR estimate, and why it is often said that VaR fails to account for the “tail
risk”. Consequently, VaR figures solely do not provide sufficient estimate of the risks that an
entity faces. A point in case is the $2 billion mark-to-market loss suffered by JPMorgan
Chase’s Chief Investment Office in May 2012, while its daily average VaR in the first quarter
of 2012 was reported to be $67 million. Indeed, this incident has fuelled the debate about the
reliability of VaR as a risk measure especially when it was JPMorgan that originally

developed the measurement concept.

However, it is possible to partially overcome this shortcoming by using a so called
“conditional VaR” method that measures the expected loss given that the VaR is exceeded.
This method is also known as “expected shortfall” (ES) or “expected tail loss” (ETL) and it is
gradually gaining more popularity. It should be pointed out that while ES is based on value at
risk method, it is a coherent measure of risk while VaR is not. Also, it is expected that ES will
take VaR’s position as a regulatory measure in the future as the Basel Committee on Banking
Suprevision has recently stated that under the prospective Basel III the market risk capital
requirements would be based on ES rather than VaR measurements. However, even though
ES is a coherent risk measure and hence theoretically better than VaR, it still has its
limitations. For instance, the challenges in its implementation exceed those of VaR, and if the
calculation method used in ES is the same as in VaR, i.e. based on boot-strapping data from

the past 250 days, it does not make a significant difference which method is used.
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One further point of general VaR criticism has been the model’s intrinsic feature of merely
considering the loss at the end of the estimation period, which, as for example Boudoukh et
al. (2004) and Kritzman and Rich (2002) point out, becomes a problem with longer estimation
horizons. For instance, certain investors, such as insurance companies and money managers,
are interested not only in their long-horizon VaR but also in what happens in the interim:
deterioration in asset prices might force them to unwind their positions already before the
VaR horizon and hence the actual losses could become substantially worse than predicted by
VaR. Kritzman and Rich (2002) propose using “continuous VaR” in which the normal end-of-

horizon probability of loss is transformed into intra-horizon path-dependent loss.

Furthermore, all VaR methods are at least partially dependent on historical data, and as is well
known, history does not predict future very well. All in all, regardless of how VaR is
computed, it is far from being a perfect tool for risk measurement. As a result, other risk
management techniques are required in addition to VaR estimates. These include stress tests
and scenario analysis together with various sensitivity analyses with respect to different risk

factors.

2.6 VaR backtesting

The usefulness of a VaR model for generating risk estimates is heavily dependent on the
model's ability to accurately predict future losses. The precision of a VaR model can and
should be backtested by comparing actual losses to corresponding VaR estimates. However,
there exist a few different viewpoints that can be taken into account when evaluating
goodness of a VaR model. When determining whether the model in question is accurate or
not, some kind of a definition for accuracy is needed. For instance, accuracy could refer to the
ability of the model to measure a particular percentile of the profit and loss distribution, or it
could mean the model’s capability of predicting the size and frequency of portfolio losses. For
that reason there is no one single test that provides a correct answer. The purpose of this
chapter is to provide a brief overall view over commonly used backtesting methods, while a
more detailed description of the statistical framework of backtesting and the specific backtests

applied in this study is in chapter 4.4.

As Christoffersen (1998) points out, the evaluation of a VaR model’s accuracy can be reduced

into studying the unconditional and conditional coverage properties of the exception sequence
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generated by the model. Hence, most backtesting methods can be divided into tests of

unconditional coverage and into tests of conditional coverage.

Tests of unconditional coverage measure the frequency of VaR exceptions over a specified
time period. In short, these tests compare the actual failure rate with the model's theoretical
failure rate. For instance, when using a 95% confidence level for daily VaR computing, one
should expect to face losses greater than the model has predicted five times during 100
trading days on average. Hence, even the estimates generated by a sound VaR model are
breached occasionally but it is the number of those exceptions, or violations, that counts.
Consequently, the most obvious determinant of a model's validity is the number of occasions

when the actual loss for the observed period exceeds the model's respective forecast.

While tests of unconditional coverage mainly focus on the number of VaR violations, the tests
of conditional coverage account also for the time variation of the occurred exceptions. The
reason behind this is that a sound VaR model is expected to generate an acceptable number of
exceptions that are also evenly distributed in time. If a model generates an acceptable number
of exceptions during a given backtesting period, the model could still be deemed deficient in
case the exceptions suffer from clustering, which could be a sign of the model’s poor ability

to capture changes in market volatility and correlations.

In addition to conditional and unconditional tests, it is also possible to utilize the information
provided by the size of the exception through applying a loss function that penalizes a model
that has provided a worse estimate of the loss given that the VaR figure is estimated.
Consequently, an expected shortfall figure is needed to use loss function based evaluation,
and hence, the test provides indirect insight about the quality of a VaR model through
studying the tail of the distribution used in the given model rather than the hit sequence the

model generates.

2.6.1 Backtesting in the regulatory framework

Since the market risks of banks' trading books are subject to minimum regulatory capital
requirements, supervisors are also interested in the risk figures reported by the banks. Under
certain conditions, it is possible that the banks' internal risk measurement models are accepted

as a tool for measuring the capital requirements. Naturally, the soundness of the internal
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model suggested by a given institution has to be validated by supervisors before it can be
applied as the basis for capital requirements. For this purpose, the Basel Committee has
chosen a fairly simple test of unconditional coverage based only on the number of exceptions
during the last 250 trading days as the official method for validating banks' internal VaR

models.

The regulatory backtesting procedure is aligned with the capital requirement ratio calculation
so that it is also implemented using 99% VaR confidence level. However, the Committee has
allowed the use of 1-day estimation horizon in backtesting although the capital requirements
are based on 10-day VaR horizon (Basel Committee on Banking Supervision, 1996b). Also,
the result of the backtest has an effect on the Internal Models Approach based capital charge ¢

that is calculated according to the following formula:

¢ = max{VaR,_y;m, * VaRyy,y} + max{sVaR,_y; mg * sVaR 4} (5)

where VaR;_; is a bank’s previous day’s VaR figure measured according to the parameters
specified in above, VaR,,4 is the average of daily VaR figures on each of the preceding 60
trading days, and sVaR;_; and sVaR,, are stressed VaR measures for the previous day and
average of the previous 60 business days respectively. The stressed VaR metric is similar to
the normal VaR, but it is simulated with using risk factor changes that occurred during a
continuous 12-month period of significant financial stress relevant to the institution’s
portfolio. The multiplication factors m, and mg have a minimum value of 3 to which a “plus”
factor is added. The plus values range from 0 to 1 and they are set by supervisory authorities
based on their assessment of the quality of the bank’s risk management. Moreover, the values
of the plus factors are linked to the backtesting results, which creates an incentive for banks to

develop the quality of their models (Basel Committee on Banking Supervision, 2011).

The regulatory backtesting results are described by a three-zone approach that is also known
as the “traffic-light” approach as the test results are classified into green, yellow and red zones
based on the number of VaR exceptions that the model generates during a backtesting period
of one year. If the backtesting results fall into the green zone, the results are not deemed to

suggest that there were problems with the quality or accuracy of the given model. The yellow
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zone indicates that the model’s quality or accuracy could be questioned but no definitive
conclusions can be directly drawn from the results alone. For instance, a model’s results could
gain a yellow classification based on bad luck even if the model was “fundamentally sound”.
Hence, while the yellow zone generally results into heightened capital charge ratio, the
Committee points out that the supervisor may consider revising the requirement based on the
bank’s further demonstrations about the model’s quality. Finally, a backtesting result that falls
into the red zone can be interpreted as sign that there are severe problems with the model: as
Table 1 shows, the probability of an accurate model producing ten or more exceptions at 99%
confidence level is microscopic. Consequently, red zone classification should lead to an

almost automatic rejection of the model (Basel Committee on Banking Supervision, 2006).
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Table 1:
Three zone approach (Basel Committee on Banking Supervision)

The backtesting result categories with 250 observations and 99% VaR confidence level. The cumulative probability in the
right shows the probability of obtaining a given number or fewer exceptions when the model is accurate.

Number of

Zone exceptions Increase in scaling factor Cumulative probability

0 0.00 8.11 %

1 0.00 28.58 %

Green 2 0.00 54.32%
3 0.00 75.81 %

4 0.00 89.22 %

5 0.40 95.88 %

6 0.50 98.63 %

Yellow 7 0.65 99.60 %
8 0.75 99.89 %

9 0.85 99.97 %

Red 10< 1.00 99.99 %

2.7 Interest Rate Swaps and Swaptions

This chapter lays down the foundations on which another central part of the thesis is built on
through first introducing interest rate basics and then continuing with plain vanilla interest
rate swaps and swaptions. The interest rate swaps and swaptions are covered with a practical
viewpoint together with a short introduction on how they are treated in reality. The valuation

of interest rate swaps and swaptions is covered subsequently.
2.7.1 Interest rates and interest rate swap essentials

Plain vanilla interest rate swaps (IRS) is one of the most actively traded interest rate
instruments and thus also one of the most commonly used financial instruments in general.
An interest rate swap is a contractual agreement between two parties to exchange fixed
interest rate payments for floating rate payments on a specified notional during a defined time
interval. Consequently, an IRS consists of two components: a floating leg and a fixed leg.
Also, each party’s position in the swap contract is named relative to the fixed leg so that the

party paying the fixed rate has entered into a payer swap and the party that pays the floating
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rate had entered into a receiver swap. In addition, terms buyer and seller are also used. The

swap buyer buys the floating leg for a fixed price and is thus the fixed leg payer.

The floating leg payments are tied to a reference rate, usually to an Ibor (InterBank Offered
Rate) rate. There are a few different Ibor rates that are fixed by different entities and the
fixing entity is differentiated by the prefix. For instance, Libor refers to London InterBank
Offered rate that is fixed by the British Banker’s Association and Euribor fixings are
determined by the European Banking Federation.

Ibor rates are quoted using the money market convention, which means that the interest paid
is calculated as 0 L N where 0 is the interest rate accrual period year fraction, or coverage, L is
the reference Ibor rate and N refers to the loan notional. Moreover, the loan coverage depends
on the market’s day count convention that determines the exact length of the accrual period.
Market conventions, and hence also day count conventions are slightly different in different
currencies. The market conventions for plain vanilla interest rates in some of the main

currencies are provided in the Table 1. The day count conventions in the table are as follows:

- Actual/360 (ACT/360). With this convention the length of a year
is 360 days. Hence, the year fraction between two dates is the
actual number of days between them divided by 360:

D, — D,
360
- Actual/365 (ACT/365). The same as ACT/360 but a year is

assumed 365 days long.
- 30/360. In this convention each month is assumed to be 30 days
long leading to a 360-day long year. Thus, the year fraction

between dates d; and d, is computed in the following way:

max(30 — d4,0) + min(d,,30) + 360 * (y, —y;) +30* (my, —m; — 1)
360

where m; refers to month and y; to year of d;.

Furthermore, there exist different adjustments to the day count conventions regarding the

treatment of holidays.
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The floating leg interest rate is typically reset and paid semi-annually or four times a year
depending on the currency in which the contract is denominated. The fixed rate (or swap rate)
is usually paid on an annual or semi-annual basis and it is set to a level that initially makes the
value of the swap worth zero so that the present value of the fixed leg equals the present value
of the floating leg. One should note, however, that although the present value (PV) of the
swap is zero it does not mean that it did not have any value: as soon as the interest rates
change, one of the legs becomes more valuable than the other, which leads to either mark-to-
market gain or loss. Moreover, the floating rate is typically set in advance (i.e. a few days
before each accrual period) and paid in arrears (at the end of each accrual period). The
number of days between the interest rate swap trade date and the first fixing period start date
is called the spot lag. Index spot lag also determines the lag between interest rate reset date
and accrual period starting date for the floating leg rates. The length of spot lag also depends

on the market convention.

Table 2:
Conventions for plain vanilla IRS contracts
Fixed leg Floating leg
Currency Spot Lag  Period Convention Reference Period Convention
USD 2 6M 30/360 Libor 3M ACT/360
EUR: 1Y 2 1Y 30/360 Euribor 3M ACT/360
EUR: >1Y 2 1Y 30/360 Euribor 6M ACT/360
GBP: 1Y 0 1Y ACT/365 Libor 3M ACT/365
GBP: >1Y 0 6M ACT/365 Libor 6M ACT/365
JPY 2 6M ACT/365 Tibor 3M ACT/365
JPY 2 6M ACT/365 Libor 6M ACT/360
CHF: 1Y 2 1Y 30/360 Libor 3M ACT/360
CHF: >1Y 2 1Y 30/360 Libor 6M ACT/360

In addition to plain vanilla IRS contracts, there are also other types of swaps as well. For
instance, a swap whose fixing date for floating rate payment is the index spot lag before the
period end date is called an in-arrears swap. Additionally, the fixed rate does not have to be
the same for each coupon: step-up swaps have an increasing rate and step-down decreasing
fixed rates. Also the notional of the swap can vary between coupons. In case the notional is

decreasing through time, the swap is called amortized swap, whereas a swap with increasing
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notional is referred to as an accruing swap. Furthermore, if the notional first increases and

then decreases towards the end of the contract, it is called a roller coaster.

Even though swap principal is not usually exchanged at the end of the swap, for the sake of
intuition it often helps to think that there is a mutual exchange of one euro at the end of the
swap. As Longstaff et al. (2000) point out, from this perspective, the cash flows from the
fixed leg equal to cash flows from a bond whose coupon rate is the swap rate, whereas the
floating leg cash flows equal to those of a floating rate note. Accordingly, a swap can be
thought as exchanging a fixed rate coupon to a floating rate note. Also, one can think of a

swap to be a series of consecutive forward rate agreements over the swap period.

2.7.2 Swaptions

As the name suggests, a swaption, is an option that grants its owner the right but not the
obligation to enter into an underlying swap at a specified future time, that is at the swaption
maturity. Normally the swaption maturity matches with the first reset date of the underlying
swap. The length of the underlying swap contract is called the tenor of the swaption. While it
is possible to trade options on a variety of swaps, within the context of this study swaptions
refer to options on interest rate swaps. Swaption contracts are divided into two types subject
to the direction of the fixed leg of the contract: payer swaptions and receiver swaptions. A
payer swaption grants the owner of the option a right to enter into a swap where she pays the
fixed leg and receives the floating leg. Respectively, a receiver option gives its owner a right
to enter into a swap where she receives the fixed leg and pays the floating leg. Analogous to
other option positions, the party who has bought an option is said to have a long position,
while the seller has a short position. For instance, a 4% 5x10 (“5 into 10”) receiver swaption
gives the holder the right to receive 4% on a 10 year swap starting in 5 years. Accordingly, a
payer swaption can be perceived as a call on paying fixed swap and a receiver swaption as a
call on receiving fixed swap. Swaption thus allows its holder to benefit from favorable
interest rate development while providing protection against unfavorable movements.
Moreover, swaptions, like other options, can either be European, American or Bermudan with
respect to their exercise style. Swaptions can also be grouped into physically settled and cash-
settled contracts. In the former, the contract parties enter into the underlying swap if the
swaption is in the money from the buyer’s viewpoint at the maturity, while in the latter,

merely the present value of the underlying swap is exchanged at the maturity if it is positive



24

for the buyer. In the European market, the most actively traded swaptions are cash-settled

(Mercurio, 2008).

As swaps and swaptions resemble more contractual obligations than securities, a substantial
legal infrastructure is required for functional markets. Hence, primary and secondary markets
for swaps and swaptions are made by a network of swap dealers and most of them are
members of the International Swaps and Derivatives Association (ISDA). ISDA is an
independent organization that has developed standards and contractual terms for swap
markets. These standards dictate, for instance, what happens in the event of default by either
side. Market for swaptions has grown together with interest rate swap markets: due to the
enormous growth and size of the swap market — approximately $300 trillion as of April 20,
2012 according to the Interest Rate Trade Repository Report published by ISDA — swaptions
have become one of the most important fixed income derivative instruments together with
interest rate caps and floors. Typical participants in the swaption market are banks and
financial institutions, corporations and funds that wish either to hedge their interest rate

exposure or to speculate on interest rate fluctuations.

As a summary, in order to specify a swaption contract, the following properties have to be

indicated:

- the maturity of the option

- the strike rate (or swap rate, i.e. the fixed rate on the underlying
swap)

- the tenor of the underlying swap

- notional amount

- option exercise style (European, American or Bermudan)

- settlement style (physical or cash)

2.7.3 Swap pricing

After introducing the basics of swap and swaption contracts, it is possible to advance to their
valuation. Furthermore, in order to value a swaption contract one must first determine an
appropriate forward rate for the underlying swap contract to be used as the strike rate for the

swaption, which again is based on basic IRS valuation explained in this chapter.
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Traditionally swap rates were valued using a single forward curve for both the projection of
the future interest rates and for discounting the interest payments. However, after the credit
crisis this is not a valid method anymore as the swap curves with longer tenors have now an
implicit risk element built into them arising from the incorporation of counterparty credit risk,
whereas the discount factor in derivatives pricing is based on risk free rates. Consequently, it
has become a market standard to apply so called dual curve method in pricing interest rate
instruments where the reference rate for floating leg payments is still projected from Ibor
curve and another interest rate curve is used for determining appropriate discount factors.
Typically, overnight swap-rates, such as EONIA (Euro OverNight Index Average), are used
for discounting (Bianchetti, 2009). The use of overnight rates as risk-free rate can be justified
by the fact that typically interbank operations are collateralized and the collateral is assumed
to be revalued daily. Hence, overnight rates can be deemed as close to risk-free as possible,
whereas the forward rates derived from interbank reference rates cannot. Indeed, Pallavicini
and Tarenghi (2010) show that market quotes of interest rate swaps are coherent with the use
of EONIA-based discounting curve. However, the authors also find that swaptions, on the
other hand, were still consistent with the traditional “text-book™ type of pricing in which the

same curve is used for both projection and discounting.

Since a swap can be characterized as a portfolio of forward rate agreements, it is possible to
value one with using the no-arbitrage principle by assuming that market-observable forward

interest rates are realized (Hull, 2008). Thus, the valuation procedure is as follows:

- Use the Euribor or swap zero curve to calculate forward rates for
each of the Euribor rates that will determine the cash flows of the
swap’s floating leg

- Calculate swap cash flows assuming that the Euribor rates will
equal the forward rates calculated at present time

- Discount the swap cash flows using EONIA zero curve rates to

obtain the present value of the swap

The fixed rate is chosen so that the value of the swap is initially zero. This further implies that
the sum of the underlying forward rate agreements is zero. Nevertheless, it does not mean that

the value of each individual FRA was zero: some of the FRAs will have positive values and
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others have negative values and the values of the FRAs at different future points depend on

the prevailing term structure of interest rates.

As an illustration how the fixed rate is determined, the value of an IRS to the fixed rate payer

at time ¢ is determined in the following way:

b

da
RSEK) = ) wPo@TOL® =K Y. TPo(6.T) (®)

k=a+1 Jj=c+1
where

T, denotes the year fraction between Tj,_; and T},

Py (t, T)) is the value of a zero-coupon bond at ¢ with maturity Tj, i.e. the discount
factor for T starting at ¢

L, (t) is the floating rate at k observed at ¢, that is, the forward rate between T,_; and
Tk

K is the fixed rate

a and b are starting time instant and number of floating rate payments for the floating
rate leg of the contract and

¢ and d are the starting time instant and number of payments for the fixed rate leg.

Therefore, the first term is the present value of the floating rate payments and the second term
is the present value of the fixed rate payments. As a result, the corresponding forward swap
rate that makes the swap value equal to zero at time ¢ can be calculated, and for time =0, it is:
Yh=17kPp(0, Ty )Ly (0)
SO,b,O,d = d S ( 7 )

j=17Yj PD(O' TJS)

where L, (0) is the first floating payment known at time ¢ = 0.
2.7.4 Swaption pricing

As generally in option markets, swaptions are quoted in terms of implied volatility relative to
a standard pricing model. For European swaptions, the quoted implied volatilities are relative
to the Black (1976) model. The Black's model was originally developed for valuing options

on commodities based on the idea that it would be reasonable to model the forward prices
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with a geometric Brownian motion even if it would not be a viable method for modeling the
spot prices. Similarly, the model can be applied to forward swap rates when adjusted with an

annuity factor that incorporates the time structure of the underlying swap into the formula.

The Black-like formula states that the price of a European receiver swaption (RS) starting at

t=0 with payment dates T, i.e. with maturity a and tenor b, is calculated as follows:
B

RS(0,T,7,N,K, 0, ) = NBL(K,S4,(0), 04 py/Ta, —1) Z 7,P(0,T)) (8)

i=a+1

Where

BL(K, 545(0), v, ) = Sq,(0)w® (wdy (K, Sa(0),v) ) = Kwd (wd3 (K, S0(0),v))  (9)

N = swap notional

In(S,5(0)/K) + v?/2

dy (K, Sqp(0),v) = > (10)
In(S,,(0)/K) —v?/2
dZ(K, Sa,b(O),v) — ( a,b( ){7 ) / (11)
v = 04Ty (12)
Sqap(0)=current forward swap rate
t = option starting date
T = option expiry date
0,4,p= volatility for F that is retrieved from market quotes
@(.) = the cumulative normal distribution function
Similarly, the formula for pricing a European payer swaption (PS) at /=0 is
B
PS(0,T,7,N,K, 04, ) = NBL(K,S,,(0), 04 py/Tar 1) z 7;P(0,T;) (13)

i=a+1
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The formulae above are used for physically settled swaptions. For cash-settled swaptions, the
formula is the same otherwise except for the annuity term that is slightly different. The reason
behind the adjusted annuity term is that the counterparties could end up with different prices
for the underlying swap based on how they have bootstrapped their discounting curves. To
prevent this, the swap rate is used for discounting as well. This way the amount due at

swaption maturity will be unambiguously determined.
2.7.5 Implied volatilities and volatility models

When pricing any option, an important piece of information is some kind of measure of the
uncertainty related to the future price of the underlying asset. Thus, a pricing method must
include some a priori expectation regarding the asset price performance as well as an
approximation of to what extent the price process will fluctuate. This expectation is denoted
by the volatility factor used in the formula. However, it is not an easy task to determine an
estimate of volatility as the results tend to depend heavily on the length of the time period
from which the historical volatility is observed. Moreover, the magnitudes of asset price
fluctuations have a tendency to change over time, which means that the volatility has a
stochastic nature itself, as for instance Ball and Torous (1999) point out in their study about
short-term interest rates. In spite of the fact that volatility is not constant, it is still assumed to
be so in the Black-Scholes model. Despite this shortcoming, the Black-Scholes model has
remained as a standard model in option pricing as it has the positive feature of providing a
one-to-one relationship between volatility and monetary price of an option. As a result, it is
possible to invert the Black-Scholes formula for the theoretical value of an option against the
observed market price of that option, which leads to so called implied volatility®. For the vis-
a-vis link between option price and implied volatility, it has become a market practice to

quote option prices in terms of implied volatility.

Analogously to other options, also the implied volatilities of swaptions exhibit a so called
“smile” or “skew” with respect to their strike rate. The reason behind the volatility smile
arises from the above stated fact that the volatility of the underlying security is greater than

assumed by the Black-Scholes or Black-like pricing models that are based on the assumption

3 The terms volatility and implied volatility are used interchangeably in this paper when associated with the

option price.
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that the underlying instruments follow a log-normal process and that the returns are normally
distributed. Hence, the actual return distributions have fatter tails, and consequently, the real
probability of an option that is far out of the money to end up being in the money is higher
than the probability predicted by the pricing model. As a result, options that are far out of the
money are more valuable than they should be if the model’s assumptions about return
distributions were true. As the prices are quoted in implied volatilities, the seemingly higher
implied volatilities for out of the money options reflect the relatively higher value of those
options. Moreover, as the swaptions are quoted using implied Black volatilities that are based
on a log-normal distribution of underlying interest rates, the level of implied volatilities tends
to be inversely related to the level of interest rates if it is assumed that the changes in interest
rates are more normally than log-normally distributed in reality. Hence, if the magnitude of
moves in interest rates does not depend on their absolute level, the changes increase in
relative terms when interest rates decrease. According to Corb (2012), this provides an
explanation to higher observed implied volatilities for swaptions with lower strikes in addition

to possible imbalances in supply and demand.

In addition to volatility skew in strike dimension, the implied volatility depends also on the
maturity of the option. This is called the term structure of volatility and it is driven by the
market’s expectation about implied impact of upcoming events. When the implied volatility is
plotted as a function of both strike price and time to maturity, it is possible to graph the

volatility surface for a given underlying instrument.

Brokers provide tables of implied volatilities for European swaptions with different maturity-
tenor pairs. Swaption volatilities are quoted by the different strikes K as a difference with

respect to the at-the-money level. That is,
Aoy (AK) = 04, (KA™ + AK) — afpM (14)

and AK € {£200,+100,+50,+25,0}, where AK are stated in basis points.
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Figure 1:
Swaption volatility surface

The figure illustrates at-the-money Euro swaption volatility surface on September 27, 2012

Swaplion wolatility

Regardless of these well-known issues associated with the basic assumptions of Black-
Scholes and other pricing models based on it, the models can be used for option and thus for
swaption pricing with the idea of "plugging a wrong number into a wrong formula to get a
correct price." As a result, Black-Scholes and its versions can be argued to be merely
sophisticated interpolation tools used by traders so that an option is priced consistently with
the market prices of actively traded options (Hull, 2008). Moreover, implied volatilities of
interest rates are often interpolated using sophisticated modeling techniques and the Black-
model is used only for translating the implied volatility figure into a monetary value. Hence,
the models used for modeling the volatility play an important role: in addition to accurate
pricing of options, it is also critical for hedging to have a model that correctly handles the

market skews and smiles of the implied volatilities.

The models used for describing volatility smiles and skews can be divided into local volatility
and stochastic volatility models. In the former, volatility is treated as a function of the current
underlying asset level and time, whereas in the latter also the volatility process itself has a
volatility of its own. The local volatility models, most of which are based on Dupire’s (1994)
work, are self-consistent, arbitrage free and can be calibrated to fit market skews and smiles

exactly. However, as observed by Hagan et al. (2002), the local volatility models fail to
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capture the actual dynamics of the implied volatility curve: local volatility models predict that
the market skew moves in the opposite direction as the underlying asset, which is contrary to
the actual behavior observed in the markets, in which smiles and skews tend to move in the
same direction with the underlying. This leads to poor hedging performance, and as a
solution, the authors introduce a ‘“‘stochastic afp” model, or the SABR model. The SABR
model can be used to accurately fit the implied volatility curves observed in the marketplace,
and as it also predicts the correct dynamics of the implied volatility curves, the SABR model
is also an efficient means to manage smile risk. As a result, it has become widely used in the
swaption and caplet/floorlet markets. For that reason, it is also employed in this study. Hagan
et al. (2002) derive the following approximation for the implied volatility of the swaption

with maturity T, strike K and underlying forward swap rate S, , (t) at time £
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2.8 Swaption risk measurement

Swaptions, as any other traded instruments, have exposure to a range of risk factors that
constitute the total market risk of the instrument in question. Generally, an option’s sensitivity
with respect to different risk factors is described by partial derivatives of the option price with

respect to those different factors. The different derivatives are often called option Greeks.
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Delta and gamma risks describe an option’s exposure to the changes in the price of the
underlying asset: delta is the first order derivative and gamma is of the second order.
Specifically, in the case of a swaption, delta describes a swaption’s sensitivity to the changes
in the corresponding swap rate. Further, in addition to delta and gamma risks that arise from
the interest rate fluctuations, the price of a swaption is subject to changes in implied
volatilities as well. The volatility of an option’s implied volatility is called the vol-of-vol, and
the sensitivity of an option price to fluctuations in implied volatility is called the vega. The
vega exposure of a swaption position can be defined as the change in the swaption price
resulting from an increase in the swaption implied volatility by one percentage point.
Accordingly, the risk with respect to changes in option price due to changes in implied
volatility is called vega risk. Vega risk is an important risk component in an option portfolio
and it should be of interest for a risk manager overseeing a position that includes options:
neglecting the effect of changes in implied volatilities entirely would provide an exceptionally
optimistic picture about the risk level of a given swaption position, which is something any
risk manager tries to avoid. However, the treatment of vega risk in portfolios is often impeded
due to practical reasons. First, the availability of option implied volatilities is somewhat
limited, and second, the prevalence of volatility smiles and term structures add to the
complicatedness of nesting vega risk into a risk management framework. Yet, in certain
option positions, the level of vega risk may well exceed the level of delta risk, which
underlines the need for an accurate risk management model that is able to incorporate also the
vega risk. For instance, in the following example swaption trading positions and strategies the

proportion of vega risk is relatively high compared to the level of delta risk:

- a delta-hedged position in which a swaption is hedged with the
underlying forward swap contract so that the book is insulated
against short-term interest rate changes but the option position’s
sensitivity to general level of option prices remains, which acts as
the source of the vega risk of the book

- a straddle that consists of a long (short) call and a long (short)
put with equal exercise rates and

- a strangle that consists of a long (short) call and a long (short)

put with different exercise rates.
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2.8.1 Swaption VaR

When computing VaR for swaptions, the relevant risk factors are interest rates and implied
volatilities. Hence, in the Historical VaR framework, the changes in both of those risk factors
within a chosen historical period are used for simulating possible outcomes for the position.
Then, depending on the selected confidence interval and number of simulations, the n:th

worst simulation outcome is the VaR figure.

It is up to the risk manager to decide whether to use absolute or relative changes in the given
risk factors when creating a suitable distribution for VaR computations. On the one hand,
when using relative changes in interest rates or volatilities, the possibility of generating
negative outcomes is avoided, which is a desired trait in order to remain within the range of
realistic scenarios. On the other hand, applying relative changes leads to implicit assumption
that the magnitude of changes in those risk factors would depend on their absolute levels. The
studies in that subject have not provided solid empirical evidence to support either assumption

over the other when evaluating the dynamics of interest rates (e.g. Corb, 2012).

While accounting for the interest rate risk in swaption VaR estimation is quite
straightforward, enclosing the vega risk is slightly more intricate. A rather simple and
tractable means of integrating the vega risk into VaR calculation is to treat implied volatility
analogously to other market risk factors to which a portfolio is exposed to as Malz (2001)
proposes. Despite the theoretical simplicity of treating the volatility of volatility in a similar
fashion as any other risk factor, the key difficulty involved in modeling the vega risk is
associated with the choice of strike level to be used. Generally speaking, the use of at-the-
money (ATM) level implied volatilities provides insight on the fluctuations of option prices
on a large scale, but due to the existence of volatility smile, option portfolios are also exposed
the changes in implied volatility along the smile, and, moreover, due to non-parallel shifts of
the volatility smile options are also exposed to changes in the shape of the smile. When the
shape of the volatility smile changes, the change in the price of an out-of-the money (OTM)
option is relatively higher or lower than the simultaneous price change of an ATM option.
Thus, in such situation a VaR model that only incorporates ATM implied volatility changes
generates either too optimistic or too pessimistic estimates for options whose strike prices are
not close to the ATM level. Furthermore, even if the shape of the volatility smile remained

constant, an option is still exposed to changes along the smile when the price of the
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underlying asset moves away from the option’s strike level. For instance, as time passes and
interest rates change, the strike rate of a swaption that was originally issued at ATM level
subsequently becomes an OTM swaption, which means that the changes in ATM implied
volatilities may no longer yield accurate predictions about the changes in its present implied
volatility. Intuitively, it would be reasonable to take into account both exposures mentioned
above, but in reality, the restricted access to historical implied volatilities for OTM strike
levels together with increased computational complicatedness makes it difficult for
institutions with limited resources to incorporate the volatility smile changes into their VaR
models. Fortunately, the changes along the volatility smile are more straightforward to
incorporate in VaR estimation as, after all, the present smile data are required for pricing and

computing prevailing mark-to-market values regardless of the risk management models.

2.8.2 Fixed smile method

The simplest approach for incorporating vega risk into VaR computation is to ignore the
changes in the implied volatility smile and to take into account merely the changes in the
volatility smile as a whole, thus only allowing for parallel shifts in the smile. This is also the
first of the models Malz (2001) presents for including vega risk into FX-option VaR
estimation. In this approach it is assumed that the smile moves within the exercise rate — vol
space but not in the delta — vol space. Consequently, this model assumes that the evolution of
the implied volatility surface follows a common heuristic called sticky delta approach as
Derman (1999) has labeled it. What this approach suggests is that if the underlying swap rate
changes, the implied volatility of a swaption with a given moneyness does not change. Thus,
in the fixed smile method, the changes in the implied volatility along the smile are taken into
consideration through assigning correct implied volatilities to swaptions when their
underlying swap rate moves away from the ATM level as a result from applying different
historical interest rate changes as shocks to the prevailing interest rates. As a summary, in the
fixed smile method, a number of swaption’s mark-to-market value changes are simulated by
shocking both the swap rates and the implied volatilities, but with the limitation that the same
volatility shocks are applied to all swaptions with the same maturity regardless of their
respective moneyness. Moreover, the volatility shocks are derived from a history of daily
changes in implied volatilities of ATM swaptions, which means that no history of OTM

implied volatilities is required in estimation process.
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However, when the volatility fluctuations are modeled using relative changes, the shifts are
not strictly parallel, as when there is a skew in the volatilities, the absolute changes are not
uniform across the different strikes. Nevertheless, the method assumes equivalent relative
changes, which seriously limits the shapes that the smile may adopt. Hence, the term “fixed

smile” is still used in this paper even if slightly stretching the actual denotation of “fixed”.

Figure 2:
The fixed smile method

In the fixed smile method, implied volatilities are shocked along the prevailing smile and/or in a parallel fashion. The solid
line represents volatility smile on May 10, 2012 for a 5x5 swaption.
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2.8.3 Random smile method

A more sophisticated method to incorporate the different dimensions of vega risk into VaR
estimation is to allow for changes in the curvature and skewness of the implied volatility
smile in addition to the parallel changes that are included in the fixed smile approach. Hence,
the shape of the smile is no longer assumed to be fixed but rather allowed to vary more freely
than in the previous model. This model is principally the second proposed in Malz (2001).
The key difference between the fixed and the random smile methods is that the moneyness of
a given swaption is accounted for when applying different volatilities to generate required
simulations for its price changes. Thus, for instance, the historical implied volatility changes

used for generating prices for a swaption whose moneyness is ATM=+50 bps are chosen from
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changes that have occurred for swaptions with that specific moneyness in the past, while in

the fixed smile method the changes in the ATM volatilities would be used instead.

Figure 3:
The random smile method

In the random smile method the shape of the smile is permitted to vary through applying volatility shocks that depend on the
moneyness of a swaption.
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2.8.4 Fixed and random smile methods with observed volatility changes

While the above presented fixed and random smile methods utilize observed simultaneous
changes in interest rates and volatilities in scenario creation in a tractable way, it is assumed
in both of the models that the implied volatility scenarios gained from using differences
between implied volatilities with equal strike levels on successive days would provide a
sufficiently accurate distribution of daily volatility changes. However, for a given swaption
traded on day ¢ the correct implied volatility on #+/ is most likely different from the implied
volatility of a swaption made on #+/ with equal moneyness. Hence, the both models can be
modified so that instead of using changes between ¢+/ and ¢ for distinct swaptions with same
strike moneyness, the distribution of volatility moves is compiled using changes between
actual observed implied volatilities for a given swaption on the consecutive days. The implied
volatility on #+/ is obtained using the SABR model, which means that a history of OTM

implied volatilities is required even if using only ATM level changes since the historical
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SABR parameters are needed to determine the volatility changes. More specifically, the

observed difference is defined in the following way using (15):
Ao =0 (sa,b(t) +AK, S, (¢ + 1)) —0 (sa,b(t) + AK, Sq (1)) (18)
On the contrary, the method used in 2.8.2 and 2.8.3 can be formalized as follows:
Ac=a (sa,ﬁ(t +1) + AK, Sq (¢ + 1)) —q (sa,ﬁ(t) + AK, Sa,,;(t)) (19)

where S, ,(t) is the ATM forward rate on ¢ and AK is the difference between ATM level and

the strike rate of the specific swaption.

To distinguish the models with implied volatility estimation described in 2.8.2 and 2.8.3 from
estimation method defined in this chapter, the models that employ (79) are labeled with a
prefix “Proxy” and the models that utilize (/8) are titled with “Direct” in the following

sections of this paper.
2.8.5 Skew dependent model

An additional potential source of imprecision in each of the above presented models arises
from ignoring the prevailing shape of the volatility smile. For instance, it the skew is steep, a
change in the underlying swap rate leads to a higher change in implied volatility than would
occur as a result from a similar rate change when the smile is flatter. One conceivable method
of considering the present shape is based on separating the observed implied volatility
changes into two components stemming from either a change in interest rates or from a
change in general level of implied volatilities. However, the problem is that there is no
objectively specified method for determining which proportion of the observed change stems
from interest rate changes or from overall changes in volatilities. Nevertheless, an
approximating segregation can be implemented using the SABR model so that the change in
implied volatility that follows from an interest rate move between days ¢ and ¢+/ is defined as
the difference between the observed implied volatility on ¢ and the SABR model output for
the new interest rate level using model parameters from day ¢ Then, the residual difference
between the actual implied volatility on #+/ and the figure estimated using the SABR model

for day ¢ represents the move due to general change in volatilities.
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As a result, the scenarios are obtained by first shocking the interest rate with historical rate
changes for which the theoretical corresponding implied volatilities are computed with (75).
Next, each of these scenarios are further shocked with the previously obtained theoretical
changes in the general level of implied volatilities to achieve the final swap rate-implied
volatility -pairs. Figure 4 illustrates how a single scenario point is achieved under the skew

dependent model.

The skew dependent model is referred to with a prefix “Component” in the empirical part of
this study based on the technique how the total VaR estimate is obtained. However, it should

not be fixed with the risk components of VaR figures.

Figure 4:
Skew dependent model

The figure illustrates the scenario creation method in skew dependent model. First, the prevailing point is moved from
starting position (+) along the observed volatility skew to the point that matches the interest rate scenario (X). Then, the point
is moved vertically by an amount that matches the corresponding change in implied volatilities that occurred together with
the observed interest rate change (dot). As a result from repeating the described steps 250 times and valuating the contract in
each of them, a distribution of mark-to-market price scenarios is achieved. When the prevailing price of the swaption is
reduced from the price scenarios, a distribution of 250 profit and loss figures is achieved, and VaR estimate is then the
percentile of the distribution that matches the chosen VaR confidence level (e.g. 5% percentile for 95% confidence level
VaR).
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3 HYPOTHESES

This section presents the hypotheses that are tested in the empirical part of this study. The
hypotheses are structured in a way that facilitates finding answers to the research problems

stated in chapter 1.2.
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As this thesis aims to examine the importance of accounting for swaption moneyness in
creating a distribution of historical changes in implied volatilities used in swaption VaR
estimation based on variants of historical simulation, a relevant hypothesis to test is whether
or not the alternative VaR methods introduced in the previous section generate differing risk
estimates. However, before investigating differences between the alternative models, it is
worth testing whether the VaR models are able to provide a sufficiently accurate estimates of
swaption market risk to begin with. Therefore, the first hypothesis is aligned with the

statistical test used for determining validity of a given VaR model and is as follows:

Hypothesis 1: VaR models based on historical simulation generate acceptable

estimates of swaption’s market risk.

The second hypothesis is related to the differences between the previously mentioned
swaption VaR models. If the changes in the shape of the implied volatility smile induce a
relevant risk source, models with random smile method should provide better results than the
fixed smile models. Nevertheless, due to the lack of previous empirical findings on the
specific issue, the formulation of the second hypothesis is partially arbitrary: while Malz
(2001) does not find evidence that the model in which smile changes are recognized as a risk
factor would be more preferable than the model with fixed smile, the paper concentrates on
options on FX-rates instead of swap rates. Moreover, the shape of the volatility smile is not
fixed in reality, which supports the notion of accounting for the changes also in VaR
estimation. Notwithstanding, the preliminary evaluation of the sample data suggests that the
changes in OTM levels are highly correlated with the changes in ATM level, which indicates
that the added information from considering OTM volatility changes may not improve the

VaR precision in a notable fashion. Hence,

Hypothesis 2: A model that employs OTM level implied volatility changes in
swaption VaR estimation does not generate more accurate estimates than a model with

fixed smile approach.

4 DATA AND METHODOLOGY

This section starts with a presentation of the data employed in this study, and then continues

with a description of the VaR methods utilized in creating the historical daily VaR estimates.
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The section concludes with an illustration of the methodology utilized in testing the

hypotheses.

4.1 Data

The data required in this study comprises of the elements needed for swaption pricing, and

hence, the following data are needed:

- EONIA zero rates for discounting
- 6 month Euribor zero rates for projection

- Implied swaption volatilities

The interest rate data are provided by Pohjola Bank Plc. As zero rates are not traded as such,
the rates are bootstrapped from different market traded interest rate instruments, and the
interest rate curve is smoothed via interpolation in order to cover also the maturities for which

there are no market quotes.

The implied swaption volatilities for different maturity-tenor-strike -combinations are also
provided by Pohjola Bank Plc. However, due to the low absolute level of interest rates, quotes
are not available for all of the moneyness levels for which there usually exist quotes as
highest negative relative strike levels would imply negative strikes in absolute terms. Hence,
the VaR estimation in this study concentrates on moneyness levels above the at-the-money
level for the data below the ATM level is incomplete. Furthermore, the reliability of historical
implied volatilities for out-of-the-money strikes is also limited as the trading is concentrated
around at-the-money level. Nevertheless, as there is no conclusive method for separating
erroneous observations from valid figures, merely those observations that are definitely
incorrect, such as negative volatilities, are disregarded. However, the plausible incorrectness
of observations for strikes far OTM should be taken into account when interpreting the
results. Moreover, the dataset covers dates only from March 8, 2011 onwards. Consequently,
changes in implied volatilities needed in historical VaR estimation are available from March

9, 2011, which truncates the length of the backtesting period shorter than desired.

In total, the data consists of 480 daily observations of swap rates with maturities ranging from
one month up to 60 years, and of equal number of daily swaption volatilities. Using a

historical observation period of 250 trading days in VaR estimation, there is 228 days left for
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backtesting. However, due to practical reasons in spite of the abundant availability of data
for different maturities, the number of different swaptions employed in this study is limited to
the following set of maturity-tenor pairs: 1x2, 1x5, 5x2, 5x5, 10x2 and 10x5 with strike rates
ranging from ATM to ATM +200 bps. Furthermore, the VaR estimates and backtesting
results shown in this study are computed for long and short physically settled European
receiver swaption positions with notional of 10 million EUR. To confirm the validity of the

estimates, I also run analogous analyses for payer swaption positions.

4.1.1 Descriptive statistics

Swap rates during the overlapping estimation and backtesting periods are at historically low
levels: for instance, five year rate starts at 2.98% and ends at 1.13% while maximum and
minimum values are 3.20% and 0.74% respectively. Moreover, as Figure 5 shows, the swap
rates decline until the end of 2012 quite steadily and then begin to climb again. Additionally,
the shape of the yield curve stays relatively unchanged for the short end, although a minor
twist can be observed as the long end ascends in relation to the short end during the latter part
of the investigation period. The yield curve is presented for a few selected days from the

beginning, middle and end of the observation period in Figure 6.
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Figure 5:

Euribor swap rates

The figure shows the development of Euribor swap rates for maturities of 1, 5, 10 and 15 years under the VaR estimation
period between March 8, 2011 and February 1, 2013.
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Yield curves

Figure 6 illustrates yield curves for selected dates within the sample data. The curve ranges from one month to 60 years. The
primary change during the period concerns the overall level of the curve, but also the shape of the yield curve has altered
slightly so that the long end has gradually shifted upwards in relation to the short end.
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Table 4 collects the summary statistics of daily changes in swaption implied volatilities and

underlying forward swap rates during the backtesting period, and the analogous statistics from

the whole observation period are shown in Table 16 in Appendix B.

The steady decline in swap rates illustrated in Figure 5 is corroborated by the average daily

change of approximately -0.4 basis points for each swaption maturity-tenor pairs investigated
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during the whole sample period. In contrast, implied volatilities tend to increase during the
sample period and daily changes average between 0.06% and 0.14% for ATM options.
Slightly surprisingly, however, the average daily log-returns for implied volatilities of 10x2

and 10x5 swaptions are negative during the backtesting period.

Table 3 shows the correlations between the risk factors during the whole observing period and
correlations sampled from the backtesting time period are presented in Table 17. As expected
on the basis of estimates presented in Andersen and Lund (1997), who study the dynamics of
interest rates, the correlations between interest rates and lognormal implied volatilities are
negative. This negative link between the risk factors indicates that neglecting the existence of
the volatility smile by using an assumption of constant volatility in swaption VaR
computations would lead to erroneous risk estimates as Malz (2001) puts forward. However,
correlations between changes in implied volatilities of different strike levels are fairly high,
which gives a reason to expect that using merely ATM volatility changes might be sufficient
for VaR estimation also for swaptions with OTM strikes. Yet, as Figure 7 shows, the spreads
between ATM and OTM implied volatilities are not constant, which indicates that the shape
of the volatility skew fluctuates at least to some extent during the observation period.
Nonetheless, as Figure 13 in Appendix B illustrates, changes in the shape of the volatility

skew during the observation period are minimal.

Table 5 shows summary statistics of the swaption price fluctuations for the contracts
examined in this study. Explicitly, the statistics are computed from one day changes for the
contracts opened and closed on a daily basis. The return distributions exhibit positive
skewness and excess kurtosis, and according to the Lilliefors test of normality most of the
price fluctuations do not come from a normally distributed population. On the other hand,
Jarque-Bera test of normality cannot reject the null hypothesis of normality for 1x2, 1x5 and
5x2 swaptions with strikes ranging from ATM to ATM +25bps. Nevertheless, these
distributional characteristics refute the use of a parametric VaR method as it would likely
underestimate the probability of the tail events. Consequently, the use of Historical

Simulation is a preferable approach.

Interestingly, the average price changes for many of the long receiver swaption positions
considered in the study are negative although the interest rates decline on average during the

observation period. At first this remark appears counterintuitive, as a receiver swaption has a
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negative delta and a positive vega, which means that for the long position holder, a decline in
the interest rates and an increase in the volatility both increase the value of the contract.
Moreover, since the underlying forward rates and implied volatilities are negatively
correlated, as presented in Table 3, a decline in interest rates should on average be
accompanied by an increase in volatility, which should then deliver a double-boost to the long
position holder. However, a closer examination of the dynamics of the risk factors reveals that
even though the interest rates decline and implied volatilities increase in more than half of the
days during the backtesting period, the average increase in volatility is nevertheless smaller
than the average decrease. This asymmetry is also reflected on the negative skewness of the
implied volatility fluctuations during the backtesting period. Furthermore, as the swaption
sensitivities with respect to changes in interest rates and volatilities depend on the moneyness
and maturity as well as on the tenor of the option, price changes arising from fluctuations in
the risk factors are not equal for ATM and OTM options or for options whose time to
maturity and tenor are not equal. In general, both delta and vega are at maximum for ATM
options when other factors are held constant. However, their relative significance depends on
the other factors as well, and hence pointing out which factor dominates the price movements

requires simultaneous computations of the sensitivities.

Nevertheless, to summarize the behavior of the considered positions, the longer the time to
maturity, the more important the vega becomes, whereas the further away from ATM the
strike moves, the more central the delta becomes. That is, the impact of the delta tends to
decrease at a slower pace with respect to changes in strike dimension than that of the vega.
Consequently, while the volatility changes dominate the price fluctuations for ATM to ATM
+100 bps swaptions, the trend of declining interest rates is better reflected on prices of ATM
+200 bps swaptions. Numerical* delta and vega figures for long swaption positions are shown
in Figure 12 (Appendix B) to illustrate the swaption sensitivities during the backtesting
period. As a whole, the prices of the considered swaption positions do not move in unison as
can be observed from less than perfect correlations between implied volatility fluctuations of

different strike levels and from divergent sensitivities with respect to the risk factors.

“The sensitivities could be computed also analytically, i.e. they could be derived from the option pricing formula,

but using numerical estimates often leads to more rational figures (e.g. Taleb, 1997).
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Table 3:
Risk factor correlations
The table shows correlation coefficients for the swaption risk factors during the observation period from March 8, 2011 to

February 1, 2013. F stands for the forward starting swap rate underlying the specified swaption contracts. The correlations
are measured between absolute changes in F and log-changes in implied volatilities.

F ATM +25bps +30bps +100bps +200bps
Panel A: 1x2
F 1000 0651 0611 03561 0481 0397
ATM 0631 1000 0979 0875 0767 06335
+25bps 0611 0979 1000 0861 0758 0648
+30bps 0361 0875 08681 1000 0912 0847
+100bps 0481 0767 0758 0012 1000 0897
+200bps 0307 04633 0648 0847 0827 1000
Panel B: 1x5
F 1000 0728 0718 0639 03520 03735
ATM 0728 1000 0993 0B8R 0705 0476
+23bps 0718 0993 1000 O0B8T 0709 0434
+30bps 0639 0880 0887 1000 0905 0740
+100bps 03529 0705 0709 0905 1000 0878
+200bps 0375 0476 0484 0740 0873 1.000
Panel C: 32
F 1000 0748 0738 0724 0680 0607
ATM 0748 1000 0930 0987 0933  0.3838
+23bps 0738 0980 1000 0958 0932  0.343
+30bps 0724 0987 0968 1000 0985 0919
+100bp= 0682 0933 0930 0985 1000 09466
+200bps 0607 0838 0845 0919 0966 1.000
Panel D 3x5
F 1000 0811 0800 0806 0792 0720
ATM 0811 1000 0879 0982  093%  0.880
+25bps 0800 0970 1000 0971 0042 0363
+30bps 0806 0980 0971 1000 0983 0018
+100bps 0792 0930 0942 0985 1000 0043
+200bps 0720 0880 0863 0918 0943 1.000
Panel E: 10x2
F 1000 0739 0745 0735 0711 0666
ATM 073 1000 0990 0988 0960 0025
+25bps 0745 0990 1000 0930 0961 0913
+30bps 0735 0933 0980 1000 0987 0932
+10M0bps 0711 0960 0951 0987 1000 0071
+200bps 0666 0923 0915 0932 0971 1000
Panel F: 10x3
F 1000 0798 0784 0802 0781 0760
ATM 0798 1000 0972 0982 0960 0918
+23bps 0734 0972 1000 0976 0935 09014
+30bps  -0.8302 0982 0976 1000 0986 0936
+100bps 0781 0960 0955 0986 1000 0973
+2Mbps 0760 00918 0914 0936 0975  1.000
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Table 4:
Risk factor summary statistics
The table presents summary statistics about risk factor returns during the backtesting period between March 5, 2012 and

February 1, 2013. Changes in forward swap rates (F) are measured in absolute terms and presented in basis points. Changes
in implied volatilities are measured as log-returns and presented as percentage changes.

ATM  +25bps  +30bps +100bps +200bps

Panel A: 132

Average -0.0% 0.12 0.12 0.10 0.08 0.07
Median 0.05 0.26 0.23 .20 024 0.33
Std dev 383 4352 433 4.70 328 3.70
Skewness 0.56 20.04 003 0,10 020 0,69
Eurtosis 424 4.09 433 401 581 8.78
Panel B: 1x5

Average 0.15 0.03 0.03 0.03 0.06 0.05
Median -0.18 021 0.11 0.0 0.02 012
Std dev 419 310 3.02 3.37 115 3.79
Skewness 0.53 044 041 026 022 004
Eurtosis 3.3l 471 473 480 G.99 773
Panel C: 3x2

Average 021 0.03 0.03 .03 0.03 0.04
Mledian -0.66 0.20 0.20 013 0.09 .04
Std dew 480 2.39 2.33 230 228 243
Skewness 0.50 028 023 0,335 0,33 -0.20
Eurtosis 346 478 4 .66 4.60 14 444
Panel D 5x5

Average 0.15 0.00 (.00 (.00 0.00 0.01
Median 0.4 0.12 0.12 0.07 0.02 0.04
Std dev 3.10 218 212 217 218 2.17
Skewhess 043 034 018 026 0.17 0.06
Eurtosis 353 3.09 4.9 476 487 6.9
Panel E: 10x2

Average -0.08 20.02 40.02 003 003 003
Median 0.06 0.16 0.13 011 0.07 011
Std dev 3.33 2.03 2.00 201 2.00 1.97
Skewness 042 012 40.10 (.04 0.14 0.19
Eurtosis 4.30 478 4 86 184G 32 3.32
Panel F: 10x3

Average -0.035 -0.02 40.02 002 002 002
Median -0.09 0.07 (.06 0.03 0.03 0.07
Std dev 346 206 2.00 203 207 2.03
Skewness 0.40 -0.38 .19 025 .16 0.13
Furtosis 180 346 4584 3.07 302 6.10
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Table 5:
Swaption return statistics
This table summarizes statistical properties of the daily price fluctuations of the long receiver swaption positions during the

observation period of March 5, 2012 to February 1, 2013. The statistics are based on absolute returns and the number of
observations is 228.

ATM 25 bps +30 bps +100 bps +200 bps
Panel A4: 1x2
Average 480 -368 -231 -33 351
Median 620 2293 -13 116 638
Std dev 3928 3333 6 148 702 7528
Skewness 0122 0,138 0307 042 0528
Furtosis 3204 3.288 3444 3812 4215
Panel B: 1x5
Average T4 038 -1 043 224 1421
Median 607 018 -727 -146 2004
Std dev 10 8449 14 244 16 517 19632 21673
Skewness 0291 0268 0403 0477 0322
Eurtosis 3.076 EXIN 3051 3087 3223
Panel C: 322
Average 599 -1810 -1863 -1238 3000
Median 224 -1 500 -1313 -857 ERES|
Std dev 3244 3838 6676 7876 O 646
Skewness 0.079 0.107 0.168 20,283 0,548
Furtosis 3.820 3643 3513 3317 3038
Panel D 3x3
Average -313 -1 863 -3 204 2324 4 603
Median 77 -861 2318 -189% 3883
Std dev 13 433 13036 17123 20 357 24 846
Skewtess 0347 0269 0333 0367 0333
Furtosis 3821 3578 3.528 3444 3.400
Panel E: 10x2
Average 237 472 -1230 -1130 1634
Median -83 210 054 -354 1 820
Std dev 3426 6 064 6776 043 10071
Skewness 0.180 0209 0223 0240 0.18%
Eurtosis 4111 4157 4.160 4.163 4.007
Panel F: 10x3
Average 603 -1180 22838 2778 3872
Median 452 417 -1195 981 3165
Std dev 13 361 14 862 16 798 20086 2321
Skewness 0,360 0323 0404 0380 026
Furtosis 4615 4442 4592 4357 4434
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Figure 7:
ATM volatilities and OTM spreads

The figures below present ATM implied volatility development during the sample period for 1x5, 5x5 and 10x5 swaptions
together with spreads for their OTM strikes above the ATM level.
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4.2 VaR estimation

This study employs historical VaR estimation for generating a backtesting sample that is used
for testing the hypotheses. The choice of the VaR method is based on its suitability for option
portfolios and on the overall incentive to avoid having to make assumptions regarding the

parameters of return distributions.
In VaR computation the following three methods are used:

- basic historical simulation (HS)
- filtered historical simulation (FHS)

- time-weighted historical simulation (TW)

The historical observation period is 250 trading days, which is approximately one calendar
year. Hence, the VaR figure is computed for every day starting from March 5, 2012 until the
end of the data set. The VaR figures are estimated using 95% confidence level and a risk
horizon of 1 day. In addition, the figures for expected shortfall (ES) with confidence level of
95% are computed in order to obtain data for loss function -based backtesting method. For
computational reasons, it is assumed that a swaption position is opened and closed on a daily
basis. Otherwise one should also take into account the changes in time value of the option,
which would introduce another level of complexity that, however, would not contribute
additional relevant information to the original research question of this study. Moreover, for a
swaption whose maturity is either two, five or ten years, the change in its mark-to-market
value resulting from a one day reduction in its time until maturity is infinitesimal compared to

changes stemming from fluctuations in interest rates and implied volatilities.

The historical changes in interest rates are measured in absolute arithmetic terms® in all
models. Therefore changes in implied volatilities are modeled using relative changes to
maintain consistency between interest rate and implied volatility changes. In all of the
methods the VaR calculation is implemented using full-valuation method, which means that
the position is revalued under each of the risk factor scenarios that are created through

applying historical swap rate and implied volatility changes to the respective prevailing

5 There is no clear evidence whether interest rate volatility depends on interest rate levels or not (eg. van
Deventer et al., 2005). Consequently, arithmetic returns are used as they are more intuitively appealing when
dealing with interest rate instruments.
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levels. In FHS models the changes are adjusted using exponentially weighted moving average
(EWMA) method with the lambda parameter set at 0.94 following RiskMetrics convention,
while in models employing TW approach the lambda is set to be 0.98 as in Boudoukh et al.
(1998). In HS method the changes are applied without adjustments.

4.2.1 Historical simulation

Historical simulation is implemented by generating different scenarios using the observed
historical changes in interest rates and implied volatilities. Each of the historical daily changes
in swap rates and implied volatilities are added one at a time to the prevailing interest rate and
implied volatility curves, and as a result, a distribution of 250 possible scenarios is obtained.
Then the scenarios are used for generating respective number of new mark-to-market
scenarios for the position from which the present value of the position is subtracted.
Accordingly, a distribution of 250 profit and loss figures is achieved from which the 5%
quantile (for VaR at 95% confidence level) is drawn. In the fixed smile method, each
historical swap rate change for a given date is accompanied by the respective change in at-the-
money implied volatility on that same date, whereas in the random smile method the changes

in implied volatility are chosen based on the moneyness of the swaption.
4.2.2 Filtered historical simulation

Filtered historical simulation is employed in a similar fashion as basic HS, but the actual
returns within the historical dataset are replaced with returns adjusted by forecast of volatility

for a variable i in the following way:
rh = 20)

where

or; 1s the most recent forecast for the volatility for i
1 ; 1s the actual historical return in i on day ¢

o 1s the historical forecast of the volatility for changes in i made on ¢

The volatility forecast can be gained by for instance using the generalized autoregressive

conditional heteroskedastic (GARCH) model originally developed by Engle (1982) and
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Bollerslev (1986). However, as this model requires a vast number of parameters to be
estimated, its practical implementation is usually not viable in large scale risk measurement
process carried out on a daily basis. Hence, more commonly used approach for modeling
volatility is exponentially weighted moving average (EWMA) forecast® (Jorion, 2007). Stated

in a formal way, the variance forecast for time 7 is
o = Act + (1 —Drd (21)

where the parameter A is again the decay factor that defines the weights for previous forecast
and latest observation. Also, A is the only parameter that needs to be estimated in the
EWMA approach. The value of 4 defines the reactiveness of the forecast to market events: the
lower the figure, the more reactive the forecast becomes. Following J.P. Morgan's RiskMetric

(1996) it is frequently set at 0.94 for daily observations.
4.2.3 Time-weighted historical simulation

Following Boudoukh et al. (1998), the time-weighted approach is implemented in three steps:

1. Realized return from -/ to ¢ is denoted by R(?). To each of the H most recent returns

1-1 1-2
1-AH’ 1-2H Ay

(R(t),R(t—1),...,R(t—(H+1))is assigned a weight

%AH ~1 respectively, where the parameter A is the decay factor.

2. The returns are sorted in ascending order

3. To find the VaR figure of the portfolio, the weights are accumulated starting from the
lowest return until the desired quantile is reached (e.g. 5% when using 95%

confidence level).
4.2.4 Quantile estimation

In addition, since the quantile estimation might be rather inaccurate due to rather short
observation period, two different percentile estimation methods are utilized for determining
the VaR figure from the distribution. The first alternative is to use the percentile -function in

Matlab without any additional adjustments. The second alternative is to apply a distribution

¢ GARCH models have time-varying conditional volatility whereas EWMA models give time-varying estimates
of the unconditional volatility (Alexander, 2008).
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fitting method to the tail of the distribution, and to choose the value from the fitted
distribution. The fitting is implemented using Epanechnikov kernel function following
suggestion of Butler and Schachter (1998). Also the fitting is implemented in Matlab using

ProbDistUnivKernel constructor.

4.2.5 VaR components

Moreover, the VaR estimation is divided into sub-steps in order to allow for separation of the
total VaR figure into interest rate risk and volatility risk components. The interest rate
component is obtained by generating scenarios using the historical changes in interest rates in
a similar fashion as in total VaR computation, but using only the implied volatility that has
prevailed on the given estimation date. Depending on the model in question, the historical
changes are adjusted similarly as in total VaR computation. However, it should be pointed out
that when computing the interest rate risk component of a swaption VaR estimate, one still
needs to account for the changes also in the implied volatility used in Black model due to the
existence of the volatility smile. Hence, for each interest rate scenario that is generated by
shocking the swap curve with historical changes, the corresponding implied volatility for each
swap rate scenario must be chosen accordingly from the volatility cube prevailing on the

estimation day. The correct volatility is obtained with the SABR model.

The volatility component is calculated in a similar way as the interest rate component, but
now the swap rate on the estimation date is kept constant while historical implied volatility
changes are applied to the volatility prevailing on the estimation day. Similar adjustments are
applied to implied volatility changes in FHS and TW methods that are used for adjusting the

interest rates in the respective models.

4.2.6 Summary of VaR estimation

The VaR figures are estimated for the different combinations of the following parameters:

- Use of ATM or moneyness dependent historical changes in
implied volatilities
- Implied volatility changes derived from daily differences

between swaptions with equal moneyness on successive days



53

(“Proxy”) or from actual differences in implied volatilities for a
specific contract (“Direct”)

- Swaption moneyness relative to ATM: 0, +25bps, +50bps,
+100bps or +200bps

- VaR confidence level: 95% and 90%

- Quantile estimation: interpolation from the observed distribution
or from fitted distribution

- Volatility updating: lambda 0.94 or no weighing

- Time weighing: 0.98 or no weighing

- Maturity of the swaption: 2, 5 or 10 years

- Tenor of the underlying swap: 2 or 5 years

The ATM-moneyness is included for comparing the effect of lambda weighing. Naturally, the
results for ATM-moneyness swaptions are the same regardless of whether the fixed smile or

the random smile method is used.

Different combinations of the above mentioned dimensions of models and model
configurations would enable computation of almost 4 000 VaR series when combined also
with swaption type being receiver or payer. However, not all possible variations are
considered in this study. For instance, distribution fitting is not evaluated for each of the
combinations, and VaR estimates with 90% confidence level are computed only for a limited
number of contracts. Moreover, time weighing is not combined with volatility updating
method utilized in FHS models. Finally, the backtesting sample consists of 1 080 different

VaR estimate series.

4.3 SABR -parameter estimation

In order to compute the 1-day change in a swaption’s mark-to-market value, i.e. the profit or
loss figure, or the interest rate risk component of the daily VaR estimate, one has to apply a
volatility model to obtain the implied volatility needed in Black model that corresponds to the
strike rate of the given contract. Likewise, the model is required in estimating the observed
historical implied volatility changes to be used in models that employ “Direct” changes

instead of “Proxy” changes. As the SABR model is able to fit the observed smile almost
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perfectly (e.g. Hagan, 2002) and since it can be regarded as the standard method in interest

rate option markets for modeling implied volatilities, it is also applied in this study.

The SABR model’s parameters are calibrated for every date included in the sample data and
for each of the maturity-tenor -pairs. In general, model calibration means finding parameters
that minimize the error between the observed implied volatilities and the points that are fitted
by the model. More specifically, the calibration is conducted by using Levenberg-Marquardt
algorithm to find the parameter values that minimize the mean squared error between

observed and fitted volatilities. Thus, the problem can be formulated as follows:

V,Qo,pP,

minﬁZ((&i —05(v, @, p, B; Ki, Sa(0)))? (22)

where 0; are the market observed implied volatilities and oz (v, @y, p, f; K;, S.,(0)) are the
fitted implied volatilities as a function of the SABR parameters, strike rates K; and ATM

forward rate S, ;,(0). The calibration is implemented in Matlab.

4.4 Backtesting

The backtesting process is implemented in two stages following the strategy of Angelidis et
al. (2007). First, the different models are evaluated with conditional and unconditional tests
based on the information provided by the number and frequency of VaR exceptions. Also the
Basel traffic light test is implemented in this stage. Moreover, the first stage of backtesting
process should provide an answer to the Hypothesis 1 by providing insight whether the used

models are suitable for measuring swaption VaR.

Next, the second stage of testing is implemented to the models that have passed the first stage.
In the second stage, the risk measurement accuracy of the models is compared using the loss
function based backtesting method described in paragraph 4.7. More specifically, models with
different methods with respect to smile modelling but otherwise similar configurations are
compared together by gathering data from the series that passed the first stage. For instance, a
TW model with fixed smile method is compared against TW model with random smile
method with the same underlying swaption contract. Nevertheless, as the loss function based

backtest would define a model with zero exceptions as the superior model, this test will be
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implemented by taking into account only the exceptions that have occurred on those days

when both of the models have generated an exception.
4.4.1 The statistical framework of backtesting

The most straightforward method for assessing the quality of a given VaR model is to count
the number of times when the actual portfolio losses exceed the model’s respective estimates:
if the number of exceptions goes above the limit indicated by the used confidence level, the
model could be too optimistic in the sense it might underestimate the actual risk. In addition,
if the number of exceptions is less than predicted by the confidence level, the model may
overestimate the risk, which also indicates that the quality and hence the estimates of the
model might be questionable. Obviously, the number of exceptions is a random variable,
which means that the amount of exceptions rarely equals the number suggested by the
confidence interval. Consequently, the decision whether the number of exceptions is

acceptable or not should be based on study of appropriate statistical analyses.

Statistical tests provide valuable insight into VaR model quality estimation and, more
importantly, a systematic approach to decision making when assessing the validity of a VaR
model. In the tests of unconditional coverage a VaR model’s failure rate is used as a basis for
statistical analyses when assessing the quality of the model. The failure rate is based on the
“hit” sequence of historical losses that have exceeded the respective VaR estimates over a
given observation period. Following Campbell (2005), when the daily profit and loss figure of

the portfolio is denoted as x;, 1, the hit function can be presented as follows:

_(Lxeeer < —VaRe (@)
lera(@) = {0’ Xter1 > —VaR: (a) (23

The failure rate is defined as the number of violations divided by the total number of
observations 7. Hence, the hit ratio is an unbiased estimator of the probability of observing a

violation so that

=I(a)=@& (24)

where the number of exceptions is
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T
I(a) = th(a) (25)
t=1

When the sample size increases so that & converges to «, the following relation should hold

for an accurate model:
a=1-c¢ (26)

where ¢ denotes the chosen confidence level. Thus, for example when using 95% confidence
level, a should equal to 5%. Hence, the backtesting procedure resembles a Bernoulli trial in
which an action with two possible outcomes is repeated numerous times and in which each
outcome is independent from the prior outcomes. Therefore, the number of violations follows

binomial probability distribution as follows:

FI@) = () @1 = )7 (27)

With sufficiently large sample size, the binomial distribution can be approximated with the

normal distribution so that

Z_\/T(&—a)
_,/a(l—a)

~ N(0,1) (28)

The hypothesis tests could then be conducted based on the known sample distribution of z.

However, when conducting statistical analysis in either accepting or rejecting a null
hypothesis, there is always a tradeoff between type I and type II errors. When validating
soundness of a given VaR model, the null hypothesis refers to the goodness of the VaR
model, type I error stands for a rejection of a sound model, and type II error, respectively,
refers to not rejecting a deficient model. In the field of risk management, incurring type 11
errors can be very costly and therefore a high threshold should be applied when accepting

validity of a VaR model.
4.5 Tests of unconditional coverage

The purpose of tests of unconditional coverage is to determine whether the hit sequence

generated by a VaR model satisfies the unconditional property i.e. the aim is to study if the
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sequence contains a tolerable amount of exceptions or not. The tests employed in this study
that belong to the category of unconditional tests include the proportion of failures tests and

the regulatory Basel traffic light test.
4.5.1 Proportion of failures test

The leading idea behind tests of unconditional coverage is to test whether the observed failure
rate is consistent with the expected failure rate indicated by the confidence level. A commonly
used test based solely on the failure rate and confidence interval is a proportion of failures
(POF) test proposed by Kupiec (1995). In the POF-test it is assumed that the number of

violations follows the binomial distribution, and the null hypothesis for a correct model is
I
Hya=a="9 (29)

Respectively, the null hypothesis is tested against an alternative hypothesis Hy,:
Hy:a # @ (30)

Consequently, the test aims to provide an answer to the question whether the observed failure
rate significantly differs from the expected rate and it can be performed as a likelihood-ratio
test that expresses how many times more likely the observed data are under the null model
compared to the alternative model. More specifically, the ratio to be investigated is the
maximum probability of the observed result under the null hypothesis divided by the
maximum probability of the observed result under the alternative hypothesis. The logarithm
of the computed ratio is assumed to be asymptotically chi-square (x?) distributed with one
degree of freedom and thus the obtained test statistic is compared to a critical value obtained
from y? distribution. The smaller the ratio is, the higher the value of the test statistic becomes,

which leads to rejection of the null hypothesis if the critical value is exceeded.

The POF statistic is of the following form:

(31)

(1 _ &)T—I(a’)d\l(a)
LRPOF =2 10g<[1 _ (a)]T_I(“) (a)](a)>

While calculating the log-likelihood ratio is a purely quantitative exercise, choosing which

confidence level to use in rejecting the model resembles more art than science. Therefore,
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even though the chosen level should balance the probability of committing type I and type II
errors, the decision is often an arbitrary one. For instance, 95% test confidence level implies
that the model will be rejected only if the evidence against is fairly strong, and with 99%
confidence level the evidence against a given model should be very strong before it is

rejected.

Table 6:
Non-rejection ranges for Proportion of Failures —test

This table shows non-rejection ranges for a VaR model with different chosen VaR confidence and test confidence levels with
samples sizes of 250 and 1 000. Probability level a is the expected proportion of failures, or exceptions, under a given VaR

confidence level.

Non-rejection range for number of exceptions y

Test confidence level 95 % 99 %
VaR . '
Confidence Probability T =250 T=1000 T =250 T=1000
Level p

Level

99 % 1% 0<y<6 5<y<16  0<y<7 4<y<19
95 % 5% 7<y<19 38<y<64 5<y<22 34<y<68
90 % 10 % 17<y<34 8<y<l119 14<y<38  77<y<125

However, while POF test is relatively simple to implement, it suffers from two rather major
shortcomings. First, the test is not statistically powerful with small sample sizes. For example,
with 250 observations the acceptance percentage at 95% confidence level for a VaR model
using 99% confidence level is

[ 0 6

— — | =T00 0
250'250] 0%, 2.4%]

whereas with sample size of 1000 the respective region is

[5 16

— — | =7T105%,1.6°
1000'1000] 10.5%,1.6%]

Hence, the relative acceptance region for the smaller sample size is substantially wider than in
the latter case, which means that rejecting an inaccurate model becomes harder as sample size

decreases.
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The second shortcoming is that the test does not account for time variation in the observed
exceptions, which implies that a supposedly accurate model that generates an acceptable
amount of exceptions could still fail in capturing market volatility and correlations. For that
reason Christoffersen (1998) proposes complementing unconditional coverage tests with

independence tests that take into account possible clustering of the observed exceptions.

4.5.2 Regulatory test

The Basel test is simple to implement as it is based only on the number of exceptions during
the preceding 250 business days. However, since the backtesting period is shorter than 250
days and the VaR confidence level is 95% instead of 99%, the number of exceptions that
define the color of the category in which the model belongs are different from shown in Table
1. As a general rule for the test, the yellow and red zones begin at the points where the
cumulative probability of obtaining a given number or fewer exceptions when the model is

correct exceeds 95% or 99.99% respectively.

However, the three zone approach adopted by the Committee has the same limitations as the
POF test by Kupiec, namely the statistical weakness as well as ignorance of possible time
dependence of the observed exceptions. This implies that the test can hardly be used for
comparing alternative models while it may on some level serve its purpose of providing a

straightforward framework for model validation.

4.6 Tests of conditional coverage

While the POF test and the Basel three zone tests use the ratio of observed exceptions as the
only input, tests of unconditional coverage are designed to account also for the time variation
of the exceptions. Despite the fact that the clustering of VaR violations is not considered in
the regulatory backtesting procedure, Christoffersen and Pelletier (2004) further emphasize
that it should actually receive more attention since successive large losses are more likely to
lead to a bankruptcy. Moreover, if the VaR violations are clustered in time and also across
different banks, as Berkowitz and O'Brien (2002) find, it may be a significant source of
systemic risk. Therefore, it can be argued that the clustering of VaR exceptions could also be

used as basis for rejecting a given VaR model.
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Chirstoffersen’s (1998) Markov test is one of the first tests of conditional coverage. It is
designed to examine whether or not the probability of a VaR exception is dependent on
whether or not a VaR exception has occurred on the previous day. For a sound model, the
probability of a VaR exception on a given day should be independent of whether or not an

exception has taken place on the preceding day.

The test employs a two-state Markov process, and it is conducted through creating a 2 by 2
contingency matrix recording portfolio’s VaR exceptions on successive days as shown below

in Table 7. If the exceptions are independently distributed in time, the proportion of

: . N
exceptions subsequent to a day when no exception has occurred m; = 31v should be the
3

same as proportion of exceptions following a day when an exception has occurred m, =

Ny

. Moreover, in order to satisfy the unconditional coverage property, the ratio of total

number of exceptions should equal to the ratio indicated by the VaR level so that Il =

% = a. Consequently, the following null hypothesis can be evaluated:
HO: Ty =T, (32)
Table 7:

Contingency matrix for Markov independence test

N is the number of observations when VaR estimate is not exceeded subsequent to a day when an exception has not occurred
and N, is the number of no-exception observations subsequent to days when exceptions have occurred. Correspondingly, N3
and N, are the number of exceptions on days following no-exception and exception days.

Iy =0 Iy =1
I,=0 Ny N, N; + N,
I, =1 N; N, N; + N,
N; + N3 N, + N, N

The test statistic is again a log-likelihood ratio, and it is of the following form:

(33)

(1- 7T1)N1+N27tf[3 (1- ﬂz)Nzﬂ;V4
LR;pq = 2log (1 = )M +Na [ (Va+Ny)
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LR;n4 1s also chi-square distributed with one degree of freedom. Moreover, it can be
combined with the POF test to obtain a joint test for studying simultaneously both the
unconditional coverage and independence properties of the exception series. The combined

statistic is simply the following:
LR.c = LRpor + LRing (34)

and it is also chi-square distributed but with two degrees of freedom (Christoffersen, 1998).
However, in order to gain more insight about the backtesting results, the tests are utilized

separately in this study.
4.7 Loss function based backtesting

Using merely the information derived from the hit ratio and sequence of VaR series
disregards substantial amount of data that could be used for evaluating the precision of a
given model. Moreover, although testing unconditional and conditional properties assists in
ruling out deficient models, the test results cannot be used for ranking the models. Lopez
(1999) proposes a loss function based forecast evaluation framework in order to overcome

this shortcoming of previous backtesting methods. The proposed loss function is as follows:

1+ (VaR (@) — x¢41)?  Ter1(@) = 1

Yo =1 P (35)

The loss function is designed to account for the magnitude of the tail losses and a score of one
1s added when an exception is observed. Consequently, the model with the lowest total loss,
YT ., is preferred. However, as the author suggests, the loss function result cannot be used
for separating accurate models from inaccurate since a model that generates zero exceptions
would be deemed as the most accurate. Hence, the loss function result should be used for
comparing the relative accuracy of a given number of alternative models. Nevertheless, as
Angelidis et al. (2007) point out, the loss x;,,; exceeding VaR;(a) should actually be
compared to expected shortfall ES(a)measure and not to VaR estimate since the latter does
not give any indication about the magnitude of the expected loss. For that reason, the authors

suggest the following adjustments to the loss function:

|xt+1 - ES(“)(i)tl , Iep1(a@) =1 (36)

Vaer = {o ;L@ =0
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and

1/J2,t+1 =

{(xt+1 - Es(a)(i)t)z ) Iep1(a) =1 (37)
0 ) Iyy1(a) =0

so that for each model i the mean absolute deviation (MAD), % T_,4, and mean squared

error (MSE), %ZZ=1 ,, are computed. Moreover, the total loss value given a VaR exception

is

Li= )y (38)

T
t=1

The authors further propose applying Hansen's (2005) test for superior predictive ability
(SPA) for studying the statistical significance of the differences between a benchmark model
and an alternative model. The null hypothesis that the benchmark model i* is not

outperformed by alternative models i, for i=1,...,M, is tested with the following statistic:

VMX,;
VaT(\/M )?l,i)

TP4 = max
i=1,..,.M

39)

!

where

= max —m)?l'i
T i=1M _ (40)
' VaT(\/M Xl,i)

TlS PA

;

T

_ 1

Xii = ?Z Liy — Li¢ (41)
t=1

Following Angelidis et al. (2007), the estimation of /Var(\/ﬁ X, ;) and p-values for the test

statistic are obtained by utilizing the stationary bootstrap of Politis and Romano (1994).
Moreover, the block-length used in the bootstrap is obtained using the automatic block-length

selection algorithm presented by Politis et al. (2009).
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S RESULTS

This section presents the empirical findings of my thesis. The section starts with an overview
of the VaR estimation results and then proceeds to more detailed assessment of the
differences between the tested models. A list of abbreviations used in the tables as well as
short descriptions of the models introduced in section 2 are presented in Appendix A for a

quick review.

5.1 VaR results

Table 8 and Table 9 show the average VaR figures at 95% confidence level for each of the
swaption contracts during the backtesting period. In the following sections, models in which
the daily volatility moves are measured from a given strike level are labeled with a prefix
“Proxy”. Correspondingly, the models in which the implied volatility changes are determined
from the daily differences for a specific contract are tagged with term “Direct”. Additionally,
“ATM” and “Smile” in the column headers refer to the moneyness level from which the
implied volatility changes are observed. Hence, “ATM” refers to the Fixed smile method and
“Smile” refers to the Random smile method. The former table contains the estimates for long
positions and the latter for short positions. Results for 90% confidence level are left
unreported as they provide no additional information regarding the performance of the
models. Furthermore, since no visible differences arise between estimates drawn from a fitted
distribution versus those obtained by interpolating from the discrete scenarios, the results

presented in the following chapters are acquired without the fitting method described in 4.2.4.

While investigating the average VaR estimates tells little from the actual performance of the
models, it reveals some information about the differing risk levels that the models report. On
average, FHS models appear to generate the lowest estimates while HS and TW models seem
to provide rather similar figures. The lower level of FHS estimates reflects the fact that
changes in the risk factors tend to be quite modest for most part of the backtesting period.
Furthermore, the estimates for short positions are universally higher than for the long
positions. This phenomenon is explained by the skewed risk factor returns during both the
observation and the backtesting period as a whole. The numbers could be different at least for
HS models in case the historical observation period was longer and contained a broader scale

of different scenarios.
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However, average numbers provide only one perspective of the differences among the
considered models and do not tell much about the models’ reactiveness to market fluctuations,

for instance.

A graphical illustration in Figure 8 provides an example of the differences between HS, TW
and FHS models for long and short 5x2 ATM receiver positions. The figure shows how the
estimates obtained with TW and FHS models follow more closely the realized profit and loss

numbers, whereas the level of HS estimates is more static.

While Figure 8 shows that the differences concerning the choice of VaR method are clearly
visible, the differences between fixed and random models are less pronounced and depend on
other model specifications. Figure 9 shows an instance where the difference between smile
models is noticeable for the long position, while the VaR figures for the short position are
nearly equal for the short position. However, when using HS model with “Proxy” method for
implied volatility fluctuations, the difference between using ATM level or moneyness-
dependent changes is negligible. One reason behind this lies in the VaR components: the risk
arising from interest rate fluctuations is clearly higher than that of stemming from changes in
implied volatilities. The relative differences of the components are illustrated in Figure 10 and

average VaR components for Proxy HS are presented in Table 19 (Appendix C).

Nevertheless, a more detailed assessment is still needed to systematically evaluate how the

models succeed, which is the main theme of the subsequent chapters.



65

Table 8:
Average long receiver swaption VaR estimates
The table presents average VaR estimates over the backtesting period for long receiver swaption contracts and for the different models studied. VaR figures are absolute values in euros for

swaption contracts with 10 MEUR notional. The table columns are sorted by VaR method (Historical Simulation, Time Weighted and Filtered Historical Simulation), by volatility change
measurement (proxy, direct or component) and by used moneyness (ATM or Smile). The number of daily observations from which the averages are computed is 228.

Proxy_HS Proxy TW Direct HS Direct_TW Component HS Proxy ] Direct_FHS Component_FHS
ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile
Panel A: 1x2
ATM 7157 6 540 5970 3704 5383 4881 4103
ATM+2ibps 8807 9832 3832 3693 3194 G114 §240 9357 7248 7036 6390 71 6648 7066
ATM+3 0 bps 11830 113529 10 300 10114 8742 10 447 11223 11488 ] 341 7879 33 7811 3462
ATM+100 bps 13833 13321 11621 11418 11 309 11684 13638 13732 9693 9261 §747 §233 9723
15261 14 588 12 367 12230 12234 12113 14840 14 561 10216 10043 10093 9757 10123
Panel B: 1x3
ATM 20133 18 233 16173 16 277 14334 12 802
ATM+2i bps 26 397 26 339 25 704 235533 23638 23 637 23683 24670 20 267 19 985 18324 19 639 18 263 19 007
ATM+50 bps 31647 31383 30044 29681 28 203 30705 25942 31217 23383 23 367 21508 23 966 21633 23188
ATM+100 bps 38348 381239 33467 im 34123 36388 36370 391299 27036 27098 25760 2787 23 489 27482
ATM+200 bps 43233 431233 39183 38907 38621 41338 43 183 20 697 29 845 20176 29062 23011 29179
Panel C: 3x2
ATM 10731 8387 8801 7648 6939
ATM+2 bps 11 683 11 885 11843 11194 11728 10 506 5838 9740 g484 9420 8032 93542
ATM+30 bps 12 697 12978 12814 12773 13203 11303 10 397 10274 9297 10781 9608 10 802
ATM+100 bps 14 458 14 810 14 338 13090 13404 12703 11 730 11 633 10 709 12483 10 475 12 696
ATM+200 bps 17 060 17 583 171 16 087 13 602 11544 13 638 13 508 12772 12383 5843 11945
Panel D: 3x3
27704 28 736 20516 RS
034 31612 30804 28039 28927 25939 22307 21136
EERBES 34300 34200 32813 34377 3023 24 66 27010
ATM+100 bps 38167 39216 38 896 34376 3om 40315 32404 381218 28175 32438 33177
ATM+200 bps 45823 48 339 43304 424837 42303 41738 34708 2922 33416 33608 34822
Panel E: 102
ATM 11730 99350 10114 8248 8071 7001
ATM+23bps 12 623 2698 12 609 10813 11343 11037 11414 9279 10033 9834 8712 8040 7816
13628 13673 13 606 11781 13733 12002 13381 10 861 12487 10272 §333 . %1%
13107 15471 15 207 13 6990 15 836 13701 15 889 12629 13 611 11 567 10673 10471
18245 18 431 18173 16 689 17384 16 883 17222 13520 17 630 137352 13 096 10 376
Panel F: 10x3
ATM 2843 2421 2331 20114 19184
ATM+23bps 30901 31880 26491 28020 27903 28908 22517 24 380 20847 22483
ATM+30bps 33003 34213 28871 32932 30177 34052 26269 26414 22730 26511
ATM+100 bps 37168 38630 33302 38303 34604 %9M 30773 29300 32131
ATM+200 bps 44 009 46 134 40938 42130 42 240 41840 32006 34221 33174
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Table 9:
Average short receiver swaption VaR estimates
The table presents average VaR estimates over the backtesting period for short receiver swaption contracts and for the different models studied. VaR figures are absolute values in euros for

swaption contracts with 10 MEUR notional. The table columns are sorted by VaR method (Historical Simulation, Time Weighted and Filtered Historical Simulation), by volatility change
measurement (proxy, direct or component) and by used moneyness (ATM or Smile). The number of daily observations from which the averages are computed is 228.

Proxy _HS Proxy TW Direct_HS Direct_TW Component_HS Proxy_FHS Direct_FH: Component_FHS

ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile
Panel A: 1x2
ATM g70s G694 8247 G774 7791 5897 3643
ATM+25bps 11 669 11464 8870 8641 11151 10872 8932 8570 4808 10120 8332 7945 7661 5736 7048
ATM+30bps 13632 133 10310 9836 13201 12673 10 369 9772 12230 12678 G848 9209 G040 8326 8768
ATM+100 bps 15 692 13637 11633 11489 15415 13392 11683 11443 15 004 13405 10907 10 402 10444 10020 10 396
ATM 200 bps 16 943 16911 12378 12 539 16 839 17033 12 386 12570 16 833 17 186 11 269 11 096 11372 11210 11351
Panel B: 113
ATM 24138 21184 18427 18 126 16248 15018
ATM+23bps 20833 21959 26998 26732 23123 22 24440 22004 21967 20127 19842 17139 18 348
ATNM 34403 25439 31776 31043 26 863 25412 30038 25130 25489 23510 23103 20 564 22339
ATM+100 bps 39 86 30908 38040 38484 31466 31200 38304 29 206 29517 28087 28263 26 498 28512
ATM 200 bps 44086 35706 43138 45073 34900 35676 45 696 ERESNE 32810 31951 33303 32348 33376
Panel C: 3x2
ATM 11 839 9882 3044 7883 9841 8 067 5312
ATM+23bps 13 096 8709 11026 10783 8963 8151 731 7804 10718 10 562 § 84 3696 6190
ATM +30bps 14177 9480 12127 11601 9790 0164 8354 0438 11449 11833 G422 6473 7581
ATM+100 bps 15973 11 604 13843 14083 11284 11518 11030 13184 12884 13373 10 963 8512 10 806
ATM+200 bps 18 624 17 544 16 996 20501 13 832 18038 18 552 22075 14 508 15 565 15 142 15073 18 534
Panel D: 3x3
ATM 30158 203534 24 800 20373 17003
ATM+23bps 32969 22718 27 668 2 22692 22316 17632 19027
ATM+30bps 33 666 24891 30317 29 24 883 24426 18344 21247
ATM+100 bps 40183 1049 28878 33398 36484 28870 30361 22901 28841
ATM 200 bps 47740 48000 35312 43671 31361 353383 42 366 36408 44782
Panel E: 10x2
ATM 12843 8611 10 430 8354 8231 99012 8182 6 663
ATM+23bps 13 569 g422 G624 11 467 %301 %351 8896 G664 10 638 10 5339 8903 9037 6979 7700
ATM+30bps 14832 10220 9698 12458 10043 9568 G048 10682 11370 1151 9619 93508 6836 8279
ATM +100 bps 16 733 11679 11870 14 376 11 540 11634 11113 14321 1277 12713 10 944 11 466 §202 11263
ATM 200 bps 19733 14 133 17404 17651 14022 17 480 17 639 22516 153174 14 882 13346 16 701 13 860 18 169
Panel E: 10x3
ATM 33274 20 646 27202 21126
ATM+23bps 35836 2261 224616 26 789 25 486 22620 22779 24682 18 761
ATM+30bps 38410 83 24 536 23938 32388 31932 24574 27823 20917
ATM+100 bps 43210 42870 28228 69 37170 38693 28134 29087 37010 28485
ATM 200 bps 31143 31063 35004 44188 43 338 36223 34048 44123 38079 46 624
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Figure 8:
VaR estimates and actual Profit and Loss figures

The estimates given by the HS, TW and FHS VaR models are shown with the actual daily Profit and Loss (PL) during the
backtesting period. The long position estimates are shown below as negative numbers. The contract in question is a short
position in 5x2 swaption with ATM strike.
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Figure 9:

The difference between smile methods

The graph depicts Direct TW VaR estimtes for a 10x2 swaption with strike ATM +50 bps using fixed (“ATM”) and random
smile (“Smile”) methods. Estimates for the long position are in the lower part of the figure and estimates for the short
position are in the upper part. While the difference is not visually significant, the respective number of exceptions are 14 and
7 for long position in the favour of random smile method. For the short position, the respective counts of hits are 6 and 8.
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Figure 10:
VaR components

The figure illustrates the VaR risk components for long 1x5 ATM + 25 bps receiver position using HS Proxy with fixed and
random smile methods. IR stands for interest rate risk and ATM and Smile Vols are volatility components of the respective
smile methods. Vol VaR Spread shows the spread between the smile methods. Interest rate risk is naturally same in the both
methods. The average risk components over the backtesting period are shown in Table 19 (Appendix C).
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5.2 Stage one backtesting results

Table 10 presents the number of exceptions observed in each of the backtesting series
estimated for long positions using 95% VaR confidence level. As the number of backtesting
days is 228, the expected number of hits is approximately 11. Moreover, in order to obtain
“Green” flag as a result from the regulatory three zone test a model is allowed to generate 16
exceptions with the parameters used. The results from the regulatory test are presented in
Table 11. Additionally, to pass Kupiec’s (1995) proportion of failures test, the acceptable
region for number of exceptions is from 6 to 18 using 95% test confidence level. In this light,
the VaR estimates tend to provide rather optimistic estimates: essentially each of the FHS
models should be rejected on the basis of regulatory backtest and many of the HS and TW are
either in the “Yellow” -zone or at the upper end of the acceptable region for “Green” test
outcome. On the contrary, results for the short positions are on the other end of the scale, thus
generating rather conservative VaR estimates. The results for short positions are presented in
Appendix C. Consequently, based on the results for short positions, each of the models would

be acceptable in terms of the regulatory test. However, one should not feel comfortable using
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a model whose performance depends on the direction of the position. Hence, FHS models are
deemed inaccurate, and the rest of the analysis concentrates on the results for long positions

models that have gained at least a “Yellow” outcome from the Basel test.

The HS and TW models generate the highest VaR estimates on average during the backtesting
period, as shown in Table 8, which also results into least number of exceptions among the
different models. The low number of hits for short receiver positions, and even zero in the
case of 1x5 swaption contracts, is due to relatively sharp interest rate moves during the fall of
2011: the fluctuations remain in the historical distribution throughout most of the backtesting
period for each of the considered models, but in the HS model, there is no weighing that
would diminish the effect of older observations. However, due to the skewed distribution of
historical returns, the estimates for long positions are correspondingly rather optimistic. On
the contrary, TW models generate markedly more dynamic estimates that reflect and follow
market movements more closely. Despite the noticeable rise in VaR figures during the early
summer 2012 resulting from increased fear for further escalation of the Euro crisis, the
numbers quickly return to lower levels, which results into lower overall VaR estimates for
contracts with short maturities. Nevertheless, for swaptions with longer maturities there is no
significant difference between average VaR estimates of HS and TW models. From the
viewpoint of minimizing capital charges, it would be optimal to find a model with lowest
average VaR estimates combined with the least number of exceptions. However, the
differences between the models are relatively small and no such chance for optimization is
available. Furthermore, on the one hand, VaR estimates that reflect the market fluctuations
more closely are appropriate for monitoring the prevailing risk status, but on the other hand,
using such vigorous numbers for risk limitation purposes is not very practical, and would

most likely be objected by those subject to the VaR limits.

While the skew dependent model is perhaps the most theoretically appealing of the alternative
models covered in this study, it nevertheless fails to provide sufficiently accurate estimates as
shown by the backtesting results. The problem is again the distributional narrowness of
historical observations that does not contain sharp moves in volatilities. Moreover, as the
interest rates decline and implied volatilities increase on average during the observation
period, most scenarios are positioned below the prevailing forward rate and somewhat above

the prevailing volatility level if no other adjustments are applied. However, as the negative
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correlation between the interest rates and implied volatilities breaks for contracts with longer
maturities more often during the backtesting period than within the whole observation period
on average, this leads to profit and loss figures not covered by estimation scenarios. Hence,
the models tend to generate excessive number of VaR breaches. Figure 11 provides an
illustration of the scenarios formed using HS and skew dependent models with random smile

method.

Figure 11:
Model scenarios

The graphs below illustrate scenarios generated by Proxy HS and Component HS models on June 5, 2012. The cross (X)
shows the present forward rate and implied volatility pair for a 10x5 +25 bps receiver swaption and the plus (+) shows the
corresponding location on the following date. The historical observations are concentrated below the prevailing forward rate
in both models, but the locations of volatilities differ to a greater extent. While the scenarios in Component HS model are
take better into account the prevailing shape of the volatility smile on the estimation day (f), the scenarios do not contain
sufficiently large volatility jumps to match the actual change to #+/, which leads to a VaR exception.
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Table 12 shows the p-values from Kupiec (1995) test. The p-values represent the probability

of a obtaining an observation that is even less likely than the number of hits found in Table 10
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with 228 observations and 95% VaR confidence level if the model in question was accurate.
In short, the results from proportion of failures test are similar to those of regulatory test.
Consequently, Direct TW with both smile methods and Proxy TW with moneyness-
dependent smile method, as well as Proxy HS and Direct HS with moneyness-dependent
implied volatility changes pass the test with each of the swaption contracts. Additionally,
Component HS with moneyness-dependent smile methods perform rather well, but still

yields unacceptable test results for 5x5 and 10x5 swaptions with specific strike levels.

In contrast to results from tests of unconditional coverage, not a single one of the studied
models can be deemed accurate based on Christoffersen’s (1998) test of conditional coverage.
This, however, is not that surprising as models based on historical simulation usually suffer
from clustering of exceptions, as for instance Pritsker (2001) points out. The explanation
arises again from the slow responsiveness to changing market conditions. On the contrary to
HS models, unreported results for FHS models reveal that nearly all of them would pass the
test of conditional coverage resulting from their faster responsiveness. Also TW models
appear to perform slightly better than HS models due to their relatively more dynamic nature.
Nevertheless, neither of the TW models pass the test with all swaption contracts. The p-values
of Christoffersen’s (1998) test are presented in Table 13. The logic is equal to that of
Kupiec’s (1995) test p-values: the lower the figure, the more apparent it becomes that the null

hypothesis of model accuracy should be rejected.
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Table 10:
VaR exceptions

The table shows the number of VaR exceptions for each of the series when estimated for long receiver swaption positions. VaR confidence level is 95% and the number of daily observations is
228. Consequently, the expected proportion of exceptions is 5%, i.e. number of hits should be approximately 11.

Proxy_HS Proxy TW Direct_HS Direct_TW Component_HS Proxy_FHS Direct_FHS Component_FHS
ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile
Panel A: 1x2
ATM 9 10 12 14 13 16 21 28
ATM +25 bps 14 13 13 16 14 13 17 13 13 13 25 28 3l 24 26 25
ATM +30 bps 11 10 14 14 11 10 17 13 12 1 23 23 26 22 28 23
ATM +100 bps 10 10 13 13 10 10 13 13 10 10 21 21 24 21 24 22
ATM +200 bps 7 7 12 13 7 8 12 13 8 8 20 21 21 21 22 21
Panel B: 1x3
9 g 13 13 17 16 21 27
12 12 12 12 14 12 13 12 13 13 22 22 23 22 28 26
14 14 12 13 13 12 14 12 13 14 23 24 28 23 28 25
12 12 12 13 14 10 14 12 13 10 22 21 23 21 26 21
9 g 1 12 11 1 13 13 12 g 21 22 22 22 23 22
8 8 14 1 17 12 18 23
14 13 10 10 21 13 14 10 22 14 19 18 28 22 23 21
13 12 10 10 22 12 16 10 21 13 21 21 27 18 23 20
ATM +100 bps 14 13 1 12 20 10 14 10 21 1 21 22 26 17 24 18
ATM +200 bps 9 g 7 8 10 10 g 10 18 1 10 11 13 14 24 16
10 8 12 8 18 14 18 22
10 10 8 10 17 14 10 11 18 19 18 18 23 19 25 20
11 13 10 10 18 14 12 g 18 19 19 18 23 20 25 20
14 14 10 10 18 1 13 10 18 13 19 18 24 19 24 18
11 1 8 g 12 12 g 12 17 1 12 14 14 14 24 13
Panel E: 10:2
ATM 6 3 9 17 14 13 23
ATM 6 6 7 7 11 10 8 8 17 14 13 13 18 17 26 21
ATM +30 bps 10 10 7 8 14 g 14 7 18 13 17 18 24 16 2 18
10 10 8 8 14 g 14 8 18 g 19 18 23 18 2 14
9 g 8 7 9 g g g 16 g 12 13 13 13 26 12
6 6 13 g 18 14 18 23
10 10 7 7 14 14 10 g 20 17 13 13 18 19 24 21
13 13 8 10 17 13 12 8 21 17 18 17 22 17 26 20
14 13 g g 18 13 13 8 21 14 18 18 24 16 28 16
10 10 8 8 12 12 g g 20 11 14 13 17 16 27 13
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Table 11:
Basel test results

The table displays results from the regulatory Basel test. The test result is based on the number of VaR exceptions, and to obtain a “Green” flag, 16 hits are allowed when the number of
observations is 229 and VaR confidence level is 95%.

Proxy_HS Proxy TW Direct_HS Direct_TW Component_HS Component_FHS
ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile

Panel A: 1x2
ATM Green Green Green Green Green Green Tellow Red

Green Green Green Green Green Green Vellow Green Green Green Red Fed Fed Vellow Red Fed

Green Green Green Green Green Green Vellow Green Green Green Tellow Tellow Fed Tellow Red Tellow

Green Green Green Green Green Green Green Green Green Green Tellow Tellow Tellow Tellow Tellow Tellow
ATM 200 bps Green Green Green Green Green Green Green Green Green Green Tellow Yellow Tellow Tellow Tellow Yellow
Panel B: 1x3

Green Green Green Green Vellow Green Tellow Red

Green Green Green Green Green Green Green Green Green Green Tellow Tellow Fed Tellow Red Fed

Green Green Green Green Green Green Green Green Green Green Tellow Tellow Fed Tellow Red Fed
ATM +100 bps Green Green Green Green Green Green Green Green Green Green Tellow Tellow Fed Tellow Red Tellow
ATM 200 bps Green Green Green Green Green Green Green Green Green Green Tellow Yellow Tellow Tellow Tellow Yellow
Panel C: 5x2

Green Green Green Green Vellow Green Tellow Tellow

Green Green Green Green Vellow Green Green Green Tellow Green Tellow Tellow Fed Tellow Tellow Tellow

Green Green Green Green Vellow Green Green Green Tellow Green Tellow Tellow Fed Tellow Tellow Tellow

Green Green Green Green Vellow Green Green Green Tellow Green Tellow Tellow Fed Tellow Tellow Tellow

Green Green Green Green Green Green Green Green Tellow Green Green Green Green Green Tellow Green

Green Green Green Green Vellow Green Tellow Tellow

Green Green Green Green Vellow Green Green Green Tellow Tellow Tellow Tellow Tellow Tellow Red Tellow
ATM +30bps Green Green Green Green Tellow Green Green Green Tellow Tellow Tellow Tellow Tellow Tellow Red Tellow
ATM +100 bps Green Green Green Green Tellow Green Green Green Tellow Green Tellow Tellow Tellow Tellow Tellow Tellow
ATM+200 bps Green Green Green Green Green Green Green Green Tellow Green Green Green Green Green Tellow Green
Panel E: 10:2

Green Green Green Green Vellow Green Green Tellow

Green Green Green Green Green Green Green Green Tellow Green Green Green Tellow Tellow Red Tellow

Green Green Green Green Green Green Green Green Tellow Green Tellow Tellow Tellow Green Red Tellow

Green Green Green Green Green Green Green Green Tellow Green Tellow Tellow Fed Tellow Red Green

Green Green Green Green Green Green Green Green Green Green Green Green Green Green Red Green
ATM Green Green Green Green Vellow Green Tellow Tellow

Green Green Green Green Green Green Green Green Tellow Tellow Green Green Tellow Tellow Tellow Tellow

Green Green Green Green Vellow Green Green Green Tellow Tellow Tellow Tellow Tellow Tellow Red Tellow
ATM +100 bps Green Green Green Green Tellow Green Green Green Tellow Green Tellow Tellow Tellow Green Red Green

ATM+200 bps Green Green Green Green Green Green Green Green Vellow Green Green Green Vellow Green Red Green
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Table 12:
Kupiec test results

The table shows p-values of Kupiec’s proportion of failures test. The p-values refer to probability of getting the number of
hits presented in Table 10 with given number of observations and VaR confidence level. Consequently, the lower the p-value,
the more likely it is that the model in question fails to provide accurate estimates. Series that should be rejected at 95% test
confidence level are tagged with a single asterisk (*) and results that should be rejected at 99% confidence level are marked
with a double asterisk (**).

3 Prosy_TW Direct HS Direct TW Component_EHS
ATM Smile ATM Simile ATM Smile ATM Simile ATM Simile

Panel A 1x2

ATM 0.450 0.664 0.836 0.443 0.634

ATM +23 bps 0.443 0.634 0.296 0.186 0.443 0.634 0112 0.634 0.634 0.634
ATM +30 bps 0.903 0.664 0443 0443 0.903 0.664 0112 0.634 0.836 0.903
ATM +100 bps 0.664 0.664 0.296 0.296 0.664 0.664 0296 0.634 0.664 0.664
ATM +200 bps 0.151 0.151 0.836 0.634 0.151 0276 0.836 0.634 0.276 0.276
Panel B: 15

ATM 0.430 0.430 0.634 0.634 0.112
ATM+25bps 0.836 0.836 0.836 0.836 0.443 0.836 0.634 0.836 0.206 0.206
ATM+30 bps 0.443 0.836 0.634 0.296 0.836 0.443 0.836 0.206 0.443
ATM +100 bps 0.836 0.836 .836 634 564 .836 296 664
ATM +200 bps 0.430 0.430 0.903 0.836 0.903 0.903 0.634 0.836 0.430
Panel C: 5x2

ATM 0276 0.443 0.903 0.112
ATM+25bps 0.634 0.664 0.664 0.009+* 0.296 0.443 0.664 0.004** 0.443
ATM+30 bps 0.836 0.664 0.664 0.004+* 0.836 0.136 0.664 0.009** 0.634
ATM +100 bps 0.443 634 0.903 836 0.018* 564 443 664 0.009** 903
ATM +200 bps 0.450 0.430 0.151 0.276 0.664 0.664 0.450 0.664 0.063 0.903
Panel D: 3x3

ATM 0.664 0.276 0.836 0276 0.034*

ATM +23 bps 0.664 0.664 0.276 0.664 0112 0.443 0.664 0.903 0.034* 0.034*
ATM +30 bps 0.903 0.634 0.664 0.664 0.034* 0.443 0.836 0.430 0.034* 0.034*
ATM +100 bps 0443 0.664 0.664 0.034* 0.903 0.634 0.664 0.034* 0.634
ATM +200 bps 0.903 0.276 0.430 0.836 0.836 0.450 0.836 0.112 0.903
Panel E: 10x2

ATM 0.072 0.029* 0.450 0276 0.112

ATM +23 bps 0.072 0.072 0.151 0.151 0.903 0.664 0276 0.276 0.112

ATM+30 bps 0.664 0.664 0.151 0276 0.443 0.443 0.151 0.063 0.634
ATM +100 bps 0.664 0.664 0276 0276 0276 0.063 0.430
ATM +200 bps 0.430 0.430 0276 0.151 0.430 0.430 0.430 0.186 0.430
Panel F: 10x3

ATM 0.072 0.072 0.634 0.430 0.034%
ATM+25bps 0.664 0.664 151 0.13 443 0.443 664 0.430 0.018* 0.112
ATM+30 bps 0.634 0.634 0276 0.664 0.112 0.634 0.836 0276 0.009** 0.112
ATM +100 bps 0.443 0.634 0.430 0.430 0.063 0.634 0.634 0276 0.009** 0.443
ATM +200 bps 0.664 0.664 0.276 0.276 0.836 0.836 0.450 0.430 0.018* 0.903
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Table 13:
Christoffersen test results

The table presents p-values of Christoffersen’s test of conditional coverage. The p-values refer to probability of obtaining a
sample that is less likely than that of observed given that the null hypothesis of accurate model is true. Series that should be
rejected at 95% test confidence level are tagged with a single asterisk (*) and results that should be rejected at 99%
confidence level are marked with a double asterisk (**).

Prowy HS Proxy_ TW Direct_HS Dhrect_TW Component_HS
ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile

Panel A: 12

ATM 0.337 0.878 0.190

ATM +25 bps 0.190 0892 0.893 0.190 0.787 0.764 0.190 0.180
ATM +30 bps 0.094 0.062 0.878 0.878 0.062 0.147 0.764 0137 0.094
ATM +100 bps 0.062 0.062 0331 0.331 0.062 0331 0.190 0.062 0.062
ATM 200 bps 0.012* 0.012* 0.137 0.190 0.022% 0.137 0.190 0.022% 0.022%
Panel B: 1x3

ATM 0.389 0.330 0.764 0.764 0313

ATM +25 bps 0.247 0247 0.632 0.652 0233 0.247 0.764 0.652 0351 0351
ATM +30bps 0.233 0253 0.632 0.764 0331 0.652 0.378 0.652 0.331 0.253
ATM +100 bps 0.632 0.632 0.632 0.764 0.047* 0.337 0.878 0.652 0071 337
ATM 200 bps 0.330 0.330 0.344 0.632 0.344 0.544 0.764 0.764 0.137 0.350
Panel C: 322

ATM 0.266 0.266 0233 0.544 0.787

ATM =25 bps 0.233 0.764 0.443 0.443 0.964 0.331 0.378 0.443 0.919 0.878
ATM 30 bps 0.764 0.632 0.443 0.443 0.919 0.632 0.893 0.443 0.964 T84
ATM +100 bps 0.233 0.764 0.544 0.652 0.847 0.443 0.878 04 0.964 344
ATM +200 bps 0.350 0.350 0.194 0.266 0.443 0443 0.350 020

Panel I 5x3

ATM 0.062 0.266 0.017* 0.266 0.267

ATM 25 bps 0.062 0.062 0.266 0.062 0.147 0.047* 0.443 0.004 0267 0.267
ATM +30 bps 0.009** 0.029* 0.443 0443 0267 0.047* 0.017* 0.350 0.267 0.267
ATM +100 bps 0.047* 0.047* 0.443 0443 0267 0.009** 0.029* 0443 0267 0.020*
ATM 200 bps 0.009** 0.000%* 0.266 0.350 0.017* 0.017* 0.330 0.137 0.147 0.009+*
Panel E; 102

ATM 0.133 0.084 0.038* 0.266 0.147

ATM +25 bps 0133 0.133 0.194 0.194 0.009** 0.062 0.266 0.266 0.029* 0.047#*
ATM +30 bps 0.005** 0.005%* 0.194 0.266 0.047* 0.002%* 0233 0.194 0.046* 0.020*
ATM +100 bps 0.005** 0.062 0.266 0.266 0.047* 0.038* 0.266 0.201 0.038*
ATM 200 bps 0.038* 0.038* 0.266 0.194 0.038* 0.038* 0.330 0.330 0.104 0.038*
Panel F: 10x5

ATM 0.133 0133 0.029* 0.038* 0267

ATM =25 bps 0.062 0.062 0.194 0.194 0.047* 0.047* 0.062 0.038* 0344 0.147
ATM 30 bps 0.029* 0.029* 0.022% 0.062 0.147 029* 0.137 0.022* 0432 0.147
ATM 100 bps 0.047* 0.029* 0.330 0.038* 020 0.029* 0.190 0.266 0.432 0.047*
ATM 200 bps 0.062 0.062 0.266 0.266 0.137 0.137 0.330 0.350 0344 0.094
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To summarize the backtesting results from the first stage, none of the considered models pass
all of the tests with each of the swaption series. However, as the regulatory test can be
regarded as the ultimate limit, some models still perform well enough to be deemed accurate.
Consequently, TW models are left on the table for further investigation. Thus, the backtesting
is continued in the second stage more thoroughly to study the differences between the smile
methods. Moreover, the relevance of using actual changes versus proxy changes in implied

volatilities is also studied in the following part.

5.3 Stage two backtesting results

While a VaR estimate only indicates the loss figure that is not expected to be exceeded with a
given confidence level, it does not provide any approximation about the absolute level of
profit and loss for the position, and hence, determining whether an individual VaR figure is
correct or not is not feasible. Consequently, unless there are distinctive differences in the
backtesting results with respect to observed VaR exceptions, it is not possible to outright
declare one model better than the other. On the other hand, an expected shortfall figure does
provide a direct estimate about the loss figure on the condition that the respective VaR level is
breached. Hence, it is possible to compare the relative accuracy of given models using the
data from VaR exceptions and corresponding expected shortfall estimates and actual profit
and loss figures. After all, a VaR and an expected shortfall measures are based on the same

distribution.

Table 14 presents the mean absolute deviations and mean squared error figures of the
expected shortfall estimates from the days when the respective VaR estimates are exceeded.
The table also shows the p-values of Hansen’s (2005) SPA test for each of the test series. A
low p-value suggests that the accuracy of the alternative model is likely to outperform that of

the benchmark model.

In the first test set up computed for Proxy TW models, the fixed smile method is the
benchmark and the random smile method represents the alternative. The results based on the
both MAD and MSE figures suggest that only in two out of 24 considered cases the random
smile method yields more accurate results, which suggests that using OTM implied volatility

data would not provide a measurable enhancement to risk estimation precision.
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Additionally, Table 14 presents the results for comparison between Proxy TW and
Direct TW, which provide insight whether there is a measurable difference between models
utilizing either changes in implied volatilities for a given contract versus using approximated
changes derived by computing the difference between different contracts but with equal strike
rates with respect to their corresponding ATM rates. The latter is used as the benchmark
model in the tests. Since the alternative model, i.e. Direct TW, yields more accurate expected
shortfall estimate for only two of the 24 studied contracts when tested with MAD and for
none when the differences are measured using MSE, it is unlikely that the more complicated
method would provide any measurable enhancement in VaR estimation over the benchmark

model.

To summarize the stage two backtesting results, it appears that including moneyness
considerations into VaR estimation does not have a measurable impact on the precision of the
estimates from either of the possible perspectives. First, the difference between using implied
volatility changes from a moneyness-dependent level versus ATM level is negligible. Second,
there is no observable enhancement in the estimates when taking moneyness changes into
consideration also from the viewpoint of which figures to use in compiling the distribution for

volatility fluctuations.

However, while the number of VaR exceptions can be considered somewhat high from the
viewpoint of model accuracy, the available sample for this test is apparently nonetheless
insufficient. The p-values end up almost automatically to one or very close to zero on the
basis of even slightest difference in the observed average differences in ES values. Hence, one

should be careful when drawing conclusions based on these results.
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Table 14:
Loss function test results

The table presents the figures from loss function based backtest. MAD stands for mean absolute deviation and MSE for mean squared error. The error terms are computed from the differences
between the expected shortfall measures and the actual profit and loss figures from the days when VaR estimates of both of the models being compared are exceeded. A high p-value suggests
that the benchmark model is likely to perform at least as well as the alternative model, while low p-values indicate that the alternative is preferable. P-values less than 5% and 1% are highlighted
with single- and double-asterisks respectively.

MAD MSE MAD MSE
Proxy TW Proxy TW Proxy TW Proxy TW Proxy TW Direct TW Proxy TW Direct TW
A-:?\: Sl-m'_le p-value A-:?\: Sl-m'_le p-value 51-11.i_le Smjie p-value 51-11.i_le Smjie p-value

Panel A: 1x2

ATM +23 bps 1791 1784 0.463 4691248 5018 561 000 1623 1634 000 4 308 036 4101 386 0229
ATM +30 bps 2497 2388 0.154 0346271 2047471 000 2304 2338 000 9781922 10 390 149 000
ATM +100 bps 3 662 3464 0.032* 18782 254 18912 111 0.187 3237 3381 1.000 18 265 144 18 540222 1.000
ATM +200 bps 4100 4168 1.000 25 507 987 27779 159 000 4181 4078 0.150 27089 282 24 875401 0.130
Panel B: 1x3

ATM 23 bps 3248 3458 1.000 18 209 639 18801 431 1.000 3458 3208 0.178 12 301 851 20695 984 1.000
ATM +50 bps 4244 4 364 000 29 460 660 32 885584 000 4364 3943 0.069 32885384 24 441413 0.008**
ATM +100 bps 4748 4 683 0.398 36 797 964 40 464 334 000 4 683 4217 0.038 40 464 334 32 3 0.011*
ATM +200 bps 4388 4 369 000 44 478 463 31846 733 000 3033 3033 1.000 1421139 32842974 000
Panel C: 5322

ATM +25 bps 3183 3206 000 13 743 628 14 561 727 000 3206 3038 0247 14 561 727 14 771 408 1.000
ATM +30 bps 3364 3310 0.218 18 322 401 18 787 129 000 3310 3373 1.000 18 787 129 17 672 368 0.173
ATM +100 bps 3467 33M2 1.000 20 138 083 21947253 1.000 5633 3486 0.283 23385287 1% 008 059 0.033
ATM +200 bps 2120 2393 000 6 345 496 T 848 425 000 2649 3021 1.000 9 309 409 13 189941 1.000
Panel Dt 323

ATM +23 bps 4636 4363 0.254 20 697 447 30 744 202 000 4743 4870 000 32521562 41 983 061 1.000
ATM +50 bps 7820 T451  0.009** 87842026 84 897 226 0.012* 7§38 7877 1.000 80 547 383 92 675 930 1.000
ATM +100 bps 8633 8452 0.189 112 122 760 114 422 442 000 8452 8354 0.393 114 422 442 101 333 898 0.086
ATM +200 bps 8383 8310 0.413 89097 419 90 696 207 000 8737 8442 0.366 92 994 80 103 179 846 1.000
Panel E: 10x2

ATM +25 bps 3954 3887 0.207 22 998 189 22331190 0.071 5887 3697 0.363 22331190 25 737 409 1.000
ATM +30 bps 4224 4097 0.091 32297413 30642 42 0.01%* 4097 4184 1.000 3064242 31032 528 1.000
ATM +100 bps 4639 4648 0473 40 746 863 41217 428 1.000 4648 44619 0.457 41217428 38028 414 0.113
ATM +200 bps 5432 4947 0.097 43824 857 42287 823 0203 4947 1851 0.484 42287823 45 841317 1.000
Panel F: 105

ATM +23 bps 2186 3971 0.138 130 347177 127 994 504 026 8971 702 0.426 127 994 504 136 034 427 1.000
ATM +50 bps 11 258 11 442 1.000 2335 995 108 237402 808 1.000 11 442 11341 0.424 237402 008 240 683 343 1.000
ATM +100 bps 11 810 11818 1.000 314 687 050 323236 881 1.000 11 318 11516 0.2035 323235881 208 499 253 0.096
ATM +200 bps 11 663 11 690 000 286 968 367 302 736 631 000 11 690 11311 0319 302 756 651 334 343 751 1.000
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6 CONCLUSION

VaR has gained a resilient position as a tool for market risk measurement in financial
institutions and also as a basis for capital requirements mandated by financial regulators. For
these reasons, an ongoing development of VaR models carries its role in safeguarding the
stability of individual financial actors and in a larger scale also the soundness of the economy
as a whole. This paper contributes to that development with a rather specific approach
through studying the significance of accounting for asynchronous shifts in the implied
volatility smile when assessing the market risk of a swaption contract. Using a sample of
swaption daily profit and loss figures with corresponding VaR estimates created by using a
variety of models allows me to test for the impact of incorporating the moneyness-dependent
volatility scenarios into VaR modelling on VaR estimation accuracy. This section summarizes

my findings, draws the conclusions and finally presents some suggestions for further research.

6.1 Summary of results and conclusions

The main findings of this paper are recapitulated in Table 15. Overall, the results concerning
the applicability of historical simulation for swaption VaR measurement are mixed. For the
most part, the validity of VaR models based on historical simulation is rejected by the
implemented backtests due to both too numerous and too clustered VaR exceptions. While it
1s difficult to provide an utterly conclusive explanation for this finding, it is obvious that VaR
models based on historical simulation require on average a substantially longer observation
period than the one used in this study, as for instance Pritsker (2000) points out.
Nevertheless, HS and TW models perform adequately well in terms of regulatory backtest and
could hence be used without additional penalty in VaR based capital charge. However, one
should still bear in mind that even if the backtests fail to reject the validity of a given VaR

model it does not suggest that the model actually performs well in any given situation.

The additional key objective of this paper is to provide insight about the relevance of
embodying volatility smile considerations into VaR estimation process. The second stage
backtesting results suggest that employing moneyness-dependent implied volatility changes
does not result into improved VaR estimation accuracy when both of the comparable models

can be deemed sufficiently accurate with respect to number of VaR exceptions generated
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during the backtesting period. This finding is in line with the observation that the fluctuations
in OTM swaption volatilities closely resemble those occurring in ATM level. The second set
of backtests also shows that utilizing swaption contract specific changes instead of moneyness
specific changes in implied volatilities does not significantly improve the estimation precision

either.

Table 15:
Summary of results

This table presents a summary of the hypotheses and corresponding findings of this study.

Hypothesis Fesults

Hl: VaE models based on historical simulation — Partial support with mixed evidence. While basic

generate acceptable estimates of swaption’s market  historical simulation and titne weighted models with

risk both ATM and monevness-dependent implied
volatility changes pass the regulatory backtest with
each considered swaption position, none of the
examined models is able to pass all of the
implemented backtests.

H2: A model that emplovs OTM level implied  Strong support VaR  estimates based on a
volatility changes in swaption VaR estimation does  distribution of implied volatility changes from ATM
not generate more accurate estimates than a model  level are at least as accurate as the estimates
with fixed smile approach. generated using monevness-dependent implied
volatility changes when the model generates an
otherwise acceptable number of exceptions.

Consequently, it is unlikely that incorporating more advanced volatility smile methods into
VaR estimation would result in any observable enhancement in VaR precision compared to
using merely ATM level changes that are observed between ATM swaptions on successive
days. Moreover, the trivial differences in the volatility components of VaR estimates suggest
that using ATM volatility changes would be sufficient even if the interest rate risk was
hedged. This suggests that there is no need to retrieve a sample of historical OTM swaption
volatilities for VaR computations, which is positive news for risk managers as the availability
of historical ATM swaption volatilities vastly exceeds that of OTM volatilities. However, the
results from the first set of backtests show limited evidence that the number of exceptions are
more often within the acceptable boundaries for moneyness-dependent VaR methods when
contract and moneyness specific volatility changes are applied instead of merely moneyness

specific volatility changes. Hence, if one wishes to go the extra mile of including volatility
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smile’s shape considerations into VaR calculations by using a history of moneyness-
dependent changes in implied volatilities, it is advisable to utilize the information content
available from the historical smile data and to also use actual volatility changes instead of

proxy-changes.

Nevertheless, the observations do not propose that a risk manager could overlook the smile
changes as a source of risk, since the absence of major shape changes during this observation
period does not connote that they were nonexistent at all times. Hence, rather than including
smile changes in daily VaR estimation, it might be more efficient to assess the smile risk
through stress testing with appropriate scenarios in which different level shifts, convexity
changes and rotations are covered. The scenarios’ effect on the present value of the position
provides the manager insight about the position’s risk status on the level of detail that VaR
estimates are unable to deliver. Moreover, the stress tests could expose some risks that VaR
fails to disclose, which also highlights the importance of stress tests as a necessary

complement to VaR measurement regardless of how sophisticated the VaR system is.

Linking the findings presented in this paper to previous studies is unfortunately inconceivable
for the most part due to lack of published comparable research. A number of studies with
regards to different VaR models and their backtesting results are naturally available, but those
implemented for swaption VaR measurement are conspicuously absent. From that point of
view, this study is able to contribute novel insight into practical implementation of VaR
systems with regards to swaption market risk measurement. However, the mixed results
highlight the need for further research in VaR based risk estimation methods as there
obviously appears to be room for improvement in the measurement precision with the models

presented in this study.

A natural extension to this study would be to implement analogous VaR estimations with
equal model specifications but with a significantly longer historical observation period if
possible. As there does not appear to be fundamental issues with the covered models, using a
wider spectrum of historical returns should add to the accuracy of any of the described

models.

Additionally, as the interest rates move close to zero, log-volatilities have a tendency to

become extremely high. As a result, using normal volatilities becomes a viable alternative in
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swaption modeling as they remain more stable in time. Consequently, developing swaption
VaR estimation models based on utilizing a pricing model that assumes normally distributed
interest rate changes as opposed to log-normal moves assumed in Black model might present
a fruitful avenue for future research in the area of market risk management. A feasible
alternative for such pricing model is Bachelier’s (1900) model or some of its more recent

modifications.
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APPENDIX A: ABBREVIATIONS AND TERMINOLOGY

This appendix provides a list of frequently used abbreviations and terminology used in this
study. The list contains also short descriptions of selected model names and prefixes used in

the tables and result discussion.

ATM: at-the-money. A situation when the strike price of an option equals to the price
of the underlying security. For a swaption, the term “price” refers to the fixed rate
(also called as “swap rate”) of the underlying interest rate swap, and for an ATM
swaption, the strike rate is equal to the forward rate that would apply between the
maturity and the tenor of the underlying swap so that the present value of the swap
would be zero on the swaption maturity.

In the result tables, “ATM” refers to the VaR smile method in which the historical
implied volatility changes are observed from the ATM level. See Fixed smile method.

“Component_"-prefix: in the result tables, refers to VaR model that utilizes Skew
dependent smile method.

“Direct_”-prefix: refers to VaR models where the historical changes in implied
volatilities that have occurred for swaption contracts over a 1-day holding period are
defined in a fashion that accounts for the simultaneous change in the interest rates. For
instance, a contract whose strike rate is initially ATM + 25 bps on day ¢ the
moneyness on +/ may not be ATM +25 bps anymore, but more or less if the interest
rates have changed. Hence, a new implied volatility for #+/ is first determined using
the SABR model, and the actual change in the implied volatility is the difference
between the implied volatility given by the SABR model and the implied volatility
observed on ¢. See also “Proxy " -prefix.

FHS: filtered historical simulation. A variation of historical simulation in which the
historical risk factor returns are scaled by a factor of prevailing volatility estimate
divided by the respective historical volatility estimates.

Fixed smile method: a VaR method in which the changes in the implied volatilities
for swaptions with a given maturity-tenor -pair are assumed to change in parallel
fashion, i.e. the changes for OTM swaptions are assumed to equal changes that occur
on ATM level. Hence, the distribution of historical changes is derived from the ATM

level only.
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HS: historical simulation. A VaR model where the distribution of profit and loss
scenarios is created through applying historical observed changes in risk factors to the
prevailing values of those risk factors.

Implied volatility: the value of the volatility of the underlying instrument to be used
as an input in an option pricing model in order to achieve a theoretical price that
equals to the current market price of the given option.

IR: interest rate, (used with VaR components).

IRS: interest rate swap. An interest rate derivative instrument in which two parties
agree to exchange interest rate cash flows. The cash flows are based on a given
notional amount from a fixed rate to a floating or vice versa (or one floating to another
floating). The floating rate is often indexed to a reference rate such as Euribor.

MAD: mean absolute deviation.

Moneyness: the relative position of the current price of the underlying security of an
option with respect to the strike price of the option.

MSE: mean squared error.

OTM: out-of-the-money. A situation when the strike price of an option is different
from the price of the underlying security. See also ATM.

Payer swaption: see swaption.

“Proxy_” -prefix: refers to VaR models where the historical changes in implied
volatilities that have occurred for swaption contracts over a 1-day holding period are
defined as changes between implied volatilities for swpation contracts with equal
moneyness. For instance, the change in implied volatility for a swaption whose strike
rate is ATM +25 bps made on day ¢ is defined as the difference between implied
volatility for an ATM +25 bps on #+/ less the observed implied volatility for an ATM
+25 bps on ¢. Consequently, the computed change in implied volatility is does not
actually refer to the change that occurred for an ATM +25 bps made on ¢ if the
underlying swap rate changed also between ¢ and #+1. See also “Direct ” -prefix.
Random smile method: a VaR method in which the changes in the implied
volatilities for swaptions with a given maturity-tenor -pair are not assumed to move in
a parallel fashion. Rather, the historical observations used for compiling the
distribution of implied volatility changes depends on the moneyness of the given

swaption contract. For instance, in case of an ATM +50 bps swaption, the implied
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volatility changes are taken from changes that have occurred at ATM +50 bps level
(instead of using changes that have occurred on ATM level as in Fixed smile method).
Receiver swaption: see swaption.

SABR model: a stochastic volatility model used for modeling the volatility smile in
interest rate derivative markets. The model was developed by Hagan et al. (2002). The
name stands for “stochastic alpha, beta, rho” where the Greek letters refer to the
parameters of the model.

Skew dependent smile method: a VaR model where the historical interest rate
changes are separated from respective historical changes in implied volatilities. Under
this smile method, the interest rate - implied volatility -pair scenarios are created in
two stages. First, a given interest rate change (“shock™) is applied to the prevailing
rate, and for the new point, an estimate of implied volatility is computed using the
SABR model. Then the respective implied volatility scenario that occurred
simultaneously with the interest rate change is applied to the scenario point created in
the previous step, which results into the final scenario to be used.

Smile: in the result tables, “Smile” refers to the smile method in which historical
implied volatility changes are observed from a moneyness level that depends on the
moneyness of the swaption in question. See Random smile method.

Generally, smile (or skew or smirk) refers to the effect observed on implied volatilities
when plotted against different strike rates and/or maturities.

Swaption: an option to enter into an interest swap agreement. Swaption is called a
receiver when the holder has an option to enter into an IRS where she receives the
fixed rate and pays the floating rate. Accordingly, a payer swaption grants the holder
the right to enter into an IRS where she pays the fixed rate and receives the floating
rate.

TW: time weighted historical simulation. A variation of historical simulation in which
more recent risk factor changes receive more weight than those occurred earlier.

VaR: Value at Risk, the worst expected loss that a portfolio may suffer during a
specified period under normal market conditions with a specified level of confidence.
VaR component: VaR figure with respect to a single risk factor, e.g. IR or implied

volatility.
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APPENDIX B: RISK FACTOR STATISTICS AND FIGURES

This appendix presents additional statistics and graphs about risk factors covered in 4.1.1.

Table 16:
Risk factor summary statistics

The table presents the summary statistics of daily changes in swaption implied volatilities and underlying forward swap rates
(F). The changes in F are measured in absolute terms and presented in basis points, whereas the statistics for implied
volatilities are computed using log-changes and values are shown as percentages. The observation period is from March 8,
2011 to February 1, 2013 and the number of observations is 479.

F ATM  +23bps +30bps +100bps +200bps

Panel A: 1x2

Average 042 0.14 013 0.13 013 0.12
Median 032 0.19 012 025 024 021
Std dev 4949 ER 3.87 416 437 183
Skewtiess -0.51 0.01 0.02 0.10 -0.23 -0.63
Furtosis 1493 436 452 23 585 584
Panel B: 1x3

Average 0.4 012 0.12 0.12 0.13 0.12
Median .18 024 0.18 0.10 0.14 0.1%
Std dev 497 285 282 288 34 4.46
Skewtiess 0.12 024 021 0.18 021 -0.08
Furtosis 366 439 434 173 1.78 10.6
Panel C: 3x2

Average 034 0.09 0.09 0.08 0.08 0.08
Median -0.51 0.13 0.14 0.10 0.09 0.05
Std dev 336 236 225 225 226 238
Skewtiess 0.09 012 -0.10 013 013 -0.10
Kurtosis 386 139 4137 20 407 412
Panel D: 3x3

Average 031 0.07 0.07 0.07 0.07 0.07
MMedian 0.36 0.10 0.04 0.07 0.05 0.06
Std dev 351 218 214 217 218 223
Skewtiess 013 0.01 0.07 001 0.02 013
Furtosiz 3ol 4.55 440 435 422 N
Panel E: 102

Average 029 0.07 0.06 0.06 0.06 0.06
Median 20.30 0.15 0.12 011 0.06 0.01
Std dev 383 205 205 208 2.10 212
Skewtiess 014 0.07 0.07 0.0 0.01 0.07
Furtosiz 4176 437 438 432 143 463
Panel E: 10x3

Average -0.30 0.06 0.06 0.06 0.06 0.06
MMedian 023 011 0.09 0.08 0.08 012
5td dev 307 214 2.10 2.10 208 203
Skewtiess 021 0.12 021 0.19 0.20 0.33
Furtosis 309 514 496 513 4188 323
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Table 17:
Risk factor correlations during the backtesting period
The table presents correlations between the risk factors under the backtesting period from March 5, 2012 to February 1, 2013.

Changes in forward swap rate (F) are measured in absolute terms whilst changes in implied volatilities are measured using
log-returns.

F ATM +25bps +30bps +100bps +200bps

Panel A: 1x2

F 1000 070 0684 03574 0468 0383
ATM 0,709 1.000 0038 0.823 0690 0362
+23bps D684 0088 1000 0819 0692 0363
+30bps 0574 0823 0.819 1.000  0.887 0.815
+100bps 0468 0690 0692 0887 1.000 0880
+20bps 0383 0562 0363 0.815 0.880 1.000
Panel B: 1x3

F 1000 0733 0721 0621 0433 0264
ATM 0.733 1.000 0093 0.820 0377 0.337
+23bps 0721 0995 1.000 0822 0386 0349
+30bps 0621 0820 0822 1.000 0877 0.706
+100bps 0433 0577 0586 0877 1.000  0.867
+200bps D264 0337 0340 0706  0.867 1.000
Panel C: 5x2

F 1000 07735 0768 0740 0712 03593
ATM 0773 1.000 0038 0.987 0946 0813
+23bps 2.768 0088 1.000 0978 0.048 0.818
+50bps 0749 0987 0978 1.000 0932 0890
+100bps 0712 0946 0048 0882 1.000 0951
+20bps 0.593 0.815 0.818 0820 0931 1.000
Panel D: 5x3

F 1000 0843 0833 083 0816 0763
ATM .843 1000 0977 0987 0939 0894
+23bps 0835 0977 1.000 0967 0940 0876
+50bps 0836 0087 0967 1.000 0990 0941
+100bps 0H816 093¢ 0940 0000 1.000 0960
+200bps A.763 0894 0876 0041 0.969 1.000
Panel E: 102

F 1000 0825 0813 0812 0795 0772
ATM 0825 1000 0093 0830 09872 0941
+23bps 0813 0998 1.000 0982 0970 0934
+30bps 0812 0990 00989 1000 0936 0939
+100bps A.793 0972 0970 0936 1.000 0976
+200bps D772 0841 0834 083% 0974 1.000
Panel F: 10x5

F 1000 083 0832 0826 -0807 0772
ATM 0.836 1.000 0093 0986 0937 0.910
+25bps D832 0895 1.000 0882 0933 0.907
+50bps 0826 0936 0082 1.000 0987 0.935
+100bps 0807 0957 0933 0987 1.000 0930

+200bps 0772 0910 0807 0933 0.080  1.000
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Figure 12:
Risk factor sensitivities

The figures on the left illustrate swaption sensitivities to interest rate changes (modified delta) during the backtesting period
and the figures on the right depict sensitivities with respect to volatility changes (numerical vega). The modified delta
represents a change in the present value of a contract when interest rates are shifted by 1 bps and the numerical vega denotes
the value change resulting from 100 bps shift in implied volatilities. Both measures are computed for long receiver swaption
positions. The values do not reflect actual price sensitivities accurately as the computations do not entail the interaction
between interest rates and implied volatilities. Instead, the figures provide an illustration about the impact of changes in
moneyness and time to maturity.
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Figure 13:
Implied volatility skew evolution

The figure shows how the skew for 5x5 swaption evolves during the observation period. While the level of the implied
volatilities varies to some extent, the shape of the skew stays quite unchanged especially for strikes above ATM level.
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APPENDIX C: ADDITIONAL VAR STATISTICS

This appendix presents the VaR exception results for short receiver swaption positions and

average VaR components for Proxy HS models with fixed and random smile methods.
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Table 18:
VaR exceptions for short positions

The table shows the number of VaR exceptions for each of the series when estimated for short receiver swaption positions. VaR confidence level is 95% and the number of daily observations is
228. Consequently, the expected proportion of exceptions is 5%, i.e. number of hits should be approximately 11.

Proxy_HS Proxy TW Direct_HS Direct_ TW Component_HS Proxy_FHS Direct_FH! Component FHS
ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile ATM Smile

Panel A: 1x2

4 14 6 13 7 10 18 20

3 3 12 13 3 3 12 12 7 3 g g 12 11 1% 17

3 3 10 12 3 3 10 13 b 3 g 10 13 12 16 13
ATM +100 bps 3 2 1 10 3 3 10 1 4 2 10 10 11 10 12 10
ATM +200 bps 2 2 12 12 2 2 12 12 2 2 10 1 11 10 1 g
Panel B: 1x3
ATM 1 1 b 8 8 7 13 18
ATM +25 bps 1 1 10 10 3 3 g 8 7 b 6 6 g g 16 13
A +30bps 0 0 3 3 1 2 3 & 4 3 3 3 H g 18 12
ATM +100 bps 1 0 g g 1 0 7 8 4 0 8 7 8 7 14 8
ATM +200 bps 1 1 g g 1 1 g g 1 0 10 10 11 10 1 1
Panel C: 3x2
ATM 2 g 3 g 1 b 8 15
ATM +25 bps 2 2 4 6 2 3 4 8 10 8 2 3 h] 6 17 15
ATM +50 bps 2 2 b 8 3 3 6 8 12 6 6 4 g 10 19 14
ATM +100 bps 1 2 10 11 3 3 10 11 11 3 3 & 12 10 21 12
ATM +200 bps 12 12 28 15 15 7 28 13 g 2 28 22 3 15 23 1
Panel D: 5x3
ATM 2 g 4 g 10 7 9 16
ATM +25 bps 2 2 8 g 4 3 8 8 10 7 b b 8 10 17 15
ATM +50 bps 2 2 7 8 3 4 7 7 12 b 6 6 10 10 18 14
ATM +100 bps 2 2 12 g 3 3 12 g 12 4 g 8 11 1 19 13
ATM 200 bps 4 4 23 12 10 4 23 11 3 3 21 18 22 13 18 10
Panel E: 10x2
ATM 2 7 6 8 10 b g 18
ATM +25 bps 2 2 7 6 6 3 8 6 10 b b 11 1 19 18
ATM +50 bps 1 2 6 8 6 6 6 8 1 7 b b 8 8 19 15
ATM +100 bps 4 3 8 7 7 6 8 7 g 6 b b 12 8 20 10
ATM +200 bps 7 7 20 g 8 7 20 g 8 b 18 20 26 10 20 6

Panel F: 10x3

ATM 1 7 3 7 7 6 7 13
1 2 7 7 3 7 7 7 3 6 6 7 g 18 13
1 2 6 g 3 3 6 g 7 3 6 6 8 8 19 12
2 2 8 8 3 3 g 8 8 3 8 8 10 g 18 g
6 6 16 8 7 3 16 8 8 4 13 14 13 8 16 7
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Table 19:
Average VaR components

The table presents average VaR components for Proxy HS models with fixed (“ATM”) and random (“Smile”) smile methods. IR
stands for interest rate and Vol for implied volatility as defined in 4.2.5. Theoretical Vol refers to implied volatility component
obtained through applying the theoretical volatility shock in a similar fashion as in skew dependent VaR model (2.8.5) but without
the according interest rate change.

124 Vol Theretical Vol

ATM ATM Smile ATM Smile
Panel A: 122
ATM 3131 2088 1716
ATAM 25 bps 8674 20648 2081 1727 1883
ATM +30 bps 10 803 1771 1361 1460 762
ATM +100 bps 13 303 1093 1183 208 207
ATM +200 bps 14 691 34 411 350 439
Panel B: 113
ATM 16214 3846 4031
ATM =23 bps 23822 3814 30390 4031 4362
ATM +30 bps 2831 3209 3234 3626 4202
ATM +100 bps 36328 3508 3672 RN 3548
ATM +200 bps 11333 1471 17489 1034 1833
Panel C: 522
ATM T334 4787 2841
ATM 23 bps @ 836 4871 4801 2831 2084
ATM +30 bps 10 863 4 846 4813 2878 3303
ATM +100 bps 12439 4648 4824 2763 4134
ATM =200 bps 11 8386 3008 4111 2333 4302
Panel D: 523
ATM 19198 11797 6 203
ATM 23 bps 22961 11909 11571 6 263 7102
ATM 30 bps 26 977 11 859 11 782 6238 7882
ATM +100 bps J1845 11283 11412 3830 9541
ATM +200 bps 34361 2331 9704 4044 10 444
Panel E: 10x2
ATM 7826 3129 3213
ATM 23 bps 8 807 3169 3090 3239 3497
ATM +30 bps 10 392 3190 3260 3232 4014
ATM +100 bps 12 5327 3104 3148 3202 4383
ATM +200 bps 13617 4710 4 397 2962 730
Panel F: 103
ATM 18930 12 461 6 344
ATAM 25 bps 21 610 12 336 12 433 6 306 6 883
ATAM 50 bps 25 645 12 504 12177 6618 7883
ATM +100 bps o419 12 363 2024 6 303 10213
ATM 200 bps 35 399 11 333 10 384 5087 12 794




