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Abstract 

PURPOSE OF THE STUDY 

Interest towards media analytics has increased significantly by both practitioners and 

academia alike. The hot topic is whether or not qualitative texts contain information relevant 

to stock financials, and if they do, whether the impact can be used to earn abnormal returns. 

In order to answer this, we study the impact media factors have on financial metrics in a 

novel specification that combines all the major media factors in a holistic media model. To 

transform qualitative texts information into a “sentiment score”, we develop a new 

methodology to estimate sentiment more accurately than currently prevailing methods.  

DATA AND METHODOLOGY 

Our study focuses on the S&P 100 constituents between the time period of 2006 and 2011. 

As a source of qualitative texts, we use major news publications and earnings announcements 

retrieved from LexisNexis -database using a web scraper program developed for the purpose 

of this study. We retrieve the financials data for our study using Thomson Reuters 

Datastream -database. 

In order to estimate investor sentiment, we employ both the customary word count, as well as 

our novel Linearized Phrase-Structure -methodology. For word count, we test the Harvard 

Psychological -dictionary and a finance-specific dictionary by Loughran and McDonald 

(2011). As our data is panel in nature, we analyze the correlations in our error terms in line 

with Petersen (2009), first without clustering and then clustering by firm and by time. We 

find time-effect in our error terms, and therefore employ a Fama-Macbeth (1973) 

methodology with clustering done in quarters. To mitigate a methodological choice driving 

our results, we run our specifications with a multitude of alternative specifications.  

RESULTS 

We find that Linearized Phrase-Structure (LPS) outperforms the predominant naïve word 

count methodology. Also, we find that if employing word counts, researchers should employ 

context dependent dictionaries, such as Loughran and McDonald’s (2011). In terms of our 

main variables, we find that the existing media factors are not mutually exclusive, and impact 

financial metrics in chorus. Alas, we do not find statistically significant relationship between 

sentiment and abnormal returns. However, we find a relationship between aggregate market 

news volume and abnormal returns, and also between sentiment and abnormal volatility. We 

infer that our findings support limited attention –theory, and provide evidence against market 

efficiency. 

 

Keywords  News volume, sentiment, content analysis, natural language programming, limited 

attention, behavioral finance, efficient market hypothesis 
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TUTKIELMAN TAVOITTEET 

Kiinnostus media-analytiikkaa kohtaan on kohonnut viime aikoina merkittävästi. 

Keskustelun keskipisteessä on ollut kvalitatiivisten tekstien suhde rahoitusmarkkinoihin, ja 

niiden pohjalta nouseva mahdollisuus ansaita poikkeavia tuottoja. Tutkiaksemme edellä 

mainittua suhdetta, käytämme uudenlaista tutkimusspesifikaatiota, joka yhdistää kaikki 

aiemmin tutkitut merkittävät mediatekijät yhdeksi holistiseksi mediamalliksi. 

Muuntaaksemme kvalitatiiviset tekstit ”sentimenttiarvoiksi”, kehitämme uuden menetelmän 

sentimentin arviointiin.  

LÄHDEAINEISTO JA MENETELMÄT 

Tutkimuksemme keskittyy S&P 100 indeksin yrityksiin aikavälillä 2006 – 2011. 

Kvalitatiivisten tekstien lähteenä käytämme suurimpia kansainvälisiä uutislähteitä sekä 

yritysten tulosjulkaisuja. Haemme kvalitatiiviset tekstit LexisNexis -tietokannasta käyttäen 

”web scraper” -ohjelmaa, jonka olemme rakentaneet tätä tutkimusta varten. Talousdatan 

haemme Thomson Reuters Datastream -tietokannasta. 

Käytämme sijoittajasentimentin arviointiin kahta eri tapaa: perinteistä sanojen laskemiseen 

pohjaavaa menetelmää sekä kehittämäämme uutta ”Linearized Phrase-Structure” -

menetelmää. Sanojen laskemisen kanssa käytämme kahta eri sanakirjaa: Harvard Psykologia 

-sanakirjaa sekä tutkijoiden Loughran ja McDonald (2011) talousalan sanakirjaa. 

Lähdeaineistomme on paneelimuotoinen. Havaitsemme otannassa korrelaatiota ajassa, jonka 

johdosta käytämme nk. Fama-Macbeth (1973) menetelmää, ja ryhmitämme havaintomme 

kvartaaleittain. Muuttujien ja menetelmien osalta käytämme useita eri määritelmiä 

vähentääksemme mahdollisuutta, että menetelmävalinta selittäisi tuloksiamme.  

TULOKSET 

Tuloksemme osoittavat, että Linearized Phrase-Structure (LPS) suoriutuu paremmin 

sentimentin arvioinnista kuin sanojenlaskentamenetelmä. Lisäksi, tuloksemme näyttävät, että 

tutkijoiden tulisi suosia kontekstisidonnaisia sanakirjoja, kuten Loughran ja McDonald 

(2011) sanakirjoja. Muuttujien osalta havaitsemme, että mediamuuttujat eivät ole toisensa 

poissulkevia. Emme löydä tilastollisesti merkittävää suhdetta sentimentin ja poikkeavien 

tuottojen välillä. Löydämme kuitenkin tilastollisesti merkittävän suhteen markkinoiden 

uutismäärän ja poikkeavien tuottojen välillä, sekä sentimentin ja volatiliteetin välillä 

Tuloksemme tukevat nk. rajallisen huomion (”limited attention”) teoriaa, ja viittaavat siihen, 

että markkinat eivät allokoi varoja tehokkaasti. 

Avainsanat  Uutismäärä, sentimentti, sisältöanalyysi, rajallinen huomio, luonnollisen kielen 

käsittelymenetelmät, rahoituksen käyttäytymistiede, tehokkaat markkinat -hypoteesi 
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1 INTRODUCTION 

1.1 Background 

“A new breed of forecasters is using ‘sentiment analysis’ to pick out the emotionally 

charged words and phrases which pepper online exchanges.” 

- The Economist
1
 

Media analytics has experienced a surge in interest from both practitioners and academia 

alike. Recent academic papers, as well as the wallets of Wall Street investors, have voted for 

different media factors having an impact on financial metrics. The jury is still out, but the 

buzz is growing by the minute. 

The thought that media factors are linked with financial metrics is based on the idea that 

qualitative texts have an impact on financial metrics beyond quantitative information. The 

idea has a two-fold rationale. First, if qualitative information has information content beyond 

quantitative information, media text can have an impact on financial metrics. Second, if style 

and tone of text affect the beliefs, preferences and decisions of investors, then qualitative texts 

can have an impact on financial metrics even in the absence of new information content. The 

two reasons are not mutually exclusive, and can in fact affect investors’ decisions in tandem.  

The thought that qualitative texts have information content is based on several findings. First, 

qualitative texts are thought to be used by managers to communicate adverse information to 

the public. The argument is that qualitative information is harder to process and can therefore 

cloud the full impact of adverse information from investors (e.g., Bloomfield, 2002; Davies et 

al., 2008; Engelberg, 2008). The idea gained wide recognition in the 1990’s with the seminal 

article of Skinner (1994). More recently, for instance, Li (2008) has put forth similar 

evidence. Second, qualitative texts are thought to be used by managers to communicate future 

estimates to investors. The rationale is that managers have more freedom in writing 

qualitative texts which are loosely regulated vis-à-vis quantitative information which is 

strictly regulated (e.g., Li, 2006; Davis et al,. 2008). In summary, the two categories of 

                                                 
1
 
The Economist: Getting in the Mood. The World In 2012 print edition
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findings indicate that qualitative information has informational content over and beyond 

quantitative information. 

The idea that qualitative information impacts agents’ beliefs, preferences and decisions is 

rooted in cognitive psychology, and the recent exciting findings of behavioral finance. The 

key theory behind the impact is ‘framing’ which states that agents are impacted by the 

framing of a problem (e.g., Tversky and Thaler, 1990; Starmer, 2000). As framing is 

documented to have an impact on agents’ behavior, the linguistic style and tone choices of 

qualitative texts can impact agents’ decisions. Indeed, a multitude of studies have found that 

recipients of messages are attentive to both content and style (e.g., Chung and Pennebaker, 

2007). For example, the way stock market commentators describe price movements 

influences investors’ expectations of future prices even in the absence of any fundamental 

information (Morris et al., 2005). 

If qualitative texts can impact investors, they can explain variations in financial metrics. 

Recent literature has focused on analyzing three different media factors that have been 

hypothesized to explain variations in financial metrics. First, extant literature has analyzed the 

impact of firm specific news volume on financial metrics (e.g., Fang and Peress, 2009). 

Second, prior literature has studied the effect of aggregate market news volume on financial 

metrics (Hirsleifer et al., 2009). Third, the impact of sentiment on financial metrics has been 

explored (e.g., Tetlock, 2007; Tetlock et al., 2008; Loughran and McDonald, 2011). With all 

the aforementioned variables, findings have documented an impact between the factors and 

financial metrics. 

Until today, the surge in interest has mainly focused on analyzing sentiment’s impact on 

financial metrics. In the epicenter of sentiment studies stands the methodology used to 

estimate investor sentiment. So far, extant literature has preferred the use of simplistic 

methodology for the sake of objectivity, replicability and transparency (e.g., Tetlock et al., 

2008). The pivotal studies shaping the field of content analysis in finance have relied on word 

count methodology in combination with a specific dictionary (e.g., Tetlock, 2007; Tetlock et 

al., 2008; Loughran and McDonald, 2011). The dominant dictionary used has been the 

Harvard Psychology dictionary. However, with the seminal article of Loughran and 

McDonald (2011), that shows that Harvard Psychology dictionary misclassifies words in 

financial context, the preferred choice of dictionary has become unclear. Also, critique 

towards the naïve word count methodology has gained footing (e.g., O’Hare et al, 2009). In 



3 

 

summary, academia stands in cross-roads: having to decide on the direction that future 

research will take in terms of methodology. 

If qualitative texts impact financial metrics, the question remains whether or not that impact is 

reflected in the financial metrics according to the propositions of the efficient market 

hypothesis. The findings of prior literature show that this is not the case. The extant literature 

has documented both overreaction and underreaction effects. However, the majority of the 

findings demonstrate an underreaction effect (e.g., Chan, 2003; Loughran and McDonald, 

2011).
2
 An underreaction effect occurs when information content dominates over tone (e.g., 

Tetlock, 2007). Therefore, prior literature’s evidence seems to indicate that information 

content is the dominating effect in the impact qualitative texts have on financial metrics.  

If underreaction is indeed the dominant effect, scholars must attempt to understand why that 

is the case: what are the drivers behind the inefficient market causing an underreaction. There 

are several competing theories. We will introduce three potential explanations. First, ‘limited 

attention’ -theory has been proposed by some scholars (e.g., Hirsleifer et al., 2009) to explain 

underreaction. Limited attention states that agents have limited cognitive capabilities, and 

therefore face constraints in information processing depending on the volume and complexity 

of information. Second, cognitive biases from psychology can explain underreaction.
3
 Third, 

due to the leniency of qualitative text regulations, agents discount information in qualitative 

texts, leading to underreaction. As uncertainty relating to the information diminishes with 

time, the discount factor approaches zero, and financial metrics respond correspondingly (e.g., 

Mercer, 2004; Davis et al., 2008).
4
 The outcomes of the aforementioned theories often bear 

great resemblance to each other. However, the underlying rationales are different. 

To sum up, prior literature has presented evidence that qualitative texts have an impact on 

investors beyond quantitative information. Furthermore, recent literature has presented 

findings linking different media factors, in particular media sentiment, with variations in 

financial metrics. The majority of evidence is pointing towards an underreaction effect. To 

                                                 
2
 Tetlock (2007) and Antweiler and Frank (2006) find an overreaction effect with qualitative texts from Wall 

Street Journal. We hypothesize that the informational content of qualitative texts depends on the source of the 

qualitative text. Hence, we argue – in line with Tetlock et al. (2008) – that Wall Street Journal articles 

recapitulate previous news and have no new information content. However, the tone of the articles still affects 

investors, and therefore causes overreaction that reverses with time. 
3
 For instance, two related biases: anchoring and conservatism, can explain underreaction. 

4
 Depending on the past context, agents’ aforementioned behavior can in fact be rational. Key consideration 

impacting the discounting is the source credibility: the track record of the author in publishing accurate 

information via qualitative texts. 
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explain the effect, academia has proposed several competing theories; no consensus exists at 

the time of the writing. 

1.2 Motivation and definition of research questions 

As we briefly mentioned, content literature in the domain of finance stands in a cross-roads. 

The methodology used to estimate investor sentiment is the center piece of any study focusing 

on the link between sentiment and financial metrics. Therefore, the choice of investor 

sentiment estimation methodology should not be taken lightly. Extant literature has preferred 

the use of simplistic methods in estimating investor sentiment. However, concerns have 

started to mount up on the validity of such a naïve methodology. Furthermore, the status quo 

methodology, word counting, is facing a critical choice within it: the choice of preferred 

dictionary. Before the pivotal study of Loughran and McDonald (2011), the default choice 

dictionary for academia was the Harvard Psychology dictionary. However, as Loughran and 

McDonald showed, Harvard Psychology dictionary misclassifies many words in the financial 

domain. Loughran and McDonald conclude in their paper that scholars should use their 

context dependent dictionary in future research. However, they add that their dictionary 

should be tested in a sample consisting of different qualitative texts than 10-k reports
5
 to 

verify that their results hold outside the domain of 10-k reports. 

Taking the next step in estimating investor sentiment stands to benefit both academia and 

practitioners alike. As erroneous estimation methodology results in a measurement error in 

investor sentiment estimates, the benefits of improving the methodology are obvious. 

Moreover, Loughran and McDonald (2011) show that erroneous methodology can result in 

type I errors, and spurious correlations, that can in fact result in incorrect conclusions based 

on misleading findings. Therefore, improved methodology can change our understanding of 

the link between investor sentiment and financial metrics from the point-of-view of academia. 

On the other hand, improved methodology yields more accurate sentiment estimates – 

something investors find most valuable. In an era where  new methodological discoveries 

                                                 
5
 10-K reports are a commonly used financial reporting format used in the United States. These reports present a 

summary of a company's performance and are submitted annually to the Securities and Exchange Commission. 

Typically, the 10-K contains much more detail than a company’s annual report, e.g. detailing out a company’s 

history, organizational structure, equity, holdings, etc. 
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result in sentiment funds being raised from nothing to something in an instance,
6
 the 

significance of a breakthrough in investor sentiment estimation methodology is clear. 

However, sentiment is not the only media factor of interest. Firm specific news volume (e.g., 

Fang and Peress, 2009) and aggregate market news volume (e.g., Hirsleifer et al., 2009) have 

been linked with financial metrics. Yet, no study to date has researched the impact of all the 

media factors simultaneously. We argue that the factors are not mutually exclusive. 

Moreover, by exploring all the media factors simultaneously in a holistic media model, one 

can potentially extract new insights on the impact each of the factors have on financial 

metrics, and whether or not all of the factors are indeed separate and significant factors of 

different financial metrics. Furthermore, the insights provided by a study utilizing a holistic 

media model can be invaluable to the theory building behind the argued relationships between 

financial metrics and media factors. 

Besides the aforementioned methodological and theoretical considerations, the extant 

literature has so far utilized a narrow scope in event windows and sources of qualitative texts. 

Therefore, prior literature’s findings are subject to critique concerning data dredging. A study 

employing a large set of event windows with a wide cross-section of qualitative text sources 

would be free from such critique, and therefore add valuable evidence to the existing 

literature. The new evidence would shed more light on the impact that qualitative texts have 

on financial metrics, and on the state of market efficiency. 

To sum up, we are interested in finding answers to the following questions: 

Methodological questions 

 How can media sentiment be estimated more accurately, using contemporary 

computer science research? Can a more sophisticated methodology outperform extant 

naïve methodology? If so, are the results based on the new methodology different 

from those of the old methodology? 

 What is the preferred dictionary for the status quo methodology? Can the novel 

Loughran and McDonald (2011) dictionary outperform the Harvard dictionary in a 

sample consisting of other qualitative texts than 10-k reports? 

                                                 
6
 In 2011, professor Johan Bollen from Indiana University’s School of Informatics and Computing published a 

study linking twitter sentiment with Dow Jones Industrial Average returns. Within days, Johan Bollen had 

licensed his algorithm to Derwent Capital Management, a hedge fund that incepted a 40 USDm fund based on 

that sentiment estimation algorithm. 
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Theoretical questions 

 What are the significant media factors driving variations in financial metrics? Is 

market disseminating information efficiently? 

 Can we draw new inferences on the impact that qualitative texts have on financial 

metrics, and on the theory underlying the impact, based on the analysis of all the 

media factors simultaneously?  

Practical questions 

While we do no aim to answer the following in this paper, a paper by Mitra and Mitra (2010) 

highlights also the following practical questions: 

 Trading: could sentiment analysis be used by traders to give insight into questions on 

which assets to buy, hold or sell? 

 Risk control: could information in media and news contain early warning signs that 

could be important in predicting risk? How could risk managers use media analysis to 

better understand how different events might impact their portfolio risk? 

1.3 Contribution to existing literature 

Based on the research questions of previous sub-section, we aim to contribute to the prior 

literature by: 

 Developing a more sophisticated methodology for estimating investor sentiment 

 Testing the three documented  major media variables on financial metrics 

simultaneously in an attempt to create a holistic media model, and to isolate the 

significant media factors that drive variations in financial metrics 

 Testing the prior literature’s principal methodology for estimating investor sentiment: 

the vector word count, with the two most prevalent dictionaries utilized: the Loughran 

and McDonald (2011) dictionary; and the Harvard Psychology dictionary, in order to 

clarify the efficacy of the extant methodology, and the preferred dictionary for the 

methodology 

 Testing Loughran and McDonald’s (2011) dictionary in an out-of-sample test with 

qualitative texts other than 10-k reports.  
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 Analyzing the impact different media factors have on financial metrics in a robust 

study employing a comprehensive cross-section of different qualitative texts with 

multiple event windows in order to attenuate concerns over data dredging 

 Draw conclusions on the theory underlying the link between financial metrics and 

media factors  based on the findings of the study 

 Put forward evidence concerning the efficiency of the market, and the informational 

content of qualitative texts, based on the findings 

1.4 Limitations of the study 

The limitations relating to our study can be divided into two different broad categories: first, 

the limitations relating to our sentiment estimation methodology; second, the limitations 

relating to the data we are using.  

Despite the fact that the methodology we have developed for the study: Linearized Phrase-

Structure (LPS)
7
, is a significant improvement from the naïve word count methodology used 

in the extant literature, there are caveats that the reader should bear in mind. The main 

limitations relating to our sentiment estimation methodology are: 

 Inability to distinguish topic of a text and its relevance (i.e., the article discusses the 

target company briefly, or is entirely focused on the target company) 

 Failure to assess the credibility of a text source (i.e., local newspaper vis-à-vis 

Financial Times) 

 Inability to differentiate between information concerning: past, present, or future, in a 

text (i.e., discussion on the historical profit development vis-à-vis speculation on the 

future profit development of a company) 

 Use of only negativity sentiment – both in sentence and article level – to measure 

sentiment (an alternative would be to use a number of different metrics: for instance, 

disagreement -sentiment of Das, 2010, might yield additional insights to the link 

between sentiment and financials) 

To overcome the aforementioned limitations would require substantial work, and is outside 

the scope of this study. We therefore urge future research to focus on the limitations we have 

mentioned in order to improve sentiment estimation methodology. 

                                                 
7
 Linearized Phrase-Structure -model is our approach for predicting semantic orientations of short economic 

texts. We define LPS in detail in section 5. 
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The second category of limitations in our study is data related. The following data limitations 

should be considered when interpreting our results: 

 LexisNexis database coverage of qualitative texts (i.e., not all important qualitative 

text publications are covered by LexisNexis due to, for instance, copyright issues) 

 Missing qualitative texts relating to key products that do not mention the company 

name (i.e., influential technology paper reviews the new Nokia Lumia phone but does 

not state Nokia’s name in the article) 

 Excluded qualitative sources (e.g., Social media, non-written qualitative media such as 

television or radio) 

 Time period: financial crisis (i.e., unusual patterns in data can exist due to the 

exceptional circumstances relating to the macroeconomic environment). As discussed 

later in context of our univariate results, we notice that negative returns combined with 

higher news volume often concentrated to years 2009-2010 

 Daily data instead of intraday data (i.e., we are missing the potential intraday effects 

from our study) 

 Sample firms: S&P 100 (i.e., we are missing small-firm related effects due to our 

sample consisting of solely large firms). It is possible that the effects we are interested 

in could be more prominent for small cap companies. Furthermore, the size and news 

coverage within the S&P 100 varies significantly
8
. Further studies could overcome 

this limitation possibly by either standardizing news volume per company, or selecting 

a sample of companies with even more similar news volumes. 

Even though our data has limitations, we do not hypothesize that the limitations would 

significantly affect the nature of our results, or the interpretations we have drawn from our 

findings. 

1.5 Main findings 

The findings of our study can be divided into four different broad categories. First, we 

provide evidence to the on-going methodological debate concerning sentiment estimation. 

Second, we offer insights on the effects that the three different dominant media factors have 

on financial metrics. Third, we present findings that contribute to the theory building behind 

the hypothesized relationship between media factors and financial metrics, and to the 

                                                 
8
See univariate results in section 6.2. 
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discussion concerning the information content of qualitative texts. Fourth, we provide 

evidence on the state of market efficiency. 

To test the different methodologies used to estimate investor sentiment, we run a 

comprehensive benchmarking test. We test the extant literature’s prevalent methodology: 

word count, with Harvard Psychology dictionary and Loughran and McDonald (2011) 

dictionary, against our novel more sophisticated methodology: the Linearized Phrase-

Structure (LPS) -model. The result is clear: Linearized Phrase-Structure -model outperforms 

the prevalent methodology. Our test utilizes a comprehensive cross-section of qualitative texts 

according to multiple standard criteria for assessing a classification algorithm’s performance. 

Therefore, we argue that our results are a clear indication that Linearized Phrase-Structure -

model improves sentiment estimation significantly. Also, we find that the context specific 

dictionary of Loughran and McDonald (2011) outperforms the Harvard Psychology dictionary 

in financial context. As a result, we infer that our benchmarking test offers support to 

Loughran and McDonald’s (2011) claim that academia should prefer their context dependent 

dictionaries over Harvard Psychology dictionary when assessing sentiment within the 

financial domain. After establishing the accuracy of used methodology in sentiment 

estimation, we move to analyze the different media factors prior literature has linked with 

financial metrics. 

We find that investor sentiment is not linked with abnormal returns or volume, but does have 

a relationship with abnormal volatility. We hypothesize that the noise in prior literature’s 

sentiment estimation methodology has resulted in spurious correlations illustrated by the 

findings of extant literature in the case of abnormal returns and volume.
9
 Also, we find 

qualitative support that underreaction is the effect related to sentiment and financial metrics.  

Next, we confirm the findings of Hirsleifer et al. (2009) by documenting that aggregate 

market news volume impacts abnormal returns and volume. The impact is characterized by an 

underreaction effect. We infer that the findings provide strong support for Hirsleifer et al. 

(2009) proposed ‘distraction hypothesis’ that is based on limited attention theory.  

Finally, we find that firm specific news volume is not related to abnormal returns. However, 

firm specific news volume is related to abnormal volume and volatility (only the short event 

windows are significant with abnormal volume). We infer that noise traders are attracted to 

                                                 
9
 Loughran and McDonald (2011) express similar concerns over spurious correlation when studies employ 

erroneous sentiment estimation methodologies. 
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attention grabbing stocks; therefore, increasing the volume and volatility of such stocks. Also, 

the fact that only the short event windows are significant in terms of volume, offers some 

support to limited attention theory: as more firm specific news translate to more attention 

towards a given firm, the lag in information dissemination should decrease. Hence, trades 

occur more likely close to the event date, and abnormal volumes should only be exhibited in 

the shorter event windows. 

Our findings indicate that the dominant emerging pattern between financial metrics and media 

factors is underreaction. The implications drawn from the finding are two-fold. First, as 

underreaction is linked with new information in qualitative texts (e.g., Tetlock, 2007), the 

evidence supports the assertion that qualitative texts have novel information content. Second, 

as the relationship between aggregate market news volume is theorized to be related to limited 

attention, and we are unaware of competing explanations, we infer that limited attention 

indeed does impact the markets as is indicated by the statistically significant relationship that 

aggregate market news volume has with financial metrics. Moreover, as other media factors 

also portray a pattern of underreaction, we suggest that limited attention is the underlying 

theory explaining the pattern for all the media factors. Our rational is as follows: as limited 

attention is a phenomenon present in the markets, as demonstrated by aggregate market news 

volume, its effect cannot exist in isolation from other media factors. Therefore, it should also 

affect other media factors, and hence have an impact on the relationship other media factors 

have with financial metrics. We therefore suggest that limited attention is in fact the key 

underlying theory explaining the underreaction pattern associated with media factors and 

financial metrics. 

In terms of market efficiency, our findings provide valuable evidence to the discussion 

concerning the state of market efficiency. We find that aggregate market news volume and 

momentum factors explain variations in abnormal returns in contradiction to the theoretical 

definition of the efficient market hypothesis. However, we can only infer that the findings are 

in contradiction to the theoretical definition of market efficiency as we have not tested the 

economic significance of our results. In other words, we do not know if the relationship is 

significant ex-post trading costs, and therefore we cannot draw inference on whether or not 

the findings are in contradiction to the economic definition of market efficiency (e.g., Jensen, 

1978) that states that markets are efficient as long as abnormal profits do not persist ex-post 

trading costs.  
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Based on our findings, we conclude that future studies could keep on developing more 

sophisticated methods for estimating sentiment more accurately, especially taking into 

consideration what qualitative information is most relevant for stock performance. In terms of 

market efficiency, we suggest that future research should study the effectiveness of specific 

trading strategies to provide insights to the economic state of market efficiency. Such studies 

should focus on trading strategies that take advantage of days with high aggregate market 

news volume. Also, sentiment estimates could be valuable when designing trading strategies. 

To elaborate more, future research could study a trading strategy that uses sentiment estimates 

to forecast future stock volatility. Based on the volatility forecasts, the trading strategy could 

in theory take positions in derivatives to earn alpha.  Also, a trading strategy utilizing an index 

such as the VIX volatility index could prove useful. 

1.6 Structure of the study 

The rest of the paper is organized as follows. Section 2 reviews prior literature and builds the 

foundation we will construct our hypotheses on. Section 3 highlights our contribution to the 

existing literature, and introduces our hypotheses for the study. Section 4 explains the data we 

are using, the process of gathering it, and presents brief variable descriptions. Section 5 

introduces the methodology in the study: the sentiment estimation methodology, and the 

statistical methods and specifications used to analyze the relationship between our main 

variables and financial metrics. Section 6 presents the findings of the study, and discusses 

their impact. Section 7 concludes, and introduces areas we suggest for future research. 
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2 PREVIOUS LITERATURE REVIEW 

The impact of different media factors on financial metrics has spurred up considerable interest 

during the last decade. Three different major media factors have been linked with variations in 

financial metrics. In order to understand the implications and context of media analytic 

studies in the domain of finance, the reader must be acquaint with a vast cross-section of 

different research topics in finance, psychology and computer sciences. Therefore, we aim to 

introduce the reader briefly to three major areas that are necessary for the interpretation of our 

findings. First, we will discuss the efficient market hypothesis that sets the ground for any 

study in finance researching the link between a variable and abnormal returns. Second, we 

will introduce the reader to behavioral finance, and the cognitive biases that underlie the 

nascent field
10

. Third, we acquaint the reader with content analysis research both in finance 

and other disciplines. 

The first part of the literature review will go through the efficient market hypothesis; the 

modern finance paradigm, and the competing school of thought; behavioral finance, to set the 

ground for our research. With the birth of behavioral finance, the last few decades have 

witnessed a fierce debate concerning the state of market efficiency: a debate that, at times, 

seems to have resembled more a religious quarrel than an academic debate. To illustrate, we 

offer the following quote from Haugen’s
11

 (1999) book (Chapter 7, Note 5, p. 71):  

“On April 16, 1998 at the UCLA Conference, The Market Efficiency Debate: A Break 

from Tradition, while delivering a paper on market efficiency, Fama pointed to me in 

the audience and called me a criminal. He then said that he believed that God knew that 

the stock market was efficient…” 

The quote illustrates an alarming situation: at times, the debate concerning market efficiency 

seems to have transmogrified into philosophic credence and lies beyond scientific endeavor 

(e.g., Lee and Yen, 2008). As we hope to provide evidence to the market efficiency 

discussion, we acquaint the reader with both schools of thought, and the debate between them, 

to set the context in which our findings will be evaluated. 

                                                 
10

 Behavioral finance is a crucial part of our study, as behavioral finance justifies the rationale as to why 

qualitative texts can impact agents’ behavior even in the absence of new information in qualitative texts. 
11

 Haugen is a well-known critic of efficient markets and an advocate of behavioral finance 
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After reviewing efficient markets hypothesis and behavioral finance theories we will move on 

to examine the research on content analysis in the domain of finance. We will show that the 

previous research has demonstrated that by turning qualitative information into quantitative 

information investors can reap abnormal profits in violation of the efficient market 

hypothesis.
12

 We will focus on reviewing the main findings of previous literature and on 

demonstrating the different suggested links between theory and investor sentiment.  

The section will proceed as follows. First, we will discuss the modern finance paradigm and 

the efficient market hypothesis. Second, we will briefly go through behavioral finance. 

Finally, we will explore the previous research in the field of content analysis with a focus in 

finance. 

2.1 Efficient market hypothesis 

The literature concerning the efficient market hypothesis is extensive, and a comprehensive 

review of the literature is a daunting task.
13

 Hence, our intention is to introduce the reader 

briefly to the theory of the efficient market hypothesis [EMH], the history of the hypothesis, 

and the debate surrounding the EMH, to establish the context for our study and the ensuing 

discussion on the impact of our results on modern finance paradigm. If the reader is familiar 

with the EMH literature, he or she may choose to skip the sub-section in question. 

The sub-section is organized as follows. First, we will introduce the reader to the EMH, and 

the different efficiency forms. Second, we will go through the different arguments concerning 

the debate surrounding the state of the EMH. Finally, we will discuss limits to arbitrage – a 

topic crucial to both efficient market hypothesis proponents as well as to behavioral finance 

advocates. 

2.1.1 Different forms of efficiency 

At the age of 25, Eugene Fama (1965) wrote the following in his seminal PhD thesis: 

“Independence of successive price changes is consistent with an “efficient” market, that 

is, a market where prices at every point in time represent best estimates of intrinsic 

values. This implies in turn that, when an intrinsic value changes, the actual price will 

adjust “instantaneously,” where instantaneously means, among other things, that the 

                                                 
12

 However, the violation depends on the definition of efficiency. More discussion on the topic will follow. 
13

 For reviews on the EMH, see, for instance: Fama (1991), Lo (1997), Dimson and Mussavian (1998), Farmer 

and Lo (1999), Beechey et al. (2000), Lee and Yen (2008), and Sewell (2011). 
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actual price will initially overshoot the new intrinsic value as often as it will undershoot 

it.”  

The concept of an efficient market had been defined
14

. 

Paul Samuelson provided the first formal economic argument for the EMH (Samuelson, 

1965) while Harry Roberts made the distinction between weak and strong form tests (Roberts, 

1967) which became the classic taxonomy used with the EMH. Building on the growing 

evidence regarding the EMH, Fama published his seminal review of the efficient market 

theory and evidence (Fama, 1970). In his article, Fama (1970) defined the efficient market to 

be categorized into three types of efficiency: the weak form, the semi-strong form and the 

strong form. However, Fama (1991) later changed the categories. The weak form tests was 

renamed to tests for return predictability, the semi-strong form tests was relabeled to event 

studies, and the strong form tests was renamed to tests for private information. In spite of the 

change to categories, we will use the original taxonomy, and the characterization relating to it, 

as it is more widely recognized and used.  

Fama (1970) defined the market to be in line with the weak form efficiency if the prevailing 

prices reflect all historical prices. At that time, a competing group of theories, the chartist 

theories,
15

  suggested that past prices contained significant amounts of information concerning 

future prices. However, the empirical evidence was in line with the weak form efficiency and 

the chartist theories were quickly abandoned from the academic research. In 1991, Fama 

changed the name of the weak form tests into tests for return predictability and included in the 

category such variables as dividend yield and interest rates in addition to historical prices. 

Under the semi-strong form efficiency, prices will fully reflect all available public 

information and adjust to any new information instantaneously and in an unbiased manner 

(Fama, 1970). In other words, overreactions will be as common as underreactions if they 

occur.  Later on, Fama (1991) changed the category name to event studies in the wake of the 

large event study research spurred up by the first event study in 1969 by Fama, Fisher, Jensen 

and Roll.
16

 

                                                 
14

 For history of the efficient market hypothesis, we refer the reader to section 0. 
15

 The most well-known of the chartist theories is probably the Dow Theory which is often cited as the origin of 

technical analysis. 
16

 In fact, the first published event study was by Ball and Brown (1968), however, Fama et al. (1969) was the 

first event study undertaken. 
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Strong form efficiency is defined to fully reflect all available information so that no individual 

has higher expected trading profits than others because of monopolistic access to some 

information (Fama, 1970). In other words, all private information is fully reflected in the 

prevailing prices. However, Fama (1970) states that the strong form efficiency is in reality an 

extreme null-hypothesis; a clean benchmark, for tests against market efficiency. In fact, such 

groups as corporate insiders do have monopolistic information and hence prove that the 

strong form efficiency is not a strictly valid theory. Consequently, the strong form efficiency 

is not expected to be an exact description of reality but instead can be used to find out how far 

down through the investment community do the deviations permeate from the strong form 

efficiency. In 1991, Fama relabeled the strong form efficiency into tests for private 

information. However, the content of the category remained the same. 

 

2.1.2 Debate concerning the state of the efficient market hypothesis 

In the zenith of its time, during the 1960s, most of the evidence was in favor of the EMH. 

With few exceptions such as Cowles (1960), Niederhoffer and Osborne (1966) and Scholes 

(1969), all evidence seemed to support the EMH.
17

 However, as time passed, evidence 

contradicting the EMH began to mount up and concerns were raised that the EMH was 

flawed.  

In 1978, a special edition of the Journal of Financial Economics (Vol. 6, Numbers 2 to 3, 

June/September) was devoted exclusively to the anomalies surrounding the EMH. The special 

edition was the overture for the forthcoming variety of anomalies that would cast doubt on the 

EMH.   Such anomalies included:
18

  

 Small firm effect: Small-capitalization firms earn higher than average returns vis-à-vis 

their expected return based on different asset pricing models (e.g., Banz, 1981; 

Reinganum, 1981; Keim, 1983; Brown et al., 1983; Schwert, 1983; Fama and French, 

1993; Rouwenhorst, 1999)  

                                                 
17

 Lee and Yen (2008) hypothesize that the seemingly scarce evidence against the EMH during the 1960s might 

not be as scarce as it might first appear due to four following reasons. First, the scientific paradigm proposed by 

Kuhn (1970) might act as a protective belt for the EMH. Second, testing bias was present as reported by LeRoy 

(1989). Third, improper statistical methods were used as suggested by Taylor (1982). Fourth, the empirical 

evidence might have been misinterpreted to support EMH when in fact it was against it, as pointed out by Arbit 

and Boldt (1984), and Lee and Yen (2008), in the case of Fama et al. (1969). 
18

 The following list is incomplete and excludes several well-known anomalies (e.g., stock splits). However, the 

aim is to simply illustrate the voluminous number of anomalies related to the EMH. 
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 Value (price-earnings ratio) effect: Firms with low price-earnings ratios outperform their 

counterparts with high price-earnings ratios (e.g., Nicholson, 1960; Basu, 1977; Ball, 

1978; Basu, 1983; Campbell and Shiller, 1998; Rouwenhorst, 1999) 

 Dividend effect: Dividend yields, initiations and omissions forecast future abnormal 

returns (e.g., Long, 1978; Charest, 1978; Rozeff, 1984; Shiller, 1984; Fama and French, 

1988b; Campbell and Shiller, 1988; Michaely et al., 1995) 

 Seasoned equity offering effect: Companies issuing seasoned equity underperform their 

peers in the long-run (e.g., Loughran and Ritter, 1995; Spiess and Affleck-Graves, 1995; 

Teoh et al., 1998; Brav et al., 2000; Jegadeesh, 2000; Ritter, 2003) 

 Share repurchases effect: Positive long-term abnormal profits persist when firms tender 

for their shares or initiate an open market repurchase program (e.g., Lakonishok and 

Vermaelen, 1990; Ikenberry et al., 1995; Grullon and Michaely, 1998; Ikenberry et al., 

2000) 

 Earnings announcements: Stock prices tend to respond to earnings with a substantial 

delay (e.g., Ball and Brown, 1968; Foster et al., 1984; Rendleman et al., 1987; Freeman 

and Tse, 1989; Bernard and Thomas, 1989 and 1990; Brown and Pope, 1996) 

 Closed-end fund discount effect: Closed-end funds commonly trade in organized 

secondary markets at a discount relative to their net asset value (e.g., Thomson, 1978; Lee 

et al., 1991; Pontiff, 1996; Shleifer, 2000) 

 Excess volatility: Stock prices experience greater volatility that can be explained by 

fundamentals (e.g., Shiller, 1981; LeRoy and Porter, 1981; Shiller, 1982; Grossman and 

Shiller, 1981; Campbell and Shiller, 1988; West, 1988; Shiller, 1992; Hansen and 

Jagannathan, 1991) 

 Day-of-the-week effect: The day of the week can be used to forecast future returns, 

whether it be a Monday, a day around holidays, or an end-of-month day (e.g., Cross, 

1973; French, 1980; Gibbons and Hess, 1981; Lakonishok and Levi, 1982; Keim and 

Stambaugh, 1984; Rogalski, 1984; Smirlock and Starks, 1985; Ariel, 1987; Lakonishok 

and Smidt, 1988; Ariel, 1990; Hawawini and Keim, 1995)  
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 January effect: The turn-of-the-year is followed by abnormal positive returns in January 

(e.g., Rozeff and Kinney, 1976; Keim, 1983; Reingaum, 1983; Haugen and Lakonishok, 

1988; Ritter, 1988; Haugen and Jorion, 1996; Haug and Hirschey, 2006) 

 Reversal effect: When shares are ranked on basis of their past returns during three to five 

years, past winners tend to become losers and vice versa  (e.g., DeBondt and Thaler, 1985; 

DeBondt and Thaler, 1987; Fama and French, 1988a; Poterba and Summers, 1988; 

Chopra et al., 1992; Richards, 1997)  

 Momentum effect: Past year’s winners tend to outperform past year’s losers during the 

next three to six months (e.g., Jegadeesh and Titman, 1993; Fama and French, 1996; 

Campbell et al., 1996; Brennan et al., 1998; Rouwenhorst, 1998; Rouwenhorst, 1999; Lo 

and MacKinlay, 1999; Lo et al., 2000; Jegadeesh and Titman, 2001;  Lewellen, 2002)  

The commanding empirical evidence inconsistent with the EMH spawned a new school of 

thought in finance during the 1990s under the nomenclature of behavioral finance. While 

several of the reported anomalies have perished under scrutiny from the proponents of the 

EMH, others have survived the ordeal. As a consequence, the nascent school of Behavioral 

Finance asserts that the inefficiency of capital markets is the norm, not the exception, and as 

such, the EMH serves as a description of an ideal world; not the real world. Instead the 

behavioral school advocates the use of more eclectic approaches (e.g., Shiller, 2003). 

However, as striking as the evidence against the EMH may appear, the advocates of the EMH 

have evidence of equal proportions to cast at the zealots of behavioral finance. The debate is 

fierce and ongoing. 

The followers of EMH argue that the behavioral finance school runs head on to the enigmatic 

joint-hypothesis problem first introduced by Fama (1970). The joint-hypothesis of the 

efficient markets has puzzled researchers for decades. The implication of the joint-hypothesis 

is that when testing for market efficiency; how prices reflect available information, one must 

also test simultaneously for an asset pricing model (i.e. the Sharpe-Lintner-Black model 

[CAPM] of Sharpe (1964), Lintner (1965) and Black (1972)). Hence, one can test market 

efficiency conditional to an asset pricing model or asset pricing model conditional to market 

efficiency. Therefore, inherently, all tests of market efficiency are at the same time tests of an 

asset pricing model. As a consequence, the supporters of the EMH have argued that the 

anomalies deviating from the EMH are in fact ‘bad-model problems’ (e.g., Fama, 1991, 1998; 
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Malkiel, 2003) produced by misspecified asset pricing models.  Furthermore, with long-term 

returns, the bad model problem escalates, as the asset pricing model plays a larger role in 

measuring abnormal returns than it does in the short-term.
19

  

Proponents of the EMH have also raised concerns over data mining as a source of spurious 

regularities (e.g., Fama, 1991, 1998; Schwert, 2003; Malkiel, 2003). Given the current state 

for availability of data with sophisticated databases like CRSP, the concern is indeed not 

without merit. Furthermore, as suggested e.g. by Merton (1985), exciting new findings get 

reported while the outcomes that confirm the norm never see the light of day (See: Fama, 

1998; Schwert, 2003 and Malkiel, 2003). As the EMH is the norm, the vast empirical 

evidence inconsistent with the EMH is in fact far from a random sample and as such suffers 

from a severe case of sample bias.  

As samples can exhibit specific patterns that can lead to spurious regularities when data 

mining techniques are employed, out-of-sample tests are warranted. The proponents of the 

EMH argue that such tests refute the majority of anomalies (e.g., Fama, 1998). Furthermore, 

even if out-of-sample tests would confirm an anomaly, the issue of time dependence; whether 

or not the anomaly persists over time, is not resolved (Malkiel, 2003).  A case in point, as 

demonstrated by Schwert (2003), is the Dimensional Fund Advisors (DFA) that incepted 

mutual funds targeted to exploit discovered anomalies (i.e. size- and value-effect). However, 

the DFA mutual funds have not succeeded in generating positive abnormal returns. Therefore, 

the anomalies in question seem to have dissipated, or failed the test of economic significance. 

Schwert (2003) offers a different view: when anomalies are discovered they simultaneously 

disappear as practitioners employ strategies to take advantage of the anomalies. Hence, 

research findings cause the market to become efficient. Grossman and Stiglitz (1980) put 

forward a similar view arguing that markets cannot be completely efficient as otherwise there 

would be no incentive for professionals to uncover information. Thus, they build on Schwert 

(2003) by assigning the discovery function to professionals. 

In the event that an anomaly persists in out-of-sample tests during different time periods, the 

conclusion is still ambiguous. Fama (1998) argues that anomalies tend to disappear when 

reasonable alternative approaches are used. For instance, Fama argues that by switching the 

asset pricing model more than a few of the anomalies disappear. Also, by altering the return 

                                                 
19

 With short-term studies, the expected return approaches 0 and the asset pricing model plays a smaller role 

whereas with long-term studies the expected return is affected by the model to a greater extent. 
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metric from buy-and-hold abnormal returns [BHARs] to average abnormal returns [AARs], or 

cumulative abnormal returns [CARs], mitigates several of the anomalies. Likewise, by 

implementing value weights in place of equal weights a number of the anomalies are erased.   

In addition, there are countless anomaly specific debates on-going. For instance, concerning 

the small firm -effect, Malkiel (2003) argues that the well-documented anomaly is in fact a 

result of survivorship bias as the modern computerized databases include only small firms 

that have survived; not the ones that went bankrupt.
20

 Therefore, the apparent anomaly is a 

result of a sample bias.  

If an apparent anomaly is accepted as a real anomaly, there are still issues that need to be 

resolved. First, Fama (1998) maintains that anomalies are chance results: apparent 

underreactions will be about as frequent as overreactions. If so, the market is in fact efficient. 

Shiller (2003) counters Fama’s proposition by stating that there is no fundamental 

psychological principle that people tend always to overreact or underreact, hence it is no 

surprise that research on financial anomalies does not reveal such a principle either. For that 

reason, the random split is by no means proof of market efficiency.
21

 Second, the proponents 

of the EMH reason that if the EMH is to be replaced, it can be done only by a better specific 

model of price formation (e.g., Nichols, 1993; Fama, 1998; Schwert, 2003).  Fama (1998) 

argues that as the behavioral finance school has not tested consistently a specific alternative 

asset pricing model, the EMH cannot be rejected as there is no alternative. Furthermore, Fama 

continues by claiming that the existing behavioral models do not produce rejectable 

predictions that capture the menu of anomalies, instead they capture the anomaly they are 

designed to capture failing disastrously with other anomalies. In Schwert’s (2003) opinion, 

the future models must go beyond explaining discovered anomalies to improve our 

understanding of asset pricing.  

In addition to the documented anomalies, recent financial crises have expedited the spiraling 

decay of the EMH. Many former EMH scholars have jumped ship stating that such prodigious 

prices cannot be explained by rational valuations under any circumstances.  Consequently, the 

role of the market as an efficient capital allocator has been questioned widely. The supporters 

of behavioral finance have reasoned that irrational bubbles are in fact the product of feedback 
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 Small firms tend to be more highly levered which could lead to, or be a consequence of, financial distress 

(e.g., Bhandari, 1988). 
21

 We would also like to take the opportunity to remind the reader that, in any circumstances, the absence of 

proof is not proof of absence. 
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models
22

 (e.g., Smith et al., 1988; Shleifer, 2000; Shiller, 2000a, 2003). In contrast, the 

efficient markets proponents maintain that the bubbles are in fact large systematic patterns in 

the variation of expected return through time (e.g., Fama and French, 1989; Fama, 1991; 

Malkiel, 2003).  For instance, Miller (1991) explains the market crash of October 1987 as 

follows: external events, minor in themselves, could have cumulatively signaled a possible 

change in what had been up to then a very favorable political and economic climate for 

equities. Therefore, the crash was in fact a result of a rational shift in equity prices to 

accommodate the change in expected returns. Nothing is as clear in prospect as it is in 

retrospect. Nevertheless, irrespective of some of the differing views concerning the reasons 

for crises, both sides agree on the importance of market frictions in their formation; in other 

words, the importance of limited arbitrage opportunities (e.g., Shleifer, 2000; Shiller, 2003; 

Malkiel, 2003; Schwert, 2003). 

2.1.3 Limits to arbitrage 

The concept of ‘limits to arbitrage’ has grown into a major topic in finance. Following the 

seminal articles of Miller (1977and Jensen (1978):, the surge in interest has been substantial. 

In fact, in 2002, the Journal of Financial Economics released a special issue dedicated to the 

limits of arbitrage (Vol. 66, Numbers 2 to 3, November/December 2002). Besides short-

selling and transaction costs, limited arbitrage has been associated with noise-trader risk (e.g., 

De Long et al., 1990; Shleifer and Vishny, 1997; Shleifer, 2000) and fundamental risk (e.g., 

Barberis and Thaler, 2003). The key argument relating to limited arbitrage is that market 

frictions, whatever they might be, prevent arbitrageurs from undertaking arbitrage; as a result, 

prices can deviate from their fundamental values. Therefore, limited arbitrage contradicts 

Friedman’s (1953) seminal assertion that rational traders will quickly undo dislocations 

caused by irrational traders.  

Regarding short-selling constraints, arbitrageurs are unable to short the stock profitably and 

therefore cannot profit from their knowledge (e.g., Miller, 1977; Jones and Lamont, 2002).
23

 

As a result, prices can deviate from their fundamental values and anomalies can exist. 
24

 In the 
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 Feedback models date back all the way to the Dutch Tulip mania. 
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 The cost of shorting has also been associated with Kahneman and Tversky’s (1979) prospect theory. The 

rationale is that psychological factors influence arbitrageurs to avoid shorting due to fear of psychological 

anguish produced by the need to cover an unprofitable short position (Shiller, 2003). 
24

 A case in point is the 3Com sale of Palm Pilot in the early 2000 (e.g., Lamont and Thaler, 2001). 3Com 

executed a 5% carve-out of its subsidiary’s Palm Pilot’s outstanding shares. As the shares began to trade, the 

implied value of the 95% ownership of Palm Pilot by 3Com exceeded the market value of 3Com. As a result, the 

situation implied a negative value for the rest of the 3Com’s business as a whole. The existence of arbitrageurs 
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case of transaction costs, the argument is simple: anomalous profits can exist statistically but 

not economically. In other words, the anomalies will lack economic significance after 

transaction costs are included (e.g., Jensen, 1978; Shleifer, 2000; Barberis and Thaler, 2003).  

Concerning noise-trader risk, arbitrageurs are unable to determine the duration of a bubble. 

As arbitrageurs often face short-term investment horizons, they are unwilling to bear the risk 

of offsetting noise-traders in fear of that their time-horizon will lapse before the price will 

revert to fundamentals (e.g., Shleifer, 1990; De Long et al., 1990; Shleifer and Vishny, 1997; 

Shleifer, 2000; Malkiel, 2003)
25

.   

On the subject of fundamental risk, arbitrageurs are unable to hedge their position with a 

similar security due to the fact that substitute securities are rarely perfect. As a consequence, 

arbitrageurs are left with a proportion of fundamental risk that can effectively limit arbitrage 

(e.g., Barberis and Thaler, 2003). Wurgler and Zhuravskaya (2002) elegantly demonstrate, in 

the context of index inclusions, how difficult it actually is to find a good substitute security 

for an individual stock, therefore exemplifying how important fundamental risk is in 

arbitrage. 

Limits to arbitrage are widely accepted by both EMH and behavioral finance proponents. The 

discussion has focused mainly on whether or not the limits are against market efficiency. 

Behavioral finance scholars have maintained that limited arbitrage undercuts the EMH and is 

a vital part of behavioral finance (e.g., Shleifer and Summer, 1990; Shleifer, 2000; Barberis 

and Thaler, 2003; Ritter, 2003).  However, the supporters of the EMH have argued that 

limited arbitrage is not against the EMH. They maintain that an economically more accurate 

hypothesis (e.g., Jensen, 1978) is not in contradiction of the EMH but in fact a realistic 

representation of the EMH. In reality, the clean benchmark where all information is available 

and no transaction costs exist is not a truthful illustration of the real world (Fama, 1991).  

Therefore, anomalies that do not pass the test of economic significance: when marginal profits 

                                                                                                                                                         
should have prevented such a radical deviation, as the market value of any business can be, at worst, zero due to 

limited liability. However, arbitrageurs were unable to short the Palm Pilot stock due to extremely high 

borrowing costs. Therefore, the price anomaly persisted until 3Com spun-off more of Palm Pilot’s shares, 

alleviating the mismatch between supply and demand. 
25

 An example of the risk is the notorious Royal Dutch and Shell relative arbitrage trade (e.g., Froot and Dabora,  

as1999). In 1907, Royal Dutch and Shell agreed to merge their interest on a 60-40 basis and pay dividends 

according to the same basis. Therefore, under modern finance theory, whenever the stock prices are not in 60-40 

basis an arbitrage profit opportunity exists. Nevertheless, historically, the basis has deviated significantly from 

60-40. In fact, Royal Dutch/Shell arbitrage trade can be viewed as one of the most popular equity arbitrage 

trades undertaken by the trading desks of Wall Street in the recent history - indeed even the notorious Long-

Term Capital Management had the trade in their books at the time of their collapse in the fall of 1998 

(Lowenstein, 2002). 
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of acting on information exceed the marginal costs, are not in fact anomalies at all. The 

proponents of the EMH have argued that the vast majority of apparent anomalies fall prey to 

the aforementioned (e.g., Fama, 1970, 1998; Malkiel, 2003). The view of some of the EMH 

supporters is excellently encapsulated by Richard Roll’s response to Robert Schiller’s 

comments concerning market inefficiencies at a symposium (Roll and Shiller, 1992) 

“I have personally tried to invest money, my client’s money and my own, in every 

single anomaly and predictive device that academics have dreamed up… I have 

attempted to exploit the so-called year-end anomalies and a whole variety of strategies 

supposedly documented by academic research. And I have yet to make a nickel on any 

of these supposed market inefficiencies… a true market inefficiency ought to be an 

exploitable opportunity. If there’s nothing investors can exploit in a systematic way, 

time in and time out, then it’s very hard to say that information is not being properly 

incorporated into stock prices.” 

To some extent, the term ‘efficiency’ has become blurred: on one side, researchers stress that 

anomalies should be exploitable in the sense that they would yield abnormal profits; on the 

other side, scholars argue that an anomaly is real if it dictates that prices deviate from 

fundamentals, hence economy is not allocating assets efficiently to the best investment 

opportunities (e.g., Statman, 1999; Barberis and Thaler, 2003). As a result, the argument is 

pinned down to whether or not efficiency is viewed from an ‘investor’ or an ‘economist’ point 

of view. Therefore, one might say that opposing camps are viewing the different sides of the 

same coin. In fact, Brav and Heaton (2002) demonstrate that the behavioral models and 

rational models describing efficient markets are, in terms of predictability and mathematics, 

practically indistinguishable from each other even while having very different assumptions 

concerning the world they model.  Whether or not the on-going debate is more about 

semantics than substance is for the reader to find out.  
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2.2 Behavioral finance  

 “The efficient market hypothesis is the most remarkable error in the history of 

economic theory.” 

- Lawrence Summers, U.S. Secretary of Treasury, on Black Monday crash of 1987 

The tide was turning for the modern finance paradigm. The growing amount of empirical 

evidence in contradiction to the efficient market hypothesis was stirring up debate concerning 

the validity of the efficient markets hypothesis in the academic society; behavioral finance 

was born.
 26

 

In order to understand the debate concerning the validity of the efficient market hypothesis, 

the reader must understand the arguments of the opposing side: behavioral finance scholars. 

Also, to understand the argument that qualitative texts can impact agents even in the absence 

of new information content, the reader must know the underlying cognitive biases that are the 

basis of the argument. In this section, we introduce the reader briefly to the nascent field of 

behavioral finance, and the underlying cognitive biases discovered by psychologists. 

The roots of behavioral finance can be traced back all the way to John Maynard Keynes’s 

reference to ‘animal spirits’ in 1936. Keynes stressed the role of uncertainty and confidence 

in shaping the economic life. In Keynes’ view, economic agents’ psychology could be easily 

manipulated and disturbed, hence underlining the importance of psychology in the economic 

system. In fact, an argument can be made that behavioral finance is the vindication of 

Keynesian ideas.
27

 However, behavioral finance does diverge from Keynesian tradition in its 

emphasis of experimental and empirical evidence and the use of formal models to derive 

predictions. Indeed, behavioral finance can be seen to be close in spirit to Keynesian tradition 

but with its own methodology and analytical framework (Stracca, 2004). 

To better understand the context of behavioral finance, it is appropriate to briefly go through 

the notions underlying prevailing modern finance paradigm. The modern finance approach 

posits that agents are rational. By rational, the approach assumes two features: Firstly, agents 

react to new information correctly updating their beliefs according to Bayes’ law. Secondly, 

given those correct beliefs, agents act rationally to maximize their expected utility using either 

                                                 
26

 For discussion relating to the anomalies and their interpretation, see the efficient market hypothesis -section. 
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 See Harvey (1998) for a discussion on the Keynesian concepts of uncertainty and non-ergodicity in economic 

life vis-à-vis modern economic psychology. For a discussion on manias and panics in financial markets relating 

to Keynesian tradition, see Kindleberger (1978). 
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objective probability distribution according to the expected utility theory (Von Neumann and 

Morgenstern, 1944) or subjective probability distribution in line with the subjective expected 

utility under the notion of Savage (1964).
28

 The initial wealth and preferences of agents do not 

matter as long as financial markets are efficient (Constantinides, 1982). As a result, prices 

will reflect fundamentals: the phenomenon coined the efficient market hypothesis.
29

 The 

appeal of the modern finance approach is the simplicity and the superior analytical 

tractability. However, as we have shown in the efficient market hypothesis section (2.1.), the 

empirical evidence contradicting the prevalent paradigm is vast and covers large ground; 

aggregate stock markets, cross-sections of average returns as well as individual trading 

behavior. 

Behavioral finance differs from the efficient market hypothesis by arguing that the behavior 

of agents deviates from the rational behavior dictated by maximization of expected utility 

(e.g., Starmer, 2000; Barberis and Thaler, 2003; Ritter, 2003; Stracca, 2004).
30

 Indeed, a vast 

literature in the field of psychology has documented numerous cognitive biases that affect the 

behavior of humans
31

 causing them to form beliefs, and act in contradiction to Bayesian law. 

Hence, agents exhibit, what is characterized as irrational behavior by modern finance, because 

of mistaken beliefs and preferences. For instance, the impact of emotional and visceral factors 

in individual decision making is well documented (e.g., Lowenstein, 2000 and Romer, 2000). 

However, the fact that emotional factors affect decision making is not proof of irrational 

behavior per se: the question is whether or not emotional responses deviate from rational 

responses - the answer is unequivocally: yes. Despite the aforementioned, modern finance 

ignores the impact of emotions on agents’ behavior, as well as other cognitive biases and their 

impact. Modern finance proponents have rebutted the importance of cognitive biases on the 

basis of learning. The argument is that through repetition agents will learn their way out of 

biases. In addition, modern finance proponents suggest that strong enough incentives will 

remove biases altogether. Barberis and Thaler (2003) reason that while learning and 

incentives can attenuate biases it is unlikely that they will completely remove them. Camerer 

and Hogarth (1999) point out that while incentives can reduce biases no study has made 

rationality violations disappear altogether by raising incentives. In fact, the whole concept of 
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 E.g., Barberis and Thaler, 2003; Stracca, 2004. 
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 For mathematical description, we refer the reader to, for instance, Stracca (2004). 
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 To be precise, behavioral finance advocates more eclectic models than those based on Von Neumann - 

Morgenstern (1944) expected utility (EU) or Savage’s (1964) notion of subjective expected utility (SEU). 
31

 See e.g., Kahneman et al., 1982; Camerer, 1995; Rabin, 1998; Kahneman and Tversky, 2000; Gilovich et. al., 

2002. 
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learning is dubious if learning implies a painful loss of self-esteem and the recognition of 

intellectual inferiority in comparison to peers; issues demonstrated to have influence over 

agents’ behavior in experimental psychology (Griffin and Tversky, 1992). To summarize, the 

argument of mainstream finance that learning will eliminate individual agents’ cognitive 

biases is unresolved. 

Nonetheless, agents’ irrational behavior is by no means proof of irrational markets. Even in 

the existence of irrational behavior, the aggregate market would be rational. For irrational 

traders, ‘noise traders’, to be driven out of the market, rational traders, ‘arbitrageurs’, must 

be able to correct prices (Friedman, 1953). However, as we have demonstrated, limited 

arbitrage prevents this and arbitrageurs are often unable to exploit opportunities created by 

noise traders.
32

 Hence, prices can in fact deviate from their fundamental values. 

In order to say more about the structure of the deviations, behavioral finance turns to the 

extensive experimental evidence on cognitive biases compiled by psychologists. However, 

mainstream finance theorists argue that the extensive evidence is a double edged sword: a 

Pyrrhic victory
33

 for behavioral finance at best. The predicament is that the vast amount of 

cognitive biases provide behavioral scholars with so many degrees of freedom that they can 

explain practically anything with their models - a phenomenon often dubbed ‘model 

dredging’ (e.g., Ritter, 2003). In other words, there is always a story that fits the evidence ex-

post.
34

 However, opposing views have been presented: Barberis and Thaler (2003) maintain 

that mainstream theorists have an equivalent amount of flexibility. As Arrow (1986) 

vehemently argued, rationality per se does not yield many predictions. In fact, the predictions 

in rational models are often based on auxiliary assumptions, hence offering additional degrees 

of freedom for modern finance theorists. Barberis and Thaler (2003) conclude by urging both 

sides to test their theories empirically: especially the assumptions of the theories.
35
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 We refer the reader to 2.1.4: Limits to Arbitrage, under 2.1 Efficient Market Hypothesis -section 
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 A victory with devastating cost to the victor; it carries the implication that another such victory will ultimately 

cause defeat. The origins of the saying originate from the ancient Pyrrhic war fought by King Pyrrhus of Epirus. 
34

 See, for instance, Hirshleifer (2001) on the topic of making ex-ante predictions on which model dominates 
35

 The emphasis of testing assumptions is directed more towards modern finance theorists: since the influential 

argument of Milton Friedman, to evaluate theories based on the validity of their predictions rather than their 

assumptions, testing assumptions has been neglected. 
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The remainder of the sub-section is organized in two parts: First, we will discuss the cognitive 

biases unearthed by psychologists. Second, we will discuss the most prominent non-expected 

utility theory: the prospect theory and its successions.
36

  

2.2.1 Cognitive biases 

Cognitive capabilities of humans are limited. In an effort to guarantee survival throughout the 

human evolution, the brain has adapted to solve complex problems in a manner that optimizes 

deliberation cost and outcome (e.g., Arruñada, 2008). However, as the modern environment 

has transformed rapidly around us, the brain has become maladapted to the current 

surroundings. Hence, humans: ‘agents’, can demonstrate seemingly irrational behavior at 

times due to the misaligned optimization of deliberation vis-à-vis outcome. For instance, 

agents employ heuristics, rules of thumb, based on past experience to solve a problem.
37

 

Indeed, heuristics can still be a superior approach to solving problems (e.g., Langlois, 2003). 

However, that is not always the case. Heuristics simplify a multifarious world, consequently 

resulting in biased decisions when an agent is confronted with a complex problem (e.g., 

Stracca, 2004). By a complex problem, we mean information ambiguous to the agent, such as 

statistical information (e.g., Arruñada, 2008). In fact, even individuals trained in statistics use 

heuristics when making decisions requiring statistical reasoning (Tversky, 2004), leading to 

irrational behavior. A case in point is the 1/N allocation rule of retirement funds to different 

asset classes (e.g., Benartzi and Thaler, 2001). Agents seem to allocate 1/N portion of their 

retirement funds to the available N asset classes without respect to the actual underlying 

assets they are investing. For instance, when asked to allocate assets between equity and debt 

funds, agents will allocate assets on a 50-50 basis. However, when asked to allocate between 

equity fund and balanced debt-equity fund
38

, agents will again allocate assets based on a 50-

50 ratio. Therefore, allocating 75% to equity in the latter example vis-à-vis the 50% allocated 

in the former example: an obvious example of irrational behavior.  

To touch upon the most common cognitive biases in more detail, we will briefly describe the 

ones most commonly connected to behavioral finance. To our knowledge, no universally 

accepted categorization of the biases exists. Hence, the following categorization is our own 

and therefore subjective. 
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 For a review on the most dominant behavioral asset pricing models, we refer the interested reader to the works 

of Barberis et al. (1998), Daniel et al. (1998,2001), Hong and Stein (1999) and Barberis and Shleifer (2003). 
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 See, for instance, Simon, 1986; Williamson, 1997; Kahneman and Tversky, 2003; Arruñada, 2008. 
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 The mixed fund is assumed to hold equity and debt in 50-50 basis. 
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Overconfidence, self-attribution, hindsight and optimism 

Overconfidence is one of the most documented cognitive biases. According to Daniel et al. 

(1998), overconfidence is defined as overweighing ones private information signals but not 

the public information signals. Hence, agents are overconfident about their abilities and rely 

excessively on personal judgment. For instance, overconfidence manifests itself as too narrow 

confidence intervals in estimates (e.g., Alpert and Raiffa, 1982) and ill-equipped probability 

estimates; events estimated certain only occur circa 80% of the time, and events estimated 

improbable actually occur approximately 20% of the time (e.g., Fischhoff et al., 1977). In 

fact, Odean (1998a) argues that overconfidence leads agents to interpret information in a 

distorted manner: overweighing salient and anecdotal information while ignoring abstract and 

statistical information
39

. Kahneman (2003) expands the argument stating that agents become 

overconfident especially in low-information environment and Tversky (2003) demonstrates 

that overconfidence takes place regardless of the level of expertise in the subject matter.
40

 

Also, Barber and Odean (2001) illustrate that men are more overconfident than women 

exhibited by excessive trading. Indeed, overconfidence is thought to explain excessive trading 

behavior as agents believe to have superior information and intellectual capabilities vis-à-vis 

their peers
41

. In fact, overconfidence has been argued to explain several phenomena in the 

field of finance. For instance, investors diversify their portfolios much less than would be 

recommended by normative models, and exhibit a strong ‘home bias’ in their investments.
42

 

In the field of corporate finance, Roll (1986) suggests that takeover activity evidence displays 

a pattern of overconfidence and optimism in managers’ decision making: managers have too 

rosy views on suggested assumptions for the synergy calculations materializing. Hence, 

takeover bids are often too high vis-à-vis the implied fundamental values and too many 

takeovers get done in comparison to what should occur in rational markets. Roll (1986) 

christens the phenomenon ‘the hubris hypothesis’.  

Overconfidence is often linked closely to self-attribution and hindsight biases (Barberis and 

Thaler, 2003). Self-attribution causes agents to credit themselves for the past successes while 

failures are attributed to external factors such as bad luck. Hirshleifer (2001) demonstrates 

that when agents receive positive feedback on their private information, agents’ confidence 
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 Daniel et al. (1998) show that several professions requiring expertise succumb to overconfidence. Such 

professions include: lawyers, investment bankers, engineers, psychologists etc. 
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 See, for instance, DeBondt and Thaler, 1995; Odean, 1998b, 2000; Barber and Odean; 2000, 2002a 
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 See, for instance, French and Poterba, 1991; Lewis, 1999; Grinblatt and Keloharju, 2001; Huberman, 2001 
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increases excessively whereas receiving negative feedback will not sufficiently decrease 

agents’ level of confidence. In other words, agents overweight positive feedback on their 

private information while underweighting negative feedback, resulting in unrealistic belief of 

superiority and talent: overconfidence.
43

 Another bias that is intertwined with overconfidence 

is the hindsight bias. Hindsight bias causes agents to believe that they have forecasted an 

event ex-post the event, when in fact they might have done no such thing. Therefore, 

hindsight bias results in overconfidence in one’s ability to forecast future (e.g., Fisher and 

Statman, 2000). 

Optimism is another bias closely related to the aforementioned biases. Whereas self-

attribution and hindsight biases can be seen to be directly linked with overconfidence, 

optimism is often documented to influence an agent in chorus with overconfidence; for 

instance, the hubris hypothesis (Roll, 1986) links overconfidence with optimism. Optimism 

causes agents to display unrealistically rosy views of their abilities and prospects - for 

instance, over 90% of those surveyed think they are above average in such domains as driving 

skill (Weinstein, 1980). Buehler et al. (1994) document that agents illustrate a systematic 

planning fallacy: they predict shorter completion times for tasks vis-à-vis the actual 

completion times.
44

 In the field of corporate finance, optimism has been coined with the 

famous pecking order theory. As managers hold rosy views on the prospects of their 

company, they consider equity to be undervalued by the markets. Overconfident on their 

beliefs, they avoid issuing equity at all cost even to the point of dismissing lucrative 

investments in order to avoid issuing equity (e.g., Malmendier and Tate, 2005; Heaton, 2002).  

Representativeness: law of small numbers & conservatism, and anchoring 

Representativeness refers to heuristics that influence agents’ behavior. Two opposite heuristic 

rules apply when agents determine the representativeness of a set of data. The first rule is the 

so called ‘law of small numbers’ which theorizes that agents tend to overweight recent events; 

‘the sample rate’, at the expense of prior events; ‘the base rate’ (e.g., Gilovich et al., 1985; 

Rabin, 2002). In other words, agents tend to infer from too few data points the actual 

population parameters. Gilovich et al. (1985) present an illustrative real life example: the so 

called ‘hot hand’ phenomenon. In basketball it is commonly believed that when a player has 
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made several baskets in a row, they are ‘hot’, and more likely to score on the next opportunity 

they have. However, no empirical evidence supports this claim. Therefore, the ‘hot hand’ 

phenomenon is an example of erroneous deduction about the population parameters on the 

basis of too few data points. The second rule of interest is commonly referred to as 

conservatism. Conservatism can be viewed as the opposite of law of small numbers. Under 

conservatism, agents tend to overweight the base rate at the cost of the sample rate. In other 

words, agents adapt too slowly to changes (e.g., Edwards, 1968). Intuitively one might think 

that the two cancel out on aggregate. However, that is not the case, and the agent is not 

Bayesian on average after taking into account both heuristics (Camerer, 1995). In fact, the 

saliency of the underlying model to which the data is being matched to determines the 

dominant effect: if the data is representative of a salient model then the sample rate is 

overweighed, if not, then the base rate is
45

.  

A closely related bias to conservatism is anchoring. When forming an estimate, agents anchor 

to initial - potentially arbitrary - value and then adjust away from it. However, the adjustments 

are not sufficient (Kahneman and Tversky, 1974). Indeed, in the case of conservatism, an 

argument can be made that agents anchor to the base rate and adjust then away from it. 

However the adjustments are insufficient, hence leading to the overweighing of the base rate 

(e.g., Ritter, 2003). In financial context, anchoring is observed in most speculative markets 

where the prevailing price is taken as the equilibrium price, the ‘fair price’. However, 

frequently the prevailing price significantly deviates from the fundamental value. Therefore, 

the belief that the prevailing value is the fair price is false (Mullainathan and Thaler, 2000). 

One potential explanation for anchoring is the excessive deliberation cost of computation to 

derive the fundamental price (e.g., Stracca, 2004). Therefore, to ease decision making, agents 

anchor on to representative values - sometimes completely arbitrary ones.  

Belief perseverance and confirmation bias 

Lord et al. (1979) documented that once agents have formed opinions, they are reluctant to 

search for evidence that would contradict their initial opinions. Furthermore, if such evidence 

is presented, agents will treat it with excessive skepticism. In fact, Rabin and Schrag (1999) 
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argue that agents will go as far as interpreting spurious relationships in favor of their initial 

hypothesis in an attempt to avoid emotional cost of being wrong
46

.  

An extreme form of belief perseverance is the confirmation bias where agents misinterpret 

evidence contradicting the original hypothesis to be in fact in favor of it. An interesting 

example in the field of academic finance is the pivotal event study of Fama et al. (1969). The 

researchers concluded that their results were in line with, at that time, the nascent efficient 

market hypothesis. However, scholars have later on raised differing views on the 

interpretation of the results, arguing that Fama et al. (1969) ignored the clear price drift in the 

data: a clear sign of an inefficient market instead of an efficient one (e.g., Arbit and Boldt, 

1984; Lee and Yen, 2008). 

Loss and ambiguity aversion 

Cognitive abilities have developed over a long period of time. In a hostile living environment, 

quite different from the modern environment, it was imperative to avoid unnecessary risks 

that could potentially be lethal. Risk aversion, on the other hand, causes negative events to 

have a greater impact on agents than positive events (e.g., Baumeister, 2001). Indeed, agents 

will go to great lengths to avoid materialization of negative events in order to protect 

themselves from emotional agony (e.g., Shefrin and Statman, 1985; Odean, 1998a). The 

described behavior is termed the disposition effect. Disposition effect, in the context of 

finance, hypothesizes that agents will hold losing assets longer than they should in order to 

avoid the anguish of realizing losses.
47

 

Connected with risk aversion, and the resulting loss aversion, is ambiguity aversion. Agents 

dislike uncertain situations. In the context of modern finance, when agents do not know the 

objective probability distribution; hence, forced to use subjective probability distribution, 

agents will express a view on the probability as if the subjective probability distribution were 

objective. As subjective expected utility (SEU) does not allow agents to express their 

confidence on the subjective probability distribution, it cannot capture such aversion (e.g., 

Barberis and Thaler, 2003). Heath and Tversky (1991) argue that ambiguity aversion has 

much to do with how competent agents feel about assessing the subjective probability 
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 Thaler (2000) dubs the phenomenon as ‘curse of knowledge’, a form of cognitive dissonance: when we know 
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distributions: the more confident agents feel about their competence, the more likely they are 

to take the uncertain choice. The manifestations of ambiguity aversion have been widely 

documented.
48

 A finance-related example would is the tendency of investors to allocate their 

assets to familiar investments - for instance, the so called ‘home bias’ can be seen to result 

from such behavior.
49

 However, as we pointed out in the context of overconfidence, 

ambiguity is just one of the possible explanations offered to explain the tendency of agents to 

allocate their assets to familiar investments. 

Framing: Procrastination and Mental Accounting 

According to normative theories, framing of a problem should not impact agents’ behavior as 

choices should be independent of the problem description. However, large body of evidence 

suggests that the way a problem is presented affects agents’ behavior (e.g., Tversky and 

Thaler, 1990; Starmer, 2000). For instance, psychologists have documented that doctors make 

different recommendations when presented with survival probabilities instead of mortality 

rates, even though the latter is the complement of the former (Ritter, 2003).
50

  

An important feature of framing is the concept of narrow framing. In narrow framing, agents 

limit the scope of the problem, presumably in an attempt to optimize deliberation costs under 

limited cognitive capabilities (e.g., Thaler, 1980; Read et al., 1999). The variable limited can 

differ from situation to situation, for instance, limiting the time frame of the problem is a 

common example of narrow framing coined procrastination.
51

 Under procrastination, agents 

make rational choices at intervals that are irrationally short. Quitting smoking is a typical 

example of procrastination. Agents limit the time frame of the problem to one day, weighing 

the torment of withdrawal symptoms, with other cons, against the pros: needless to say that 

under one day time frame the choice is clear, and continuing smoking maximizes the agents’ 

utility. However, after running through the same maximization on a daily basis for ten years, 

with the same ‘rational’ choice, agents have continued smoking for ten years: obviously such 

behavior can have calamitous consequences for agents’ health. Consequently, under 

procrastination, agents exhibit a strong tendency to overweight short-term utility at the 

expense of mid- to long-term utility resulting in sub-optimal choices under longer time 
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horizon. Still, such behavior can be rational under expected utility maximization in the case of 

extreme constant discount rates. However, the constant discount rate axiom of expected utility 

maximization has been found faulty in several occasions (e.g., Frederick, Lowenstein and 

O’Donoghue, 2002). In fact, a time inconsistent model of discounting: ‘hyperbolic 

discounting’, has been linked with procrastination. Under hyperbolic discounting, agents’ 

impatience is steeper for near-term trade-offs than for long-term trade-offs. For instance, 

when asked whether or not an agent would like to have 100€ a year from now, or 50€ now, 

most agents will choose 50€ now. However, when asked whether or not an agent would prefer 

to have 100€ after six years, or 50€ after five years, most agents will choose 100€. Hence, 

agents exhibit diminishing sensitivity to time.
52

   

Another common occurrence of narrow framing is mental accounting. In mental accounting, 

agents divide a problem into smaller pieces and then evaluate them in isolation from the 

larger - original - problem (e.g., Thaler, 2000; Barberis and Thaler, 2003). For instance, when 

agents are confronted with the problem of optimizing their asset portfolio, they segregate 

asset classes into separate mental accounts: for example, one account is for retirement money, 

one is of liquid assets and one is for risky investments. Once segregated, agents evaluate each 

mental account in isolation from the other accounts; hence, ignoring covariance between 

accounts - irrational behavior from the standpoint of modern portfolio theory
53,54

.  

Limited attention 

As we have previously briefly discussed, agents are constrained by limited cognitive 

capabilities and are therefore distracted by irrelevant stimuli. For instance, the famous Stroop 

task (1935) asks subjects to name the color in which a word is printed. When the word does 

not match its print color (i.e., word ‘blue’ is printed in red), subjects take more time to name 

the color. Another example is the phenomenon coined ‘selective attention’ where subjects 

focus on a set of stimuli leading them to ignore other important stimuli. Examples of selective 

attention are dichotic listening
55

 (e.g., Cherry, 1953; Broadbent, 1958; Moray, 1959) and 
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inattentional blindness
56

 (Simons and Levin, 1997). Also, divided attention in multiple tasks 

has been demonstrated to deteriorate subjects’ performance on tasks (e.g., McLeod, 1977; 

Pashler and Johnston, 1998). Finally, the phenomenon dubbed ‘cue competition’ shows that 

when subjects are asked to forecast stochastic variables based on multiple cues, the presence 

of irrelevant cues causes subjects to use less relevant cues (e.g., Baker et al., 1993; Busemeyer 

et al., 1993; Kruschke and Johansen, 1999).  

Indeed, depending on the quality and quantity of information, it can take considerable time for 

agents to process information. Therefore, agents attempt to optimize the decision outcomes 

with the deliberation costs. However, in doing so, agents demonstrate a tendency to focus on 

salient information at the cost of more abstract information. Furthermore, agents take 

information as given without attempting to adjust it (e.g., Hirshleifer and Hong, 2002; 

Stracca, 2004; Arruñada, 2008; Barber and Odean, 2008). Consequently, agents are 

particularly vulnerable to manipulation and fads (e.g., Daniel et al., 2002, Stracca, 2004; 

Shiller, 2000b). In fact, companies can take advantage of agents’ credulity by disclosing 

positive events in a salient manner and masking negative events with abstract disclosure (e.g., 

Skinner, 1994; Klibanoff et al., 1999). Furthermore, companies can overwhelm agents by 

disclosing more information in an attempt to make the disclosure even more opaque to agents. 

In other words, agents are in risk of losing the forest for the trees, when the quantity of 

information to be processed increases rapidly (Stracca, 2004).  

In summary, limited attention predicts that in financial context, multiple sources of new 

information appearing simultaneously force agents to divide their attention resulting in 

gradual diffusion of information. Therefore, financial metrics exhibit underreaction to new 

information (e.g., Hirsleifer and Teoh, 2003, 2005; Hirsleifer, 2009).Opposing arguments do 

exist. For one, an argument can be made that agents can adjust rationally to the cognitive 

constraints they face by focusing on the important signals. Nevertheless, as described above, 

agents tend to focus on salient signals that are not necessarily the most vital ones. Indeed, 

Hirsleifer (2009) refutes the aforementioned argument on the basis that agents cannot 

determine ex-ante the importance of signals. He continues by arguing that even if agents were 

able to segregate important signals from less important ones, irrelevant stimuli would still 

affect information processing (e.g., Stroop task evidence). In fact, even the processing speed 
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of sentiment-detecting algorithm that we describe in this study would be negatively impacted 

if more information was added. 

2.2.2 Prospect theory 

To settle the discrepancy between empirical evidence and the expected utility framework, a 

group of theories, labeled the non-expected utility theories, have risen to the challenge. 

Prospect theory, argued by many to be the most promising alternative (e.g., Camerer, 1998; 

Barberis and Thaler, 2003; Stracca, 2004, will be described next.
57

 

The prospect theory is a truly descriptive theory with no ambitions in predicting agents’ 

behavior. Indeed, prospect theory simply aims at capturing agents’ attitudes towards risky 

gambles as parsimoniously as possible while striving to be analytically tractable (Barberis and 

Thaler, 2003).In contrast to expected utility theory, prospect theory evaluates gains and losses 

instead of the absolute level of wealth, an idea first proposed by Markowitz (1952). To 

motivate the focus on gains and losses, Kahneman and Tversky (1979) offer a compelling 

example of expected utility violation.  

During a study, subjects were asked: 

In addition to whatever you own, you have been given 1,000. Now choose between: 

A = (1,000; 50% probability) 

B = (500; 100% probability) 

The majority of subjects chose B over A. Subjects were then asked: 

In addition to whatever you own, you have been given 2,000. Now choose between: 

C = (-1,000; 50% probability) 

D = (-500; 100% probability) 

One would expect consistent behavior from agents, as the two situations have similar final 

absolute wealth positions. However, on the second question, subjects chose C over D. Hence, 

subjects demonstrated seemingly irrational behavior under the expected utility theory. As a 

result, Kahneman and Tversky (1979) assert that in addition to focusing on gains and losses 
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over absolute wealth positions, agents are risk averse in the domain of gains and risk seeking 

in the domain of losses. In fact, Kahneman and Tversky (1979) assert that agents’ value 

function is concave in the domain of gains and convex in the domain of losses. Also, the 

value function has a kink in the origin, illustrating loss aversion: a greater sensitivity to losses 

than to gains - a characteristic the reader might have observed when reading through the 

various cognitive biases influencing agents’ behavior. Figure 1 demonstrates the hypothetical 

value function. 

 

Figure 1: A hypothetical value function (Kahneman and Tversky, 1979) 

The final key element underlining the prospect theory is nonlinear probability transformation. 

Kahneman and Tversky (1979) demonstrate that extreme probabilities are overweighed: in 

other words, agents’ weighing coefficient does not behave in a linear manner consistent with 

the expected utility theory. 

An important feature of prospect theory is that it can incorporate framing; particularly of 

interest is narrow framing, especially mental accounting. Due to the fact that the value 

function is non-linear, if agents segregate events that should be rationally pooled, the value of 

the pooled events can differ from the value of the segregated events. For instance, Shefrin and 

Statman (1984) present an interesting example in the context of corporate dividend policy that 

can be argued to be explained by prospect theory and mental accounting. Consider 

corporation A that plans on returning capital of 10€ to its shareholders. If A pays no 

dividends, the return will be in the form of a capital gain interpreted by agents as v(10). 

However, if A decides to return, for instance, 2€ as a dividend, the return can be coded by 

agents as: v(2) + v(8), or v(10), depending on whether or not agents are influenced by narrow 

framing bias known as mental accounting. What is interesting is, that under prospect theory, 

in the concave domain of gains, v(2) + v(8) > v(10), hence agents will prefer dividend and 
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capital gain combination vis-à-vis a pure play capital gain - a crucial difference in preference 

when compared to the expected utility. 

In their influential paper of 1992, Tversky and Kahneman generalize prospect theory to 

accommodate more than two non-zero outcomes. The successor has been christened the 

cumulative prospect theory (Starmer and Sugden, 1989; Tversky and Kahneman, 1992) and 

holds great promise as an alternative to the expected utility framework with much stronger 

psychological footing, yet maintaining analytical tractability.  

While the list of empirical evidence contradicting the modern finance paradigm continues to 

grow, behavioral finance is still far from replacing the mainstream approach in its current 

form (e.g., Ritter, 2003; Stracca, 2004). For example, Shleifer (2000) maintains that 

behavioral finance has not yet reached the level of maturity which would allow it to provide a 

coherent unified theory of human behavior in the market context the same way expected 

utility and mainstream economics and finance have done. Nonetheless, several scholars (e.g., 

Thaler, 1999; Barberis and Thaler, 2003; Stracca, 2004) argue that behavioral finance will do 

so in the future.  

Not all behavioral finance scholars share the rosy view concerning the future of behavioral 

finance. Some feel that behavioral finance will increasingly become part of modern finance 

(e.g., Ritter, 2003; Frankfurter and McGoun, 2002). Indeed, Frankfurter and McGoun (2002) 

suggest that the failure of behavioral finance to emerge as the new paradigm for finance is in 

fact paradoxically vindicating the teachings of behavioral finance. To elaborate, Frankfurter 

and McGoun (2002) argue that the same cognitive biases documented by psychologists, and 

advocated by behavioral scholars, are preventing behavioral finance paradigm from replacing 

the mainstream paradigm. In Frankfurter and McGoun’s view, the only hope for behavioral 

finance is the saturation of research that will force the academic society to seek new theories 

in an attempt to justify its own existence. Frankfurter and McGoun state that such 

development has already taken place as is demonstrated by the recent behavioral finance 

studies published in respectable publications, as well as the inspiring milestone of Daniel 

Kahneman’s 2002 Nobel Prize on the development of prospect theory.  

In conclusion, the altercation between modern finance supporters and behavioral finance 

advocates is on-going, and unresolved. Empirical evidence exists on both sides to support the 

claims of both parties. Future research will determine the direction the debate will take, and 

seminal methodological articles such as Petersen (2009) can potentially shed more light on 
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the results of the past. We remain hopeful for a resolution, and to paraphrase Richard Roll, for 

a theory and model that can better our understanding of asset prices. 

2.3 Content analysis 

Content analysis
58

 in the field of finance is a relatively new branch of research. The 

underlying idea is to quantify investor sentiment from qualitative texts in order to be able to 

better, and quicker, analyze the information available in the markets. The motivation behind 

the studies has been to better explain the variation in several key financial metrics. For 

instance, content analysis seeks to enhance our limited understanding of variations in equity 

returns. 

The prior literature in the nascent field has focused on identifying different methodologies for 

the estimation of investor sentiment, and from there on to study the impact of the sentiment 

on financial metrics. The key financial metrics used in previous studies have included: raw 

returns, abnormal returns, trading volume, return volatility and earnings. With promising new 

findings, content analysis has been gaining momentum in recent influential publications, and 

interest toward the field has increased. Furthermore, according to Demers and Vega (2010), 

there has been a surge in demand for firms selling data processed by linguistic algorithms 

(e.g. Ravenpack) implying that investment firms are waking up to the possibility of exploiting 

content analysis techniques in an attempt to reap returns.
59

 

We aim to introduce the reader to the most influential findings in the field while giving 

insight to the theory behind the hypothesized relationship between investor sentiment and 

financial metrics. Furthermore, we offer a brief introduction to the content analysis process 

and methodology in general.
60

  

The section will proceed as follow: first, we will briefly acquaint the reader with content 

analysis methodology; second, we will discuss the theory behind the hypothesized 

relationship between investor sentiment and financial metrics that will set the ground for our 
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coming hypotheses in Section 3; third, we will discuss the key findings of content analysis 

studies in the domain of finance, their importance and the used methodologies. 

2.3.1 Content analysis methodologies  

Recent literature has used various approaches when turning text to quantified metrics. The 

idea is typically to transform qualitative information into a sentiment score – usually authors 

wish to distinguish positive vs. negative sentiment, and possibly measure the magnitude. As a 

criterion to compare whether the estimated sentiment correctly reflects the quantified, Mitra 

and Mitra (2010) suggest comparing a computer’s annotations to how a human, or a human 

group (in particular a group of experts), interpret the text. Alternatively, one could also use 

market based measures, defining the sentiment after a market reaction (sentiment = market 

reaction). The aforesaid approach inherently assumes that the market reacts to a news story. 

Therefore, changes in a correctly constructed sentiment should correlate with stock 

performance metrics, such as returns, volatility or volume. 

Sentiment analysis process 

To analyze sentiment, one must first collect texts to process and to analyze them in order to 

construct a sentiment score. Mitra and Mitra (2010) split the information flow into 

information gathering (mainstream news, pre-news and web2.0/social media), pre-analysis, 

classification and assignment of sentiment scores, and analysis (vs. financial market data). 

Once completed, the analysis results can be fed into various quant models for return 

prediction, trading decisions or to assess risk. This approach is illustrated in Figure 2. 

 

Figure 2: Information flow and computational architecture (Mitra and Mitra, 2010) 

Various sources of information have been used in previous literature. Many authors (e.g. 

Engelberg, 2008; Li, 2006; Loughran and McDonald, 2011 have focused on 10-K reports that 
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are easy to access and analyze as they follow a certain structure and relate by definition to a 

certain company. Examples of other media varies from general news (e.g. Antweiler and 

Frank, 2006; Tetlock, 2008) to analyzing message board posts (Antweiler and Frank, 2002). 

Pre-analysis of information starts with the decisions on how media will be filtered from a 

database. For 10-K reports, the decision of which report relates to which company is 

straightforward. For news and social media, this needs to be carefully defined. News can also 

mention multiple companies and do not always relate to one company. Today’s news 

databases usually include some search functionality for a company ticker which is often the 

result of a machine learning algorithm by the database company. While Tetlock et al. (2008) 

choose to search news by the official company name and filter their results then further to 

ensure the news are highly relevant to the company, Engelberg (2008) relies on Factiva’s 

automatic classification of news by company code.  

After sorting out the right companies, most authors also perform some pre-processing of the 

texts. This is necessary to, for example, include the heading to be a part of the text, or to deal 

with texts including elements not in a story-format, such as tables, pictures and disclaimers 

that could add unnecessary noise to a sentiment score.  

Mitra and Mitra (2010) also recognize that it could be beneficial to identify stories that are 

current: news that report other old news are not so relevant anymore, as the information is not 

novel, and should often be given less weight or excluded from sentiment score metrics. Also, 

adjustments depending on news flow timing could be used. News flows have seasonality in 

them: at some points of day, week, month and year more news (and new information) come to 

the market than others. Finally, analyzing links between news should be considered, as news 

items often include a number of topics (e.g. a company’s earnings announcement will bring a 

wide variety of information to the table on different topics). 

After preprocessing, news are classified to construct a sentiment score. Das (2010), also cited 

by Mitra and Mitra (2010), has identified six methods for classifying sentences: the naïve 

classifier and variations of the naïve classifier: the discriminant based classifier and the 

adjective-adverb phrase classifier; algorithms that determine the class based on the 

composition of lexicon items in a sentence: vector distance classifier and Bayesian classifier; 

and support vector machine (SVM). Das (2010) also proposes to use a voting scheme after 

using the number of classifiers, so that a message is given the category to which most 

classifiers would rank it. 
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Sentiment classifiers 

The Naïve classifier (also known as “word count” and “bag of words method”) works by 

counting the number of word occurrences, and assigns a label to the text based on what 

category of words are most common (e.g. positive or negative, or neural if no majority exists). 

To work, this method requires a lexicon, i.e. list of words that have been categorized as 

“positive”, “negative”, etc. Due to the ease of implementation, this is the most commonly 

used classifier and has been used in most studies in the finance domain (e.g. by Tetlock, 2008; 

with some additions by Engelberg, 2008; and Loughran and McDonald, 2011). As a 

modification of the naïve classifier, Das proposes a discriminant based classifier that assigns 

different weights to different words (e.g. 0.5 negative weight for a slightly negative word, and 

2 for a highly negative word). The Adjective-adverb phrase classifier works also similarly to 

the naïve classifier, but considers only noun phrases that include adjectives or adverbs: e.g. “a 

strong profit” would be considered for classification, but “a profit” would not be included 

even if the word profit would exist in the lexicon.In addition, Engelberg (2008) experiments 

by adding the impact of simple negations that change the meaning of expressions (for 

example “not bad” vs. “bad”).  

The vector distance classifier assigns all words in lexicon as dimensions in vector space, and 

then describing each message as a vector. A training set of messages are pre-classified, and 

new messages are assigned polarity with vectors that have the smallest angle. Bayesian 

classifier, on the other hand, determines the count of each lexical item (e.g. a word) in a 

message. From a training set, it is possible to know with what likelihood each lexical item 

appears in a certain category. From word based frequencies, it is possible to calculate the 

probability that a message falls into a certain category, and assign the category with the 

highest probability to the message. For example O’Hare et al. (2009) uses multinomial naïve 

Bayesian classifiers to recognize sentiment in financial blogs.  

Support Vector Machines (SVMs) are a classifier technique that is similar to cluster analysis 

but can be used in very high-dimensional spaces. Given a large number of texts and a training 

corpus, the SVM can classify texts, for example all words in the lexicon dimensions, and then 

clustering the texts based on information in the training corpus
61

. For example, this could be 

used to first identify which words are typically present in a positive sentence, and then to 

classify further sentences based on this. The advantage of SVMs would be their flexibility in 
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being able to learn features also in highly sophisticated environments. SVMs are used by e.g. 

O’Hare et al. (2009) to classify financial text.  

Going further in sophistication with sentiment detection, Moilanen et al. (2010) have 

developed a method called “quasi-compositional sentiment sequencing” that we also use as 

the basis for our methodology. Compared to a base case word count, this method assumes that 

having polarities in different sequences can create a different outcome for the polarity of the 

whole sentence. For example, having a sentence with three words – “positive-negative-

positive” – could be labeled as positive by majority vote with a word count algorithm. The 

logic of quasi-compositional sentiment sequencing, on the other hand, would be to ask “what 

kind of polarities have human annotators given to sentences that have words in the sequence 

‘positive-negative-positive’”. To simplify sentences, the method compresses similar polarities 

together in the sequence (e.g. sentences with “positive-neutral-neutral-positive-positive” and 

“positive-neutral-neutral-neutral-positive” would be compressed to “positive-neutral-

positive”). With this compression, the training sets required reduces significantly. For 

implementing the actual classification, the authors use a standard SVM approach and a readily 

annotated corpus (MPQA). Looking at the results of quasi-compositional sequencing, 

especially sentences with many different polarities (the authors use positive, negative, neutral 

and reversal) yield better results than simpler methods.   

Considerations on classifiers 

To work, classifiers often need supplementary databases: a dictionary includes the 

information of word categories (is a word an adverb, an adjective, a noun, etc.), a lexicon 

assigns words to various polarities (e.g. a list of positive words), and a training corpus of base 

messages shows examples of how different sentences should be classified. The contents of 

these databases can also vary significantly between studies, and e.g. changing from a general 

lexicon to a domain specific lexicon can make a large difference (see e.g. Loughran and 

McDonald, 2011). The most commonly used lexicon in the financial literature has been so far 

the General Inquirer’s Harvard-IV-4 psychological dictionary (e.g. Tetlock et al., 2008; 

Engelberg, 2008).  

In addition to sentiments, a sentiment algorithm can consider the window where the sentiment 

is detected, and also the magnitude of the sentiment. While most papers either consider 

sentiment on a document level or always categorize sentences, there are also other options for 

labeling a text with a certain polarity. O’Hare et al. (2009) introduce a concept of word (and 



42 

 

sentence and paragraph) windows: they consider for the sentiment on a certain topic only text 

that has a distance of n to a topic word (e.g. only 5 words before and 5 words after a certain 

topic word).  

For a human reader, it is also evident that the context of an expression impacts how strong the 

polarity should be. For example, Engelberg (2008) relates the negative sentiment on a 

sentence level further to one of six themes (positive fundamentals, negative fundamentals, 

future, outlook, environment, operations, and other) and identifies that they can be used to 

refine the perceived impact of sentiment. 

Once classified, detected polarized words and sentences need to be combined to arrive at an 

aggregate sentiment score; in other words, “sentiment of the day”. Authors have adopted 

various approaches for aggregation: e.g. Tetlock et al. (2008) combines all news of a 

particular day into one article and calculates the proportion of negative words in this article. 

On the other hand, Das (2010) labels each message as a “buy” or a “sell” signal, and then 

calculated the number of total buys and sells per day. The chosen approach has an impact: for 

example, a long article would typically have a larger weight with Tetlock’s approach, whereas 

with Das’s approach the weight of each article would be the same. 

2.3.2 Stock metrics and investor sentiment: proposed link 

During the 1980’s, interest towards qualitative information began to surge. Empirical 

evidence that seemed to explain movement in financial metrics without any apparent change 

in quantitative information was growing (e.g., Shiller, 1981).
62

 Confronted with the growing 

amount of apparent anomalies, scholars started to seek answers in qualitative texts leading 

some researchers to suggest that qualitative information could have incremental value above 

and beyond quantitative information in relation with financial metrics: e.g., equity returns 

(e.g., Roll, 1988; Cutler et al., 1989).
63

 

Information content in financial texts 

Concurrently with the increasing interest in the informational content of qualitative text, 

research was documenting managers’ tendency to voluntary disclose information to investors 

in order to align investors’ expectations of future performance with management’s own 
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assessment (e.g., Ajinkya and Gift, 1984; Hassel and Jennings, 1986; King et al., 1990).
64

 In 

1994, in his seminal article using a sample of voluntary earnings disclosures for 93 NASDAQ 

firms, Skinner (1994) showed that managers tended to disclose good news in point estimates 

and bad news in qualitative text. In fact, according to Skinner, previous literature had forgone 

an important source of information when neglecting to take into account the impact of 

qualitative information on financial metrics. Sloan (1996) agrees with Skinner by positing that 

the power of market efficiency tests can be improved if the strategic nature of published 

disclosures can be exploited. Later on, researchers have agreed with Sloan, suggesting that 

qualitative information provides an interesting opportunity to improve tests on market 

efficiency (e.g., Antweiler and Frank, 2006; Li, 2006; Davis et al., 2008). 

In line with the forthcoming findings of Skinner, Subramanian et al. (1993) shows that annual 

reports of profitable firms are significantly easier to read than those of poor performers  

implying that poor performers disclose information in a more complex manner using lengthier 

and more difficult qualitative texts. Later on, Li (2008) demonstrates with a sample of 10-ks 

that managers attempt to hide adverse information through less transparent disclosure via 

qualitative text. Li (2008) employs a fog index in combination with the length of a document 

to measure annual report readability.
65

 The evidence supports Skinner’s (1994) findings and is 

in line with Subramanian et al. (1993), showing that annual reports of firms with lower 

earnings are harder to read. Moreover, increase from last year’s earnings will decrease the 

complexity of the annual report corresponding to the increased earnings period.  

Besides containing information on past and contemporary negative fundamentals, qualitative 

text has been linked to forward looking estimates vis-à-vis the backward looking focus of 

quantitative point-estimates (e.g., Li, 2006, 2008). The rationale is that managers have more 

freedom in writing qualitative texts which are loosely regulated vis-à-vis quantitative 

information which is strictly regulated (e.g., Li, 2006; Davis et al., 2008).
66

 Therefore, 

managers are more inclined to disclose future estimates using qualitative information. As a 

result, information extracted from qualitative texts can in fact have incremental value above 
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and beyond quantitative information when predicting financial metrics. Dye and Sridhar 

(2004) posit that hard and soft information should be taken into account in tandem. Also in 

Engelberg’s (2008) view, finance scholars should focus their attention in analyzing the 

heterogeneity of information: soft vs. hard, as some corporate finance scholars have done 

(e.g., Stein, 2002; Petersen, 2004).
67

  

Tetlock et al. (2008) offer two significant rationales for using qualitative texts: first, by 

analyzing all relevant news, researchers can analyze and judge the directional impact of a 

limitless number of events simultaneously through a proxy of investor sentiment. 

Furthermore, while examining all newsworthy events, researchers effectively limit their 

possibility for data dredging on a specific anomaly. Second, most investors receive their 

information secondhand Therefore qualitative texts can have incremental value over first hand 

quantitative information concerning a firm’s fundamentals as they are better proxies for the 

information set that investors use.  

Li (2006) goes even further by suggesting that the documented anomalies can in fact be 

proxies for a same undocumented omitted variable and as such the anomalies are not in fact 

independent of each other. Fama and French’s (2006) findings lend some support for Li’s 

proposed hypothesis: Fama and French find a strong correlation between the different 

variables associated with known anomalies. To study the hypothesis, Li regresses Fama and 

French’s (2006) variables on his risk sentiment, and finds that several of the variables are 

significant and explain risk sentiment. Furthermore, Li suggests that the variables that are 

insignificant are insignificant due to multicollinearity issues arising from the strong 

correlations between the variables. In conclusion, Li suggests that sentiment based on 

qualitative texts can potentially offer a more accurate and independent test of market 

efficiency.
68

 

Market impact of financial texts 

Besides the informational content of qualitative text, the linguistic style of the text can have 

an impact on financial metrics even in the absence of new information (e.g., Davis et al., 

                                                 
67

 Corporate finance literature has argued that soft information increases the cost of transmission. 
68

 Loughran and McDonald (2011) take a more negative view concerning the status of sentiment, arguing that 

there is no link between sentiment and returns in the existing literature. In fact, sentiment is most likely a proxy 

for other contemporaneous information such as accounting numbers. However, Loughran admits that even 

though sentiment might not be a true driver for returns, it might still be an efficient way to capture other sources 

of returns. 
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2008; Henry, 2008). As framing is documented to have an impact on agents’ behavior,
69

 the 

linguistic style can impact agents’ decisions even in the absence of new information. Indeed, 

several studies have found that recipient of messages are attentive to both content and style 

(e.g., Petty and Cacioppo, 1986; Chaiken, 1987; Kruglanski and Thompson, 1999; Chung and 

Pennebaker, 2007). For example, the way the stock market commentators describe price 

movements influences investors’ expectations of future prices even in the absence of any 

fundamental reason for price movements (Morris et al., 2005).  

If qualitative text has an impact on financial metrics, the question remains whether or not that 

impact is disseminated by the markets instantaneously as suggested by the EMH. As we have 

previously established, managers seem to be inclined to disclose negative news through 

qualitative text implying that qualitative text offers a better medium to communicate negative 

events for some reason. One such reason might be that qualitative text is harder for agents to 

process (e.g., Petersen, 2004; Li, 2006, 2008; Davis et al., 2008; Engelberg, 2008); therefore, 

managers disclose negative events through qualitative text to mask the event’s full impact 

from agents (e.g., Bloomfield, 2002). Grossman and Stiglitz’s (1980) ‘incomplete revelation 

hypothesis’ supports such assertion, stating that information that is more costly to process is 

less completely reflected in market prices.  

Also the limited attention theory
70

 supports the slow incorporation of information from 

qualitative texts into financial metrics. The theory posits that agents have limited cognitive 

resources and hence possess limited capacity to allocate to information processing. As a 

result, when agents are forced to divide their attention among several information cues, 

information is incorporated into financial metrics with delay resulting in underreaction to new 

information. Indeed, there is a large corpus of studies documenting underreaction to different 

events across different firms (e.g., Hong et al., 2007; Hou, 2007; Cohen and Frazzini, 2008).
71

 

Limited attention offers an explanation to underreaction in the context of both quantitative 

and qualitative information.
72

 However, in the case that qualitative information is more costly 

to processes, limited attention would predict that information based on qualitative text 

experiences greater underreaction as agents focus on the more salient information 
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 See Section 2.2.1. for discussion on framing bias. 
70

 For more discussion on limited attention, see Section 2.2.1 
71

 For more evidence, see Section 2.1. 
72

 Li (2006) takes a more negative stance towards limited attention’s ability to explain quantitative information 

anomalies, stating that they are well documented and easily exploitable. Therefore, require minimal processing 

and attention. However, Li agrees that limited attention should play a major role in the dissemination of 

qualitative information. 
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(quantitative information) at the cost of the more abstract information (qualitative 

information).
73

 Indeed there is evidence that supports the claim: for example, prior literature 

has found that stock markets react to previously published news implying that relevant 

information is neglect at the time of the release (e.g., Ho and Michaely, 1988; Huberman and 

Regev, 2001). 

Another potential explanation for underreaction to information contained in qualitative texts 

is the leniency in qualitative text regulation that can cause agents to discount information in 

qualitative texts (Davis et al., 2008). Mercer (2004) posits that as there are no third party 

auditors for qualitative text  as there are for quantitative numbers  agents will discount 

information from qualitative sources and therefore underreact to such information
74

.  

2.3.3 Sentiment and financial metrics: findings and methodologies 

With the increasing interest towards informational content of qualitative texts, scholars have 

attempted to estimate investor sentiment (information content and tone) from different 

sources of qualitative texts in order to study the relationship between sentiment and important 

financial metrics. Major sources for qualitative texts include: news articles (e.g., Chan, 2003; 

Antweiler and Frank, 2006; Tetlock, 2007; Kothari et al., 2008; Tetlock et al., 2008; Bushee 

et al., 2010), company press releases
75

 (e.g., Davis et al., 2008; Engelberg, 2008; Henry, 

2008; Bhattacharya et al., 2009; Demers and Vega, 2010), 10-ks (e.g., Li, 2006, 2008; Kothari 

et al., 2008; Loughran and McDonald, 2011) and Internet message boards (Antweiler and 

Frank, 2004; Das and Chen, 2006). Recently, social media (e.g. Twitter) has also sparked the 

interest of researchers. Also, the impact of aggregate market news volume on financial 

metrics has been studied (e.g., Mitchell and Mulherin, 1994; Hirsleifer, 2009) as well as the 

impact of firm specific media coverage (e.g., Barber and Odean, 2008; Fang and Peress, 

2009; Loukusa, 2011).  Majority of the studies has tried to link investor sentiment with one of 

                                                 
73

 As shown in Section 2.2., with representativeness bias, the saliency of the model is the vital component in 

determining which information source agents overweight at the cost of the other. In financial context, point-

estimates are often more salient due to valuation models utilizing point-estimates as their inputs. Therefore, 

qualitative text is often more abstract to agent, and is therefore underweighted in many cases. 
74

 In connection with the aforementioned, Krishna and Morgan (2004) with Demers and Vega (2010) show that 

multiple experts (sources of information: i.e., news and analyst press releases) improve information credibility 

and the subsequent reaction to the information in qualitative text. As a result, it is possible that agents underreact 

to news as they discount the informational value of qualitative text due to loose regulation. 
75

 Including various forms of corporate press releases and disclosures such as: earnings announcements, IPO 

prospectuses, voluntary disclosures, etc. 
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the following financial metrics: raw returns
76

, abnormal returns
77

, trading volume
78

, return 

volatility
79

 or earnings
80

. 

Sentiment and returns 

Majority of studies
81

 has found a significant reaction between investor sentiment changes and 

returns. The type of reaction found has been underreaction. 

Chan (2003) finds underreaction to news with a comprehensive list of news publications 

including Dow Jones Newswire service, which Tetlock et al. (2008) find to have novel 

information content resulting in an underreaction to sentiment changes. Furthermore, studies 

on other qualitative text sources have found results consistent with underreaction (e.g., Li, 

2006; Engelberg, 2008; Demers and Vega, 2010; Loughran and McDonald, 2011). Also, prior 

literature has found that simultaneously released information sources distract investors 

resulting in stronger underreaction to information (Hirsleifer et al., 2009). Hirsleifer et al., 

name this phenomenon as ‘the distraction hypothesis’ which is based on limited attention 

theory. Tetlock et al. (2008) study offers some support for Hirsleifer et al.’s findings 

demonstrating evidence that earnings related news cluster around earnings announcements, 

while earnings announcements occur almost always during the same time period, and that 

news that have the word stem ‘earn’ predict stronger underreaction. Tetlock et al. interpret 

that such news articles deal with fundamentals and therefore qualitative texts concerning 

fundamentals have more information content and subsequently more impact.
82

 However, an 

alternative conclusion might be drawn to support Hirsleifer et al.’s later study, suggesting that 

news with the stem ‘earn’ are news dealing with earnings announcements and as such are 

released in close proximity to earnings announcements. If this is the case, such news are 

released during a time when qualitative information, with quantitative information, floods the 

                                                 
76

 E.g., Chan, 2003; Antweiler and Frank, 2004; Tetlock, 2007; Tetlock et al., 2008. 
77

 E.g., Chan, 2003; Li, 2006; Engelberg, 2008; Tetlock et al., 2008; Hirsleifer et al., 2009; Demers and Vega, 

2010; Loughran and McDonald, 2011. 
78

 E.g., Antweiler and Frank, 2004, 2006; Tetlock, 2007; Hirsleifer et al., 2009; Loughran and McDonald, 2011. 
79

 E.g., Antweiler and Frank, 2004; Demers and Vega, 2010; Loughran and McDonald, 2011. 
80

 E.g., Li, 2006, 2008; Tetlock et al., 2008; Loughran and McDonald, 2011   
81

 Exceptions include of Antweiler and Frank (2004) and Das and Chen (2006). However, the aforementioned 

authors study internet message board data that does not seem to have incremental value over quantitative 

information. Furthermore, both studies have had fairly limited sample sizes. Also, their methods rely on more 

sophisticated - and complex - methodologies for estimating investor sentiment that have not yet yielded good 

results. 
82

 Tetlock et al. (2008) do not discuss any alternative interpretations for their result, but conclude that the finding 

is in line with their initial hypothesis. Therefore, one might present the argument that the psychological bias of 

‘belief perseverance’ is clouding their interpretation. 
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market causing greater distraction with more severe underreaction in line with the distraction 

hypothesis suggested by Hirsleifer et al., and the limited attention theory. 

Some studies document also overreaction to sentiment changes: Tetlock (2007) finds that 

Down Jones Index raw returns overreact to Wall Street Journal [WSJ] articles within one day 

of the event and reverse back to fundamentals within the next 5 trading days. Tetlock infers 

that the news articles carry no additional information content, and the reversal is consistent 

with the EMH. However, Tetlock (2007) studies WSJ articles which are later found to have 

no significance in relation to financial metrics in a study by Tetlock et al. (2008). In fact, 

Tetlock et al. (2008) hypothesizes that WSJ articles simply recapitulate previous news and 

therefore have no new information content, and as such should have no reaction. However, in 

light of the framing bias discussed in previous sections, one can argue that the tone of WSJ 

articles affects agents’ decisions resulting in overreaction to sentiment documented by 

Tetlock (2007), and the subsequent gradual reversal back to fundamentals. Therefore, 

depending on the information content of qualitative text, underreaction and overreaction are 

both possibilities.
83

 Indeed, Antweiler and Frank (2006) also find initial overreaction to 

sentiment changes from WSJ articles that reverses later on. The findings of Antweiler and 

Frank give support to our reasoning on overreaction with sentiment changes based on WSJ 

articles. 

In terms of event windows used in the prior literature, most of the studies have focused on 

short-term reactions with event windows equal to, or shorter than, 4-days (e.g., Tetlock, 2007; 

Davis et al., 2008; Tetlock et al., 2008; Loughran and McDonald, 2011).
84

 As a result, the 

intermediate- and long-term effects of sentiment changes, and the impact of such results on 

the efficiency of the market, have been neglected  to some extent  by prior literature. 

Some recent studies have employed longer event windows (e.g., Engelberg, 2008; Demers 

and Vega, 2010)
85

 in addition to short-term windows with findings that suggest that 

underreaction continues long after the opening of the event window in violation with the 

proposition of the EMH. 
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 Tetlock (2007) dubs the alternative theories as: sentiment hypothesis (reversal) and information hypothesis 

(underreaction). 
84

 Potentially due to the critique that has been directed towards longer event windows and the consequent 

increase in the severity of ‘bad model’ problems associated with them (e.g., Fama, 1991, 1998; Malkiel, 2003)  – 

more on Section 2.1. 
85

 Engelberg (2008) states that his study is the first to show content of financial media can predict asset prices in 

a longer time horizon. 
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Besides studying the link between returns and sentiment, scholars have attempted to build 

trading strategies to test the economic significance of the relationship between sentiment and 

returns (e.g., Li, 2006; Tetlock, 2007; Engelberg, 2008; Tetlock et al., 2008; Loughran and 

McDonald, 2011). As some EMH proponents have argued, an economically more feasible 

form of the EMH (e.g., Jensen, 1978) is not against market efficiency but in fact in line with 

it. Therefore, for an anomaly to be against all the definitions of market efficiency, it must 

stand and survive the test of economic significance.  

To study economic significance, trading strategies are constructed. Most of the trading 

strategies are based on prior year’s distribution of sentiment. By utilizing prior year’s 

distribution, the strategies take both long- and short-positions based on the magnitude of the 

sentiment change vis-à-vis prior year’s sentiment distribution (e.g., Li, 2006; Tetlock, 2007; 

Tetlock et al., 2008; Loughran and McDonald, 2011). At the moment, it seems that the 

economically feasible form of the EMH stands unwavering against the results. In other words, 

the link between sentiment change and abnormal profits is not strong enough to survive 

transaction costs (e.g., Tetlock, 2007; Tetlock et al., 2008; Loughran and McDonald, 2011).
86

 

However, as Tetlock et al. (2008) point out, the methodologies used for estimating investor 

sentiment are rudimentary as of now and as such the estimates are biased downwards due to 

measurement error. Therefore, the magnitudes of the sentiment coefficients are in reality more 

significant, as would the subsequent results be with more accurate sentiment estimates. Also, 

Tetlock et al. (2008) suggests that by creating more elaborate trading strategies, the economic 

significance might turn out to be different, and could be in violation with the economically 

more feasible form of the EMH. 

Sentiment and trading volume 

Depending on the information content of qualitative texts, sentiment level changes can impact 

trading volume in differing ways. As Tetlock (2007) notes, sentiment changes with no new 

information content will result in overreaction and therefore a volume increase. However, in 

Tetlock’s view, the hypothesis with sentiment change in the case of new information is 

unclear.
87
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Some studies have been able to establish trading strategies that have been able to stand the test of transaction 

costs, and emerge as victors (e.g., Li, 2006; Engelberg, 2008) 
87

 In line with his hypotheses, Tetlock (2007) finds that sentiment changes in WSJ articles are matched with 

overreaction leading to increase in trading volume. 



50 

 

Hirsleifer et al. (2009), state that in the presence of greater distraction, as measured by larger 

level of simultaneous earnings announcements, investors will underreact to new information 

and therefore volume will not be impacted, or it will be lower, in the short-term. Hirsleifer et 

al. interpretation suggests that underreaction is not accompanied by increase in volume in 

short-term. As we have demonstrated in the previous section, in the context of returns, most 

studies have found that qualitative texts have new information, and that information is 

incorporated into prices with delay: underreaction. Therefore, one might infer that in the case 

that information content dominates over style and tone of the text, underreaction dominates. 

Subsequent short-term volume changes would therefore not be abnormal, as suggested by 

Hirsleifer et al. findings regarding aggregate market earnings announcements and volume 

levels. 

On the other hand, Loughran and McDonald (2011) find that abnormal trading volume 

increases with sentiment changes. Loughran and McDonald’s results are more consistent with 

the interpretation that their qualitative information contains new content, and therefore the 

finding should not be attributed to the disagreement hypothesis
88

 suggested by Tetlock 

(2007). However, Loughran and McDonald’s event window differs from that of Tetlock’s 

(2007) potentially casting some light to the difference. Indeed, Loughran and McDonald’s 

event window is longer than that of Tetlock (2007); 4-days vis-à-vis 1-day event window. 

Therefore, Loughran and McDonald’s results might be driven by the fact that volume levels 

reacts to new information with a lag.  

We propose that the relationship between trading volume and sentiment seems to be related to 

information content vis-à-vis style and tone of qualitative texts as well as the event window 

length under review. Antweiler and Frank (2006) findings support our proposition: they find 

that initial overreaction is accompanied by increase in volume followed by declines in volume 

 such would be the reaction with texts dominated by tone over content. In cases where 

investors react more to new information content (over tone of text), sentiment changes should 

have either no reaction  or slightly positive reaction  with trading volume in the short-

term followed by slight increase in volume in the long run.  
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 For details on the hypothesis, we refer the reader to Tetlock (2007). 
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Sentiment and volatility 

The impact of sentiment on return volatility has not been studied extensively in prior 

literature. To our knowledge, only the recent studies of Demers and Vega (2010) and 

Loughran and McDonald (2011) have studied the relationship. If we go back further in time, 

we find that Antweiler and Frank (2004) have also studied the impact of sentiment on return 

volatility with a limited sample of internet message board posts. 

All of the aforementioned studies find a relationship between return volatility and a change in 

investor sentiment. The relationship seems clear: changes in sentiment (both towards more 

positive and towards more negative sentiment) predict increases in future return volatility. 

Sentiment methodologies used in finance research 

Crucial part of the research concerning the impact of qualitative text on financial metrics is 

the process of quantifying that text into a sentiment score (e.g., Loughran and McDonald, 

2011). As content analysis is a rather new field in the domain of finance, the methodologies 

used so far in the extraction of investor sentiment have been relatively simple and 

rudimentary. In fact, Tetlock et al. (2008) argues that more complex methods of content 

analysis face two significant drawbacks: first, the need for human judgment; second, the 

difficulty to replicate the study by later research. Instead, Tetlock et al. advocate the use of 

established dictionaries (i.e., Harvard Psychology Dictionary) with word counting (i.e., ‘bag-

of-words’ vector word counts) that give results four crucial attributes: parsimonious, 

objective, replicable and transparent. Tetlock et al. continue by arguing that the 

aforementioned attributes are crucial in the early stage of research in content analysis in the 

domain of finance. However, in slight contradiction with their own proposition, Tetlock et al. 

also urge researchers to develop less noisy measures of investor sentiment - effectively urging 

the use of more complex methodologies in estimating sentiment.
89

  

Li (2009) rejects Tetlock et al. (2008) notion of using established dictionaries as there are no 

readily available dictionaries for the setting of business, and advocates also the use of 

statistical methods in word categorization. Such methods run head-on to the critique presented 

by Tetlock et al. (2008). Loughran and McDonald (2011) offer a potential solution to the 

dilemma by developing their own dictionaries for the domain of finance in the context of 10-k 
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 By arguing the following, we link more complex methods with better estimates of sentiment. However, that is 

not necessarily the case. Nevertheless, we do argue that at some point it is necessary to move towards more 

complex methods in estimating sentiment if we are to improve the accuracy of sentiment estimates as sentiment 

is extremely complex variable that requires a complex model to take into account all the required nuances. 
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reports.
90

 In fact, Loughran and McDonald show that Harvard Psychology Dictionary 

misclassifies words more than 70% of the time in finance context. On top of adding noise to 

the estimate, Loughran and McDonald assert that the misclassifications can in fact result in 

spurious correlations and type I errors. Loughran and McDonald conclude that future research 

should use their dictionaries in finance context. 

As can be inferred from above, word counts (i.e., ‘bag-of-words’ vectors) with established 

dictionaries have been the most prominent method for quantifying qualitative texts in finance 

context (e.g., Tetlock et al., 2008). Yet, exceptions such as Antweiler and Frank (2004, 2006) 

and Das and Chen (2006) do exist that have used more complex methodology
91

. Also, more 

recently, Engelberg (2008) employs a typed dependency parsing method to extract sentiment 

using sentence structures. Engelberg states that his study is the first study in the domain of 

finance to employ content analysis methodology that utilizes sentence structures instead of 

words. 

In order to employ word counts, researchers need to either choose dictionaries, or create their 

own. The early studies of sentiment in finance used only few specific words instead of full 

dictionaries. For instance, Li (2006) uses words ‘risk’ and ‘uncertainty’ to measure risk 

sentiment. Later on, since the seminal study of Tetlock (2007), academia moved on to use 

Harvard Psychology Dictionary, and to be more specific, the negative word category of the 

dictionary.
92

 As Tetlock (2007) shows in his study, the fraction of negative words to total 

words is a good proxy for sentiment that performs equally well with a variable created from 

all the 77 different Harvard Psychology Dictionary categories.
93

 However, with the recent 

influential paper of Loughran and McDonald (2011), the choice of dictionary for future 

research in the domain of finance is uncertain. 
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 One can argue that Loughran and McDonald (2011) also fall prey to the critique of subjectivity. However, the 

authors construct their dictionaries to be as holistic as possible to avoid such critique. 
91

Antweiler and Frank (2004) and Das and Chen (2006) fail to find significant results with their main variable of 

interest: returns. However, their failure can be also be a function of their sample: internet message boards, or 

sample size, rather than the methodology of choice. 
92

 Tetlock (2007) suspects that negation increases noise with positive words and causes them to lose significance. 

However, Engelberg (2008) tests the amount of negation present in DJNS articles and finds that there is no 

substantial negation. Therefore, he rejects Tetlock (2007) explanation and suggests that misclassifications are 

responsible. Yet, when Loughran and McDonald (2011) create their own positive word list, they are unable to 

increase the significance of their results. Loughran and McDonald conclude that truly positive words are hard to 

isolate. 
93

 The latter variable is created based on past year’s data using principal component analysis which combines the 

77 categories into a linear combination variable that captures maximum amount of variance out of the 77x77 

covariance matrix. 
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2.4 Unexplored areas in literature 

As content analysis is a relatively young field of study in the domain of finance, there are 

several different areas of interest left unexplored requiring research. We aim to quickly 

introduce the reader to the most significant areas of interest requiring future development and 

research. 

As discussed in Section 2.3., used methodology for the estimation of investor sentiment 

stands in the center of all research in the area. Therefore, it comes as no surprise that there is 

plenty of work to be done in the area. As discussed in Section 2.3.2., there are differing views 

on the required complexity of methodology for sentiment estimation. However, as research 

progresses in the domain of finance, researchers must utilize more up-to-date methods from 

computer-science in order to build a more realistic model to better capture sentiment. 

Therefore, future research should focus on trying to leverage content analysis techniques 

developed by different disciplines in order to build a better methodology for estimating 

investor sentiment in financial context. The aforementioned is advocated by Tetlock et al. 

(2008) and Li (2009), among others. 

Besides developing and leveraging new methodologies, existing methodologies require work. 

To paraphrase Berelson (1952): content analysis stands or falls by its categories. Therefore, 

while research continues to employ word counts based on dictionaries, the used dictionaries 

are in the center of the credibility and reliability of results. With the influential paper of 

Loughran and McDonald (2011), the status-quo position of Harvard Psychology Dictionary 

has come under scrutiny.
94

 Indeed, Loughran and McDonald advocate the use of their 

dictionaries in the context of finance. However, Loughran and McDonald’s dictionaries were 

created in the context of 10-k reports, and so far no other published study has tested Lougran 

and McDonald’s dictionaries  to our knowledge. In fact, Loughran and McDonald posit that 

future research should test their dictionary using different qualitative text sources from 10-ks. 

Also, before scholars convert from using Harvard Psychology Dictionary into using finance 

specific dictionaries, the results of Loughran and McDonald (2011) should be replicated using 

a different sample to ensure that the results are accurate  even in the context of 10-ks. 

In addition to methodological areas of interest, current studies have focused on studying 

short-term event windows without focus in the intermediate and long-term effects of 
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 To be fair, Loughran and McDonald (2011) do show that if employing a term weighting scheme, the 

introduced bias by Harvard Psychology Dictionary attenuates.  
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sentiment. Antweiler and Frank (2006) urge future research to include longer event windows 

in their studies to account for long-term effects of sentiment changes. Indeed, Engelberg 

(2008) and Demers and Vega (2010) have included such windows. However, there is yet 

much work to be done in analyzing sentiment change impact in different event windows. 

Intertwined with the issue of event window lengths, is the impact of investor sentiment on 

market efficiency, and the current debate between behavioral finance and efficient market 

proponents discussed in sections 2.1. and 2.2. Indeed, several content analysis papers have 

urged future research to focus on the impact of sentiment on market efficiency (e.g., 

Antweiler and Frank, 2006; Li, 2006; Davis et al,. 2008; Engelberg, 2008; Tetlock et al., 

2008). Therefore, studying the reaction of financial metrics on sentiment changes, and the 

subsequent theory development is crucial in the future. 

In addition to the above, consolidating media research into a comprehensive model of media 

effect on financial metrics offers great potential. Firm specific media coverage effects (e.g., 

Fang and Peress, 2009), aggregate market wide news activity (e.g., Hirsleifer et al., 2009) and 

firm specific extracted investor sentiment scores (e.g., Tetlock, 2007; Tetlock et al. 2008; 

Loughran and McDonald, 2011), have all been linked with future performance of financial 

metrics. Therefore, future research should attempt to analyze the relationship of all the 

aforementioned variables on financial metrics simultaneously to create a holistic picture of the 

impact of media on financial metrics. Indeed, there is no evidence to suggest that the effects 

are mutually exclusive as of now.  

Also, future research should attempt to incorporate all qualitative texts to truly analyze all the 

prevailing sources of sentiment simultaneously (as opposed to studying e.g. only the impact 

of an individual newspaper column). Indeed, some studies have used wide sources of 

qualitative texts at once when estimating sentiment (e.g., Chan, 2003; Kothari et al., 2008). 

Yet, the area offers great potential and should be of interest to future research.  

Finally, employing proven techniques to different data sets from different countries can also 

prove to be interesting. The subsequent findings on the potential difference can also shed light 

to studies relating to the different informational efficiency of different markets (i.e., fringe 

markets). Furthermore, developing new dictionaries for different languages, and testing the 

differences between information dissemination between different language sources can be 

extremely interesting. However, these topics are most likely not yet topical, but offer potential 

in the future once the nascent field has matured. 
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3 HYPOTHESES AND CONTRIBUTION 

In this section, we aim to highlight our place in the literature while describing the hypotheses 

we are studying. We will first describe the contribution our study makes to the field, and then 

move on to the hypotheses that underline our research. 

3.1 Contribution 

In section 2.4., we mapped out the various interesting areas requiring further research in the 

field of content analysis in finance. To contribute to the existing literature, we aim to study 

some of these areas. As a result, we contribute to the existing literature by:  

 Introducing new categories to the used finance lexicon. Recent models have typically 

used word lists of positive and negative words, focusing especially on negative words. 

However, as pointed out by Loughran and McDonald (2011), there are also many 

other word categories that can be helpful in detecting semantic orientations in 

financial and economic texts. To complement these, we add to the finance lexicon 

directional verbs and financial entities - words that require a directional verb to receive 

a polarity.  

 Testing the prior literature’s principal methodology for estimating investor sentiment: 

the vector word count, with the two most prevalent dictionaries utilized: the Loughran 

and McDonald (2011) dictionary, and the Harvard Psychology dictionary, in order to 

clarify the efficacy of the extant methodology, and the preferred dictionary for the 

methodology. 

 Testing Loughran and McDonald’s (2011) dictionary in an out-of-sample test with 

qualitative texts other than 10-k reports. 

 Developing a novel and a superior methodology, the Linear Phrase-Structure -model 

(LPS), for detecting semantic orientations in financial text Our methodology extends 

the categories used for determining sentiment and works beyond the level of detecting 

word lists
95

. 
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 To benefit from the domain-specific knowledge, which we add into the finance lexicons, one needs to have a 

model that is not restricted to frequencies of positive or negative words but is able to take the entire phrase-

structure into account. We extend the polarity-sequence framework of Moilanen et al. (2010) by accommodating 
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 Testing the three documented major media variables on financial metrics 

simultaneously in an attempt to create a holistic media model, and to isolate the 

significant media factors that drive variations in financial metrics. 

 Analyzing the impact different media factors have on financial metrics in a robust 

study employing a comprehensive cross-section of different qualitative texts with 

multiple event windows in order to attenuate concerns over data dredging. 

 Drawing conclusions on how limited attention (and related behavioral finance 

theories) could underlie the link between link between financial metrics and media 

factors. 

 Putting forward evidence concerning the efficiency of the market and the 

informational content of qualitative texts. 

3.2 Hypotheses 

We will now describe our hypotheses for the study that are based on prior literature 

introduced in Section 2. We begin by describing our hypothesis for the performance of our 

novel sentiment estimation methodology (Linearized Phrase-Structure -model) vis-à-vis a 

word count method that employs the two most prominent existing dictionaries. We will then 

describe our hypotheses for the impact of our main variables on abnormal returns. From there 

on, we will describe the hypotheses relating to trading volume and our main variables. 

Finally, we will explain the hypotheses concerning abnormal volatility and our main 

variables. For each of the subsections, we describe first the hypothesis to link the variable to 

sentiment, then to market news volume, and finally to firm-specific news volume. After 

describing each hypothesis, we also outline what alternative explanations be possibly exist in 

the market in the case that our hypothesis would not hold. 

3.2.1 Sentiment methodology hypotheses 

At the core of our study, we have developed a new methodology for better measuring 

sentiment. Compared to ‘bag-of-words methods’, we expect Linearized Phrase-Structure -

model to lead to more accurate estimates of sentiment. Therefore, our first hypothesis is: 

                                                                                                                                                         
elements which are particularly relevant for the financial domain. The most important differences to this method 

that we use to enhance the method include: (1) the inclusion of finance-specific entities into the polarity 

sequence model; and (2) the inclusion of interactions between financial concepts and verbs or other direction-

giving expressions 
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H1: Linearized Phrase-Structure -model outperforms the existing prevalent 

methodologies used for sentiment estimation in financial context. 

Alternatively, in the case that the bag-of-words method with prevalent dictionaries 

outperforms Linearized Phrase-Structure -model, we suggest that the outcome is because 

Linearized Phrase-Structure -model limitations lead to a significant measurement error. 

3.2.2 Abnormal return hypotheses 

In terms of returns, we aim to find a connection to sentiment. Our hypothesis stems from the 

limited attention theory, and states as follows: 

H2a: Investor sentiment forecasts future abnormal returns in all event 

windows through underreaction to sentiment changes. 

This also implies that we expect information content to dominate over tone and style effects. 

On the other hand, we recognize the fact that tone and style effects could also dominate over 

information content. Also, if sentiment has no impact on abnormal returns, this could be due 

to the fact that markets efficiently incorporate new information to prices, and that at an 

aggregate market level markets are efficient, or that there is no new information in news. 

In addition to sentiment, we expect aggregate market news volume to have an impact on 

returns. More precisely, we expect news volume to distract investors in line with limited 

attention theory, increasing the underreaction. Hence the hypothesis: 

H2b: Aggregate market news volume has a positive relationship with 

abnormal returns in longer event windows, while having a neutral, or 

negative, relationship with the 1-day event window. 

In the case that there is no relationship between aggregate market news volume and abnormal 

returns, we hypothesize that this is due to the fact that on an aggregate level, markets are not 

affected by information processing constraints. In other words, limited attention is not 

impacting the aggregate market, and the market disseminates information efficiently. 

In terms of firm-specific news volume, several news items can attract more investor attention 

that results in a faster dissemination of information, and therefore no long-term abnormal 
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returns.
96

 In other words, the relationship is the opposite compared to aggregate market news 

volume. Our hypothesis for firm news volume states as follows: 

H2c: Firm news volume is negatively related to abnormal returns. 

In the case that there is a clear positive relationship between firm specific news and abnormal 

returns, we hypothesize that this is due to the fact that noise traders are attracted towards 

attention grabbing stocks, and their trades cause prices to deviate from fundamentals resulting 

in abnormal returns. In the case that there is no reaction, markets are efficient and firm 

specific news volume bears no correlation to returns. 

 

3.2.3 Abnormal volume hypotheses 

In terms of the link between trading volume and investor sentiment, there may be two 

scenarios. Either investors react more to the tone of the text, or alternatively to the 

information content within the text. Based on prior literature, we hypothesize that the latter 

effect dominates. Therefore the hypothesis: 

H3a: Investor sentiment is related to a small increase, or no reaction, in 

abnormal trading volume over short time-periods, and with no-reaction or 

positive reaction in the long-term 

However, tone of text could also dominate over content. In such instance, we would expect 

sentiment changes to still have a very similar relationship to abnormal volumes as suggested 

in primary hypothesis. Investors would first trade based on tone, and then trade again to 

reverse their prior trades as the true nature of fundamental information is revealed. 

Linking market news volume to trading volume is another interesting research question. We 

hypothesize that aggregate market news volume distracts investors, resulting in underreaction 

to information. We expect that this leads to a market where: 

H3b: Market news volume has a negative relationship, or no relationship, 

with abnormal trading volume in the succeeding day, and a positive 

relationship with abnormal trading volume on the longer event windows. 

                                                 
96

 Also, multiple ‘experts’ effect can be argued to take place when more news are present. The information 

credibility increased; therefore, decreasing the discounting of qualitative texts, and subsequently increasing the 

dissemination of information. 
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Alternatively, in the case of no relationship at all, the aggregate market may not be distracted 

by the amount of news flooding the market. In this case, the aggregate market would 

disseminate information efficiently, and not be affected by limited attention. 

Next, we aim to link the firm specific news volume variable to trading volume. For this, we 

hypothesize that firm specific coverage increases attention towards a firm, resulting in faster 

information dissemination. This leads to the hypothesis: 

H3c: Firm specific news volume has a positive initial relationship with 

abnormal volume followed by a declining, or neutral, relationship with the 

longer event windows. 

Alternatively, attention grabbing stocks could have a positive relationship with abnormal 

volume across all event windows as investors are more prone to buy attention stocks. Prior 

empirical evidence on the topic is mixed and we recognize that such hypothesis could be a 

viable alternative. 

3.2.4 Abnormal volatility hypotheses 

Researchers have also been interested in the link between volatility and sentiment. We expect 

sentiment changes to increase future idiosyncratic volatility according to the findings of 

previous literature. In line with prior literature, we hypothesize that noise traders exist in the 

market, and react to sentiment changes with exaggerated action: 

H4a: Sentiment changes lead to increased abnormal volatility. 

In the case that sentiment changes do not explain idiosyncratic volatility variations, an 

alternative explanation could lie in our sentiment estimation methodology. In other words, our 

sentiment estimate would not be accurate enough, and would therefore introduce too large 

measurement errors that mask the true relationship. 

In terms of linking volatility with market news volume, literature has not documented a clear 

relationship between market news volume and abnormal volatility. Therefore, we hypothesize 

that: 

H4b: There is no significant relationship between market news volume and 

firm-specific abnormal volatility. 
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In the case that we find a pattern linking aggregate market news volume to firm specific 

idiosyncratic volatility, we offer a preliminary hypothesis that such a relationship might proxy 

for market wide volatility that impacts firm specific volatility. 

Finally, we are interested in firm specific news volume and volatility. For this, we expect that 

attention grabbing stocks attract more noise traders to trade on the stock:  

H4c: Firm specific news volume increases abnormal volatility. 

In the case that there is no significant relationship between firm specific news volume and 

idiosyncratic volatility, we hypothesize that this is due to the fact that the market is 

sufficiently efficient to correct the trades of noise traders in a manner that attenuates 

idiosyncratic volatility. Therefore, no significant increases in idiosyncratic volatility would be 

detected. 

In total, we proceed with ten hypotheses: one regarding the performance of our sentiment 

estimate, and nine regarding the link of media variables and stock performance. To 

summarize our expectations, we have gathered our hypotheses in the table below. 
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Table 1: Hypotheses of the study 

Hypotheses from previous subsection are collected and briefly summarized in this table. 

 

Sentiment estimation 

H1 Linearized Phrase-Structure -model outperforms the existing word-count based methodologies 

used for sentiment estimation in financial context. 

Abnormal returns 

H2a Investor sentiment forecasts future abnormal returns in all event windows through underreaction 

to sentiment changes. 

H2b Aggregate market news volume has a positive relationship with abnormal returns in longer event 

windows, while having a neutral, or negative, relationship with the 1-day event window. 

H2c Firm news volume is negatively related to abnormal returns. 

Abnormal volume 

H3a Investor sentiment is related to a small increase, or no reaction, in abnormal trading volume over 

short-term, and with no reaction, or positive reaction, in long-term 

H3b Market news volume has a negative relationship, or no relationship, with abnormal trading 

volume in the succeeding day, and a positive relationship with abnormal trading volume on the 

longer event windows. 

H3c Firm specific news volume has a positive initial relationship with abnormal volume followed by a 

declining, or neutral, relationship with the longer event windows. 

Abnormal volatility 

H4a Sentiment changes lead to increased abnormal volatility. 

H4b There is no significant relationship between market news volume and firm-specific abnormal 

volatility. 

H4c Firm specific news volume increases abnormal volatility. 
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4 DATA  

In this section we describe our data. We start by describing our time period and the firm 

sample for which we have downloaded our variables. Next, we explain how we have chosen 

our main and control variables, and how we define them. Finally, we describe the process of 

collecting financial and media data for our sample as well as the sources we have used. 

4.1 Time period and selected sample 

We have selected to download our media sample between January 1
st
 2006 and March 31

st
  

2011. We have chosen the period as it covers a full business cycle, including both sides of the 

crisis period of 2007-2009. As a result, our sample should resemble a full economic cycle, 

and therefore be unbiased from cycle dependent patterns. 

During our sample period, the largest significant event in magnitude has been the financial 

crisis: starting with a housing boom fueled by innovative financial instruments, the credit 

market spiraled out of control and finally burst. Consequently, the stock market experienced a 

tremendous decline followed by several infamous bankruptcies from well-established and 

influential companies such as: Bear Stearns and Lehman Brothers. Especially the financial 

sector was shaken by the aforementioned collapses. Furthermore, as the credit crunch 

escalated, the financial crisis quickly developed into a full-blown economic crisis that struck a 

strong backlash to the entire real economy of the United States. For instance, car 

manufacturers were hit hard by the bankruptcies of Chrysler and General Motors. As a result, 

volatility and risk premiums hit record levels in late 2008 and early 2009. Moreover, with the 

intertwined banking systems, the U.S. crisis quickly spread across borders resulting in a 

global recession. The aftermath of the financial crisis continues even at the time of the writing 

when Europe struggles against the lack of confidence the markets has towards the Euro 

currency, and the sovereign government debt issues of European countries. The 

aforementioned has been dubbed as the Euro crisis. 

In addition to the financial crisis, other significant global events include: the collapse of 

Iceland's economy, the anti-China protectionist movement in the U.S. fueled by China’s 

artificially low renminbi levels, highly volatile commodity markets and the largest Ponzi-

scheme in the history: the Madoff scandal. Also, in terms of natural calamities: Iceland's 

volcanoes have restricted European flight traffic heavily, and Japan's earthquake and tsunami 
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in March 2011 have also shaken the markets. At the end of our sample period, the Mideast 

uprising has been another dominating theme in the top news. The chart below illustrates how 

the stock market has performed during our selected time period. As can be seen from the 

chart, the time horizon covers fairly well a full economic cycle. 

 

Figure 3: Development of S&P100 during sample period. Index=100 on 1 Jan 2006 

For our sample, we have selected the S&P100 firms for their large coverage in news due to 

their strong status in the economy. Furthermore, with S&P 100 firms, the data on the stocks is 

easily obtainable, accurate, and the majority of the news are in English. The aforementioned 

is important as the majority of natural language processing technologies have been developed 

for English, and doing a study for another language would significantly complicate the 

detection of sentiment. Also, English is a fairly straightforward language for the purpose of 

analysis whereas other languages, such as Finnish, can be remarkably more burdensome to 

analyze due to postpositions in language.  In Finnish, for instance: ‘a language’ translates as 

‘kieli’, while the expression ‘in a language’ translates into ‘kielessä’, making the simple task 

of a word count much harder in Finnish vis-à-vis English. With English, the aforesaid 

challenge can be avoided. 

We downloaded the list of S&P100 constituents and their tickers from Standard and Poor’s 

website on the 15
th

 June 2011. All S&P100 constituents are large cap (market capitalization 

over one billion euros). The largest companies in the list, by market cap, on the 31
st
 March 

2011 are: Exxon Mobil, Apple and Chevron. The industry with the most companies is 

transportation.  
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Table 2: S&P100 summary statistics 

Industry # of companies  Market capitalization, USDbn 

Transportation 10  Average 79 

Retail 8  Median 51 

Banking 8  Maximum 414 

Petroleum and Gas 8  Minimum 12 

Pramaceutcal Products 7    

Computers 6    

Telecommunications 5    

Business Services 5    

Utilities 5    

Insurance 4    

Other (17 industries) 34    

 

4.2 Study variables 

In order to study the effects of investor sentiment on financial metrics, we need to establish 

what financial metrics we wish to study as well as how we will estimate investor sentiment.
97

 

Furthermore, we need to establish a proper set of control variables for our study so that our 

main study variables are not simply acting as a proxy for an omitted variable. 

We will start by specifying the main variables of interest to our study: the dependent variables 

that capture a specific financial metric of interest and the key independent variables that we 

believe will explain variations in the dependent variables. After defining the main variables, 

we will move on to describe the set of control variables that we will include in our study to 

take into account the variables that are documented to have a relationship with our dependent 

variables. Finally, we also describe a set of additional control variables that we use later on 

for robustness checks.  

For a summary of variables, we refer the reader to Appendix B – Main variable definitions, 

Appendix C - Main specification control variable definitions, and to Appendix D – 

Alternative specification control variable definitions. The aforementioned appendices define 

briefly our variables, and give some relevant prior literature reference examples. 

                                                 
97

 In Section 5.1 Estimating investor sentiment, we will discuss our definition of investor sentiment in more 

detail. 
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4.2.1 Main Variables 

Previous literature on content analysis in the domain of finance and accounting has mainly 

focused on analyzing the relationship between an estimate of investor sentiment
98

 and a 

specific financial metric. Five financial metrics that have been used most commonly include: 

raw returns
99

, abnormal returns
100

, trading volume
101

, return volatility
102

and earnings
103

. The 

most common estimates for investor sentiment have included: a market news volume count, a 

firm specific volume count and a sentiment score, developed from news article through a 

content analysis method. 

We have chosen to focus on the following financial metrics in our study: abnormal returns, 

trading volume and abnormal return volatility. Our focus is motivated by our interest in stock 

related metrics. In explanatory variables, we have chosen to include three different variables 

to capture  and dissect the effect of investor sentiment on financial metrics. The variables 

chosen are: market news volume, firm news volume and an estimate for sentiment. We will 

describe our definition of each of the variables in more detail below. For discussion on our 

specifications, we refer the reader to Section 5.2.1., and for a summary of dependent and main 

variable definitions we refer the reader to section 4.2. 

Abnormal returns 

In order for us to estimate abnormal returns for our event windows, we need to define a 

benchmark return. Barber and Lyon (1997), concurrently with Daniel and Titman (1997), 

have shown that using matching portfolios based on size and book-to-market have produced 

more accurate test statistics than factor based models (i.e., Fama and French three-factor 

model: Fama and French, 1993). Recent literature on content analysis in the domain of 

finance has often relied on matching portfolio methodology for calculating abnormal returns 

(e.g. Chan, 2003; Engelberg, 2008; Hirshleifer et al., 2009; Demers and Vega, 2010). Hence, 

we adopt Fama and French’s (1992) matching portfolio approach to calculate benchmark 

returns. The method divides the market into a number of portfolios according to company size 

(market equity) and book-to-market ratio. The idea is that companies with the same size and 

                                                 
98

 Also referred to as linguistic ‘tone’ or ‘style’ (e.g., Davis et a., 2008; Loughran and McDonald, 2011) 
99

 E.g., Chan, 2003; Antweiler and Frank, 2004; Tetlock, 2007; Tetlock et al., 2008 
100

E.g., Chan, 2003; Li, 2006; Engelberg, 2008; Tetlock et al., 2008; Hirsleifer et al., 2009; Demers and Vega, 

2010; Loughran and McDonald, 2011 
101

 E.g., Antweiler and Frank, 2004, 2006; Tetlock, 2007; Hirsleifer et al., 2009; Loughran and McDonald, 2011 
102

 E.g., Antweiler and Frank, 2004; Demers and Vega, 2010; Loughran and McDonald, 2011 
103

 E.g., Li, 2006, 2008; Tetlock et al., 2008; Loughran and McDonald, 2011 
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book-to-market ratios should yield same returns. As a robust check, we replicate our results 

using alternative definitions
104

 for returns.
105

  

To calculate the benchmark returns for the matching portfolios, we use daily returns that are 

retrieved from Kenneth French’s website.
106

 The 25 matching portfolios, which have been 

constructed at the end of each June, are the intersections of 5 portfolios based on size: market 

equity [ME], and 5 portfolios formed on the ratio of book equity [BE] to market equity 

[BE/ME]. The size breakpoints for a given year are the NYSE market equity quintiles at the 

end of June of the respective year. BE/ME -ratio for June of a given year is the book equity 

for the last fiscal year end before the respective year divided by the market equity for 

December of the preceding year. The BE/ME breakpoints are the NYSE quintiles. As a 

weighting scheme, we choose to use equal weights in line with previous literature that has 

disclosed the used weighting scheme (e.g., Chan, 2003; Demers and Vega, 2010).
107

 

To match our firms with a correct portfolio, we use the market equity [ME] and book-to-

market values [BE/ME] for each S&P100 companies. Hence, we can find the corresponding 

portfolio for each of the S&P100 companies. As we are dealing with S&P100 firms, 99.5% of 

our observations are ranked within the largest category in terms of market equity, and all the 

observations fit within the three top categories of market equity.  

To calculate event period abnormal returns, we use a buy-and-hold approach in an attempt to 

better capture the true impact for an investor vis-à-vis using cumulative abnormal returns 

[CARs], or other variants of return methodologies. Buy-and-hold approach has been used in 

recent literature by Loughran (2011) and Hirsleifer et al. (2009)
108

. 

When calculating abnormal returns, we use close-to-close prices in our event window. 

Therefore, event window [0,1] would read as: share bought at the closing price of day 0 and 

                                                 
104

 For more discussion on alternative methodologies for returns, see Section 5.4.2. 
105

 We test raw returns (e.g., Tetlock, 2007) and alternative abnormal return benchmarks: value weighted S&P 

100 returns (e.g., Loughran and McDonald, 2011) and the Fama and French three-factor model (e.g., Tetlock et 

al,. 2008). Our results are qualitatively similar with marginal changes in coefficients’ statistical significance. 
106

 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html - retrieved on the 25
th

 July 2012. 
107

 Our results are robust for using value weight returns, and do not disappear with the change of weighting 

scheme as suggested by Fama (1998). However, the magnitude of our results diminishes to some extent when 

using value weights. 
108

 To take into account the critique directed towards results from buy-and-hold strategies (e.g.,; Mitchell and 

Stafford, 1997; Fama, 1998), we replicate our results using cumulative abnormal returns [CARs] as in Engelberg 

(2008) and Demers and Vega (2010). In line with the critique of Fama (1998) and Mitchell and Stafford (1997), 

we find that our coefficient estimates decrease in magnitude when using CARs instead of buy-and-hold returns. 

However, our results remain qualitatively unchanged. 
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sold at the closing price of day 1
109

. To study the relationship between abnormal returns and 

our main variables, we define several different event windows: first, we will study the 

abnormal performance of a firm on the following day after the event day [0,1] (e.g., Tetlock, 

2007; Tetlock et al., 2008; Hirsleifer et al., 2009); second, we will expand our event window 

slightly to 4 days [1,5] to examine whether or not a prolonged short-term effect is in play 

(e.g., Griffin, 2003; Engelberg, 2008; Demers and Vega, 2010; Loughran and McDonald, 

2011); third, we will move on to analyze intermediate effect by modifying our event window 

into a 30-day window [2,32]; finally, we will examine the potential long-term impact by 

broadening our event window into 60 days [2,62] (e.g., Engelberg, 2008; Hirsleifer et al, 

2009; Demers and Vega, 2010).  

All of our windows exclude the event date returns as we cannot be certain when the event 

occurs during the day. For example, let us illustrate our point through trading strategy 

example: if we know that the sentiment for the event day [0] is significantly negative, we 

would want to short the stock in question. However, in the absence of accurate time stamps on 

news, and intraday stock price data, we cannot open a position based on the opening price of 

the event date, as that would imply that we would “see into the future”. We do not know when 

the sentiment turned negative during the day or after market close: all we know that the 

sentiment for the day was negative. Hence, for example, the sentiment might have turned 

negative before midnight with the release of few influential articles in Asia. As a result, we 

begin all of our event windows after day 0 in all windows to be certain that we are comparing 

returns that take place after the sentiment change, and the causality of events is correct.
110

 

Previous literature has used a multitude of event windows to study the potential relationship 

with sentiment and returns. All of the above example references do not per se use the 

same exact event windows. However, they all study a similar time horizon: short, 

intermediate or long. In order to avoid data dredging concerns expressed by the proponents of 
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 When comparing results with different studies, the reader should be aware that some studies report event 

windows using opening and closing prices. Therefore [0,1] would read as: share bought at the opening price of 

day 0 and sold at the closing price of day 1 that would equal - in our definition - an event window of [-1,1]. 
110

 As we do not have access to intraday data like Tetlock (2007) and Tetlock et al. (2008), we cannot judge 

market efficiency with the short-term window of [0,1] as it is possible that markets have reacted instantaneously 

to new information. Furthermore, for majority of the news, LexisNexis stores only the date of the news. Thus, 

we do not have information on the actual release time of the news or even the time zone of the date. This makes 

it impossible to study precisely the immediate stock reaction to the release of a news item. In other words, we 

cannot separate when the actual sentiment change has taken place during day 0. Therefore, sentiment change 

might have taken place after the closing price of day 0, and the new information would then be immediately 

reflected in the opening price of day 1. As a result, event window [0,1] is aimed at establishing a link between 

sentiment and financial metrics, not to draw inference on the speed of information dissemination. 
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EMH with subjective event windows (e.g., Fama, 1991), we employ several different event 

windows that have been designed to be as objective as possible. As discussed, we employ 

event windows [0,1], [1,5], [2,32] and [2,62] for abnormal returns. 

Abnormal volume 

In line with the recent literature in content analysis (e.g. Tetlock, 2007; Hirsleifer et al., 2009; 

Loughran and McDonald, 2011) we are examining the effects of investor sentiment on trading 

volume. Consistent with the previous research, we define trading volume in terms of 

abnormal trading volume. In the absence of a consistent definition in previous literature for 

measuring abnormal trading volume, we rely on the definition used by the most recent 

publication of interest: Loughran and McDonald (2011). Therefore, we define abnormal 

trading volume for an event as the sum of the daily abnormal volumes for the event window. 

In other words, for event window [2,5] the abnormal volume would be the sum of the event 

day abnormal volumes during the time period (sum of abnormal volumes for days [2],[3],[4] 

and [5]. Abnormal volume for a day is defined as the difference of the event day trading 

volume and the mean trading volume for [-62, -2] divided by the standard deviation of trading 

volumes for [-62, -2].  To summarize, we calculate abnormal volume for day  t as: 

Standardized abnormal volume for      = 
       

  
=   

    
∑       

  

          
 

where Vn represents the absolute trading volume at time n. 

As we do not foresee any specific reason as to why we should employ different event 

windows with volume vis-à-vis returns, we run our specification with the same four event 

windows discussed in the previous section in order to maintain consistency within the study. 

We calculate abnormal volume for the same event windows as for returns: [1], [2,5], [3,32], 

[3,62]. Note that the notation changes slightly with volume vis-à-vis returns even though the 

event window remains the same. The reason is that with returns we are using closing prices 

and with volume we are reporting the actual days that volume is counted in the event window. 

Therefore, [0,1] in returns would report a return for 1-day period utilizing closing prices 

whereas volume notation [1] reports the same thing: volume for 1-day period. 
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Abnormal volatility 

Following the studies of Demers and Vega (2010) and Loughran and McDonald (2011), we 

study the impact of investor sentiment on the subsequent volatility of abnormal returns.
111

 As 

we are not interested in systematic volatility, we use abnormal returns to isolate the 

idiosyncratic volatility related to a given firm. We define the volatility of abnormal returns as 

the standard deviation of daily abnormal returns for the event window in question.  

Demers and Vega (2010) define abnormal return volatility as the logarithm of the sum of 

squared abnormal daily returns during the event window while Loughran and McDonald 

(2011) define abnormal return volatility as the root-mean square error from a Fama-French 

(1993) three-factor model. Our results are not sensitive to changes in the definition of 

abnormal return volatility.  

To assess abnormal idiosyncratic volatility, we rely on two of the same event windows we 

have used before: 30-day window [2,32] and 60 day window [2,62]. The shorter event 

windows have been excluded for the lack of observations in which to base the volatility 

calculations.
112

 

Market news volume 

Hirsleifer et al. (2009) find that simultaneous earnings press releases distract investors, 

resulting in stronger post-announcement drifts on days when there are large quantities of news 

released vis-à-vis days when there are low quantities of news released. Therefore, we include 

a market news volume variable to capture the distraction effect demonstrated by Hirsleifer et 

al. (2009). 

We define the market news volume as the number of all the different media items for the 

given firms for a given day. To elaborate further, if there are three firms in the market [A, B, 

and C], and firm A has 3 different news articles on day 1, and firms B and C have 1 news 

items each on day 1, then the market news volume would equal 5 for day 1 [= 3+1+1].  

Also, we run an alternative specification with standardized market news volume to see if 

seasonality is driving our results with the variable. Furthermore, we test for the impact of 
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 Abnormal returns are defined against the benchmark of 25 size and book-to-market matched portfolios 
112

We believe that the 4-day event period would provide too much noise in the estimate of volatility to provide 

any useful insight into the relationship with our main variables. Our approach differs in this stance from that 

used by Demers and Vega (2010) who employ a short-term event window in addition to the long-term window. 
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abnormal market news volume using previous year’s average volume. We define the 

standardized form of the variable for day 0 as: 

(                                   )

                                   
 

Firm news volume 

Some recent studies have suggested that firm-specific media coverage can affect a firm’s 

returns (e.g., Fang and Peress, 2009; Loukusa, P, 2011). Hypotheses for the suggested link 

vary. For instance, Demers and Vega (2010) suggest that the presence of multiple experts: 

different sources of same information, can affect the impact that investor sentiment has on 

abnormal returns. Therefore, the presence of multiple news articles on a given day could 

impact abnormal returns. Also, firm specific news coverage could potentially represent the 

attention directed towards a company. Therefore, in line with limited attention, it could signal 

that the company has more attention directed towards it and therefore experiences less 

underreaction. In spite of mixed evidence, we include a proxy for firm-specific media 

coverage to study the potential effect. We define the firm news volume for a given day as the 

number of the different news items for a given firm on a given day. In example, if a firm has 3 

different news items on a given day, the firm news volume variable would take the value of 3 

for that day. 

As with market news volume, we run an alternative specification
113

 with standardized firm 

specific news volume to test the impact of abnormal news volume with seasonal adjustment. 

We define the standardized form of the variable for day 0 as: 

(                                   )

                                   
 

Sentiment estimate 

We discuss our primary sentiment estimation methodology in more detail in: Section 5.1. 

However, here we will briefly discuss the two different approaches we use for estimating 

investor sentiment: ‘bag-of-words’ vector words counts, and the idea of Linearized Phrase-
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 More on this in Section 6.3.2 
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Structure -model
114

. Linearized Phrase-Structure -model is our novel method for estimating 

investor sentiment that will be the primary method used in our study. 

To capture the sentiment of a news article, several studies have attempted to use various 

content analysis methods with the most common used method being a word count (i.e., ‘bag-

of-words’ vector word count) based on a predefined dictionary.
115

 Word count method relies 

on an intuitive assumption that a positive text includes more positive words, and a negative 

text includes more negative ones. Thus, by counting the positive and negative words in a 

news article, an article with many positive words should be positive, and vice versa.  

Counting words is a relatively straight forward task: an algorithm is given a list of words from 

a dictionary, and it calculates the frequency of each word in an article. To ensure that we 

count all the correct occurrences, we either need to take into account all inflection forms (e.g. 

‘bull’ and ‘bullish’), or alternatively convert all words to their lemma form (e.g., ‘bull’). 

Furthermore, in the case of inflections, it is critical to make sure that only exact matches are 

compared against the list to avoid double counting. For instance, searching with ‘bull’ could 

find both ‘bull’ and ‘bullish’, and ‘bullish’ could find ‘bullish’ again. Therefore, double 

counting would occur in this instance. 

The most established used dictionary so far has been the Harvard Psychology Dictionary 

(H4N).
116

 In fact, since the seminal study of Tetlock (2007), in which Tetlock shows that 

negative word counts using the Harvard Psychology negative word category divided by the 

total number of words for a news article explain most of the variation in returns, the majority 

of studies has focused on the fraction of negative words as defined by the H4N.
117

 

However, the caveat with using word lists is the domain-specificity of dictionaries: the 

meaning of a word is domain specific in many instances. In fact, Loughran and McDonald 

(2011) show that in financial context the H4N dictionary misclassifies approximately 73% of 
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 When testing for efficiency of our categorization algorithm, we benchmark this also against quasi-

compositional sequencing. As this method has not been used in previous finance literature and is clearly 

outperformed by the LPS, we do not use the method when testing for sentiment and stock performance. 
115

 e.g., Li, 2006; Tetlock, 2007; Bligh and Hess, 2007; Engelberg, 2008; Davis et al., 2008; Tetlock et al., 2008;  

Demers and Vega, 2010; Loughran and McDonald, 2011. 
116

 e.g., Tetlock, 2007; Engelberg, 2008; Tetlock et al., 2008; Demers and Vega, 2010; Loughran and McDonald, 

2011. 
117

 Tetlock (2007) constructs a 77x77 covariance matrix from all the categories in the Harvard dictionary in order 

to construct a linear combination variable that captures most of the variation in the matrix based on the 77 

Harvard dictionary categories. However, after constructing the variable, and studying its impact, Tetlock 

concludes that simply using the negative word category is a fair proxy for sentiment that captures the variation in 

an equivalent manner vis-à-vis the linear combination variable. 
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the words as being negative when in fact they are not. For example, ‘tax’ is regarded as a 

negative expression in Harvard dictionary. However, when reading a financial statement, the 

word ‘tax’ does not have a negative meaning but simply describes a firm’s tax position. In 

fact, Loughran and McDonald point out that misclassifications can induce spurious 

correlations, and therefore transcend the status of simply adding noise to the estimate. 

Therefore, researchers should use domain specific dictionaries when employing word counts. 

For that purpose, Loughran and McDonald develop a dictionary with six different word lists 

to be used in financial context. 

The idea that dictionaries are crucial for the success of content analysis is not a novel one. In 

fact, to paraphrase Berelson (1952): content analysis stands or falls by its categories. Hence, 

we will test both of the aforementioned dictionaries in our study in an attempt to evaluate the 

efficacy of the dictionaries as well as to compare them with our primary methodology.
118

 For 

a description of how we aggregate sentiment of multiple news items on a day, we refer the 

reader to Section 5.2. 

Our primary method for estimating investor sentiment: Linearized Phrase-Structure -model, is 

a novel method developed for this study. We employ a natural language programming 

algorithm that captures sentiment on a sentence level, and then analyzes the sentiment of the 

article by looking at the aggregation of sentence sentiments inside the article. We refer the 

reader to Section 5.1 for more information on investor sentiment estimation with the various 

methods. 

4.2.2 Control Variables 

In Section 2.1.3, we described several known anomalies that have been shown to explain 

abnormal returns in contradiction to the efficient market hypothesis [EMH]. In order for us to 

study the effect of investor sentiment on financial metrics, we must control for the impact that 

other known variables have with our dependent variables. Therefore, we include a set of 

control variables into our study.  

                                                 
118

 We will use the negative fraction of words for the sake of consistency with prior studies even though 

Loughran and McDonald (2011) compellingly argue for the use of term weighting functions. Furthermore, we 

refrain from standardizing the negative fraction as we believe that our sample might exhibit systematic increase 

in negativity due to the financial crisis that should not be smoothened out. Furthermore, Engelberg (2008) finds 

similar results with and without standardization; therefore, we do not foresee a problem with our choice of 

methodology. 
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Our underlying goal for selecting controls is to be consistent with previous literature and to 

create a comprehensive set of controls in order to mitigate the risk of an omitted variable 

driving our results. Our controls include both dummy (binomial) and continuous number 

variables. 

We begin by discussing controls used in our main specifications. From there on, we move on 

to describe the additional controls we employ in our alternative specifications as robustness 

checks. Once again, we refer the reader to Section 5.2.1. for more discussion on our study 

specifications.  

Main specification controls 

Most of our control variables are designed to control for the different documented anomalies 

relating to abnormal returns.
119

 However, prior literature has commonly used the same 

controls with other dependent variables as well. Therefore, we employ a similar set of 

controls to all our main specifications with the exception of abnormal volume specification 

where we add abnormal market trading volume to the set of controls. More information on the 

main specifications of our study can be found in Section 5.4.1., and for a summary of the 

variables discussed in this section we refer the reader to Appendix C - Main specification 

control variable definitions. 

Size 

In order to control for the size effect discovered in previous studies on cross-sections of 

returns, we include a control variable for firm size. We define firm size as the log of market 

equity. Market equity is taken as reported on Datastream. Our definition of size follows that 

of Tetlock et al. (2008), Hirsleifer et al. (2009) and Loughran and McDonald (2011), among 

others. By controlling for size we follow the mainstream approach of modern finance 

research. 

Book-to-market 

In line with modern finance research and the most recent influential content analysis papers, 

we control for book-to-market in our specifications. We define book-to-market as the log of: 
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 In truth, as we are using matching portfolios as benchmark returns, several of our control variables should be 

implicitly controlled by the benchmark returns. Nevertheless, we include such controls in order to be as robust as 

possible. 
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one plus market equity divided by the last reported book value of equity. This is in line with, 

for instance: Tetlock et al. (2008) and Hirsleifer et al. (2009). 

Momentum 

Since the seminal articles by DeBondt and Thaler (1985) and Jegadeesh and Titman (1993), 

research has documented a relationship between past returns and future abnormal returns.
120

 

The two different effects have been named reversal effect and momentum effect. To 

investigate the impact of past returns on future abnormal returns we include three different 

controls of past abnormal returns: 

 Short-term abnormal returns [-4,-1] 

 Intermediate-term abnormal returns [-34, -4] 

 Long-term abnormal returns [-255, -34] 

Our event windows for the momentum variables are similar to those of Tetlock et al. (2008). 

Other influential content analysis papers have mainly relied on one momentum variable that 

captures the past returns of a year (e.g., Loughran and McDonald, 2011) but we choose to 

dissect the one year variable into several different variables to study the impact of past returns 

in more detail. Abnormal returns are defined as described in Section 4.2.1.  

Share turnover 

In line with the previous mainstream finance literature, and recent content analysis papers 

(e.g., Tetlock et al., 2008; Hirsleifer et al., 2009; Demers and Vega, 2010; Loughran and 

McDonald, 2011), we include share turnover to our controls in order to control for the 

liquidity of the stock and belief dispersion concerning the stock (e.g., Hong and Stein, 2003), 

and the subsequent impact on returns. We define share turnover as the log of: 1 + sum of the 

volumes for [-252, -2], divided by shares outstanding at event date. Our definition is similar to 

that used by Loughran and McDonald (2011). 

Standard unexpected earnings [SUE] 

In order to control for the well-known post-earnings announcement drift [PEAD], we include 

standard unexpected earnings variable. Previous literature on content analysis in finance 

domain has consistently included SUE in their controls, or as the dependent variable in their 

                                                 
120

 Refer to Section 2.1.3. for more information on the findings of prior literature. 
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specifications (e.g., Li, 2006; Tetlock et al., 2008; Davis et al,. 2008; Hirsleifer et al., 2009; 

Demers and Vega, 2010; Loughran and McDonald, 2011). However, previous research has 

defined SUE in myriad ways. The significant difference between definitions culminates in the 

scaling / standardization procedure used for SUE. Tetlock et al. (2008) and Demers and Vega 

(2010) use the time series method of Bernard and Thomas (1989) to standardize unexpected 

earnings with the standard deviation of the previous 20 quarters of unexpected earnings. 

Davis et al. (2008), Hirsleifer et al. (2009) and Loughran and McDonald (2011), on the other 

hand, standardize unexpected earnings using the stock price of the firm. We rely on the latter 

methodology as it has gained more exposure on recent influential studies, and is more 

pragmatic to implement. 

We define SUE as the difference between the last reported quarter’s EPS and the 

corresponding last median analyst forecast for that EPS divided by the closing share price on 

the day of the respective earnings announcement. 

Abnormal volatility 

If investor sentiment has predictive power over abnormal returns in contradiction with the 

prediction of the efficient market hypothesis, we must establish whether or not this is due to 

limits to arbitrage.
121

 As pointed out by Shleifer and Vishny (1997), agents may not trade on 

information they have if they face constraints.
122

  In order to evaluate whether agents face 

constraints, we include a control for idiosyncratic volatility: the most common proxy for 

arbitrage risk used in main stream finance literature (e.g., Engelberg, 2008). We define 

abnormal volatility as the standard deviation of daily abnormal returns for the time period of 

[-252, -2]. 

Institutional ownership 

Some researchers (e.g., Frazzini, 2006) have suggested that irrational trading by institutions is 

a source of post-earnings announcement drift [PEAD]. Hence, institutional ownership could 

be a determinant of abnormal returns. Also, according to the limited attention theory
123

, 

institutional ownership can have an impact on abnormal returns. As investors’ attention is 

limited, they face information processing costs. Therefore, investors with more processing 
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 See Section 2.1.4. Limits to Arbitrage for more information on the topic. 
122

 Also, prior literature has shown that uncertain firms: measured by volatility or the nature of their 

environment, face more severe underreaction, and hence are impacted more heavily by investor sentiment (e.g., 

Brav and Heaton, 2002; Dye and Sridhar, 2004; Engelberg, 2008) 
123

 See Section 2.2.1. for more details. 
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capacity should be ahead of the curve and capture abnormal returns. Previous literature (e.g., 

Engelberg, 2008) assumes that institutions have more processing capacity than individuals. 

Therefore, in light of limited attention theory, institutions should earn abnormal returns. 

Moreover, in light of our study, investor sentiment should have less predictive power over 

financial metrics with firms that have high institutional ownership. We define institutional 

ownership as shares held by government, pension funds and investment companies divided by 

the total shares outstanding
124

.  

Abnormal market volume 

In order to study the effect of investor sentiment on abnormal trading volume, we must isolate 

systematic jumps in trading volume. In line with Antweiler and Frank (2006) and Hirsleifer et 

al. (2009), we include a control for abnormal market volume in the abnormal trading volume 

specification. We define abnormal market volume in the same way we defined abnormal 

volume in Section 4.2.1: the sum of daily abnormal volumes for a given event period. Daily 

abnormal volume is defined as the difference of daily trading volume and mean volume, 

divided by the standard deviation of volume. Mean volume and standard deviation of volume 

are defined based on days [-62,-2]. The aforementioned methodology is consistent with 

Loughran and McDonald’s (2011) methodology for calculating abnormal trading volume.  

To establish a proxy for market trading volume, we take the sum of trading volumes of all our 

firms in a given data set (i.e., S&P 100 firms). From there on, we employ the aforementioned 

definition of abnormal trading volume to calculate abnormal market trading volume. 

Alternative specification controls 

In order to make sure that our results are robust, we include several additional controls that 

have been used in some of the studies of prior literature. However, most of the additional 

controls have had little impact in prior studies, and for the most part have been insignificant. 

Therefore, we do not expect to see a significant impact from the additional controls. 

Nevertheless, for the sake of robustness, we include the additional controls in our alternative 

specifications to study their potential impact on our results. Discussion on our alternative 

specifications can be found in Section 5.4.2., and for a summary of the variables in this 

section we refer the reader to Appendix D – Alternative specification control variable 

definitions. 
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 The definition excludes hedge funds, as the data is not available to us from the databases we have access to. 
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Industry dummies 

To control for the industry specific risk factors we employ the 48 different industry 

classifications suggested by Fama and French (1997) in their seminal article. Recent content 

analysis papers in the domain of finance have also employed similar methodology to classify 

firms into different industry segments (e.g., Engelberg, 2008; Loughran and McDonald, 

2011). Using the 48 distinct Fama and French categories, we classify our firms into different 

industries based on their primary industry classification codes (SIC), as retrieved from 

Datastream. After categorizing our firms, our sample is divided into 28 different Fama and 

French industry categories (S&P100 does not have firms for the 20 remaining industries).  

# of analysts following 

Analyst coverage is often used as a proxy for media coverage and informational efficiency 

(e.g., Demers and Vega, 2010). The underlying notion is that firms with higher levels of 

analyst following have simply more information available, and hence exhibit lower abnormal 

returns. 

In line with Engelberg (2008), Hirsleifer et al. (2009) and Demers and Vega (2010), we 

include a control for analyst coverage. We define the # of analyst following in line with the 

aforementioned authors as the log of: the sum of 1 and the number of analysts following a 

given firm.  

Analyst dispersion 

We include analyst dispersion to control for the prevalent belief dispersion that can impact 

financial metrics according to previous evidence. Recent content analysis research has also 

included analyst dispersion in controls (e.g., Tetlock et al., 2008; Demers and Vega, 2010; 

Loughran and McDonald, 2011). We define analyst dispersion as the standard deviation in 

analysts’ prior EPS estimates for the most recent reported EPS, divided by the share price on 

the respective earnings announcement date. This maintains consistency with SUE estimate, 

and our definition is similar to that of, for example: Loughran and McDonald’s (2011) 

definition.  

Calendar dummies 

To control for the well-documented January, Monday and end-of-the-month effects, we 

include control variables for the aforementioned. In the context of calendar dummies, the 
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dummy will take the value of 1 if the variable in question is located within the event period. 

For instance, in the case that the day Monday is present in an event window; the dummy will 

assume a value of 1.
125

 Calendar dummies have been used in recent content analysis papers in 

the domain of finance by Tetlock (2007), Li (2008) and Hirsleifer et al. (2009). 

Last twelve months [LTM] dividends 

In order to capture the documented dividend effect on a firm’s performance, we include the 

announced dividends for the last twelve months [LTM] divided by the last reported book 

value of equity (e.g., Fama and French, 2006; Li, 2006). 

No paid dividends during last twelve months [LTM] dummy 

In order to capture the potentially significant constant impact of no dividends vis-à-vis small 

dividends, we include a control variable for firms that have paid no dividends during the last 

twelve months (e.g., Fama and French, 2006; Li, 2006). The variable will take the value of 1 

if firms have paid no dividends during the last twelve months.  

4.3 Financial dataset 

For assessing stock performance, we retrieve stock prices and other necessary quantitative 

factors, and calculate all financial variables described in section 4.2. In this chapter, we 

explain how we retrieve the data and detail out calculation of these different metrics.  

We retrieve data using Datastream Excel add-in that finds the data in question based on a 

company’s ticker identifier.  As the tickers Datastream uses are different from S&P 100 

tickers, we manually match Datastream tickers with their corresponding S&P tickers. From 

there on, we download the data for the firms. Once downloaded, we remove all the data for 

non-trading days as non-trading days are not included in our analysis, as there are no relevant 

changes in financial metrics for non-trading days. 

To make sure our price data obtained from Datastream is reliable, we conduct a number of 

sanity checks. To see large jumps in the data, we look at daily returns that are out of the range 

of -50% … +50% as such jumps are unexceptional. The method yields us two huge price 

changes with Citigroup and Morgan Stanley. Looking into the two extreme observations (see 

Appendix E – Outlier values in financial data) reveals that the jumps are in fact correct, and 
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 The inclusion of each calendar dummy is subject to the event window for the apparent reasons. 



79 

 

there is no error in data. We also check that market capitalizations and P/B variables are 

reliable: i.e., that the largest companies according to common knowledge have also the largest 

market caps, and that P/B figures are not extreme. Furthermore, we perform a check on 

market capitalization that is similar to the one we did with share price to see if there are errors 

in data. At first, share price and market cap checks may sound interchangeable. However, 

M&A and capital structure changes (changes in number of shares) create differences between 

the two. Therefore the list of changes (see Appendix E – Outlier values in financial data) is 

not identical to the changes in share price. 

Based on our analysis of key changes in market capitalization, we correct for Lowe’s 3-week 

doubling of capitalization and Visa’s doubling of value one week after its listing. After the 

aforementioned corrections, we remain assured that there are no huge unexplained jumps in 

the data: either there has been a major event, or a more technical change has been adjusted by 

Datastream in the stock price. Table 3 shows descriptive statistics for our main specification 

variables for the entire sample. 
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Table 3: Main specification descriptive statistics
126
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 For variable definitions, refer to Section 4.2. 

Average Min Median Max

Interquartile 

range

Standard 

Deviation

Dependent Variables

Abnormal returns

[0,1] 0,01 % -37,50 % -0,04 % 75,78 % 1,56 % 1,91 %

[1,5] 0,02 % -47,83 % -0,07 % 98,62 % 3,24 % 3,73 %

[2,32] 0,06 % -62,73 % -0,15 % 215,09 % 9,46 % 9,38 %

[2,62] 0,07 % -77,44 % -0,41 % 229,18 % 13,56 % 13,19 %

Abnormal volume

[1] 0,08 -4,11 -0,20 79,52 1,16 1,44

[2,5] 0,30 -10,91 -0,52 145,04 3,92 4,23

[3,32] 2,14 -38,02 -0,07 166,32 21,25 16,60

[3,62] 4,18 -64,99 2,64 165,01 29,10 22,55

Abnormal volatility

[2,32] 1,58 % 0,32 % 1,27 % 17,50 % 0,91 % 1,08 %

[2,62] 1,60 % 0,44 % 1,30 % 13,26 % 0,88 % 1,03 %

Sentiment

Windowed SVM* 17,54 % 0,00 % 16,69 % 100,00 % 17,79 % 13,48 %

Wordcounts

Finance dictionary 1,17 % 0,00 % 1,02 % 15,09 % 0,98 % 0,87 %

H4N dictionary 2,41 % 0,00 % 2,38 % 19,92 % 1,15 % 1,00 %

Main Independent Variables

Market news volume 359 108 306 1053 120 161

Firm news volume 4 0 1 235 4 7

Control Variables

Size 4,70 3,48 4,66 5,72 0,50 0,36

Book-to-market 0,15 -2,00 0,14 1,41 0,11 0,10

Momentum

[-4,-1] 0,02 % -49,83 % -0,06 % 93,21 % 2,78 % 3,26 %

[-34,-4] 0,07 % -67,93 % -0,22 % 163,51 % 9,40 % 9,41 %

[-255,-34] 0,21 % -88,91 % -2,02 % 367,30 % 24,45 % 24,57 %

Share turnover 0,50 0,00 0,47 1,43 0,22 0,19

SUE 0,00 -0,47 0,00 0,28 0,00 0,02

Abnormal volatility 1,67 % 0,55 % 1,41 % 8,47 % 0,93 % 0,93 %

Institutional ownership 6,96 % 0,00 % 6,00 % 64,00 % 11,00 % 7,96 %

Abnormal market volume

[1] 0,06 -4,18 -0,06 6,00 1,41 1,22

[2,5] 15,42 1,54 14,83 38,88 6,51 5,43

[3,32] 149,88 72,92 145,88 356,43 59,54 44,56

[3,62] 306,78 153,70 303,51 704,46 129,75 89,30

* The maximum value of Windowed SVM is 100% due to a few biased news items that include a large

number of special characters and only one sentence. While we have removed short messages and 

messages with only tables, detecting patterns of various special characters would be significantly more

diffcult. As the volume of such news items appears  small, we leave these news into our sample.

 
LPS* 

 
the LPS-model 
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4.4 Media dataset 

In this section we explain how we have collected our media sample that we use in the 

estimation of sentiment. We describe the sample we have chosen, and how we have 

downloaded the data. Also, we describe the preprocessing steps that we need to take before 

using the data texts in sentiment calculations. Finally, we summarize our news with 

descriptive statistics and figures. 

4.4.1 Media sample selection 

When collecting the media sample, one must first make a choice on what sources of 

qualitative texts to include. Using a single source of qualitative text as a sentiment proxy is 

the simplest way in terms of conducting the study. For instance, Tetlock (2007) uses only one 

source of qualitative text: the Wall Street Journal Abreast of market column, as a proxy for 

investor sentiment in his seminal study. However, aggregating multiple media items per day 

when estimating investor sentiment is the next step forward as investors do not rely on a 

single source of information when forming their opinions. For example, Tetlock et al., (2008) 

use multiple media sources in their study forcing them to pool different extracted sentiment 

scores from different media items to come up with one sentiment score for the day. Indeed, 

using multiple sources of qualitative text does reduce noise and improve accuracy vis-à-vis a 

naïve sentiment estimate from only one source (Das, 2010). Therefore, we also adopt this 

approach when collecting our media sample.  

We aim to create as comprehensive media sample as is possible with our accessibility to data. 

To do so, we collect all the news feeds and earnings announcements accessible to us. Our 

media sample is not a comprehensive representation of all media, as it excludes such sources 

of sentiment as: twitter feeds and other forms of social media, TV-broadcasts, and internet 

message boards. Nevertheless, these sources have yielded weak results in prior literature (e.g., 

Antweiler and Frank, 2004; Das and Chen, 2006), or have been left unexplored to this date 

due to the large noise inherent in the sentiment data extracted from these sources.
127

 To 

summarize, we create our sentiment from a feed of news and earnings announcements for 

three main reasons: 
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 Extracting accurate estimates of sentiment from social media is very demanding as the language used is less 

conventional, and much of the information conveyed in social media can have no direct link to a company’s 

name but can instead deal with major products etc. For instance, people complaining about ‘iPhone’ but not 

mentioning ‘Apple’ in their messages. 
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 News and earnings announcements form the most significant portion of a sentiment. 

They are the key sources of information that an investor following a stock would 

study, and they represent the largest volume of up-to-date information on a company. 

 News and earnings announcements can be retrieved from databases, covering 

thousands of sources. Collecting twitter feeds, TV-broadcasts, analyst reports etc., 

could add even further information to the sentiment, but these sources are difficult to 

retrieve. Furthermore, the critical information in the aforementioned sources is likely 

to be reflected in written news – at least after a lag.  

 The format of public official written qualitative texts is an important advantage when 

analyzing texts. Public texts are often written in a format which avoids colloquial 

language. Hence, analysis of news is easier as we can use a standard established 

dictionary. 

For these reasons, we choose to focus on news and earnings announcements. While it would 

be interesting to combine our sentiment to additional sources of different media, we leave this 

area for future researchers to explore. 

4.4.2 S&P100 News and earnings announcements 

Our dataset covers news and earnings announcements for all S&P100 companies. For these 

companies, we have gathered the news in major sources written during our sample period: 

between January 2006 and March 2011. 

The news stories and earnings announcements for S&P100 companies were gathered from the 

LexisNexis database, with the source setting being ‘Major World Publication’ 
128

 These 

sources include a comprehensive set of 624 different world publications from ABIX - 

Australasian Business Intelligence to Zimbabwe Standard (Harare). While it would be 

possible to extend the dataset even further with the selection of: ‘All News (English)’ by 3 000 

more news sources, the data set that we are retrieving with the Major World Publications is 

vast, and we consider it to be sufficiently representative of news publications that have an 

impact on investor sentiment. 

LexisNexis allows searching for different functionalities, such as the options to look for 

keywords, to specify different time periods, select sources etc. A sample interface for 

LexisNexis search is included in Appendix F – Details on gathered media data, in section 
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 Major News Publications, as defined by LexisNexis: “This includes the world's major newspapers, magazines 

and trade publications which are relied upon for the accuracy and integrity of their reporting.” 
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LexisNexis search interface. The easiest way for a user to download all relevant news would 

be to simply type company name in the search bar, select the relevant time period and 

sources, download the news, and repeat this for each of the companies. Unfortunately the web 

service does not work as easily as this, and we face two challenges: the difficulty in searching 

for news of a particular company, and limits on news download volume.  

First, finding relevant news for a particular company is not a straight-forward task: searching 

for a company name results in a wide range of data. In example: searching for the company 

Apple with word ‘apple’ yields the results that are related to the company. However, it also 

extracts unrelated news items on apples in juices etc. While some company names are rather 

unique, counter examples are numerous. The perfect solution would be to search for a 

company's known name in the news to include all relevant news, and afterwards sort out the 

irrelevant news. However, the approach results in excessive data that would need to be 

reclassified. The alternative to searching by names is provided by existing classifications in 

the databases: LexisNexis provides an option to search news by company ticker
129

. Using 

only news categorized by the ticker may exclude some relevant news items that are not 

recognized by the database's classifier. However this approach allows for significant reduction 

in the search results volume. In example, searching news for one week for Apple with the 

word ‘apple’ in major world publications returns 1 171 news items that are mostly unrelated 

to the company. However, when using Apple’s ticker, the news amount is reduced to 222 

news items that are all related to the company. Hence, we choose to use this ticker 

information in our extraction process. We also restrict the sample by relevance score to 

exclude news that are not strongly linked to the company
130

. 

Second, when searching for a company, LexisNexis Academic provides the possibility to 

download the news in HTML format. The search is; however, limited to 500 news items per 

download. Due to this restriction, it is impossible to download all the news that we are 
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 SmartIndexing is a rule-based automated classification system that analyzes and tags online documents for 

relevant subjects, industries, companies, organizations, people and places.  Researchers build searches using 

index terms to efficiently and accurately pinpoint results. 
130

 The relevance score excludes news that refer to the company only few times. These weak stories may 

typically include a market, or an industry, overview where multiple companies are briefly mentioned. Such 

information may be relevant for the company; however, when reading the news item with a machine, a sentiment 

scoring system may not be able to pick the relevant message. Therefore, we exclude such news. LexisNexis 

categorizes the relevancy as follows: 90% to 99% is a major reference; 80% to 89% is a strong passing 

Reference; and 50% to 79% is a weak passing reference. We remove all messages under the threshold of 80%. 

By using relevance score, our filtering is similar to that of Tetlock et al., (2008) who examine each story’s 

relevance to a company by checking whether the official and unofficial name of the company appear in the news 

item sufficiently many times. 
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interested in at once. Rather a search query has to be split into smaller pieces: each 

downloading less than 500 news items at a time. The LexisNexis service has only a web user 

interface: i.e., it is not possible to download news items without going through the website, 

manually navigating the web page. As downloading all of the >500 000 news would require 

more than thousand manual downloads, we develop a web scraper
131

 that downloads the news 

from a list of tickers for a chosen time period. The scraper is also limited by the same 500 

news item restriction as a human user. Therefore, we need to estimate a time-interval for each 

company that does not yield over 500 results for a query, so that the scraper is able to retrieve 

all relevant news, and is not missing out on news due to the maximum download restriction 

(e.g. for a search result yielding 600 results, we would miss the items 501-600 from our 

download). Therefore, we manually download a small number of news for each company to 

estimate a correct time-interval for each company that results in a suitable news item 

download amount. From there on, we let the scraper download the news for us. The details of 

how our scraper functions and navigates across the LexisNexis website can be found in 

Appendix F – Details on gathered media data, in sub-section: ‘Details of the web scraper’. 

4.4.3 Data pre-processing 

As an output of our scraper's downloads, we receive multiple firm-specific HTML-files, with 

1 to 500 news items in each. Next, we need to convert the dataset into an easily usable format 

in a database; identifying each message, the corresponding date, company, publication and 

other similar metadata. The format in which LexisNexis provides the data does not follow 

standard formatting. Thus, sorting the messages appropriately requires an algorithm of its 

own. The technicalities of this processing can be found in Appendix F – Details on gathered 

media data, in section Details of processing LexisNexis data.  

Next, we preprocess the text data. We sort the texts and remove irrelevant parts so that we 

will be able to easily analyze the texts data later. We perform the following actions on the 

data:  

1) We remove all tables as they are typically financial figures, or other numerical or 

otherwise descriptive data that typically contain very little information on sentiment 

(e.g., Loughran and McDonald, 2011).  

2) We check whether any sources provided by LexisNexis need to be excluded for our 

study. We manually go through the 25 news sources with the highest news volume to 
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 On the use of web scraper with news sentiment, see also Das,2010 
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see the kind of information provide. We would exclude e.g. machine generated news, 

and news that only present numerical data. However, such sources are not present in 

the 25 sources we check that collectively represent 56% of the news volume for the 

total of 482 sources.  

3) In some cases, the message and other metadata (e.g. date, publication, etc.) cannot 

easily be distinguished from each other: often the data is highly amorphous in 

LexisNexis. In such cases, the news items in question are ignored from the dataset.  

4) Similarly to Tetlock et al., (2008), we decide to exclude news where the length is 

below a specific threshold. Tetlock et al., exclude news with less than 50 words, while 

we choose to ignore all news with less than 100 words. We estimate that a news item 

with less than 100 words will have only few sentences, and insignificant value to the 

sentiment. Moreover, only one negative sentence could turn a short news item into 

drastically negative, and hence add considerable noise to our daily sentiment 

aggregation. 

5) We also remove all media items one week post a firm’s index inclusion, or listing, to 

avoid the well documented index inclusion phenomena (e.g., Shleifer, 1986; Tetlock 

et al., 2008; Loughran and McDonald, 2011). Following web research on listing dates, 

we exclude MasterCard first on 5 June 2006 (listed on 25 May), Philip Morris on 26 

Mar 2008 (spin-off from Atria on 17 Mar), and Visa on 28 Mar 2008 (listed on 18 

Mar). 

6) We remove duplicate messages: messages that have the same date, ticker, publication, 

heading and length. 

7) We manually scan the data to ensure that companies have a news volume 

approximately corresponding to their size, and that the news volume is approximately 

equally distributed across time. 

Out of the downloaded 552 578 news items, we end up with a subset of 474 030 items after 

preprocessing. For summary on the screening process, see Table 4. 
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Table 4: Number of documents during preprocessing 

 # messages % original 

Downloaded messages 552 578 100% 

Metadata in difficult format -14 501 97% 

Message <100 words -41 082 90% 

Messages before listing -1 931 90% 

Duplicates -21 034 86% 

After preprocessing 474 030 86% 

 

While our preprocessing may remove some relevant stories, we believe that the reduction in 

noise outweighs the loss in relevance considerably. Descriptive statistics of the final media 

dataset can be found in the tables and figures below. 

At first, we review at the publications that our sample consists of (Table 5). We recognize that 

some of the top publications may be missing, such as the Wall Street Journal. This may be for 

example due to copyright issues, but we don’t consider this a critical flaw
132

: the wide 

coverage of other newspapers should covey the same information content in most cases. 

Table 5: News volume by publication  

Publication type # of news % of total  Publication # of news % of total 

Newspaper 282 493 60%  Financial Times 39 616 8% 

Newsletter 52 362 11%  Daily Deal / The Deal 23 958 5% 

Magazine 43 963 9%  The New York Times 18 905 4% 

Web Publication 28 048 6%  The Globe and Mail 15 958 3% 

N/A 27 900 6%  The International Herald Tribune 14 869 3% 

Newswire 24 558 5%  National Posts Financial Post 13 816 3% 

Papers 3 118 1%  Biotech Business Week 12 943 3% 

Transcript 2 178 0%  Drug Week 12 613 3% 

Journal 1 607 0%  The Washington Post 11 678 2% 

Abstract 66 0%  TECHWEB 11 233 2% 

Other 6 737 1%  Other (472 publications) 298 441 63% 

 

Next, we review the sample for news volume by company (Table 6). We notice that the 

sample may deviate slightly from the long-term average: banks have received significant 
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 Moreover, Tetlock et al., (2008) find that Wall Street Journal articles do not have a significant impact on 

sentiment. Other studies have found similar results, as discussed in Section 2.3. 
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coverage during the financial crisis. On the other hand, banks also represent 10-20% of 

market capitalization
133

 of S&P100 constituents, so one would expect financial institutions to 

have a relatively strong representation in terms of news volume. 

Table 6: News volume by company 

Company # of news % of total  Industry # of news % of total 

Citi 33 444 7%  Banking 78 545 17% 

Goldman Sachs 32 870 7%  Business Services 56 696 12% 

Google 30 602 6%  Computers 44 766 9% 

Ford 28 911 6%  Trading 40 436 9% 

Apple 26 581 6%  Pharmaceutical Products 34 641 7% 

Boeing 20 513 4%  Automobiles and Trucks 29 531 6% 

Microsoft 18 115 4%  Telecommunications 28 911 6% 

J.P.Morgan 13 859 3%  Aircraft 28 055 6% 

Bank of America 12 781 3%  Petroleum and Gas 21 756 5% 

AT&T 9 908 2%  Electronic Equipment 18 809 4% 

Other (90 companies) 246 446 52%  Other (17 industries) 91 884 19% 

 

Finally, we examine the timing of our news. We notice that the number of news decreases 

towards the end of our time period. This is likely due to the fact that news items are not 

updated or indexed immediately in the LexisNexis database, and thus some news or ticker 

metadata may not be saved to the database yet. We examine this trend for common patterns, 

but do not find systematic tendencies of missing data. 
134

 

                                                 
133

 Fraction of market capitalization 17% on 1 Jan 2006, 12% on 31 Mar 2011. 
134

 We study news volume per company but do not find systematic discrepancies between companies. Also, we 

test whether or not the data has a systematic change in terms of news publications by having a look at the 

number of different publications and the news volume of top publications over time. The number of daily 

publications remains relatively constant, though some individual publications have less news towards today’s 

date. In conclusion, we do not find a systematic bias. 
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Figure 4: News volume by date 

 

Figure 5: News volume by month
135

 

 

Figure 6: News volume by weekday 

 

                                                 
135

 News volume by month excludes 2011 data where we would have only Q1 available. 
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We conclude from the summary measures that our sample is sufficiently representative of 

common understanding on how news volume is distributed. With samples of financial and 

qualitative data, we move on to describe our research methodology. 
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5 METHODOLOGY 

This section will discuss in detail the choices we have made when selecting methodology, and 

the potential drawbacks as well as the corresponding robust checks we have made to ensure 

that our choice of methodology is reliable.  

First, we will describe in detail how we estimate investor sentiment. Second, we explain how 

we aggregate sentence and word scores into a firm specific daily sentiment score. Third, we 

introduce a number of alternative specifications for sentiment. Finally, we will move on to 

discuss how we study the relationship between our main independent variables and our 

dependent variables. The reader should refer to section 4.2 for a detailed discussion on the 

variables used in the study.  

5.1 Estimating investor sentiment 

Comprehending a text, understanding in what kind of a tone it is written (positive or a 

negative) is not an easy task. Different readers may interpret texts in different ways: this may 

depend on the context, the person’s previous knowledge on the subject, and so on. In this 

section we describe the advanced methods for understanding the tone of a text. In our study, 

we calculate multiple scores for company sentiment, with the purpose that we can compare 

the effectiveness of different investor sentiment estimates as predictors of financial metrics. 

First, we describe Quasi-compositional Sentiment Sequencing and Compression used by 

Moilanen et al., (2010) that has been shown to estimate sentence level sentiment more 

accurately than bag-of-words method. Similarly, Engelberg (2008) has used a methodology 

that analyses sentiment in sentence level in financial context called: typed dependency 

parsing.  

Next, we describe our primary method for estimating investor sentiment in this study: the 

Linearized Phrase-Structure -model. Finally, we explain how we compile a set of new word-

lists, and a training set, that are necessary for making the Linearized Phrase-Structure -model 

operational. 
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5.1.1 Quasi-compositional Sentiment Sequencing and Compression (MPQA) 

Quasi-compositional sentiment sequencing
136

 is a method proposed by Moilanen et al. (2010) 

for classifying sentences based on their sentiment polarity. The idea behind the method is that 

polarity in sentences typically follows similar patterns. For example, negative sentences have 

a certain pattern of negative and positive expressions in them. Once a reader has read a certain 

number of news, it is possible to use machine learning to find the patterns that make a reader 

categorize a news item as positive or negative. These patterns can then be used to categorize 

more similar news. This approach was used, among others, by Moilanen et al. (2010) to test 

classifying sentiment in sentence databases (e.g. with news headlines and financial text 

snippets). 

For example, we can have a look at two following sentences (wordlist categories below).  

 

 The company Is doing well.  

(neutral) (neutral) (neutral) (positive)  
 

 

 The company Is not doing well. 

(neutral) (neutral) (reversal) (neutral) (positive) 
 

 

A simple word count would notice in both sentences the word ‘well’ and would likely 

annotate both sentences as positive. Quasi compositional sequencing, on the other hand, 

would notice the patterns ‘neutral-positive’ and ‘neutral-reversal-neutral-positive’, and hence, 

ignoring neutral expressions, could annotate the first sentence as positive and the second as 

negative. 

5.1.2 Linearized Phrase-Structure -model  

In this section, we present the Linearized Phrase-Structure (LPS) model for predicting 

semantic orientations of short economic texts. The Linearized Phrase-Structure -model is 

based on the Quasi-compositional Sentiment Sequencing method. However, we have 

improved and modified the method for financial context 

                                                 
136

 WE refer occasionally to Quasi-compositional Sentiment Sequencing with “MPQA”. MPQA refers to the 

dictionary used by Moilanen et al. (2010) 
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In order to operate in financial and economic domains, a method should be able to recognize 

financial domain concepts and identify their semantic orientation based on sentence structure 

and domain knowledge. In addition to the domain specific aspects, a model should also have 

an ability to resolve conflicting cases where a sentence contains several semantic orientations, 

and be easy to retrain based on the feedback given by the users. To accommodate these 

requirements, the LPS-model is constructed in three stages: (i) identification of entities with 

semantic orientation; (ii) phrase-structure projection step; and (iii) multi-label classification 

step. In a nutshell, the model works as follows (for details and more formal definition of LPS, 

we refer the reader to Malo et al., 2013b). 

Identification of entities with semantic orientation 

Our model starts by identifying entities in a text stream. For example, this could mean that our 

algorithm detects the word “good” in a sentence with otherwise neutral words. To support 

recognizing which parts relate to each other in a sentence, we detect the phrase-structure
137

 

information to support us in understanding which parts in the sentence relate to each other. 

Once the phrase structure has been detected, we use entity recognizers to locate various 

lexicon entries (see section 5.1.3 for categories of lexicon entries) in the sentence. Finding the 

phrase structure and detecting the lexicon entries is illustrated as “Step 1” in Figure 8. 

Once the initial set of entities has been recognized, heuristic rules are applied to merge neutral 

entities and to take into account the effects of polarity influencers (increase / decrease verbs) 

on the semantic orientations of other entities. The clear benefit of using such heuristics at this 

stage is that the number of entities is significantly reduced and the information value of the 

retained entities is higher. The following rules for entity-pruning are considered: 

(i) Merge-neutrals-rule: If several neutral entities occur in a sequence, they can be 

combined into a single neutral entity which spans a large part of the given phrase. 

For example, when taken out of its context, the sentence “Net profit in the period 

in 2009 was EUR 29 million" can be considered to be a single neutral entity, since 

the default prior-polarity of "Net profit" is neutral and there are no polarity 

influencers in the sentence. 

                                                 
137

 Identifying phrase structures is a commonly used technique in natural language processing. Showing a 

sentence according to its phrase structures splits sentences according to parts such as noun phrases (NP), verb 

phrases (VP), prepositional phrases (PP), etc. 
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(ii) Polarity-influence-rule: When a phrase contains both a polarity influencer
138

 and 

another entity whose polarity is modified by the influencer, we apply the 

influencer directly and retain only the main entity with modified polarity. For 

example, consider the two phrases in Figure 7, where in both cases we find a 

directionality which modifies the polarity of a financial concept. For sentence (a), 

we have “EBIT" as a financial entity whose polarity is modified by verb “increase" 

which leads to a positive overall orientation. 

Instead of retaining both entities, we combine the entities by retaining EBIT and 

adjusting its prior-polarity from “neutral" to a modified polarity “positive-up" 

reflecting the fact that positiveness depends on the up-direction of events. The 

impacts of other influencers are accounted in similar manner. For instance, if a 

negator is attached to an entity with “negative" prior-polarity, we modify the 

polarity into “negative-reverse" to signal the fact that the entity has been merged 

with a polarity influencer. 

 

 

Figure 7: Finding polarities with Financial entities and Polarity influencers 

 

To apply heuristics in a sensible manner, we use the detected phrase structure and only 

combine words within a restricted window around each entity. This process is illustrated as 

“Step 2” in Figure 8. 

                                                 
138

 Polarity influencers are described in the next section 
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Figure 8: Identification of entities with semantic orientation with LPS 

 

Our learning algorithm would be able to separately process sentences without these 

simplification (considering e.g. a sequence “neutral”-“positive-if-up”-“positive” and 

“neutral”-“positive” as different sequences). Thus, this merging may lead to a minor loss of 

accuracy
139

. However, this loss is likely significantly offset by the corresponding gain in 

computational speed and a smaller sample of training set required after merging. 

 

                                                 
139

 When applying the pruning rules, we do not fully hide the impact of polarity influencer. Instead of using the 

main semantic orientations “positive, neutral, negative", we distinguish the impact of pruning by using a “prior-

polarity” information (e.g. “positive-up" instead of “positive"). This distinction is primarily motivated by added 

flexibility in the learning stage. Given the fact that heuristics are always bound to introduce some added 

uncertainty, we want to provide the model this way an opportunity to correct for mistakes and give the modified 

entities a differential treatment while making judgments on the overall polarity of the phrases. 
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Phrase-structure projection  

In the second step we create a phrase-structure projection. The purpose of this step is to 

convert a sequence, e.g. “positive-negative-neutral-positive” into a formal presentation that 

can be used by our learning algorithm in the following Multi-label classification . Each 

projected sequence has an interpretation as a representative of an equivalence class of phrases 

with similar features, and the lengths vary depending on the complexity of the underlying 

phrase-structure. 

To illustrate how this step works, assume that we had only three entity-types: positive, 

neutral, and negative. Then we can choose a coding where ẽ+ = (1; 0; 0) indicates that entity is 

positive, ẽn = (0; 1; 0) indicates that entity is neutral, and finally ẽ- = (0; 0; 1) implies that 

entity is negative. According to this system, if a phrase s has an entity-sequence with 

categories positive-positive-neutral-positive, i.e. ẽ+ ẽ+ ẽn ẽ+, we can write 

Sequence = (1; 0; 0; 1; 0; 0; 0; 1; 0; 1; 0; 0; …) 

as a bit-sequence representation of the given equivalence class, where components beyond 

12
th

 are all zeros. A presentation of this kind can then be presented to a linear multi-label 

classifier, which learns to associate the sequences with corresponding semantic orientations 

indicated by the annotators. 

As the phrase-structure projection step is in essence a technical step to convert data into a 

form that can be used in the following classification step, we have left further details out of 

this paper. For more formal definitions of this step, we refer the reader to Malo et al., 2013b. 

Multi-label classification  

The final step, multi-label classification, aims to classify the sentences into different polarity 

classes based on the entities recognized. For this, we require a learning mechanism that is able 

to form rules from a sample of annotated sentences. This learning mechanism should (i) be 

able to handle large-dimensional feature spaces in an effective manner; and (ii) be able to 

perform multi-label classification. After a few preliminary experiments, we decided to choose 

the a multi-class SVM
140

 approach with "one-against-one" strategy, which has shown good 

performance in comparison to alternatives based on "all-together" methods or "one-against-

all" and DAGSVM strategies. The choice is also well supported by the study of Hsu and Lin 
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 For use of SVMs in previous literature, refer to section 2.3.1 
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(2002), who evaluated a number of alternative multi-class SVM models with different 

estimation strategies in the light of large-scale problems. 

5.1.3 Lexicon entries for Linearized Phrase-Structure -model 

When detecting sentiment in text, not all words are equal. For example, adjectives often are in 

a more significant role than prepositions. Looking only at a certain number of words is not 

always enough to detect the correct sentiment, but limiting our analysis to certain words can 

significantly reduce the requirements for detecting sentiment, as analysis of the meaning of 

the sentence on multiple levels is not be required. The purpose of a lexicon is to define the 

categories of words that we consider when analyzing text. Our lexicon has multiple 

categories, and any word in a certain category is considered with equivalent weight. Our 

lexicon consist of categories for words that are Positive, Negative, Negation words, Financial 

entities that turn into positive or negative if combined with certain words, and words that can 

impact the polarity of financial entities. 

Using the more general  MPQA lexicon by Wiebe et al.(2005) and the financial polarity-

lexicon by Loughran and McDonald (2011) as a starting point, we propose the following 

modifications that infuse further domain-specific knowledge into the sentiment models: (1) 

addition of domain-specific concepts which can influence the overall semantic orientation of a 

sentence; (2) addition of verbs and expressions which help to detect the direction of events 

(e.g. whether the profit is expected to increase or decrease); (3) addition of information on 

how the polarity of different concepts depends on the expected direction of events (e.g. result 

is positive when it is expected to increase, but neutral or negative when declining). The used 

wordlists are described below. 

Positive and negative words 

Most typically sentiment has been detected from lists of positives, negatives and negation 

words. To create such word lists, we build on top of the lexicon derived from Multi-

perspective Question Answering (MPQA) corpus of opinion annotations; Wilson (2008). The 

lexicon consists of only single-word clues, and each entry of the lexicon is equipped with 

information on degree of polarity (positive, negative, neutral), subjectivity, the word’s lemma 

form and the default part-of-speech the word has. 

By utilizing these general entries as a seed for our lexicon, we obtain a good coverage of the 

most commonly encountered subjective expressions. However, as mentioned earlier, the 
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general polarity lexicons are not directly applicable to the financial domain, since many 

commonly used expressions may take a different meaning in the financial and economic 

context. To accommodate the domain specific requirements, we have augmented the MPQA-

based dictionary with the finance-specific lists compiled by Loughran and McDonald (2011). 

When overlaps were encountered while merging the lists, the financial domain sentiment was 

preferred over general prior-polarities specified by MPQA. 

Financial entities 

On top of the traditional dictionary categories, we add words that, combined with a verb 

indicating movement up or down, will have an impact on sentiment. For example, ‘sales 

grew’ has a positive sentiment, while the word ‘sales’ by itself has no sentiment. To establish 

such a word list in the financial context, we download the financial online dictionary 

Investopedia.
141

 Through Investopedia dictionary, we find a list of 16,178 different financial 

concepts. From the list, we remove all words that have only one or two characters. To zero in 

on the most important terms, we take a random sample of 100,000 news articles from our 

sample, and count the occurrences of all financial terms in the news. We find occurrences of 

4,389 of the different dictionary terms in the news sample, and order the terms according to 

frequency. We go manually through all the terms that have more than 200 occurrences in our 

sample, which includes 684 terms. Next, we remove words that are not only financial 

concepts but also common English words such as: “SPAN” abbreviation for ‘standardized 

portfolio analysis of risk’ in the financial context. After that, we start removing words that 

have no meaning, or the meaning is unclear to the sentiment of a company: e.g. ‘shares’, 

‘EUR’, ‘plc.’, etc.  While the words that have over 200 occurrences in the sample represent 

only a fraction of all the words (~16%), their volume represents approximately 94% of all 

financial terms in the text. Thus looking through the remaining 84% of the terms would only 

increase the recognized terms by 6%, and thus we ignore the 84% of terms from our list. A 

list of the selected words can be found in Appendix H – Financial entities. 

Out of the sample of 684 terms that we manually went through, 51 terms have in our view a 

very clear effect on sentiment, and 177 have an effect on sentiment in most cases when 

combined with a verb representing movement up or down. As most of the time the aforesaid 

terms will yield correct interpretation of true meaning, we merge the terms in order to create 

two word lists:  

                                                 
141

 While Investopedia may not be the most prestigious dictionary, we select it due to ease of access: a free 

dictionary in electronic format, and a very wide coverage of concepts 
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 ‘Positive-if-up’: e.g. “EBIT”  

 ‘Negative-if-up’: e.g. “taxes” 

Polarity influencers 

In addition to words that have a polarity directly attached to them, there are a number of other 

factors which can influence the overall semantic orientation of a phrase. This broad class of 

operators, which can modify the contextual semantic orientation, is generally referred to as 

polarity influencers. The most commonly encountered polarity influencers tend to fall into 

one of the following categories: 

 Negation words. After going through movement linking words and corresponding 

movement verbs, we download words that can reverse the meaning of a sentimental 

word: for example: ‘It is going well.’ vis-à-vis ‘It is not going well.’ To do this, we 

download the General Inquirer category: negate. Similarly to the verbs before, we 

remove words with different financial meaning. Removed words from negate-list 

include: ‘account’, ‘uncertain’, and ‘uncertainty’, ‘unemployment’ and ‘vice’. 

 Boosters and diminishers. Another important class of polarity influencers consists of 

words which can intensify or reduce the degree of positiveness or negativeness of an 

expression; e.g. “paying off the national debt will be ‘extremely painful’" or “little 

threat". 

 Modal operators. A modal operator is a verb which modifies another verb and 

describes the “mode of operating" by setting up a context of possibility or necessity; 

e.g. “we have to revise the policy" or “we can revise the policy". 

Furthermore, to accompany the financial entities -word lists, we must identify words that 

describe movement up or down. Directionalities, described below, are an additional category 

of polarity influencers that we have used. 

Directionalities 

Directionalities refer to words that describe movement, e.g. “increase”. Harvard’s 

psychological dictionaries have been commonly used in sentence tagging, and we download 

Harvard IV word lists from the General Inquirer. We create two wordlists from the following 

General Inquirer categories:  

 ‘Increase’ - Harvard dictionary categories: increase and rise  

 ‘Decrease’- Harvard dictionary categories: decrease and fall 
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Additionally, we go through the categories to see if they include words that would have a 

different meaning in a financial context. We find, and remove, the following words that tend 

to have a different meaning in a financial context: ‘inflation’, ‘people’: removed from 

increase-list, ‘discount’, ‘recession’: removed from decrease-list.  

Finally, we combine our word lists mentioned above to end up with a final set of 11 word 

lists. As Linearized Phrase-Structure -model identifies lemmas for words, we included each 

word in the list only in their lemma form. The lists are described in Table 7: Wordlists for 

Linearized Phrase-Structure -model. 

Table 7: Wordlists for Linearized Phrase-Structure -model 

Wordlist Number of words in list 

Positive 264 

Negative 1202 

Negate 202 

Increase 117 

Decrease 111 

Positive if up 121 

Negative if up 56 

Boosters 85 

Diminishers 92 

Modal Words – Strong 12 

Modal Words – Weak 15 

 

5.1.4 Training set for Linearized Phrase-Structure -model  

The goal of a financial sentiment training set is to train an algorithm to take as input all 

available media items and to create an estimate of investor sentiment score that is equivalent 

to a sentiment score given by an analyst after reading the same data. In fact, if the algorithm is 

sufficiently developed, it could yield even better results than the analysis of one analyst. 

Indeed, it should, in theory, be able to match the aggregate sentiment score of several 

qualified analysts with access to the same data.  

In order to correctly identify polarity on the sentence-level, a computer would need to know 

both the sentiment of words (word lists), and the sentiment of sentences: how do polarized 

words interact when combined on the most elemental levels. While it is clear that a sentence 

with 3 positive words and 1 neutral word is likely a positive sentence, it is much harder to 
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identify what the sentiment is in a sentence with 2 positive and 2 negative words. Our training 

set aims to create a sample of different patterns and their outcomes that can be used for 

classifier training. 

Training set sample 

As discussed by Loughran and McDonald (2011), it is well understood that the vocabulary 

and expressions used to describe economic events and company related news are not identical 

across media. To build and evaluate models which are dedicated for capturing semantic 

orientations in economic texts, it is important that the training material provides a good 

coverage of the commonly used domain-specific expressions. 

Until now, very limited efforts have been taken to build corpora which cover economic or 

financial domains, and to the best of our knowledge, none of the existing datasets provides 

phrase-level annotations for news documents. Furthermore, many of the data-banks 

mentioned in the literature are known to be reserved for proprietary use only; e.g. O'Hare et 

al. (2009). Therefore, to alleviate the data gap, we will now briefly outline our financial news-

phrase dataset, which can be used as a gold standard for evaluating the performance of 

sentiment models dedicated for economic texts.  

The sample for the training classifier is picked from full sample of articles that we have 

downloaded. Out of these articles, we select a random subset of 10,000 articles, with weighted 

probability of including each sentence into the sample so that we even the distribution of:  

 Small and large companies 

 Companies in different industries  

 News sources 

As described earlier on preprocessing of our media sample, we remove also in this case items 

such as html-code and tables from the selected articles. For the training sample of 10,000 

articles, we look for words in our polarity lexicon in each sentence, and select only sentences 

that include words with polarity (see e.g. Maks and Vossen (2010)). This reduces our sample 

to 53,400 sentences: each having at least one recognized word from our word list, or a 

combination of recognized words.  

Ideally a sentiment-recognizing algorithm should be able to take any recognized word 

combination and assign a sentiment score for it. However, the number of different 
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combinations that we find in our sample is 13,184, and we would need a large sample of 

annotated sentences for each combination to reach a good confidence level for the algorithm. 

Furthermore, most of the combinations appear only once or twice in our sample of 10,000 

articles, and would add negligible value for the algorithm. Thus, we choose to rank the 

different combinations according to frequency distribution so that we can focus on the most 

salient patterns. For example, the most common patterns cover 9% of all of our sentences. 

After ranking, we start choosing samples of approximately 30 sentences from each pattern 

combination, starting from the most frequent combinations. We iterate our sample during the 

annotation process: depending on the results, we may increase the frequency of sentences in a 

category, or stay with 30 sentences. For example, if a vast majority of the sentences in the 

same category receives the same annotation - for instance, 29/30 sentences are positive for a 

given sequence - we conclude that the category is correctly processed. On the other hand, if 

there is large deviations in the classified sentiment for a certain combination: e.g., 50-50 split 

etc., we increase the number of unique sentences annotated for the category at hand to ensure 

we get a better understanding of how the sequence should be annotated. 

Annotation labels 

The most evident polarity to detect is positive or negative. For example, Maks & Vossen 

(2010) use tags ‘pos’ and ‘neg’ to denote this. Other commonly used metrics include: 

 Subjectivity vs. objectivity: objective truth vis-à-vis an opinion of the writer (e.g. 

Maks & Vossen, 2010) 

 Whose opinion is it in the sentence: authors or someone else’s (e.g. Maks & Vossen, 

2010) 

 Relevance: is a sentence relevant for the topic, or not.
142

  

Differences in sentiment arise depending on the interpreter’s background, purpose and own 

views. In common language: ‘Company made a loss of 10 EURm’, would be negative. A 

financial analyst on the other hand, would need more information: What did the company 

make last year? What did the market expect? Was the loss just a reflection of a ramp-up cost 

of a long-term investment?  

                                                 
142

 For example, Hsueh et al. (2009) start the annotation process by tagging sentences that are irrelevant to the 

political candidate that they are studying  
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The question we wish to answer in financial context is whether or not a sentence is positive, 

neutral, or negative. To illustrate: 

(1) The headquarters of this company looked beautiful in my opinion. 

(2) The company doubled its profits this year. 

 

To make sure we will tag sentences like (2) as positive, and preferably ignore sentences like 

(1)
143

, we instruct our annotator to categorize sentences based on the impact on company’s 

share price. We also provided a set of example sentences that we annotate ourselves for 

reference to the annotator. After the aforementioned, we ask her to use a 9-step scale of labels 

to annotate where she expects the share price would move following the publication of the 

news item. For a description of our instructions and the used labels, see Appendix G – 

Annotation instructions. 

The above demonstrates the two goals we have: first, we aim to define if a sentence is positive 

or negative for the company - from an investor point of view; second, we wish to take into 

account that there may be difference in the level of polarity of a sentence. Similarly to Wiebe 

et al. (2005), we follow three principles with the guidelines we have established for our 

annotation process: 

 There are no fixed rules about how particular words should be annotated. The 

instructions describe the annotations of specific examples, but do not state that 

specific words should always be annotated a certain way. 

 Sentences should be interpreted with respect to the context. The annotators should not 

take sentences out of context, start speculating on their prior knowledge on the 

company, or think what the sentences could mean, but rather should judge them as 

they can be interpreted in isolation. 

 The annotators should be as consistent as they can be with respect to their own 

annotations, and the sample annotations given to them for training. 

We do not annotate for the following: the opinion holder, or relevance of the sentence, as we 

assume that the aforementioned will play a smaller role in the sentiment. Furthermore, we 

assume that most sentences should be relevant for the company for two reasons: first, they are 
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 We recognize that sentence (1) may also have some value, and it may also be good to annotate this as 

positive. For more on this, refer to our training set B at the end of this section. 
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parts of articles that we classified previously as relevant to the company, second: they are 

mainly texts from financial press that should be concise and up to the point.
144

 

Annotators and their training 

In order to tag the sentences easily, we create an excel template where an annotator can easily 

select a number between 1 to 9 in order to select a tag with up or down arrow keys. This 

approach is chosen both for convenience, and to make annotating as fast as possible. 

Our annotator is hired through an online service Elance.com where it is possible to hire 

freelance low-cost workers. Contrary to some other annotation studies, the approach was 

chosen over other alternatives such as crowd sourcing services (e.g. Hsueh et al., 2009 on 

using Mechanical Turk). We wanted to select an annotator with appropriate background and 

to be familiar with her to ensure that the quality of work would be consistent. Furthermore, 

we wanted to have direct lines of communication with the annotator as this can be beneficial 

when discussing complex cases. Compared to many crowdsourcing tasks, the nature of our 

task is different: requiring special expertise as people with no financial background may have 

misconceptions such as: ‘lay-offs are always bad news for a company’, ‘making (any kinds of) 

profits is always positive’, etc.  

We screened the service for low-cost workers who have a business background and strong 

English skills. Next, we asked a few promising candidates to annotate a small piece of 

sentences, and compared their work to annotations that we had done. The annotator applicant 

who was able to give sufficient quality (>85% correct answers for a set of 75 sentences) was 

chosen for the task. Our annotator is from the Philippines, had studied business 

administration, and had 5 years of experience in rewriting financial texts as a senior editor for 

different newspapers. 

We start by annotating a small number of sentences ourselves in order to give the annotator a 

small set of readily annotated sentences that she could use as a benchmark for future 

annotations. Also, the annotator received the annotation instructions (Appendix G – 

Annotation instructions) explaining how the sentences should be tagged. 

In addition to the initial instructions, the annotator asked us several questions in uncertain 

cases to ensure that she was tagging sentences in the expected way.  Some necessary 

clarifications included:  

                                                 
144

 For the biases that result from this simplification, please refer to results in section 6.1.2. 
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 When does a stock go up/down a lot vs. a little: the difference between categories 7 

and 9. While some linguistic expressions give clear indication of this, numerical 

expressions are more difficult. We arbitrarily defined that changes in key metrics (e.g. 

sales, profit/loss etc.) are small if <5%, and large if >10%
145

 

 Situations where there are two contradicting statements in the same sentence, for 

example: ‘Operating profit decreased while net turnover increased.’. We agreed that 

these kinds of sentences would require a very high level of judgment to make correct 

conclusions, thus we instructed the annotator to annotate the sentences as ‘Either way’ 

To make sure that all of the sentences were tagged with good quality, we sent the sentences in 

batches to the annotator - 75 sentences; followed by: 1,000, 2,500 and finally 1,500. After 

each larger batch was completed, we would manually annotate a randomly selected 10% of 

the tagged sentences, and compare this with the annotation results. We used the previously 

said method to verify that the annotation quality stayed above 85%
146

, we sent the annotator 

our own views of the control annotations with explanations, and the next batch. Thus, out of 

the set of ~5,000 sentences, we had checked ~500, and could verify that the quality had 

consistently stayed above 85% compared to our own annotations. 

Furthermore, most of the errors in tagging were only 1 step away from the correct tag (see 

Table 8); for instance, positive had been tagged as neutral or vice versa, or negative as neutral 

or vice versa. More severe cases, such as tagging positive sentences as negative,  were 

extremely rare. 

Interannotator agreement 

After the annotation process, we compared the annotations that had been annotated by both 

the annotator and in our control annotation. In Table 8 we show the annotation results, and 

similarly to other authors (e.g. Somasundaran et al., 2006), we calculate Cohen’s (1960) 

Kappa measure
147

. 
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 Later on in our study we merge all positive categories into one, and all negative categories into one. Thus, this 

has no impact ultimately on our results. 
146

 When comparing positive, negative and neutral findings – not the degree of positivity as this would be often a 

more subjective view 
147

 Cohen’s Kappa measures how much annotators agree compared to how much they would agree by chance. 

This is a measure that gives us a value of κ = 1 if annotators were in complete agreement, and κ = 0 if there is no 

agreement other than chance. 
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Table 8: Interannotator agreement (Training set A) 

 

     +++ = Up a lot, --- Down a lot, n = neutral 

       κ=0.90 

In total, we reach an annotator agreement of 93% with 380 sentences. In particular when 

simplifying the categories to negative, positive and neutral, the interannotator agreement 

further improves to 94% (see Table 9). 

Table 9: Interannotator agreement with simplified categories (Training set A) 

The interannotator agreement from above is presented below, after simplifying the number of categories to three 

           

           κ=0.88 

Out of all interannotator disagreements (in Table 8), 16/30 relate to situations where the full-

time annotator considers a company reporting profits, sales etc. as a positive event (e.g. “In 

2005 the bank posted a net profit of 8.2 EURm .”). As the company may post a profit below 

expectations, these sentences should rather be annotated as neutral in our view. We instruct 

the annotator during the annotation process on this, and thus avoid the same disagreement 

towards the rest of the annotation process. Apart from aforementioned, there appears to be no 

systematic error that the main annotator is making. Some disagreement cases are sentences 

where the sentences are complex and a reader needs to read the sentence multiple times to 

ensure understanding. We also identify sentences that present a view from two angles as one 

+ + + + + + n1 n2 n3 - - - - - -

+ + + 26 - - - - - - - -

+ + 2 63 - - - 2 - - 1

+ - - 4 - - - - - -

n1 - 16 - 115 - 2 - 1 -

n2 1 - - - 144 - - - 1

n3 - - - - - - - - -

- - - - 1 - - 4 - 1

- - 1 - - - - - - 9 1

- - - - - - - - - - - 15
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source of interannotator disagreement. Additionally, some financial expressions may also be 

difficult to interpret, and may depend on the context whether they are positive or negative. 

For example ‘dividend cuts’ may be seen as a negative signal, unless accompanied with a 

good reasoning (see also Mitra and Mitra, 2010). Finally writing styles such as cynicism, 

(Hsueh et al, 2009), and inherent variability in a word’s meaning (Maks and Vossen, 2010), 

may be sources of interannotator disagreement. 

Maks and Vossen (2010) use a third annotator to get to a ‘gold standard,’ and thus we also 

consider the possibility of using further annotators. Hsueh et al. (2009), on the other hand, 

conclude that it is possible to use only one expert annotator, finding that this gives 97.4% 

correlation to the gold standard in their case. When comparing to similar annotation studies, 

our Kappas compare relatively well (cf. e.g. Maks and Vossen, 2010, κ=0.80). As our 

algorithm will make its sentiment estimates based on probabilities, and use at least 30 labeled 

sentences for each pattern, a 100% agreement will not be necessary for the algorithm to work 

correctly. Consequently, we do not see it necessary to add more annotators
148

. However, we 

notice after further analysis (see section 6.1.2) that a somewhat different training set may be 

more ideal for the purpose of training our algorithm. 

Training set B 

After our original training set, we have an excellent set of tagged sentences that represent 

sentiment in different sentences. This training set is in our view a solid benchmark to see 

whether an algorithm is classifying sentences correctly. However, our algorithm can only 

recognize the sentiment, but is unable to recognize the credibility of the author (Appendix J - 

Error descriptions for LPS: Company talking in advertising like -tone about its' own 

operations) or the relevance of a sentence for a company’s success (Appendix J - Error 

descriptions for LPS: Inability to recognize significance of events, Positive convention of 

talking about something, Inability to understand the magnitude or value of items). A training 

set where the ‘correct answer’ includes also deductions based on this information has more 

correct annotations, but they also include more noise from the algorithm:  our approach does 

not include a model for assessing relevance or credibility, and therefore sentences where an 

annotator considers this information effectively increase noise. To adjust our training set for 
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 The same set of sentences have been further annotated by more annotators in our parallel study. For details, 

see Malo et al. (2013b). However, even after further annotations, the training set remains in line with our original 

annotator’s categorizations. 
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better results, we create a second training set (Training set B
149

) that is annotated by a 

researcher with a business background from Aalto School of Business. Thus, we have two 

different versions of the same training set: 

A. Training set with credibility and relevance assessment: a person with a 

financial background reads the sentences and uses all their knowledge, except 

for company-specific knowledge, to annotate the sentences 

B. Training set without credibility and relevance assessment: as above, but the 

person does not assess the credibility or relevance of the sentence. 

The difference between the two training sets can be characterized with the three example 

sentences below in Table 13: 

Table 10: Differences between training set A and B 

Sentence Training set A Training set B Difference 

“I think my company will beat its competitors” -CEO. Slightly positive / 

neutral 

Very positive Credibility of 

author 

The company’s 100
th

 year celebration party was a 

great success. 

Slightly positive / 

neutral 

Very positive Relevance of 

adjustment 

“The company will likely beat its competitors” -

Financial Times. 

Very positive Very positive N/A 

 

It is clear that Training set A is closer to a ‘true’ sentiment estimate, and that the annotations 

are superior to Training set B in this sense. Credibility and relevance are; however, usually 

not assessed from the polarized sentences. Rather, they require knowledge on the credibility 

of different sources, and on the relevance of different events to companies, etc. As this would 

require us to identify a much wider variety of objects in the sentences, and represent a number 

of studies of their own, we create Training set B so that we can directly relate polarized words 

to sentiment.  

We create our training set B using the set A as a basis. However, we especially go through the 

neutral sentences in order to detect cases where a sentence has been classified as neutral due 

to lack of credibility (e.g. a biased source, such as CEO explaining how good his own 

products are) or lack of relevance (e.g. an event that is considered unimportant). For such 

cases, we annotate the sentence with the polarity even if we know that this is likely not 
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 Training set B corresponds to Dataset I by Malo et al. (2013b), Training set A to Dataset II. 
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relevant for the stock price. To further simplify the exercise, we only tag sentences on a 3-step 

scale case in Training set B. The interannotator agreement between Training set A and 

Training set B is summarized in Table 11. 

Table 11: Interannotator agreement between Training set A and Training set B 

        

                    κ=0.61 

As expected, interannotator agreement is lower in this case compared to the control 

annotation, as the used instructions have been different. In particular, many sentences that the 

first, “stricter”, annotator characterizes as neutral, are categorized often with a sentiment by 

the second annotator. For example a sentence that is written in a positive tone but is not 

relevant for the company should become annotated as neutral in Training set A, but positive 

in Training set B. 

 

5.2 Sentiment aggregation 

In this sub-section, we will deal with several considerations that arise when calculating 

sentiment scores for full articles (as opposed to individual sentences), as well as when 

aggregating several sentiment scores from multiple articles on a given day into one sentiment 

score. The sub-section will proceed by first discussing the aggregation technique we have 

employed, and then move on to discuss additional considerations we have not yet explored 

when discussing our sentiment estimation methodology. 

5.2.1 Daily sentiment aggregation 

Once we have applied our different methods of investor sentiment estimation, we need to 

aggregate the polarized results for a document. In the case that there are several articles for a 

given company, we wish to further aggregate the sentiment scores of these articles within a 

day into an aggregate sentiment score for that day for a given firm.  
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To ensure that our sample articles are relevant, we start out by filtering news based on their 

characteristics. As explained in Section 4.4.3, we have already removed news with less than 

100 words. In addition, when doing a word count, we require each news item to have a 

minimum of three negative words with two of them being unique (e.g., Tetlock et al., 2008). 

Similarly, we also require documents to have at least two sentences with negative polarity 

(our word count may still use these news items). The exclusion is done in order to eliminate 

stories that contain only tables, or lists, with mostly quantitative information. For example, a 

table might contain an individual word multiple times in the header of the table, and thus 

could add considerable noise to the sentiment if it were included in the sentiment score. The 

articles that meet the aforementioned criteria are included in our news sample and hence in 

our sentiment score. 

To consolidate polarized elements, Das (2010) suggests calculating ‘sents’, where a positive 

(‘BUY’) signal is calculated as +1, negative (‘SELL’) signal as -1, and a neutral (‘HOLD’) 

signal as 0. From the news items that are left for aggregation, we aggregate the sentiment 

score Neg
150

 for document d as  

Negd = Number of negative words (sentences) / Total words (sentences) 

As can be seen, we use the same method of aggregation for word count and the Linearized 

Phrase-Structure -model. This is done to keep the consolidated sentiments consistent, which 

will allow us to better compare the methods. 

Aggregation of the daily sentiment based on multiple articles with different scores can be 

done either by (a) using averages of the sentiment per article, or by (b) combining all articles 

within a day into a composite article. The chosen method can significantly impact the weight 

that each source gets in the sentiment score. In option a) each document can be set to have a 

weight (equal weight, or some other weight), while this is not possible if we aggregate all 

word and sentences directly into a composite article (option b). Previous studies have counted 

the aggregate daily media sentiment for a company by pooling all news items together in 

order to create a composite article. Then, negative words in all articles during respective day / 

total words in all articles during respective day (e.g., Tetlock et al., 2008; Engelberg, 2008) 

would reflect the sentiment of the day. However, we choose to differ from this approach. 

Consider a day when six articles are published: an article with 1,000 words, 100 of which are 
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 As negative news has been shown by previous literature to be most influential, we use in consolidated 

sentiment scores the negative sentiment. 



110 

 

negative; and five articles with 200 words, 0 of which are negative. With prior literature’s 

method, the aforementioned example would yield a sentiment score of: 

      
               

                           
     

The weight of an article for the daily sentiment score would thus be directly proportional to its 

length which can simply be a function of writing style. While writing in a certain style may 

impact people’s perception, we believe that multiple sources weigh more in the formation of 

an aggregate sentiment than the length, and negativity conveyed possibly by a single 

source
151

. Therefore, we aggregate daily sentiments based on equal weights between sources; 

in other words, using an average of the articles’ sentiment scores within a day: 

     ∑
                                  

                             

 
      

 

 
   

N= number of articles during day t 

The roots of our approach can be traced back to behavioral finance theory
152

. According to 

mental accounting, people do not aggregate related information rationally but consider it in 

insulation. As discussed, aggregating using composite articles overweighs lengthy articles vis-

à-vis the different number of articles. We hypothesize the following: agents do not aggregate 

different news during a day but use a 1/N style heuristic rule in forming their sentiment 

estimate for the day, leading to equal weighting of news: averaging. 

  

5.2.2 Considerations on daily sentiment aggregation 

Prior literature studies have estimated daily sentiment scores using different methods besides 

the simple fraction of negative words to total words. For instance, Tetlock (2007) uses 

standardization of negative fraction as follows: 

     
          

    
 

where µneg is the mean of Neg over the previous 365 days and σneg is the standard deviation 

over the same period. Standardization might be needed, for instance, in the case that different 
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 In fact, proxies of impact should be the prestige and number of readers of a source in a more sophisticated 

sentiment algorithm.  
152

 See Section 2.2. for more discussion on behavioral finance, and the related sources. 
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publications change their coverage style, or that some new publications have been added to a 

news database during the sample period. However we do not follow this approach as previous 

studies have not found a significant difference between standardization and the simple 

fraction (Tetlock et al, 2008; Engelberg, 2008). Also, it is possible that there is a justified shift 

in negativity during a sample period. For example, our sample reaches over the financial 

crisis. Therefore, it could be justified that the sentiment would change over time, and 

smoothing the sentiment with standardization would distort the correct sentiment. 

Besides standardization, term-weighting has been used when estimating daily investor 

sentiment (Loughran and McDonald, 2011). The method takes into account the length of a 

document, the frequency of terms, and commonality of terms within the entire corpus. 

According to Loughran and McDonald, term weighting can be especially beneficial when 

using a dictionary that is not tailored for the context it is being used in: for example using the 

Harvard psychology dictionary in financial context. However, as we are using a context-

specific dictionary, and wish to stay consistent with other studies: only Loughran and 

McDonald have used term-weighting, we refrain from using term-weighting. 

As we are using closing prices, we need to take into account the sentiment changes occurring 

during weekends to have an accurate reflection of the relationship between financial metrics 

and sentiment. Therefore, we calculate the sentiment scores for Monday’s by adding the 

sentiment of the weekend to the sentiment of Monday. By doing so, we take into account that 

the change from Friday’s closing price to Monday’s closing price includes news from 

Saturday, Sunday and Monday. We use the aforementioned method also for other days when 

the stock market has been closed. 

Once we have calculated these sentiment scores, we further check the scores for seasonality 

and industry trends to make sure that there is no systematic bias impacting the sentiment. We 

test whether there are time periods when negative news are more common, and if negative 

news are constantly reported more in a certain industry. However, as we previously noted 

when discussing the standardization possibility, there may be a good explanation why these 

trends are occurring: i.e. a certain industry could be constantly declining in value and 

therefore warrant a constant increase in negative sentiment towards it. However, we wish to 

make sure that there is a logical explanation behind such trends, and that it is not simply a 

matter of what news are being included in our sample.  
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5.2.3 Robustness checks for LPS-sentiment 

We calculate the LPS sentiment for each company. To ensure this sentiment correctly 

represents the market sentiment, we manually go through the resulting sentiment for the 

whole market: measured by S&P100, and for a few selected companies and the banking 

industry. For a summary of these sentiments and their comparison with the corresponding 

stock price, or index, see the figures below
153

. 

 

Figure 9: SP100 sentiment and stock index 
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 We show 30-day average sentiment, as a shorter term sentiment would be difficult to display due to 

significant volatility in the daily sentiment metric. 
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Figure 10: Citi sentiment and stock price 

 

Figure 11: Google sentiment and stock price 

0%

5%

10%

15%

20%

25%

30%

35%

40%

Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10 Jan-11

Negativity

30-day average neg Stock (indexed)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10 Jan-11

Negativity

30-day average neg Stock (indexed)



114 

 

 

 

Figure 12: Ford sentiment and stock price 

 

 

Figure 13: Banks and Trading sentiment and stock index 
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As can be seen with these examples, there appears to be some inverse relationship between 

negativity and stock price as one would expect. To further ensure the correctness of the 

sentiment score, we perform some further robustness checks. 

To test whether our sentiment score could be driven by a bias in sources, we see how our 

sources differ in terms of sentiment. We study the difference between newspapers and other 

sources, and take as a case example our largest publication: The Financial Times. We plot 

negativity as calculated from each of these sources separately to see how well the sentiment 

scores in different sources correlate with each other. 

 

Figure 14: 30-day
154

 average sentiment by different sources 

As can be seen, all of the sources correlate with each other, reaching peaks and bottoms 

typically simultaneously. It is also noteworthy that newspapers: in particular The Financial 

Times, appear to be using significantly more negative language than other sources. We 

assume that the aforementioned result is impacted by companies’ own earnings releases that 

typically would describe their operations in a more positive tone, and therefore impact the 

‘Not Newspapers’ category. 

In addition, we calculate the correlation of these sentiments to verify the inference from the 

figure. We verify that the 30-day sentiments correlate relatively well with each other. Also as 
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 The sentiment score varies significantly on a day-to-day basis. To show a more stable figure, a 30-day 

window is selected for most of our analysis. While a shorter window would have too much  variation, a longer 

much longer window could already be impacted too much by multiple quarterly announcements etc.  

10%

20%

30%

Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10 Jul-10 Jan-11

Negativity

Newspaper (excl FT) Not newspapers FT



116 

 

we expect, if we test the correlation on a daily level, the sentiments correlate significantly 

less
155

. 

 

Figure 15: Correlation between different sentiments 

 

5.2.4 Alternative ways for aggregating sentiment 

In addition to sentiment aggregation described before, sentiment could be aggregated in 

alternative ways. For robustness, we test creating our sentiment scores with only a subset of 

the full media sample included in order to test if a certain media type could improve or bias 

our results. These variations of the sentiment score are described below. In general, these 

variations do not make a significant impact on our results. In situations where they do, we 

report also results of these variations. 

Newspapers only and Only non-newspapers 

We choose only sources that have been indicated to be newspapers. These sources are 

possibly more analytical compared to other news sources. Furthermore, this sentiment 

excludes all earnings announcements. On the other hand, we test the impact of choosing only 

the opposite: only media that is not from newspapers.  

Sentiment only with at least 5 daily news 

If there are less than five news for a company for a certain day, it is possible that a few 

articles analyzing the company from a certain perspective over a longer period of time could 

determine the sentiment. Often a reporter could e.g. spend a week writing about a company, 

and then publish an article. An article like this may not fully reflect the day’s sentiment 

anymore. To ensure that the news sentiment accurately pictures the overall media sentiment 
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 When comparing the sentiments on a company level each day, the correlations decrease naturally further as 

the number of publications each day for a particular company often varies between 0 to 10, i.e. the measure 

depends more on what publications are active on a particular day.  
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for a company on a certain date, we run some tests with the media sample so that we include 

sentiment scores only for days when at least 5 articles are available. 

Windsorized results 

To test if our results are driven by extreme values, we create a sentiment where we exclude 

the most extreme sentiment scores (windsorized at 1%). 

30-day average sentiment 

The sentiment score varies significantly on a day-to-day basis. To show a more stable figure, 

we test the sentiment of a 30-day average sentiment. While a shorter window would have too 

much variation, a longer window could already be impacted too much by multiple quarterly 

announcements etc.  

Sentiment with FT news only 

Our sample includes a significant portion of news from the Financial Times. It could be 

possible that a more credible publication would either picture the market more correctly or 

impact the market in the coming days. To test this, we run aggregate sentiment scores so that 

we include only Financial Times news to the score. 

Sentiment only when low media disagreement  

According to Das (2010), the market sentiment’s predicting power may be weaker when there 

is diversity in opinions in the market. To measure the difference in opinions, Das proposes 

measuring a metric he calls ‘Disag’ calculated as: 

        |  |
       

       
 | | 

where ‘Pos’ is the number of positives: in our case, positive sentences, and ‘Neg’ is the 

number of negatives: negative sentences. A zero value would indicate that all news would be 

in perfect agreement in terms of sentiment, while value of 1 for ‘Disag’ would indicate that 

there are equally many positive and negative opinions. Based on our SVM’s categorization of 

positive and negative sentences, we calculate ‘Disag’ for each news item. Similarly to 

calculating negativity, we aggregate ‘Disag’ for each company for each day by taking the 

average disagreement of all news. We also show the ‘Disag’ figure for the whole SP100 in 

Figure 16, where we can see the market uncertainty during the financial crisis. 
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Figure 16: DISAG for SP100 

 

SVM strong 

To test the impact of having a highly robust sentiment metric, we create a measure “SVM 

strong”.  For this, we combine the “Sentiment only when low news media disagreement” and 

“Sentiment only with at least 5 daily news”: we only include news where the disagreement is 

low (only lower 80% of sample included) and where there are at least 5 news items for the 

date. 

 

5.3 Sentiment estimation methodology limitations 

Das (2010) illustrate the inverse relationship between data volume and algorithm complexity 

in data and algorithm pyramid figure which is depicted below in Figure 17: The data and 

algorithms pyramids (Das, 2010). In general, we could categorize the 'bag-of-words’ method 

as being on the lowest level of the pyramid, whereas our methodology: Linearized Phrase-

Structure -model, would be in the content-level. However, as is evident from the figure, there 

is still work to be done to reach the context level.  
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Figure 17: The data and algorithms pyramids (Das, 2010) 

The prevalent methodology for the extant literature has been so far a naïve word count based 

on different dictionaries. While being simple and fast to use, the word count method has its 

limits. In their recent influential article, Loughran and McDonald (2011) show that 

dictionaries not related to the context of the data misclassify words. As a result, they create 

word lists for the financial context which significantly improve results for a word count 

methodology. Yet, the sentiment derived from a word count with context specific dictionaries 

remains a naïve proxy for the actual sentiment: simply counting words of a text cannot yield 

an understanding of the meaning of the text. Examples of the pitfalls of the methodology are 

multiple. For instance, word ‘bad’ counts as a negative word in both the expressions ‘bad 

result’ and ‘not a bad result’, or sarcastically written text could be downright misinterpreted. 

As an alternative way of measuring sentiment, we have proposed that Linearized Phrase-

Structure -model can yield better results: recognizing common patterns in financial text that a 

word count is not able to do. While our methodology is an improvement vis-à-vis the 

prevalent methodology, it is still far from the actual sentiment that would be derived by 

multiple human annotators. Compared to a human annotator, the Linearized Phrase-Structure 

-model cannot detect topics, the relevance of a text, and is unable to assess text credibility. 

Also, we are unable pinpoint temporal differences in information in a text. All in all, our 

methodology is a significant improvement from the naïve word count methodology; however, 

there is yet significant room for improvement. 

Our relevancy filtering is relatively limited, and we do not make a difference between topics 

and their relative importance. Ideally, we would retrieve all news that impact the sentiment of 
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a company, and then sort them based on relevancy. At the moment, we filter implicitly as we 

search for news based on the companies’ tickers. Should a news item be important but not 

mention the company: i.e. important industry news, we may miss the news item from our 

sentiment. Second, we give all news the same weight, regardless of their relative relevance. In 

reality, we might be better off by giving each news item a sentiment score, with a weight 

depending on the topic that it is written about. Possibly, we would have this kind of relevance 

assessment on two levels: first, we would assess what topics are relevant for the company, 

and by how much. Second, we could recognize on a sentence level how relevant each 

sentence is for the topic. Naturally, implementing topic recognition, and finding relative 

relevancy weights, would not be a trivial task, and could be a topic for future research. 

The Linearized Phrase-Structure -model cannot assess credibility in sentences. Therefore, the 

algorithm operates in a child-like manner: believing everything that it sees. The aforesaid can 

lead into several biases that cause sentences to become tagged differently compared to that of 

a human annotator. Ideally, we would assess credibility of different authors, adjusting the 

opinions of authors that have a tendency to write in a certain way. For example, some 

publications may be more favorable in their writing style. For instance, a case-in-point is a 

situation where a company is the author of an article discussing its own operations in a 

positive manner. 

Another caveat example relating to credibility is our aggregation method. Currently, we are 

assigning each article equal weight regardless of the publication; a naïve way of assigning 

weights to publications. For instance, an article in The Financial Times would most likely 

have more impact than a local newspaper article due to its larger circulation and higher 

perceived credibility. However, adjusting the methodology to take into account the 

aforementioned factors is an extensive undertaking; we leave the issues for future research. 

We suggest that, for example, different weights could be applied to the sentiment scores 

before aggregation, depending on the source.  

Linearized Phrase-Structure -model does not make a difference between the temporal 

placements of information a news item is describing: we consider all found news with equal 

weight, regardless of the time period of the information in question. For instance, a story 

describing a company’s history would be handled in the exact same way as a story bringing 

new information to the market, or a story speculating on the future. In reality, markets react 
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very differently to new information vis-à-vis old information.
156

 One approach to overcome 

the aforementioned limitation would be to detect topics as they appear for the first time, and 

discount secondary news: ‘news of news’. Another approach would be to keep track of the 

time aspect when estimating sentiment, and use that information in the estimation process. 

For example, Cahan et al. (2011) hypothesize that gathering speculations around future dates 

can help with the use of sentiment information. 

In addition to the aforementioned considerations, our choice to focus on the fraction of 

negative sentences and words can be questioned.
157

 It is a valid point that there may exist 

other metrics that would be more useful in the estimation of sentiment than negativity. 

However, extant literature has documented in several occasions that negativity outperforms 

other metrics (e.g., Tetlock, 2007). Therefore, we conclude that our choice to focus on the 

negativity of a given text is well-founded. 

Another consideration is the qualitative data we use to estimate sentiment. As our sample 

consists of qualitative texts from LexisNexis database, we may miss some important 

qualitative text publications that are not included in the LexisNexis database. That being said, 

LexisNexis does cover different sources of qualitative texts quite comprehensively. 

Nevertheless, we may miss some publications due to copyright and coverage issues. 

Furthermore, we are missing qualitative texts that focus on specific products of companies but 

do not mention the company by its name. Such texts, and the sentiment in them, most likely 

carry significant value, and affect financial metrics. Also, we acknowledge the fact that we are 

missing the following qualitative sources completely from our sentiment: social media, non-

written media: i.e., TV- and radio-broadcasts However, accounting for the aforesaid factors is 

not a trivial task, and therefore we suggest future research to study the matter.  

We conclude that an ideal sentiment model would mimic the key stages of an analyst’s 

thought process in assessing the impact that a news article has on a company, and would draw 

similar conclusions as a financial analyst would. In addition, such a model should incorporate 

                                                 
156

 However, we do recognize that tone can in itself have significant impact, even in the absence of new 

information (content). 
157

 Previous studies have identified that negative sentiment appears to be the most influential one. However, for 

example, Das (2010) discovers that a daily ‘disagreement-sentiment’ that proxies the disagreement in the market 

by calculating the number of both positive and negative signals, can be used to estimate how well the negative 

sentiment works. In times when there are both positive and negative information on the market, the predictive 

power of the negative sentiment tends to decrease. We have aimed to take this into account by using the negative 

fraction of all words, but it is possible that by taking into account the positive sentiment in the way Das suggests, 

could further improve our results. 
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all available information that is relevant to a firm. We find that while our sentiment estimates 

are a significant improvement from word count methodology, more work remains to be done 

on estimating sentiment more accurately. 

 

5.4 Relationship between sentiment and stock performance metrics 

In order for us to examine the relationship between our main variables and the dependent 

variables in multivariate context, we need to choose a statistical research methodology. As the 

nature of our data is panel, we need to identify the appropriate method for calculating 

standard errors to avoid biased and unreliable statistical inferences as suggested by Petersen 

(2009). Therefore, we test our data to see what the correlations between the error term 

estimates are. 

As suggested by Petersen (2009), we first estimate our standard errors
158

 without clustering in 

any dimension. We proceed from there on to estimate the standard errors using clustering by 

firms: we find no evidence of magnitude change in our standard errors. Therefore, we 

conclude that our sample is free from firm effect (time-series correlation)  temporary or 

permanent. . We continue by clustering by day and quarter.
159

 We find marginal increase in 

our standard errors for the daily clustering. However, we find a substantial increase in our 

standard errors for clustering by quarter. We continue the analysis by including calendar 

quarter dummies in our regressions while removing clustering. The increase in standard errors 

is mitigated. We conclude that our data is free from firm effect (time-series correlation; 

autocorrelation) but exhibits a permanent time effect (cross-sectional dependency) in error 

terms that is most salient in quarterly basis.
160

 Hence, according to Petersen (2009), we rely 

on the most reliable method for estimating relationships under time effect: the Fama-Macbeth 

(1973) methodology. Therefore, we run our regression specifications under Fama-Macbeth 

methodology with clustering done in quarters.  The quarters are specified as follows: Q1: 1
st
 

January to 31
st
 March; Q2: 1

st
 April to 31

st
 June; Q3: 1

st
 July to 31

st
 September; Q4: 1

st
 

                                                 
158

 White (1984) adjusted standard errors to account for heteroskedasticity.  
159

 Daily and quarterly clustering intervals have been used in majority of influential studies (e.g., Tetlock et al., 

2008; Loughran and McDonald, 2011), and they are the most intuitive intervals considering the nature of our 

data: mainly daily or quarterly based. 
160

 We reason that the quarterly vis-à-vis daily magnitude change is a function of relatively small number of 

observations per daily clusters: even as low as under 10 observations. Therefore, our coefficient estimates 

experience great noise when clustering with daily intervals. Hence, the estimates and their standard errors are not 

reliable. Therefore, we hypothesize that the firm-effect is indeed most salient on a daily basis but we are 

constrained by our sample. As a result, we rely on quarterly clustering. 
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October to 31
st
 December. For our sample this means that we split the data into 21 time 

periods. 

Our approach is similar to that of Loughran and McDonald (2011) with the exception that we 

do not discover a firm effect in our data and hence do not adjust our standard errors for 

autocorrelation using Newey-West (1987) approach.
161

 In fact, as most of the content analysis 

papers have researched investor sentiment’s impact on equity returns, most of the studies have 

not found firm effects in their data, as Petersen (2009) suggests when dealing with equity 

returns. Therefore, our finding of time effect in the data, and the corresponding choice of 

methodology, is consistent with the majority of recent papers that have relied on clustering by 

time to control for time effect (e.g., Engelberg, 2008; Tetlock et al., 2008; Hirsleifer et al., 

2009). 

We will continue this section by describing our study’s multivariate main specifications and 

the alternative specifications designed to provide additional robustness to our results. All of 

the specifications have been conducted using the aforementioned Fama and MacBeth (1973) 

methodology with quarterly clustering of data. For more discussion on variable definitions, 

we refer the reader to Section 4.2. 

5.4.1 Main specifications 

We will discuss below the main specifications we are running to examine the relationship 

between the financial metrics of our choice (dependent variables), and the main independent 

variables. We will offer brief motivation for the included variables, as well as some reference 

literature with similar specifications in the domain of content analysis in finance.  

For further information on the variable definitions, we refer the reader to section 4.2., and on 

information concerning the estimation of investor sentiment and the statistical methods used 

to study the relationship between financial metrics and the sentiment, we refer the reader to 

the previous sub-sections of this section. 

Abnormal returns 

Abnormal return (dependent variable) for the main specification is defined as a buy-and-hold 

abnormal return [BHAR] as discussed in Section 4.2. with 25 matching portfolios used as a 

                                                 
161

Loughran and McDonald (2011) do not explicitly state that they had run an analysis on their data to discover 

the different forms of dependency in their error terms. However, we infer from their choice of methodology that 

they found both firm and time effects in their data.  
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benchmark return. The event windows are: [0,1], [1,5], [2,32] and [2,62], and the returns are 

calculated based on closing prices, as discussed in Section 4.2. 

The main variables (independent variables) of the specification are as follows: first, we will 

attempt to estimate the impact of the prevailing investor sentiment by including a sentiment 

variable that will be based on two different methods: Linearized Phrase-Structure -model, and 

a bag-of-words word count using two separate dictionaries: the Harvard negative dictionary 

[H4N] and the Loughran and McDonald (2011) finance-negative dictionary; second, we will 

attempt to capture the distraction effect suggested by Hirsleifer et al. (2009) by including a 

market news volume count; third, we will include a firm specific news count to include the 

potential media coverage effect suggested by Fang and Peress (2009). The set of independent 

variables is designed to capture a holistic view of the impact of media on returns.  

After the inclusion of our main variables, we include a set of controls to mitigate the risk of 

an omitted variable driving our results. Our list of controls for the main specification stands as 

follows: first, we include controls for size and book-to-market to capture the known risk 

factors as suggested by prior literature;
162

 second, we include three different momentum 

factors to capture the effects of past returns on future returns; third, we include a control for 

share turnover to estimate liquidity and belief dispersion impacts on returns; fourth, we 

include a control for standardized earnings surprise to capture post-earnings announcement 

drift [PEAD]; fifth, we include a control for abnormal volatility to proxy for firm specific 

potential arbitrage limits; finally, we control for impact of institutions on returns with the 

hypothesis that institutions hold more information processing capacity and hence incorporate 

new information into prices more quickly. 

The main specification we employ is similar in nature to that of Tetlock et al. (2008) and 

Loughran and McDonald (2011). The equation for our abnormal return specification is given 

below: 

                                                            

 

                                                 
162

 We include these controls even though our matching portfolio is based on the same variables. However, by 

including size and B-2-M, we follow the approach of previous literature (e.g., Chan, 2003; Engelberg, 2008; 

Hirsleifer et al., 2009; Demers and Vega, 2010). 
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Abnormal volume 

As trading volume is suggested to be related to investor sentiment (e.g., Tetlock, 2007; 

Hirsleifer et al., 2009; Loughran and McDonald, 2011), we design a specification to study the 

effects of our main variables on abnormal trading volume. As we do not foresee any specific 

reason as to why we should employ different event windows with volume vis-à-vis returns, 

we run our specification with the same four event windows as with returns in order to 

maintain consistency within the study.
163

  

We define the dependent variable: abnormal volume, as explained in Section 4.2. The main 

variables for the specification are the same as in abnormal return specification. The set of 

controls is similar to that of returns with the following addition: in line with Hirsleifer et al. 

(2009), we include a control for abnormal market volume in order to isolate the idiosyncratic 

change in trading volume.  

Our specification is similar especially to that of Loughran and McDonald (2011). The 

equation for our abnormal volume specification is given below: 

                                                              

 

Abnormal volatility 

As our final financial metric of interest, we study the relationship between our main variables 

and abnormal idiosyncratic volatility.
164

 As suggested by Antweiler and Frank (2004), 

Demers and Vega (2010) and Loughran and McDonald (2011), qualitative text can have 

predictive power over future volatility of equity returns above and beyond quantitative 

information. We run abnormal volatility specification for event windows: [2,32] and [2,62], as 

discussed in Section 4.2.1. The shorter event windows are excluded as there are not enough 

data points for a meaningful estimate of volatility. 

The set of main and control variables for the specification (independent variables) are the 

same as in abnormal returns. Therefore, our specification resembles mainly that of Loughran 

                                                 
163

 As previous section was dealing in the domain of equity returns, event windows were defined based on 

closing prices. Therefore, event windows [0,1] would read  in the domain of volume  as abnormal volume 

for day 1 [1]. With the exception of this slight change in notations, the event windows are the same. For more 

discussion, see Section 4.2.1. 
164

Refer to Section 4.2., for a definition of abnormal volatility 
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and McDonald’s (2011) specification. The equation for our abnormal volatility specification 

is as follows: 

                                                              

 

5.4.2 Alternative specifications for robustness 

To ensure the reliability of our results, we employ several different specifications as 

robustness checks for our results. The goal of alternating specifications is to ensure that 

omitted variables are not driving our results, as well as to check whether or not our results 

dissipate when switching methodology in the estimation of our main variables. The section 

will continue by elaborating the different specifications we employ to ensure the robustness of 

our results. Reader should refer to Section 4.2., for more detailed descriptions on the variables 

discussed. 

Alternative abnormal return definitions 

Due to the critique towards the dependency of results on abnormal return calculation 

techniques (e.g., Fama, 1997, 1998), we run our abnormal return and volatility main 

specifications with differing return estimation techniques. First, we use raw returns (e.g., 

Tetlock, 2007) instead of abnormal returns; Second, we use two different benchmarks for 

abnormal returns: value weighted index returns based on all the market caps of the firms (e.g., 

Loughran and McDonald, 2011), and Fama and French three-factor model (e.g., Tetlock et al., 

2008). Third, we estimate our abnormal returns using CARs instead of BHARs  we 

replicate this approach with the other aforementioned benchmarks as well.  

The aforementioned alternations ensure that our results are not driven by a bad model 

problem. Due to the findings of prior literature, we expect to see changes in our results with 

different definitions of abnormal returns. At bare minimum, we expect a decrease in our 

coefficients magnitude when switching to CARs instead of BHARs. 

Alternative main variable definitions 

As we see in section 4.4.3, our news volume decreases slightly towards the end of the time 

period. To test whether or not the aforesaid impacts our tests, we run our main specifications 

with a standardized version of market and news volume variables. We standardize the volume 

by deducting the past average volume from the news volume, and dividing the resulting figure 
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standardizing with standard deviation of volume. Therefore, we control seasonal trend with 

standardization, and examine the abnormal impact of volume to our results. We define 

standardized market and firm specific news volume on day 0 as follows:  

                      
(                                   )

                                   
 

 

Additional control variables 

In order to be robust, we create several different alternative specifications that include new 

controls in addition to our main controls. Our aim is to examine whether or not some of the 

new controls have an impact on our results. However, as prior studies have not found 

significant evidence of changes in results with the inclusion of the additional controls we plan 

on including, we do not expect them to alter our main specification results. 

 Industry specific effects. We add an industry dummy: a dummy according to the 

Fama and French (1997) 48-industry classification to our main specifications in order 

to account for industry specific differences in results. Due to the large number of 

dummies included, we will lose several degrees of freedom, and hence expect our 

results to decrease in statistical significance. However, qualitatively our results should 

remain the same; in other words, we do not believe that a specific industry would be 

driving our results. 

 Impact of analysts. We include the number of analysts following a company, and the 

analyst dispersion control variables into our main specifications to see whether or not 

analysts have an impact on our dependent variables. However, our main specification 

should already account for the effects that analyst coverage
165

 and analyst 

dispersion
166

 cover. Therefore, we do not expect to see significant changes in our 

results. 

 Calendar effects. We employ calendar dummies to our main specifications to be 

absolutely sure that our results are not dependent on the well-documented calendar 

effects. However, as our matching portfolio benchmark return should already cover 

calendar effects implicitly, we do not expect changes with abnormal return and 

                                                 
165

 Analyst coverage is a proxy for informational efficiency that should be covered by institutional ownership. 

Due to strong multicollinearity issues analyst coverage is not included in the main specification. 
166

 Analyst dispersion is a proxy for belief dispersion. Share turnover should also proxy for belief dispersion. 
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volatility specifications. Moreover, as we control for market wide abnormal trading in 

our abnormal volume specification,
167

 we do not expect to see changes in the volume 

specification, either. 

 Dividend effects. In line with Li (2006), we include dividend variables as suggested 

by Fama and French (2006) in order to cover their possible impact on our dependent 

variables. Hence, we include the paid dividends from the last twelve months, divided 

by book value of equity. Also, we add a dummy for companies with no last twelve 

months dividends dummy. We do not expect to see a change in our results with the 

addition of dividend variables. 

  

                                                 
167

 Abnormal market volume should implicitly cover calendar effects.  
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6 RESULTS 

In this chapter, we discuss the results we derive from our tests, and how they relate to our 

hypotheses. We begin by testing the performance of different sentiment methodologies in 

classifying articles. Afterwards, we move on to study the impact of sentiment on financial 

metrics. To do so, we begin by conducting univariate tests to determine if there is a 

relationship, and what is the nature of the relationship. After the univariate tests, we move on 

to perform multivariate tests to see how our main independent variables impact our dependent 

variables when tested simultaneously in a holistic media model. Finally, we conduct several 

additional multivariate tests with alternative specifications for the sake of robustness, and to 

further study specific areas of interest.  

We refer the reader to Section 3 for more information on our hypotheses, to Section 4 on 

descriptions of data and our variables, and to Section 5 for discussion on our methodology 

and specifications. 

6.1 Sentence-level sentiment 

In order to compare the accuracy of the LPS algorithm, a number of baseline models were 

constructed. One of the objectives in the experiments is to understand how the added layers of 

rules contribute to the overall model performance. Therefore, the benchmark algorithms 

featured below have been chosen to represent different levels of model complexity ranging 

from simple word based algorithms towards the model proposed by Moilanen et al. (2010), 

and our approach.  

We start by comparing different methodologies against the benchmark of annotated sentences. 

From there on we move to discuss the potential sources of errors in our method: Linearized 

Phrase-Structure -model. 

6.1.1 Comparison of methods 

We run several different sentiment classification methodologies for both our annotated 

datasets: Training set A and Training set B. We test the following ways of estimating 

sentiment: 

 Random: To be able to compare the improvements of different methods over random 

assigning of labels, we calculate sentiment scores for randomly labeled sentences. 
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Using a uniform distribution, we assign a random sentiment for each sentence: 

positive, neutral or negative. We simulate the random assigning 1,000 times, and 

compare the outcome: i.e., accuracy, between the random sample and our 

methodologies. 

 Weighted random: We use the distribution of data labels in the annotated data sets: 

i.e., if there are 10% of negative sentences in a training set, each sentence will have a 

10% probability of being tagged as negative. Similarly to Random, we give each 

sentence a random sentiment, and we run simulation 1,000 times. 

 Word count (Harvard): As explained in previous sections, we calculate the number 

of positive and negative words in each sentence using the Harvard dictionary positive 

and negative word lists. We then label the sentence using the following rules: no 

polarized words or ambiguous = neutral; 2/3 or more negative words = negative; 2/3 

or more positive words = positive.  

 Word count (Loughran): We use a similar method as with word count Harvard, but 

use the positive and negative word lists by Loughran and McDonald (2011). 

 MPQA: As the primary baseline in the experiments regarding sentiment classification 

accuracy, we consider the Quasi-compositional Polarity Sequencing model with 

MPQA dictionary proposed by Moilanen et al. (2010). In the paper, they compared a 

number of alternative models with varying levels of complexity, but taken as a whole 

they found that a simple polarity-sequence model outperformed their more 

complicated models relying on complete phrase-structure information. The version 

considered here is this model with MPQA dictionary as the source of polarity 

information. When evaluating performance, we always use 90% of the training 

material and run the algorithm on the remaining 10%, not to test the algorithm on the 

data that it was trained on (10-fold cross-validation). 

 LPS. Finally, we run our Linearized Phrase-Structure -model, described in section 

5.1.2, with all word lists: lists by Loughran and McDonald, augmented with the 

additional wordlists we described in section 5.1.3. As above, we always test the 

algorithm on 10% of training material (10-fold cross-validation). 

 True values. For easy comparison, we also show all metrics for sentences that have 

been labeled with the correct labels. 

For all the methods above, we calculate a set of accuracy metrics to show how well the 

methods perform on recognizing positive, neutral and negative sentences. The outcomes of 
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the metrics are defined as follows: ‘positive’ refers to a sentence belonging to the category at 

hand; ‘negative’ refers to a sentence not belonging to a category. For example, when we look 

at accuracy metrics of neutral sentences, a ‘true positive’ would be a sentence that is neutral 

and has been labeled as neutral, and a ‘false positive’ would be a sentence that is not neutral 

(i.e. is positive or negative) but has been labeled as neutral, etc. We use the classical 

confusion matrix for assessing classification accuracy as seen in Table 12: Confusion matrix 

(see also: Das, 2010). In the matrix, all cells on the diagonal are considered as being correct.  

Table 12: Confusion matrix 

Confusion matrix according to Fawcett, 2005 

          

 

From the aforementioned, we calculate the following metrics: 

 Accuracy: Estimates what fraction of items in a category has been correctly identified 

as belonging to a category, or not belonging to a category. For example, if calculated 

for the group of neutral sentences, this would refer to correctly identified neutral 

sentences, and correctly identified non-neutral sentences, as a fraction of all sentences. 

In general, accuracy of an intelligent algorithm should be above (1 / number of 

classes), the accuracy of random guessing (Das, 2010).  

 

                               

                                                                        
 

 

 Recall: Estimates what fraction of items in a category have been correctly identified. 

For example: correctly identified positive sentences / all positive sentences in the 

sample. A figure below 1 would mean that some figures have been classified falsely 

(e.g. a neutral sentence has been classified as a positive sentence). 
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 Precision: Estimates what fraction of items in a category have been correctly 

identified vs. all items that have been identified in the category: e.g. correctly 

identified positive sentences / all identified positive sentences. For example, for 

neutral sentences, a figure below 1 would in this case mean that some of the neutral 

sentences have not been recognized as being neutral. 

 

              

                                                      
 

 

 F1-score: The F1-score is a measure that combines recall and precision. 

. 

                

(                                          )
 

Furthermore, we calculate for all samples the fraction of different categories: fraction of 

positive, neutral and negative labels given, and the correlation between the assigned figure 

and the true figure
168

. The results reported for the algorithms with a machine learning 

component (i.e. MPQA and LPS) are computed using 10-fold cross-validation. The results of 

the methods can be found in Table 13: Performance of different method - Training set A 

 

                                                 
168

  In order to calculate a numerical correlation figure, we simply transform the definitions to numbers as 

follows: ‘positive’ = 3, ‘neutral’ = 2, and ‘negative’ = 1. 
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Table 13: Performance of different method - Training set A 

 

 

In addition, we calculate the same metrics for Training set B. These results are shown in 

Table 14. 

 

Random

Weighted 

random

Wordcount 

Harvard

Wordcount 

Loughran MPQA

Directional 

SVM

Windowed 

SVM True values

Positive sentences

Accuracy 0.58 0.62 0.55 0.73 0.61 0.71 0.71 1.00

Recall 0.33 0.25 0.56 0.16 0.55 0.69 0.81 1.00

Precision 0.25 0.25 0.29 0.40 0.33 0.45 0.45 1.00

F1-score 0.29 0.25 0.38 0.23 0.41 0.54 0.58 1.00

Neutral sentences

Accuracy 0.45 0.55 0.50 0.62 0.55 0.65 0.64 1.00

Recall 0.57 0.70 0.72 0.72 0.74 0.84 0.88 1.00

Precision 0.66 0.66 0.69 0.67 0.74 0.83 0.86 1.00

F1-score 0.61 0.68 0.71 0.69 0.74 0.83 0.87 1.00

Negative sentences

Accuracy 0.64 0.83 0.84 0.87 0.86 0.90 0.91 1.00

Recall 0.16 0.04 0.15 0.09 0.32 0.47 0.60 1.00

Precision 0.09 0.09 0.18 0.25 0.34 0.48 0.50 1.00

F1-score 0.12 0.06 0.16 0.13 0.33 0.47 0.54 1.00

All sentences

Correlation 0.00 0.00 0.12 0.20 0.27 0.47 0.54 1.00

% positive 34 % 25 % 48 % 10 % 41 % 39 % 45 % 25 %

% neutral 33 % 66 % 41 % 82 % 43 % 47 % 41 % 66 %

% negative 33 % 9 % 11 % 8 % 15 % 14 % 14 % 9 %

Random

Weighted 

random

Wordcount 

Harvard

Wordcount 

Loughran MPQA

Directional 

SVM

Windowed 

SVM True values

Positive sentences

Accuracy 0.58 0.62 0.55 0.73 0.61 0.71 0.71 1.00

Recall 0.33 0.25 0.56 0.16 0.55 0.69 0.81 1.00

Precision 0.25 0.25 0.29 0.40 0.33 0.45 0.45 1.00

F1-score 0.29 0.25 0.38 0.23 0.41 0.54 0.58 1.00

Neutral sentences

Accuracy 0.45 0.55 0.50 0.62 0.55 0.65 0.64 1.00

Recall 0.57 0.70 0.72 0.72 0.74 0.84 0.88 1.00

Precision 0.66 0.66 0.69 0.67 0.74 0.83 0.86 1.00

F1-score 0.61 0.68 0.71 0.69 0.74 0.83 0.87 1.00

Negative sentences

Accuracy 0.64 0.83 0.84 0.87 0.86 0.90 0.91 1.00

Recall 0.16 0.04 0.15 0.09 0.32 0.47 0.60 1.00

Precision 0.09 0.09 0.18 0.25 0.34 0.48 0.50 1.00

F1-score 0.12 0.06 0.16 0.13 0.33 0.47 0.54 1.00

All sentences

Correlation 0.00 0.00 0.12 0.20 0.27 0.47 0.54 1.00

% positive 34 % 25 % 48 % 10 % 41 % 39 % 45 % 25 %

% neutral 33 % 66 % 41 % 82 % 43 % 47 % 41 % 66 %

% negative 33 % 9 % 11 % 8 % 15 % 14 % 14 % 9 %
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Table 14: Performance of different methods - Training set B 

 

 

As expected, our results improve in general from left to the right. We can see that all metrics 

estimating sentiment are superior compared to random guessing. Loughran and McDonald 

wordlists also improve results over the word count with Harvard dictionary, even though the 

difference is not a large improvement.  

When comparing the results, it is clear that the SVM-based methods are more accurate ways 

to measure sentiment over word counts. The simplest SVM rules should effectively mimic the 

use of word count: e.g. a negative label will be assigned to sentences where the only identified 

polarized words are negative. Thus, it is not surprising that SVM performs at the same level 

as word count. As SVMs can detect also more advanced patterns in sentences, it is expected 

that SVMs perform better than word count. Also, we have been able to achieve significant 

improvement in performance by developing our SVM method from Quasi-compositional 

Polarity Sequencing to Linearized Phrase-Structure -model. These results are also in line with 

our expectations. 

Random

Weighted 

random

Wordcount 

Harvard

Wordcount 

Loughran MPQA

Directional 

SVM

Windowed 

SVM True values

Positive sentences

Accuracy 0.54 0.53 0.58 0.68 0.68 0.82 0.85 1.00

Recall 0.33 0.38 0.59 0.21 0.62 0.78 0.89 1.00

Precision 0.38 0.38 0.46 0.79 0.56 0.75 0.75 1.00

F1-score 0.35 0.38 0.52 0.34 0.59 0.77 0.81 1.00

Neutral sentences

Accuracy 0.51 0.50 0.55 0.57 0.64 0.80 0.82 1.00

Recall 0.39 0.50 0.59 0.60 0.66 0.82 0.90 1.00

Precision 0.48 0.48 0.53 0.53 0.64 0.80 0.87 1.00

F1-score 0.43 0.49 0.56 0.56 0.65 0.81 0.88 1.00

Negative sentences

Accuracy 0.62 0.75 0.81 0.86 0.85 0.93 0.95 1.00

Recall 0.16 0.08 0.18 0.13 0.35 0.57 0.74 1.00

Precision 0.14 0.14 0.31 0.53 0.49 0.77 0.82 1.00

F1-score 0.15 0.10 0.23 0.21 0.41 0.65 0.78 1.00

All sentences

Correlation 0.00 0.00 0.20 0.36 0.41 0.68 0.76 1.00

% positive 33 % 38 % 48 % 10 % 41 % 39 % 45 % 38 %

% neutral 33 % 48 % 41 % 82 % 43 % 47 % 41 % 48 %

% negative 33 % 14 % 11 % 8 % 15 % 14 % 14 % 14 %

Random

Weighted 

random

Wordcount 

Harvard

Wordcount 

Loughran MPQA

Directional 

SVM

Windowed 

SVM True values

Positive sentences

Accuracy 0.54 0.53 0.58 0.68 0.68 0.82 0.85 1.00

Recall 0.33 0.38 0.59 0.21 0.62 0.78 0.89 1.00

Precision 0.38 0.38 0.46 0.79 0.56 0.75 0.75 1.00

F1-score 0.35 0.38 0.52 0.34 0.59 0.77 0.81 1.00

Neutral sentences

Accuracy 0.51 0.50 0.55 0.57 0.64 0.80 0.82 1.00

Recall 0.39 0.50 0.59 0.60 0.66 0.82 0.90 1.00

Precision 0.48 0.48 0.53 0.53 0.64 0.80 0.87 1.00

F1-score 0.43 0.49 0.56 0.56 0.65 0.81 0.88 1.00

Negative sentences

Accuracy 0.62 0.75 0.81 0.86 0.85 0.93 0.95 1.00

Recall 0.16 0.08 0.18 0.13 0.35 0.57 0.74 1.00

Precision 0.14 0.14 0.31 0.53 0.49 0.77 0.82 1.00

F1-score 0.15 0.10 0.23 0.21 0.41 0.65 0.78 1.00

All sentences

Correlation 0.00 0.00 0.20 0.36 0.41 0.68 0.76 1.00

% positive 33 % 38 % 48 % 10 % 41 % 39 % 45 % 38 %

% neutral 33 % 48 % 41 % 82 % 43 % 47 % 41 % 48 %

% negative 33 % 14 % 11 % 8 % 15 % 14 % 14 % 14 %
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Comparing results of the two training sets, we also find that the Training set B performs 

significantly better. This is influenced especially by the fact that with this training set 

sentences that are irrelevant but have a sentiment are still classified by the human annotator as 

having a sentiment. As the LPS method does not have any feature that determines relevance 

of a certain sentence, it cannot make a distinction between two sentences with same polarities. 

Thus it would classify two sentences with the same polarity structures equally, even if the 

other one was discussing something irrelevant. For a further discussion on errors performed 

by the algorithm, we continue with an analysis of errors in the following section. 

Human annotators do not always agree on how a sentence should be annotated. Even in 

instances where we give clear instructions to an annotator, the resulting accuracy of a second 

annotator, compared to the first annotator, is between 80-100%. The accuracy is impacted by: 

the sample complexity, the annotators’ background, their interpretation of different events, 

etc. As can be seen from the results, Linearized Phrase-Structure -model is close to annotator-

achieved accuracy. While some efforts can still improve the algorithm’s performance in cases 

where annotators agree, the chosen principles used to select a certain label can be as important 

when developing a more accurate sentiment – both with the algorithm and between 

annotators. Ultimately, this leads to the question of how should sentiment be aggregated and 

what would be the most beneficial interpretation of it. Options range from reporting the 

sentiment as the ‘feeling’ of the market, seeing the sentiment score as a force impacting the 

thinking of investors, trying to catch especially the sentiment around future events and 

comparing these expectations to realized performance, and so on. 

To conclude, use of better lexicons alone is sufficient to boost performance considerably, as 

indicated by the use of Loughran and McDonald's dictionary instead of Harvard's dictionary. 

However, we find the role of good learning algorithms at least equally important. Already the 

MPQA-baseline is substantially stronger than either of the lexicon-based alternatives. Finally, 

we highlight the importance of choosing the right principles for identifying sentiment for 

different purposes. 

 

6.1.2 Sources of error for Linearized Phrase-Structure -model 

For the sentences that the algorithm annotates incorrectly, we take a random sample of 300 

sentences, and ask our annotator to classify them based on the type of error that the algorithm 
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is making. Key reasons for errors appear to be: the lack of knowledge on what is relevant for 

a company’s success,
169

 the inability to assess the credibility in a sentence,
170

 and the failure 

to identify what is new information.
171

 The results of our error analysis can be seen in Table 

15: Error statistics for Linearized Phrase-Structure -model (Training set A % of errors refers 

to how many sentences were misclassified because of this reason. Often it is possible that two 

errors are simultaneously present in a sentence. Therefore, we also show how often the error 

type was the only error present. 

Table 15: Error statistics for Linearized Phrase-Structure -model (Training set A) 

Error-type
172

 % of errors % as the only error 

Need for more context 43.0 % 20.0 % 

Inability to recognize significance of events 26.7 % 19.3 % 

Company talking in advertising like -tone about its' own 

operations 

10.0 % 3.3 % 

Recognizing patterns in descriptive text 9.0 % 7.7 % 

Polysemy of words and expressions 8.7 % 0.7 % 

Positive convention of talking about something 6.3 % 2.0 % 

Words lacking from word lists 6.0 % 1.0 % 

Inability to understand magnitude and value of items 5.3 % 0.3 % 

Inability to detect changes in numbers 4.3 % 3.7 % 

Inability to detect roles in sentence 4.3 % 0.3 % 

Wrong computer patterns 4.0 % 0.3 % 

Use of longer expressions and interpreting non-words as words 4.0 % 0.0 % 

Inability to detect time expressions in the sentence 3.3 % 2.7 % 

Borderline cases: sentences that could be tagged by human as 

either/or 

2.7 % 1.0 % 

Sentences with multiple parts 1.7 % 0.3 % 

Inability to reason from text 1.3 % 0.7 % 

Wrong label in training data 1.3 % 0.3 % 

 

In addition to the above error analysis, we review the sentences with errors in order to identify 

common individual words. In particular, we look for words that exist in our word lists, and 

                                                 
169

 The errors we are referring to are: ‘inability to recognize significance of events’ and ‘need for more context.’ 
170

 The errors we are referring to are: ‘company talking in advertising like -tone about its' own operations’, 

‘positive convention of talking about something.’ 
171

 The errors we are referring to are: ‘inability to detect time expressions in the sentence.’ 
172

 For a description of error types, refer to Appendix J - Error descriptions for LPS. 

 



137 

 

appear to lead to more errors compared to the sentiments that they help to identify. For a list 

of these words, see Appendix I – Wordlist defects. We refine the algorithm based on the 

aforementioned by removing the words from the wordlists we use to identify sentiment, and 

hence improve the accuracy of all of our methods that are wordlist-based
173

. 

6.2 Univariate tests  

As a first step in studying the relationship between our dependent variables and our main 

independent variables, we turn to univariate tests. In order to understand whether or not our 

main independent variables have a relationship with our dependent variables, we sort our 

main independent variables into ten deciles, and calculate the median dependent variable 

value for all the deciles. After the sorts and calculations, we plot the deciles and their 

corresponding dependent variable median values on scatter plots to see the nature of the 

relationship. In the case that a clear relationship exists, the dependent variable values should 

move monotonically across the different deciles: i.e., with abnormal returns, returns should 

decrease monotonically as we move from less negative deciles towards more negative deciles. 

We begin by looking at the relationship between abnormal returns and our main independent 

variables. From there on, we move on to discuss the relationship between abnormal trading 

volume and our main independent variables. Finally, we study the relationship of abnormal 

volatility and our main independent variables. 

6.2.1 Abnormal returns 

We begin our univariate study by looking at the relationship between abnormal returns and 

our main independent variables. We will begin by plotting our primary sentiment estimation 

methodology: Linearized Phrase-Structure -model, deciles against decile median abnormal 

return values. The graphs are shown below in Figure 18. After looking at Linearized Phrase-

Structure -model performance, we will look at how our two other main independent variables 

fare in the univariate tests by plotting market news volume (Figure 19) and firm specific news 

volume (Figure 20) against abnormal returns. The graphs are shown below. 

                                                 
173

 The aforesaid modification is reflected in all shown results. 
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Figure 18: LPS model deciles vs. decile median abnormal return 

 

As is clear from Figure 18, sentiment does not seem to have a relationship with abnormal 

returns in any of the event windows. The closest to a monotonic relationship is event window 

[1,5]. However, even with the 4-day event window, the relationship is far from monotonic, 

and decile 7 values are off the chart. We can infer from the univariate tests that sentiment 

does not seem to explain future variations in abnormal returns. Therefore, our univariate tests 

are in contradiction with prior literature’s findings, and seem to support market efficiency. 

We conclude that we need to move on to multivariate tests to specify the exact nature of the 

relationship in order to draw more precise conclusions. However, based on the univariate 

tests, it seems that our findings are supporting the hypothesis that markets are efficient. In 

other words, sentiment cannot be used to forecast abnormal returns. 
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Figure 19: Market news volume deciles vs. decile median abnormal return 

 

Market news volume holds more promise than sentiment variable in forecasting abnormal 

returns based on the univariate tests. However, decile 9 exhibits a peculiar drop in all event 

windows. Studying further data behind this decile, we notice an interesting pattern: a much 

larger fraction of news from 2009 and 2010 are present in the the lowest deciles and the 9
th

 

decile. As these have been the core years of the financial crisis, it is natural that these returns 

are lower than for the other deciles. We hypothesize that during this time period on days when 

there has been a large coverage this has often been due to negative press. Indeed this appears 

to be the case. We next drill down in to returns below -10% per decile. The 9
th

 decile indeed 

has proportionately larger negative returns than the other top deciles. We conclude that the 

drop in the 9
th

 decile is thus very likely caused by the fact that our sample includes the time 

period with the financial crisis. Nevertheless, the relationship between market news volume 

and abnormal returns resembles a monotonic relationship to much greater degree than the 

pattern with sentiment variable. Furthermore, it seems that the relationship is positive, as we 

hypothesized. Therefore, univariate tests seem to support our hypothesis of underreaction 

with aggregate market news volume.  

-0.03%

-0.02%

-0.01%

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

1 2 3 4 5 6 7 8 9 10

Volume

quintiles

Abnormal return [0,1]

Least

volume

Most

volume

Return

-0.10%
-0.08%
-0.06%
-0.04%
-0.02%
0.00%
0.02%
0.04%
0.06%
0.08%
0.10%
0.12%

1 2 3 4 5 6 7 8 9 10

Volume

quintiles

Abnormal return [1,5]

Least

volume

Most

volume

Return

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

1 2 3 4 5 6 7 8 9 10

Volume

quintiles

Abnormal return [2,32]

Least

volume

Most

volume

Return

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1 2 3 4 5 6 7 8 9 10

Volume

deciles

Abnormal return [2,62]

Least

volume

Most

volume

Return

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1 2 3 4 5 6 7 8 9 10

Volume

deciles

Abnormal return [2,62]

Least

volume

Most

volume

Return

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1 2 3 4 5 6 7 8 9 10

Volume

deciles

Abnormal return [2,62]

Least

volume

Most

volume

Return

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1 2 3 4 5 6 7 8 9 10

Volume

deciles

Abnormal return [2,62]

Least

volume

Most

volume

Return

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1 2 3 4 5 6 7 8 9 10

Volume

deciles

Abnormal return [2,62]

Least

volume

Most

volume

Return

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1 2 3 4 5 6 7 8 9 10

Volume

deciles

Abnormal return [2,62]

Least

volume

Most

volume

Return

-1.50%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1 2 3 4 5 6 7 8 9 10

Volume

deciles

Abnormal return [2,62]

Least

volume

Most

volume

Return



140 

 

                            

                             

Figure 20: Firm specific news
174

 volume deciles vs. decile median abnormal return 

Firm specific news volume shows no clear relationship with the shorter event-windows. 

However, the longer event windows seem to exhibit an increasing relationship, yet the radical 

drop in the last deciles is puzzling. Looking further into the data, we notice that the highest 

news volume is concentrated especially to certain companies, including also several financial 

institutions where returns have been significantly more negative than for others. Thus, this 

drop appears to represent a bias in our sample during the financial crisis. All in all, the 

relationship between firm specific news volume and abnormal returns is unclear based on the 

univariate tests. We anticipate that firm specific news volume will not have a significant 

relationship with abnormal returns on the short-term event windows based on our univariate 

findings. Also, we remain skeptical towards a significant relationship in the longer event 

windows.
175

 

                                                 
174

 We use only data with news volume over 5, as otherwise too many deciles would have equal values. In other 

words, the first 4 deciles would have news volume value of 0, and the next two deciles would have a news 

volume value of 1.  
175

 Our findings with firm specific news volume and abnormal trading volume push us to hypothesize on the 

nature of the relationship that firm specific news volume has with dependent variables. We refer the reader to the 

section dealing with abnormal trading volume and firm specific news volume for this discussion. 
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6.2.2 Abnormal volume 

We continue our univariate tests by looking at the relationship between abnormal trading 

volume and our main independent variables. We will proceed in a similar manner as in the 

previous section: first, we plot Linearized Phrase-Structure -model sentiment against 

abnormal volumes; second, we plot market news volume against abnormal volumes; finally, 

we plot firm specific news volume against abnormal volume. The graphs are shown below. 

                           

                           

Figure 21: LPS model deciles vs. decile median abnormal trading volume 

 

Based on Figure 20, it seems that sentiment might have a relationship with abnormal volume. 

From the graphs we can see that the relationship is not perfectly monotonic but does show a 

clear increasing pattern - especially event window [2,5] seems to fare well. Based on the 

findings, we infer that our hypothesis of information content dominating investor reactions 

over tone seems to be correct, and sentiment has a positive relationship with abnormal 

volume.  
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Figure 22: Market news volume deciles vs. decile median abnormal trading volume 

 

Market news volume seems to exhibit a relationship with abnormal volume as well. However, 

the relationship portrayed by sentiment deciles seems to hold more promise than market news 

volume. There is considerable variation in decile median values in the event windows. Again, 

decile 9 seems to experience a significant drop that disrupts the increasing monotonic trend
176

. 

Nevertheless, an increasing pattern does emerge from the figure, and we infer that the 

univariate tests do indicate some level of support for our hypothesis of an underreaction, 

followed by abnormal volume in the longer time frame. 

 

                                                 
176

 As for our results comparing Market news volume and to abnormal returns, we suggest that this jump is likely 

caused by the fact that our sample includes the financial crisis. 
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Figure 23: Firm specific news volume
177

 deciles vs. decile median abnormal trading volume 

 

In light of the univariate tests, it seems that firm specific news volume has at least a weak 

relationship with abnormal volume. Interestingly, we see a drastic change in the last decile
178

; 

a similar change was evident with firm specific news volume with abnormal returns. To some 

surprise, the relationship seems to be positive, and hence in contradiction with our main 

hypothesis. In fact, the univariate tests seem to support our alternative hypothesis suggesting 

that attention grabbing stocks expedite abnormal trading as is evident by the positive 

relationship illustrated in Figure 23. Also, it seems that the relationship is more prominent for 

the shorter event windows while the longer event windows seem to have slightly weaker 

increasing pattern. However, all the event windows show more or less stable upward 

movement throughout the deciles, with a radical increase in the last decile. Indeed, we suggest 

                                                 
177

 We use only data with news volume over 5, as otherwise too many deciles would have equal values. In other 

words, the first 4 deciles would have news volume value of 0, and the next two deciles would have a news 

volume value of 1. 
178

 The reader should note that the last decile is not equal to the other deciles, and therefore a large change is 

natural in this case. In majority of instances, the news volume would be between 5-25 news per day. These data 

points are presented with deciles 1-9. Decile 10, on the other hand, captures all instances where news volume is 

higher than 25, in fact the highest news volume going up to 235 news items per day. (For market news volume 

and the LPS-score, the jump to the last decile is not drastic).  
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that firm specific news volume can in fact have a binomial relationship with its dependent 

variables. In other words, after crossing a certain threshold, a firm becomes ‘attention 

grabber’
179

, and experiences a significant increase in its abnormal trading volume, or a 

decrease in its abnormal returns. However, before crossing this threshold, the dependent 

variables are not significantly impacted by more firm specific news. In conclusion, based on 

the univariate findings, we suggest that firm specific news volume has a relationship with 

abnormal trading volume that is positive in nature.  

 

6.2.3 Abnormal volatility 

As our final univariate test, we study the impact of our main independent variables on 

abnormal volatility. We will proceed in this section in a similar manner as in the previous 

sections: first, we plot Linearized Phrase-Structure -model sentiment against abnormal 

volatility; second, we plot market news volume against abnormal volatility; finally, we plot 

firm specific news volume against abnormal volatility. The graphs are shown below. 

  

Figure 24: LPS model deciles vs. decile median abnormal volatility 

 

Based on the univariate analysis, it seems that sentiment has the ability to forecast future 

abnormal volatility. As is shown in Figure 24, abnormal volatility increases monotonically 

throughout the deciles. However, the first deciles are relatively constant. Nevertheless, the last 

deciles show a clear and monotonic increase with each decile that is a strong indication of a 

relationship. Furthermore, the relationship is positive in nature, as we hypothesized. Indeed, 

our univariate findings seem to support the findings of prior literature. We infer that 
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 The firm experiences more trading due to speculators, and increased attention. 
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univariate tests seem to confirm our hypothesis of sentiment changes leading to abnormal 

volatility as noise traders react to sentiment changes with exaggerated action. 

  

Figure 25: Market news volume deciles vs. decile median abnormal volatility 

 

As we expected, it seems that there is no clear relationship with market news volume and firm 

specific idiosyncratic abnormal volatility. Indeed, we did not foresee a valid hypothesis for 

such a relationship, and our univariate findings seem to confirm our initial line of thinking. 

Nevertheless, we will study market news volume as part of our holistic media model main 

specification in the multivariate context. However, it seems that market news volume is not a 

driver of abnormal volatility. 

 

  

Figure 26: Firm specific news volume
180

 deciles vs. decile median abnormal volatility 
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 We use only data with news volume over 5, as otherwise too many deciles would have equal values. In other 

words, the first 4 deciles would have news volume value of 0, and the next two deciles would have a news 

volume value of 1. 
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As with sentiment, firm specific news volume seems to have a clear monotonic relationship 

with abnormal volatility. Indeed, the relationship is positive in nature, and therefore in line 

with our hypothesis of attention grabbing stocks attracting noise trader activity. We conclude 

that the univariate results seem to support our hypothesis, and indicate that there is a 

relationship between firm specific news volume and abnormal volatility.  

In general, our tests infer that the volatility impact seems to be relatively stable throughout 

time, and lasts for a long period of time. In other words, volatility impact persists over time, 

based on the univariate results. Indeed, such an empirical finding has been documented 

previously in prior literature (e.g., Antweiler, 2004). The next step is to analyze these 

relationships in multivariate context. 

 

6.3 Multivariate tests  

After studying the univariate results, we move on to multivariate specifications to better 

capture the relationship between our dependent variables and main independent variables 

while controlling for several other known factors. We will first explore the main 

specifications we have outlined in Section 5.4.1, and then move on to discuss the alternative 

specifications discussed in Section 5.4.2.   

6.3.1 Main Specifications 

Based on the univariate results, we are not expecting to see strong evidence of a relationship 

between sentiment and our dependent variables. On the other hand, we are interested to see 

how the relationship between news volume (market volume and firm specific volume) holds 

up after adding a number of control variables to the equation. To better understand the 

different drivers of our dependent variables, and their potential link with our independent 

variables, we run multivariate analysis according to the main specifications we have outlined 

in Section 5.3.1.  

We will first explore the relationship between abnormal returns and our independent 

variables. From there on, we will continue by discussing abnormal volume. Finally, we 

conclude by looking at the impact our independent variables have on abnormal volatility. 
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Abnormal returns 

Based on the univariate results, it seems that sentiment is unable to explain variations in 

abnormal returns. However, in order to better understand the relationship, and to study the 

effect of a holistic media model, we move to multivariate analysis, and include our two other 

main independent variables in the specification with a set of controls, as described in Section 

5.3.1. The results of our main specification regressions are found below in Table 16. 

  

Table 16: Multivariate specification: Abnormal return 

 

 

Sentiment 

As we have shown in the previous sub-section: Section 6.1., our sentiment estimation 

methodology is superior to the prevalent dictionary based word counts. However, even though 

Linearized Phrase-Structure -model fares better, the results are not promising. Based on the 

multivariate analysis, in combination with the univariate analysis, we suggest that in light of 

Sentiment Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

Windowed SVM -0,03 -0,46 -0,27 -2,02 -0,42 -0,86 -1,21 -1,27

Wordcounts

Finance dictionary 0,61 0,72 -0,21 -0,15 -5,54 -0,75 -14,86 -0,99

H4N dictionary 0,14 0,20 -1,13 -0,76 -0,78 -0,13 -10,07 -0,80

Main Independent Variables*

Market news volume -0,01 -0,47 0,20 2,29 0,89 3,11 1,68 2,87

Firm news volume 0,00 -0,02 -0,46 -1,02 -2,45 -1,09 -2,89 -0,72

Control Variables*

Size 0,12 3,31 -0,11 -1,20 -0,86 -1,49 -1,73 -1,73

Book-to-market -0,85 -2,66 0,75 1,19 2,28 1,05 3,51 1,16

Momentum

[-4,-1] -2,27 -4,32 -6,25 -5,55 -13,70 -5,87 -15,06 -3,91

[-34,-4] -0,86 -6,31 -2,34 -4,69 -7,94 -2,94 -6,35 -1,50

[-255,-34] -0,10 -0,90 -0,04 -0,13 0,19 0,15 1,19 0,51

Share turnover 0,14 1,61 0,71 2,00 4,50 1,98 8,59 2,19

SUE -0,38 -0,33 -4,87 -0,96 18,05 0,68 37,79 0,73

Abnormal volatility 5,75 1,81 -14,23 -1,30 -83,22 -1,59 -109,57 -1,05

Institutional ownership 0,14 1,10 -0,34 -0,91 -2,26 -1,09 -4,28 -1,07

* Coefficients and t-stats of main Independent and control variables refer to a specification run with Windowed SVM as 

aathe sentiment measure.

Multivariate Specification: Abnormal Return

Event windows

[0,1] [1,5] [2,32] [2,62]

The variable definitions are found in Section 4. Data. Discussion on methodology specification can be found in Section 5. 

Methodology. Specification is run using Fama-MacBeth methodology to counter time-effect present in the data. The 

reported coefficients, and t-statistics, are based on 21 quarters. Statistically significant (5%) t-stats are bolded. All 

coefficient estimates are scaled with 100 except for main independent variables that are scaled with 10,000.

 
LPS 

 
* Coefficients and t-stats of Main Independent and Control variables refer to LPS regression results. Word count regressions have  

....been run separately from the LPS regression. 
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our empirical findings, different sentiment estimates cannot be used to forecast abnormal 

returns. In fact, even with the most promising event window: the event window of [1,5], the 

coefficient signs are not consistent within the 21 quarters. Hence, the reliability of the 

estimate is questionable, and any inference drawn from it should be judged with a grain of 

salt.  

In spite of not being able to draw exact inferences from the results, we do suggest that the 

qualitative nature of our results offers some light to the role of qualitative texts in financial 

markets. It seems that the hypothesis suggesting that qualitative texts hold informational 

content has some support from our results.
181

 As our results show, the different sentiment 

estimate coefficient signs are all negative throughout the event windows.
182

 Therefore, they 

show a pattern of underreaction to the increase in negativity concerning a company: the 

negative news are disseminated slowly into the stock price resulting in a negative abnormal 

return drift. Moreover, the coefficient signs grow monotonically with event window horizons, 

illustrating that the dissemination of information escalates as time passes on and agents are 

able to analyze all the information.
183

 The suggested qualitative link is in line with previous 

studies on content analysis in the field of finance (for more information on prior findings, we 

refer the reader to Section 2.3). 

All in all, we conclude that the magnitude of negativity in sentiment seems to have limited 

impact on abnormal returns. We cannot rule out the hypothesis suggesting that tone has an 

impact on investors through framing; however, it seems that on the aggregate level, the 

markets are not substantially affected by the framing bias. Also, we cannot take a definite 

stand on the topic of qualitative text’s informational content, but our results do suggest that 

the impact of informational content would dominate the reaction of investors over tone, when 

considering the impact of qualitative texts on abnormal returns as is evident by the 

underreaction pattern. However, neither of the effects can be reliably used to forecast 

abnormal returns. In conclusion, our results suggest that the level of sentiment negativity is 

not a factor of abnormal returns: either markets are efficient in disseminating information in 

qualitative texts, or there is no information in qualitative texts. Furthermore, our results 

                                                 
181

 The competing hypothesis would be that news have an impact on readers through tone - the theory behind this 

hypothesis is based on the effects of framing. More discussion on Section 3 and Section 2. 
182

 The exceptions are the 1-day results for the two dictionaries. However, as we simply suggest a very weak 

qualitative inference based on our results, we do not consider this discrepancy as important. 
183

 An alternative explanation is that ’bad model’ problem drives the increase in coefficients, as abnormal return 

estimation is more prone to the aforementioned problem with longer event horizons. However, the pattern exists 

with alternative abnormal return calculation methods in alternative specifications. 
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suggest that tone has no significant predictability over abnormal returns on aggregate market 

level. 

In light of our findings, we argue that the findings of prior literature are characterized by 

spurious regularities as suggested by many of the EMH proponents in the context of market 

anomalies (e.g., Fama, 1991, 1998; Schwert, 2003; Malkiel, 2003).
184

 Our study is, to our 

knowledge, the most comprehensive study in finance in the field of content analysis. Whereas 

other studies have focused on specific qualitative text sources (i.e., 10-ks, earnings 

announcements, specific news journals, etc.,), our study has analyzed a wide cross-section of 

qualitative texts. Furthermore, whereas prior studies have focused on one or two arbitrary 

event windows, we have utilized several event windows to examine the impact of sentiment 

on abnormal returns. Moreover, as we will later on describe, we have utilized several different 

methodologies in estimating abnormal returns, and sentiment, to avoid ‘bad model’ problems. 

In conclusion, our findings provide robust empirical evidence that suggests that there is no 

significant link between abnormal returns and sentiment. We conclude by suggesting that the 

findings of extant literature are mainly spurious regularities that are a result of data dredging 

with specific sources of qualitative texts, and the use of particular event windows and 

methodologies, to maximize results. 

Market news volume 

Our results for market news volume hold much more promise than the sentiment estimates. 

Indeed, in line with prior literature (e.g., Hirsleifer et al., 2009), market news volume shows 

opposite signs for short-term event windows vis-à-vis long-term event windows as 

hypothesized by limited attention theory. One day after the event, the relation with the 

variable to abnormal returns is negative, while the longer event-windows show a positive 

relationship: an indication that the variable proxies for limited attention and underreaction to 

information. Moreover, the following day relationship with abnormal returns is not 

statistically significant, as hypothesized by limited attention theory: as information is not 

compounded to the stock price immediately due to distraction caused by other news, the 

following day relationship with abnormal return should not be statistically significant. As 

information begins to disseminate later on, the relationship with abnormal returns turns to 

significant for the longer event windows. 

                                                 
184

 See Section 2.1., for more discussion on efficient market hypothesis, and Section 2.2., for discussion on 

Behavioral finance. 
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Whereas Hirsleifer et al., (2009) used only the number of earnings announcements as a proxy 

of distraction, our sample has counted also news texts as proxy for market wide distraction, 

and the results remain the same. Moreover, our study provides support for the hypothesis 

using several different event windows. We conclude that our results provide strong backing 

for Hirsleifer et al., (2009) hypothesis that simultaneous market news distract investors. This 

forces investors to divide their attention, resulting in a slow incorporation of information into 

stock prices: a drift. 

Our results are robust to several different methodologies discussed later on in alternative 

specifications in section 6.3.2. Furthermore, whereas with sentiment estimate coefficients, the 

signs of the coefficients were changing from quarter to quarter, market news volume 

coefficient signs remain monotonic throughout quarters. With statistical significance, and 

monotonic qualitative results for coefficient estimates throughout time clusters, our results 

appear robust. 

Firm specific news volume 

The results relating to our last independent variable: firm specific news volume, fall into the 

same category with sentiment estimates. The results are not statistically significant, but 

provide some insight into the qualitative nature of the relationship between firm specific news 

volume and abnormal returns. As we hypothesized, firm specific news volume has a negative 

relationship with abnormal returns. The aforementioned finding is in line with prior literature, 

and limited attention hypothesis. Indeed, as limited attention theory would suggest: the more 

news a firm has, the more attention it will attract, and therefore the more efficiently the 

information will be incorporated into its stock price. In other words, firm specific news 

volume exhibits the opposite relationship compared to market news volume with abnormal 

returns. The empirical findings support our hypothesis qualitatively. 

Majority of our control results are in line with our expectations. As we are using matching 

portfolios based on size and book-to-market as benchmark returns, we would not expect size 

and book-to-market to have significant relationship with abnormal returns.
185

 Momentum 

variables exhibit a reversal relationship with abnormal returns. The finding is not in line with 

the original anomalies discussed in Section 2.1., that state that on short-term previous winners 

should outperform previous losers, and on long-term stocks exhibit reversal. However, recent 

                                                 
185

 The exception of event window [0,1] remains a puzzle; potentially indicating that the variables capture the 

effect of an omitted variable that has an impact on the dependent variable in the event window in question. 
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empirical findings (e.g., Engelberg, 2008; Tetlock et al., 2008; Loughran and McDonald, 

2011) support our findings which seem to illustrate a reversal effect in the short-term
186

. Our 

other controls seem to lack significance but are qualitatively mainly in line with our 

expectations. 

Abnormal volume 

Based on the univariate results, it seems that different sentiment estimates might explain 

abnormal volume variations. In order to pinpoint the exact relationships, we move to 

multivariate analysis, and include all of our main independent variables in the specification 

with a set of controls, as described in Section 5.3.1. The results of our main specification 

regressions are found below in Table 17.  

Table 17: Multivariate specification: Abnormal volume 

 

Sentiment 

                                                 
186

 In addition, we recognize that it is possible that past stock returns lead to changes in sentiment. Therefore, 

correlation between these two variables is likely, and the coefficients of both may be somewhat biased. 

Sentiment Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

Windowed SVM 0,08 1,39 0,12 0,62 1,07 0,98 0,89 0,57

Wordcounts

Finance dictionary 1,58 2,51 1,44 0,49 3,59 0,27 16,15 0,76

H4N dictionary 1,04 1,99 -1,11 -0,52 -4,89 -0,48 5,59 0,34

Main Independent Variables*

Market news volume 0,06 2,14 0,31 2,76 1,31 2,26 2,04 2,44

Firm news volume 0,87 5,73 1,50 4,83 3,77 1,75 4,89 1,14

Control Variables*

Size -0,14 -5,04 -0,36 -3,54 -1,57 -1,66 -1,68 -0,88

Book-to-market 0,28 1,54 1,36 2,03 7,70 2,19 17,95 2,78

Momentum

[-4,-1] -1,20 -3,77 -2,44 -2,74 -18,11 -5,43 -26,40 -4,78

[-34,-4] -0,60 -3,92 -2,57 -4,32 -15,98 -4,29 -16,16 -4,50

[-255,-34] 0,03 0,40 0,18 0,66 2,72 1,78 4,32 2,11

Share turnover -0,22 -2,70 -0,53 -1,86 -3,94 -2,42 -8,01 -2,40

SUE 3,08 1,04 9,43 0,83 63,37 1,47 26,48 0,48

Abnormal volatility -8,76 -2,10 -45,84 -2,87 -244,46 -2,63 -366,98 -2,26

Institutional ownership 0,14 0,83 0,44 0,74 2,61 0,75 7,38 1,25

Abnormal market volume 0,50 19,87 0,39 10,70 0,19 4,30 0,10 4,13

* Coefficients and t-stats of main Independent and control variables refer to a specification run with Windowed SVM as 

aathe sentiment measure.

Multivariate Specification: Abnormal Volume

Event windows

[1] [2,5] [3,32] [3,62]

The variable definitions are found in Section 4. Data. Discussion on methodology specification can be found in Section 5. 

Methodology. Specification is run using Fama-MacBeth methodology to counter time-effect present in the data. The 

reported coefficients, and t-statistics, are based on 21 quarters. Statistically significant (5%) t-stats are bolded. Main 

independent variable coefficient estimates are scaled with 100.

 
LPS 

 
* Coefficients and t-stats of Main Independent and Control variables refer to LPS regression results. Word count regressions have  

....been run separately from the LPS regression. 
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Even though univariate tests held some promise for the sentiment variables, sentiment is 

unable to forecast abnormal trading volume changes based on the multivariate results. With 

the exception of Loughran and McDonald (2011) dictionary result for event window [1], all 

the variables are statistically insignificant. Moreover, even with the result of event window 

[1], the coefficient signs are not monotonic throughout the 21 quarters; hence, casting doubt 

on the potential inferences drawn from the event window [1] result. Thus, it appears possible 

that sentiment simply mimics some of the control variables, therefore showing promising 

results in univariate tests.  

Nevertheless, our results do offer support qualitatively to the hypothesis that information 

content dominates investor reactions more than tone. As with returns, limited attention and 

underreaction hypothesis are supported by the empirical findings in abnormal volume 

specification. As we can see, coefficients are all positive throughout the event windows, and 

increase in magnitude when moving to longer event windows - as is expected by the limited 

attention hypothesis that suggests underreaction to new information.
187

 As a result, our 

empirical findings offer weak support for the branch of prior literature that has found 

underreaction to qualitative text information; in other words, our findings seem to indicate an 

increase in abnormal volume post-event (e.g., Loughran and McDonald, 2011).
188

  

Market news volume 

In light of the univariate tests, we had lower expectations for market news volume than for 

sentiment variables. However, in the multivariate specification, market news volume seems to 

explain abnormal volume variations. In fact, our results suggest that our initial hypothesis for 

the relationship between abnormal volume and market news volume was correct: market news 

volume proxies for distraction and causes markets to underreact to new information; hence, 

resulting in abnormal volume throughout all the event windows
189

. Moreover, interestingly, 

we can see that the coefficient magnitude increases with longer event periods. We infer that as 

                                                 
187

 The exception here is the Harvard negative dictionary. However, as we have established in previous sections, 

Loughran and McDonald demonstrated that Harvard Dictionary misclassifies words in financial context 

approximately 75% of time. Moreover, our own sentiment estimate benchmarking provided proof that H4N 

dictionary is inferior to the two other methods. Therefore, we assign the discrepancy as an outcome of noise in 

the H4N variable. 
188

 For more information on prior literature findings with financial metrics, see Section 2.3. 
189

 An interesting small deviation from our initial hypothesis is the positive significant relationship in the 

succeeding day. We did not exclude the possibility of a significant relationship, but the sign of the coefficient is 

a surprise. However, the magnitude of the coefficient is so low that we do not consider this finding as 

contradictory to our theory building based on our findings. 
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information disseminates with time, agents are able to act on that information, causing 

prolonged elevated levels of trading.   

Our empirical results offer strong support for Hirshleifer et al. (2009) distraction hypothesis, 

and the underlying limited attention theory. Furthermore, our findings with abnormal volume 

are in line with our findings with abnormal returns. In other words, our empirical findings 

seem to suggest that there is informational content in qualitative texts, and that text is 

incorporated into financial metrics with delay due to underreaction.
190

 

Firm specific news volume 

Based on the univariate tests, firm specific news volume seemed to have a relationship with 

abnormal volume variations. As expected, firm specific news volume seems to explain 

abnormal volume changes also in the multivariate context. However, the statistical 

significance drops dramatically when moving to the longer term event windows. Therefore, it 

seems that firm specific news volume has explanatory power over abnormal volume, but only 

in the short-term – a finding supported by the univariate tests, and in line with our hypotheses. 

To some extent, the empirical findings relating to firm specific news volume and abnormal 

volume are surprising. Contrary to our primary hypothesis, firm specific news volume 

magnitude increases as event window lengths increase. These results lack statistical 

significance for the longer event windows, so the results could be interpreted as directly 

supporting our hypotheses. Nevertheless, our findings seem to support the hypothesis that 

attention grabbing stocks get traded more actively throughout the event windows. In contrast 

to our primary hypothesis that stated that the relationship should weaken with longer event 

windows as more attention should mean quicker dissemination of information and therefore 

less abnormal trading activity in the long run, the abnormal volume persists and even 

increases with longer event windows. However, as the longer event windows are not 

statistically significant, we suggest that attention grabbing stock experience abnormal trading 

activity close to the event day, but that effect disappears as time goes on. In other words, 

attention grabbing stocks abnormal volume levels do not experience a prolonged elevated 

level ex-post the event. 

                                                 
190

 However, as our results are statistically weak, we can only provide weak qualitative results, and our 

inferences should be judged in that context. 
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Abnormal volatility 

In light of the univariate tests, it seems that different sentiment estimates hold great promise 

in explaining future idiosyncratic abnormal volatility. In order to specify the relationship, we 

move to multivariate analysis, and include all of our main independent variables in the 

specification with a set of controls, as described in Section 5.3.1. The results of our main 

specification regressions are found below in Table 18. 

Table 18: Multivariate specification: Abnormal volatility 

 

Sentiment 

As we expected, sentiment estimate changes have a positive relationship with abnormal 

volatility variations. As with our benchmarking test, Linearized Phrase-Structure -model 

outperforms the two other sentiment estimation methodologies when measured with statistical 

significance. Similarly, Loughran and McDonald’s (2011) finance dictionary outperforms 

H4N dictionary. Also, an interesting finding is that dictionary based word count coefficients 

seem to overestimate the impact of sentiment on volatility vis-à-vis Linearized Phrase-

Sentiment Coef. t-stat Coef. t-stat

Windowed SVM 0,15 2,75 0,14 2,61

Wordcounts

Finance dictionary 1,90 1,93 2,04 2,13

H4N dictionary 1,18 1,75 1,32 2,04

Main Independent Variables*

Market news volume 0,02 0,38 0,02 0,45

Firm news volume 0,27 2,26 0,39 2,30

Control Variables*

Size -0,06 -1,48 -0,06 -1,62

Book-to-market 0,78 2,11 0,79 2,06

Momentum

[-4,-1] -0,53 -2,94 -0,45 -3,21

[-34,-4] -0,49 -3,31 -0,39 -2,89

[-255,-34] 0,01 0,22 -0,01 -0,22

Share turnover 0,12 1,00 0,10 0,80

SUE 1,58 0,47 -2,14 -1,30

Abnormal volatility 66,35 8,38 67,23 7,47

Institutional ownership 0,30 2,47 0,33 2,71

* Coefficients and t-stats of main Independent and control variables refer to a specification run with Windowed SVM as 

aathe sentiment measure.

Multivariate Specification: Abnormal Volatility

[2,32] [2,62]

Event windows

The variable definitions are found in Section 4. Data. Discussion on methodology specification can be found in Section 5. 

Methodology. Specification is run using Fama-MacBeth methodology to counter time-effect present in the data. The 

reported coefficients, and t-statistics, are based on 21 quarters.Statistically significant (5%) t-stats are bolded. All 

coefficient estimates are scaled with 100 except for main independent variables that are scaled with 10,000.

 
LPS 

 
* Coefficients and t-stats of Main Independent and Control variables refer to LPS regression results. Word count regressions have  

...been run separately from the LPS regression. 
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Structure -model. We suggest that the underlying cause is the noise present in the sentiment 

estimates derived in the less precise word count methodology. 

When looking at the two different event windows, it is noteworthy to state that the length of 

the event window seems to have little to no impact with the magnitude of the change in the 

sentiment estimate coefficient. Also, the pattern is, to some extent, visible with the other 

independent variables. Therefore, we infer that the volatility effect persists over long periods 

of time without perishing, or increasing. In conclusion, our empirical findings are in line with 

that of prior literatures
191

, linking sentiment changes with future abnormal volatility. 

Market news volume 

As we did not have a clear hypothesis for market news volume, we did not expect to find a 

significant relationship between the variable and abnormal volatility. Indeed, univariate tests 

gave the first indication that market news volume does not have a relationship with abnormal 

volatility. The multivariate tests confirm this interpretation. Besides being statistically 

insignificant, the coefficient of market news volume is marginal. Indeed, it seems that market 

news volume has no relationship with a given firm’s abnormal volatility.  

Firm specific news volume 

Contrary to market news volume, firm specific news volume seems to have a relationship 

with abnormal volatility based on the univariate tests. Indeed, multivariate tests confirm this 

observation. As we hypothesized, firm specific news volume has a positive relationship with 

abnormal volatility. We interpret this finding to confirm our hypothesis that noise traders are 

attracted to trade on a stock that has high visibility in the media. Therefore, noise traders 

elevate the volatility levels of a given firm’s stock with their trading behavior. The hypothesis 

is supported to some extent by the findings in abnormal trading volume. 

All in all, our empirical findings are in line with prior literatures findings. We infer that 

volatility is related to sentiment changes, and to firm specific news volume. Our results hold 

for both of two event windows we have employed, and for several different return 

methodologies. Therefore, we conclude that our findings provide strong evidence in support 

of the link between the aforementioned variables and abnormal volatility. 

                                                 
191

 For more discussion, see Section 2.3. 
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6.3.2 Alternative specifications 

As we discussed in Section 5.4.2, we run several alternative specifications to pinpoint the 

exact relationships underlying our main research variables, and to be as robust as possible 

with our results. Also, we conduct an additional study employing a new dependent variable: 

aggregate market index returns. We will briefly describe the results of the aforementioned in 

this sub-section.  

First, we will describe the results of our main specification with alternative abnormal return 

methodologies. Second, we will portray the impact that alternative main variable definitions 

have on our results. Third, we will discuss the impact that additional control variables have on 

our results. Finally, we will study the impact of our main specification for abnormal returns, 

but with aggregate market index return acting as the dependent variable. 

Alternative abnormal return definitions 

To counter any critique towards ‘bad model’ problems, and to make our study robust in terms 

of methodology, we run several different abnormal return specifications as discussed in 

Section 5.4.2. 

First, we use raw returns instead of abnormal returns in line with Tetlock (2007). We find an 

increase in coefficient estimates and statistical significance in all our main variables: 

sentiment, market news volume and firm specific news volume. Therefore, we conclude that 

linking raw returns to our variables is less demanding than to establish the link between 

abnormal returns. However, the economic significance of such findings has limited value.  

Second, we use two different abnormal return benchmarks: value weighted index returns and 

Fama and French three-factor model returns. For value weighted index returns, our results 

improve marginally. However, for Fama and French three-factor model returns our results 

decrease substantially. However, market news volume’s impact remains similar to our main 

specification, adding needed robustness to the finding.  

Third, we switch from using BHARs into using CARs when calculating our abnormal returns. 

As we expect, we see drops in our coefficient estimate magnitudes. However, statistical 

significances are not impacted by the methodology switch. Therefore, the inferences we have 

drawn from our findings remain the same. 
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We conclude by stating that our results are fairly robust to methodological choices in terms of 

abnormal returns. There are methodologies that would yield better results vis-à-vis our main 

specification methodology. However, there are also methodologies that would result in worse 

results as the ones we are now reporting with our main specification. 

Alternative main variable definitions 

As discussed in Section 5.4.2, we run alternative definitions of our main study variables. To 

see whether or not seasonal declining trend in news volume impacts our results, we run our 

main specifications with a standardized version of market and news volume variables. Also, 

we test the abnormal aspect of both variables by deducting average past volume. We find 

mixed impacts on our coefficients and their statistical significance. However, there are no 

apparent systematic pattern changes. Therefore, in line with prior literature, we conclude that 

seasonal trend is not driving our results, and standardization is not necessary. 

Secondly, we test our alternative metrics of sentiment, as specified in section 5.2.4. The 

results show some variance from sentiment metric to sentiment metric. However, as the 

differences are not major, after several experiments we choose to stick to our original LPS 

method of aggregating sentiment of all media for one day. 

Additional control variables 

To mitigate the possibility of an omitted variable impacting our results, we run several 

alternative specifications with additional controls.
192

 The variable descriptions are listed in 

Section 4.2.2, and the specifications in Section 5.4.2. The findings of our alternative control 

specifications are listed below. 

Impact of analysts 

To test the impact analysts have on information dissemination and on the subsequent impact 

on our dependent variables, we include the number of analysts following a company as well 

as analyst dispersion to our main specifications. After the inclusion, our results remain similar 

to main specifications. However, analyst variables subsume the significance of share turnover, 

while also turning the coefficient into negative. We conclude that the variables seem to proxy 

for analyst disagreement that conveys belief dispersion in the market previously captured by 

                                                 
192

 Additional controls are added to the main specifications described in Section 5.3.1. We do not run the 

alternative specifications previously introduced with additional controls.  
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share turnover, while turnover moves to capture liquidity effects. In such case, the signs 

appear rationale. However, as noted, both turnover and analyst variables remain insignificant.  

Calendar effects 

As we are using matching portfolios as our benchmark returns in our main specifications, we 

are implicitly controlling for calendar effects.
193

 Also, our abnormal volume specification 

takes into account abnormal market trading volume that implicitly controls for calendar 

effects in the same manner as benchmark returns. Nevertheless, as described in Section 4.2.2., 

we include calendar variables into our main specifications. We include January, Monday, and 

end-of-month dummies into our specifications. The result is not surprising: all of the dummies 

are insignificant, and the results are practically unchanged. 

Dividend effects 

In line with Li (2006), we control for the potential impact of dividends on our abnormal return 

main specification. We do not perform this check for abnormal volume or abnormal volatility, 

as there is no prevalent hypothesis that dividends should bear an impact on these variables. 

After the inclusion of dividends, we do not see significant changes in our other variables. 

Dividends seem to have qualitatively a positive relationship with abnormal returns, but lack 

statistical significance. We conclude that dividends are not impacting our results. 

Industry specific effects 

To study the possible impact of industry effects, we start with a simple analysis by calculating 

the average values of all of our dependent variables for all industries. We calculate these 

averages in order to see whether any industry would have significantly different values 

compared to others and thus be impacting our results. For example, we hypothesize that 

during the financial crisis the ‘banking’ and ‘trading’ industries could have significantly 

differing values. 

                                                 
193

 The matched portfolio that acts as a benchmark return is also impacted by calendar effects. 
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Table 19: Stock performance metrics by industry
194 

Average stock performance metrics over the whole time period for each industry. Only average values for 60-

day event windows shown (average values are similar regardless of event window). Return and volatility average 

figures have been multiplied by 1 000. 

 Abnormal return Abnormal volume  Abnormal volatility 

 

 

    

 

The data clearly shows that most industries have close values to each other. Contrary to our 

presumption, banking and trading are also well in line with the average values. The only 

larger outlier appears to be electronic equipment industry that consists of three companies: 

Cisco, Intel and Qualcomm. We do recognize that this industry may be leading some part of 

our results. However, as the industry is relatively small: only 3/100 companies, we do not 

                                                 
194

 Only values for 60-day event windows shown (average values similar regardless of event window 

Aircraft

Apparel

Automobiles and Trucks

Banking

Business Services

Candy and Soda

Chemicals

Computers

Construction Materials

Consumer Goods

Electronic Equipment

Entertainment

Food Products

Insurance

Machinery

Nonmetallic Mining

Petroleum and Gas

Pharmaceutical Products

Printing and Publishing

Restaurants, Hotels

Retail

Steel Works

Telecommunications

Tobacco Products

Trading

Transportation

Utilities

-0.4 0.2 -0.02 0.08 0 0.7
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consider that this would be a significant issue. Also, as the industry is small in terms of the 

number of companies, it is possible that only one company performing extraordinarily could 

be driving the finding. 

As described in Section 4.2.2, we next incorporate industry dummies to take into account the 

potential driving impact of an industry related factor. After categorizing our firms based on 

Fama and French (1997) classifications, our sample is divided into 28 different Fama and 

French industry categories. Hence, we include 27 industry dummies with one category acting 

as the omitted category. 

We run regressions for the whole data sample both with and without industry dummies. Most 

industries do receive significant coefficients in our regression. The main coefficients for our 

main specification with and without industry dummies are reported in the Table 20. 

Table 20: Alternative specification: Included industries 

The variable definitions are found in Section 4, Data. Discussion on methodology specification can be found in 

Section 5, Methodology. We run a regression with SVM-sentiment for the full time period at once, with and 

without industry dummies. The table reports the LPS-sentiment coefficients. Coefficient values for returns and 

volatility have been multiplied by 1 000. Results differ slightly from previous as we limited the number of 

control variables only to those that have shown significant coefficients in previous regressions. 

 

In these results we do not notice significant variation in the coefficients or t-statistics for our 

main variables (t-stats and coefficient remain typically very similar). Thus this analysis leads 

us to believe that industries are not driving our results.  

Finally, we test the coefficients of some of the largest companies with the largest news 

volumes: Apple, Google, Ford, AT&T and Citi. As the sample size would be too small for a 

Coefficient t-stat Coefficient t-stat

Return [0,1] -0.397 -0.769 -0.379 -0.723

Return [1,5] -1.952 -1.949 -2.027 -1.995

Return [2,32] -0.735 -0.301 -1.609 -0.649

Return [0,4] -5.417 -1.608 -6.902 -2.021

Volume [1] 110.053 3.103 115.404 3.210

Volume [2,5] 533.992 5.188 538.542 5.188

Volume [3,32] 2.317 5.752 2.659 6.526

Volume [3,62] 2.450 4.497 2.972 5.373

Volatility [2,32] 5.843 24.024 5.881 23.627

Vola [2,62] 5.926 24.870 5.964 24.408

Industries included Industries excluded

Alternative Specification: Included industries

The variable definitions are found in Section 4. Data. Discussion on methodology specification 

can be found in Section 5. Methodology. We run the same regression for the full sample and with 

and without industry dummies included. The table below reports the sentiment coefficients. 

Coefficient values for returns and volatility have been multiplied by 1000.

 Volatility [2,62] 
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quarterly Fama-McBeth regression, we only split the sample to three parts
195

. Similarly to our 

main regression, we notice that the coefficients for these companies are in line with main 

regression results. This also indicates that the largest companies are not driving the results, or 

that adding smaller companies with less news does not distort the results. 

Based on these tests, we conclude that industries or individual companies do not appear to be 

driving our results. However, we recognize that adding the industry dummies can add some 

explanatory power to our regressions. 

Additional dependent variable study: market index returns 

After studying the impact on firm-specific returns, we wish to also test for the possibility that 

a market sentiment could have an impact on index returns. For example, firm-specific news 

could be well studied by analysts and therefore there might not be a visible impact, but on the 

overall market level the news could still carry some value. There are two reasons we 

hypothesize that impact of the sentiment could show in the performance of the market index 

more significantly than for individual firms. First, the aggregated score from hundreds of 

daily news varies significantly less from day to day than the firm-specific sentiment. Second, 

there could be market-wide effects that may not be visible if reading company-level texts (e.g. 

news about the economy that have only marginal impact on a specific firm). However, when 

all market news are aggregated and the impact on the market index is studied, these effects 

could become visible.  

To test the hypothesis that the market sentiment, and the development of the market index, 

could have a connection, we pool all news in the market, and contrast this to the market index. 

Due to the short time period, we divide our sample only into three parts
196

 and test various 

specifications of the SP100 sentiment and stock performance metrics. We include in each 

regression Market news volume, and control also for momentum, past abnormal volatility, 

and average market share turnover and average market SUE. We test similar combinations of 

returns and predicting factors as in the firm-specific context. 

                                                 
195

 We split the sample into three equally sized parts, the first part containing data from Jan-06 to Oct-07, the 

second from Oct-07 to Jun-09, and the third from Jun-09 to Mar-11. This lets us have a sufficiently large sample 

size of >440 for each time period. Running regressions for the index by quarter would not be sensible due to too 

small sample size. 
196

 Similarly as for individual companies (see previous footnote), we split the sample to three equally sized parts. 
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Table 21: Index stock performance regressions- coefficient significance 

Dependent variables are shown with their time period at the end (e.g. “Return4 = Return for period [1,5]. For 

sentiment, we also test whether a longer-term average would lead to more significant results: past 4-day average 

sentiment = “LPS_4d”, past 30-day average sentiment = “LPS_30d”. 

 

For most of the combinations that we try, our coefficients vary between the three time 

periods. However, we cannot rule out the possible significance of the following regression 

results. 

Table 22: Index stock performance regression - coefficients 

 

For all of the regressions above, our coefficients keep the same sign during the 3 time periods 

and the t-statistics are significant. As pointed out, we try a number of combinations to arrive 

to these results, and the question of data mining is a relevant concern in this case. However, 

we do recognize that it could be possible that sentiment would have some predictive power 

over market index returns or volatility. To properly test this, a longer time frame of data 

would naturally need to be applied, and the exercise should preferably be combined by adding 

multiple market indexes to test if this possibly a peculiarity of the S&P index. We also 

illustrate our results below in Figure 27: Sentiment vs. stock performance.   

SVM SVM_4d SVM_30d

Return1

Return4

Return30 * * **

Return60 ** ** *

Volume1

Volume4

Volume30

Volume60

Volatility30

Volatility60 * ** **

* Significant after regression

** Significant after splitting sample into three pieces
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Independent variable

Dependent Main independent Coefficient T-stat

Return [2,62] LPS -0.256 -2.65

Return [2,62] 4-day LPS -0.471 -2.749

Return [2,32] 30-day LPS -0.936 -2.621

Volatility [2,62] 4-day LPS 0.02 2.128

Volatility [2,62] 30-day LPS 0.063 3.052

   LPS LPS_4d LPS_30d 
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Figure 27: Sentiment vs. stock performance  
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6.4 Discussion on the implications of results 

Our results have several interesting implications on financial theories and for future research. 

We start by discussing the impact on sentiment methodologies. Next, we explain how 

behavioral finance theories, especially limited attention, fit in line with our results. Finally, 

we discuss the implications on the possible link between media metrics and stock 

performance. 

6.4.1 Impact on sentiment methodologies 

Prior literature has debated on the complexity of methodology used in estimating investor 

sentiment, as we have discussed in Section 2.3. Scholars have proposed compelling 

arguments on the behalf of simple and rudimentary methodologies for estimating investor 

sentiment, reasoning mainly that transparency, objectivity and replication of results would 

suffer with the use of more advanced and complex methods (e.g., Tetlock et al., 2008). 

However, some researchers have attempted to employ more sophisticated methods; alas, with 

unexciting results (e.g., Antweiler and Frank, 2004, 2006; Das and Chen, 2006). The failure 

of advanced methods has been allocated to the scope of the qualitative text sources, and the 

limited sample sizes used in the studies in question. However, another explanation is that the 

findings documented with more naïve methods are in fact spurious. Our study utilizes a wide 

cross-section of qualitative texts with a fairly large sample, and can therefore offer improved 

interpretations over previous studies with issues relating to sample size and scope. 

In section 6.1.1, we benchmark the existing prevalent methodology of vector word counts 

against our proposed methodology: the Linearized Phrase-Structure -model. The results are 

clear: our model outperforms its precursor. Neither of the two dictionaries used with word 

counts: Loughran and McDonald (2011) dictionary, or the Harvard Psychology dictionary, 

can match the performance of Linearized Phrase-Structure -model. Also, we find that 

Loughran and McDonald (2011) dictionary outperforms the Harvard Psychology dictionary, 

as Loughran and McDonald (2011) suggest. Hence, we can confirm that finance scholars 

should employ context dependent dictionaries when using word counts, as suggested by 

Loughran and McDonald (2011). Our results are based on a wide cross-section of different 

qualitative texts which attenuates the possibility that our results are driven by a sample 

specific pattern. Our benchmarking process is conducted in line with the latest norms of 
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content analysis literature. Therefore, we conclude that our findings stand as unequivocal 

evidence in favor of the use of more sophisticated methodology in estimating investor 

sentiment. We argue that future research should also use more advanced natural language 

programming techniques when estimating investor sentiment; the methodology can 

substantially improve the accuracy of sentiment estimation. 

After evaluating the performance of prior methodologies, and establishing that more complex 

methods are warranted, we move on to study the impact sentiment has on financial metrics. In 

light of our benchmarking, we would expect Linearized Phrase-Structure -model based 

sentiment variable to outperform word count based sentiment estimates when analyzing the 

relationship with financial metrics (more of this in section 6.4.3). 

As we had expected, Linearized Phrase-Structure -model outperforms its rivals; however, to 

our surprise, word count based sentiment variables (both dictionaries) lack significance in all 

our specifications.
197

 In other words, we do not find any cause to support a relationship 

between word count sentiment variables and our dependent variables. In fact, we hypothesize 

that prior literature’s findings fall prey to data dredging concerns proposed by EMH 

advocates (e.g., Fama, 1991). In other words, the choice of event window, and the source of 

qualitative text, in combination with arbitrary time period for the study, and other 

methodological choices, are driving the results of extant literature. Indeed, in line with the 

thinking of Fama (1998), we argue that with the use of different methodology, the 

documented results would most likely disappear. We conclude by positing that prior literature 

has reported spurious regularities. 

Another implication of our findings is the proof that Loughran and McDonald (2011) 

dictionary does not perform as a predictor of stock market performance outside the scope of 

10-k reports. Loughran and McDonald suggest in their article that future research should 

study their dictionary in the context of different qualitative texts to determine the dictionary’s 

performance outside 10-k reports. Our findings seem to indicate that a word count sentiment 

based on Loughran and McDonald dictionary fails to classify text outside the 10-k context for 

the purpose of predicting stock metrics. Nevertheless, we do find support that Loughran and 

McDonald dictionary does outperform Harvard Psychology dictionary in the task of 

classifying text. 

                                                 
197

 The few exceptions when word count variables are significant, do not pass a more closer inspection of 

significance. To elaborate, the coefficient signs of the variables are not consistent inside the 21 quarters; casting 

doubt on any inference drawn from them. 
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6.4.2 Impact on behavioral finance theory 

Our findings do support some of the findings of prior behavioral finance literature. In 

particular, our results suggest that the distraction hypothesis suggested by Hirsleifer et al., 

(2009) does exist. Aggregate market news volume has a distracting effect on investors, 

resulting in abnormal profits and abnormal volume, as suggested by the hypothesis. Indeed, 

our results offer strong evidence in favor of limited attention theory that sets the ground for 

the distraction hypothesis. 

Prior literature has hypothesized that firm specific news volume can proxy for attention 

grabbing firms, and that a firm specific news volume variable can be used to forecast returns 

and other financial metrics. Our findings indicate that firm specific news volume is not related 

to abnormal returns, and the relationship to abnormal volume may be limited to a short-term 

effect. However, it appears that firm specific news volume is indeed related to abnormal 

volatility – most likely due to the fact that noise traders are attracted towards attention 

grabbing stocks. Therefore, our results indicate that companies that actively attract news 

coverage, and attention, exhibit more volatility. 

Qualitatively our findings seem to support our hypothesis that limited attention is driving the 

relationships between our dependent variables and our key independent variables. Indeed, 

both volume and return findings indicate underreaction which is in line with limited attention. 

On the other hand, underreaction can be explained by several different theories. For instance, 

anchoring can explain underreaction to new information. Another explanation, closely related 

to anchoring, is conservatism that can also explain underreaction when new information is not 

clearly related to the saliency of the model it is being used in
198

. However, as our multivariate 

specification is a holistic media model, we can examine the alternative theories with more 

precision. Indeed, aggregate market news volume, as discussed, has a statistically significant 

relationship with abnormal returns and volume. Aggregate market news volume relationship 

is explained by limited attention theory that predicts underreaction. Moreover, competing 

hypotheses for aggregate market news volume’s impact are far more difficult to establish as 

aggregate market news volume per se has no other competing explanations. Therefore, as 

demonstrated by aggregate market news volume findings, we argue that limited attention is 

indeed a phenomenon affecting the decisions and actions of agents. We posit that limited 

                                                 
198

 In fact, such would be the case with qualitative information as valuation models employ point-estimates, 

meaning that qualitative estimates need to be transformed into quantitative estimates. 
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attention theory is the leading explanation behind the link between media factors and financial 

metrics. 

As our results indicate underreaction, we can infer that our media variables appear to have 

new information content, as underreaction is the dominant effect in the case of new 

information content
199

. Consequently, we provide additional evidence to the field of research 

studying the informational content of qualitative texts, arguing that qualitative texts do indeed 

possess new information on fundamentals. Therefore, we conclude by positing that investors 

should not ignore the information content in qualitative texts, and that at the aggregate level, 

the market does incorporate the information in qualitative texts into asset prices. 

6.4.3 Impact on link between sentiment and stock performance 

To our disappointment, our method for estimating investor sentiment: the Linearized Phrase-

Structure -model does not have a significant relationship with abnormal returns or abnormal 

volume. We recognize the fact that our study limits might explain the lack of significance. 

However, we also maintain that our methodology is superior to that of prior literature, and our 

study is – to our knowledge – the most robust study undertaken in the field. Therefore, we 

argue that in light of our findings, sentiment is not a driver of abnormal returns or volume. 

Based on our findings, we cannot draw precise conclusions on market efficiency.
200

 The 

reasoning is three-fold. First, our sentiment variables and firm specific news volume variable, 

with the majority of our controls, are unable to explain future variations in abnormal returns. 

Second, aggregate market news volume and momentum factors can be used to forecast 

abnormal returns, and therefore stand as a testimony against market efficiency. Third, we 

have not tested specific trading strategies to examine the economic feasibility of our findings 

in the scope of this study. Therefore, we cannot exclude the possibility that the market is 

efficient based on its economic definition of having no abnormal profits ex-post trading costs 

(e.g., Jensen, 1978). However, we can argue that the market is not efficient in allocating 

                                                 
199

 If qualitative texts would not have new information, the reaction would be characterized by an overreaction 

(e.g., Tetlock, 2007), as discussed in previous sections of this study, or by no reaction at all. 
200

 We have not included abnormal volume in the efficiency discussion as EMH does not give clear predictions 

on the impact of efficiency and volume. Also, we have excluded volatility from the discussion as we view it to 

be subject to the critique of Schwert (1991) discussed in Section 2. 
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assets based on its stricter more theoretical definition of no relationship with abnormal 

returns.
201

 

Even though Linearized Phrase-Structure -model variable is unable to explain variations in 

abnormal returns or volume, it can be used to forecast abnormal volatility variations. As such, 

Linearized Phrase-Structure -model can in fact act as a tool for profitable trading strategy that 

revolves around trading volatility. For instance, option pricing is based on the volatility of the 

underlying asset. In other words, if Linearized Phrase-Structure -model can be used to 

forecast future volatility of a firm’s share, it can be used to forecast the price development of 

the option that is a derivative of the firm’s share. Moreover, Linearized Phrase-Structure -

model can have applications in forecasting index volatilities such as the VIX –index, and 

trading strategies leveraging the movements of such indices. We conclude that using 

Linearized Phrase-Structure -model to forecast volatility holds promise, and future research 

should study volatility trading strategies that leverage Linearized Phrase-Structure -model as a 

tool. 

  

                                                 
201

 Our findings offer strong support for underreaction as the dominant effect; therefore, questioning the ‘even-

split anomaly distribution’ efficiency argument of Fama (1991). 
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7 CONCLUSIONS 

In this final section of our research, we start by summarizing our findings. We first conclude 

on sentiment methodology and then on the impact of various factors on stock price 

performance. We finish by discussing possible avenues for further research. 

7.1 Sentiment methodology 

With the growing demand for sentiment analysis tools in financial and economic applications, 

it is increasingly important to pay attention to the ability of the models to capture the domain-

specific use of language. As observed in the previous studies on general sentiment analysis, it 

is well-known that models which work in one domain may not work well in another one. In 

particular, when considering the specialized vocabulary encountered in finance and 

economics, building a model requires a combination of expert information in the form of 

high-quality lexicons as well as more sophisticated learning algorithms which are better able 

to account for the contextual dependence of semantic orientations. 

The commonly applied bag-of-words approaches impose several restrictions. In particular, by 

treating sentences as unordered collections of words, they fail to take syntactic information 

into account. We have obtained encouraging results with our Linearized Phrase-Structure -

model in the financial domain, where we have made a substantial effort to take into account 

phrase-structure information and the way the semantic orientations of financial concepts are 

influenced by other parts of text. Our findings contribute to the methodology employed in 

investor sentiment estimation: we have shown that by using more sophisticated sentiment 

estimation methodology researchers can reach more accurate sentiment estimate, which can 

potentially further lead to better predictions for stock performance metrics, such as volatility. 

Also, we have validated the assertion of Loughran and McDonald (2011) that states that 

researchers should employ context dependent dictionaries when using word count 

methodology in finance. Indeed, we posit that Loughran and McDonald’s (2011) dictionaries 

should be utilized as the preferred dictionary in future research that employs word counts. 

7.2 Media and stock performance 

Our second objective of testing the relation between media factors, both sentiment and others, 

with stock performance is far more ambitious. In fact, finding a strong relation here would be 
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surprising, as this would potentially represent a market inefficiency that would likely be 

exploited rapidly in the financial markets. Our conclusions here relate to testing financial 

theories on the impact of media factors, the possibility that limited attention theory explains 

the impact of media factors, impact of qualitative information on financial metrics, and 

market efficiency. 

First, we offer insights to the significance of the three major media factors (firm specific news 

volume, market news volume and sentiment, on financial metric) that have been studied in 

prior literature. We study the three major media factors simultaneously, and show that three 

factors affect markets in chorus, and are not mutually exclusive. Furthermore, we validate the 

findings of Hirsleifer et al. (2009) on the importance and impact of aggregate market news 

volume on financial metrics. However, we fail to find a statistically significant relationship 

between sentiment estimates and abnormal returns or volume. We hypothesize, that in light of 

our sentiment estimation methodology benchmarking, the sentiment findings of prior 

literature are described by sample specific patterns, and are in fact spurious in nature. 

Therefore, the theoretical link between sentiment estimates and financial metrics is not 

empirically validated. That being said, we find a statistically significant relationship between 

sentiment and future abnormal volatility. In addition, even though lacking in statistical 

significance, we find that qualitatively our findings indicate an underreaction to sentiment 

changes, in line with extant literature. As a result, we suggest that the limitations impacting 

our sentiment estimation methodology can result in such a significant measurement error in 

the sentiment estimate that our results fail to represent the true significance of the variable. 

Therefore, we conclude by suggesting that sentiment can have a relationship with financial 

metrics. Finally, we document that firm-specific news volume impacts abnormal volatility, 

and to some extent, abnormal volume. We do not find a relationship between abnormal 

returns and firm specific news volume. In fact, we hypothesize that the documented link 

between returns and firm specific news has in fact acted as a proxy for the relationship 

between aggregate market news volume and abnormal returns. 

Second, based on our findings, we suggest that limited attention is in fact the underlying 

theory behind most of the findings related to the media factors. We find that aggregate market 

news volume findings correspond to the findings of prior literature. Aggregate market news 

volume is hypothesized, by Hirsleifer et al. (2009), to have a relationship between financial 

metrics due to limited attention – no other competing viable theoretical explanation for the 

relationship exists to our knowledge. Based on our findings, we can validate the 
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aforementioned relationship. Therefore, our findings also support the theory of limited 

attention. Furthermore, as limited attention implies an underreaction, and qualitatively our 

findings indicate an underreaction pattern with all the media factors, we suggest that it is not a 

farfetched idea to suggest that limited attention is the theory explaining the underreaction 

pattern with other media factors. In fact, as limited attention is already a phenomenon in the 

market place, as is demonstrated by aggregate market news volume findings, it is plausible to 

assume that the impact is not isolated to aggregate market news volume. Therefore, we posit 

that limited attention is the theory explaining the relationship between media factors and 

financial metrics. 

Third, we offer our findings as a contribution to the discussion relating to the impact 

qualitative texts have on financial metrics. We have consistently documented a qualitatively 

indicative underreaction pattern between sentiment and variations in financial metrics. As 

extant literature has documented that texts with overreaction are associated with framing 

effects, and texts with underreaction are associated with novel information content, we 

suggest that our findings indicate that qualitative texts have novel information content, and 

that investor reaction is dominantly led by information content over tone effects. However, as 

our sentiment findings lack statistical significance, our findings simply provide a qualitative 

indication of the aforementioned. Nevertheless, we find that aggregate market news volume 

impacts financial metrics, and that relationship is statistically significant. We infer that this 

clearly indicates that qualitative texts do matter, and they are considered by investors during 

decision making. Therefore, we argue that while aggregate market news volume sheds no 

light on the nature of the impact: novel information vis-à-vis tone, the finding does indicate 

that qualitative texts do play a role in financial markets. In tandem with our qualitative 

findings for sentiment estimates, we suggest that qualitative texts impact financial metrics, 

and retain some novel information content. 

Fourth, in culmination, our findings provide significant evidence to the discussion relating to 

the state of market efficiency. We find that both momentum factors and aggregate market 

news volume explain future variations in abnormal returns. Indeed, our findings stand in stark 

contradiction to the theoretical definition of the efficient market hypothesis. Also, when 

applicable, our findings describe a pattern of underreaction that has been the dominant pattern 

relating to media factors. Therefore, the critique of Fama (1991) that anomalies are distributed 

with an even split, does not seem to hold with media factors. However, we have not tested the 
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economic significance of our findings, and therefore cannot take a stand on whether or not our 

findings are in contradiction to the economic form of market efficiency (e.g., Jensen, 1978).  

As our study has employed a wide cross-section of methodologies, and qualitative text 

sources, we argue that our findings are robust to methodology changes, and free from data 

dredging concerns. However, we recognize that the limitations of our study can materially 

impact our results, and the interpretations drawn from them. We urge future research to 

especially improve our methodology, and to focus on the areas we have listed for future 

research in order to improve our understanding of the importance of media factors in financial 

markets. 

7.3 Avenues for future research 

While we consider our findings to be robust in several dimensions, we feel that future 

research can improve our current understanding of the role that media factors play in financial 

markets. First, there are multiple ways we can improve on the way to measure sentiment. To 

elaborate on this, we continue by describing the features that an ideal, ‘comprehensive 

sentiment model’, should possess to be able to detect sentiment in a human-like manner. 

Finally, we discuss the key research directions we see related to finance literature. 

7.3.1 Sentiment methodology 

While our sentiment estimation methodology is a significant improvement from prior 

simplistic word count methodology, our method has several caveats. One of the key 

difficulties in phrase-level sentiment analysis is the lack of deeper contextual information. 

Since each phrase has to be interpreted in isolation, a human reader would often prefer to see 

more context than one sentence in order to draw any conclusions. For instance, although 

acquisition events are commonly described in quite positive tone (e.g. “The acquisition of 

Sampo Bank makes strategic sense for DB"), it is quite uncertain whether they will add or 

destroy value. Therefore, human analysts tend to be generally skeptical about the positiveness 

of such news, and would require considerable amount of background information before 

wanting to judge statement positive or negative. In addition to the lack of prior knowledge on 

the companies, the LPS algorithms are unable to distinguish between advertising-like 

positiveness following from a company's own statements vs. independent reviews about the 

company. Also some events, such as nominations of new executives, are conventionally 

described in overly positive manner instead of reflecting the actual facts. An interesting 
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problem is also the detection of roles or perspective in a sentence (i.e. from whose viewpoint 

do we interpret the sentence when multiple parties are involved). For example, a sentence 

may talk about a company getting money from another company after a legal case. Good 

news for someone may well be bad for the other. 

Clearly, there is still a number of ways to improve the performance of the sentiment models 

reported in this paper. In addition to the enrichment of lexicon with weights for different 

concepts and events, an important direction for future research will be to examine how 

phrase-level models can be merged with content models. We recognize specifically the 

following development areas for future models: 

 Developing a sentiment methodology able to identify the topic of a text, and to capture 

the relevance of that text. For example a study by Antweiler and Frank (2006), which 

uses an algorithm to identify news stories by their topic rather than their tone, does 

find some return predictability. As a further step, researchers could test for the impact 

that qualitative texts dealing with company’s key products have on sentiment, possibly 

looking at media that does not even mention the company’s name 

 Creating a method that is able to assess the credibility of a text source in order to 

establish a proper weighing score for the text 

 Studying alternative ways of aggregating sentiment besides the use of negative 

fractions: for instance, Das (2010) disagreement sentiment. Also, different “shades” of 

negativity, e.g. bad news of events that have happened vs. increase in risk could have 

a different impact on the stock performance 

 Assembling dictionaries in different languages, and researching whether or not a 

sentiment constructed from them has any difference to sentiment constructed from 

source texts written in English 

 Constructing a methodology able to differentiate between texts dealing with historical 

information, present information, and forecasted estimates. For example O’Hare 

(2009) points out that traditional media reports most likely news relating to a stock’s 

past performance but only few statements about a company’s future. However analysis 

about future performance of a stock should be the part that investors consider most 

7.3.2 A comprehensive sentiment model  

To foster future development efforts, we finish our discussion on sentiment methodology by 

describing what a future model for detecting sentiment could potentially look like. This 
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comprehensive sentiment model would take all the media on a given day, analyze this 

information in the context of previously publicly known information, and give an estimate of 

 What news this information says about the company’s fundamentals and how should 

this affect the company’s valuation (information) 

 How this information may impact different investors and thereby the demand for the 

company’s stock (tone) 

For this goal, we describe the parts of that a comprehensive model could consist of. In 

addition to illustrating the purpose and workings of each part of the model, we also give our 

early hypotheses on how this model could be implemented, and potential pitfalls for each part. 

The proposed model is described in Table 23.  
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Table 23: Proposed comprehensive sentiment model 

Model part Purpose Example Implementation Pitfalls 

Word 

detection 

Detect polarized 

parts in text, 

possibly also with 

sentiment strength 

Detects word “well” in a 

sentence “We believe that 

Samsung will not do well” 

and assigns labels to it, e.g. 

“reversal” and “positive” 

Word lists for keywords 

of different categories 

Use of flawed 

word lists 

Pattern 

matching 

for 

polarized 

words 

Translate a 

pattern of 

detected words to 

a sentiment, 

possibly with a 

score for strength 

Based on training data, 

assigns label “negative to 

tags “reversal + positive”  

Quasi compositional 

sequencing (SVM) with 

pattern compression 

Training data 

that uses more 

knowledge than 

is available at 

this stage of the 

model 

Credibility 

filtering 

Assess the 

credibility of a 

sentence 

Detects that the praising 

document is written by the 

company’s sales 

department and reduces the 

strongly positive sentiment 

Author recognition with 

entity detection, 

credibility assessment 

(entity-database  

from a Wikipedia-based 

ontology
202

 + database of 

historical source 

sentiments)  

Entity database 

lacking key 

entities, 

difficulty of 

assigning a 

credibility 

estimate to listed 

entities 

Topic 

detection 

Detect the key 

topic(s) in a 

sentence 

Detects  from “Samsung’s 

new Galaxy is selling 

moderately well” that it 

relates to galaxy sales / 

smart phone sales 

Topic recognition with a 

Wikipedia-based 

ontology 

Hierarchy of 

topics, 

colloquial 

language 

Impact 

assessment 

Detect how much 

further impact 

will this media 

item have on the 

topic have when 

added on top of 

the existing 

information on 

the market 

Detects whether a piece of 

information has been 

discussed before (Is it 

novel news/analysis?), 

confirms a previously 

uncertain information (Is 

this source more 

credible?), or if it reaches 

now a new audience (Did 

this information previously 

reach only people who 

read the specialized 

industry magazine?)  

Database on information 

by topic for comparing 

novelty,  

impact factors for 

different sources based 

on reach, prestige etc. 

Difficulty of 

novelty 

assessment, lack 

of impact factor 

data for news 

Topic 

relevancy 

filtering 

Assign a 

relevancy score 

per topic, 

highlighting the 

most important 

topics 

Ranks e.g. the topic 

“mobile phones” higher 

than “laptops” for Nokia 

A layered ontology of 

concepts: importance of 

concepts for all 

companies, for different 

industries and for 

individual companies, 

based on metrics such as 

word-of-mouth in media, 

company’s own releases, 

and analyst reports 

Difficulty of 

ranking 

concepts, hype 

of concepts vs. 

reality 
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 For more information on Wikipedia-based ontologies, see Malo et al., 2010 
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A sentiment model of this kind would be significantly closer to mimicking the key stages of 

an analyst’s thoughts in assessing the impact of news on a company and could potentially 

form similar conclusions as financial analysts who study a company regularly. As for the 

moment, most studies have implemented only the first part of this model, which is likely to 

yield sentiment scores with significant biases. Though the proposed model includes some 

significant challenges in implementing, we find that models that go towards this direction 

could significantly improve the detected sentiment and make it more relevant in relation to 

stock performance.  

7.3.3 Data and specifications 

As with all studies, our study faced limitations in terms of data accessibility. Also, in light of 

our findings, there are areas that future study specifications should consider when conducting 

their research. We feel that the key areas of interest in the aforementioned areas are: 

 Analyzing sentiment using social media text sources, such as, i.e., Twitter 

 Studying the impact media factors have in Fringe markets (i.e. smaller countries such 

as Finland), and whether or not the impact differs from the findings of extant literature 

 Using intra-day data when studying the impact media factors have on financial metrics 

 Constructing trading strategies leveraging aggregate market news volume, and 

sentiment volatility forecasts, to measure economic feasibility of such trading schemes 

 Studying the impact high firm specific news has on volatility, and whether or not that 

translate into a rise in cost of capital as time passes on 

To conclude, we have casted some additional light on the big picture of how media factors 

and sentiment link to each other. Future research could complement these findings in 

particular by further improving on the research, and by tapping to further data sources.  

  



177 

 

8 REFERENCES 

Scientific articles and working papers 

Ajinkya B., Gift, M., 1984. Corporate managers’ earnings forecasts and symmetrical 

adjustments of market expectations. Journal of Accounting Research 22, 425-444. 

Akerlof, G., 1991. Procrastination and obedience. American Economic Review Papers & 

Proceedings 81, 1-19. 

Alexander, S., 1961. Price movements in speculative markets: trends or random walks. 

Industrial Management Review 2, 7-26. 

Antweiler, W., Frank, M., 2004. Is all that talk just noise? The information content of internet 

stock message boards. Journal of Finance 59, 1259-1294. 

Antweiler, W., Frank, M., 2006. Do U.S. stock markets typically overreact to corporate news 

stories? Working Paper. University of British Columbia. 

Arbit, H., Boldt, B., 1984. Efficient markets and the professional investor. Financial Analysts 

Journal 40, 22-34. 

Ariel, R., 1987. A monthly effect in stock returns. Journal of Financial Econometrics 18, 161-

174. 

Ariel, R., 1990. High stock returns before holidays: existence and evidence on possible 

causes. Journal of Finance 45, 1611-1626. 

Bachelier, L., 1900. Theorie de la speculation. Annales Scientifiques de l’Ecole Normale 

Superieure Ser 3, 21-86. 

Baker, A., Valleettourangeau, P., Frank, R., Pan, M., 1993. Selective associations and 

causality judgements  presence of strong causal factor may reduce judgements of a weaker 

one. Journal of Experimental Psychology: Learnings, Memory, and Cognition 19, 414-432. 

Ball, R., 1978. Anomalies in relationships between securities’ yields and yield-surrogates. 

Journal of financial Economics 6, 103-1126. 



178 

 

Ball, R., 1996. The theory of stock market efficiency: Accomplishments and limitations. 

Journal of Financial Education 22, 1-13. 

Ball, R., Brown, P., 1968. An empirical evaluation of accounting income numbers. Journal of 

Accounting Research 6, 159-178. 

Banz, R., 1981. The relationship between return and market value of common stocks. Journal 

of Financial Economics 9, 3-18. 

Barber, B,. Odean, T., 2002. Online investors: Do the slow die first? Review of Financial 

Studies 15, 455-487. 

Barber, B., Lyon, J., 1997. Detecting long-run abnormal stock returns: the empirical power 

and specification of test statistics. Journal of Financial Economics 43, 341-372. 

Barber, B., Odean, T., 2000. Trading is hazardous to your wealth: the common stock 

performance of individual investors. Journal of Financial Economics 43, 341-372.  

Barber, B., Odean, T., 2001. Boys will be boys: Gender, overconfidence, and common Stock 

investment. Quarterly Journal of Economics 141, 261-292. 

Barber, B., Odean, T., 2008. All that glitters: the effect of attention and news on the buying 

behavior of individual and institutional investors. Review of Financial Studies 21, 785-818. 

Barberis, N., Huang, M., 2001. Mental accounting, loss aversion, and individual stock returns. 

Journal of Finance 56, 1247-1292. 

Barberis, N., Shleifer, A., 2003. Style investing. Journal of Financial Economics 68, 161-199. 

Barberis, N., Shleifer, A., Vishny, R., 1998. A model of investor sentiment. Journal of 

Financial Economics 49, 307-345. 

Basu, S., 1977. Investment performance of common stocks in relation to their price-earnings 

ratios: a test of the efficient market hypothesis. Journal of Finance 32, 663-682. 

Basu, S., 1983. The relationship between earnings’ yield, market value and the returns for 

NYSE common stocks: further evidence. Journal of Financial Economics 12, 129-156. 

Baumeister, F., Bratslavsky, E., Finkenauer, C., Vohs, K., 2001. Bad is stronger than good. 

Review of General Psychology 5, 323-370. 



179 

 

Beechey, M., Gruend, D., Vickery, J., 2000. The efficient market hypothesis: a survey. 

Research Discussion Paper. Reserve Bank of Australia, Australia.  

Bell, D., 1982. Regret in decision making under uncertainty. Operations Research 30, 961-

981. 

Benartzi, S., Thaler, R., 2001. Naïve diversification strategies in defined contribution savings 

plans. American Economic Review 91, 79-98. 

Bernard, V., Thomas, J., 1989. Post-earnings-announcement drift: delayed price response or 

risk premium? Journal of Accounting Research, Supplement 27, 1-48. 

Bernard, V., Thomas, J., 1990. Evidence that stock prices do not fully reflect the implications 

of current earnings for future earnings. Journal of Accounting and Economics 13, 305-340. 

Bhandari, L., 1988. Debt/equity ratio and expected common stock returns: empirical 

evidence. Journal of Finance 43, 507-528. 

Bhattacharya, U., Galpin, R., Yu, X., 2009. The role of the media in the internet IPO bubble. 

Journal of Financial and Quantitative Analysis 44, 657-682. 

Black, F., 1972. Capital market equilibrium with restricted borrowing. Journal of Business. 

45, 444-54. 

Bligh, M., Hess, G., 2007. The power of leading subtly: Alan Greenspan, rhetorical 

leadership, and monetary policy. The Leadership Quarterly 18, 87-104. 

Bloomfield, R., 2002. The “incomplete revelation hypothesis” and financial reporting. 

Accounting Horizons 16, 233-243. 

Boldt, B., Arbit, H., 1984. Efficient markets and the professional investor. Financial Analysts 

Journal 40, 22-34. 

Brandt, M,. Kishore, R., Santa-Clara, P., Venkatachalam, M., 2008. Earnings announcements 

are full of surprises. Working Paper, Duke University. 

Brav, A., 200. Inference in long-horizon event studies. Journal of Finance 55, 1979-2016. 

Brav, A., Geczy, C., Gompers, P., 2000. Is the abnormal return following equity issuances 

anomalous? Journal of Financial Economics 56, 209-249. 



180 

 

Brav, A., Heaton, J., 2002. Competing theories of financial anomalies. Review of Financial 

Studies 15, 575-606. 

Brennan, M., Chordia, T., Subrahmanyam, A., 1998. Alternative factor specifications, 

security characteristics and the cross-section of expected stock returns. Journal of financial 

Economics 49, 345-373. 

Brenner, L., Koehler, D., Tversky, A., 1996. On the evaluation of one-sided evidence. Journal 

of Behavioral Decision Making 9, 59-70. 

Brocas, I., Carillo, J., 2000. The value of information when preferences are dynamically 

inconsistent. European Economic Review 44, 1104-1115. 

Brown, P., Kleidon, A., Marsh, T., 1983. New evidence on the nature of size related 

anomalies in stock prices. Journal of Financial Economics 12, 33-56. 

Brown, R., 1828. A brief account of microscopical observations: made in the months of june, 

july and august, 1828, on the particles contained in the pollen of plants; and on the general 

existence of active molecules in organic and inorganic bodies. Edinburg New Philosophical 

Journal 5, 358-371. 

Brown, S., Pope, P., 1996. Post-earnings announcement drift? Working paper. New York 

University, New York.  

Buehler, R., Griffin, D., Ross, M., 1994. Exploring the planning fallacy: why people 

underestimate their task completion time. Journal of Personality and Social Psychology 67, 

366-381. 

Busemeyer, J., Myung, J., McDaniel, M., 1993. Cue competition effects  empirical tests of 

adaptive network learning models. Psychological Science 4, 190-195. 

Bushee, B., Core, J., Guay, W., Wee, J., 2010. The role of the business press as an 

information intermediary. Journal of Accounting 48, 1-19. 

Cahan, R., Luo, Y., Alvarez, M., Jussa, J., Chen, Z., Wang, S., 2011. Signal processing Quant 

2.0 – Harnessing the power of the web in quantitative investing. Deutsche Bank Global 

Markets Research. 



181 

 

Caillaud, B., Jullien B., 2000. Modeling time-inconsistent preferences. European Economic 

Review 44, 1116-1124. 

Camerer C., Weber, M., 1992. Recent developments in modeling preferences: Uncertainty 

and ambiguity. Journal of Risk and Uncertainty 5, 325-370. 

Camerer, C., 1998. Bounded rationality in individual decision making. Experimental 

Economics 1, 163-183. 

Camerer, C., Hogarth, R., 1999. The effects of financial incentives in experiments: a review 

and capital-labor production framework. Journal of Risk and Uncertainty 19, 7-42. 

Campbell, J., Shiller, R., 1988. Stock prices, earnings, and expected dividends. Journal of 

Finance 43, 661-676. 

Campbell, J., Shiller, R., 1988. Stock prices, earnings, and expected dividends. Journal of 

Finance 43, 661-676. 

Campbell, J., Shiller, R., 1998. Valuation ratios and the long-run stock market outlook. 

Journal of Portfolio Management 24, 11-26. 

Chaiken, S., 1987. The heuristic model of persuasion. In Social Influence:  The Ontario 

Symposium 5, 3-40. 

Chan, W., 2003. Stock price reaction to news and no-news: drift and reversal after headlines. 

Journal of Financial Economics 70, 223-260. 

Charest, G., 1978. Dividend information, stock returns and market efficiency-II. Journal of 

Financial Economics 6, 463-465. 

Chen, C., Lee, C., Lin, W., Yen, G., 2001. On the Chinese lunar New Year effect in six Asian 

stock markets: an empirical analysis. Review of Pacific Basin Financial Markets and Policies 

4, 463-478. 

Cherry, E., 1953. Some experiments on the recognition of speech, with one and two ears. 

Journal of the Acoustical Society of America 25, 975-979. 

Chew, S., 1983. A generalization of the quasilinear mean with applications to the 

measurement of income inequality and decision theory resolving the Allais paradox. 

Econometrica 51, 1065-1092. 



182 

 

Chew, S., 1989. Axiomatic utility theories with the betweenness property. Annals of 

Operations Research 19, 273-298. 

Chopra, N., Lakonishok, J., Ritter, J., 1992. Measuring abnormal performance: do stocks 

overreact? Journal of Financial Economics 31, 235-268. 

Chung, C., Pennebaker, J., 2007. The psychological functions of function words. Social 

Communication, 343-359. 

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and 

Psychological Measurement 20, 37–46. 

Cohen, L., Frazzini, A., 2008. Economic links and predictable returns. Journal of Finance 63, 

1977-2011. 

Constantinides, G., 1982. Intertemporal asset pricing with heterogeneous consumers and 

without demand aggregation. Journal of Business 55, 253-267. 

Cowles, A., 1933. Can stock market forecasters forecast? Econometrica 1, 309-324. 

Cowles, A., 1944. Stock market forecasting. Econometrica 12, 206-214. 

Cowles, A., 1960. A revision of previous conclusions regarding stock price behavior. 

Econometrica 28, 909-915. 

Cowles, A., Jones, H., 1937. Some a posteriori probabilities in stock market action. 

Econometrica 5, 280-294. 

Cross, F., 1973. The behavior of stock prices on Fridays and Mondays. Financial analysts 

Journal 29, 67-69. 

Cutler, D., Poterba, J., Summers, L., 1989. What moves stock prices? Journal of Portfolio 

Management 15, 4-12. 

Daniel, K., Hirshleifer, D., Subrahmanyam, A., 1998. Investor psychology and security 

market under- and overreactions. Journal of Finance 53, 1839-1885. 

Daniel, K., Hirshleifer, D., Subrahmanyam, A., 2001. Overconfidence, arbitrage and 

equilibrium asset pricing. Journal of Finance 56, 921-965. 



183 

 

Daniel, K., Hirshleifer, D., Teoh, S., 2002. Investor psychology in capital markets: evidence 

and policy implications. Journal of Monetary Economics 49, 139-209. 

Daniel, K., Titman, S., 1997. Evidence on the characteristics of cross-sectional variation in 

common stock returns. Journal of Finance 52, 1-33. 

Das, S., Chen, M., 2006. Yahoo! for amazon: Sentiment extraction from small talk on the 

web. Working Paper, Santa Clara University. 

Davis, A., Piger, J., Sedor, L., 2008. Beyond the numbers: Managers’ use of optimistic and 

pessimistic tone in earnings press releases. Working Paper. Federal Reserve Bank of St. 

Louis. 

De Long, J., Shleifer, A., Summers, L., Waldmann, R., 1990. Noise trader risk in financial 

markets. Journal of Political Economy 98, 703-738. 

DeBondt, W., Thaler, R., 1985. Does the stock market overreact? Journal of Finance 40, 793-

805. 

DeBondt, W., Thaler, R., 1987. Further evidence on investor overreaction and stock market 

seasonality. Journal of Finance 42, 557-581. 

Dekel, E., 1986. An axiomatic characterization of preferences under uncertainty: weakening 

the independence axiom. Journal of Economic Theory 40, 304-318. 

Demers, E., Vega, C., 2010. Soft information in earnings announcements: news or noise? 

Working Paper. INSEAD.  

Dimson, E., Mussavian, M., 1998. A brief history of market efficiency. European Financial 

Management 4, 91-103. 

Dovring, K., 1954. Quantitative semantics in 18
th

 century Sweden. Public Opinion Quarterly 

18, 389-394. 

Dye, R., Sridhar, S., 2004. Reliability-relevance trade-offs and the efficiency of aggregation. 

Journal of Accounting Research 42, 51-88. 

Einstein, A., 1905.  Über die von der molekularkinetischen Theorie der warmen geforderten 

Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322, 

549–560. 



184 

 

Ellsberg, D., 1961. Risk, ambiguity, and the savage axioms. Quarterly Journal of Economics 

75, 643-669. 

Engelberg, J., 2008. Costly information processing: Evidence from earnings announcements. 

Working Paper. Northwestern University. 

Fama, E., 1965. The behavior of stock market prices. Journal of Business 38, 34-105. 

Fama, E., 1970. Efficient capital markets: a review of theory and empirical work. Journal of 

Finance 25, 383-417. 

Fama, E., 1991. Efficient capital markets: II. Journal of Finance 46, 1575-1617. 

Fama, E., 1998. Market efficiency, long-term returns, and behavioral finance. Journal of 

Financial Economics 49, 283-306. 

Fama, E., Fisher, L., Jensen, M., Roll, R., 1969. The adjustment of stock prices to new 

information. International Economic Review 10, 1-21. 

Fama, E., French, K., 1988a. Permanent and temporary components of stock prices. Journal 

of Political Economy 96, 246-273. 

Fama, E., French, K., 1988b. Dividend yields and expected stock returns. Journal of Financial 

Economics 22, 3-22. 

Fama, E., French, K., 1989. Business conditions and expected returns on stocks and bonds. 

Journal of Financial Economics 25, 23-49. 

Fama, E., French, K., 1992. The cross-section of expected stock returns. Journal of Finance 

47, 427-465. 

Fama, E., French, K., 1993. Common risk factors in the returns on stocks and bonds. Journal 

of Finance 333, 3-56. 

Fama, E., French, K., 1996. Multifactor explanations of asset pricing anomalies. Journal of 

Finance 51, 55-84. 

Fama, E., French, K., 1997. Industry costs of equity. Journal of Financial Economics 43, 153-

193.  



185 

 

Fama, E., French, K., 2006. Profitability, investment, and average returns. Journal of 

Financial Economics 82, 491-518. 

Fama, E., MacBeth, J., 1973. Risk, return and equilibrium: Empirical tests. Journal of 

Political Economy 81, 607-636. 

Fang, L., Peress, J., 2009. Media coverage and the cross-section of stock returns. Journal of 

Finance 64, 2023-2052. 

Farmer, J., Lo, A., 1999. Frontiers of finance: Evolution and efficient markets. Proceedings of 

the National Academy of Sciences of the United States of America 96, 991-992. 

Fischer, C., 2001. Read this paper later: Procrastination with time-inconsistent preferences. 

Journal of Economic Behavior and Organization 46, 249-269. 

Fischhoff, B., Slovic, P., Lichtenstein S,. 1977. Knowing with certainty: the appropriateness 

of extreme confidence. Journal of Experimental Psychology 3, 552-564. 

Fisher, K., Statman, M., 2000. Cognitive biases in market forecasts. Journal of Portfolio 

Management 27, 72-81. 

Foster, G., Shevlin, T., 1984. Earnings releases, anomalies, and the behavior of securities 

returns. The Accounting Review 59, 574-603. 

Fox, C., Tversky, A., 1995. Ambiguity aversion and comparative ignorance. Quarterly 

Journal of Economics 110, 585-603. 

Frankfurter, G., McGoun, E., 2002. Resistance is futile: The assimilation of behavioral 

finance. Journal of Economic Behavior and Organization 48, 375-389. 

Frazzini, A., 2006. The disposition effect and underreaction to news. Journal of Finance 61, 

2017-2046. 

Frederick, S., Loewenstein, G., O’Donoghue, T., 2002. Time discounting and time 

preference: a critical review. Journal of Economic Literature 40, 351-401. 

Freeman, R., Tse, S 1989. The multi-period information content of accounting earnings:  

confirmations and contradictions of previous earnings reports. Journal of Accounting 

Research, Supplement 27, 49-79. 



186 

 

French, K., 1980. Stock returns and the weekend effect. Journal of Financial Economics 8, 

55-69. 

French, K., Poterba, J., 1991. Investor diversification and international equity markets. 

American Economic Review 81, 222-226. 

Friedman, M., 1953. The Case for Flexible Exchange Rates. Essays in Positive Economics. 

University of Chicago Press, Chicago.  

Froot, K., Dabora, E., 1999. How are stock prices affected by the location of trade? Journal of 

Financial Economics 53, 189-216. 

Gibbons, M., Hess, P., 1981. Day of the week effects and asset returns. Journal of Business 

54, 3-27. 

Gilovich, T., Vallonen, R., Tversky, A., 1985. The hot hand in basketball: on the 

misperception of random sequences. Cognitive Psychology 17, 295-314. 

Glassman, C., 2005. Remarks at the plain language association international’s fifth 

international conference. 

Griffin, D., Tversky, A., 1992. The weighing of evidence and the determinants of confidence. 

Cognitive Psychology 24, 411-435. 

Griffin, P., 2003. Got information? Investor response to form 10-k and form 10-q EDGAR 

filings. Review of Accounting Studies 8, 433-460. 

Grinblatt, M., Keloharju, M., 2001. How distance, language, and culture influence 

stockholdings and trades. Journal of Finance 56, 1053-1073. 

Grossman, S., Shiller, R., 1981. The determinants of the variability of stock market prices. 

American Economic Review 71, 222-227. 

Grossman, S., Stiglitz, J., 1980. On the impossibility of informationally efficient markets. 

American Economic Review 70, 393-408. 

Grullon, G., Michaely, R., 2004. The information content of share repurchase programs.  

Journal of Finance 59, 651-680. 



187 

 

Gul, F., 1991. A theory of disappointment in decision making under uncertainty. 

Econometrica 59, 667-686. 

Hansen, L., Jagannathan, R., 1991. Implications of security market data for models of 

dynamic economies. Journal of Political Economy 99, 252-262. 

Harvey, J., 1998. Herustic judgement theory. Journal of Economic Issues 32, 47-64. 

Hassel, J., Jennings, R., 1986. Relative forecast accuracy and the timing of earnings forecast 

announcements. The Accounting Review 61, 58-75. 

Haug, M., Hirschey, M., 2006. The January effect. Financial Analysts Journal 62, 78-88. 

Haugen, R., Jorion, P., 1996. The January effect: Still there after all these years. Financial 

Analysts Journal 52, 27-31. 

Heath, C., Tversky, A., 1991. Preference and belief: Ambiguity and competence in choice 

under uncertainty. Journal of Risk and Uncertainty 4, 5-28. 

Heaton, J., 2002. Managerial optimism and corporate finance. Financial Management 31, 33-

45. 

Henry, E,. 2008. Are investors influenced by the way earnings press releases are written? 

Journal of Business Communication 45, 363-407. 

Hirshleifer, D., 2001. Investor psychology and asset pricing. Journal of Finance 56, 1533-

1597. 

Hirshleifer, D., Hong, S., 2002. Limited attention, information disclosure and financial 

reporting. Journal of Accounting and Economics 36, 337-386. 

Hirshleifer, D., Lim, S., Teoh, S., 2009. Driven to distraction: Extraneous events and 

underreaction to earnings news. Journal of Finance 64, 2289-2325. 

Hirsleifer, D., Teoh, S., 2003. Limited attention, financial reporting and disclosure. Journal of 

Accounting and Economics 36, 337-386. 

Hirsleifer, D., Teoh, S., 2005. Limited investor attention and stock market misreactions to 

accounting information. Working Paper, Ohio State University. 



188 

 

Ho, T., Michaely, R., 1988. Information quality and market efficiency. Journal of Financial 

and Quantitative Analysis 5, 357-386. 

Hong, H,. Torous, W., Valkanow, R., 2007. Do industries lead stock markets? Journal of 

Financial Economics 83, 367-396. 

Hong, H., Stein, J., 1999. A unified theory of underreaction, momentum trading, and 

overreaction in asset markets. Journal of Finance 54, 2143-2184. 

Hong, H., Stein, J., 2003. Differences of opinion, short-sales constraints, and market crashes. 

Review of Financial Studies 16, 487-525. 

Hou, K., 2007. Industry information diffusion and the lead-lag effect in stock returns. Review 

of Financial Studies 20, 1113-1138. 

Hsueh, P.-Y., Melville, P., & Sindhwani, V., 2009. Data quality from crowdsourcing: a study 

of annotation selection criteria. In Proceedings of the NAACL HLT 2009 Workshop on 

Active Learning for Natural Language Processing (pp. 27-35). Stroudsburg, PA, USA: 

Association for Computational Linguistics. 

Huberman, G,. 2001. Familiarity breeds investment. Review of Financial Studies 14, 659-680. 

Huberman, G., Regev, T., 2001. Contagious speculation and a cure for cancer. Journal of 

Finance 56, 387-396. 

Ikenberry, D., Lakonishok, J., Vermaelen, T., 1995. Market underreaction to open market 

share repurchases, Journal of Financial Economics 39, 181-208. 

Ikenberry, D., Lakonishok, J., Vermaelen, T., 2000. Stock repurchases in Canada. Journal of 

Finance 55, 2373–2397. 

Jegadeesh, N., 2000. Long-run performance of seasoned equity offerings: Benchmark errors 

and biases in expectations. Financial Management 29, 5-30. 

Jegadeesh, N., Titman, S., 1993. Returns to buying winners and selling losers: Implications 

for stock market efficiency. Journal of Finance 48, 65-91. 

Jegadeesh, N., Titman, S., 2001. Profitability of momentum strategies: an evaluation of 

alternative explanations. Journal of Finance 56, 699-720. 



189 

 

Jensen, M., 1978. Some anomalous evidence regarding market efficiency. Journal of 

Financial Economics 6, 95-102. 

Jones, C., Lamont, O., 2002. Short sale constraints and stock returns. Journal of Financial 

Economics 66, 207-239. 

Kahneman, D., 2003. Maps of bounded rationality: Psychology for behavioral economics. 

The American Economic Review 93, 1449-1475. 

Kahneman, D., Slovic, P., Tversky, A., 1982. Judgement under uncertainty: Heuristics and 

biases. Science 185, 1126- 1131. 

Kahneman, D., Tversky, A., 1974. Judgment under uncertainty: Heuristics and biases. 

Science 185, 1124-1131. 

Kahneman, D., Tversky, A., 1979. Prospect theory: an analysis of decision under risk. 

Econometrica 47, 263-292. 

Kahneman, D., Tversky, A., 2000. Choices, values and frames. American Psychologist 39, 

341-350. 

Keim, D., 1983. Size-related anomalies and stock return seasonality: further empirical 

evidence. Journal of Financial Economics 12, 13-32. 

Keim, D., Stambaugh, R., 1984. A further investigation of the weekend effect in stock returns. 

Journal of Finance 39, 819-835. 

Keynes, J., 1923. Some aspects of commodity markets. Manchester Guardian Commercial: 

European Reconstruction Series, 784-786. 

King, R., Pownall G., Waymire, G., 1990. Expectations adjustment via timely management of 

forecasts: Review, synthesis, and suggestions for future research. Journal of Accounting 

Literature 9, 114-144.  

Klibanoff, P., Lamont, O., Wizman, T., 1999. Investor reaction to salient news in closed-end 

country funds. Journal of Finance 53, 673-699. 

Kothari, S., Li, X,. Short, J,. 2008. The effect of disclosure by management, analysts, and 

financial press on cost of capital, return volatility, and analyst forecasts: a study using content 

analysis. Working Paper, MIT. 



190 

 

Krishna, V., Morgan, J., 2004. The art of conversation: Eliciting information from experts 

through multi-stage communication. Journal of Economic Theory 117, 147-179. 

Kruglanski, A., Thompson, E., 1999. Persuasion by a single route: a view from the unimodel. 

Psychological Inquiry 19, 83-109. 

Kruschke J., Johansen, M., 1999. A model of probabilistic category learning. Journal of 

Experimental Psychology: Learnings, Memory, and Cognition 25, 1083-1119. 

Laibson, D., 1997. Golden eggs and hyperbolic discounting. Quarterly Journal of Economics 

112, 443-477. 

Lakonishok, J., Levi, M., 1982. Weekend effects on stock returns: a note. Journal of Finance 

37, 883-889. 

Lakonishok, J., Smidt, S., 1988. Are seasonal anomalies real? A ninety-year perspective. 

Review of Financial Studies 1, 403-425. 

Lakonishok, J., Vermaelen, T., 1990. Anomalous price behavior around repurchase tender 

offers. Journal of Finance 45, 455-477. 

Lamont, O., Thaler, R., 2003. Can the market add and subtract? Mispricing in tech stock 

carve-outs. Journal of Political Economy 111, 227-268. 

Langlois, R., 2003. Cognitive comparative advantage and the organisation of work: Lessons 

from Herbert Simon’s vision of the future. Journal of Economics Psychology 24, 167-187. 

Lee, C., Shleifer A., Thaler, R., 1991. Investor sentiment and the closed-end fund puzzle. 

Journal of Finance 46, 75-110. 

Lee, C., Yen, G., 2008. Efficient market hypothesis (EMH): past, present and future. Review 

of Pacific Basin Financial Markets and Policies 11, 305-329. 

Lee, C., Yen, G., Chang, C., 1993. Informational efficiency of capital market revisited: 

anomalous evidence from a refined test. Advances in Quantitative Finance and Accounting 2, 

39-65. 

LeRoy, S., 1989. Efficient capital markets and martingales. Journal of Economic Literature 

27, 1583-1621. 



191 

 

LeRoy, S., Porter, D., 1981. The present-value relation: Tests based on implied variance 

bounds. Econometrica 49, 555-574 

Lewellen, J., 2002. Momentum and autocorrelation in stock returns. Review of Financial 

Studies 15, 533-564. 

Lewis, K., 1999. Trying to explain home bias in equities and consumption. Journal of 

Economic Literature 37, 571-608. 

Li, F., 2006. Do stock market investors understand the risk sentiment of corporate annual 

reports? Working Paper. University of Michigan.  

Li, F., 2008. Annual report readability, current earnings, and earnings persistence. Journal of 

Accounting and Economics 45, 221-247. 

Li, F., 2009. The determinants and information content of the forward-looking statements in 

corporate filings - a naïve Bayesian machine learning approach. Working Paper, University of 

Michigan. 

Lintner, J., 1965. The valuation of risk assets and the selection of risky investments in stock 

portfolios and capital budgets. Review of Economics and Statistics 47, 13-37. 

Lo, A., MacKinlay, A., 1990. Data-snooping biases in tests of financial asset pricing models. 

Review of Financial Studies 3, 431-467. 

Lo, A., Mamaysky, H., Wang, J., 2000. Foundations of technical analysis: Computational 

algorithms, statistical inference and empirical implementation. Journal of Finance 55, 1705-

1765. 

Long, J., 1978. The market valuation of cash dividends: a case to consider. Journal of 

Financial Economics 6, 235-264. 

Loomes, G., Sugden, R., 1982. Regret theory: an alternative theory of rational choice under 

uncertainty. The Economic Journal 92, 805-824. 

Lord, C., Ross, L., Lepper, M., 1979. Biased assimilation and attitude polarization: the effects 

of prior theories on subsequently considered evidence. Journal of Personality and Social 

Psychology 37, 2098-2109. 



192 

 

Loughran, T., McDonald, B., 2011. When is a liability not a liability? Textual analysis, 

dictionaries, and 10-Ks. Journal of finance 66, 35-65. 

Loughran, T., Ritter, J., 1995. The new issues puzzle. Journal of Finance 50, 23-51. 

Loukusa, P., 2011. Media coverage and the cross section of stock returns: Evidence from UK 

markets. Master’s Thesis. Aalto University School of Economics, Helsinki. 

Lowenstein, G., 2000. Emotions in economic theory and economic behavior. American 

Economic Review 65, 426-432. 

Maks, I., and Vossen, P., 2010. Annotation Scheme and Gold Standard for Dutch  Language 

Resources and Evaluation (LREC-10). European Language Resources Association (ELRA). 

Malkiel, B., 2003. The efficient market hypothesis and its critics. Journal of Economics 

Perspectives 17, 52-82. 

Malmendier, U., Tate, G., 2005. CEO overconfidence and corporate investment. Journal of 

Finance 60, 2661-2700. 

Malo, P., Siitari, P., Ahlgren, O., Wallenius, J. and Korhonen, P., 2010. Semantic Content 

Filtering with Wikipedia and Ontologies. In Proceedings of IEEE International Conference on 

Data Mining Workshops, 2010, pp. 518--526. 

 Malo, P., Sinha, A., Takala, P., Ahlgren, O. and Lappalainen, I., 2013. Capturing sentiments 

in financial news: Towards knowledge-driven tree kernels. Working paper, submitted for The 

International Conference on Knowledge Discovery and Data Mining (KDD). 

Malo, P., Sinha, A., Takala, P., Korhonen, P. and Wallenius, J., 2013. Good debt or bad debt: 

Detecting semantic orientations in economic texts. Working paper, submitted for Journal of 

the American Society for Information Science and Technology (JASIST). 

Markowitz, H., 1952. The utility of wealth. Journal of Political Economy 60, 151-158. 

Mercer, M., 2004. How do investors assess the credibility of management disclosures? 

Accounting Horizons 18, 185-196. 

Merton, R., 1985. On the current state of stock market rationality hypothesis. Working paper, 

1717-85. Sloan School of Management, Boston. 



193 

 

Michaely, R., Thaler, R., Womack, K., 1995. Price reactions to dividend initiations and 

omissions. Journal of Finance 38, 1597-1606. 

Miller, E., 1977. Risk, uncertainty and divergence of opinion. Journal of Finance 32, 1151-

1168. 

Mitchell, M., Mulherin, J., 1994. The impact of public information on the stock market. 

Journal of Finance 49, 923-950. 

Mitchell, M., Stafford, E., 1997. Managerial decisions and long-term stock price performance. 

Working paper. Graduate School of Business, University of Chicago.  

Mitra, L., & Mitra, G., 2010. Applications of news analytics in finance: A review (Tech. 

Rep.). optirisk-systems.com/papers/Opt0014.pdf: OptiRisk Systems. 

Modigliani, F., Cohn, R., 1979. Inflation and the stock market. Financial Analysts Journal 35, 

24-44. 

Moilanen, K., Pulman, S., & Zhang, Y., 2010. Packed Feelings and Ordered Sentiments: 

Sentiment Parsing with Quasi-compositional Polarity Sequencing and Compression. In 

Proceedings of the 1st workshop on computational approaches to subjectivity and sentiment 

analysis (wassa 2010) at the 19th European conference on artificial intelligence (ecai 2010) 

(pp. 36{43). Lisbon, Portugal. 

Moray, N., 1959. Attention in dichotic listening: Affective cues and the influence of 

instructions. Quarterly Journal of Experimental Psychology 11, 56-60. 

Morris, M., Sheldon, O., Ames, D., Young, M., 2005. Metaphor in stock market commentary: 

Consequences and preconditions of agentic descriptions of price trends. Working Paper, 

Columbia University. 

Mullainathan, S., 2001. Thinking through categories. Working Paper. MIT Press, 

Massachusetts. 

Mullainathan, S., Thaler, R., 2000. Behavioral economics. Working Paper. NBER. 

Newey, W., West, K., 1987. A simple, positive semi-definite, heteroskedasticity and 

autocorrelation consistent covariance matrix. Econometrica 55, 703-708. 



194 

 

Nichols, N., 1993. Efficient? Chaotic? What’s the new finance? Harvard Business Review 71, 

50-56. 

Nicholson, S., 1960. Price-earnings ratios. Financial Analysts Journal 16, 43-50. 

Niederhoffer, V., Osborne, M., 1966. Market making and reversal on the stock exchange. 

Journal of the American Statistical Association 61, 897-916. 

O’Donoghue, T., Rabin, M., 1999a. Incentives for procrastinators. Quarterly Journal of 

Economics 114, 769-816. 

O’Donoghue, T., Rabin, M., 1999b. Doing it now or later. American Economic Review 89, 

103-124. 

O’Donoghue, T., Rabin, M., 2001. Choice and procrastination. Quarterly Journal of 

Economics 116, 121-160. 

Odean, T., 1998a. Are investors reluctant to realize their losses? Journal of Finance 53, 1775-

1798. 

Odean, T., 1998b. Volume, volatility, price, and profit when all traders are above average. 

Journal of Finance 53, 1887-1934. 

Odean, T., 2000. Do investors trade too much? American Economic Review 89, 1279-1298. 

Pashler, H., & Johnston, J. C., 1998. Attentional limitations in dual-task performance. In H. 

Pashler (Ed.), Attention, Psychology Press/Erlbaum (Uk) Taylor & Francis, Hove, England, 

155-189 . 

Petersen, M,. 2004. Information: Hard and soft. Working Paper, Northwestern University. 

Petersen, M., 2009. Estimating standard errors in finance panel data sets: Comparing 

approaches. Review of Financial Studies 22, 435-480. 

Petty, R., Cacioppo, J., 1986. Communication and persuasion: Central and peripheral routes 

to attitude change. Springer, New York. 

Plumlee, M., 2003. The effect of information complexity on analysts’ use of that information. 

Accounting Review 78, 275-296. 



195 

 

Pontiff, J., 1996. Costly arbitrage: Evidence from closed-end funds. Quarterly Journal of 

Economics 111, 1135-1151. 

Poterba, J., Summers, L., 1988. Mean reversion in stock returns: Evidence and implications. 

Journal of Financial Economics 22, 27-59. 

Quiggin, J., 1982. A theory of anticipated utility. Journal of Economic Behavior and 

Organization 3, 323-343. 

Rabin, M., 1998. Psychology and economics. Journal of Economics Literature 36, 11-46. 

Rabin, M., 2002. Inference by believers in the law of small numbers. Quarterly Journal of 

Economics 117, 775-816. 

Rabin, M., Schrag, J., 1999. First impressions matter: a model of confirmatory bias. Quarterly 

Journal of Economics 114, 37-82. 

Read, D., Lowenstein, G., Rabin, M., 1999. Choice bracketing. Journal of Risk and 

Uncertainty 19, 171-197. 

Reinganum, M., 1981. Misspecification of capital asset pricing: Empirical anomalies based on 

earnings yields and market values. Journal of Financial Economics 9, 19-46. 

Reingaum, M., 1981. The anomalous stock market behavior of small firms in January: 

Empirical tests for tax-loss selling effects. Journal of Financial Economics 12, 89-104. 

Rendleman, R., Jones, C., Latané, H., 1987. Further insight into the standardized unexpected 

earnings anomaly: Size and serial correlation effects. Financial Review 22, 131-144. 

Richards, A., 1997. Winner-loser reversals in national stock market indices: Can they be 

explained? Journal of Finance 52, 2129-2144. 

Ritter, J., 1988. The buying and selling behavior of individual investors at the turn of the year. 

Journal of Finance 43, 701-719. 

Ritter, J., 2003. Behavioral finance. Pacific-Basin Finance Journal 11, 429-437. 

Ritter, J., Warr, R., 2002. The decline of inflation and the bull market of 1982 to 1997. 

Journal of Financial Quantitative Analysis 37, 29-61. 



196 

 

Roberts, H., 1967. Statistical versus clinical prediction of the stock market. Unpublished 

manuscript. University of Chicago, Chicago. 

Rogalski, R., 1984. New findings regarding day-of-the-week returns over trading and non-

trading periods: a note. Journal of Finance 39, 1603-1614. 

Roll, R., 1986. The hubris hypothesis of corporate takeovers. Journal of Business 59, 197-

216. 

Roll, R., 1988. R-squared. Journal of Finance 43, 541-566. 

Roll, R., Shiller, R., 1992. Comments: Symposium on volatility in U.S. and Japanese stock 

markets. Journal of Applied Corporate Finance 5, 25-29. 

Romer, P., 2000. Thinking and feeling. American Economic Review Papers and Proceedings 

90, 439-443. 

Rouwenhorst, K., 1998. International momentum strategies. Journal of Finance 46, 3-27. 

Rouwenhorst, K., 1999. Local return factors and turnover in emerging stock markets. Journal 

of Finance 54, 1439-1464. 

Rozeff, M., 1984. Dividend yields are equity risk premiums. Journal of Portfolio Management 

11, 68-75. 

Scholes, M., 1969. A test of the competitive hypothesis: the market for new issues and 

secondary offerings. Unpublished PhD thesis. University of Chicago, Chicago.  

Schwert, G., 1983. Size and stock returns, and other empirical regularities. Journal of 

Financial Economics 12, 3-12. 

Schwert, G.,1991. Review of market volatility by R. Shiller: much ado about…very little. 

Journal of Portfolio Management 17,74-78. 

Segal, U., 1987. Some remarks on Quiggin’s anticipated utility. Journal of Economic 

Behavior and Organization 8, 145-154. 

Segal, U., 1989. Anticipated utility: a measure representation approach. Annals of Operations 

Research 19, 359-373. 



197 

 

Sewell, M., 2011. History of the efficient market hypothesis. Research Note RN/11/04, 

University College London, London.  

Shafir, E., Diamond, P., Tversky, A., 1997. “Money illusion”. Quarterly Journal of 

Economics 112, 341-374. 

Sharpe, W., 1964. Capital asset prices: a theory of market equilibrium under conditions of 

risk. Journal of Finance 19, 425-442. 

Shefrin, H., Statman, .M., 1994. Behavioral capital asset pricing theory. Journal of Financial 

and Quantitative Analysis 29, 323-349. 

Shefrin, H., Statman, .M., 2000. Behavioral portfolio theory. Journal of Financial and 

Quantitative Analysis 35, 127-151. 

Shefrin, H., Statman, M,. 1985. The disposition to sell winners too early and ride losers too 

long: Theory and evidence. Journal of Finance 40, 777-790. 

Shefrin, H., Statman, M., 1984. Explaining investor preference for cash dividends. Journal of 

Financial Economics 13, 253-282. 

Shiller, R., 1981. Do stock prices move too much to be justified by subsequent changes in 

dividends? American Economic Review 71, 421-436. 

Shiller, R., 1982. Consumption, asset markets and macroeconomic fluctuations. Carnegie-

Rochester Conference Series on Public Policy 17, 203-238. 

Shiller, R., 1984. Stock prices and social dynamics. Brookings papers on economic activity 2, 

457-510. 

Shiller, R., 2000b. Measuring bubble expectations and investor confidence. Journal of 

Psychology and Financial Markets 1, 49-60. 

Shiller, R., 2003. From efficient markets theory to behavioral finance. Journal of Economic 

Perspectives 17, 83-104. 

Shleifer, A., Summer, L., 1990. The noise trader approach to finance. Journal of Economic 

Perspectives 4, 19-33. 

Shleifer, A., Vishny, R., 1997. The limits of arbitrage. Journal of Finance 52, 35-55. 



198 

 

Simon, H., 1986. Rationality in psychology and economics. Journal of Business 59, 209-224. 

Simons, D., Chabris, C., 1999. Gorillas in our midst: Sustained in attentional blindness for 

dynamic events. Perception 28, 1059-1074. 

Simons, D., Levin, D., 1997. Change blindness. Trens in Cognitive Sciences 1, 261-267. 

Skinner, D., 1994. Why firms voluntarily disclose bad news. Journal of Accounting Research 

32, 38-60. 

Sloan, R., 1996. Do stock prices fully reflect information in accruals and cash flows about 

future earnings? Accounting Review 71, 289-315. 

Smirlock, M., Starks, L., 1985. Day-of-the-week and intraday effects in stock returns. Journal 

of Financial Economics 17, 197-210. 

Smith, V., Suchanek, G,. Arlington, W., 1988. Bubbles, crashes, and endogenous expectations 

in experimental spot asset markets. Econometrica 56, 1119-1153. 

Smola, A.J., and Scholkopf, B (1998). “A Tutorial on Support Vector Regression," 

NeuroCOLT2 Technical Report, ESPIRIT Working Group in Neural and Computational 

Learning II. 

Somasundaran, S., Ruppenhofer, J., & Wiebe, J., 2007. Detecting Arguing and Sentiment in 

Meetings. In Proceedings of the SIGdial Workshop on Discourse and Dialogue. 

Spiess, K., Affleck-Graves, J., 1995. The long-run performance following seasoned equity 

issues. Journal of Financial Economics 54, 45-73. 

Starmer, C., 2000. Developments in non-expected utility theory: The hunt for a descriptive 

theory of choice under risk. Journal of Economic Literature 37, 332-382. 

Starmer, C., Sugden, R., 1989. Violations of the independence axiom in common ratio 

problems: an experimental test of some competing hypotheses. Annals of Operational 

Research 19, 79-102. 

Statman, M., 1999. Behavioral finance: Past battles and future engagements. Financial 

Analysts Journal 55, 12-17. 



199 

 

Stein, J., 2002. Information production and capital allocation: Decentralized versus 

hierarchical firms. Journal of Finance 57, 1891-1921. 

Stracca, L., 2004. Behavioral finance and asset prices: Where do we stand? Journal of 

Economic Psychology 25, 373-405. 

Stroop, J., 1935. Studies of interference in serial verbal reactions. Journal of Experimental 

Psychology 28, 643-662. 

Subramanian, R., Insley, R., Blackwell, R., 1993. Performance and readability: a comparison 

of annual reports of profitable and unprofitable corporations. Journal of Business 

Communication 30, 49-61. 

Taylor, S., 1982. Tests of random walk hypothesis against a price trend hypothesis. Journal of 

Financial and Quantitative Analysis 17, 37-61. 

Teoh, S., Welch, I., Wong, T., 1998. Earnings management and the underperformance of 

seasoned equity offerings. Journal of Financial Economics 50, 63-69. 

Tetlock, P., 2007. Giving content to investor sentiment: the role of media in the stock market. 

Journal of Finance 62, 1139-1168. 

Tetlock, P., Saar-Tsechansky, M., Macskassy, 2008. More than words: Quantifying language 

to measure firms’ fundamentals. Journal of Finance 63, 1437-1467. 

Thaler, R., 1980. Toward a positive theory of consumer choice. Journal of Economic 

Behavior and Organization 1, 39-60. 

Thaler, R., 1999. The end of behavioral finance. Financial Analysts Journal 55, 12-17. 

Thiele, T., 1880. Om anvendelse af mindste kvadraters methode i nogle tilfælde, hvor en 

komplikation af visse slags uensartede tilfældige fejlkilder giver fejlene en ‘systematisk’ 

karakter. Vidensk. Selsk. Skr. 5. Rk., naturvid. og mat. Afd. 12, 381–408. 

Thomson, R., 1978. The information content of discounts and premiums on closed-end fund 

shares. Journal of Financial Economics 6, 151-186. 

Trautmann, B., Hamilton, G., 2003. Informal corporate disclosure under federal securities 

law: Press releases, analyst calls, and other communications. Chicago, IL. 



200 

 

Tversky, A., Kahneman D., 1986. Rational choice and the framing of decisions. Journal of 

Business 59, 251-278. 

Tversky, A., Kahneman, D., 1992. Advances in prospect theory: Cumulative representation of 

uncertainty. Journal of Risk and Uncertainty 5, 297-323. 

Tversky, A., Thaler, R., 1990. Anomalies: Preferences reversals. Journal of Economic 

Perspectives 4, 201-211. 

Vapnik, V (1995). The Nature of Statistical Learning Theory, Springer-Verlag, New York. 

Vapnik, V, and A. Lerner (1963). Pattern Recognition using Generalized Portrait Method. 

Automation and Remote Control, v24. 

Vapnik, V. and Chervonenkis (1964). \On the Uniform Convergence of Relative Frequencies 

of Events to their Probabilities," Theory of Probability and its Applications, v16(2), 264-280. 

Verrecchia, R., 2001. Essays on disclosure. Journal of Accounting and Economics 32, 97-180. 

Weinstein N., 1980. Unrealistic optimism about future life events. Journal of Personality and 

Social Psychology 39, 806-820. 

West, K., 1988. Dividend innovations and stock price volatility. Econometrica 56, 37-61. 

White, H., 1984. A heteroskedasticity-consistent covariance matrix estimator and a direct test 

of heteroskedasticity. Econometrica 48, 817–38. 

Wiebe, J., Wilson, T., & Cardie, C., 2005. Annotating expressions of opinions and emotions 

in language. Language Resources and Evaluation, 39 , 165-210. 

Williamson, P., 1997. Learning and bounded rationality. Journal of Economic Surveys 11, 

221-230. 

Working, H., 1960. Note on the correlation of first differences of averages in a random chain. 

Econometrica 28, 916-918. 

Wurgler, J., Zhuravskaya K., 2002. Does arbitrage flatten demand curves for stocks? Journal 

of Business 75, 583-608. 

Yaari, M., 1987. The dual theory of choice under risk. Econometrica 55, 95-115. 



201 

 

Books 

Alpert, M., Raiffa, H., 1982. Judgment Under Uncertainty - Heuristics and Biases: A Progress 

Report on the Training of Probability Assessors. Cambridge University Press, Cambridge.  

Arrow, K., 1986. Rationality of Self and Others. Rational Choice. University of Chicago 

Press, Chicago. 

Arruñada, B., 2008. New Institutional Economics - A Guidebook: Part 1 Foundations: Human 

Nature and Institutional Analysis. Cambridge University Press, Cambridge.  

Barberis, N., Thaler, R., 2003. Handbook of the Economics of Finance Volume 1 (Set): 

Chapter 18: A Survey of Behavioral Finance. Elsevier B.V., Amsterdam.   

Berelson, B., 1952. Content analysis in communication research. The Free Press, Glencoe.  

Broadbent, D., 1958. Perception and Communication. Pergamon Press, New York.  

Camerer, C., 1995. Handbook of Experimental Economics: Individual Decision Making. 

Princeton University Press, Princeton. 

Campbell, J., Lo, A., MacKinlay, A., 1996. The Econometrics of Financial Markets. 

Princeton University Press, Princeton.  

DeBondt, W., Thaler, R., 1995. Handbooks in Operations Research and Management Science 

- Finance: Financial Decision-Making in Markets and Firms: A Behavioral Perspective. 

Elsevier, Amsterdam.   

Edwards, W., 1968. Formal Representation of Human Judgment: Conservatism in Human 

Information Processing. Wiley, New York.  

Fisher, I., 1928. Money Illusion. Adelphi, New York. 

Gibson, G., 1889. The Stock Markets of London, Paris and New York. G.P. Putnam’s Sons, 

New York.  

Gilovich, T., Griffin, D., Kahneman, D., 2002. Heuristics and Biases: The Psychology of 

Intuitive Judgment. Cambridge University Press, Cambridge.  

Haugen, R., 1999. The New Finance: The Case Against Efficient Markets, 2
nd

 Edition. 

Prentice Hall, New York. 



202 

 

Haugen, R., Lakonishok, J., 1988. The Incredible January Effect. Dow Jones-Irwin, 

Homewood. 

Hawawini, G., Keim, D., 1995. On the predictability of common stock returns: Worldwide 

evidence. In: Jarrow, R. (Ed.), Handbooks in Operations Research & Management Science, 

Volume 9. Elsevier Science, Amsterdam, pp. 497-544. 

Keynes, J., 1926. The End of Laissez-faire. Hogarth Press, London.  

Keynes, J., 1936. The General Theory of Employment, Interest and Money. Macmillan, 

London.  

Kindleberger, C., 1978. Manias, Panics and Crashes, 5
th

 Edition. Wiley, New Jersey.  

Kuhn, T., 1970. The Structure of Scientific Revolutions, 2
nd

 Edition. University of Chicago 

Press, Chicago.  

Lo A., MacKinlay, A., 1999. A Non-RandWalk Down Wall Street. Princeton University 

Press, Princeton.  

Lo, A., 1997. Market Efficiency: Stock Market Behavior in Theory and Practice, Volume I 

and II. The International Library of Critical Writings in Financial Economics, Edward Elgar 

Publishing, Cheltenham. 

Lowenstein, R., 2002. When Genius Failed: The Rise and Fall of Long-Term Capital 

Management. Fourth Estate, London.  

MacLean, P., 1990. The Triune Brain in Evolution: Role in Paleocerebral Function. New 

York Plenum Press, New York.  

Miller, M., 1991. Financial Innovations and Market Volatility. Blackwell, Cambridge.  

Ritter, Jay., 2003. Handbook of the Economics of Finance Volume 1 (Set): Chapter 5 

Investment Banking and Securities Issuance, Edited by G M Constantinides, M Harris and R 

Stulz. Elsevier B.V., Amsterdam. 

Savage, L., 1964. The Foundations of Statistics. Wiley, New York.  



203 

 

Schwert, G., 2003. Handbook of the Economics of Finance Volume 1 (Set): Chapter 15: 

Anomalies and Market Efficiency, Edited by G M Constantinides, M Harris and R Stulz. 

Elsevier B.V., Amsterdam.  

Shiller, R., 1992. Market Volatility. MIT Press, Massachusetts. 

Shiller, R., 2000a. Irrational Exuberance. Princeton University Press, Princeton.  

Shleifer, A., 2000. Inefficient Markets: An Introduction to Behavioral Finance. Oxford 

University Press, New York. 

Stone, P., Dexter, C., Marshall, S., Daniel, M., 1966. The General Inquirer: a Computer 

Approach to Content Analysis. MIT Press, Cambridge, MA. 

Thaler, R., 2000. Choice, Values and Frames: Mental Accounting Matters. Cambridge 

University Press, Cambridge. 

Tversky, A., 2004. Preference, Belief, and Similarity: Selected Writings. MIT Press, 

Massachusetts. 

Von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behavior. 

Princeton University Press, Princeton. 

 

Internet-based sources 

General Inquirer (Harvard IV) word lists 

(http://www.wjh.harvard.edu/~inquirer/homecat.htm) 

Kenneth-French portfolios and their breakpoints 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

Loughran and McDonald word list downloaded from 

http://www.nd.edu/~mcdonald/Word_Lists.html 



204 

 

9 APPENDIX  

Appendix A – History of the efficient market hypothesis 

In this appendix, we aim to give the reader a quick review of the history of the EMH before 

the 1960s when the theory was introduced by Eugene Fama. A review of the history of the 

EMH might seem superfluous at first glance. However, in the words of John Maynard Keynes 

(1926):  

“A study of the history of opinion is a necessary preliminary to the emancipation of the 

mind” 

The roots of the EMH date back far beyond 1965. The EMH is, and has always been, closely 

linked with the random walk -theory. In fact, the random walk -theory can be considered as an 

extension of the EMH (Fama, 1970).
203

 Random walk asserts that successive price changes 

(or returns) are independent and identically distributed whereas the ‘fair game’ models; also 

known as the expected return models, of the EMH state that prices (returns) ‘fully reflect’ the 

information-set in question which implies that successive prices (returns) are independent of 

each other. Subsequently, the ‘fair game’ models restrain from taking a stand concerning the 

form of successive distributions. In fact, the stochastic process generating returns is left 

unanswered in the EMH.  

The history of the random walk -theory predates the EMH. Random walk -theory is based on 

the findings of a Scottish botanist Robert Brown who found that grains of pollen suspended in 

water had a rapid oscillatory motion when viewed under microscope (Brown, 1828).  The 

finding of Robert Brown was later named as Brownian motion, the phenomenon used to 

model stochastic stock price movements among other things. In 1880, Thomas Thiele 

described the mathematical properties of Brownian motion (Thiele, 1880). Independent of 

Thiele’s work, Lous Bachelier (1900) derived the mathematical and statistical properties of 

Brownian motion in the context of stock and option markets in his renowned PhD thesis: 

Theorie de la speculation. However, Bachelier’s work attracted little academic attention at 

that time and it was until the 1960s when Bachelier was awarded the credit he deserved. 

Unaware of Bachelier’s work, Albert Einstein (1905) developed the mathematical properties 
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 Indeed the early studies often involved testing random walk -models when in fact it can be shown that they 

were testing for a more general ‘fair game’ -model (Fama, 1970. 
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of Brownian motion and introduced it to the field of physics. From there on, Brownian 

motion, and the following random walk -models, have been widely used and studied. 

Also the EMH assertion that prices ‘fully reflect’ all available information dates back beyond 

Fama’s introduction of the hypothesis in 1965. In 1889, George Gibson wrote the following: 

‘shares become publicly known in an open market, the value which they acquire may be 

regarded as the judgment of the best intelligence concerning them’ in his book entitled: The 

Stock Markets of London, Paris and New York (Gibson, 1889). The similarity in Gibson’s 

statement vis-à-vis the EMH is striking. Furthermore, the renowned economist John Maynard 

Keynes has been linked with the roots of the EMH. In 1923, Keynes argued that investors on 

financial markets are rewarded for bearing the risks associated with their investment instead 

of having privileged information compared to the market (Keynes, 1923). Keynes (1936) 

expressed a similar line of thought in his milestone work: The General Theory of 

Employment, Interest and Money. Besides Keynes and Gibson, Alfred Cowles III was a key 

figure in the history predating Fama’s introduction of the EMH. In 1933, Cowles analyzed the 

performance of investment professionals and concluded that stock market forecasters cannot 

forecast (Cowles, 1933). In 1944, in continuation of his previous work, Cowles reported that 

investment professionals cannot beat the market (Cowles, 1944). In addition to the supportive 

evidence for the upcoming EMH, Cowles was the only author, to our knowledge, to publish 

evidence contradicting the EMH before the 1960s by pointing out inefficiencies in the market 

in the form of serial correlation in averaged time series indexes of stock prices (Cowles and 

Jones, 1937). However, Working (1960) showed that the use of averages can introduce 

autocorrelations not present in the original series.
204

 In response to the critique, Cowles 

revisited his previous conclusions and corrected the error caused by averaging. However, 

Cowles still found mixed temporal dependence in results (Cowles, 1960) contradicting the 

forthcoming EMH and thus remains, to our knowledge, as the only author to publish 

contradicting results to the EMH before the 1960s. 
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 Independent of Working (1960), Alexander (1961) finds that averaging could introduce spurious 

autocorrelation. 
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Appendix B – Main variable definitions 

 

Dependent Variables Description Reference Literature (e.g.)

Abnormal returns Demers and Vega, 2010

[0,1] Hirsleifer et al., 2009

[1,5] Engelberg, 2008

[2,32] Chan, 2003

[2,62] Barber and Lyon, 1997

Daniel and Titman, 1997

Fama and French, 1992

Abnormal volume Loughran and McDonald, 2011

[1] Hirsleifer et al., 2009

[2,5] Tetlock, 2007

[3,32] Antweiler and Frank, 2006

[3,62]

Abnormal volatility Loughran and McDonald, 2011

[2,32] Demers and Vega, 2010

[2,62] Engelberg, 2008

Independent Variables

Sentiment Loughran and McDonald, 2011

LPS Demers and Vega, 2010

MPQA Davis et al., 2008

Wordcount Engelberg, 2008

Finance dictionary Tetlock et al., 2008

H4N dictionary Tetlock, 2007

Market news volume Hirsleifer et al., 2009

Firm news volume Loukusa, 2011

Fang and Peress, 2009

1
 Retrieved from Kenneth French's website on July 2012: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Firm news volume counts the number of news 

in our sample for a given day for a given firm

Main Variable Definitions

This appendix provides definitions for the main variables used in the paper

Returns are based on buy-and-hold approach 

for the event period using close-to-close 

prices. Each stock is matched with 1 of 25 book-

to-market and market equity portfolios at the 

end of June based on their respective market 

capitalization at the end of June and book 

equity of the last fiscal year-end in the prior 

calendar year divided by the market value of 

equity at the end of December of the prior year. 

The daily returns of the 25 size / Book-to-

market portolios are retrieved from Kenneth 

French's website.
1

Abnormal volume is defined as the log of the 

sum of the daily abnormal volumes for the 

event period. Daily abnormal volume is defined 

as: (day's volume - mean volume) / standard 

deviation of volume. The mean and standard 

deviation estimates are based on days [-65, -6] 

from the event date.

Abnormal volatility is defined as the standard 

deviation of daily abnormal returns for the 

event period.

The quantitative estimate of investor 

sentiment. We estimate the value using 

alternative approaches LPS, MPQA and bag-of-

words (wordcount.) We aggregate multiple 

daily news with equal weighting via averaging 

in both methods.

Market news volume counts the number of 

news in our sample for a given day to establish 

a proxy for distraction
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Appendix C - Main specification control variable definitions 

 

Control Variables Reference Literature (e.g.)

Size Loughran and McDonald, 2011

Hirsleifer et al., 2009

Tetlock et al., 2008

Book-to-market Hirsleifer et al., 2009

Tetlock et al., 2008

Momentum Loughran and McDonald, 2011

[-4,-1] Tetlock et al., 2008

[-34,-4] Tetlock, 2007

[-255, -34] Chan, 2003

Jegadeesh and Titman, 1993

Share turnover Loughran and McDonald, 2011

Tetlock et al., 2008

SUE Loughran and McDonald, 2011

Demers and Vega, 2010

Hirsleifer et al., 2009

Davis et al., 2008

Tetlock et al., 2008

Li, 2006

Abnormal volatility Loughran and McDonald, 2011

[-252, -2] Demers and Vega, 2010

Engelberg, 2008

Institutional ownership Loughran and McDonald, 2011

Hirsleifer et al., 2009

Engelberg, 2008

Abnormal market volume Loughran and McDonald, 2011

[1] Hirsleifer et al., 2009

[2,5]

[3,32]

[3,62]

Main Specification Control Variable Definitions

This appendix provides definitions for the control variables used in the paper

Description

Abnormal volatility is defined as the standard 

deviation of daily abnormal returns for the time 

period.

Log of last reported book value of equity 

divided by the market value of equity.

Log of the sum of the volumes for [-252, -2] 

divided by shares outstanding at event date.

We define Standardized Unexpected Earnings 

as the difference between the last reported 

quarter's EPS and the corresponding median 

analyst forecast for that EPS divided by the 

closing share price on the day of the 

respective earnings announcement.

Log of market equity defined as the number of 

shares outstanding times the price of the 

share.

Abnormal volume is defined as the log of the 

sum of the daily abnormal volumes for the 

event period. Daily abnormal volume is defined 

as: (day's volume - mean volume) / standard 

deviation of volume. The mean and standard 

deviation estimates are based on days [-65, -6] 

from the event date. Daily market volume is 

based on the sum of the volume of the SP 100 

firms.

We control for firm's past returns by utlizing a 

buy-and-hold approach with close-to-close 

prices to calculate abnormal returns for the 

given time intervals before the event date. 

Abnormal returns are calculated in the same 

manner as the dependent variable abnormal 

returns.

The most recent number of shares reported 

under the ownership of institutions divided 

shares outstanding
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Appendix D – Alternative specification control variable definitions 

 

 

  

Control Variables Reference Literature (e.g.)

Industry Loughran and McDonald, 2011

Fama and French, 1997

# of analysts following Demers and Vega, 2010

Hirsleifer et al., 2009

Analyst dispersion Loughran and McDonald, 2011

Demers and Vega, 2010

Tetlock et al., 2008

Calendar Hirsleifer et al., 2009

Tetlock, 2007

LTM Dividend Fama and French, 2006

Li, 2006

No LTM dividend Fama and French, 2006

Fana and French (1997) 48 different industry 

dummies

Day of the week, end of the month, and 

January dummies

No dividend dummy for firms that have paid no 

dividends during the last  twelve months

Log ( 1 + the number of analysts following a 

given firm )

Standard deviation of EPS forecasts for the 

most recent reported EPS divided by the share 

price of the respective earnings announcement 

date

Last twelve month dividends divided by the 

last reported book value of equity

Alternative Specification Control Variable Definitions

This appendix provides definitions for the additional control variables used in the paper

Description
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Appendix E – Outlier values in financial data 

We check the dataset for outliers. List of share price changes in the sample above +50% and 

below -50% are listed in the table below.  

Date Company Return Explanation 

11/24/2008 CITIGROUP  58 % Citigroup bailout package announced during the financial crisis 

10/13/2008 MORGAN 

STANLEY  

 87 % Morgan Stanley gets a significant investment during the financial 

crisis 

 

Additionally, we list all exceptionally large jumps in market capitalization. Due to M&A and 

capital structure changes (changes in number of shares) these are not equivalent to the share 

price changes. Market capitalization changes in sample above +50% and below -50% are 

listed in the following table. 
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Date Company Change Potential explanation
205

 

4/8/2008 ALTRIA GROUP  -70 % Kraft Foods to spinoff (actually split-off) Post Cereal that 

will merge with a Ralston company 

6/12/2006 LOWE'S COMPANIES  -50 % Potential change in capital structure related to stock split 

(jump does not exist for stock price data) 

12/29/2006 AT&T   63 % Completion of acquisition of BellSouth Corporation 

7/2/2007 BANK OF NEW 

YORK MELLON 

  59 % Merger of BNY and Mellon on Jul 1; jump has been 

corrected in stock price data of Datastream 

11/26/2008 CITIGROUP   58 % No clear event, but change visible also in stock price. 

Potential correction (Citi stock price down from >$130 to 

<$40 in less than a month  

7/30/2009 CITIGROUP  101 % Citi Announces Final Results of Public Share Exchange and 

Completes Further Matching Exchange with U.S. 

Government; Citi Pushing for Quick Asset Sales 

9/14/2009 CITIGROUP   96 % Potentially a change in capital structure (jump has been 

corrected in stock price data of Datastream) 

3/22/2007 CVS CAREMARK   84 % Merger of CVS Corporation and Caremark Rx Inc. 

3/19/2007 FREEPORT-

MCMOR.CPR.& GD. 

  66 % Freeport-McMoRan Copper & Gold Inc. acquired Phelps 

Dodge Corporation, including Chino. 

4/2/2007 KRAFT FOODS  246 % Change related to Kraft spinoff by Altria during Mar 2007 

3/7/2006 LOWE'S COMPANIES   96 % Potential change in capital structure related to stock split 

(jump does not exist for stock price data) 

1/1/2007 MASTERCARD   69 % Potentially a change in capital structure (jump has been 

corrected in stock price data of Datastream) 

10/13/2008 MORGAN STANLEY   87 % Mitsubishi UFJ Financial Group Closes $9 Billion Equity 

Investment in Morgan Stanley as Part of Global Strategic 

Alliance 

3/14/2005 NATIONAL OILWELL 

VARCO 

  65 % National Oilwell Varco emerges (from Oilwell Supply,1862 

and National Supply, 1894) following the completion of the 

merger with Varco International 

8/15/2005 SPRINT NEXTEL  102 % The Sprint/Nextel merger was finalized 

3/31/2008 VISA 'A'   97 % Potentially an error in the data (jump one week after listing) 

2/5/2010 XEROX   53 % ACS Signs $1.6 Billion California Medicaid Contract 
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 Source: internet search 
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Appendix F – Details on gathered media data 

This appendix explains in greater details how we have gathered our text data from the 

LexisNexis database. Due to the technical nature of the process, we have excluded this from 

the main section. The appendix details the list of excluded news sources, the looks of the 

database interface, and the process of downloading data. 

List of excluded sources 

The table below lists the excluded data sources and rationale for excluding each. 

Excluded source Rationale for exclusion 

Market News Publishing Only numerical data 

GlobalAdSource (English) Provides information on company advertisements in a tabular form 

News Bites - Nordic : Finland Provides automatically generated updates of stock price developments etc. 

 

LexisNexis search interface 

The following screenshot illustrates the LexisNexis user interface that we use to download the 

news with the web scraper. As can be seen in the example, we need to split our search for 

large companies to multiple small pieces to stay below the 500 news items limit. 
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Details of the web scraper 

We download our news from the LexisNexis database. As it is not possible to download more 

than 500 news at a time from the database, we develop a web scraper that imitates the actions 

of a human user navigating the LexisNexis website and downloading the news in small 

portions at a time. We develop our program using AutoHotkey, a free open-source macro 

program that can be used to automate different keyboard and mouse usage on a Windows 

computer. We program the scraper to imitate our mouse and keyboard movements: entering a 

date range and a ticker, and then downloading the news items. 

When searching for news, the number of search results depends on the time period. If the 

number of search results exceeds 500, LexisNexis lets us download only the first 500 news 

items, and we would miss the rest. Thus, we need to keep the number of found news items 

always below 500. In order to achieve the aforementioned, we need to split the whole time 

period into smaller pieces for each company, for which we are certain that the amount of news 

found never exceeds 500. For a company with less than 500 news during a period of 5 years, 

we can download all the news at once, while for companies with more news coverage, the 

frequencies need to be very small. Downloading news with small frequency for all the 

companies would not be practical, as downloading time is always constant. For example, 

using a 3-day time period would need 640 downloads per company
206

. Given that our web 

scraper can complete one download in approximately three minutes, a total download time 

would equal to 640*3 minutes = 32h per company, or over 133 days for the whole sample. 

Thus, we need to determine the largest possible time periods per company for which we are 

confident that the number of search results will not exceed 500 items. 

The amount of news varies considerably among the sample: the smallest companies have 

lower news coverage; however, the larger companies also have significant variation in their 

news volume.  Thus, we do a sample search for a period of one year per company, and based 

on these results, we estimate as a rule of thumb that the maximum volume that can occur in a 

certain timeframe is three times the frequency. For example, with a test search of 400 news 

items in a year, our estimate of the number of maximum news per that company would be 

1,200 per year, and hence would dictate a time frequency of 4 months to not exceed the 500 
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 As the speed of a webpage loading varies significantly depending on the number of found news items, the 

program needs to be set to wait for a webpage to load for a longer time than a human user would wait for. 

Otherwise, the scraper would start navigating on a page that has not been loaded yet. This causes the scraper to 

be slower than a human user would be. Furthermore, the download time does not correspond to the amount of 

news downloaded, but only to time period. 
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limit per download. However, instead of using arbitrary time period based on the 1 year 

sample news volume, we define constant time periods that we apply based on the 1 year 

sample period. Therefore, in our example case, we would use time period of 3 months to not 

exceed 500 news per year. The time periods we use are: all news at once (e.g. Weyerhauser 

Co.), one year per download, 6 months by download, 3 months by download, 1 month by 

download, 2 weeks by download, 5 days per download, and 3 days per download (e.g. Citi, 

Google and Apple).  By doing this, we are able to cut our total download time significantly. 

To further speed up the downloading process, we edit our scraper to split our download queue 

so that we can use multiple computers. 

Besides being fairly inefficient, another peril of a human-simulating scraper is the possibility 

of distractions. Other open programs that provide pop-ups, or unexpected search results on a 

webpage, may result in unexpected consequences, as the computer program keeps clicking on 

the wrong window. In the worst case scenario, this can lead to a scraper navigating itself to 

wrong places on a website - potentially even posing a threat to the whole computer. 

Therefore, it is not possible to leave the scraper fully unsupervised for long periods of time. 

We finally launch our scraper with total of 50 computers that we supervise as they download 

the whole sample within a few days. Once we have downloaded data for all the companies, 

we study the download results to find companies that may have exceeded 500 items. In these 

rare cases, we download the missing news manually. As an outcome, we have a folder for 

each of the SP100 companies, containing a number of HTML-files that represent less than 

500 news items per search. 

Details of processing LexisNexis data 

After the web scraper process, we have a sample of 5,389 HTML-files that contain all the 

news for our time period that have been marked with appropriate tickers in LexisNexis 

database. As all metadata: e.g. dates of news, publications, etc., are stored in these HTML-

files, we cannot proceed further without processing of the files more.  

To do so, we design a Java-algorithm that puts all news items in the files into a database in a 

common format. The program starts by taking a HTML-file and cutting it into individual 

stories. Next, the algorithm needs to discover the heading, the text, the publication, and other 

metadata. As LexisNexis HTML format is non-standard, it does not provide a clear indication 

of which part is what. Therefore, we program the algorithm to interpret the possible meaning 
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of a text from its relative position to others: e.g., the date comes before the heading etc. 

Sometimes there is other metadata between the classified items that does not match the 

standard ordering: i.e., date follower by heading etc. In such cases, the algorithm verifies the 

classifications by looking at the forms of the data: i.e., the words that start a sentence, the 

sentence structure and other format related things. 

Once the message and other metadata have been separated, we strip the HTML-tags off from 

the message to make it easier to process in the data analysis phase. While doing this, we also 

remove tables as they contain mainly numerical data that is not interesting for us. The 

exceptions are messages that are fully expressed in a table format: in this case, we only 

remove the html-tags and leave the content of the tables. We also alter some of the metadata, 

in particular the date field. The date format varies occasionally, and our algorithm recognized 

most of the date formats. Some messages are; however, discarded, as the date is not properly 

specified. Such messages are mainly composed of situations where the date is in a format 

such as: ‘November 2009’. Such formats are not useful as we wish to calculate the sentiment 

for a particular date, and we cannot place a message to a particular date using the 

aforementioned format as it does not specify a specific date, but only a month and a year.  

Once the structure has been discovered, we store the messages into the database including: 

dates, tickers, source publications, and other relevant data that LexisNexis provides. As the 

amount of data that we have at this point is very large, we choose to store the ordered news 

into a MySQL database that we setup on a home server. MySQL is a widely used relational 

database that is chosen due to its ability to handle large amounts of data, and its availability as 

a freeware. The stored data is then used as a basis for our analysis. 
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Appendix G – Annotation instructions 

The goal is to indicate if the following news would likely affect a company's share price 

positively or negatively. If you think that the share price could go in either direction, please 

select ‘Either way’. 

Please consider all sentences in isolation, i.e., how do you expect the company's stock price to 

react if this was the only headline that you saw, and you had no background knowledge on the 

company, or current economy. I.e. we don't want you to make your own stock analysis. Expect 

that you know that the economy is currently steady and that the company is a stock-exchange 

listed company (i.e. large company). 

When evaluating the sentiment of sentences and how the stock price would react, please use 

the following scale: 

9 +++ UP a lot 

8 ++ UP (hard to say how much) 

7 + UP a little 

6 n1 Either way (answering would require more background knowledge) 

5 n2 Either way (not possible to say, even if I had more background knowledge) 

4 n3 Either way (answering would require me to know which company we are talking 

about) 

3 - DOWN a little 

2 -- DOWN (hard to say how much) 

1 --- DOWN a lot 
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Appendix H – Financial entities -wordlists 

In this appendix, we list show our financial entity wordlists, originated from the online 

dictionary Investopedia (for further details on retrieving this list, refer to section). The first list 

shows words where an increase would be typically considered a negative event. The second 

list covers the opposite, i.e. words where an increase would typically considered a positive 

event. 

 

Negative-if-up word list 

ABI 

acquisition cost 

add-on 

administrative 

expenses 

antitrust 

bankruptcy 

bear 

beta 

capital employed 

capital loss 

current assets 

current liabilities 

debt 

default 

deficit 

dilution 

 

downgrade 

downside 

downtrend 

EAC 

erosion 

expense 

financial crisis 

gearing 

gearing ratio 

impairment 

income tax 

inflation 

interest rate 

inventory 

leverage 

liability 

loan 

 

long-term debt 

net debt 

net loss 

noise 

NWC 

obligation 

OPEX 

overhead 

profit warning 

provision 

receivables 

recession 

relative strength 

restructuring charge 

risk 

RSI 

seasonality 

 

seller 

sell-off 

shortage 

shortfall 

slump 

tariff 

tax expense 

tax rate 

taxation 

taxes 

underperform 

unemployment 

volatility 

working capital 

write-down 
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Positive-if-up wordlist 

AAA 

ADR 

asp 

basic earnings per 

share 

benchmark 

bonus 

book value 

boom 

bottom line 

brand 

budget 

business 

buyback 

CAC 

capacity 

CAPEX 

capital 

capital gain 

capital markets 

capitalization 

carried interest 

cash 

cash flow from 

operating activities 

catalyst 

closing price 

competitive 

advantage 

complement 

composite index 

comprehensive 

income 

consumer spending 

credit 

credit rating 

cash equivalents 

cash flow 

cash flow from 

investing activities 

customer 

customer service 

 

DAX 

delivery 

demand 

dividend 

EBITDA 

economic growth 

economic recovery 

economics 

economy 

efficiency 

end-user 

EPS 

equity 

exemption 

export 

financial market 

financial 

performance 

financing 

flotation 

franchise 

FTSE 

Fundamentals 

HAM 

holdings 

income 

index 

intangible asset 

intellectual property 

investment 

dividend policy 

earnings 

EBIT 

EBITA 

IPO 

leadership 

liquidity 

LSE 

MACD 

margin 

market 

market capitalization 

 

market price 

market sentiment 

market share 

market value  

maturity 

monopoly 

net cash 

net interest income 

net investment 

net sales 

Nikkei 

NYSE 

offering 

operating earnings 

operating income 

operating margin 

operating profit 

operational efficiency 

order 

outperform 

partnership 

payout 

pipeline 

plum 

GDP 

gross margin 

gross profit 

growth rates 

population 

portfolio 

pre-market 

price target 

private placement 

productivity 

profit 

profit margin 

quotation 

rally 

rating 

rebound 

refinance 

remuneration 

repayment 

retail sales 

retained earnings 

revenue 

ROCE 

ROE 

ROI 

rollout 

royalty 

savings 

sequential growth 

share capital 

share repurchase 

shareholder value 

solvency 

stock market 

stock option 

STOXX 

subscription price 

subscription right 

supply 

surplus 

synergy 

takeover bid 

throughput 

top line 

trademark 

TSE  

TSX 

turnaround 

turnover 

underlying asset 

unit sales 

upside 

uptrend 

valuation 

value 

volume 

WAL 

wall street 

wealth 
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Appendix I – Wordlist defects 

To test for possible wordlist defects, we go through the sentences that have been falsely 

assigned by our algorithm (vs. annotation). The most commonly occurring words from the 

word lists are listed below. 

 Wrongly assigned Correctly assigned 

deal 71 22 

acquire 55 12 

support 41 12 

agreed 35 7 

completed 34 7 

provides 32 6 

enables 19 1 

natural 19 3 

approval 14 1 
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Appendix J - Error descriptions for LPS 

After labeling our annotation sample with the Linearized Phrase-Structure -model algorithm, 

we categorize the cases in which the algorithm gives us false answers (different to human 

annotation). The definitions of these errors are as follows. 

Borderline cases: sentences that could be tagged by human as either/or 

Let us offer an illustration of such a case:  

‘The long-standing partnership and commitment enable both parties to develop their 

respective operations, and ESL Shipping will also have the opportunity to update its fleet and 

improve its efficiency.’  

The sentence implies that the company's efficiency will increase. A human reading the 

sentence could think that the increase could be substantial enough for the share price to 

increase. Another reader could think that the aforementioned is mainly glitter and the increase 

is not substantial. Thus, two readers might annotate the sentence differently. 

Company talking in advertising like -tone about its' own operations 

In some instances, a company can talk in a very positive tone about its operations, and our 

algorithm picks this up; tagging the sentence as positive. An analyst, on the other hand, would 

often disregard this information, or at least discount it significantly. Therefore, an analyst is 

able to recognize a difference between objective product reviews and company’s own review, 

for instance. A positive review can be good news for the company, while a company talking 

about its own operations in a positive way should often not be news to anyone. 

Inability to detect changes in numbers 

The algorithm is unable to detect that two different numbers in a sentence may mean an 

increase/decrease. For instance, for sentence:  

‘The company recorded sales of 100 million, vs. 10 million in last year’  

the algorithm would not recognize that sales have increased significantly. A human annotator, 

on the other hand, could record this as a positive event. 
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Inability to detect roles in a sentence 

The algorithm cannot detect roles of different entities in a sentence that may become 

problematic in cases when multiple parties are described in the sentence. For example, a 

sentence may talk about a company getting money from another company after a legal case:  

good news for one of the companies and bad for the other. As our algorithm does not know 

the point of view, it is prone to misclassify such sentences; hence, increasing noise in the 

sentiment.
207

 

Inability to detect time expressions in a sentence 

An event that has already happened may be described in a very polarized tone. While a reader 

can be impacted by simply the tone of the text, it is also possible that an investor would not 

give much weight to events of the past - regardless of tone of the text. The reaction depends 

on whether or not investors are impacted by tone, or by information, or by both.  

Inability to reason from text 

In cases where a reader makes a connection that is not explicit in the text, the algorithm is 

incapable of uncovering such reasoning through logic. For example, a construction company 

building something over the next years could imply that it has received a large order even 

though such statement is not explicitly expressed in the text. 

Inability to recognize significance of events 

In some instances, events are reported that are not likely significant enough to make a 

difference to a company. These can be tagged as polarized, though they are not significant 

enough to impact share price. The sentiment is correct, but the impact on the company is 

likely too insignificant. In such cases, an ideal algorithm should either tag the sentences as 

neutral, or at least adjust the score with a smaller weight during the aggregation. In some 

instances, news may include polarized sentences that have nothing to do with the company 

that the article covers. 

 

 

                                                 
207

 This category has similar elements to the neutrally annotated category ‘Either way’ (answering would require 

me to know which company we are talking about). 
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Inability to understand the magnitude or value of items 

Our algorithm cannot understand magnitude. For example, if a ship yard gets ‘a new order of 

100 tankers’, the algorithm would recognize no difference to an order of 100 candy bars. It 

would be evident to a reader that the candy bars are unlikely to present much value to a 

company. However, the algorithm is unable to separate between the value of a tanker and a 

candy bar; hence, both orders seem to be of equal importance. 

Interpreting non-words as words 

In some instances, our algorithm interprets an entity, or a non-word, as a word. For example, 

when talking about the firm ‘Capital One Financial’, the algorithm recognizes that ‘Capital’ 

is the word ‘capital’.  

Need for more context 

In many instances, a reader would need more context than one sentence in order to make any 

conclusions. For example, a sentence ‘The CMO is thrilled that the acquisition is going 

through.’ may sound positive. However, acquisitions may often destroy value, and an analyst 

would want to know the background of the acquisition before making any conclusions based 

on the information.  

Polysemy of words and expressions 

Sometimes we recognize words as they would be used in a different context. For example, 

when a company ‘succeeds’, this is good news. On the other hand, when a person ‘succeeds 

another the meaning is that a person is replaced by another; not positive or negative news in 

itself. In order to correctly tag these sentences, we should move from word polarity to ‘sense 

polarity’: i.e. recognizing that words may have different polarity in different context (e.g., 

Maks and Vossen, 2010). 

Positive convention of talking about something 

With some themes, there exists a potential bias of positivity that relates to a convention with a 

certain theme rather than the actual sentiment. In such instances, the algorithm can classify 

sentences as positive whereas in reality they are simply reflecting the convention of the 

theme. For example, nominations are often described in an overly positive manner as a matter 

of convention instead of actually reflecting facts.  
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Recognizing patterns in descriptive text 

Often financial texts simply describe what operations of companies. In some instances, these 

descriptions may include words that are included in our wordlists. The algorithm may 

recognize a polarized pattern in such descriptive texts, even though they are in fact neutral by 

nature. 

Sentences with multiple parts 

The SVM is typically reading a sentence as a whole, ignoring punctuation that splits two 

parts. While the aforementioned does not generally matter, there may be instances where a 

sentence should be handled in two parts with different sentiment structures. 

Use of longer expressions and interpreting non-words as words 

Our algorithm can detect expressions that consist of only individual words. However, in some 

cases, multiple words form an expression that has a different polarity than individual words. 

For example, we may recognize ‘limited’ as a negative word, while the text may describe 

actually a ‘limited company’. To mitigate this, there would need to be a list of common 

expressions and their polarities. 

Words lacking from word lists 

The algorithm recognizes only words that are included in our word lists. While our lists are 

long, and include the most commonly used polarized words, they may lack some words. As 

the words are not recognized, the SVM remains unable to pick up the polarized pattern. 

Wrong computer patterns 

The computer patterns that have been created from the training set may be erroneous: for 

example, movement words can be misclassified to represent sentiment when in fact they do 

not. This may be a result of lack of training data for some of the patterns. Alternatively, we 

may be lacking some word types from our word lists that result in misclassified annotations, 

and hence may lead into a bias in the training set. In example, if we did not have ‘negate’ 

category in our training set, the set would be interpreted very differently by the SVM as 

positive words would lead to negative sentences etc.  
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Wrong label in training data 

When doing our error analysis, we also notice instances where we have a wrong label in our 

training set. In other words, while our algorithm is able to classify the sentence correctly, the 

human annotator has made a mistake when tagging the sentence. 


