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Abstract

Objectives: The objective of this thesis is to build models where the demand of a product has an explicit, recog-
nizable trend effect. With the models we seek to infer the properties of a trend based on observable firm behavior.

Methods: I construct in total three different models: a monopoly model, a Stackelberg duopoly model and a
simultaneous-choice duopoly model. Moreover, I study three different trend types in each of the models: a nonex-
istent trend, a linear trend and a parabel trend. The demand in each of the models is determined through initial
value problems that incorporate the trends into the probabilities for buying a product. All presented initial value
problems are modified versions of the initial value problemsof the Susceptible-Infective-Susceptible epidemiolog-
ical model. I am unable to find analytical solutions for the initial value problems, and so I use numerical methods
for solving them. The numerical solutions are done with MATLAB. The use of numerical solutions for the initial
value problems means that also the firm behavior is solved numerically. The firms seek to maximize their profits
by choosing the price, quality and free samples of their products. I limit the firms’ choices to finite choice sets in
order to be able to optimize using simple brute force. Brute force is used to calculate the firms’ profits for every
possible choice combination from the finite choice sets. This allows us to describe firm behavior either directly
(the monopoly model and the Stackelberg duopoly model) or bystudying the subgame-perfect Nash equilibrium
of an interaction game that the firms play (the simultaneous-choice duopoly model).

Results: We are not able to deduce the properties of a trend solely by observing firm behavior. In each model the
values for exogenous variables may be chosen such that firm behavior is the same for different trend types. We
may, however, formulate an existence result for trends: If we observe at least one firm giving out free products,
we may infer the existence of a trend. The result does not run in the other direction, i.e. we may not infer the
nonexistence of a trend if we observe no firm giving out free products.

Keywords: trend, Susceptible-Infective-Susceptible, subgame-perfect Nash equilibrium, duopoly



Contents

List of Figures 4

List of Tables 5

1 Introduction 7

2 Consumer behavior 9

2.1 The compartmental view of the market . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 9

2.2 Arrivals to buying decision and product lifetime . . . . . .. . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Arrivals to buying decision . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 11

2.2.2 Product lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 12

2.2.3 Estimatingβ andλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Buying decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 13

2.3.1 Buying probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 13

2.3.2 State-dependent indirect utility . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 15

3 Methods and assumptions for the numerical solution 18

3.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 18

3.1.1 Runge-Kutta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 18

3.1.2 Trapezoidal rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 19

3.2 Parameter choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 20

3.2.1 Firm’s choice set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 20

3.2.2 Constant exogenous variables . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 21

3.2.3 Experimental exogenous variables . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 22

3.3 Functional form choices . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 22

3.3.1 Trend term functionsg(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 23

4 Monopoly 25

4.1 Market Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 25

4.2 Initial value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 26

4.3 Firm behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 26

4.3.1 Monopoly’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 27

4.3.2 Solving the monopoly’s problem . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 27

4.4 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 28

1



CONTENTS 2

5 Stackelberg duopoly 31

5.1 Market structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 32

5.2 Initial value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 32

5.2.1 Pre-entry initial value problem . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 32

5.2.2 Post-entry initial value problem . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 33

5.3 Firm behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 35

5.3.1 Follower’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 35

5.3.2 Leader’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 36

5.3.3 Solving the Leader’s problem . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 38

5.4 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 39

5.4.1 New parameter choices . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 39

5.4.2 Optimal firm behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 39

6 Simultaneous-choice Duopoly 43

6.1 Market Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 43

6.2 Initial value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 44

6.3 Firm behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 45

6.3.1 Duopolist’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 46

6.3.2 Proposed interaction game . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 46

6.3.3 Subgame-perfect Nash equilibrium . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 49

6.3.4 Solving the SPNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 52

6.4 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 54

6.4.1 SPNE strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 54

6.4.2 Observable firm behavior . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 59

7 Conclusions 72

7.1 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 72

7.1.1 The definition of a trend . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 72

7.1.2 Model specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 72

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 73

7.3 Criticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 73

7.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 74

7.4.1 Epidemiological viewpoints . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 74

7.4.2 Economical viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 74

Bibliography 76

A Count of Nash equilibria in stage normal-form games 77

B A complete subgame-perfect Nash equilibrium strategy pair 81

C MATLAB scripts for the monopoly model 91

C.1 Example runfile for the monopoly model . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 92

C.2 MonopolyOptimizes.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 93

C.3 MonopolyProfits.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 93

C.4 monopolyDE.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 94

C.5 MonopolyRevenue.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 94



CONTENTS 3

D MATLAB scripts for the Stackelberg duopoly model 96

D.1 Example runfile for the Stackelberg duopoly model . . . . . .. . . . . . . . . . . . . . . . . . . 97

D.2 LeaderOptimizes.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 98

D.3 preentryProfitsLeader.m . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 99

D.4 monopolyDE.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 100

D.5 MonopolyRevenue.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 101

D.6 FollowerOptimizes.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 101

D.7 profitsFollower.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 102

D.8 duopolyDES.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 103

D.9 revenueFollower.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 104

D.10 profitsLeader.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 105

D.11 revenueLeader.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 106

E MATLAB scripts for the Simultaneous-choice duopoly model 108

E.1 Example runfile for the Simultaneous-choice duopoly model . . . . . . . . . . . . . . . . . . . . 109

E.2 FirstStageNEQualities.m . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 110

E.3 NashEquilibriaBySupportEnumeration.m . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 112

E.4 SecondStageNESamples.m . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 116

E.5 ThirdStageNEPricesParallel.m . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 118

E.6 parallelWrapperProfitsFirm1.m . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 120

E.7 profitsFirm1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 120

E.8 duopolyDES.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 121

E.9 revenueFirm1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 122

E.10 parallelWrapperProfitsFirm2.m . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 123

E.11 profitsFirm2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 123

E.12 revenueFirm2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 124



List of Figures

3.1 Monopoly buying probability for product with no trend,g(I) = 0, a = 1, p = 2, µ = 0.6 . . . . . 24

3.2 Monopoly buying probability for product with linear trend, g(I) = d I
N
, a = 1, p = 2, µ =

0.6, N = 1000000, d = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Monopoly buying probability for product with parabel trend,g(I) = − d
m2 I

2 + 2 d
m
I, a = 1, p =

2, µ = 0.6, N = 1 000 000, d = 2,m = 333 333 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Compartmental Graph, Monopoly . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 30

4.2 Script structure, Monopoly . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 30

5.1 Compartmental Graph, Pre-entry . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 41

5.2 Compartmental Graph, Post-entry . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 41

5.3 Script structure, Stackelberg duopoly . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 42

6.1 Compartmental Graph, Simultaneous-choice duopoly . . .. . . . . . . . . . . . . . . . . . . . . 65

6.2 Duopoly Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 67

6.3 Pruned Game Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 68

6.4 Third stage normal-form game with history(a1, a2, q1, q2) . . . . . . . . . . . . . . . . . . . . . 69

6.5 Truncated Game Tree, Second stage . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 69

6.6 Second stage normal-form game with history(a1, a2) . . . . . . . . . . . . . . . . . . . . . . . . 70

6.7 Truncated Game Tree, First stage . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 70

6.8 First stage normal-form game . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 71

6.9 Script structure, Simultaneous-choice duopoly . . . . . .. . . . . . . . . . . . . . . . . . . . . . 71

4



List of Tables

3.1 Constant exogenous variables . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 21

3.2 Experimental exogenous variables . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 22

4.1 Patient monopoly withr = 0, Choices and profits . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Normal monopoly withr = 0.05, Monopoly choices and profits . . . . . . . . . . . . . . . . . . 29

4.3 Impatient monopoly withr = 10, Monopoly choices and profits . . . . . . . . . . . . . . . . . . 29

5.1 Patient firms withr = 0, Choices and profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Normal firms withr = 0.05, Choices and profits . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Impatient firms withr = 10, Choices and profits . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 First stage normal-form game SPNE strategies, patient firms,r = 0 . . . . . . . . . . . . . . . . 55

6.2 First stage normal-form game SPNE strategies, normal firms,r = 0.05 . . . . . . . . . . . . . . . 55

6.3 First stage normal-form game SPNE strategies, impatient firms,r = 10 . . . . . . . . . . . . . . 56

6.4 Second stage normal-form game SPNE strategies, patientfirms,r = 0 . . . . . . . . . . . . . . . 57

6.5 Second stage normal-form game SPNE strategies, normal firms,r = 0.05 . . . . . . . . . . . . . 58

6.6 Second stage normal-form game SPNE strategies, impatient firms,r = 10 . . . . . . . . . . . . . 59

6.7 Third stage normal-form game SPNE strategies, patient firms,r = 0 . . . . . . . . . . . . . . . . 60

6.8 Third stage normal-form game SPNE strategies, normal firms,r = 0.05 . . . . . . . . . . . . . . 61

6.9 Third stage normal-form game SPNE strategies, impatient firms,r = 10 . . . . . . . . . . . . . . 62

6.10 SPNE firm behavior, patient firms,r = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.11 SPNE firm behavior, normal firms,r = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.12 SPNE firm behavior, impatient firms,r = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.13 SPNE expected profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 66

A.1 Count of first stage normal-form game Nash equilibria . . .. . . . . . . . . . . . . . . . . . . . 78

A.2 Count of second stage normal-form game Nash equilibria .. . . . . . . . . . . . . . . . . . . . . 79

A.3 Count of third stage normal-form game Nash equilibria . .. . . . . . . . . . . . . . . . . . . . . 80

B.1 Firms’ 1 and 2 functionsn1(a1, a2) andn1(a1, a2) . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.2 Firm 1’s functionh1, partial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3 Firm 1’s functionh1, continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.4 Firm 1’s functionh1, continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.5 Firm 1’s functionh1, continued and concluded . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.6 Firm 2’s functionh2, partial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.7 Firm 2’s functionh2, continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5



LIST OF TABLES 6

B.8 Firm 2’s functionh2, continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.9 Firm 2’s functionh2, continued and concluded . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.1 Composition of vectorparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D.1 Composition of vectorparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

E.1 Composition of vectorparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



1

Introduction

Trends are widely accepted to exist in consumer markets. It is also widely accepted that not all products are

trendy. This thesis is an attempt to build models of trendy products to study the existence of trends. I propose

to do this through using models derived from the epidemiological Susceptible-Infective-Susceptible (SIS) model

(see e.g. Brauer and Castillo-Chávez (2001, p. 411)). Specifically, I adopt the SIS model to describe the demand

of a product. I study three different models in total: 1. a monopoly model, 2. a Stackelberg duopoly model and

3. a simultaneous-choice duopoly model. While the modelingapproach allows observing the market state (i.e.

who owns what when) explicitly, I study the existence of trends through firm behavior. For example, if we were

studying whether a particular pair of jeans is trendy or not,it would be clearly much easier to observe the behavior

of the firm that makes the jeans rather than how many consumersown a pair at a particular point in time.

I argue that the use of an epidemiological model is appropriate when we note the similarities between having a

disease and having a product. Both are measurable binary states, i.e. you either have or do not have a disease or a

product. Both products and diseases have finite lifetimes. When there are many infected persons in a population,

the likelihood of becoming infected ourselves increases ceteris paribus. Likewise, when there are many persons

with a certain product, arguably the likelihood of buying that product should increase. For example, we could

infer that a product is good from the product’s popularity. Thus we might reasonably ask ourselves whether the

dynamics behind epidemics are similar to the dynamics behind the demand for trendy goods.

The evolution of the market, and thereby demand, in each model is described by an initial value problem inspired

by the SIS model. The initial value problems are unfortunately analytically unwieldy, which then leads to the

use of numerical methods for solving them. The use of numerical methods places demands on the way that the

firms’ decision variables, i.e. the price, quality and free samples of their products, are endogenized. I assume

that the models’ firms are only interested in maximizing their profits. This allows us to determine the firms’

behavior by determining what choices maximize the firms’ profits. I assume that the firms’ choices are limited to

finite choice sets to help with solving the maximization problems and to guarantee the existence of solutions in

the duopoly models. I acknowledge that the use of finite choices sets is undesirable as it requires us to “define the

range of possible endogenous behavior exogenously” beforehand. MATLAB was used for the numerical numerical

solutions.

Consumer behavior is simple and uniform across the proposedmodels. I assume that consumers arrive at buying

decisions, i.e. visit a store, based on the Poisson process.The consumer’s buying decision is determined through

the consumer’s indirect utility function such that the consumer makes the decision that maximizes his indirect

utility. The indirect utility function is defined over the possible options of the buying decision, i.e. whether to

buy the product of some firm or to buy no product at all. The indirect utility of an option is dependent on the

quality and the price of the product it represents (the “quality and price” of not buying any product are assumed

7



1. INTRODUCTION 8

to be equal to zero). Moreover, I assume that there is a trend effect in the indirect utility function for options

representing products. The strength of the trend effect is dependent on how many others own the product that the

option represents. Finally, there is a random variable in the indirect utility to account for the quirks of human

behavior. The random variable leads us to study the probabilities that the consumer buys a particular product.

I use the following definition for a trend: A product is trendy, or a trend exists, if the probability of buying the

product is in any way dependent on how many others own the product at the time of the buying decision. Otherwise

the product is not trendy, or no trend exists. This definitionof a trend is very general and allows for a multitude

of different trend types. I consider three different trend types in this thesis: 1. the “no trend” trend type, 2. a

linear trend type and 3. a parabel trend type. With the “no trend” trend type, there is no such effect to the indirect

utility of a product that could be interpreted as stemming from a trend. Firm behavior with the “no trend” trend

type gives us a benchmark to which we may compare the firm behavior stemming from the two other trend types.

With the linear trend type, the indirect utility of the product increases linearly as the number of people owning the

product increases. With the parabel trend type, the indirect utility of the product increases up to some saturation

point and then starts to decrease forming a downward-opening parabel as the number of people owning the product

increases.

The linear and parabel trend types may be interpreted through well-known concepts in economics. Products with

the linear trend type can be seen as examples of network goods. The telephone may serve as an example of a

network good, as the usefulness of a telephone increases as the number of other people with telephones increases

since now there are more people one may call. Next, products with parabel trend type can be seen as examples of

“trends in the traditional sense” or of negative externalities in consumption. Examples for products with this trend

type could be clothing or cars. A piece of clothing may start to lose its appeal when too many others already have

the same piece, leading to behavior typically associated with the notion of a trend. Similarly the usefulness of a

car decreases when there is congestion, i.e. too many cars already on the road, which in turn could be interpreted

as a negative externality in consumption.

I pose the following research questions:

1. Do different trend types lead to observable differences in firm behavior?

2. In particular, are there markets where firms find it optimalto give out free products as samples?

3. Can we deduce the type and the strength of a trend based solely on observable firm behavior?

The research questions are answered by looking at firm behavior which is solved numerically in each of the three

proposed models. I vary a number of exogenous variables to provide sensitivity analysis on how the exogenous

variables affect firm behavior in each model. These exogenous variables are the planning horizon and the discount

rate of firms and the strength of the trend. Each of these variables is difficult to observe, and each plays a large part

in determining the profits of a firm and thereby the behavior ofthe firm.

The thesis is structured as follows: Chapter 2 describes theassumption behind consumer behavior in all three

models. Chapter 3 describes the necessary assumptions and the methods for solving the initial value problems

(and the firms’ profits) numerically. Chapter 4 presents the monopoly model, chapter 5 the Stackelberg duopoly

model and chapter 6 the simultaneous-choice duopoly model.Chapter 7 summarizes the work, criticizes the

models and proposes some possible extensions to them.



2

Consumer behavior

This chapter describes the assumptions regarding consumerbehavior in each of the proposed models. These

assumptions form the basis for writing the initial value problems that describe the evolution of the markets. The

assumptions are chosen such that they mimic the assumptionsof the SIS model and can be interpreted in terms

of economics. Consumer behavior is interpreted in terms of how a consumer moves between so-called consumer

compartments. The consumer compartments describe what products a consumer in a particular compartment owns.

The movement between consumer compartments is due to eithera consumer purchasing a product or a product

breakdown. The movement between compartments then determines the demand for the products through the

purchases.

The rate of movement between compartments depends on three factors: 1. how often a consumer will face a buying

decision, 2. how the consumer makes his buying decision and 3. how long do the the products last. These factors

are determined by the following assumptions: Consumers face buying decisions according to a Poisson process.

Consumers make their buying decisions by choosing the option in the buying decision that maximizes their indirect

utility. Finally, the product lifetimes are assumed to havean exponential distribution.

The buying decisions are modeled with the multinomial logitmodel of discrete choice (see e.g. Anderson et al.

(1992, p. 39)). Consumer behavior at the individual level isassumed be non-deterministic as the consumer’s

indirect utility function has a random variable by assumption. The consumer makes his choices to maximize his

indirect utility, which is in part determined by the realization of the random variable. As the realizations vary, we

may merely derive the buying probabilities for particular products. The buying probabilities depend on the trend

effects, the qualities and the prices of the products.

While the modeling approach for the buying probabilities iswell-established for describing how a consumer with-

out any products might buy a product, the duopoly models require us to describe the buying probabilities for a

particular product for consumers who already own a (similar) product. I was unable to find prior research on this

issue and was therefore forced to make my own assumptions to handle it. A critical reader should note these

assumptions.

2.1 The compartmental view of the market

Let us suppose that we have a set of characteristics and a population where individuals exhibit these characteristics.

For epidemiological models, including the SIS model, thesecharacteristics would describe whether an individual

has a particular disease. For the proposed models, the characteristics describe whether an individual owns a

particular product. The population is then divisible into compartments depending on the characteristics such that

9



2. CONSUMER BEHAVIOR 10

each compartment represents mutually exclusive combination of the characteristics. For example, if we consider an

epidemiological model for a single disease, the populationwould be divided into two compartments representing

those who have the disease and those who are healthy. Further, if we consider an epidemiological model for two

diseases, the population would be divided into four compartments representing those who are healthy, those who

have either one of the diseases and those who have both diseases. We may naturally divide the population similarly

in the proposed models based on what products the consumers own.

Let us next limit our attention to the compartmental structures of the proposed models and name the models’

compartments. I use the naming notation of the SIS model for the compartments of the proposed models. The

SIS model names the compartment of those who are susceptibleas compartmentS and the compartment of those

who are infective as compartmentI. Following this notation, we name the compartment of those who do not own

any product as compartmentS and the compartments of those who own some particular product as compartments

I. In the monopoly model there is only a singleI-compartment as the consumers may own only the monopoly’s

product. In the duopoly models there are in total threeI-compartments where the subscript of each compartment

describes what the consumers in that compartment own. Let usname the duopoly firms as firmi and firmj. Then

theI-compartments are namedIi, Ij andIij to denote that the consumers own the product of firmi or j or both

firms.

Why is it necessary to present such complicated tools to model demand instead of, for example, defining an explicit

demand function? The compartmental view of the market provides us with a tractable way to model the effects

of trends to demand. We aim to find functionsS(t) andI(t) (or functionsIi(t), Ij(t) andIij(t) in the duopoly

models) through studying initial value problems to describe how many consumers are at which compartment at

time t. As the functions describe how many consumers own a particular product, we may model the effects of

trends to the product’s buying probability with them.

2.2 Arrivals to buying decision and product lifetime

Let us now describe the assumptions regarding the consumer arrivals and the product breakdowns. These as-

sumptions are made on the basis of the discussion in Brauer and Castillo-Chávez (2001, p. 351-2) concerning the

background assumptions of the SIR model. The background assumptions of the SIR model are equivalent with

the background assumptions of the SIS model as the difference between models concerns only what happens to a

person at the end of the disease. We therefore wish to formulate similar assumptions regarding the consumer arrival

and product breakdown rates. From these assumptions we wishto show that the consumer arrivals and product

breakdowns happen at a constant rate per unit time. This means that given an infinitesimally small time interval, the

probability of a single consumer arrival or a single productbreakdown is independent of time and approximately

proportional to the length of the time interval with some rate parameter. The rate parameter is determined by the

chosen background assumptions in both cases.

I assume that consumer optimization plays no part in determining consumer arrivals or product lifetimes. The

consumers cannot therefore affect the product lifetime by,for example, varying the product’s rate of use. The

product lifetime is then based solely on the durability of the product, which allows us to assume that lifetime of

a product has an exponential distribution. Next, I see the consumer arrivals as incidental and offer the following

interpretation for a consumer arrival: Consumers visit a store on other business, happen to pass by a window

exhibition and make the decision whether to buy based on the viewed window exhibition. The consumer arrival

rate is then constant and independent of the consumer’s compartment. This allows us to model the consumer

arrivals as arising from a Poisson process.
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2.2.1 Arrivals to buying decision

Let us now consider the arrivals to buying decisions. I modelthe consumer arrivals as a Poisson process{N(t) :

t ≥ 0} with parameterβ, where the process{N(t) : t ≥ 0} is a sequence of random variablesN(t). I use

the definition of Feldman and Valdez-Flores (2010, p. 116) for a Poisson process: Process{N(t) : t ≥ 0} is a

Poisson process with parameterβ if 1. P (N(t) = k) = exp(−βt)(βt)k/k! for all k ≥ 0, k ∈ N andt ≥ 0,

2. the eventN(s + u) − N(s) = i is independent of the eventN(t) = j if t < s, and 3. the probability

P (N(s+ u) −N(s) = i) depends only on the value ofu. Let us now consider the number of arrivals on a short

time interval[t, t+∆] where timet is some arbitrary starting time and length∆ a small positive constant. Because

a Poisson process has independent (condition 2 of the definition) and stationary (condition 3 of the definition)

increments (Feldman and Valdez-Flores (2010, p. 117)), theprobability thatk consumers arrive on time interval

[t, t+∆] is given by equation (2.1):

P (N(t+∆)−N(t) = k) = exp(−β∆)
(β∆)k

k!
= P (N(∆) = k) (2.1)

From equation (2.1) we note that the probability thatk consumers arrive on time interval[t, t+∆] is independent

of the starting timet, and that it is therefore sufficient to study the arrivals on time intervals starting from time

t = 0. The equation (2.1) allows us to determine the approximate probability of a single person arriving on a short

time interval[0,∆]:

P (N(∆) = 1) = exp(−β∆)β∆ = (1 + (−β∆) +
(−β∆)2

2!
+

(−β∆)3

3!
+

(−β∆)4

4!
+ . . .)β∆ ≈ β∆ (2.2)

The approximate (2.2) follows from the shortness of the considered time interval: The higher order terms(β∆)2,

(β∆)3, (β∆)4 etc. are vanishingly small when length∆ is small, which gives us the presented approximate. We

therefore note that the consumer arrivals happen at a constant rate per unit time, and that the rate parameter isβ.

For estimating the value of parameterβ of a Poisson process, the interarrival times of a Poisson process have an

attractive charasteristic: The interarrival times have anexponential distribution with parameterβ. Let T denote

a random variable describing the time interval between two arrivals. Lett denote some point in time, and let us

consider the probability that, starting from the last arrival, no one has arrived beforet. This is equivalent to the

interarrival timeT being longer thant, which gives us equivalence (2.3):

P (T > t) = P (N(t) = 0) = exp(−βt) ⇔ P (T ≤ t) = 1− exp(−βt) (2.3)

Now, the equation on the right in equivalence (2.3) states that the cumulative distribution function of random

variableT is the cumulative distribution function of the exponentialdistribution with parameterβ. The interarrival

times therefore have an exponential distribution with parameterβ.

The Poisson process has also an attractive characteristic called the superposition principle (see e.g. Feldman and

Valdez-Flores (2010, p. 120)): Given two independent Poisson processes{N1(t) : t ≥ 0} and{N2(t) : t ≥ 0}with

parametersβ1 andβ2, the superpositioning of these processes, i.e.{M(t) : t ≥ 0} = {N1(t) + N2(t) : t ≥ 0},

forms a Poisson process with parameterβ1 + β2. We may then superposition any number of Poisson processes

by induction and only consider the resulting “sum process.”It is therefore sufficient study only a single Poisson

process describing market-wide arrivals.
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2.2.2 Product lifetime

I assume that the product lifetime follows an exponential distribution with the parameterλ. This assumption

is equivalent to the assumption (ii) in Brauer and Castillo-Chávez (2001, p. 352) with a new interpretation. The

following analysis is reinterpreted from Brauer and Castillo-Chávez (2001, p. 39-40) that deals specifically with the

lifetime of an organism. LetL denote a random variable describing the product lifetime such thatL ∼ Exp(λ).

We may now derive an approximation for the probability that aproduct breaks down on a small time interval

]t, t+∆] given that it has not broken down before timet.

P (Product breaks down in]t, t+∆] | Product working att) = P (L ≤ t+∆ | L > t)

=
P (t < L ≤ t+∆)

P (L > t)

=
P (t < L ≤ t+∆)

1− P (L ≤ t)
(2.4)

Using the cumulative distribution functionF (t), we have the approximate probabilityP (t < L ≤ t + ∆) ≈

F (t+∆)−F (t). Moreover, when the time interval]t, t+∆] is small, we have a further approximate (2.5) for the

probabilityP (t < L ≤ t+∆):

P (t < T ≤ t+∆) ≈ ∆

(

lim
∆→0

(

F (t+∆)− F (t)

∆

))

= ∆f(t) (2.5)

In approximate (2.5),f(t) = d/dtF (t) is the probability density function of random variableT .

The cumulative distribution function of the exponential distribution with parameterλ isF (t) = 1−exp(−λt), t ≥

0 and the corresponding probability density function isf(t) = λ exp(−λt), t ≥ 0. Using these functions and

approximate (2.5), we may manipulate equation (2.4) further:

P (T ≤ t+∆ | T > t) =
P (t < T ≤ t+∆)

1− P (T ≤ t)
≈

f(t)∆

1− F (t)
=

λ exp(−λt)∆

exp(−λt)
= λ∆ (2.6)

Based on the approximate (2.6) we then note that the probability of the product breaking down before timet+∆ is

independent of timet and approximately proportional to the length∆ of the time interval. The product breakdowns

therefore happen at a constant rate per unit time, and the rate parameter isλ.

2.2.3 Estimatingβ and λ

Since the interarrival times and product lifetimes have exponential distributions, we have an easy way to estimate

bothβ andλ. LetX ∼ Exp(α) denote a random variable with exponential distribution andconsider the expected

value ofX :

EX =

∫ ∞

−∞

xf(x)dx

=

∫ ∞

0

xα exp(−αx) dx

= −

[
∣

∣

∣

∣

∞

0

x exp(−αx)−

∫ ∞

0

exp(−αx)dx

]

= −

[

(1/α)

∣

∣

∣

∣

∞

0

exp(−αx)

]

= 1/α (2.7)
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The arithmetic mean̄X of the realizations ofX is an estimator the expected value ofX . We may now estimateα

using equation (2.7) asα ≈ 1/X̄. If we have data on the average interarrival timest̄ and average product lifetimes

l̄, we have the estimateŝβ = 1/t̄ andλ̂ = 1/l̄ for parametersβ andλ.

2.3 Buying decision

The buying decisions are modeled through buying probabilities. The buying probabilities are derived from a

modified multinomial logit model (see e.g. Anderson et al. (1992)). Specifically, I modify the multinomial logit

model in Anderson et al. (1992, p. 66) and present here the derivation of the buying probabilities from Anderson

et al. (1992, p. 39-40). The multinomial logit model determines the buying probabilities through the indirect utility

function of the consumer. I make two modifications to the indirect utility functions: First, I introduce a trend

effect term to the function to model the effects of trends. Next, as I wish to study duopoly models, I introduce a

compartment-based modification to the indirect utilities.I assume that already owning a similar product decreases

the indirect utility when purchasing a new product.

2.3.1 Buying probabilities

Let us suppose that at the buying decision there aren different products of which the consumer may choose from.

We model this situation by considering a decision overn + 1 different variants. The extran + 1th variant is the

not-buying option, where the consumer chooses not to buy anything. The buying probabilities are derived using

indirect utilities. I assume that the indirect utilitỹVi of varianti is given by equation (2.8). If the termaig(Ii) is

dropped, the equation (2.8) is identical to the indirect utility function defined in Anderson et al. (1992, p. 66).

Ṽi = y − pi + ai + aig(Ii) + ǫi (2.8)

The terms in equation (2.8), where applicable, are interpreted as in Anderson et al. (1992, p. 66). The termy is

the consumer’s real income at the buying decision. The termpi is the price of varianti. The termai is the quality

index of varianti, i.e. ai summarizes all the observable characteristics of varianti in money terms. I refer to

ai as the intrinsic quality of varianti. The termIi is the amount of varianti in the population at the moment of

the buying decision, i.e. how many others own the product at the time of the buying decision. The termg(Ii) is

the effect of the trend associated with varianti to the consumers indirect utility. Finally, the termǫi is a random

variable and describes the consumer’s idiosyncratic, fluctuating tastes at the buying decision. The realizations of

random variableǫi would describe why I would prefer Levi’s jeans to Lee jeans ona certain day and the other way

around on another day ceteris paribus. The expected value ofrandom variableǫ is assumed to be zero, i.e.Eǫ = 0,

meaning that on average the observable terms determine the consumer’s behavior.

The consumer chooses varianti if the varianti’s indirect utility is the largest indirect utility of all variants, i.e.

when conditionṼi = max1≤j≤n+1 Ṽj holds. I assume, as in Anderson et al. (1992, p. 66), that consumers can

always afford any varianti, i.e. 0 ≤ pi ≤ y, i = 1, . . . , n+ 1. The real incomey then has no bearing on consumer

choice. Let̂ǫi be the realization of the random variableǫi, andV̂i the associated indirect utility. Then the consumer

chooses varianti when the equivalent conditions (2.9) hold:

V̂i = max
1≤j≤n+1

V̂j

⇔ y − pi + ai + aig(Ii) + ǫ̂i = max
1≤j≤n+1

y − pj + aj + ajg(Ij) + ǫ̂j

⇔ ai − pi + aig(Ii) + ǫ̂i = max
1≤j≤n+1

aj − pj + ajg(Ij) + ǫ̂j (2.9)
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Following Anderson et al. (1992, p. 36), we may now derive thebuying probability for varianti. Let ǫ =

(ǫ1, . . . , ǫn+1) be a random vector with the joint cumulative distribution function F . The random variables

ǫi, i = 1, . . . , n + 1 are by assumption independent. We may then write random vector ǫ’s cumulative distri-

bution function asF (x1, . . . , xn+1) = F1(x1) · . . . · Fn+1(xn+1). The cumulative functions for each random

variableǫi are next assumed to be the same, meaning that we may writeF1(x) = . . . = Fn+1(x) = H(x). To

lighten the notation, let us writeui = ai − pi + aig(Ii). Now, the probability of the consumer choosing varianti

is given by equation (2.10):

P (Consumer chooses varianti) = P (Ṽi = max
1≤j≤n+1

Ṽj)

= P (u1 + ǫ1 ≤ ui + ǫi, . . . , un+1 + ǫn+1 ≤ ui + ǫi)

= P (ǫ1 ≤ ui + ǫi − u1, . . . , ǫn+1 ≤ ui + ǫi − un+1) (2.10)

Again, letǫ̂i be a realization of random variableǫi. Then from equation (2.10) and from random variablesǫi being

i.i.d., we may write the probability of choosing varianti as in equation (2.11):

P (Consumer chooses varianti | ǫi = ǫ̂i) = P (ǫ1 ≤ ui + ǫ̂i − u1, . . . , ǫn+1 ≤ ui + ǫ̂i − un+1)

= F (ui + ǫ̂i − u1, . . . , ui + ǫ̂i − un+1)

= F1(ui + ǫ̂i − u1) · . . . · Fn+1(ui + ǫ̂i − un+1)

=
∏

j 6=i

H(ui + ǫ̂i − uj) (2.11)

Accounting then for all possible realizations of random variableǫi with the probability density functionh(x) =

d/dxH(x), the buying probability is determined by equation (2.12):

P (Consumer chooses varianti) =

∫ ∞

−∞

P (ǫi = x)P (ǫ1 ≤ ui + x− u1, . . . , ǫn+1 ≤ ui + x− un+1)dx

=

∫ ∞

−∞

h(x)
∏

j 6=i

H(ui + x− uj)dx (2.12)

To proceed further it is necessary to fix the cumulative distribution functionH(x). Let us assume that the random

variableǫi has a double exponential distribution as this assumption leads to tractable forms for the buying probabil-

ities. The cumulative distribution function forǫi then isH(x) = exp(− exp(− x
µ
− γ)), whereµ > 0 is a constant

andγ is Euler’s constant. The probability density function ofǫi is h(x) = 1
µ
exp(− x

µ
− γ) exp(− exp(− x

µ
− γ)).

Then, following Anderson et al. (1992, p. 39-40), let us firstwrite zj = exp(uj/µ) and change the variable

of integration of equation (2.12) toδ = exp(−x/µ − γ). For the change of variable of integration, we have

dδ = − 1
µ
exp(−x/µ − γ)dx, and for the limits of the integration, we note thatexp(−∞/µ − γ) = 0 and

exp(−(−∞)/µ− γ) = ∞. We may now, using equation (2.12), determine the buying probabilities:
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P (Consumer chooses varianti) =

∫ ∞

−∞

h(x)
∏

j 6=i

H(ui + x− uj)dx

=

∫ ∞

−∞

1

µ
exp(−

x

µ
− γ) exp(− exp(−

x

µ
exp−γ)) ·

∏

j 6=i

exp(− exp(−
ui + x− uj

µ
− γ))dx

= −

∫ 0

∞

exp(−δ)
∏

j 6=i

exp

(

− δ exp(
uj

µ
) exp(−

ui

µ
)

)

dδ

=

∫ ∞

0

exp(−δ)
∏

j 6=i

exp

(

−
δzj
zi

)

dδ

=

∫ ∞

0

exp

(

− δ(

n+1
∑

j=1

zj
zi
)

)

dδ

=
−zi

∑n+1
j=1 zj

∣

∣

∣

∣

∞

0

exp

(

− δ(

n+1
∑

j=1

zj
zi
)

)

=
zi

∑n+1
j=1 zj

=
exp(ui/µ)

∑n+1
j=1 exp(uj/µ)

(2.13)

The not-buying optionn + 1 has no intrinsic quality or price, i.e. we havean+1 = pn+1 = 0 which means

un+1 = 0. We may therefore rewrite equation (2.13) as equation (2.14):

P (Consumer chooses varianti) =
exp(ui/µ)

1 +
∑n

j=1 exp(uj/µ)
=

exp(ai−pi+aig(Ii)
µ

)

1 +
∑n

j=1 exp(
aj−pj+ajg(Ij)

µ
)

(2.14)

Anderson et al. (1992, p. 42-5) discusses the properties of systems such as (2.14). Two notable characteristics from

the discussion bear restating: LetP (i) denoteP (Consumer chooses varianti). Asµ → 0, the variance ofǫi tends

to 0. Thenlim
µ→0

P (i) = 1 whenui > max
j 6=i

uj, and asµ → ∞, lim
µ→∞

P (i) = 1/n when there aren variants. The

parameterµ therefore describes the informational value ofui. A smallµ implies that consumers are prudent in

their choices, and thus the prices and the intrinsic qualities of the products play a relatively larger part in the buying

decision. A largeµ implies that consumers do not care as much about the prices orthe intrinsic qualities, and thus

firms have more leeway in their price-quality choices.

2.3.2 State-dependent indirect utility

The previously presented buying probabilities describe how a consumer who does not own any products buys a

product from one of a large number of firms. However, if a consumer already owns a product from a firm, the

probability of buying a similar product from a different firmis surely affected by this fact. Since the models in

this thesis describe either a monopoly or a duopoly, I will describe the buying probabilities in only these types of

markets.

I cannot cite previous research that supports (or weakens) the modifications I propose. Nevertheless I argue that

the modifications are in line with common sense. Fortunately, the proposed models allow changing the type of

buying probabilities relatively easily, should it become necessary.
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Monopoly

First let us consider a monopoly. Leta denote the quality andp the price that the monopoly sets. LetI(t) denote

the amount of consumers who own the monopoly’s product at time t. The buying probability for the monopoly’s

product is now given by equation (2.15):

P (Buy from monopoly) =
exp

(

a−p+ag(I(t))
µ

)

1 + exp

(

a−p+ag(I(t))
µ

) (2.15)

As there is only a single firm of in the market, the consumer faces a buying decision between two variants. These

variants are the monopoly’s product and the not-buying option. We then note that equation (2.15) is a special case

of equation (2.14) with two variants.

Duopoly

Next let us consider a duopoly. Let us name the duopoly firms firm 1 and firm2. Let ai denote the quality andpi
the price firmi = 1, 2 sets. LetIi(t) denote the amount of consumers who own the product of firmi at timet.

Additionally, letI12(t) denote the amount of consumers who own products from both firms at timet.

The buying probability for a consumer who does not own any products is now given by equation (2.16). The buying

decision is now between three variants: These variants are firm 1’s product, firm2’s product and the not-buying

option. As with the monopoly buying probability, equation (2.16) is then a special case of equation (2.14).

P (Buy from firm i | No products) =
exp

(

ai−pi+aig(Ii(t)+I12(t))
µ

)

1 + exp

(

a1−p1+a1g(I1(t)+I12(t))
µ

)

+ exp

(

a2−p2+a2g(I2(t)+I12(t))
µ

)

(2.16)

As we are considering a duopoly, we may ask what effect does owning productj have on the buying probability

for producti 6= j. I assume that the products firms produce are ”substitutes-in-intrinsic-quality.“ When a consumer

already owns a productj, the intrinsic quality of producti is the maximum ofai − aj and0. The consumers do

not therefore experience indirect utility when the productthey already own is of higher intrinsic quality than the

new product, i.e. whenaj > ai we havemax{aj − ai, 0} = 0.

The buying probabilities are now given in equation (2.17): When the consumer already owns productj and con-

siders buying the other producti, the buying decision is between two variants, producti and the not-buying option.

Equation (2.17) now follows the same logic as equation (2.14) but with the alternation that the intrinsic qualities

have been changed fromai to max{ai − aj , 0}.

P (Buy from firm i | Own product from firmj) =
exp

(

max{ai−aj ,0}−pi+aig(Ii(t)+I12(t))
µ

)

1 + exp

(

max{ai−aj,0}−pi+aig(Ii(t)+I12(t))
µ

) (2.17)

From equations (2.16) and (2.17) we may note two implicit assumptions about the trend effect. First, I assume

that the trend effect is independent of the types of consumers owning the product. Consumers in compartmentsIi

andI12 contribute to the trend effect in the same exact way. This canbe seen in termIi(t) + I12(t) as the sum

of the consumers enters into the functiong(Ii(t) + I12(t)). Next, I assume that the trend effect and the effect of
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the intrinsic quality are separate in the buying probability. The trend effect is seen as an effect of the consumer’s

environment (for example as peer pressure to conform) and isnot therefore affected by the ownership of a product.

This assumption can be seen in equation (2.17) as intrinsic quality is adjusted in termmax{ai − aj , 0} but not in

termaig(Ii(t) + I12(t)).



3

Methods and assumptions for the

numerical solution

The market evolution, and through it the firms’ profits, are determined by initial value problems. I am unfortunately

unable to provide analytical solutions for these initial value problems and therefore have to settle for numerical

solutions. The numerical solutions require us to make a number of assumptions regarding explicit functional forms

and the values of exogenous variables. This chapter describes the chosen assumptions and the methods used for

the numerical solutions.

The use of numerical methods naturally leads to questioningwhat part of firm behavior is due to the chosen

values for the exogenous variables and what part to model formulation. To shed light on this issue, I divide the

exogenous variables to constant exogenous variables and experimental exogenous variables. Constant exogenous

variables remain, as their name suggests, constant while the experimental exogenous variables are varied to provide

information on the behavior of the models with respect to these variables. The aim of this exercise is to do

sensitivity analysis or “comparative-statics-by-other-means,” as the traditional way of doing comparative statics

through linearization is ruled out by the lack of analyticalsolutions to the initial value problems.

Solving the firm behavior in the models requires us to define the firms’ choice sets beforehand. This requirement

is due to the way optimization is implemented given the game theoretical structures of the models. The choice sets

describe how a firm may choose its decision variables, and as such they define the range of possible observable

firm behavior. The assumptions regarding these sets are thensignificant when considering the research questions.

3.1 Numerical methods

In order to be able to maximize profits, we must first be able to calculate profits. In order to calculate profits, we

must be able to solve an initial value problem and to integrate a function numerically. I solve the initial value

problems by using the (fourth-order) Runge-Kutta method and integrate numerically by using the Trapezoidal

rule. Both of these methods were chosen because they are extremely well-known. Moreover, MATLAB provides

suitable ready-made functions for both tasks.

3.1.1 Runge-Kutta Method

As mentioned before, the market behavior in each of the following models is described by an initial value problem.

An initial value problem, in turn, consists of one or more differential equations and initial values. I give here

18
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a brief presentation of the classical fourth-order Runge-Kutta method for an initial value problem with a single

(first-order) differential equation and a single initial value from Nagle et al. (2011, p. 134). For the same method

applied to initial value problems with more than one differential equation and initial value, see for example Iyengar

and Jain (2009, p. 208) or Chapra (2005, p. 500).

Let us consider the initial value problem (3.1):

y′(x) = f(x, y(x)), y(x0) = y0 (3.1)

We wish to find the functiony(x) that satisfies the conditions of the initial value problem (3.1) on a given interval.

Since finding the function analytically might be exceedingly difficult, we might choose to approximate the solution

y(x) instead. The classical fourth-order Runge-Kutta method approximates the solution in the following manner:

Suppose that we are interested in how the solutiony(x) behaves on some interval[x0, c]. We first choose the

number of stepsN that determine the points at which the solutiony(x) is approximated. Naturally, in order to stay

in the interval in our steps, our stepsizeh satisfiesNh = c− x0 or h = (c− x0)/N . We then start to move from

pointx0 with step sizeh and approximate the functiony(x) using the following equations (3.2) and (3.3):

xn+1 = xn + h

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (3.2)

where

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1
2
)

k3 = hf(xn +
h

2
, yn +

k2
2
)

k4 = hf(xn + h, yn + k3) (3.3)

Given the initial valuey(x0) = y0 and the step sizeh, equations (3.2) and (3.3) can then be used to approximate

the solutiony(x) with eachyn-value. We note that the presented method is recursive as we use the valueyn for

calculating the valueyn+1. There are also more sophisticated versions of the Runge-Kutta method. Nagle et al.

(2011, p. 136) describes an algorithm that replaces the needof choosing the number of steps with a tolerance.

The ready-made function for the fourth-order Runge-Kutta method in MATLAB isode45. This function was used

for solving the initial value problems of all three proposedmodels.

3.1.2 Trapezoidal rule

In order to be able to calculate profits, it is also necessary to be able to integrate numerically. While there exists

more sophisticated numerical integration methods (for example Simpson’s rule or Gaussian quadrature), I chose to

use the Trapezoidal rule for its ease of implementation. I give here a brief presentation of it adopted from Chapra

(2005, p. 399-402). Strictly speaking, the method presented here is the composite trapezoidal rule (Chapra (2005,

p. 401)). Suppose that we have a functionR(t) that describes the revenue of a firm at timet. Moreover, suppose

that we are interested in the total revenueRtotal of the firm over some time interval[a, b]. To find the total revenue,

we need to integrateR(t) over the interval[a, b]:
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Rtotal =

∫ b

a

R(t)dt (3.4)

There is no guarantee that the integral on the right-hand side in equation (3.4) can be calculated analytically. We

therefore wish to find a way to approximate the integral. First, we note that the interval[a, b] may be divided

into n smaller intervals[x0, x1], . . . , [xn−1, xn] such thatx0 = a, xn = b andxi − xi−1 = xj − xj−1 for all

i, j = 1, . . . , n. We may then write the integral on the right-hand side of equation (3.4) as follows:

∫ b

a

R(t)dt =

∫ x1

x0

R(t)dt+ . . .+

∫ xn

xn−1

R(t)dt (3.5)

Calculating the integrals over the smaller intervals in equation (3.5) is usually as difficult as calculating the integral

on the right-hand side of equation (3.4). However, if we can evaluate the function valuesR(t0) at an arbitrary time

t0, we may approximate the integrals using the function valuesand reduce the approximation error by considering

smaller intervals. Let us consider segment[xi−1, xi]. We approximate the integral with the area of a trapezoid that

is under the straight line connecting points(xi−1, R(xi−1)) and(xi, R(xi)). The area of the trapezoid is given by

the product of the trapezoid’s width and its average height.

∫ xi

xi−1

R(t)dt ≈ (xi − xi−1)
R(xi−1) +R(xi)

2
= width · average height (3.6)

As the width of every segment[xi−1, xi] is the same by assumption, let us denote this width by the termh =

xi − xi−1 = (b − a)/n. We may then use the approximate (3.6) for approximating theintegral over the whole

interval[a, b]:

∫ b

a

R(t)dt =

∫ x1

x0

R(t)dt+ . . .+

∫ xn

xn−1

R(t)dt

≈ (x1 − x0)
R(x0) +R(x1)

2
+ . . .+ (xn − xn−1)

R(xn−1) +R(xn)

2

= h
R(x0) +R(x1)

2
+ . . .+ h

R(xn−1) +R(xn)

2

=
h

2
[R(x0) + 2

n−1
∑

i=1

R(xi) +R(xn)] (3.7)

We have now constructed a way to approximate the total revenues over the time interval[a, b] with the function

valuesR(xi). We may note that trapezoids over smaller intervals providea better approximates for the area

between thet-axis andR(t). Then as the number of segmentsn increases, the width of the smaller intervals

decreases and the approximate (3.7) approaches the correctvalue of the integral in equation (3.4).

The ready-made function for the Trapezoidal rule in MATLAB is trapz. This function was used for calculating the

profits in all three proposed models.

3.2 Parameter choices

3.2.1 Firm’s choice set

The models allow a firm to control three aspects of its product: the quality of the product, the price of the product

and the amount of free samples the firm gives. The natural approach in modeling these aspects would be to allow
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them to be chosen from positive real numbers. However, this natural approach poses problems for the numerical

solution of the duopoly models. The way the firms interact in the duopoly models is dictated by the game theoretical

structures of the models. This interaction can be seen as best-responding where each firm seeks to maximize its

profits by optimizing its choices with respect to the choicesof the other firm within the structures of the duopoly

models. I was regrettably unable to find suitable tools to handle best-responding with choices from positive real

numbers, and so I limit the firms’ choices to the following sets (3.8):

The set of qualitiesA = {0, 1, 2, 3}

The set of free samplesQ = {0, 200 000, 400 000, 600 000}

The set of pricesP = {0, 3, 6, 9} (3.8)

With the values in sets (3.8) I hope to allow a multitude of choices to the firm while keeping the models computable.

I offer the following interpretations for the values: The choice0 in quality or the free samples represents the case

where the firm does not invest anything to the particular aspect of the product. The choice1 in quality and the

choice200 000 in free samples represents a small investment in that particular aspect. The choice2 in quality

and the choice400 000 in free samples represents an average or mid-size investment in that particular aspect. The

choice3 in quality and the choice600 000 in free samples represents a large investment in that particular aspect.

Likewise, the price choice0 represents a free product, the price choice3 represents a low price, the price choice6

represents an average price and the price choice9 represents a high price.

3.2.2 Constant exogenous variables

Table 3.1 gives the constant exogenous variable values. These values were chosen arbitrarily. Following the

analysis in section 2.7, we note that with these value choices the average interval between arriving consumers is1

and the average product lifetime is2. Products should not therefore disappear from the population purely due to

their short lifetime, since on average two buying decisionswill be made per one product breakdown.

Parameter name Parameter interpretation Parameter value

N The amount of consumers in market 1 000 000

µ The impact of indirect utility 0.5

β Consumer arrival rate 1

λ Product breakdown rate 0.5

c1 Cost scaling coefficient 0.5

c2 Minimum cost constant 1

m Trend saturation point 333 333

Table 3.1: Constant exogenous variables

Why choose to keep these exogenous variables as constant? The reason for this is two-fold: In table 3.1, the first

set of variablesN,µ, β, λ, c1, c2 are perhaps the easiest parameters to measure. If we were interested in applying

the models in serious research, we could perhaps be able find appropriate values for these variables. Next, the

variablem is kept constant as it is required by a one of the proposed specifications of the trend effectg(I). Since

the trend effects in this thesis only serve as examples of possible trend types, I choose to leavem as a constant.
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3.2.3 Experimental exogenous variables

After describing the constant exogenous variables, I present the experimental variables and their prospective values

in table 3.2.

Parameter name Parameter interpretation Parameter value Value interpretation

T Firm’s planning horizon T = 10 Short planning horizon

T = 100 Long planning horizon

r Discount rate r = 0 Patient firms

r = 0.05 Normal Firms

r = 10 Impatient Firms

d Strength of the trend d = 2 Weak trend

d = 8 Strong trend

Table 3.2: Experimental exogenous variables

Why choose to vary these exogenous variables? None of the variables are easily observable or measurable. We

might reasonably expect that firms would keep their planninghorizonsT and discount ratesr as secrets. The

planning horizonT and the discount rater, along with the strength of the trendd, should additionally have large

effects on the profit calculations of a firm and thus on the behavior of the firm. These variables are then the most

interesting exogenous variables with regard to firm behavior which is why they are chosen for the “comparative-

statics-by-other-means.”

3.3 Functional form choices

3.3.1 Trend term functionsg(I)

As there seems to be no clear, exact and universal definition of what is meant by the word “trend,” I propose to

consider a product trendy if the probability of buying it is affected by the number of other consumers already

owning the product. This broad definition allows for an infinite number of ways to define the relationship between

the buying probability and the number of other consumers owning the product. In this thesis I study perhaps the

three simplest ways: the nonexistent relationship, a linear relationship in indirect utility and a parabel-shaped rela-

tionship in indirect utility. I refer to those products where there is no relationship between the buying probability

and the number of other consumers owning the product as products with no trend, to those products where there

is linear relationship as products with a linear trend and tothose products with a parabel-shaped relationship as

products with a parabel trend. Let us next give explicit forms for these relationships by defining the functional

forms of the trend term functionsg(I).

The functional forms of the trend types are constructed using the previously mentioned exogenous variables and

the compartment-specific functions discussed in section 2.1. The parameterN denotes the number of consumers

in the market. The termI denotes the number of other consumers who already own the product. For the models

in this thesis, the termI takes the formI(t) or Ii(t) + Iij(t) as we may express the number of other consumers

owning the product at timet with the compartment-specific functions. The functional forms for the trend term

functionsg(I) are as follows:

1. Products with no trend have the formg(I) = 0
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2. Products with a linear trend have the formg(I) = d I
N

, d > 0

3. Products with a parabel trend have the formg(I) = − d
m2 I

2 + 2 d
m
I, d > 0, 0 ≤ m ≤ N

The parameterd is interpreted as the strength of the trend effect. When the trend is at its peak, the trend increases

the perceived intrinsic quality of producti by dai. The parameterm is interpreted as the saturation point for the

parabel-shaped relationship. The trend effect will start to diminish afterI becomes larger thanm. The differences

between the functional forms may best be seen in figures 3.1, 3.2 and 3.3.

These functional forms are only a brief glance into all possible trend. For example, we might reasonably assume

that the effects of trends are time-dependent. Instead of the formsg(I) for the trend terms, we might argue that an

appropriate functional form could beg∗(I) = g∗(I(t), t) = g(I(t))/(1+ t). The trend effect would now diminish

as time increases as we might reasonably expect in many cases. Arguing further, we might even require that the

trend term has, for example, the formg∗∗(I) = g∗∗(I(t), t) = g(I(t))−αt2 whereα > 0 is some small constant.

As time increases, the second termαt2 will start to dominate which will mean that the buying probability tends to

0. This would mean that the product would eventually disappear from the market. However, this type of analysis

is out of the scope of this thesis.

We may also question how the trend effect is tied to the quality of the product through the termag(I) (see e.g.

equation (2.14)). This implies that there is no trend effectwhen the intrinsic quality is nonexistent, i.e.a = 0 ⇒

ag(I) = 0 for all I. There is no fundamental reason to assume this. However, I would argue that this is a reasonable

assumption for the purposes of this thesis. After all, common sense seems to suggest that higher quality products

are associated with stronger trends.

3.3.2 Cost function

I assume that the firm has a constant, quality-dependent per-unit cost given by the functionC(a). The cost is

determined purely by the intrinsic qualitya of the product. I assume that cost functionC(a) is increasing and

convex in intrinsic qualitya. A similar formulation may be found in Anderson et al. (1992,p. 239).

Why not to normalize per-unit costs to0? Let us consider firmi’s intrinsic quality choice in a monopoly or a

duopoly. A positive qualityai can only increase the buying probabilities (2.15), (2.16) and (2.17) through terms

ai, max{ai − aj , 0} andaig(Ii(t)). Normalizing the per-unit costs to0 would then lead firmi to always choose

the highest possible quality.

I arbitrarily chose the functional form of the per-unit costfunction asC(a) = c1(a
2 + c2), c1, c2 > 0. This cost

functionC(a) is increasing and convex ina asd/daC(a) > 0 andd2/da2C(a) > 0. The parameterc1 may be

interpreted as the cost scaling term of the firm, i.e. a lowc1 implies that the firm is efficient. The parameterc2 may

be interpreted as the minimum cost constant of the firm, i.e. the parameter valuec2 describes the minimum cost of

making a product with0 quality given some cost scaling termc1.
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Figure 3.1: Monopoly buying probability for product with notrend,g(I) = 0, a = 1, p = 2, µ = 0.6
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Figure 3.2: Monopoly buying probability for product with linear trend,g(I) = d I
N
, a = 1, p = 2, µ = 0.6, N =

1000000, d= 2
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Figure 3.3: Monopoly buying probability for product with parabel trend,g(I) = − d
m2 I

2 + 2 d
m
I, a = 1, p =

2, µ = 0.6, N = 1 000 000, d = 2,m = 333 333
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Monopoly

This chapter presents the monopoly model. The key characteristics of the model can be summarized as follows:

The monopoly sells a durable good to large population. Thereis no secondary market for the monopoly’s product.

Consumers in the market will buy only a single product and will hold the product until it breaks down. The

monopoly may choose the product’s quality and price. The monopoly may also give out free products to create

demand through a possible trend. The monopoly sets its quality and price once and for all, and gives out free

products only at the time it enters the market. The monopoly’s goal is to maximize its profits, and the monopoly

makes its choices accordingly.

The demand for the monopoly’s product is determined throughan initial value problem inspired by the SIS model.

The initial value problem is determined by the monopoly’s choices which allows the monopoly to influence the de-

mand of its product. The initial value problem is therefore incorporated into the monopoly’s (profit maximization)

problem.

The monopoly’s behavior is determined by the monopoly’s problem which is solved in the following manner: We

first calculate the monopoly’s profits for every possible choice combination from the predefined choice sets. The

monopoly then naturally chooses the combination with the highest profits. After we have found the monopoly’s

optimal choices, we may study the effects of different trends on them.

4.1 Market Structure

The market structure of the model is fairly simple. The population is divided into two compartments,S andI,

representing whether a consumer has or has not the monopoly’s product. Being in compartmentS means that

the consumer does not own the monopoly’s product, and correspondingly being in compartmentI means that the

consumer owns the monopoly’s product. Next, we define compartment-specific functionsS(t) andI(t) to describe

how many consumers are at which compartment. The functionS(t) then describes the number of consumers who

do not own the product at timet, and similarly the functionI(t) the number of consumers who own the product

at timet. The functionsS(t) andI(t) are found by solving the initial value problem adopted from the SIS model.

These functions may be used to describe how people move between the compartments, which in turn is partly the

result of consumer purchasing the monopoly’s product, i.e.the demand of the product.

Figure 4.1 gives the compartmental structure and describesthe movement between compartments. Movement

between compartments is due to either the breakdown of the product (leading the consumer to move from com-

partmentI to compartmentS) or buying the product (leading to the consumer to move from compartmentS to

compartmentI). In chapter 2 we have established the arrival and breakdownintensitiesβ andλ and the buying

25
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probabilityPS→I for the monopoly’s product. These now form the basis on whichthe consumers move between

compartments in this model.

4.2 Initial value problem

The initial value problem for the monopoly model naturally consists of the differential equations that describe how

the functionsS(t) andI(t) evolve over time and the initial valuesS(0) = A andI(0) = B at the starting time

t = 0. The initial value problem takes the form (4.1):

İ(t) = βPS→I(a, p, I(t))S(t) − λI(t)

Ṡ(t) = −βPS→I(a, p, I(t))S(t) + λI(t)

with I(0) = A,S(0) = B (4.1)

The buying probabilityPS→I(a, p, I(t)) depends on the pricep and the qualitya of the monopoly’s product and

the amount of the product already in the market given by the functionI(t). The form of the buying probability

PS→I(a, p, I(t)) is given by equation (4.2) which is naturally adopted from equation (2.15).

PS→I(a, p, I(t)) =
exp(a−p+ag(I(t))

µ
)

1 + exp(a−p+ag(I(t))
µ

)
(4.2)

The monopoly determines the initial conditions of initial value problem (4.1) by choosing what amount of free

samples it gives out. Letq denote the amount of free samples that the monopoly chooses to give out. Then

naturally the initial conditions are given asI(0) = A = q andS(0) = B = N − q. We may, for example, interpret

giving out free samples as the monopoly giving steep discounts to the firstq consumers as an opening offer.

The terms in the differential equations in initial value problem (4.1) have intuitive interpretations: At timet,

βS(t) consumers who do not own the product arrive at buying decisions and of these consumers a total of

βPS→I(a, p, I(t))S(t) consumers buy the product. Simultaneously, a total ofλI(t) products break down de-

creasing the number of consumers who own the product. Thus attime t I(t) increases byβPS→I(a, p, I(t)) and

decreases byλI(t). The effects onS(t) are naturally opposite.

The population size stays constant over time by assumption,asd/dt(S(t) + I(t)) = Ṡ(t) + İ(t) = 0. This leads

to identity (4.3):

I(t) + S(t) = N (4.3)

The differential equation system of initial value problem (4.1) may be reduced to a single differential equation by

using the identity (4.3), as we may denoteS(t) = N − I(t). The functionS(t) is therefore completely driven by

I(t), i.e. if we know how the functionI(t) behaves over time, we, by using the identity (4.3), also knowhow the

functionS(t) behaves over time. This observation is used in the numericalsolution of initial value problem (4.1).

4.3 Firm behavior

The behavior of the firm is determined by its objective of profit maximization. As the firm in this model is a

monopoly, the process of maximizing its profits is a straight-forward optimization problem.
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4.3.1 Monopoly’s problem

The monopoly’s problem consists of three components: the objective function, the decision variables and the

constraints. The objective function of the monopoly is naturally the monopoly’s profits. The decision variables of

the monopoly are in this case the quality, the price and the amount of free samples of its product. The constraints

are formed by the market structure and the natural constraints on the decision variables. This section describes the

construction of the monopoly’s problem.

Let us determine how the monopoly’s profits are calculated. The demand for the monopoly’s product at timet

is βPS→I(a, p, I(t))S(t). The monopoly’s per-unit discounted net profit isexp(−rt)(p − C(a)) wherer is the

discount rate andC(a) the per-unit cost at qualitya. The monopoly’s discounted profit at timet is given by the

term exp(−rt)(p − C(a))βPS→I (a, p, I(t))S(t). The total net profit with a planning horizonT may then be

calculated by integrating the monopoly’s discounted profitover the planning horizon and accounting for the free

sample costsC(a)q. The total net profitπ(a, q, p) as function of qualitya, free samplesq and pricep is given by

equation (4.4):

π(a, q, p) =

∫ T

0

exp(−rt)(p− C(a))βPS→I (a, p, I(t))S(t)dt − C(a)q (4.4)

Let us next consider the decision variables. The monopoly can change the pricep and the qualitya which enter

into the buying probability (4.2). The monopoly may also determine the initial conditionA of initial value problem

(4.1) by giving outq free samples. These are then the decision variables of the monopoly.

We may now write the monopoly’s problem. The monopoly wishesto maximize its profits (4.4) giving us the

objective function. The market structure imposes restrictions on the monopoly’s behavior: The functionsI(t)

andS(t) are determined by (or, by assumption, are solutions of) the initial value problem (4.1). Likewise, the

monopoly cannot set a negative quality or price nor give out anegative amount of free samples. The monopoly’s

problem then is:

max
a,p,q

π(a, q, p) s.t.

S(t), I(t) solutions of initial value problem (4.1) on[0, T ],

a, q, p ≥ 0 (4.5)

The structure of the monopoly’s problem (4.5) hints at a way to solve problem in general terms. The constraints

of the problem do not specifically limit the monopoly’s choices to the sets (3.8). If analytical solutions could be

found for the initial value problem (4.1) and the integral inequation (4.4), the problem would then become a matter

of constrained optimization. This would allow us to use the standard tools such as the KKT conditions for solving

the monopoly’s optimal quality, price and the amount of freesamples.

4.3.2 Solving the monopoly’s problem

The monopoly’s choices are, as mentioned before, next assumed to be limited to the sets (3.8). Using limited

choice sets allows us to implement a simple algorithm for finding the solution to the monopoly’s problem within

those sets. For the sets (3.8), there is finite number of combinations of qualities, prices and free samples. The finite

number of choices in each of these aspects means that the total number of combinations for all three aspects is

finite as well. This makes it possible to calculate the profitsfor all combinations. After calculating the profits, we

assume naturally that the monopoly chooses the combinationthat yields the largest profit. The implemented script
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mimics this by using simple brute force to calculate the profits for all combinations and choosing the combination

with the highest profits.

Figure 4.2 describes the structure of the implemented script. The subroutineMonopolyOptimizes calculates

the profits for all possible combinations of quality, free samples and price, and chooses the combination with the

largest profits. The subroutineMonopolyProfits calculates the profits for a given quality, free samples and

price. It solves the initial value problem (4.1) usingode45, uses this solution to generate a vector describing the

discounted revenues over time, and finally generates the profits by usingtrapzto calculate the integral in equation

(4.4) and accounting for the free sample costs. The subroutinemonopolyDE is the (reduced) differential equation

system of the initial value problem (4.1) required byode45. The subroutineMonopolyRevenue is used to

generate a revenue vector required for numerical integration. See appendix C for the implemented script.

4.4 Outcomes

Tables 4.1-4.3 give the monopoly behavior.

Planning horizon Trend type (a, q, p) Profits

T = 10 no trend (2, 0, 3) 499768

linear,d = 2 (2, 0, 3) 1.67055 · 106

parabel,d = 2 (2, 200 000, 6) 7.319 · 106

linear,d = 8 (2, 600 000, 9) 2.04485 · 107

parabel,d = 8 (2, 200 000, 9) 2.02274 · 107

T = 100 no trend (2, 0, 3) 4.83128 · 106

linear,d = 2 (3, 600 000, 6) 2.77606 · 107

parabel,d = 2 (3, 200 000, 9) 8.08869 · 107

linear,d = 8 (2, 600 000, 9) 2.15405 · 108

parabel,d = 8 (2, 200 000, 9) 1.89226 · 108

Table 4.1: Patient monopoly withr = 0, Choices and profits

Based on the results there is little need to doubt the internal validity of the model. The monopoly will always set

a positive price and that the monopoly gets a positive profit.The planning horizonT and discount rater seem to

have the expected effects: For cases with the same monopoly behavior (for example cases with no trend term with

firm behavior(a, q, p) = (2, 0, 3)), we note that the profits are the highest when the discount rate r is the lowest

and that the profits are higher as the monopoly’s planning horizonT is longer. Moreover, the strength of the trend

d seems to also have the expected result: We note that the monopoly’s profits are higher with a strong trend with

strengthd = 8 than a weak trend with strengthd = 2, although the strength of the trend may also affect the firm

behavior.

Let us now consider the research questions. Based on the results in tables 4.1-4.3 we note that different trend

types lead to different monopoly behavior across cases. There are indeed cases where the optimal behavior of the

monopoly involves giving out free samples. However, we alsonote that there are many cases where different trend

types lead to the same behavior, as for example the cases withno trend and a linear trend in table 4.3. We cannot

therefore determine the type or the strength of a trend solely by observing firm behavior.

Based on the results I nevertheless offer the following, admittedly weak result regarding the existence of a trend: If
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Planning horizon Trend type (a, q, p) Profits

T = 10 no trend (2, 0, 3) 395859

linear,d = 2 (2, 0, 3) 1.309 · 106

parabel,d = 2 (2, 200 000, 6) 5.72545 · 106

linear,d = 8 (2, 600 000, 9) 1.58237 · 107

parabel,d = 8 (2, 200 000, 9) 1.61853 · 107

T = 100 no trend (2, 0, 3) 973207

linear,d = 2 (2, 0, 3) 3.28312 · 106

parabel,d = 2 (3, 200 000, 9) 1.51731 · 107

linear,d = 8 (2, 600 000, 9) 4.18082 · 107

parabel,d = 8 (2, 200 000, 9) 3.87099 · 107

Table 4.2: Normal monopoly withr = 0.05, Monopoly choices and profits

Planning horizon Trend type (a, q, p) Profits

T = 10 no trend (2, 0, 3) 5898.28

linear,d = 2 (2, 0, 3) 6432.81

parabel,d = 2 (2, 0, 3) 13306

linear,d = 8 (2, 0, 3) 10162.9

parabel,d = 8 (1, 200 000, 6) 166090

T = 100 no trend (2, 0, 3) 5898.27

linear,d = 2 (2, 0, 3) 6432.81

parabel,d = 2 (2, 0, 3) 13306

linear,d = 8 (2, 0, 3) 10162.8

parabel,d = 8 (1, 200 000, 6) 166089

Table 4.3: Impatient monopoly withr = 10, Monopoly choices and profits

we observe the monopoly giving out free samples, we may inferthe existence of a trend. However, if the monopoly

chooses not to give out free samples, we may not infer the non-existence of a trend.
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Stackelberg duopoly

This chapter presents the first of the duopoly models of this thesis. The model is akin to the classical Stackelberg

duopoly model where two firms compete by choosing quantitiessequentially one after another. The key charac-

teristics of the model are summarized as follows: There are two firms, Leader and Follower, who sell durable

goods to a large population of consumers. There are no secondary markets for the products. A consumer will buy

only a single product from a particular firm and hold it until the product breaks down. The consumer may buy

the products from both firms. Both firms choose the quality andprice of their products, and whether to give out

products as free samples. Prices and qualities are set once and for all, and free samples are given only at the time

of entry into the market. Both firms seek to maximize their profits and will make their choices accordingly. The

firms enter the markets sequentially: First, Leader enters the market and remains the only firm for a (small) period

of time. Then Follower enters the market, after which the firms compete with each other. Leader knows Follower’s

entry time and will use this knowledge in making its choices.

The demand for the both firms’ products are determined through initial value problems inspired by the SIS model.

As there are two distinct time periods for the market, there are two initial value problems describing these periods.

The firms determine the initial value problems through theirchoices. The initial value problems are therefore

incorporated into the firms’ optimization problems as the firms’ profits depend on the demand determined by the

solutions of the initial value problems.

The behavior of both firms is determined with the help of the sequential entry assumption. We assume further that

Leader knows the form of the Follower’s problem. Leader thenanticipates how Follower will behave given its own

choices and incorporates this knowledge into its own problem. The Follower’s problem is therefore nested into

the Leader’s problem as Leader has to determine Follower’s behavior in order to calculate the profits from its own

choices. We may therefore limit our attention to solving theLeader’s problem as its solution will also describe

how Follower behaves.

The Leader’s problem is solved similarly to the way the monopoly’s problem was solved in the preceeding chapter:

We calculate the Leader’s profits for every possible choice combination and choose the combination with the high-

est profits. However, as calculating the Leader’s profits fora given choice combination requires determining the

Follower’s behavior, we solve the Follower’s problem with the given choice combination every time we calculate

the Leader’s profits. The Follower’s problem is structurally equivalent to the monopoly’s problem and is therefore

solved with the same method: Given the Leader’s choices, we calculate the Follower’s profits for every possible

choice combination and choose the combination with the highest profits.

31
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5.1 Market structure

The market’s two time periods naturally have different market structures. The market structures are determined by

the presence of one or both firms in the market and lead to two distinct initial value problems.

The market structure before the Follower’s entry is similarto the monopoly case. The superscript∗ denotes that

we are in the pre-entry market. As the sole supplier of products is Leader, there are two compartmentsS∗ and

I∗L with their respective functionsS∗(t) andI∗L(t). The functionS∗(t) describes the number of consumers who

do not own the Leader’s product at timet, and similarlyI∗L(t) the number of consumers who own the Leader’s

product at timet. The compartmental structure of the pre-entry market is described in figure 5.1. The movement

between compartments is again determined by the breakdown intensityλ and the arrival intensityβ and the buying

probabilityPS∗→I∗

L
.

After the Follower’s entry the market structure naturally changes. The population is now divided into four different

compartments:S, IL, IF andILF with the respective functionsS(t), IL(t), IF (t) andILF (t). The function

S(t) describes the amount of people who have neither product, thefunction IL(t) the amount of people who

own the Leader’s product, the functionIF (t) the amount of people who own the Follower’s product and the

function ILF (t) the amount of people who own a product from both firms at timet. Figure 5.2 describes the

compartmental structure of the post-entry market. The movement is again determined by the breakdown and

arrival intensitiesλ andβ, which remain unchanged after the market structure changes, and the buying probabilities

Pi→j , i ∈ {S, IL, IF }, j ∈ {IL, IF , ILF }.

5.2 Initial value problems

To calculate the profits for either firm we first need to determine the demand for the firm’s product. The demand

for the product is again described with the pre- and post-entry functionsS∗(t) andI∗L(t) andS(t), IL(t), IF (t) and

ILF (t). These functions are again found by solving the initial value problems for the pre- and post-entry markets

respectively.

5.2.1 Pre-entry initial value problem

The initial value problem describing the pre-entry market evolution is equivalent to the initial value problem (4.1)

of the monopoly model. The pre-entry initial value problem again consists of differential equations that describe

how the functionsS∗(t) andI∗L(t) evolve over time and the initial valuesS∗(0) = A andI∗L(0) = B at the starting

time t = 0. The initial value problem takes the form (5.1):

İ∗L(t) = βPS∗→I∗

L
(aL, pL, I

∗
L(t))S

∗(t)− λI∗L(t)

Ṡ∗(t) = −βPS∗→I∗

L
(aL, pL, I

∗
L(t))S

∗(t) + λI∗L(t)

with I∗L(0) = A∗, S∗(0) = B∗ (5.1)

At time t the buying probability of the Leader’s product depends on the product’s pricepL and qualityaL and

the amount of the product already in the market given by the functionI∗L(t). The form of the buying probability

PS∗→I∗

L
(aL, pL, I

∗
L(t)) for the Leader’s product is given by equation (5.2) which is adopted from equation (2.15).

PS∗→I∗

L
(aL, pL, I

∗
L(t)) =

exp
(

aL−pL+aLg(I∗

L(t))
µ

)

1 + exp
(

aL−pL+aLg(I∗

L
(t))

µ

) (5.2)
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Leader determines the initial conditions of the initial value problem (5.1) by choosing how many free samples it

gives out. LetqL denote the number of free samples Leader gives out. The initial conditions naturally are then

I∗L(0) = A∗ = qL andS∗(0) = B∗ = N − qL.

The terms in the initial value problem (5.1) again have intuitive interpretations: At timet a total ofβS∗(t) con-

sumers who do not own the Leader’s product arrive at the buying decision, and of these consumers a total of

βPS∗→I∗

L
(aL, pL, I

∗
L(t))S

∗(t) consumers buy the Leader’s product. Simultaneously, a total of λI∗(t) products

break down. Thus at timet, I∗(t) increases byβPS∗→I∗

L
(aL, pL, I

∗
L(t))S

∗(t) and decreases byλI∗(t).

The population again stays constant over time asd/dt(S∗(t) + I∗L(t)) = Ṡ∗(t) + İ∗L(t) = 0. We therefore have

the following identity:

S∗(t) + I∗L(t) = N (5.3)

The identity (5.3) again allows us to reduce the differential equation system of initial value problem (5.1) to a

single differential equation. This observation is used in the numerical solution of initial value problem (5.1).

Finally, it is necessary to introduce a new variable to describe the length of the pre-entry time period. Let time

tMonopoly denote the time Follower enters the market. Leader is then the only firm in the market on the time interval

[0, tMonopoly], and the market evolution is described by the initial value problem (5.1) only on this time interval.

5.2.2 Post-entry initial value problem

The construction of the post-entry initial value problem isvery much similar to the construction of the pre-entry

initial value problem. Determining the buying probabilities now requires some extra care while the arrival and

breakdown intensities remain exactly the same. For sake of completeness, let us first construct the buying proba-

bilities from their simplest components.

The buying probabilities at timet are dependent on the quality of both productsaL andaF and the prices of the

productspL andpF and how many other consumers already own the products, i.e.IL(t), IF (t) andILF (t). To

shorten the notation, I denote the qualities asā = (a1, a2), the prices as̄p = (p1, p2) and the state of the market at

time t asĪ(t) = (IL(t), IF (t), ILF (t)).

I define the termsUi→j(ā, p̄, Ī(t)), i ∈ {S, IL, IF }, j ∈ {IL, IF , ILF } in equations (5.4) to shorten the notation

for the buying probabilities.

US→IL(ā, p̄, Ī(t)) = exp

(

aL − pL + aLg(IL(t) + ILF (t))

µ

)

US→IF (ā, p̄, Ī(t)) = exp

(

aF − pF + aF g(IF (t) + ILF (t))

µ

)

UIF→ILF
(ā, p̄, Ī(t)) = exp

(

max{aL − aF , 0} − pL + aLg(IL(t) + ILF (t))

µ

)

UIL→ILF
(ā, p̄, Ī(t)) = exp

(

max{aF − aL, 0} − pF + aF g(IF (t) + ILF (t))

µ

)

(5.4)

By using the termsUi→j(ā, p̄, Ī(t)), i ∈ {S, IL, IF }, j ∈ {IL, IF , ILF } we may now define the actual buying

probabilitiesPi→j(ā, p̄, Ī(t)), i ∈ {S, IL, IF }, j ∈ {IL, IF , ILF } in equations (5.5):
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PS→IL(ā, p̄, Ī(t)) =
US→IL(ā, p̄, Ī(t))

1 + US→IL(ā, p̄, Ī(t)) + US→IF (ā, p̄, Ī(t))

PIF→ILF
(ā, p̄, Ī(t)) =

UIF→ILF
(ā, p̄, Ī(t))

1 + UIF→ILF
(ā, p̄, Ī(t))

PS→IF (ā, p̄, Ī(t)) =
US→IF (ā, p̄, Ī(t))

1 + US→IL(ā, p̄, Ī(t)) + US→IF (ā, p̄, Ī(t))

PIL→ILF
(ā, p̄, Ī(t)) =

UIL→ILF
(ā, p̄, Ī(t))

1 + UIL→ILF
(ā, p̄, Ī(t))

(5.5)

The buying probabilities described in equations (5.5) are equivalent to the probabilities in equations (2.16) and

(2.17).

We may now write the initial value problem describing the market evolution for the post-entry time period. The

initial value problem again consists of the differential equations that describe how the functionsS(t), IL(t),

IF (t) and ILF (t) evolve over time and of the initial valuesS(tEntry) = A, IL(tEntry) = B, IF (tEntry) = C

andILF (tEntry) = D at the starting timet = tEntry. The initial value problem now takes the form (5.6):

Ṡ(t) = −βPS→IL(ā, p̄, Ī(t))S(t)− βPS→IF (ā, p̄, Ī(t))S(t) + λIL(t) + λIF (t)

İL(t) = βPS→IL(ā, p̄, Ī(t))S(t) − βPIL→ILF
(ā, p̄, Ī(t))IL(t) + λILF (t)− λIL(t)

İF (t) = βPS→IF (ā, p̄, Ī(t))S(t)− βPIF →ILF
(ā, p̄, Ī(t))IF (t) + λILF (t)− λIF (t)

İLF (t) = βPIL→ILF
(ā, p̄, Ī(t))IL(t) + βPIF→ILF

(ā, p̄, Ī(t))IF (t)− 2λILF (t)

with S(tEntry) = A, IL(tEntry) = B, IF (tEntry) = C, ILF (tEntry) = D (5.6)

The starting timetEntry is different for Leader and Follower respectively. For Leader, the market structure changes

at timet = tMonopoly with Follower’s entry, meaning that we have the starting timetEntry = tMonopoly for Leader. For

Follower, we have the starting timetEntry = 0, as in the Follower’s point of view there is no history prior to entry.

The initial values of initial value problem (5.6) are determined by the pre-entry evolution of the market and the

free samples choices of Follower. The pre-entry evolution is in turn described by the solutions of the initial value

problem (5.1) which is in turn determined by the choices of Leader. Suppose that we have the functionsS∗(t) and

I∗(t) that are solutions of the initial value problem (5.1). ThenS∗(tMonopoly) denotes the number of consumers

who do not have the Leader’s product at the time of Follower’sentry. Correspondingly,I∗L(tMonopoly) denotes the

number of consumer who have the Leader’s product at the time of Follower’s entry. Next, I assume that Follower

cannot observe whether a consumer has or does not have the Leader’s product. Follower therefore gives out free

samples randomly with every consumer having an equal probability of receiving a product. The initial values then

take the form (5.7):

A = S∗(tMonopoly)(1−
qF
N

), B = I∗L(tMonopoly)(1 −
qF
N

), C = S∗(tMonopoly)
qF
N

,D = I∗L(tMonopoly)
qF
N

(5.7)

The terms in the differential equation system of the initialvalue problem (5.6) again have natural interpretations:

Due to purchases, the consumers move from compartmentS to compartmentIL at rateβPS→IL(ā, p̄, Ī(t))S(t)

and to compartmentIF at rateβPS→IF (ā, p̄, Ī(t))S(t). Again due to purchases, the consumers move to compart-

mentILF at rateβPIL→ILF
(ā, p̄, Ī(t))IL(t) from compartmentIL and at rateβPIF →ILF

(ā, p̄, Ī(t))IF (t) from

compartmentIF . At the same time the products are breaking down at intensityλ. Then due to product break-
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downs, consumers move from compartmentsIL andIF to compartmentS at ratesλIL(t) andλIF (t) respectively.

Additionally, since the consumers in compartmentILF own both products, they move from this compartment at

rate2λILF (t) to compartmentsIL andIF .

The formulation of initial value problem (5.6) implies thatboth firms’ products have the same expected lifetime

as the breakdown intensityλ is the same for both firms. I interpret the parameterλ as reflecting the “state of

technology” in production, with both firms choosing the bestavailable technology to provide the most durable

product. As the same technology is available to both firms, they both make equally durable products leading to the

same breakdown intensityλ.

The population again stays constant over time asd/dt(S(t)+IL+IF +ILF ) = Ṡ(t)+ İL(t)+ İF (t)+ İLF (t) = 0.

This leads to identity (5.8):

S(t) + IL(t) + IF (t) + ILF (t) = N (5.8)

As before, the identity (5.8) may be used to eliminate one of the differential equations in the initial value problem

(5.6). This assumption is again used in the numerical solution of initial value problem (5.6).

5.3 Firm behavior

The behavior of both firms is determined by their profit maximization objective. The profits of both firms depend

also on the choices of the other firm through initial value problem (5.6). This dependence forces both firms to

consider how their own choices will affect the choices of theother firm. The sequential entry of firms allows

us describe this choice-making process explicitly. Specifically, we may write the firms’ problems in such a way

that the strategic thinking behind the choices becomes explicit. The firms’ problems again consist of an objective

function, decision variables and constraints. Both of the problems are constructed by defining these components.

The choice-making process can be seen as a game with two stages. At the first stage, Leader makes its choices. At

the second stage, Follower observes the choices of Leader and makes its own choices. We note that during each

stage only a single player chooses an action whilst knowing the entire history up to that stage, i.e. the choices

other players have made previously. We therefore use backward induction implicitly as it is the natural approach

in solving games of this type. We first start to study the choices of Follower as it is the last player to act. If we

can deduce how Follower will act given the choices of Leader,we may implement this behavior to the Leader’s

problem. This approach is equivalent to assuming that Leader can deduce how its choices will induce the choices

of Follower.

5.3.1 Follower’s problem

First let us describe the information of Follower. Prior to Follower’s entry, Leader has chosen its qualityaL, free

samplesqL and pricepL. The market has then evolved to some state based on Leader’s choices. I assume that

Follower is able to observe or calculate the state of the market at time of entry, i.e. Follower observes the values

S∗(tMonopoly) andI∗L(tMonopoly) at time tMonopoly. While it has been previously stated that observing the state of

the market is difficult, I nevertheless offer the following rationalization for this assumption: The market state is

observable to Follower because it is an operator within the market while the market state remains opaque to the

outside observer. Naturally in addition to the market state, Follower knows the choices of Leader. Follower bases

its choices on this information.
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Follower chooses its own qualityaF , free samplesqF and pricepF which are thus the decision variables of the

Follower’s problem. Naturally Follower may not choose a negative quality or price nor give out a negative amount

of free samples. We thus have the natural constraintsaF , qF , pF ≥ 0 for the Follower’s problem.

Let us next determine the objective function of Follower. Follower seeks to maximize its profits which are deter-

mined by the demand of its product. The termβPS→IF (ā, p̄, Ī(t))S(t) describes the demand for the Follower’s

product from those consumers who have neither product at timet, and correspondingly the termβPIL→ILF
(ā, p̄, Ī(t))IL(t)

describes the demand for the Follower’s product from those who have the Leader’s product at timet. The

per-unit discounted profits at timet of Follower are described by the termexp(−rt)(pF − C(aF )). The total

profits are then calculated by integrating the product termexp(−rt)(pF − C(aF ))[βPS→IF (ā, p̄, Ī(t))S(t) +

βPIL→ILF
(ā, p̄, Ī(t))IL(t)] over the planning horizon[0, T ]. After accounting for the Follower’s free sample

costsC(aF )qF , Follower’s profitsπFollower are given by equation (5.9):

πFollower(aF , qF , pF | aL, qL, pL) =

∫ T

0

exp(−rt)(pF − C(aF ))
[

βPS→IF (ā, p̄, Ī(t))S(t) +

βPIL→ILF
(ā, p̄, Ī(t))IL(t)

]

dt− C(aF )qF (5.9)

Follower operates within the post-entry market structure.The functionsS(t), IF (t), IL(t) andILF (t) affecting

the profits (5.9) are therefore determined by the initial value problem (5.6). This gives us the final constraint

for Follower’s problem: FunctionsS(t), IL(t), IF (t), ILF (t) are solutions of initial value problem 5.6 over the

interval[0, T ].

We may now write Follower’s problem (5.10):

max
aF ,pF ,qF

πFollower(aF , qF , pF | aL, qL, pL) s.t.

S(t), IL(t), IF (t), ILF (t) solutions of initial value problem (5.6) on[0, T ],

aF , qF , pF ≥ 0 (5.10)

Let us next define the Follower’s three best-response functions that will aid in constructing Leader’s problem.

Given the choices(aL, qL, pL) of Leader, each best-response function describes Follower’s optimal choice of a

decision variable. We define the best-response functions asBRFollower
a (aL, qL, pL) = a∗F , BRFollower

q (aL, qL, pL) =

q∗F and BRFollower
p (aL, qL, pL) = p∗F such that qualitya∗F , free samplesq∗F and pricep∗F are a solution of the

Follower’s problem (5.10) given the Leader’s choices(aL, qL, pL). By assumption Leader knows the form of the

Follower’s problem and that Follower will best-respond to its own choices. We may then use these functions in

constructing the Leader’s problem to account for this knowledge.

5.3.2 Leader’s problem

We construct the Leader’s problem by utilizing the knowledge we assume Leader to have regarding Follower’s

behavior, i.e. Leader’s information. We have assumed that Leader knows time of Follower’s entry and the form

of the Follower’s problem. This knowledge allows Leader to anticipate the Follower’s choices given its own

choices. These assumptions are questionably strong, but arguably also in line with the assumptions of the classical

Stackelberg model. Leader makes its choices with this information in mind.

Leader chooses the qualityaL and the pricepL of its product and how many free samplesqL to give out. These

are then the natural decision variables of the Leader’s problem. Naturally Leader may not set a negative quality or
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price nor give out a negative amount of free samples. This gives us the natural constraintsaL, qL, pL ≥ 0 on the

decision variables.

Leader’s profits now depend on the demand of its product from two different time periods. These time periods

are defined by the Follower’s presence in the market: First Leader operates alone in the pre-entry market. Next,

after the Follower’s entry, Leader operates in the post-entry market together with Follower. Constructing Leader’s

objective function requires us then to first construct the Leader’s profits from the pre-entry and the post-entry

periods.

Let us now construct the pre-entry profits. The demand for Leader’s product at timet is given by the term

βPS∗→I∗

L
(aL, pL, I

∗
L(t))S

∗
L(t). The per-unit discounted profits are given by termexp(−rt)(pL − C(aL)). The

discounted profits for this time period are then calculated by integrating the product of these terms over the interval

[0, tMonopoly]. Leader’s pre-entry profits are then given by equation (5.11):

πLeader
Pre-Entry(aL, qL, pL) =

∫ tMonopoly

0

exp(−rt)(pL − C(aL))βPS∗→I∗

L
(aL, pL, I

∗
L(t))S

∗
L(t)dt (5.11)

Let us next construct the post-entry profits. The Follower’sentry changes the market structure to the post-entry mar-

ket structure described by initial value problem (5.6). ThetermβPS→IL(ā, p̄, Ī(t))S(t) then describes the demand

for Leader’s product from those consumers who have neither product at timet, and the termβPIF→ILF
(ā, p̄, Ī(t))IF (t)

the demand from those consumers who have the Follower’s product at timet. The total demand at timet is then

given by the sumβPS→IL(ā, p̄, Ī(t))S(t)+ βPIF→ILF
(ā, p̄, Ī(t))IF (t). The per-unit discounted profits are again

given by termexp(−rt)(pL −C(aL)). We may then calculate the profits by integrating the productof these terms

over the interval[tMonopoly, T + tMonopoly]. Leader’s post-entry profits are thus given by equation (5.12):

πLeader
Post-Entry(aL, qL, pL) =

∫ T+tMonopoly

tMonopoly

exp(−rt)(pL−C(aL))[βPS→IL (ā, p̄, Ī(t))S(t)+βPIF →ILF
(ā, p̄, Ī(t))IF (t)]dt

(5.12)

The total profits of Leader are given by the sum of the pre-entry and post-entry profits minus the sample costs

C(aL)qL. The equations (5.11) and (5.12) then allow us to construct Leader’s total profitsπLeader in equation

(5.13) giving us the objective function of Leader:

πLeader(aL, qL, pL) = πLeader
Pre-Entry(aL, qL, pL) + πLeader

Post-Entry(aL, qL, pL)− C(aL)qL (5.13)

As Leader operates both in the pre- and the post-entry markets, the pre- and post-entry market structures impose

the following restrictions: The functionsS∗(t) and I∗L(t) are solutions of initial value problem (5.1) over the

interval [0, tMonopoly], and the functionsS(t), IL(t), IF (t), ILF (t) are solutions of initial value problem (5.6) over

the interval[tMonopoly, T + tMonopoly].

The Leader’s problem requires a final set of constraints stemming from the game theoretical structure of the

model. Leader anticipates that Follower will best-respondto its own choices and what these best responses

will be. Using the previously defined best-response functions we have the constraintsaF = BRa,F (aL, qL, pL),

qF = BRq,F (aL, qL, pL) andpF = BRp,F (aL, qL, pL) to signify that the Follower’s choices(aF , qF , pF ) are

indeed the best responses to the Leader’s choices(aL, qL, pL).

Leader’s problem then has the form (5.14):
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max
aL,pL,qL

πLeader(aL, qL, pL) s.t.

S∗(t), I∗L(t) solutions of initial value problem (5.1) on[0, tMonopoly],

S(t), IL(t), IF (t), ILF (t) solutions of initial value problem (5.6) on[tMonopoly, T + tMonopoly],

aF = BRFollower
a (aL, qL, pL), qF = BRFollower

q (aL, qL, pL), pF = BRFollower
p (aL, qL, pL),

aL, qL, pL ≥ 0 (5.14)

The structure of the Leader’s problem (5.14) hints at the waythe problem may be solved without resorting to finite

choice sets. With the use of best-response functions the problem becomes a matter of constrained optimization.

If the initial value problems (5.1) and (5.6) and the integrals (5.9), (5.11) and (5.12) had easy analytical solutions

and we could find the forms of the best-response functions, the problem (5.14) itself could perhaps be solved by

using the KKT conditions. Should we wish to apply more sophisticated numerical optimization methods to the

Leader’s problem, we would need a more imaginative approachas the best-response functions makes it difficult to,

for example, calculate gradients numerically.

The choices given by the solution of the Leader’s problem (5.14) form a Nash equilibrium as the solution first

gives us the optimal choices of Leader to which Follower best-responds, i.e. makes its own choices optimally

given the choices of Leader. Neither firm can then improve itsprofits by unilaterally deviating from the choices of

the solution.

5.3.3 Solving the Leader’s problem

As Follower best-responds to the Leader’s choices, we note that the solution of the Leader’s problem will also

describe the Follower’s behavior. Solving the Leader’s problem is then sufficient to determine the behavior of both

firms. We therefore limit our attention to it.

I use a simple nested brute force algorithm to find the solution of Leader’s problem for the finite choice sets

(3.8). With finite choice sets, the number of all possible choice combinations is also finite allowing us to calculate

the Leader’s profits for all of these to find the combination with the largest profits. However, as Follower best-

responds to all of the Leader’s choices and thereby affects the Leader’s profits, it is necessary to solve the Follower’s

problem (5.10) for each of the Leader’s choice combinations. The Follower’s problem can be seen to be a slight

modification of the monopoly’s problem (4.5) and is therefore solved similarly by calculating the Follower’s profits

for all possible choice combinations of Follower to find the combination with the largest profits. Thus brute force

is used in two instances: firstly to calculate the Leader’s profits for Leader’s all possible choice combinations, and

secondly to calculate the Follower’s profits for Follower’sall possible choice combinations given a single choice

combination of Leader. See appendix D for the script.

Figure 5.3 gives the structure of the implemented script. I divide the structure of the script into three parts

based on the role that each part plays in solving the Leader’sproblem (5.14). These parts are calculating the

Leader’s pre-entry profits, which comprises of the subroutinespreentryProfitsLeader , monopolyDE and

MonopolyRevenue , calculating the Follower’s best responses to the Leader’schoices, which comprises of the

subroutinesFollowerOptimizes , profitsFollower , duopolyDES andrevenueFollower , and cal-

culating the Follower’s post-entry profits, which comprises of the subroutinesprofitsLeader , duopolyDES

andrevenueLeader . The subroutineLeaderOptimizes forms the backbone of the script as it utilizes the

presented subroutines to calculate the Leader’s profits (5.13) for all Leader’s choice combinations, and after which

it chooses the combination with the highest profits thereby solving the Leader’s problem.
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The subroutinepreentryProfitsLeader calculates the Leader’s pre-entry profits (5.11) for a givenquality,

free samples and price choice. It solves the initial value problem (5.6) withode45, generates a revenue vector

and uses the vector to calculate the integral determining the pre-entry profits. Additionally, the state of the pre-

entry market at the time of entry is saved in order to determine the initial values of initial value problem (5.6).

The subroutinemonopolyDE is the reduced differential equation system of the initial value problem (5.1). The

subroutineMonopolyRevenue is used to generate the revenue vector for numerical integration.

The Follower’s best responses are calculated using the method for solving the monopoly’s problem (with finite

choice sets), as the Follower’s problem (5.10) can be seen, given the Leader’s choices, as the monopoly’s problem

(4.5) with a different initial value problem. The subroutine FollowerOptimizes calculates the Follower’s

profits for all combinations of quality, free samples and price, and chooses the combination with the Follower’s

highest profits. It uses the subroutineprofitsFollower to calculate the profits for a given combination of

quality, free samples and price. The subroutineprofitsFollower in turn solves the initial value problem

(5.6) usingode45, generates a revenue vector for the integral in equation (5.9), usestrapzto calculate the integral

and determines the profits after accounting for the Follower’s free sample costs. The subroutineduopolyDES

is the (reduced) differential equation system of initial value problem (5.6) required byode45. The subroutine

revenueFollower is used to generate the revenue vector for numerical integration.

Finally, the post-entry profits of Leader are calculated by the subroutineprofitsLeader . The calculation

method is the same as in the subroutineprofitsFollower : For the given choices of Leader and the Follower’s

best responses to these choices, the subroutineprofitsLeader solves the initial value problem (5.6) using

ode45, generates a revenue vector for the integral in equation (5.12) and usestrapz to calculate the integral. The

subroutineduopolyDES is the same (reduced) differential equation system of initial value problem (5.6) required

by ode45. The subroutinerevenueLeader is used to generate the revenue vector for numerical integration.

5.4 Outcomes

5.4.1 New parameter choices

The model requires an additional, model-specific parametertMonopoly that has not been discussed in chapter 3. I

chose to use the valuetMonopoly = 1. This value was chosen to model a case where Leader has a relatively small

amount of monopoly time considering the planning horizonsT = 10 andT = 100.

5.4.2 Optimal firm behavior

Tables 5.1-5.3 give the behavior of Leader and Follower.

The results do not offer us a reason to doubt the internal validity of the model. We note that both firms always set

a positive price and get a positive profit. The parametersr andT also have the expected effects on profits. First,

we note that in the no trend cases both firms always choose(ai, qi, pi) = (2, 0, 3), i = L, F providing us a way to

study the effects of parametersr andT . We then note that profits of both firms are larger with the longer planning

horizonT = 100 than with the shorter planning horizonT = 10. Likewise, the profits of both firms are larger with

smaller discount rates.

Rather surprisingly, we may note that there is no universal first-mover advantage in this model. With a long

planning horizonT = 100, a small parabel trend with strengthd = 2 and a reasonable discount rater = 0 or

r = 0.05, Leader chooses to produce cheaper, “less promoted” (i.e. with less free samples) product with a lower

price (aL = 1 < 3 = aF , qL = 200 000 < 400 000 = qF andpL = 3 < 9 = pF ) that leads to greatly smaller

profits compared with Follower (3.35463 · 107 < 6.40932 · 107 and6.66545 · 106 < 1.10186 · 107). The result



5. STACKELBERG DUOPOLY 40

Planning Trend Leader Leader Follower Follower

horizon type (aL, qL, pL) Profits (aF , qF , pF ) Profits

T = 10 no trend (2, 0, 3) 447156 (2, 0, 3) 390692

linear,d = 2 (2, 200 000, 3) 1.41643 · 106 (0, 0, 3) 40590.9

parabel,d = 2 (2, 200 000, 6) 4.04282 · 106 (2, 400 000, 6) 4.8304 · 106

linear,d = 8 (3, 400 000, 9) 1.33737 · 107 (3, 400 000, 9) 8.90953 · 106

parabel,d = 8 (2, 200 000, 9) 2.07803 · 107 (2, 200 000, 9) 1.90821 · 107

T = 100 no trend (2, 0, 3) 3.82225 · 106 (2, 0, 3) 3.76579 · 106

linear,d = 2 (2, 600 000, 3) 1.51397 · 107 (0, 0, 3) 413134

parabel,d = 2 (1, 200 000, 3) 3.35463 · 107 (3, 400 000, 9) 6.40932 · 107

linear,d = 8 (3, 400 000, 9) 1.33333 · 108 (3, 400 000, 9) 1.04931 · 108

parabel,d = 8 (2, 200 000, 9) 1.80691 · 108 (2, 200 000, 9) 1.78989 · 108

Table 5.1: Patient firms withr = 0, Choices and profits

Planning Trend Leader Leader Follower Follower

horizon type (aL, qL, pL) Profits (aF , qF , pF ) Profits

T = 10 no trend (2, 0, 3) 349776 (2, 0, 3) 309763

linear,d = 2 (2, 200 000, 3) 991930 (0, 0, 3) 31814.9

parabel,d = 2 (2, 400 000, 6) 3.53393 · 106 (2, 400 000, 6) 2.62231 · 106

linear,d = 8 (3, 400 000, 9) 9.96657 · 106 (3, 400 000, 9) 6.62314 · 106

parabel,d = 8 (2, 200 000, 9) 1.62338 · 107 (2, 200 000, 9) 1.52606 · 107

T = 100 no trend (2, 0, 3) 777698 (2, 0, 3) 759625

linear,d = 2 (2, 600 000, 3) 1.78793 · 106 (0, 0, 3) 82044.8

parabel,d = 2 (1, 200 000, 3) 6.66545 · 106 (3, 400 000, 9) 1.10186 · 107

linear,d = 8 (3, 400 000, 9) 2.51758 · 107 (3, 400 000, 9) 1.94214 · 107

parabel,d = 8 (2, 200 000, 9) 3.65084 · 107 (2, 200 000, 9) 3.6574 · 107

Table 5.2: Normal firms withr = 0.05, Choices and profits

is very peculiar and seemingly valid as I was unable to find anyobvious mistakes that would lead to the described

behavior.

Let us now consider the research questions: Different trendtypes indeed lead to observable differences in firm

behavior but the specific type of the trend may not be inferredpurely from firm behavior. For example, suppose

that we observe Leader’s and Follower’s behavior as(aL, qL, pL) = (aF , qF , pF ) = (2, 0, 3) and we are asked to

give an opinion on the existence of trend. Based on tables 5.1-5.3, we would not be able to distinguish between a

no trend case or a linear case trend with impatient firms (see table 5.3,T = 10, d = 2).

We also note that there indeed cases with trends such that oneor both firms optimally give out products as free

samples. We now again have an “existence result” for a trend,namely if we observe a firm giving out free samples

we may infer the existence of some trend. As before, this result does not run in the other direction, i.e. we may not

infer the nonexistence of a trend from observing that neither firm gives out free samples.
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Planning Trend Leader Leader Follower Follower

horizon type (aL, qL, pL) Profits (aF , qF , pF ) Profits

T = 10 no trend (2, 0, 3) 5898.34 (2, 0, 3) 4793.41

linear,d = 2 (2, 0, 3) 6432.83 (2, 0, 3) 3656.58

parabel,d = 2 (2, 0, 3) 13306.3 (0, 0, 3) 312.674

linear,d = 8 (2, 0, 3) 10160.7 (0, 0, 3) 295.01

parabel,d = 8 (1, 200 000, 6) 166082 (1, 200 000, 6) 147940

T = 100 no trend (2, 0, 3) 5898.34 (2, 0, 3) 4793.41

linear,d = 2 (2, 0, 3) 6432.83 (2, 0, 3) 3656.58

parabel,d = 2 (2, 0, 3) 13306.3 (0, 0, 3) 312.673

linear,d = 8 (2, 0, 3) 10160.7 (0, 0, 3) 295.01

parabel,d = 8 (1, 200 000, 6) 166082 (1, 200 000, 6) 147939

Table 5.3: Impatient firms withr = 10, Choices and profits
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Figure 5.3: Script structure, Stackelberg duopoly
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Simultaneous-choice Duopoly

This chapter presents the second of the duopoly models of this thesis. Where as in the Stackelberg duopoly model

the firms chose their product’s quality, free samples and price sequentially, these choices in this model are made

simultaneously similarly to the classical Cournot and Bertrand duopoly models. The key characteristics of the

model are as follows: There are two firms, firm1 and firm2, who sell durable goods to a large population of

consumers. There is no secondary market for the products of either firm. A consumer will buy only a single

product from a particular firm and hold it until the product breaks down. The consumer may choose to buy the

products of both firms. Both firms choose the quality and priceof their products, and whether to give out products

as free samples. Prices and qualities are set once and for all, and free samples are given only at the time of entry

into the market. Both firms seek to maximize their profits and will make their choices accordingly. The interaction

between the firms is modeled as a game.

The demand for the both firms’ products are determined through a initial value problem inspired by the SIS model.

The firms determine the initial value problem through their choices. Differing from the two preceeding models, we

use the initial value problem to calculate payoffs for the interaction game rather than implementing it to the firms’

optimization problems.

The interaction game is a multi-stage game with three stageswhich determines the firms’ behavior by its subgame-

perfect Nash equilibrium (SPNE). The SPNE of the game is constructed by solving Nash equilibria (NEa) in

the three stages, as each possible stage can be seen as an individual normal-form game. The range of possible

observable firm behavior may be seen from the probability distributions that form the constructed SPNE.

6.1 Market Structure

The market structure of this model is equivalent to the post-entry market structure of the Stackelberg duopoly

model. The population is divided into four different compartments:S, I1, I2 andI12 with the respective functions

S(t), I1(t), I2(t) andI12(t). The functionS(t) describes the amount of people who have neither product, the

function I1(t) the amount of people who own a product from firm1, the functionI2(t) the amount of people

who own a product from firm2 and the functionI12(t) the amount of people who own a product from both

firms at timet. Figure 6.1 describes the compartmental structure and the movement between compartments. The

movement between the compartments is determined by the breakdown and arrival intensitiesλ andβ and the

buying probabilitiesPi→j , i ∈ {S, I1, I2}, j ∈ {I1, I2, I12}.

As with the two previous models, we wish to determine the profits of both firms given their choices of quality, free

samples and price. The profits are determined by the products’ demands which can be described using the functions

43
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S(t), I1(t), I2(t) andI12(t). The functions are again found by solving the initial value problem describing the

market.

6.2 Initial value problem

The initial value problem of this model is almost equivalentto the post-entry initial value problem of the Stack-

elberg duopoly model. The differential equations in both initial value problems are the same after changing the

namesL, F, LF to 1, 2, 12. However, the initial conditions are now slightly different. Whereas the construction of

the initial conditions of the post-entry initial value problem of the Stackelberg duopoly model required the solution

of the pre-entry initial value problem, the initial conditions of the initial value problem of the simultaneous-choice

duopoly model are constructed simply from the choices of firms1 and2. For the sake of completeness, let us next

reiterate the construction of the differential equations.

The buying probabilitiesPi→j , i ∈ {S, I1, I2}, j ∈ {I1, I2, I12} at time t are dependent on three factors: the

qualitiesa1 anda2, the pricesp1 andp2 of firms1 and2 and how many other consumers already own the product at

that time, i.e. the state of the marketI1(t), I2(t) andI12(t). To shorten the notation, I choose to denote the qualities

asā = (a1, a2), the prices as̄p = (p1, p2) and the state of the market at timet asĪ(t) = (I1(t), I2(t), I12(t)).

I again define termsUi→j(ā, p̄, Ī(t)), i ∈ {S, I1, I2}, j ∈ {I1, I2, I12} in equations (6.1) to shorten the notation

for the buying probabilities.

US→I1(ā, p̄, Ī(t)) = exp

(

a1 − p1 + a1g(I1(t) + I12(t))

µ

)

US→I2(ā, p̄, Ī(t)) = exp

(

a2 − p2 + a2g(I2(t) + I12(t))

µ

)

UI2→I12 (ā, p̄, Ī(t)) = exp

(

max{a1 − a2, 0} − p1 + a1g(I1(t) + I12(t))

µ

)

UI1→I12 (ā, p̄, Ī(t)) = exp

(

max{a2 − a1, 0} − p2 + a2g(I2(t) + I12(t))

µ

)

(6.1)

With the termsUi→j(ā, p̄, Ī(t), i ∈ {S, I1, I2}, j ∈ {I1, I2, I12} we may now define the actual buying probabilities

Pi→j(ā, p̄, Ī(t)), i ∈ {S, I1, I2}, j ∈ {I1, I2, I12} in equations (6.2):

PS→I1(ā, p̄, Ī(t)) =
US→I1(ā, p̄, Ī(t))

1 + US→I1(ā, p̄, Ī(t)) + US→I2(ā, p̄, Ī(t))

PI2→I12(ā, p̄, Ī(t)) =
UI2→I12(ā, p̄, Ī(t))

1 + UI2→I12(ā, p̄, Ī(t))

PS→I2(ā, p̄, Ī(t)) =
US→I2(ā, p̄, Ī(t))

1 + US→I1(ā, p̄, Ī(t)) + US→I2(ā, p̄, Ī(t))

PI1→I12(ā, p̄, Ī(t)) =
UI1→I12(ā, p̄, Ī(t))

1 + UI1→I12(ā, p̄, Ī(t))
(6.2)

The buying probabilities in equations (6.2) are equivalentto the buying probabilities in (2.16) and (2.17).

After defining the buying probabilities we may write the initial value problem which describes the market evolution.

The initial value problem consists once again of the differential equations that describe how the functionsS(t),

I1(t), I2(t) andI12(t) evolve over time and of the initial valuesS(0) = A, I1(0) = B, I2(0) = C, I12(0) = D at

the starting timet = 0. The initial value problem now takes the form (6.3):
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Ṡ(t) = −βPS→I1(ā, p̄, Ī(t))S(t) − βPS→I2 (ā, p̄, Ī(t))S(t) + λI1(t) + λI2(t)

İ1(t) = βPS→I1 (ā, p̄, Ī(t))S(t)− βPI1→I12(ā, p̄, Ī(t))I1(t) + λI12(t)− λI1(t)

İ2(t) = βPS→I2 (ā, p̄, Ī(t))S(t)− βPI2→I12(ā, p̄, Ī(t))I2(t) + λI12(t)− λI2(t)

İ12(t) = βPI1→I12(ā, p̄, Ī(t))I1(t) + βPI2→I12(ā, p̄, Ī(t))I2(t)− 2λI12(t)

with S(0) = A, I1(0) = B, I2(0) = C, I12(0) = D (6.3)

The initial conditions of the initial value problem (6.3) are determined by the following simple assumptions: All

consumers are assumed to have an equal and independent probability to get either product. The firms cannot

observe by assumption whether a person already owns a product from the other firm. Moreover, a single consumer

is content by assumption with a single product from a particular firm. Let q1 andq2 denote the amounts of free

samples that firms 1 and 2 give out. Then the probability of getting firm 1’s product isq1/N , and the probability

of getting firm2’s product isq2/N . Since the probabilities are independent, the initial conditionsA,B,C,D are

given by equations (6.4):

A = N −B − C −D, B = N
q1
N

(1−
q2
N

), C = N(1−
q1
N

)
q2
N

, D = N
q1
N

q2
N

(6.4)

The terms in the differential equation system of the initialvalue problem (6.3) again have the natural interpretations.

At time t consumers arrive at buying decisions at intensityβ. Due to purchases, consumers move from compart-

mentS to compartmentI1 at rateβPS→I1 (ā, p̄, Ī(t))S(t) and to compartmentI2 at rateβPS→I2(ā, p̄, Ī(t))S(t).

Again due to purchases, the consumers move to compartmentI12 at rateβPI1→I12(ā, p̄, Ī(t))I1(t) from compart-

mentI1 and at rateβPI2→I12 (ā, p̄, Ī(t))I2(t) from compartmentI2. At the same time the products are breaking

down at intensityλ. Then due to product breakdowns, consumers move from compartmentsI1 andI2 to compart-

mentS at ratesλI1(t) andλI2(t) respectively. Additionally, since the consumers in compartmentI12 own both

products, they move from this compartment at rate2λI12(t) to compartmentsI1 andI2.

As with the Stackelberg duopoly model, the formulation of initial value problem (6.3) implies that both firms’

products have the same expected lifetime as the breakdown intensityλ is the same for both firms. I again interpret

the parameterλ as reflecting the “state of technology” in production, with both firms choosing the best available

technology to provide the most durable product. As the same technology is available to both firms, they both make

equally durable products leading to the same breakdown intensityλ.

Finally, the population size stays constant over time asd/dt(S(t) + I1(t) + I2(t) + I12(t)) = Ṡ(t) + İ1(t) +

İ2(t) + İ12(t) = 0. This leads to identity (6.5):

S(t) + I1(t) + I2(t) + I12(t) = N (6.5)

The identity (6.5) may be used to eliminate one of the differential equations in the initial value problem (6.3) as

we may, for example, writeS(t) = N − I1(t) − I2(t) − I12(t). This assumption is again used in the numerical

solution of initial value problem (6.3).

6.3 Firm behavior

Firm behavior in the model is ultimately determined by the SPNE of the interaction game. However, before de-

scribing the game I formulate the duopolist’s problem. While the duopolist’s problem does not explicitly enter into
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the game, I hope that it will illustrate the incentives behind the behavior of a single firm and highlight the simi-

larities between this model and those presented in the preceeding chapters. Moreover, describing the duopolist’s

problem tells us how to calculate the duopolist’s profits, which are then used as payoffs in the interaction game.

6.3.1 Duopolist’s Problem

The duopolist’s problem is constructed in the same way as in the preceeding chapters, i.e. the duopolist’s objec-

tive function, the decision variables and constraints are explicit defined and combined. As the model’s firms are

symmetrical, let us consider firmi ∈ {1, 2} as our duopolist and firmj ∈ {1, 2}, j 6= i as its competitor. Firmi

naturally seeks to maximize its profits, giving us the problem’s objective function, by choosing the qualityai and

the pricepi of its product and whether to give out free samplesqi, giving us the decision variables of the problem.

Firm i’s profits are determined by the demand of its product. The term βPS→Ii(ā, p̄, Ī(t))S(t) describes the de-

mand for firmi’s product at timet from those consumers who own neither product. The termβPIj→I12(ā, p̄, Ī(t))Ij(t)

describes the demand for firmi’s product at timet from those consumers who own firmj’s product. Firm

i’s total sales at timet are thenβPS→Ii(ā, p̄, Ī(t))S(t) + βPIj→I12(ā, p̄, Ī(t))Ij(t). The per-unit discounted

profit at timet are given by the termexp(−rt)(pi − C(ai)). We may then integrate the productexp(−rt)(pi −

C(ai))(βPS→IiS(t)+βPIj→I12Ij(t)) over the planning horizonT and account for the free sample costsC(ai)qi

to calculate firmi’s profit. Firm i’s profitsπ(ai, qi, pi | aj , qj , pj) are given by equation (6.6):

πi(ai, qi, pi | aj , qj , pj) =

∫ T

0

exp(−rt)(pi−C(ai))(βPS→Ii (ā, p̄, Ī(t))S(t)+βPIj→I12 (ā, p̄, Ī(t))Ij(t))dt−C(ai)qi

(6.6)

The constraints of firmi’s problem are again simple. Firmi cannot choose a negative quality or a price nor give

out a negative amount of free samples, giving us the natural constraintsai, qi, pi ≥ 0 for the decision variables.

Firm i naturally operates within the described market structure,and we therefore require that the functionsS(t),

I1(t), I2(t) andI12(t) are solutions of the initial value problem (6.3).

Firm i’s problem then, given the choices(aj , qj , pj) of firm j, takes the form (6.7):

max
ai,qi,pi

πi(ai, qi, pi | aj , qj , pj) s.t.

S(t), I1(t), I2(t), I12(t) solutions of initial value problem (6.3) on[0, T ]

ai, qi, pi ≥ 0 (6.7)

The duopolist’s problem (6.7) illustrates what firmi seeks to do given the choices of firmj. We may note the

similarity between problem (6.7) and the problems, especially the Follower’s problem (5.10), presented in the

preceeding chapters. The similarity of the problems reflects the similarity of incentives for firms across the models.

Since the firms make their choices simultaneously, solving the duopolist’s problem is impossible as we would need

to know the choices of firmj to find the optimal choices for firmi. We circumvent this problem by modeling the

interaction between the firms as a game.

6.3.2 Proposed interaction game

To model the interaction between the firms I propose a multi-stage (multi-stage in the sense of Fudenberg and

Tirole (1991, p. 70-2)) game with three stages: First, the firms choose their qualities simultaneously and observe

each other’s choices. Next, the firms simultaneously choosehow many free samples they give out and observe
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each other’s choices. Finally, the firms simultaneously choose prices, enter the market simultaneously and receive

the profits (6.6) dependent on the choices of both firms. Figure 6.2 illustrates the game structure.

I offer the following rationalization for choosing this game specification: The firms choose their quality first as it

is the most difficult variable to change, as, for example, thefirms may have built quality-specific manufacturing

machines. The firms choose their free samples next. If we interpret choosing quality as building the appropriate

machines, it is natural that the firm may not give out any free products before setting up the appropriate infrastruc-

ture. Finally, the firms choose their prices last as the prices are clearly the easiest variables to change (firms may

change their prices simply by announcing a price change).

I assume that the choice sets and the way to calculate profits are common knowledge to both firms. Moreover, I

assume that when faced with situation that can be represented as a normal-form game the both firms are equally

capable at calculating NE strategies and deducing that the other firm will be able to do the same. The play in each

normal-form game should then converge to a NE by assumption.

More precisely speaking, the proposed interaction game is an extensive-form game. An extensive-form game

consists of a set of players, the order of moves (i.e. who moves when), the players’ payoffs as a function of the

moves, what the players’ choices are when they move, what each player knows when he makes his choices and the

probability distributions over any exogenous events (Fudenberg and Tirole (1991, p. 77)). For the proposed game,

the set of players consists of the two firms, the players’ payoffs are determined by the profits (6.6). As there are

no exogenous events, there is no need to define any probability distributions for them. A structure called the game

tree provides the rest of the required components. The game tree describes the order in which the players make

their choices. Unfortunately, the game tree for the proposed game is too large to be presented in its entirety. Figure

6.3 illustrates a pruned game tree of the proposed game. In the complete game tree of the proposed game each of

the pruned branch nodes expands to a whole branch that has thesame structure as the presented branch at that node

level.

Each node of the game tree is a decision point for a player. Thegame starts at the highest node, denoted by an

empty circle around the node, and moves down the game tree in nodes denoted by filled circles. The nodes of

figure 6.3 are named either1 or 2 to indicate whether firm1 or 2 is making its choices at that particular node. Each

branch stemming from a node describes an action that the player may choose. The action sets are naturally the

choice sets (3.8) at the appropriate nodes, and the choice order naturally conforms to figure 6.2.

While the game tree in figure 6.3 specifically describes the order in which a specific player makes a choice, it

may still be used to model simultaneous choice. Simultaneous choice in the game tree is modeled by using

information sets. An information set describes what a player knows when it is choosing its action. The nontrivial

information sets in the game tree in figure 6.3 are marked withdashed lines and the trivial information sets with

only a single member are naturally left unmarked. When the game arrives to a node which is a member of a

nontrivial information set, the player who is choosing its action at that node is unaware in which of the information

set’s member nodes the game actually is.

To emphasize that the use of information sets indeed allows us to model simultaneous choice, I offer the following

informal example: Let us consider Rock-Paper-Scissors as our game. The traditional way of playing Rock-Paper-

Scissors is the players making their choices of rock, paper or scissor at the same time. This approach can naturally

be modeled with a normal-form game in which rock, paper and scissor form the row and column choices of the

players. The same game may also be played in a way where the choices are not made at the same time. Suppose

that the first player writes his choice on a paper that is sealed in an envelope. The second player then writes down

his choice, opens the envelope and the game concludes according the rules of Rock-Paper-Scissors and the choices

of both players. This second way can be modeled with an extensive-form game with a single information set.

When the second player receives the sealed envelope, the extensive-form game has arrived to some unknown node

in the information set as the second player knows that the first player has made a choice but does not know what
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that choice is. These two approaches are clearly equivalentas they model the same game.

With the Rock-Paper-Scissors example in mind, we may interpret the first two node levels of the game tree as the

first stage, the third and the fourth node levels as the secondstage and the fifth and sixth node levels as the third

stage of the game structure in figure 6.2. For future reference, let us name the nodes in the first two node levels

as the “first stage nodes”, nodes in the third and the fourth node levels as the “second stage nodes” and finally

the nodes in the fifth and sixth node levels as the “third stagenodes” of firms 1 and 2. Each of the “stages” can

be likened to a normal-form game as in the Rock-Paper-Scissors example, and this observation will be used to

construct the SPNE for the whole game later on.

The play in an extensive-form game is determined by the strategies of both players. The strategy of a player is a set

of instructions that describes how the player should choosehis actions at each decision node. These instructions

are written before the play starts, and the players cannot change their strategies midplay. The instructions are

written on basis of the past actions and the information of the player at the decision node. The instructions may

instruct the player to randomize his choices over the actions, as there is no guarantee that the decision node has

a “self-evidently best” action. For example, when playing Rock-Paper-Scissors if the second player knows the

first player’s choice, he may always choose the winning action. Without this information the second player needs

to randomize his choices (for example by putting equal probability weights to each of his actions). Finally, the

instructions cover all possible contingencies, i.e. a strategy will provide instructions for all decision nodes of the

player.

We may now give a more formal definition of a strategy for the proposed game. The strategies described here can

be likened to behavior strategies (see e.g. Fudenberg and Tirole (1991, p. 83-5)). First, let us denote the number of

possible qualities as#A, i.e. the set of quality choicesA has#A different members, the number of possible free

samples as#Q and the number of possible prices as#P . For the sets (3.8), we have#A = #Q = #P = 4. The

strategy of firmi is a structure(li, ni, hi) such thatli ∈ R
#A,ni : A×A → R

#Q andhi : A×A×Q×Q → R
#P .

Vector li is a probability distribution over the actions in its first stage node, i.e. the firm choose actionj with

probability(li)j in its first stage node. The functionsni(a1, a2) andhi(a1, a2, q1, q2) are rules that firmi uses in

choosing its strategies given the game’s history. The vector x = ni(a1, a2) ∈ R
#Q is a probability distribution over

the actions of firmi in its second stage node given that firm1 has chosen qualitya1 and firm2 has chosen quality

a2, i.e. the history(a1, a2), in their first stage nodes. Correspondingly, the vectory = hi(a1, a2, q1, q2) ∈ R
#P is

a probability distribution over the actions of firmi in its third stage node given the history(a1, a2, q1, q2). As they

are probability distributions, each component of vectorsli, x andy is non-negative and the sum of the components

of li, x andy is 1.

After giving the definition of a strategy(li, ni, hi), I think it appropriate to also give an interpretation. The strategy

may be thought of as a book that is is written before the start of the game and that gives the firm instructions on

how to choose an action at every possible decision node. The instructions describe how a firm should weight a dice

such that the result of the dice roll determines the firm’s action. As there are three parts in the strategy(li, ni, hi),

we may consider the book to have three chapters. The first chapter, which may be thought to consists of the

information inli, describes how the firm should weight its dice in the first stage. The second chapter, consisting

of the information inni, describes how the firm should weight its dice in the second stage for all possible choice

combinations from the first stage. Finally the third chapter, consisting of the information inhi, describes how the

firm should weight its dice in the third stage for all possiblechoice combinations from the first and second stages.

Why choose such a complicated definition of a strategy instead of, for example, assuming that firms choose their

actions deterministically? Allowing the firms to randomizeover their actions allows us the invoke Nash’s theorem

(see e.g. Fudenberg and Tirole (1991, p. 29)) which guarantees the existence of a NE in the stage normal-form

games as each of the normal-form games has a finite number of players and actions. When each of the possible

normal-form games has a NE, we may construct the SPNE for the whole proposed game using the found NEa.
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6.3.3 Subgame-perfect Nash equilibrium

As the proposed game is an extensive-form game, I naturally use the SPNE as my equilibrium concept. The SPNE

is, as the name suggests, a refinement of the classical NE concept. For sake of completeness, let us retrace the

steps through which we arrive at the SPNE from the classical NE concept for the proposed game.

The classical NE for an arbitrary two player game may be defined as follows. Letsi, i = 1, 2 denote player

i’s strategy, andπi(s1, s2) playeri’s (expected) payoff for the strategy pair(s1, s2). Strategy pair(s∗1, s
∗
2) is the

game’s NE if the following conditions (6.8) hold:

π1(s
∗
1, s

∗
2) ≥ π1(s

′
1, s

∗
2) for all s′1

π2(s
∗
1, s

∗
2) ≥ π2(s

∗
1, s

′
2) for all s′2 (6.8)

Conditions (6.8) state that neither player can improve his payoff by unilaterally changing its strategy. Since we

assume that the players are rational, we may reasonably expect the players to have optimized their own strategies to

the point where there are no unilateral payoff improvements. The play with rational players will therefore converge

to a NE. In order to be able to use the conditions (6.8) for the proposed game, we need to determine the payoffs for

the firms.

The construction of the payoffs for the proposed game requires some care. As we have allowed the firms to

randomize over their choices, we cannot use the profits (6.6)as the payoffs as such. Rather, the payoffs for

the game are the expected profits from a chosen strategy pair.To define the expected profits, it is necessary to

present compact notation for the possible choice combinations and the probability for reaching a particular choice

combination.

First let us denote a particular choice combination asc = (a1, a2, q1, q2, p1, p2) where naturallyai ∈ A, qi ∈

Q, pi ∈ P, i = 1, 2. Next let setC denote the set of all choice combinations, i.e.C = {(a1, a2, q1, q2, p1, p2) |

ai ∈ A, qi ∈ Q, pi ∈ P, i = 1, 2}. Now given any choice combinationc, we may write the profits (6.6) of both

firms1 and2 simply asπi(c) = πi(ai, qi, pi | aj , qj , pj).

The probability of reaching a particular choice combination is determined by the strategies of both firms. Let

si = (li, ni, hi) denote firmi’s strategy and letc = (a1, a2, q1, q2, p1, p2) denote some choice combination. Let us

now suppose that the choicea1 is thekth and the choicea2 thejth choice in the setA. Now the probability of firm

1 choosinga1 in the first stage is naturally given by(l1)k (thekth component of vectorl1), and correspondingly

the probability of firm2 choosinga2 in the first stage is given by(l2)j . Naturally then the probability of firm

1 choosinga1 and firm2 choosinga2 at the first stage is the product(l1)k(l2)j . Next, let us suppose that the

choicesq1 is thek′th and the choiceq2 the j′th choice in setQ. Now given the first stage choices(a1, a2),

firm 1 choosesq1 with the probability(n1(a1, a2))k′ and firm2 choosesq2 with the probability(n2(a1, a2))j′ .

Naturally then the probability of firm 1 choosingq1 and firm 2 choosingq2 together at the second stage is the

product(n1(a1, a2))k′(n2(a1, a2))j′ . After applying this reasoning to determine the probabilities for the third

stage choices (wherep1 is chosen with the probability given by thek′′th component ofh1(a1, a2, q1, q2) etc.), we

may write the probabilityP (c) for the choice combinationc in equation (6.9):

P (c) = (l1)k(l2)j(n1(a1, a2))k′ (n2(a1, a2))j′ (h1(a1, a2, q1, q2))k′′ (h2(a1, a2, q1, q2))j′′ (6.9)

We may now determine the payoff functions for both firms. Let us abuse the notation even more and define

functionsπi(s1, s2), i = 1, 2 as our payoff functions given strategiess1 and s2. The payoff of firmi is the

expected value of firmi’s profits given the strategies(s1, s2). Accounting for all possible choice combinations
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(i.e. summing through the set of all possible combinationsC), the payoff functionsπi(s1, s2) are then written as

in equation (6.10):

πi(s1, s2) =
∑

c∈C

P (c)πi(c) (6.10)

While using the payoffs (6.10) together with the strategiessi = (li, ni, hi) allows us to write the NE conditions

(6.8) for the proposed game, solving the NE strategies(s∗1, s
∗
2) is difficult due to the complicated definition of a

strategy. There is no requirement for the NE to be unique as there may exists many pairs(s∗1, s
∗
2), (s

∗
1, s

∗
2)

′, . . .

that satisfy the conditions (6.8). As the proposed game is anextensive-form game, the conditions (6.8) also allow

for equilibria that are in a sense unbelievable. Since the firms commit to their strategies before the game starts, it

is possible for the firms to “threaten” each other by committing to make detrimental choices. For example, firm

1 may construct its strategys1 such that it always chooses pricep1 = 0 in the third stage if it observes firm 2

choosing a high quality (i.e.a2 = 2 or a2 = 3) in the first stage to undercut firm 2’s profits. These types of threats

are unbelievable since when the game has reached the third stage, it is never optimal for firm 1 to choose price

p1 = 0 as it would always lead to a negative profit. The example threat is thus an empty one. Nevertheless, empty

threats may form a part of firm 1’s strategy to influence the choices of firm 2. The use of the SPNE concept allows

us to avoid these types of equilibria.

Defining the SPNE concept requires first defining what is meantby a proper subgame. Roughly speaking (an exact

definition may be found in Fudenberg and Tirole (1991, p. 94))a proper subgame is an extensive-form game that

forms a part of the whole extensive-form game and shares the same information sets. We may construct proper

subgames from figure 6.3 by taking a single node and all its successor nodes. If the first node is a member of an

information set, we also have to include all the nodes of the information set and all their successor nodes.

Fudenberg and Tirole (1991, p. 95) defines the SPNE as follows: A behavior-strategy profileσ of an extensive-

form game is a SPNE if the restriction ofσ to G is a NE ofG for every proper subgameG. Let us interpret this

definition in terms of the proposed game. I have likened the strategiessi = (li, ni, hi) to behavioral strategies. I

therefore further liken the behavior-strategy profileσ to a pair of strategies(s1, s2). A restriction ofσ to a proper

subgame is then the parts ofσ that describe play in the parts of the whole extensive-form game that form the

proper subgame. For example, suppose that we have some strategy pair(s1, s2) and wish to see what form one of

its restriction takes. Suppose further that firm 1 has chosenqualitya1 = 1 and firm 2 has chosen qualitya2 = 1.

Then a restriction of the strategy pair(s1, s2) to the subgame takes the form(si | a1 = 1, a2 = 1) = (ni(1, 1), f)

wheref(x, y) = h(1, 1, x, y), x, y ∈ Q. The form of the restriction naturally depends on which nodethe proper

subgame is created.

Why does the subgame-perfection requirement rule out emptythreats in the equilibrium strategies in the proposed

game? This property comes from the requirement that the restrictions of a SPNE strategies form NEa in all of its

subgames. Suppose that the firms have already chosen their qualities and free samples and the game has entered

the third stage. In a SPNE, the restricted strategies in the third stage will then have to form a NE (i.e. satisfy

conditions (6.8)) for this subgame. This precludes choosing a suboptimal price and thereby fulfilling a possible

threat. We may use the same argument to preclude threats of high amounts of free samples in the second stage.

Moreover, as each extensive-form game is a proper subgame ofitself, a SPNE is necessarily also a NE (Fudenberg

and Tirole (1991, p. 96)).

After presenting the definition and the properties of the SPNE, let us consider what conditions should the SPNE

strategies fulfill. It is now useful to recall that each stageof the proposed game may be seen as a normal-form

game. Starting from the last stage, we may note that the thirdstage is equivalent to a normal-form game where

the firms are simultaneously choosing their prices with the other profit-determining variables having already been

set. Then the SPNE requirement states that the third stage restrictions of the strategies need to form the NEa for all
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possible third stage normal-form games. Next, as now we knowthat each third stage normal-form game has a NE

that the play adheres to, we may associate the NE profits from the third stage normal-form games to each second

stage choice pair. The situation the firms then face in the second stage is equivalent to a normal-form game, as

the qualities have already been set and the prices will be setby the NE strategies of the third stage normal-form

games. As with the third stage normal-form game, we may solvethe NEa of these new second stage normal-form

games and associate their NE profits to the first stage choicesthat lead to each particular second stage. Finally, this

procedure then gives us a first stage normal-form game. We maythen solve the NEa for the first stage normal-form

game. The NE profits for the first stage normal-form game now correspond to the expected profits of the proposed

game. Moreover, the NE strategies for the third, second and first stages may be combined to form the SPNE

strategies for the whole proposed game.

Let us now try to state the preceeding reasoning in a more precise manner. We wish to consider firmi’s strategy

si = (li, ni, hi) for the proposed game, and construct the conditions for the partsli, ni andhi such that the strategy

si satisfies the SPNE requirements. These conditions are next constructed stage-by-stage.

Let us first consider the third stage conditions. Suppose that the proposed game has entered the third stage with his-

tory (a1, a2, q1, q2). Lethi = hi(a1, a2, q1, q2) denote firmi’s strategy, andπThird Stage
i (h1, h2) firm i’s (expected)

profits for strategies(h1, h2) at the third stage normal-form game. Each of the third stage normal-form games then

has the form of the normal-form game in figure 6.4. Then using conditions (6.8), we may write conditions (6.11)

to guarantee that the strategies in the third stage form a NE:

For allai ∈ A, qi ∈ Q, i = 1, 2

πThird Stage
1 (h∗

1, h
∗
2) ≥ πThird Stage

1 (h′
1, h

∗
2) for all h′

1

π
Third Stage
2 (h∗

1, h
∗
2) ≥ π

Third Stage
2 (h∗

1, h
′
2) for all h′

2 (6.11)

When the NE conditions (6.11) for the third stage normal-form game hold, we note that with the second stage

choices(q1, q2) with history(a1, a2), firm i will have the expected profitsπThird Stage
i (h∗

1, h
∗
2). We therefore asso-

ciate the third stage expected NE profits as the (induced) expected profits for choices(q1, q2). LetπSecond Stage
i (n1, n2),

whereni = ni(a1, a2), denote firmi’s induced profits in the second stage normal-form game. Eachof the second

stage normal-form games now has the form of the normal-form game in figure 6.6. Again using conditions (6.8),

we may write the conditions (6.12) to guarantee that the strategies in the second stage form a NE:

For allai ∈ A, i = 1, 2

πSecond Stage
1 (n∗

1, n
∗
2) ≥ πSecond Stage

1 (n′
1, n

∗
2) for all n′

1

πSecond Stage
2 (n∗

1, n
∗
2) ≥ πSecond Stage

2 (n∗
1, n

′
2) for all n′

2 (6.12)

When the NE conditions (6.12) and (6.11) hold, firmi will have the expected profitsπSecond Stage
i (n∗

1, n
∗
2), i = 1, 2

for first stage choices(a1, a2). We therefore again associate the second stage (induced) expected NE profits as the

(induced) expected profits for the choices(a1, a2). Let πFirst Stage
i (l1, l2) denote firmi’s induced profits in the first

stage normal-form game with strategies(l1, l2). The first stage normal-form game then has the form of the normal-

form game in figure 6.8. Once again using conditions (6.8), wemay write the conditions (6.13) to guarantee that

the strategies in the first stage form a NE:
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πFirst Stage
1 (l∗1, l

∗
2) ≥ πFirst Stage

1 (l′1, l
∗
2) for all l′1

πFirst Stage
2 (l∗1, l

∗
2) ≥ πFirst Stage

2 (l∗1, l
′
2) for all l′2 (6.13)

When the strategy pair(s1, s2) satisfies conditions (6.11), (6.12) and (6.13), it will forma SPNE for the proposed

game. The construction of the presented conditions also provides us now with the method for actually solving the

SPNE strategies.

6.3.4 Solving the SPNE

As the initial value problem (6.3) is (almost) equivalent tothe post-entry initial value problem (5.6), it too has no

easy analytical solutions. I therefore use numerical methods as solving the initial value problem is necessary to

determine the profits, and thereby the behavior, of the two firms.

The approach for solving the firm behavior is a process very much similar to backward induction in games of

perfect information. Whereas in the standard applicationsof backward induction we only need to consider the

actions of a single player at a time, in this instance we consider the behavior of two firms in a single normal-form

game at a time. We study the proposed game stage by stage starting from the third stage normal-form games. We

first solve a NE for each of the third stage normal-form games,use the NE strategies to construct the functions

hi(a1, a2, q1, q2), i = 1, 2 and the NE profits as the induced profits for the second stage normal-form games. We

then solve a NE for each second stage normal-form games with induced profits, use the NE strategies to construct

the functionsni(a1, a2), i = 1, 2 and the NE profits as the induced profits for the first stage normal-form game.

Finally, we solve a NE for the first stage normal-form game anduse the NE strategies as the strategiesli, i = 1, 2

and the NE profits as the expected profits of the whole proposedgame. The strategiessi = (li, ni, hi), i = 1, 2

then form a SPNE for the whole proposed game and determine therange of possible firm behavior we may expect

to observe.

NEa in the normal-form games for each stage are solved with the support enumeration algorithm (algorithm 1 of

Avis et al. (2010, p. 13)) which finds all NEa of a given nondegenerate bimatrix normal-form game. The algorithm

iterates through all combinations of possible supports of strategies (a support of a strategy is the set of actions to

which the strategy assigns a positive probability) and tries to solve a system of linear equations determined by the

supports. If the solution of the system of linear equations satisfies the best response conditions and is non-negative,

the solution forms a NE for the game.

For each subgame, I arbitrarily use the first NE that is found.This choice bypasses the questions of equilibrium

choice that could be raised, as considering them would lead to new complications in an already overcomplicated

model. I acknowledge the possibility that multiple NEa in the second or third stage games may now hide possible

NEa in earlier stages. For example, let us suppose that thereare multiple NEa in a third stage normal-form game.

Since the approach chooses the first found NE and uses it to calculate the induced profits for all preceeding stages

leading to this third stage normal-form game, the choice affects all subsequent normal-form games through profits.

This choice may then mask other possible NEa in earlier stages.

For sake of clarity, let us walk through the solving approachstep by step. We start by considering all possible

third stage normal-form games. Suppose that the game has entered the third stage corresponding to the fifth and

the sixth decision nodes in figure 6.3 with history(a1, a2, q1, q2). The third stage with the given history is then

equivalent to the normal-form game in figure 6.4. We now solvethe NE strategies and (expected) profits of the

equivalent normal-form game. Let us denote firmi’s (i = 1, 2) NE strategy byh∗
i and firmi’s expected profits as

π
Third Stage
i (h∗

1, h
∗
2). Given the history(a1, a2, q1, q2) we then simply sethi(a1, a2, q1, q2) = h∗

i . Going through all

possible(a1, a2, q1, q2)-combinations then completes the construction of functionshi(a1, a2, q1, q2).



6. SIMULTANEOUS-CHOICE DUOPOLY 53

Next, solving the NEa of all possible third stage normal-form games we may eliminate the third stage nodes in

figure 6.3 and study instead a truncated game tree in figure 6.5. In this new game tree the second stage nodes

lead to the previously calculated third stage NE profitsπ
Third Stage
i (h∗

1, h
∗
2). We now apply the same procedure to

the second stage nodes as to the third stage nodes. Given the history (a1, a2) the second stage is equivalent to

a normal-form game given in figure 6.6. We again solve the NE strategies and the expected NE profits of the

equivalent normal-form game. Let nown∗
i denote firmi’s (i = 1, 2) NE strategy andπSecond Stage

i (n∗
1, n

∗
2) firm i’s

expected NE profits. We may then again setni(a1, a2) = n∗
i to construct the functionni(a1, a2). Going through

all possible(a1, a2)-combinations then completes the construction of functionsni(a1, a2).

Finally, solving the NEa of all possible second stage normal-form games we may eliminate the second stage nodes

in figure 6.5 and study instead an even more truncated game tree in figure 6.7. In this new game tree the first stage

nodes now lead to the second stage NE profitsπSecond Stage
i (n∗

1, n
∗
2). Again, the new game tree is equivalent to the

normal-form game in figure 6.8. We again solve the NE strategies and the expected NE profits of the equivalent

normal-form game. Letl∗i denote firmi’s (i = 1, 2) NE strategy andπFirst Stage
i (l∗1 , l

∗
2) firm i’s expected NE profits.

These components complete the construction of the SPNE strategies for the proposed game, as we may now set

li = l∗i completing the strategysi = (li, ni, hi). Moreover, the expected NE profitsπFirst Stage
i (l∗1 , l

∗
2) for the (first

stage) normal-form game give us the expected NE profits of thewhole proposed game.

Figure 6.9 describes the structure of the implemented script. The structure of the script is a close reflection to

the way the SPNE strategies are constructed. The script firstgenerates numerically the payoff matrices for all of

the third stage normal-form games and solves the NE strategies and profits for the normal-form games. Next, the

script generates the payoff matrices of the second stage normal-form games from the NE profits of the third stage

normal-form games and solves the NE strategies and profits for the newly-constructed second stage normal-form

games. Finally, the script generates the payoff matrices ofthe first stage normal-form game from the NE profits of

the second stage normal-form games and solves the NE strategies and profits of the final first stage normal-form

game. From the solved NE strategies from the third, second and first stage normal-form games the script generates

SPNE strategies for the proposed game. See appendix E for theimplemented script.

The subroutinesFirstStageNEQualities , SecondStageNESamples andThirdStageNEPrices-

Parallel in figure 6.9 construct the SPNE strategy components from thefirst, second and third stage normal-

form games respectively. For each of the normal-form games they create the appropriate payoff matrices, solve and

store the NE strategies. The payoff matrices for third stagenormal-form games are generated by calculating profits

(6.6), and the payoff matrices for the second and first stagesfrom the NE profits from following stages. Solving the

NE strategies for a given normal-form game is done with the subroutineNashEquilibriaBySupportEnume-

ration .

The subroutineNashEquilibriaBySupportEnumeration is an implementation of the support enumera-

tion algorithm (Avis et al. (2010, p. 13)). The algorithm requires an input of a nondegenerate bimatrix game, which

are provided by the subroutinesFirstStageNEQualities ,SecondStageNESamples andThirdStage-

NEPricesParallel and gives as an output all NEa of the given game. This implementation requires that the

payoff matrices aren × n-square matrices. This requirement stems from the implementation itself while the

algorithm could handlen×m-matrices.

The payoff matrices for the third stage normal-form games are calculated parallely in order to save computing time.

The subroutinesparallelWrapperProfitsFirm1 andparallelWrapperProfitsFirm2 are “wrap-

pers” for implementing parallel computing with MATLAB’sparfor-command. The subroutinesprofitsFirm1

andprofitsFirm2 calculate the actual profits of firm 1 and 2 given choices(a1, a2, q1, q2, p1, p2). The profits

are again calculated using the same methods as in the previous two models: The subroutines first solve the ini-

tial value problem (6.3) usingode45. They then generate the appropriate revenue vectors by using subroutines

revenueFirm1 andrevenueFirm2 and usetrapzto calculate the integral in equation (6.6) numerically. The

profits for the firms are then determined by accounting for thefree samples costs from the calculated integrals. The
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subroutinesrevenueFirm1 andrevenueFirm2 generate the revenue vectors required for numerical integra-

tion. The subroutineduopolyDES is the (reduced) differential equation system of initial value problem (6.3)

required byode45.

6.4 Outcomes

We wish to determine how the firms will behave in order to consider the research questions. The firm behavior in

the model is determined by the SPNE strategies. However, thenature of the SPNE strategies creates difficulties in

presenting them in their entirety. First, let us recall thatthe functionsni(a1, a2) andhi(a1, a2, q1, q2) for firm i’s

strategysi are constructed by associating a probability distributionto each member of setsA×A andA×A×Q×Q.

If we were then to present the probability distribution associated to a particular member on a single line, we would

need in total#A · #A lines to describe the functionni(a1, a2) and#A · #A · #Q · #Q lines to describe the

functionhi(a1, a2, q1, q2) for firm i’s strategy, where#A denotes the number of members in setA and#Q the

number of members in setQ. For the sets (3.8), we have#A ·#A = 16 and#A ·#A ·#Q ·#Q = 256. Since

we are interested in studying firm behavior in fifteen different combinations of trend type and strength, planning

horizon length and firm patience, completely describing theSPNE strategies of even a single firm for all considered

cases would require prohibitively many lines. I therefore choose to present here only the parts of both firms’ SPNE

strategies that directly affect firm behavior. I acknowledge that the complete strategies for the proposed game

would be required to verify that the strategies indeed form aSPNE. I invite the reader interested in checking the

subgame-perfection claim to run the supplied script to generate the appropriate information. See appendix B for

an example pair of complete SPNE strategies.

6.4.1 SPNE strategies

First stage SPNE strategiesli

Tables 6.1-6.3 present the first stage normal-form game strategies of the SPNE that determine the quality choices.

Since each vector in the tables is a probability distribution over the quality choice setA of sets (3.8), we may

describe how the quality choices are made by studying the components of the vectors. First component of vector

li gives the probability that firmi chooses qualityai = 0, the second the probability that firmi chooses quality

ai = 1 etc.

Table 6.1 describes how the quality choices are made in the SPNE for patient firms with discount rater = 0. We

note that in most cases the quality decisions are made deterministically, as in most cases the vectors take the form

(0, 0, 1, 0)T or (0, 0, 0, 1)T . These vectors correspond to firmi choosing the qualityai = 2 or ai = 3 for certain.

We also note that quality choices in cases with parabel trendwith strengthd = 2 and planning horizonsT = 10 and

T = 100 are nondeterministic. With planning horizonT = 10, we haveli = (0, 0.085328, 0.46174, 0.45293)T

which leads to firmi choosing qualityai = 1, ai = 2 or ai = 3. With planning horizonT = 100, we have

li = (0, 0.28001, 0, 0.71999)T which leads to firmi choosing either qualityai = 1 or ai = 3.

Table 6.2 describes how the quality choices are made in the SPNE for normal firms with discount rater = 0.05.

Again we note that in most cases the quality choices are made deterministically, as in most cases the vectors take the

form (0, 0, 1, 0)T or (0, 0, 0, 1)T . These vectors correspond to firmi choosing qualityai = 2 or ai = 3 for certain.

We also note that quality choices in cases with parabel trendwith strengthd = 2 and planning horizonsT = 10

andT = 100 are nondeterministic. With planning horizonT = 10, we haveli = (0, 0.0155, 0.58875, 0.39575)T

which leads to firmi choosing qualityai = 1, ai = 2 or ai = 3. With planning horizonT = 100, we have

li = (0, 0.25943, 0.14396, 0.59661)T which leads to firmi choosing qualityai = 1, ai = 2 or ai = 3.
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Planning horizon Trend type l1 l2

T = 10 no trend (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 2 (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 2 (0, 0.085328, 0.46174, 0.45293)T (0, 0.085328, 0.46174, 0.45293)T

linear,d = 8 (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (0, 0, 1, 0)T (0, 0, 1, 0)T

T = 100 no trend (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 2 (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 2 (0, 0.28001, 0, 0.71999)T (0, 0.28001, 0, 0.71999)T

linear,d = 8 (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (0, 0, 1, 0)T (0, 0, 1, 0)T

Table 6.1: First stage normal-form game SPNE strategies, patient firms,r = 0

Planning horizon Trend type l1 l2

T = 10 no trend (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 2 (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 2 (0, 0.0155, 0.58875, 0.39575)T (0, 0.0155, 0.58875, 0.39575)T

linear,d = 8 (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (0, 0, 1, 0)T (0, 0, 1, 0)T

T = 100 no trend (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 2 (0, 1, 0, 0)T (0, 0, 1, 0)T

parabel,d = 2 (0, 0.25943, 0.14396, 0.59661)T (0, 0.25943, 0.14396, 0.59661)T

linear,d = 8 (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (0, 0, 1, 0)T (0, 0, 1, 0)T

Table 6.2: First stage normal-form game SPNE strategies, normal firms,r = 0.05
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Planning horizon Trend type l1 l2

T = 10 no trend (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 2 (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 2 (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 8 (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 8 (0, 0, 1, 0)T (0, 1, 0, 0)T

T = 100 no trend (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 2 (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 2 (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 8 (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 8 (0, 0, 1, 0)T (0, 1, 0, 0)T

Table 6.3: First stage normal-form game SPNE strategies, impatient firms,r = 10

Table 6.3 describes how the quality choices are made in the SPNE for impatient firms with discount rater = 10.

We note that the quality choices are made deterministicallyin every case. With the vectorli = (0, 0, 1, 0)T firm i

chooses qualityai = 2 for certain, and with the vectorli = (0, 1, 0, 0)T firm i chooses qualityai = 1 for certain.

Second stage SPNE strategiesni(a1, a2)

The free samples choices in the second stage depend on the quality choices in the first stage that are determined by

tables 6.1-6.3. Tables 6.4-6.6 give the second stage normal-form game strategies of the SPNE that determine the

free samples choices. We describe how the free samples choices are made by determining the vectorsni(a1, a2)

that are dependent on the quality choices(a1, a2). The vectorsni(a1, a2) are probability distributions over the free

samples setQ of sets (3.8). Again, the first component of vectorni(a1, a2) is the probability that firmi chooses

free samplesqi = 0, the second component the probability that firmi chooses free samplesqi = 200 000 etc.

Table 6.4 describes how the free samples choices are made in the SPNE for patient firms with discount rater = 0.

We again note that in most cases the free samples choices are deterministic: Firmi chooses free samplesqi = 0

whenni(a1, a2) = (1, 0, 0, 0)T , free samplesqi = 200 000 whenni(a1, a2) = (0, 1, 0, 0)T , free samples

qi = 400 000 whenni(a1, a2) = (0, 0, 1, 0)T and free samplesqi = 600 000 whenni(a1, a2) = (0, 0, 0, 1)T

for certain. We also note that free samples choices in the case with linear trend with strengthd = 2 and plan-

ning horizonsT = 10 are nondeterministic. As firmi’s free samples choice strategy is in this caseni(2, 2) =

(0.34668, 0.21864, 0.43468, 0)T , firm i chooses free samplesqi = 0, qi = 200 000 or qi = 400 000.

Table 6.5 describes how the free samples choices are made in the SPNE for normal firms with discount rate

r = 0.05. We again note that in most cases the free samples choices aredeterministic: Firmi chooses free

samplesqi = 0 whenni(a1, a2) = (1, 0, 0, 0)T , free samplesqi = 200 000 whenni(a1, a2) = (0, 1, 0, 0)T and

free samplesqi = 400 000 whenni(a1, a2) = (0, 0, 1, 0)T and free samplesqi = 600 000 whenni(a1, a2) =

(0, 0, 0, 1)T for certain. We also again note that free samples choices in the case with linear trend with strength

d = 2 and planning horizonsT = 10 is nondeterministic. As firmi’s free samples choice strategy is in this case

ni(2, 2) = (0.20827, 0.56213, 0.2296, 0)T, firm i chooses free samplesqi = 0, qi = 200 000 or qi = 400 000.

Table 6.6 describes how free samples choices are made in the SPNE for impatient firms with discount rater = 10.

We note that free samples choices are deterministic in everycase. With the vectorni(a1, a2) = (1, 0, 0, 0)T firm i

chooses free samplesqi = 0 for certain, and with the vectorni(a1, a2) = (0, 1, 0, 0)T firm i chooses free samples

qi = 200 000 for certain.
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Planning horizon Trend type (a1, a2) n1(a1, a2) n2(a1, a2)

T = 10 no trend (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 2 (2, 2) (0.34668, 0.21864, 0.43468, 0)T (0.34668, 0.21864, 0.43468, 0)T

parabel,d = 2 (1, 1) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 2) (1, 0, 0, 0)T (0, 1, 0, 0)T

(1, 3) (0, 1, 0, 0)T (0, 0, 1, 0)T

(2, 1) (0, 1, 0, 0)T (1, 0, 0, 0)T

(2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

(2, 3) (1, 0, 0, 0)T (0, 1, 0, 0)T

(3, 1) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 2) (0, 1, 0, 0)T (1, 0, 0, 0)T

(3, 3) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 8 (3, 3) (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (2, 2) (0, 1, 0, 0)T (0, 1, 0, 0)T

T = 100 no trend (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 2 (2, 2) (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 2 (1, 1) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 3) (0, 1, 0, 0)T (0, 0, 1, 0)T

(3, 1) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 3) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 8 (3, 3) (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (2, 2) (0, 1, 0, 0)T (0, 1, 0, 0)T

Table 6.4: Second stage normal-form game SPNE strategies, patient firms,r = 0
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Planning horizon Trend type (a1, a2) n1(a1, a2) n2(a1, a2)

T = 10 no trend (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 2 (2, 2) (0.20827, 0.56213, 0.2296, 0)T (0.20827, 0.56213, 0.2296, 0)T

parabel,d = 2 (1, 1) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 2) (1, 0, 0, 0)T (0, 1, 0, 0)T

(1, 3) (0, 1, 0, 0)T (0, 0, 1, 0)T

(2, 1) (0, 1, 0, 0)T (1, 0, 0, 0)T

(2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

(2, 3) (1, 0, 0, 0)T (0, 1, 0, 0)T

(3, 1) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 2) (0, 1, 0, 0)T (1, 0, 0, 0)T

(3, 3) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 8 (3, 3) (0, 0, 1, 0)T (0, 0, 1, 0)T

parabel,d = 8 (2, 2) (0, 1, 0, 0)T (0, 1, 0, 0)T

T = 100 no trend (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 2 (1, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

parabel,d = 2 (1, 1) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 2) (1, 0, 0, 0)T (0, 1, 0, 0)T

(1, 3) (0, 1, 0, 0)T (0, 0, 1, 0)T

(2, 1) (0, 1, 0, 0)T (1, 0, 0, 0)T

(2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

(2, 3) (1, 0, 0, 0)T (0, 1, 0, 0)T

(3, 1) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 2) (0, 1, 0, 0)T (1, 0, 0, 0)T

(3, 3) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 8 (3, 3) (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (2, 2) (0, 1, 0, 0)T (0, 1, 0, 0)T

Table 6.5: Second stage normal-form game SPNE strategies, normal firms,r = 0.05
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Planning horizon Trend type (a1, a2) n1(a1, a2) n2(a1, a2)

T = 10 no trend (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 2 (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

parabel,d = 2 (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 8 (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

parabel,d = 8 (2, 1) (1, 0, 0, 0)T (0, 1, 0, 0)T

T = 100 no trend (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 2 (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

parabel,d = 2 (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

linear,d = 8 (2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

parabel,d = 8 (2, 1) (1, 0, 0, 0)T (0, 1, 0, 0)T

Table 6.6: Second stage normal-form game SPNE strategies, impatient firms,r = 10

Third stage SPNE strategieshi(a1, a2, q1, q2)

The price choices in the third stage depend on the quality choices in the first stage (determined by tables 6.1-6.3)

and the free samples choices in the second stage (determinedby tables 6.4-6.6). Tables 6.7-6.9 give the third stage

normal-form game strategies of the SPNE that determine the price choices. We describe how the price choices

are made by determining the vectorshi(a1, a2, q1, q2) that are dependent on the previous quality and free samples

choices(a1, a2, q1, q2). The vectorshi(a1, a2, q1, q2) are probability distributions over the price setP of sets (3.8).

Again, the first component of vectorhi(a1, a2, q1, q2) is the probability that firmi chooses pricepi = 0, the second

component the probability that firmi chooses pricepi = 3 etc.

We note that the price choices in the SPNE of all considered discount rates and cases are deterministic. With the

vectorhi(a1, a2, q1, q2) = (0, 1, 0, 0)T firm i chooses pricepi = 3 for certain. With the vectorhi(a1, a2, q1, q2) =

(0, 0, 1, 0)T firm i chooses pricepi = 6 for certain. With the vectorhi(a1, a2, q1, q2) = (0, 0, 0, 1)T firm i chooses

pricepi = 9 for certain.

6.4.2 Observable firm behavior

As firm behavior in the SPNE may be nondeterministic, we are forced to consider a range of possible firm behavior

profiles instead of a single pair of deterministic firm behavior profiles. Tables 6.10-6.12 give the possible firm

behavior profiles and table 6.13 the expected SPNE profits.

The results again do not offer us a reason to doubt the internal validity of the model. We note that both firms will

always set a positive price to guarantee nonnegative expected SPNE profits. Again, the SPNE behavior in each of

the no trend cases for both firms is(ai, qi, pi) = (2, 0, 3), i = 1, 2. This allows us to consider the effects of the

planning horizon and the discount rate to the expected SPNE profits. We note that with longer planning horizons

the expected SPNE profits are larger, and with larger discount rates the expected SPNE profits are correspondingly

smaller.

Let us next consider the research questions: Different trend types again lead to observable differences in firm

behavior but the specific type and strength of the trend may not be inferred purely from firm behavior. For example,

we note that both (patient) firms with short planning horizons may end up choosing(ai, qi, pi) = (2, 0, 3) in

cases with no trend, a linear trend with strengthd = 2 or a parabel trend with strengthd = 2 (see table 6.10,

T = 10). Thus if the observer happened to know the discount rate andthe planning horizons of both firms
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Planning horizon Trend type (a1, a2, q1, q2) h1(a1, a2, q1, q2) h2(a1, a2, q1, q2)

T = 10 no trend (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 2 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 0, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 0, 400 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 200 000, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 200 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 200 000, 400 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 400 000, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 400 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 400 000, 400 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 2 (1, 1, 200 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 2, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

(1, 3, 200 000, 400 000) (0, 1, 0, 0)T (0, 0, 0, 1)T

(2, 1, 200 000, 0) (0, 0, 1, 0)T (0, 1, 0, 0)T

(2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 3, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

(3, 1, 400 000, 200 000) (0, 0, 0, 1)T (0, 1, 0, 0)T

(3, 2, 200 000, 0) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 3, 200 000, 200 000) (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 8 (3, 3, 600 000, 600 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (2, 2, 200 000, 200 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

T = 100 no trend (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 2 (2, 2, 400 000, 400 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 2 (1, 1, 200 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 3, 200 000, 400 000) (0, 1, 0, 0)T (0, 0, 0, 1)T

(3, 1, 400 000, 200 000) (0, 0, 0, 1)T (0, 1, 0, 0)T

(3, 3, 200 000, 200 000) (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 8 (3, 3, 600 000, 600 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (2, 2, 200 000, 200 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

Table 6.7: Third stage normal-form game SPNE strategies, patient firms,r = 0
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Planning horizon Trend type (a1, a2, q1, q2) h1(a1, a2, q1, q2) h2(a1, a2, q1, q2)

T = 10 no trend (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 2 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 0, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 0, 400 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 200 000, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 200 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 200 000, 400 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 400 000, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 400 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 2, 400 000, 400 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 2 (1, 1, 200 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 2, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

(1, 3, 200 000, 400 000) (0, 1, 0, 0)T (0, 0, 0, 1)T

(2, 1, 200 000, 0) (0, 0, 1, 0)T (0, 1, 0, 0)T

(2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 3, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

(3, 1, 400 000, 200 000) (0, 0, 0, 1)T (0, 1, 0, 0)T

(3, 2, 200 000, 0) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 3, 200 000, 200 000) (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 8 (3, 3, 400 000, 400 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (2, 2, 200 000, 200 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

T = 100 no trend (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 2 (1, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 2 (1, 1, 200 000, 200 000) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 2, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

(1, 3, 200 000, 400 000) (0, 1, 0, 0)T (0, 0, 0, 1)T

(2, 1, 200 000, 0) (0, 0, 1, 0)T (0, 1, 0, 0)T

(2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

(2, 3, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

(3, 1, 400 000, 200 000) (0, 0, 0, 1)T (0, 1, 0, 0)T

(3, 2, 200 000, 0) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 3, 200 000, 200 000) (0, 0, 1, 0)T (0, 0, 1, 0)T

linear,d = 8 (3, 3, 600 000, 600 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

parabel,d = 8 (2, 2, 200 000, 200 000) (0, 0, 0, 1)T (0, 0, 0, 1)T

Table 6.8: Third stage normal-form game SPNE strategies, normal firms,r = 0.05
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Planning horizon Trend type (a1, a2, q1, q2) h1(a1, a2, q1, q2) h2(a1, a2, q1, q2)

T = 10 no trend (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 2 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 2 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 8 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 8 (2, 1, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

T = 100 no trend (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 2 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 2 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

linear,d = 8 (2, 2, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 0)T

parabel,d = 8 (2, 1, 0, 200 000) (0, 1, 0, 0)T (0, 0, 1, 0)T

Table 6.9: Third stage normal-form game SPNE strategies, impatient firms,r = 10

(clearly an unrealistic assumption), the trend type could still not be inferred from observing both firms choosing

(ai, qi, pi) = (2, 0, 3), i = 1, 2.

We again note that there exists cases with trends such that inthe SPNE one or both firms give out free products

as samples. As with the two preceeding models, we may again present an existence result for the trends: If we

observe either firm giving out free products, we may infer that a trend exists. Again, the result does not run in the

other direction, i.e. we may not infer the nonexistence of a trend from observing that neither firm gives out free

samples.

Even though the firms are symmetric, we note that the SPNE strategies are not necessarily symmetric. The non-

symmetric SPNE strategies lead to nonsymmetric expected SPNE profits. We find three cases of this type in table

6.13: See the cases with impatient firms with discount rater = 10 and parabel trends with strengthd = 8 or the

case with normal firms with discount rater = 0.05 and planning horizonT = 100 and linear trend with strength

d = 2. Appendix A reveals that for the last case there are three NEain the first stage normal-form game. For

the first two cases there are three NEa in a few of the second andthird stage normal-form games. We may then

raise the question whether we could find a SPNE that leads to symmetric expected SPNE profits with different

equilibrium choices. Additionally, we note that the nonsymmetric SPNE strategies guarantee that the observable

firm behavior is nonsymmetric, although the symmetric SPNE strategies also allow the observable firm behavior

to be nonsymmetric.

We may note that firms randomize differently depending on thetype and strength of the trend. The firms randomize

over their free samples choices when there is a linear trend (see tables 6.4 and 6.5), and over quality choices when

there is a parabel trend (see tables 6.1 and 6.2). This behavior is also only evident when there is a weak trend with

strengthd = 2 and disappears in cases with strong trends with strengthd = 8. Moreover, the planning horizon

seems to have an effect on the randomization. We first note that the randomization over the free samples choices

disappears as planning horizon lenghtens fromT = 10 to T = 100. Next, if we interpret that a large amount of

observable firm behavior profiles signifies “strong” randomization, we note that randomization is stronger in cases

with shorter planning horizons. This last observation is based solely on tables 6.10 and 6.11 and may be of little

use when studying trends in more general settings.
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Planning horizon Trend type (a1, q1, p1) (a2, q2, p2)

T = 10 no trend (2, 0, 3) (2, 0, 3)

linear,d = 2 (2, 0, 3) (2, 0, 3)

(2, 0, 3) (2, 200 000, 3)

(2, 0, 3) (2, 400 000, 3)

(2, 200 000, 3) (2, 0, 3)

(2, 200 000, 3) (2, 200 000, 3)

(2, 200 000, 3) (2, 400 000, 3)

(2, 400 000, 3) (2, 0, 3)

(2, 400 000, 3) (2, 200 000, 3)

(2, 400 000, 3) (2, 400 000, 3)

parabel,d = 2 (1, 200 000, 3) (1, 200 000, 3)

(1, 0, 3) (2, 200 000, 6)

(1, 200 000, 3) (3, 400 000, 9)

(2, 200 000, 6) (1, 0, 3)

(2, 0, 3) (2, 0, 3)

(2, 0, 3) (3, 200 000, 6)

(3, 400 000, 9) (1, 200 000, 3)

(3, 200 000, 6) (2, 0, 3)

(3, 200 000, 6) (3, 200 000, 6)

linear,d = 8 (3, 600 000, 9) (3, 600 000, 9)

parabel,d = 8 (2, 200 000, 9) (2, 200 000, 9)

T = 100 no trend (2, 0, 3) (2, 0, 3)

linear,d = 2 (2, 400 000, 3) (2, 400 000, 3)

parabel,d = 2 (1, 200 000, 3) (1, 200 000, 3)

(1, 200 000, 3) (3, 400 000, 9)

(3, 400 000, 9) (1, 200 000, 3)

(3, 200 000, 6) (3, 200 000, 6)

linear,d = 8 (3, 600 000, 9) (3, 600 000, 9)

parabel,d = 8 (2, 200 000, 9) (2, 200 000, 9)

Table 6.10: SPNE firm behavior, patient firms,r = 0
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Planning horizon Trend type (a1, q1, p1) (a2, q2, p2)

T = 10 no trend (2, 0, 3) (2, 0, 3)

linear,d = 2 (2, 0, 3) (2, 0, 3)

(2, 0, 3) (2, 200 000, 3)

(2, 0, 3) (2, 400 000, 3)

(2, 200 000, 3) (2, 0, 3)

(2, 200 000, 3) (2, 200 000, 3)

(2, 200 000, 3) (2, 400 000, 3)

(2, 400 000, 3) (2, 0, 3)

(2, 400 000, 3) (2, 200 000, 3)

(2, 400 000, 3) (2, 400 000, 3)

parabel,d = 2 (1, 200 000, 3) (1, 200 000, 3)

(1, 0, 3) (2, 200 000, 6)

(1, 200 000, 3) (3, 400 000, 9)

(2, 200 000, 6) (1, 0, 3)

(2, 0, 3) (2, 0, 3)

(2, 0, 3) (3, 200 000, 6)

(3, 400 000, 9) (1, 200 000, 3)

(3, 200 000, 6) (2, 0, 3)

(3, 200 000, 6) (3, 200 000, 6)

linear,d = 8 (3, 400 000, 9) (3, 400 000, 9)

parabel,d = 8 (2, 200 000, 9) (2, 200 000, 9)

T = 100 no trend (2, 0, 3) (2, 0, 3)

linear,d = 2 (1, 0, 3) (2, 0, 3)

parabel,d = 2 (1, 200 000, 3) (1, 200 000, 3)

(1, 0, 3) (2, 200 000, 6)

(1, 200 000, 3) (3, 400 000, 9)

(2, 200 000, 6) (1, 0, 3)

(2, 0, 3) (2, 0, 3)

(2, 0, 3) (3, 200 000, 6)

(3, 400 000, 9) (1, 200 000, 3)

(3, 200 000, 6) (2, 0, 3)

(3, 200 000, 6) (3, 200 000, 6)

linear,d = 8 (3, 600 000, 9) (3, 600 000, 9)

parabel,d = 8 (2, 200 000, 9) (2, 200 000, 9)

Table 6.11: SPNE firm behavior, normal firms,r = 0.05
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Planning horizon Trend type (a1, q1, p1) (a2, q2, p2)

T = 10 no trend (2, 0, 3) (2, 0, 3)

linear,d = 2 (2, 0, 3) (2, 0, 3)

parabel,d = 2 (2, 0, 3) (2, 0, 3)

linear,d = 8 (2, 0, 3) (2, 0, 3)

parabel,d = 8 (2, 0, 3) (1, 200 000, 6)

T = 100 no trend (2, 0, 3) (2, 0, 3)

linear,d = 2 (2, 0, 3) (2, 0, 3)

parabel,d = 2 (2, 0, 3) (2, 0, 3)

linear,d = 8 (2, 0, 3) (2, 0, 3)

parabel,d = 8 (2, 0, 3) (1, 200 000, 6)

Table 6.12: SPNE firm behavior, impatient firms,r = 10

◗
◗
◗
◗◗s

✑
✑
✑
✑✑✸

✑
✑

✑
✑✑✰

◗
◗

◗
◗◗❦

◗
◗
◗
◗◗s

✑
✑
✑
✑✑✸

✑
✑

✑
✑✑✰

◗
◗

◗
◗◗❦

βPS→I2

βPS→I1

λ

λ

λ

λ

βPI2→I12

βPI1→I12

S

I1

I2

I12

Figure 6.1: Compartmental Graph, Simultaneous-choice duopoly
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Discount rate Planning horizon Trend type π1 π2

r = 0 T = 10 no trend 397150 397150

linear,d = 2 295220 295220

parabel,d = 2 1.76699 · 106 1.76699 · 106

linear,d = 8 9.0159 · 106 9.0159 · 106

parabel,d = 8 1.8715 · 107 1.8715 · 107

T = 100 no trend 3.7722 · 106 3.7722 · 106

linear,d = 2 6.3709 · 106 6.3709 · 106

parabel,d = 2 3.29188 · 107 3.29188 · 107

linear,d = 8 1.1702 · 108 1.1702 · 108

parabel,d = 8 1.7863 · 108 1.7863 · 108

r = 0.05 T = 10 no trend 315800 315800

linear,d = 2 155230 155230

parabel,d = 2 1.07646 · 106 1.07646 · 106

linear,d = 8 7.8276 · 106 7.8276 · 106

parabel,d = 8 1.4874 · 107 1.4874 · 107

T = 100 no trend 765670 765670

linear,d = 2 111450 3.2737 · 106

parabel,d = 2 5.52684 · 106 5.52684 · 106

linear,d = 8 2.0854 · 107 2.0854 · 107

parabel,d = 8 3.6188 · 107 3.6188 · 107

r = 10 T = 10 no trend 5225.2 5225.2

linear,d = 2 5574.9 5574.9

parabel,d = 2 8516.8 8516.8

linear,d = 8 7232.4 7232.4

parabel,d = 8 371.03 165390

T = 100 no trend 5225.2 5225.2

linear,d = 2 5574.9 5574.9

parabel,d = 2 8516.8 8516.8

linear,d = 8 7232.4 7232.4

parabel,d = 8 371.03 165390

Table 6.13: SPNE expected profits
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Figure 6.2: Duopoly Game
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Figure 6.4: Third stage normal-form game with history(a1, a2, q1, q2)
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whereπ′′′
1 is firm 1’s expected NE profits from third stage normal-form game
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Figure 6.5: Truncated Game Tree, Second stage
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Figure 6.6: Second stage normal-form game with history(a1, a2)
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whereπ′′′
1 is firm 1’s expected NE profits from second stage normal-form game

with history(a1, a2) = (1, 3)
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Figure 6.7: Truncated Game Tree, First stage
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Figure 6.8: First stage normal-form game
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Figure 6.9: Script structure, Simultaneous-choice duopoly
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Conclusions

7.1 Research summary

7.1.1 The definition of a trend

A trend is defined in this thesis as an effect to the consumer’sindirect utility that is dependent solely on the number

of products already in the market. The effect of the trend maybe either positive or negative depending on the

way the effect has been defined and the prevailing situation in the market. Indirect utility is used to determine

the consumer’s buying probabilities for a given product. This definition was chosen because it fits well one of the

conceptions that arises from the word ”trend:“ If a product is trendy, then the probability that a particular consumer

buys it is most likely dependent on how many others already have the product.

We may also imagine other conceptions for a trend. For example, we could require that when a product is trendy,

its popularity should tail off after an initial boom. This would mean that the trend effects should be time-dependent

and fading. Arguing further, we might require that when a product is trendy, it should disappear from the market

after the trend has run its course. This would mean that the buying probabilities fade to zero as time goes on. The

trend effects presented in this thesis can easily be modifiedto account for also these types of requirements.

In order to determine firm behavior in each of the presented models, it is necessary to give concrete functional

forms for the trend effects. These functional forms are the ”no trend”, the linear and the parabel trend effect,

and which seek to model the archetypal ideas of a trend. The ”no trend” effect is a constant zero to model the

nonexistence of a trend. This gives us a benchmark for firm behavior by determining the behavior of firms in an

environment lacking a trend. Next, the linear trend effect increases linearly as the number of the products already

in the market increases. This arguably models markets wherethe product is a network good, i.e. the utility from

the product increases as the number of other people owning the products increases. Finally, the parabel trend effect

increases up to some saturation point after which it starts to decrease as the number of others already owning the

product increases. This arguably models markets where the consumption of the product is affected by a ”club

effect,“ i.e. the consumption of the product is increasingly desirable when it is limited to a small number of people,

but when it becomes too widespread the consumption becomes less and less appealing.

7.1.2 Model specifications

The three models presented in this thesis are models of imperfect competition. In each of the models, a number of

firms are selling their products to a large population. The demand for the products is determined by initial value

problems which are modified versions of the initial value problems of the SIS model and incorporate the trend
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effects explicitly. The firms determine the forms of the initial value problems through their choice of quality, price

and possible free samples of their products. The firms may choose to give out free samples in order to create

demand through a possible trend. These choices are made onceand for all from finite choice sets.

The first of the presented models is the monopoly model. In this model a single firm chooses its quality, free

samples and price to maximize its profits. The monopoly modelis very simple, and serves as the basis for building

the next two models.

The second of the presented models is the Stackelberg duopoly model. In this model there are two firms, Leader

and Follower, which have different market entry times with Leader entering the market first. As in the monopoly

models, both of the firms choose the quality, free samples andprice of their products to maximize their profits.

Profit maximization is now complicated by the different market entry times. It is assumed that both firms know

that behavior of the other firm is based on profit maximization. As Leader enters the market first and knows that

Follower maximizes its profits, Leader incorporates this knowledge to its maximization problem and makes its

choices accordingly.

The third and final of the presented models is the simultaneous-choice duopoly model. In this model there are

two firms, firm 1 and 2, which enter the market at the same time. The firms choose the quality, free samples and

price of their products in course of a game with three stages that the firms play prior to their entry to the market.

The choices are made on the basis of strategies that the firms formulate at the start of the game to maximize their

expected profits. The strategies are instructions on how to make choices at each possible stage of the game and

may require the firms to randomize their choices at some stages. The randomization of the choices means that we

have to consider a range of possible firm behavior rather thanthe deterministic firm behavior of the previous two

models.

7.2 Results

The results in this thesis serve two functions: They provideus a way to consider the internal validity of the models

and perhaps allow us to very minutely increase the overall knowledge of economics concerning trends.

By internal validity of the models I mean checking whether the results of the models are blatantly false. Examples

for this kind of blatant falseness would be firms setting zeroprices or receiving negative profits. On the whole,

none of the results is blatantly wrong which means that we need not consider the models worthless out of hand.

Based on the results we note that firms behave similarly across a multitude of different trend types and strengths.

We cannot therefore deduce the type or the strength of a trendby purely studying firm behavior. We may, however,

formulate an existence result for a trend in each of the threemodels. We note that we may infer the existence of a

trend in each model if we observe at least one firm giving out free samples. Additionally, we note that the result

does not run in the other direction in any of the models, i.e. we may not infer the nonexistence of a trend if we

observe no firms giving out free samples.

7.3 Criticism

When we construct models with simplistic assumptions, the assumptions are wisely chosen when everything within

the model may be determined analytically. While the assumptions behind the three presented models in this thesis

are simplistic, we note that analytical solutions were unattainable. The models can be characterized as forced

marriages between the SIS model and the multinomial logit model for the buying decisions. As such, there are too

many exogenous variables to be able to offer reasonable interpretations for the cumbersome formulas and results.
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Future work would be needed in choosing new assumptions to guarantee analytical solutions while maintaining

the essence of the presented models.

In the end, the validity of a model is determined by empiricaltests. The goodness of a model is then derived from

the possibility of constructing such tests. When we apply this criterion to the three proposed models, we note that

the models are ”not even wrong,“ i.e. it is difficult to construct empirical tests to either validate or invalidate the

results of the models. The models as such are therefore of little scientific merit. However, I hope that the models

may serve as starting points for constructing empirically testable models of trendy goods.

Finally, we note that some of the stage games in the simultaneous-choice duopoly model have multiple Nash

equilibria. This forces us to make difficult equilibrium choices and leads us thereby to question whether we might

alter the game specification to avoid this. Perhaps a better game specification could be found with a more in depth

knowledge of how real firms interact in duopoly situations.

7.4 Extensions

7.4.1 Epidemiological viewpoints

There are further possibilities for utilizing epidemiological models for modeling trends. I would like to highlight

two possible approaches for economics applications from the wealth of epidemiological literature: the reproduction

rateR0 and the SIRS model.

From the SIS model and other epidemiological model it is possible to calculate the so-called reproduction rateR0

(see e.g. Brauer and Castillo-Chávez (2001, p. 353, 412)).This number describes the mean number of secondary

infections per a single primary infection. The number has also an interesting property regarding the outbreak of an

epidemic: If the reproduction rateR0 is greater than one, there will be an epidemic in the population, and if the

reproduction rate is smaller or equal to one, the disease will die out in the population. If we were able to calculate

an equivalent number in models of trendy goods to describe the mean number of secondary purchases stemming

from a single primary purchase, we would have a natural measure of trendiness. The higher the hypothetical

”reproduction rate for purchases“ would be, the more trendywe could call the product.

Next, the Susceptible-Infective-Resistant-Susceptiblemodel (Brauer and Castillo-Chávez (2001, p. 427)) could

have interesting applications in economics. In this model the cured individuals move to a new compartment R,

denoting that they have a temporary immunity to and do not spread the disease. The immunity disappears after

a period of time and the individuals move to the compartment S, denoting that they are again susceptible to the

disease. If we would apply this compartmental structure to the models of trendy goods, we could interpret the

time period that the individual is in compartment R as a period of indignation stemming from a product breakdown

when the individual refuses to consider buying any products. This approach, combined with product lifetimes that

have been endogenized to firms’ choices, could be used to study whether firms should produce flimsy products

on purpose to guarantee resales or whether firms should maximize the lifetime of their products to maximize their

profits.

7.4.2 Economical viewpoints

I would like to highlight two major extension to the presented models that perhaps could be done using the standard

tools of economics. These are the use of intervals as choice sets and optimal control.

When we use finite sets as the firms’ choice sets, we implicitlydefine the range of possible endogenous behavior

beforehand. This is especially problematic if we would wishto fit our results to empirical observations as we would

need to define the finite choice sets with supernatural care. It is therefore desirable to get rid of this assumption and
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rather study maximization problems where the firms choose the quality, price and free samples of their products

from intervals such as the positive real numbers. It would then be necessary to use more sophisticated optimization

methods to solve the firms’ maximization problems. Applyingthe new optimization methods to the duopoly

models would then provide us with two interesting problems:Firstly, we would need to handle the best-responding

in the Stackelberg duopoly model in a feasible manner. Secondly, when the action sets in the proposed game in

the simultaneous-choice duopoly model are intervals rather than finite sets, we cannot rely on Nash’s existence

theorem to guarantee the existence of Nash equilibrium in each of the stage games. Solving these problems seems

to be very much nontrivial.

Real firms vary the price of their products all the time. It is therefore desirable to allow the firms vary their prices

also in the proposed models. When the market evolution is described with price-dependent differential equations

and the firms are allowed to vary their prices over time, we mayuse optimal control for the monopoly model or

differential games for the duopoly models to study the behavior of the firms. Rather than choosing a constant

price, the firms would now choose a price schedule that describes the price of the product as a function of time.

We could then study markets where the price of a product is determined by a price schedule and the trend effects

of the product are decreasing in time. If the optimal price schedules would also be decreasing in time, we might

ask ourselves could we explain the existence of clearance sales with the existence of decreasing trend effects in,

for example, markets for clothes.
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Appendix A

Count of Nash equilibria in stage

normal-form games

As mentioned before the Nash equilibrium strategies at any particular normal-form game may not be unique. In

the calculations for this thesis each normal-form game willeither have a single unique Nash equilibrium, or three

separate Nash equilibria. Tables A.1, A.2 and A.3 give the counts of Nash equilibria at each stage of the proposed

game.
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Discount Planning Trend Games with Games with

rate horizon type one Nash equilibrium three Nash equilibria

r = 0 T = 10 no trend 1 0

lineard = 2 1 0

parabeld = 2 1 0

lineard = 8 1 0

parabeld = 8 1 0

T = 100 no trend 1 0

lineard = 2 1 0

parabeld = 2 0 1

lineard = 8 1 0

parabeld = 8 1 0

r = 0.05 T = 10 no trend 1 0

lineard = 2 1 0

parabeld = 2 1 0

lineard = 8 1 0

parabeld = 8 1 0

T = 100 no trend 1 0

lineard = 2 0 1

parabeld = 2 1 0

lineard = 8 1 0

parabeld = 8 1 0

r = 10 T = 10 no trend 1 0

lineard = 2 1 0

parabeld = 2 1 0

lineard = 8 1 0

parabeld = 8 1 0

T = 100 no trend 1 0

lineard = 2 1 0

parabeld = 2 1 0

lineard = 8 1 0

parabeld = 8 1 0

Table A.1: Count of first stage normal-form game Nash equilibria
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Discount Planning Trend Games with Games with

rate horizon type one Nash equilibrium three Nash equilibria

r = 0 T = 10 no trend 16 0

lineard = 2 15 1

parabeld = 2 14 2

lineard = 8 14 2

parabeld = 8 16 0

T = 100 no trend 16 0

lineard = 2 15 1

parabeld = 2 14 2

lineard = 8 14 2

parabeld = 8 16 0

r = 0.05 T = 10 no trend 16 0

lineard = 2 16 0

parabeld = 2 14 2

lineard = 8 14 2

parabeld = 8 16 0

T = 100 no trend 16 0

lineard = 2 15 1

parabeld = 2 14 2

lineard = 8 14 2

parabeld = 8 16 0

r = 10 T = 10 no trend 16 0

lineard = 2 16 0

parabeld = 2 16 0

lineard = 8 16 0

parabeld = 8 15 1

T = 100 no trend 16 0

lineard = 2 16 0

parabeld = 2 16 0

lineard = 8 16 0

parabeld = 8 15 1

Table A.2: Count of second stage normal-form game Nash equilibria
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Discount Planning Trend Games with Games with

rate horizon type one Nash equilibrium three Nash equilibria

r = 0 T = 10 no trend 256 0

lineard = 2 256 0

parabeld = 2 243 13

lineard = 8 256 0

parabeld = 8 256 0

T = 100 no trend 256 0

lineard = 2 256 0

parabeld = 2 253 3

lineard = 8 256 0

parabeld = 8 256 0

r = 0.05 T = 10 no trend 256 0

lineard = 2 256 0

parabeld = 2 243 13

lineard = 8 256 0

parabeld = 8 256 0

T = 100 no trend 256 0

lineard = 2 256 0

parabeld = 2 251 5

lineard = 8 256 0

parabeld = 8 256 0

r = 10 T = 10 no trend 256 0

lineard = 2 256 0

parabeld = 2 253 3

lineard = 8 255 1

parabeld = 8 254 2

T = 100 no trend 256 0

lineard = 2 256 0

parabeld = 2 253 3

lineard = 8 255 1

parabeld = 8 254 2

Table A.3: Count of third stage normal-form game Nash equilibria



Appendix B

A complete subgame-perfect Nash

equilibrium strategy pair

This appendix gives the subgame-perfect Nash equilibrium strategies for both firms for the parabel trend case

with parametersd = 2, r = 0.05 andT = 10. Firm 1 is the row player and firm 2 the column player in

the normal-form games. First stage strategy for firm 1 isl1 = (0, 0.0155, 0.58875, 0.39575)T and for firm 2

l2 = (0, 0.0155, 0.58875, 0.39575)T.
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(a1, a2) n1(a1, a2) n2(a1, a2)

(0, 0) (1, 0, 0, 0)T (1, 0, 0, 0)T

(0, 1) (1, 0, 0, 0)T (0, 1, 0, 0)T

(0, 2) (1, 0, 0, 0)T (0, 1, 0, 0)T

(0, 3) (1, 0, 0, 0)T (0, 1, 0, 0)T

(1, 0) (0, 1, 0, 0)T (1, 0, 0, 0)T

(1, 1) (0, 1, 0, 0)T (0, 1, 0, 0)T

(1, 2) (1, 0, 0, 0)T (0, 1, 0, 0)T

(1, 3) (0, 1, 0, 0)T (0, 0, 1, 0)T

(2, 0) (0, 1, 0, 0)T (1, 0, 0, 0)T

(2, 1) (0, 1, 0, 0)T (1, 0, 0, 0)T

(2, 2) (1, 0, 0, 0)T (1, 0, 0, 0)T

(2, 3) (1, 0, 0, 0)T (0, 1, 0, 0)T

(3, 0) (0, 1, 0, 0)T (1, 0, 0, 0)T

(3, 1) (0, 0, 1, 0)T (0, 1, 0, 0)T

(3, 2) (0, 1, 0, 0)T (1, 0, 0, 0)T

(3, 3) (0, 1, 0, 0)T (0, 1, 0, 0)T

Table B.1: Firms’ 1 and 2 functionsn1(a1, a2) andn1(a1, a2)
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(a1, a2, q1, q2) h1(a1, a2, q1, q2) (a1, a2, q1, q2) h1(a1, a2, q1, q2)

(0, 0, 0, 0) (0, 1, 0, 0)T (0, 0, 0, 200000) (0, 1, 0, 0)T

(0, 0, 0, 400000) (0, 1, 0, 0)T (0, 0, 0, 600000) (0, 1, 0, 0)T

(0, 0, 200000, 0) (0, 1, 0, 0)T (0, 0, 200000, 200000) (0, 1, 0, 0)T

(0, 0, 200000, 400000) (0, 1, 0, 0)T (0, 0, 200000, 600000) (0, 1, 0, 0)T

(0, 0, 400000, 0) (0, 1, 0, 0)T (0, 0, 400000, 200000) (0, 1, 0, 0)T

(0, 0, 400000, 400000) (0, 1, 0, 0)T (0, 0, 400000, 600000) (0, 1, 0, 0)T

(0, 0, 600000, 0) (0, 1, 0, 0)T (0, 0, 600000, 200000) (0, 1, 0, 0)T

(0, 0, 600000, 400000) (0, 1, 0, 0)T (0, 0, 600000, 600000) (0, 1, 0, 0)T

(0, 1, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 200000) (0, 1, 0, 0)T

(0, 1, 0, 400000) (0, 1, 0, 0)T (0, 1, 0, 600000) (0, 1, 0, 0)T

(0, 1, 200000, 0) (0, 1, 0, 0)T (0, 1, 200000, 200000) (0, 1, 0, 0)T

(0, 1, 200000, 400000) (0, 1, 0, 0)T (0, 1, 200000, 600000) (0, 1, 0, 0)T

(0, 1, 400000, 0) (0, 1, 0, 0)T (0, 1, 400000, 200000) (0, 1, 0, 0)T

(0, 1, 400000, 400000) (0, 1, 0, 0)T (0, 1, 400000, 600000) (0, 1, 0, 0)T

(0, 1, 600000, 0) (0, 1, 0, 0)T (0, 1, 600000, 200000) (0, 1, 0, 0)T

(0, 1, 600000, 400000) (0, 1, 0, 0)T (0, 1, 600000, 600000) (0, 1, 0, 0)T

(0, 2, 0, 0) (0, 1, 0, 0)T (0, 2, 0, 200000) (0, 1, 0, 0)T

(0, 2, 0, 400000) (0, 1, 0, 0)T (0, 2, 0, 600000) (0, 1, 0, 0)T

(0, 2, 200000, 0) (0, 1, 0, 0)T (0, 2, 200000, 200000) (0, 1, 0, 0)T

(0, 2, 200000, 400000) (0, 1, 0, 0)T (0, 2, 200000, 600000) (0, 1, 0, 0)T

(0, 2, 400000, 0) (0, 1, 0, 0)T (0, 2, 400000, 200000) (0, 1, 0, 0)T

(0, 2, 400000, 400000) (0, 1, 0, 0)T (0, 2, 400000, 600000) (0, 1, 0, 0)T

(0, 2, 600000, 0) (0, 1, 0, 0)T (0, 2, 600000, 200000) (0, 1, 0, 0)T

(0, 2, 600000, 400000) (0, 1, 0, 0)T (0, 2, 600000, 600000) (0, 1, 0, 0)T

(0, 3, 0, 0) (0, 1, 0, 0)T (0, 3, 0, 200000) (0, 1, 0, 0)T

(0, 3, 0, 400000) (0, 1, 0, 0)T (0, 3, 0, 600000) (0, 1, 0, 0)T

(0, 3, 200000, 0) (0, 1, 0, 0)T (0, 3, 200000, 200000) (0, 1, 0, 0)T

(0, 3, 200000, 400000) (0, 1, 0, 0)T (0, 3, 200000, 600000) (0, 1, 0, 0)T

(0, 3, 400000, 0) (0, 1, 0, 0)T (0, 3, 400000, 200000) (0, 1, 0, 0)T

(0, 3, 400000, 400000) (0, 1, 0, 0)T (0, 3, 400000, 600000) (0, 1, 0, 0)T

(0, 3, 600000, 0) (0, 1, 0, 0)T (0, 3, 600000, 200000) (0, 1, 0, 0)T

(0, 3, 600000, 400000) (0, 1, 0, 0)T (0, 3, 600000, 600000) (0, 1, 0, 0)T

Table B.2: Firm 1’s functionh1, partial
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(a1, a2, q1, q2) h1(a1, a2, q1, q2) (a1, a2, q1, q2) h1(a1, a2, q1, q2)

(1, 0, 0, 0) (0, 1, 0, 0)T (1, 0, 0, 200000) (0, 1, 0, 0)T

(1, 0, 0, 400000) (0, 1, 0, 0)T (1, 0, 0, 600000) (0, 1, 0, 0)T

(1, 0, 200000, 0) (0, 1, 0, 0)T (1, 0, 200000, 200000) (0, 1, 0, 0)T

(1, 0, 200000, 400000) (0, 1, 0, 0)T (1, 0, 200000, 600000) (0, 1, 0, 0)T

(1, 0, 400000, 0) (0, 1, 0, 0)T (1, 0, 400000, 200000) (0, 1, 0, 0)T

(1, 0, 400000, 400000) (0, 1, 0, 0)T (1, 0, 400000, 600000) (0, 1, 0, 0)T

(1, 0, 600000, 0) (0, 1, 0, 0)T (1, 0, 600000, 200000) (0, 1, 0, 0)T

(1, 0, 600000, 400000) (0, 1, 0, 0)T (1, 0, 600000, 600000) (0, 1, 0, 0)T

(1, 1, 0, 0) (0, 1, 0, 0)T (1, 1, 0, 200000) (0, 1, 0, 0)T

(1, 1, 0, 400000) (0, 1, 0, 0)T (1, 1, 0, 600000) (0, 1, 0, 0)T

(1, 1, 200000, 0) (0, 1, 0, 0)T (1, 1, 200000, 200000) (0, 1, 0, 0)T

(1, 1, 200000, 400000) (0, 1, 0, 0)T (1, 1, 200000, 600000) (0, 1, 0, 0)T

(1, 1, 400000, 0) (0, 1, 0, 0)T (1, 1, 400000, 200000) (0, 1, 0, 0)T

(1, 1, 400000, 400000) (0, 1, 0, 0)T (1, 1, 400000, 600000) (0, 1, 0, 0)T

(1, 1, 600000, 0) (0, 1, 0, 0)T (1, 1, 600000, 200000) (0, 1, 0, 0)T

(1, 1, 600000, 400000) (0, 1, 0, 0)T (1, 1, 600000, 600000) (0, 1, 0, 0)T

(1, 2, 0, 0) (0, 1, 0, 0)T (1, 2, 0, 200000) (0, 1, 0, 0)T

(1, 2, 0, 400000) (0, 1, 0, 0)T (1, 2, 0, 600000) (0, 1, 0, 0)T

(1, 2, 200000, 0) (0, 1, 0, 0)T (1, 2, 200000, 200000) (0, 1, 0, 0)T

(1, 2, 200000, 400000) (0, 1, 0, 0)T (1, 2, 200000, 600000) (0, 1, 0, 0)T

(1, 2, 400000, 0) (0, 1, 0, 0)T (1, 2, 400000, 200000) (0, 1, 0, 0)T

(1, 2, 400000, 400000) (0, 1, 0, 0)T (1, 2, 400000, 600000) (0, 1, 0, 0)T

(1, 2, 600000, 0) (0, 1, 0, 0)T (1, 2, 600000, 200000) (0, 1, 0, 0)T

(1, 2, 600000, 400000) (0, 1, 0, 0)T (1, 2, 600000, 600000) (0, 1, 0, 0)T

(1, 3, 0, 0) (0, 1, 0, 0)T (1, 3, 0, 200000) (0, 1, 0, 0)T

(1, 3, 0, 400000) (0, 1, 0, 0)T (1, 3, 0, 600000) (0, 1, 0, 0)T

(1, 3, 200000, 0) (0, 1, 0, 0)T (1, 3, 200000, 200000) (0, 1, 0, 0)T

(1, 3, 200000, 400000) (0, 1, 0, 0)T (1, 3, 200000, 600000) (0, 1, 0, 0)T

(1, 3, 400000, 0) (0, 1, 0, 0)T (1, 3, 400000, 200000) (0, 1, 0, 0)T

(1, 3, 400000, 400000) (0, 1, 0, 0)T (1, 3, 400000, 600000) (0, 1, 0, 0)T

(1, 3, 600000, 0) (0, 1, 0, 0)T (1, 3, 600000, 200000) (0, 1, 0, 0)T

(1, 3, 600000, 400000) (0, 1, 0, 0)T (1, 3, 600000, 600000) (0, 1, 0, 0)T

Table B.3: Firm 1’s functionh1, continued
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(a1, a2, q1, q2) h1(a1, a2, q1, q2) (a1, a2, q1, q2) h1(a1, a2, q1, q2)

(2, 0, 0, 0) (0, 1, 0, 0)T (2, 0, 0, 200000) (0, 1, 0, 0)T

(2, 0, 0, 400000) (0, 1, 0, 0)T (2, 0, 0, 600000) (0, 1, 0, 0)T

(2, 0, 200000, 0) (0, 0, 1, 0)T (2, 0, 200000, 200000) (0, 0, 1, 0)T

(2, 0, 200000, 400000) (0, 0, 1, 0)T (2, 0, 200000, 600000) (0, 0, 1, 0)T

(2, 0, 400000, 0) (0, 0, 1, 0)T (2, 0, 400000, 200000) (0, 0, 1, 0)T

(2, 0, 400000, 400000) (0, 0, 1, 0)T (2, 0, 400000, 600000) (0, 0, 1, 0)T

(2, 0, 600000, 0) (0, 0, 1, 0)T (2, 0, 600000, 200000) (0, 0, 1, 0)T

(2, 0, 600000, 400000) (0, 0, 1, 0)T (2, 0, 600000, 600000) (0, 0, 1, 0)T

(2, 1, 0, 0) (0, 1, 0, 0)T (2, 1, 0, 200000) (0, 1, 0, 0)T

(2, 1, 0, 400000) (0, 1, 0, 0)T (2, 1, 0, 600000) (0, 1, 0, 0)T

(2, 1, 200000, 0) (0, 0, 1, 0)T (2, 1, 200000, 200000) (0, 1, 0, 0)T

(2, 1, 200000, 400000) (0, 1, 0, 0)T (2, 1, 200000, 600000) (0, 1, 0, 0)T

(2, 1, 400000, 0) (0, 0, 1, 0)T (2, 1, 400000, 200000) (0, 0, 1, 0)T

(2, 1, 400000, 400000) (0, 0, 1, 0)T (2, 1, 400000, 600000) (0, 0, 1, 0)T

(2, 1, 600000, 0) (0, 0, 1, 0)T (2, 1, 600000, 200000) (0, 0, 1, 0)T

(2, 1, 600000, 400000) (0, 0, 1, 0)T (2, 1, 600000, 600000) (0, 0, 1, 0)T

(2, 2, 0, 0) (0, 1, 0, 0)T (2, 2, 0, 200000) (0, 1, 0, 0)T

(2, 2, 0, 400000) (0, 1, 0, 0)T (2, 2, 0, 600000) (0, 1, 0, 0)T

(2, 2, 200000, 0) (0, 1, 0, 0)T (2, 2, 200000, 200000) (0, 1, 0, 0)T

(2, 2, 200000, 400000) (0, 1, 0, 0)T (2, 2, 200000, 600000) (0, 1, 0, 0)T

(2, 2, 400000, 0) (0, 1, 0, 0)T (2, 2, 400000, 200000) (0, 1, 0, 0)T

(2, 2, 400000, 400000) (0, 1, 0, 0)T (2, 2, 400000, 600000) (0, 1, 0, 0)T

(2, 2, 600000, 0) (0, 1, 0, 0)T (2, 2, 600000, 200000) (0, 1, 0, 0)T

(2, 2, 600000, 400000) (0, 1, 0, 0)T (2, 2, 600000, 600000) (0, 1, 0, 0)T

(2, 3, 0, 0) (0, 1, 0, 0)T (2, 3, 0, 200000) (0, 1, 0, 0)T

(2, 3, 0, 400000) (0, 1, 0, 0)T (2, 3, 0, 600000) (0, 1, 0, 0)T

(2, 3, 200000, 0) (0, 0, 1, 0)T (2, 3, 200000, 200000) (0, 1, 0, 0)T

(2, 3, 200000, 400000) (0, 1, 0, 0)T (2, 3, 200000, 600000) (0, 1, 0, 0)T

(2, 3, 400000, 0) (0, 0, 1, 0)T (2, 3, 400000, 200000) (0, 1, 0, 0)T

(2, 3, 400000, 400000) (0, 1, 0, 0)T (2, 3, 400000, 600000) (0, 1, 0, 0)T

(2, 3, 600000, 0) (0, 0, 1, 0)T (2, 3, 600000, 200000) (0, 1, 0, 0)T

(2, 3, 600000, 400000) (0, 1, 0, 0)T (2, 3, 600000, 600000) (0, 1, 0, 0)T

Table B.4: Firm 1’s functionh1, continued
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(a1, a2, q1, q2) h1(a1, a2, q1, q2) (a1, a2, q1, q2) h1(a1, a2, q1, q2)

(3, 0, 0, 0) (0, 0, 1, 0)T (3, 0, 0, 200000) (0, 0, 1, 0)T

(3, 0, 0, 400000) (0, 0, 1, 0)T (3, 0, 0, 600000) (0, 0, 1, 0)T

(3, 0, 200000, 0) (0, 0, 0, 1)T (3, 0, 200000, 200000) (0, 0, 0, 1)T

(3, 0, 200000, 400000) (0, 0, 0, 1)T (3, 0, 200000, 600000) (0, 0, 0, 1)T

(3, 0, 400000, 0) (0, 0, 0, 1)T (3, 0, 400000, 200000) (0, 0, 0, 1)T

(3, 0, 400000, 400000) (0, 0, 0, 1)T (3, 0, 400000, 600000) (0, 0, 0, 1)T

(3, 0, 600000, 0) (0, 0, 0, 1)T (3, 0, 600000, 200000) (0, 0, 0, 1)T

(3, 0, 600000, 400000) (0, 0, 0, 1)T (3, 0, 600000, 600000) (0, 0, 0, 1)T

(3, 1, 0, 0) (0, 0, 1, 0)T (3, 1, 0, 200000) (0, 0, 1, 0)T

(3, 1, 0, 400000) (0, 0, 1, 0)T (3, 1, 0, 600000) (0, 0, 1, 0)T

(3, 1, 200000, 0) (0, 0, 1, 0)T (3, 1, 200000, 200000) (0, 0, 1, 0)T

(3, 1, 200000, 400000) (0, 0, 1, 0)T (3, 1, 200000, 600000) (0, 0, 1, 0)T

(3, 1, 400000, 0) (0, 0, 0, 1)T (3, 1, 400000, 200000) (0, 0, 0, 1)T

(3, 1, 400000, 400000) (0, 0, 0, 1)T (3, 1, 400000, 600000) (0, 0, 0, 1)T

(3, 1, 600000, 0) (0, 0, 0, 1)T (3, 1, 600000, 200000) (0, 0, 0, 1)T

(3, 1, 600000, 400000) (0, 0, 0, 1)T (3, 1, 600000, 600000) (0, 0, 0, 1)T

(3, 2, 0, 0) (0, 0, 1, 0)T (3, 2, 0, 200000) (0, 0, 1, 0)T

(3, 2, 0, 400000) (0, 0, 1, 0)T (3, 2, 0, 600000) (0, 0, 1, 0)T

(3, 2, 200000, 0) (0, 0, 1, 0)T (3, 2, 200000, 200000) (0, 0, 1, 0)T

(3, 2, 200000, 400000) (0, 0, 1, 0)T (3, 2, 200000, 600000) (0, 0, 1, 0)T

(3, 2, 400000, 0) (0, 0, 1, 0)T (3, 2, 400000, 200000) (0, 0, 1, 0)T

(3, 2, 400000, 400000) (0, 0, 1, 0)T (3, 2, 400000, 600000) (0, 0, 1, 0)T

(3, 2, 600000, 0) (0, 0, 1, 0)T (3, 2, 600000, 200000) (0, 0, 1, 0)T

(3, 2, 600000, 400000) (0, 0, 1, 0)T (3, 2, 600000, 600000) (0, 0, 1, 0)T

(3, 3, 0, 0) (0, 0, 1, 0)T (3, 3, 0, 200000) (0, 0, 1, 0)T

(3, 3, 0, 400000) (0, 0, 1, 0)T (3, 3, 0, 600000) (0, 0, 1, 0)T

(3, 3, 200000, 0) (0, 0, 0, 1)T (3, 3, 200000, 200000) (0, 0, 1, 0)T

(3, 3, 200000, 400000) (0, 0, 1, 0)T (3, 3, 200000, 600000) (0, 0, 1, 0)T

(3, 3, 400000, 0) (0, 0, 0, 1)T (3, 3, 400000, 200000) (0, 0, 1, 0)T

(3, 3, 400000, 400000) (0, 0, 1, 0)T (3, 3, 400000, 600000) (0, 0, 1, 0)T

(3, 3, 600000, 0) (0, 0, 0, 1)T (3, 3, 600000, 200000) (0, 0, 1, 0)T

(3, 3, 600000, 400000) (0, 0, 1, 0)T (3, 3, 600000, 600000) (0, 0, 1, 0)T

Table B.5: Firm 1’s functionh1, continued and concluded
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(a1, a2, q1, q2) h2(a1, a2, q1, q2) (a1, a2, q1, q2) h2(a1, a2, q1, q2)

(0, 0, 0, 0) (0, 1, 0, 0)T (0, 0, 0, 200000) (0, 1, 0, 0)T

(0, 0, 0, 400000) (0, 1, 0, 0)T (0, 0, 0, 600000) (0, 1, 0, 0)T

(0, 0, 200000, 0) (0, 1, 0, 0)T (0, 0, 200000, 200000) (0, 1, 0, 0)T

(0, 0, 200000, 400000) (0, 1, 0, 0)T (0, 0, 200000, 600000) (0, 1, 0, 0)T

(0, 0, 400000, 0) (0, 1, 0, 0)T (0, 0, 400000, 200000) (0, 1, 0, 0)T

(0, 0, 400000, 400000) (0, 1, 0, 0)T (0, 0, 400000, 600000) (0, 1, 0, 0)T

(0, 0, 600000, 0) (0, 1, 0, 0)T (0, 0, 600000, 200000) (0, 1, 0, 0)T

(0, 0, 600000, 400000) (0, 1, 0, 0)T (0, 0, 600000, 600000) (0, 1, 0, 0)T

(0, 1, 0, 0) (0, 1, 0, 0)T (0, 1, 0, 200000) (0, 1, 0, 0)T

(0, 1, 0, 400000) (0, 1, 0, 0)T (0, 1, 0, 600000) (0, 1, 0, 0)T

(0, 1, 200000, 0) (0, 1, 0, 0)T (0, 1, 200000, 200000) (0, 1, 0, 0)T

(0, 1, 200000, 400000) (0, 1, 0, 0)T (0, 1, 200000, 600000) (0, 1, 0, 0)T

(0, 1, 400000, 0) (0, 1, 0, 0)T (0, 1, 400000, 200000) (0, 1, 0, 0)T

(0, 1, 400000, 400000) (0, 1, 0, 0)T (0, 1, 400000, 600000) (0, 1, 0, 0)T

(0, 1, 600000, 0) (0, 1, 0, 0)T (0, 1, 600000, 200000) (0, 1, 0, 0)T

(0, 1, 600000, 400000) (0, 1, 0, 0)T (0, 1, 600000, 600000) (0, 1, 0, 0)T

(0, 2, 0, 0) (0, 1, 0, 0)T (0, 2, 0, 200000) (0, 0, 1, 0)T

(0, 2, 0, 400000) (0, 0, 1, 0)T (0, 2, 0, 600000) (0, 0, 1, 0)T

(0, 2, 200000, 0) (0, 1, 0, 0)T (0, 2, 200000, 200000) (0, 0, 1, 0)T

(0, 2, 200000, 400000) (0, 0, 1, 0)T (0, 2, 200000, 600000) (0, 0, 1, 0)T

(0, 2, 400000, 0) (0, 1, 0, 0)T (0, 2, 400000, 200000) (0, 0, 1, 0)T

(0, 2, 400000, 400000) (0, 0, 1, 0)T (0, 2, 400000, 600000) (0, 0, 1, 0)T

(0, 2, 600000, 0) (0, 1, 0, 0)T (0, 2, 600000, 200000) (0, 0, 1, 0)T

(0, 2, 600000, 400000) (0, 0, 1, 0)T (0, 2, 600000, 600000) (0, 0, 1, 0)T

(0, 3, 0, 0) (0, 0, 1, 0)T (0, 3, 0, 200000) (0, 0, 0, 1)T

(0, 3, 0, 400000) (0, 0, 0, 1)T (0, 3, 0, 600000) (0, 0, 0, 1)T

(0, 3, 200000, 0) (0, 0, 1, 0)T (0, 3, 200000, 200000) (0, 0, 0, 1)T

(0, 3, 200000, 400000) (0, 0, 0, 1)T (0, 3, 200000, 600000) (0, 0, 0, 1)T

(0, 3, 400000, 0) (0, 0, 1, 0)T (0, 3, 400000, 200000) (0, 0, 0, 1)T

(0, 3, 400000, 400000) (0, 0, 0, 1)T (0, 3, 400000, 600000) (0, 0, 0, 1)T

(0, 3, 600000, 0) (0, 0, 1, 0)T (0, 3, 600000, 200000) (0, 0, 0, 1)T

(0, 3, 600000, 400000) (0, 0, 0, 1)T (0, 3, 600000, 600000) (0, 0, 0, 1)T

Table B.6: Firm 2’s functionh2, partial
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(a1, a2, q1, q2) h2(a1, a2, q1, q2) (a1, a2, q1, q2) h2(a1, a2, q1, q2)

(1, 0, 0, 0) (0, 1, 0, 0)T (1, 0, 0, 200000) (0, 1, 0, 0)T

(1, 0, 0, 400000) (0, 1, 0, 0)T (1, 0, 0, 600000) (0, 1, 0, 0)T

(1, 0, 200000, 0) (0, 1, 0, 0)T (1, 0, 200000, 200000) (0, 1, 0, 0)T

(1, 0, 200000, 400000) (0, 1, 0, 0)T (1, 0, 200000, 600000) (0, 1, 0, 0)T

(1, 0, 400000, 0) (0, 1, 0, 0)T (1, 0, 400000, 200000) (0, 1, 0, 0)T

(1, 0, 400000, 400000) (0, 1, 0, 0)T (1, 0, 400000, 600000) (0, 1, 0, 0)T

(1, 0, 600000, 0) (0, 1, 0, 0)T (1, 0, 600000, 200000) (0, 1, 0, 0)T

(1, 0, 600000, 400000) (0, 1, 0, 0)T (1, 0, 600000, 600000) (0, 1, 0, 0)T

(1, 1, 0, 0) (0, 1, 0, 0)T (1, 1, 0, 200000) (0, 1, 0, 0)T

(1, 1, 0, 400000) (0, 1, 0, 0)T (1, 1, 0, 600000) (0, 1, 0, 0)T

(1, 1, 200000, 0) (0, 1, 0, 0)T (1, 1, 200000, 200000) (0, 1, 0, 0)T

(1, 1, 200000, 400000) (0, 1, 0, 0)T (1, 1, 200000, 600000) (0, 1, 0, 0)T

(1, 1, 400000, 0) (0, 1, 0, 0)T (1, 1, 400000, 200000) (0, 1, 0, 0)T

(1, 1, 400000, 400000) (0, 1, 0, 0)T (1, 1, 400000, 600000) (0, 1, 0, 0)T

(1, 1, 600000, 0) (0, 1, 0, 0)T (1, 1, 600000, 200000) (0, 1, 0, 0)T

(1, 1, 600000, 400000) (0, 1, 0, 0)T (1, 1, 600000, 600000) (0, 1, 0, 0)T

(1, 2, 0, 0) (0, 1, 0, 0)T (1, 2, 0, 200000) (0, 0, 1, 0)T

(1, 2, 0, 400000) (0, 0, 1, 0)T (1, 2, 0, 600000) (0, 0, 1, 0)T

(1, 2, 200000, 0) (0, 1, 0, 0)T (1, 2, 200000, 200000) (0, 1, 0, 0)T

(1, 2, 200000, 400000) (0, 0, 1, 0)T (1, 2, 200000, 600000) (0, 0, 1, 0)T

(1, 2, 400000, 0) (0, 1, 0, 0)T (1, 2, 400000, 200000) (0, 1, 0, 0)T

(1, 2, 400000, 400000) (0, 0, 1, 0)T (1, 2, 400000, 600000) (0, 0, 1, 0)T

(1, 2, 600000, 0) (0, 1, 0, 0)T (1, 2, 600000, 200000) (0, 1, 0, 0)T

(1, 2, 600000, 400000) (0, 0, 1, 0)T (1, 2, 600000, 600000) (0, 0, 1, 0)T

(1, 3, 0, 0) (0, 0, 1, 0)T (1, 3, 0, 200000) (0, 0, 1, 0)T

(1, 3, 0, 400000) (0, 0, 0, 1)T (1, 3, 0, 600000) (0, 0, 0, 1)T

(1, 3, 200000, 0) (0, 0, 1, 0)T (1, 3, 200000, 200000) (0, 0, 1, 0)T

(1, 3, 200000, 400000) (0, 0, 0, 1)T (1, 3, 200000, 600000) (0, 0, 0, 1)T

(1, 3, 400000, 0) (0, 0, 1, 0)T (1, 3, 400000, 200000) (0, 0, 1, 0)T

(1, 3, 400000, 400000) (0, 0, 0, 1)T (1, 3, 400000, 600000) (0, 0, 0, 1)T

(1, 3, 600000, 0) (0, 0, 1, 0)T (1, 3, 600000, 200000) (0, 0, 1, 0)T

(1, 3, 600000, 400000) (0, 0, 0, 1)T (1, 3, 600000, 600000) (0, 0, 0, 1)T

Table B.7: Firm 2’s functionh2, continued
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(a1, a2, q1, q2) h2(a1, a2, q1, q2) (a1, a2, q1, q2) h2(a1, a2, q1, q2)

(2, 0, 0, 0) (0, 1, 0, 0)T (2, 0, 0, 200000) (0, 1, 0, 0)T

(2, 0, 0, 400000) (0, 1, 0, 0)T (2, 0, 0, 600000) (0, 1, 0, 0)T

(2, 0, 200000, 0) (0, 1, 0, 0)T (2, 0, 200000, 200000) (0, 1, 0, 0)T

(2, 0, 200000, 400000) (0, 1, 0, 0)T (2, 0, 200000, 600000) (0, 1, 0, 0)T

(2, 0, 400000, 0) (0, 1, 0, 0)T (2, 0, 400000, 200000) (0, 1, 0, 0)T

(2, 0, 400000, 400000) (0, 1, 0, 0)T (2, 0, 400000, 600000) (0, 1, 0, 0)T

(2, 0, 600000, 0) (0, 1, 0, 0)T (2, 0, 600000, 200000) (0, 1, 0, 0)T

(2, 0, 600000, 400000) (0, 1, 0, 0)T (2, 0, 600000, 600000) (0, 1, 0, 0)T

(2, 1, 0, 0) (0, 1, 0, 0)T (2, 1, 0, 200000) (0, 1, 0, 0)T

(2, 1, 0, 400000) (0, 1, 0, 0)T (2, 1, 0, 600000) (0, 1, 0, 0)T

(2, 1, 200000, 0) (0, 1, 0, 0)T (2, 1, 200000, 200000) (0, 1, 0, 0)T

(2, 1, 200000, 400000) (0, 1, 0, 0)T (2, 1, 200000, 600000) (0, 1, 0, 0)T

(2, 1, 400000, 0) (0, 1, 0, 0)T (2, 1, 400000, 200000) (0, 1, 0, 0)T

(2, 1, 400000, 400000) (0, 1, 0, 0)T (2, 1, 400000, 600000) (0, 1, 0, 0)T

(2, 1, 600000, 0) (0, 1, 0, 0)T (2, 1, 600000, 200000) (0, 1, 0, 0)T

(2, 1, 600000, 400000) (0, 1, 0, 0)T (2, 1, 600000, 600000) (0, 1, 0, 0)T

(2, 2, 0, 0) (0, 1, 0, 0)T (2, 2, 0, 200000) (0, 1, 0, 0)T

(2, 2, 0, 400000) (0, 1, 0, 0)T (2, 2, 0, 600000) (0, 1, 0, 0)T

(2, 2, 200000, 0) (0, 1, 0, 0)T (2, 2, 200000, 200000) (0, 1, 0, 0)T

(2, 2, 200000, 400000) (0, 1, 0, 0)T (2, 2, 200000, 600000) (0, 1, 0, 0)T

(2, 2, 400000, 0) (0, 1, 0, 0)T (2, 2, 400000, 200000) (0, 1, 0, 0)T

(2, 2, 400000, 400000) (0, 1, 0, 0)T (2, 2, 400000, 600000) (0, 1, 0, 0)T

(2, 2, 600000, 0) (0, 1, 0, 0)T (2, 2, 600000, 200000) (0, 1, 0, 0)T

(2, 2, 600000, 400000) (0, 1, 0, 0)T (2, 2, 600000, 600000) (0, 1, 0, 0)T

(2, 3, 0, 0) (0, 0, 1, 0)T (2, 3, 0, 200000) (0, 0, 1, 0)T

(2, 3, 0, 400000) (0, 0, 1, 0)T (2, 3, 0, 600000) (0, 0, 1, 0)T

(2, 3, 200000, 0) (0, 0, 1, 0)T (2, 3, 200000, 200000) (0, 0, 1, 0)T

(2, 3, 200000, 400000) (0, 0, 1, 0)T (2, 3, 200000, 600000) (0, 0, 1, 0)T

(2, 3, 400000, 0) (0, 0, 1, 0)T (2, 3, 400000, 200000) (0, 0, 1, 0)T

(2, 3, 400000, 400000) (0, 0, 1, 0)T (2, 3, 400000, 600000) (0, 0, 1, 0)T

(2, 3, 600000, 0) (0, 0, 1, 0)T (2, 3, 600000, 200000) (0, 0, 1, 0)T

(2, 3, 600000, 400000) (0, 0, 1, 0)T (2, 3, 600000, 600000) (0, 0, 1, 0)T

Table B.8: Firm 2’s functionh2, continued
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(a1, a2, q1, q2) h2(a1, a2, q1, q2) (a1, a2, q1, q2) h2(a1, a2, q1, q2)

(3, 0, 0, 0) (0, 1, 0, 0)T (3, 0, 0, 200000) (0, 1, 0, 0)T

(3, 0, 0, 400000) (0, 1, 0, 0)T (3, 0, 0, 600000) (0, 1, 0, 0)T

(3, 0, 200000, 0) (0, 1, 0, 0)T (3, 0, 200000, 200000) (0, 1, 0, 0)T

(3, 0, 200000, 400000) (0, 1, 0, 0)T (3, 0, 200000, 600000) (0, 1, 0, 0)T

(3, 0, 400000, 0) (0, 1, 0, 0)T (3, 0, 400000, 200000) (0, 1, 0, 0)T

(3, 0, 400000, 400000) (0, 1, 0, 0)T (3, 0, 400000, 600000) (0, 1, 0, 0)T

(3, 0, 600000, 0) (0, 1, 0, 0)T (3, 0, 600000, 200000) (0, 1, 0, 0)T

(3, 0, 600000, 400000) (0, 1, 0, 0)T (3, 0, 600000, 600000) (0, 1, 0, 0)T

(3, 1, 0, 0) (0, 1, 0, 0)T (3, 1, 0, 200000) (0, 1, 0, 0)T

(3, 1, 0, 400000) (0, 1, 0, 0)T (3, 1, 0, 600000) (0, 1, 0, 0)T

(3, 1, 200000, 0) (0, 1, 0, 0)T (3, 1, 200000, 200000) (0, 1, 0, 0)T

(3, 1, 200000, 400000) (0, 1, 0, 0)T (3, 1, 200000, 600000) (0, 1, 0, 0)T

(3, 1, 400000, 0) (0, 1, 0, 0)T (3, 1, 400000, 200000) (0, 1, 0, 0)T

(3, 1, 400000, 400000) (0, 1, 0, 0)T (3, 1, 400000, 600000) (0, 1, 0, 0)T

(3, 1, 600000, 0) (0, 1, 0, 0)T (3, 1, 600000, 200000) (0, 1, 0, 0)T

(3, 1, 600000, 400000) (0, 1, 0, 0)T (3, 1, 600000, 600000) (0, 1, 0, 0)T

(3, 2, 0, 0) (0, 1, 0, 0)T (3, 2, 0, 200000) (0, 0, 1, 0)T

(3, 2, 0, 400000) (0, 0, 1, 0)T (3, 2, 0, 600000) (0, 0, 1, 0)T

(3, 2, 200000, 0) (0, 1, 0, 0)T (3, 2, 200000, 200000) (0, 1, 0, 0)T

(3, 2, 200000, 400000) (0, 1, 0, 0)T (3, 2, 200000, 600000) (0, 1, 0, 0)T

(3, 2, 400000, 0) (0, 1, 0, 0)T (3, 2, 400000, 200000) (0, 1, 0, 0)T

(3, 2, 400000, 400000) (0, 1, 0, 0)T (3, 2, 400000, 600000) (0, 1, 0, 0)T

(3, 2, 600000, 0) (0, 1, 0, 0)T (3, 2, 600000, 200000) (0, 1, 0, 0)T

(3, 2, 600000, 400000) (0, 1, 0, 0)T (3, 2, 600000, 600000) (0, 1, 0, 0)T

(3, 3, 0, 0) (0, 0, 1, 0)T (3, 3, 0, 200000) (0, 0, 0, 1)T

(3, 3, 0, 400000) (0, 0, 0, 1)T (3, 3, 0, 600000) (0, 0, 0, 1)T

(3, 3, 200000, 0) (0, 0, 1, 0)T (3, 3, 200000, 200000) (0, 0, 1, 0)T

(3, 3, 200000, 400000) (0, 0, 1, 0)T (3, 3, 200000, 600000) (0, 0, 1, 0)T

(3, 3, 400000, 0) (0, 0, 1, 0)T (3, 3, 400000, 200000) (0, 0, 1, 0)T

(3, 3, 400000, 400000) (0, 0, 1, 0)T (3, 3, 400000, 600000) (0, 0, 1, 0)T

(3, 3, 600000, 0) (0, 0, 1, 0)T (3, 3, 600000, 200000) (0, 0, 1, 0)T

(3, 3, 600000, 400000) (0, 0, 1, 0)T (3, 3, 600000, 600000) (0, 0, 1, 0)T

Table B.9: Firm 2’s functionh2, continued and concluded



Appendix C

MATLAB scripts for the monopoly model

The script requires four different structures in order to solve the model. These are the vectorstspanandparameters

and the structure arraystrendandlatticeInfo.

The vectortspanis a row vector with two elements. The elements describe the starting and the ending points of

the time interval corresponding to the monopoly’s planninghorizon. In this thesis the vectortspanthen is either

(0, 10) corresponding to the time interval[0, 10] or (0, 100) corresponding to the time interval[0, 100]

The vectorparametersis a row vector with seven elements. These elements correspond to the parameter choices

described in chapter 3. Table C.1 describes the compositionof vectorparameters.

Element inparameters Parameter name

parameters1 N

parameters2 µ

parameters3 r

parameters4 β

parameters5 λ

parameters6 c1

parameters7 c2

Table C.1: Composition of vectorparameters

The structure arraytrend describes the trend parameters. The doubletrend.dis the strength of the trend, i.e. the

parameterd. The doubletrend.typedetermines the type of the trend, withtrend.type= 1 standing for a linear trend

andtrend.type= 2 standing for a parabel trend. Finally, the doubletrend.cis the saturation point of the parabel

trend, i.e. the parameterm.

The stucture arraylatticeInfodescribes the choice setsA, Q andP (the sets (3.8)). The script generates each set

from two values, the count and the interval values. As there are three different sets in total, there are six different

values in total inlatticeInfo: the valueslatticeInfo.QualityIntervaland latticeInfo.QualityCountdescribing the

quality setA, the valueslatticeInfo.SamplesIntervalandlatticeInfo.SamplesCountdescribing the free samples set

Q, and finally the valueslatticeInfo.PriceIntervalandlatticeInfo.PriceCountdescribing the price setP . The script

assumes that the0 will always be a member of each choice set and will generate each sets starting from it. The

count value gives the number of elements in each set. The interval value gives the interval between the sequential

members of the set.

91



APPENDIX C. MATLAB SCRIPTS FOR THE MONOPOLY MODEL 92

For example, let us consider how to generate the quality setA = {0, 4, 8, 12, 16, 20}. First, we note that the interval

value for the set is4 = 4− 0 = 8− 4 = . . . = 20− 16, and therefore we setlatticeInfo.QualityInterval= 4. Next,

we note that there are six members in the set we wish to generate, and therefore we setlatticeInfo.QualityCount=

6. Generating the free samples and price sets follows the samelogic.

C.1 Example runfile for the monopoly model

The following runfile uses the scripts to solve the monopoly model with parameter choices described in chapter 3

and choicesr = 0 andT = 10.

% all of the script files should be in the same directory

% defining the path for the script files

functionPath = cd();

addpath(functionPath);

tspan = [0 10];

parameters = [1000000 0.5 0.00 1 0.5 0.5 1];

latticeInfo.PriceInterval = 3;

latticeInfo.PriceCount = 4;

latticeInfo.SamplesInterval = 200000;

latticeInfo.SamplesCount = 4;

latticeInfo.QualityInterval = 1;

latticeInfo.QualityCount = 4;

trend.type = 1;

trend.d = 0;

% unnecessary for the no trend case, add for sake of defining a ll

% variables

trend.c = 1 * parameters(1)/3;

[firmChoices maxprofits] = MonopolyOptimizes(latticeIn fo, tspan, ...

parameters, trend);

The script generates a structural arrayfirmChoicesand a doublemaxprofits. The structural arrayfirmChoices

contains the optimal behavior of the monopoly, and the doublemaxprofitsthe optimal profits of the monopoly.
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C.2 MonopolyOptimizes.m

%%%%%%%%%%%%%%%%%%%%%% ubnofqczsqgjpejlcqsidv %%%%%%%%%%%%%%%%%%%%%%%%%%%

% If the reader actually wishes to play around with the script s, please %

% send a message to ville.ka.makinen@gmail.com for the scri pt files %

%%%%%%%%%%%%%%%%%%% ijkwtsczyicrtemmgntuzzpfkspkt %%%%%%%%%%%%%%%%%%%%%%

function [MonopolyOptimalChoices Profits] = MonopolyOpt imizes ...

(latticeInfo, tspan, parameters, trend)

MonopolyOptimalChoices.Quality = 0;

MonopolyOptimalChoices.Samples = 0;

MonopolyOptimalChoices.Price = 0;

Profits = -10ˆ7;

for i = 1:latticeInfo.QualityCount

for j = 1:latticeInfo.SamplesCount

for k = 1:latticeInfo.PriceCount

firmChoices.Quality = (i-1) * latticeInfo.QualityInterval;

firmChoices.Samples = (j-1) * latticeInfo.SamplesInterval;

firmChoices.Price = (k-1) * latticeInfo.PriceInterval;

CalculatedMonopolyProfits = MonopolyProfits(tspan, ...

parameters, trend, firmChoices);

if CalculatedMonopolyProfits > Profits

Profits = CalculatedMonopolyProfits;

MonopolyOptimalChoices.Quality = firmChoices.Quality;

MonopolyOptimalChoices.Samples = firmChoices.Samples;

MonopolyOptimalChoices.Price = firmChoices.Price;

end

end

end

end

end

C.3 MonopolyProfits.m

function retVal = MonopolyProfits(tspan, parameters, tre nd, firmChoices)

t = linspace(tspan(1), tspan(2),tspan(2) * 100);

revenue = zeros(1,length(t));
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initialState = firmChoices.Samples;

ratk = ode45(@monopolyDE,tspan,initialState,[], parame ters, ...

trend, firmChoices);

for i = 1:length(t)

revenue(i) = MonopolyRevenue(t(i), ratk, parameters, ...

trend, firmChoices);

end

netrevenue = trapz(revenue) * (t(2)-t(1));

retVal = netrevenue - firmChoices.Samples * parameters(6) * ...

(firmChoices.Qualityˆ2+parameters(7));

end

C.4 monopolyDE.m

function retVal = monopolyDE(t, x, parameters,trend,firm Choices)

N = parameters(1);

mu = parameters(2);

beta = parameters(4);

lambda = parameters(5);

a = firmChoices.Quality;

p = firmChoices.Price;

if trend.type == 1 % linear trend

effectOfTrend = trend.d * a* x/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrend = a * (A * xˆ2 + B * x);

end

retVal = beta * (1+exp(-(a-p+effectOfTrend) * muˆ-1))ˆ-1 * (N-x)-lambda * x;

end

C.5 MonopolyRevenue.m

function retVal = MonopolyRevenue(t,ratk, parameters, tr end, firmChoices)
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x = deval(ratk,t);

N = parameters(1);

mu = parameters(2);

beta = parameters(4);

r = parameters(3);

c1 = parameters(6);

c2 = parameters(7);

a = firmChoices.Quality;

p = firmChoices.Price;

if trend.type == 1 % linear trend

effectOfTrend = trend.d * a* x/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrend = a * (A * xˆ2 + B * x);

end

retVal = exp(-r * t) * (p-c1 * (aˆ2+c2)) * beta * ...

(1/(1+exp(-(a-p+effectOfTrend) * (1/mu)))) * (N-x);

end



Appendix D

MATLAB scripts for the Stackelberg

duopoly model

The script requires five different structures in order to solve the model. These are the vectorsmonopolytspan,

duopolytspanandparametersand the structure arraystrendandlatticeInfo.

The vectorsmonopolytspanand duopolytspanare row vectors with two elements. The elements describe the

starting and the ending points of the time intervals in the model. First, the vectormonopolytspandescribes the time

interval when the Stackelberg leader operates alone in the market. In this thesis the vectormonopolytspanthen is

(0, 1) corresponding to the time interval[0, 1]. Next, the vectorduopolytspandescribes the time interval when the

Stackelberg leader and the Stackelberg follower operate together in the market. The time interval corresponds to

the planning horizon of both firms. In this thesis the vectorduopolytspanthen is either(0, 10) corresponding to

the duopoly time interval[0, 10] or (0, 100) corresponding to the duopoly time interval[0, 100]

The vectorparametersis a row vector with seven elements. These elements correspond to the parameter choices

described in chapter 3. Table D.1 describes the compositionof vectorparameters.

Element inparameters Parameter name

parameters1 N

parameters2 µ

parameters3 r

parameters4 β

parameters5 λ

parameters6 c1

parameters7 c2

Table D.1: Composition of vectorparameters

The structure arraytrend describes the trend parameters. The doubletrend.dis the strength of the trend, i.e. the

parameterd. The doubletrend.typedetermines the type of the trend, withtrend.type= 1 standing for a linear trend

andtrend.type= 2 standing for a parabel trend. Finally, the doubletrend.cis the saturation point of the parabel

trend, i.e. the parameterm.

The stucture arraylatticeInfodescribes the choice setsA, Q andP (the sets (3.8)). The script generates each set

from two values, the count and the interval values. As there are three different sets in total, there are six different
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values in total inlatticeInfo: the valueslatticeInfo.QualityIntervaland latticeInfo.QualityCountdescribing the

quality setA, the valueslatticeInfo.SamplesIntervalandlatticeInfo.SamplesCountdescribing the free samples set

Q, and finally the valueslatticeInfo.PriceIntervalandlatticeInfo.PriceCountdescribing the price setP . The script

assumes that the0 will always be a member of each choice set and will generate each sets starting from it. The

count value gives the number of elements in each set. The interval value gives the interval between the sequential

members of the set.

For example, let us consider how to generate quality set{0, 4, 8, 12, 16, 20}. First, we note that the interval value

for the set is4 = 4− 0 = 8 − 4 = . . . = 20− 16, and therefore we setlatticeInfo.QualityInterval= 4. Next, we

note that there are six members in the set we wish to generate,and therefore we setlatticeInfo.QualityCount= 6.

Generating the free samples and price sets follows the same logic.

D.1 Example runfile for the Stackelberg duopoly model

The following runfile uses the scripts to solve the Stackelberg duopoly model with parameter choices described in

chapter 3 and choicesr = 0 andT = 10.

% all of the script files should be in the same directory

% defining the path for the script files

functionPath = cd();

addpath(functionPath);

monopolyTimeLength = 1;

duopolytspan = [0 10];

monopolytspan = [0 monopolyTimeLength];

parameters = [1000000 0.5 0.00 1 0.5 0.5 1];

latticeInfo.PriceInterval = 3;

latticeInfo.PriceCount = 4;

latticeInfo.SamplesInterval = 200000;

latticeInfo.SamplesCount = 4;

latticeInfo.QualityInterval = 1;

latticeInfo.QualityCount = 4;

trend.type = 1;

trend.d = 0;

% unnecessary for the no trend case, add for sake of defining a ll

% variables
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trend.c = 1 * parameters(1)/3;

[LeaderOptimalChoices FollowerOptimalChoices LeaderOp timalProfits ...

FollowerOptimalProfits] = LeaderOptimizes(latticeInfo , monopolytspan, ...

duopolytspan, parameters, trend);

This script generates two structural arrays and two doubles. The two structure arraysLeaderOptimalChoicesand

FollowerOptimalChoicescontain the optimal behavior of both firms. The two doublesLeaderOptimalProfitsand

FollowerOptimalProfitscontain the optimal profits determined by firm behavior.

D.2 LeaderOptimizes.m

%%%%%%%%%%%%%%%%%%%%%% ubnofqczsqgjpejlcqsidv %%%%%%%%%%%%%%%%%%%%%%%%%%%

% If the reader actually wishes to play around with the script s, please %

% send a message to ville.ka.makinen@gmail.com for the scri pt files %

%%%%%%%%%%%%%%%%%%% ijkwtsczyicrtemmgntuzzpfkspkt %%%%%%%%%%%%%%%%%%%%%%

function [LeaderOptimalChoices FollowerOptimalChoices ...

LeaderOptimalProfits FollowerOptimalProfits] = ...

LeaderOptimizes(latticeInfo, monopolytspan, duopolyts pan, ...

parameters, trend)

FollowerOptimalChoices.Quality = 0;

FollowerOptimalChoices.Samples = 0;

FollowerOptimalChoices.Price = 0;

FollowerOptimalProfits = -10ˆ7;

% optimal choices defined and formatted

LeaderOptimalChoices = FollowerOptimalChoices;

LeaderOptimalProfits = FollowerOptimalProfits;

for i = 1:latticeInfo.QualityCount

for j = 1:latticeInfo.SamplesCount

for k = 1:latticeInfo.PriceCount

LeaderChoices.Quality = (i-1) * latticeInfo.QualityInterval;

LeaderChoices.Samples = (j-1) * latticeInfo.SamplesInterval;

LeaderChoices.Price = (k-1) * latticeInfo.PriceInterval;

% market evolves as it was a monopoly

[netLeaderMonopolyRevenue AmountOfLeadersProductsInM arket] = ...

preentryProfitsLeader(latticeInfo, monopolytspan, ...

duopolytspan, parameters, trend, LeaderChoices);
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% The Follower enters the market and optimizes its behavior

% w.r.t. the market situation/the Leaders choices

[FollowerChoices FollowerProfits] = ...

FollowerOptimizes(latticeInfo, monopolytspan, ...

duopolytspan, parameters, trend, LeaderChoices, ...

AmountOfLeadersProductsInMarket);

% FollowerChoices now gives the follower choices in the

% duopoly stage, thus enabling us to calculate the leader’s

% profits

netLeaderDuopolyProfits = profitsLeader(duopolytspan, ...

parameters, trend, LeaderChoices, FollowerChoices, ...

AmountOfLeadersProductsInMarket, monopolytspan);

CalculatedLeaderProfits = netLeaderDuopolyProfits + ...

netLeaderMonopolyRevenue - ...

LeaderChoices.Samples. * parameters(6). * ...

(LeaderChoices.Quality.ˆ2+parameters(7));

% LeaderOptimalChoices checked and updated if approriate

if CalculatedLeaderProfits > LeaderOptimalProfits

LeaderOptimalProfits = CalculatedLeaderProfits;

LeaderOptimalChoices = LeaderChoices;

FollowerOptimalChoices = FollowerChoices;

FollowerOptimalProfits = FollowerProfits;

end

end

end

end

end

D.3 preentryProfitsLeader.m

function [netLeaderMonopolyRevenue AmountOfLeadersPro ductsInMarket] ...

= preentryProfitsLeader(latticeInfo, monopolytspan, .. .

duopolytspan, parameters, trend, LeaderChoices)

MonopolyT = linspace(monopolytspan(1), monopolytspan(2 ), ...

monopolytspan(2) * 100);

LeaderMonopolyRevenue = zeros(1,length(MonopolyT));

MonopolyInitialState = LeaderChoices.Samples;
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ratk = ode45(@monopolyDE,monopolytspan, ...

MonopolyInitialState,[], parameters, ...

trend, LeaderChoices);

for l = 1:length(MonopolyT)

LeaderMonopolyRevenue(l) = MonopolyRevenue(MonopolyT( l), ...

ratk, parameters, trend, LeaderChoices);

end

netLeaderMonopolyRevenue = trapz(LeaderMonopolyRevenu e) * ...

(MonopolyT(2)-MonopolyT(1));

AmountOfLeadersProductsInMarket = deval(ratk, monopoly tspan(2));

end

D.4 monopolyDE.m

function retVal = monopolyDE(t, x, parameters,trend,firm Choices)

N = parameters(1);

mu = parameters(2);

beta = parameters(4);

lambda = parameters(5);

a = firmChoices.Quality;

p = firmChoices.Price;

if trend.type == 1 % linear trend

effectOfTrend = trend.d * a* x/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrend = a * (A * xˆ2 + B * x);

end

retVal = beta * (1+exp(-(a-p+effectOfTrend) * muˆ-1))ˆ-1 * (N-x)-lambda * x;

end
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D.5 MonopolyRevenue.m

function retVal = MonopolyRevenue(t,ratk, parameters, tr end, firmChoices)

x = deval(ratk,t);

N = parameters(1);

mu = parameters(2);

beta = parameters(4);

r = parameters(3);

c1 = parameters(6);

c2 = parameters(7);

a = firmChoices.Quality;

p = firmChoices.Price;

if trend.type == 1 % linear trend

effectOfTrend = trend.d * a* x/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrend = a * (A * xˆ2 + B * x);

end

retVal = exp(-r * t) * (p-c1 * (aˆ2+c2)) * beta * ...

(1/(1+exp(-(a-p+effectOfTrend) * (1/mu)))) * (N-x);

end

D.6 FollowerOptimizes.m

% By assumption the Leader may not alter its choices during th e market

% evolution.

% The Follower can then optimize its own profits w.r.t. to the Leaders

% choices

function [FollowerOptimalChoices FollowerOptimalProfi ts] = ...

FollowerOptimizes(latticeInfo, monopolytspan, duopoly tspan, ...

parameters, trend, LeaderChoices, ...

AmountOfLeadersProductsInMarket)
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FollowerOptimalChoices.Quality = 0;

FollowerOptimalChoices.Samples = 0;

FollowerOptimalChoices.Price = 0;

FollowerOptimalProfits = -10ˆ7;

for i = 1:latticeInfo.QualityCount

for j = 1:latticeInfo.SamplesCount

for k = 1:latticeInfo.PriceCount

FollowerChoices.Quality = (i-1) * latticeInfo.QualityInterval;

FollowerChoices.Samples = (j-1) * latticeInfo.SamplesInterval;

FollowerChoices.Price = (k-1) * latticeInfo.PriceInterval;

CalculatedFollowerProfits = profitsFollower(duopolyts pan,...

parameters, trend, LeaderChoices, FollowerChoices, ...

AmountOfLeadersProductsInMarket);

if CalculatedFollowerProfits > FollowerOptimalProfits

FollowerOptimalChoices = FollowerChoices;

FollowerOptimalProfits = CalculatedFollowerProfits;

end

end

end

end

end

D.7 profitsFollower.m

function retVal = profitsFollower(tspan, parameters, tre nd, ...

LeaderStrategy, FollowerStrategy, AmountOfLeadersProd uctsInMarket)

t = linspace(tspan(1),tspan(2),tspan(2) * 100);

revenue = zeros(1,length(t));

N = parameters(1);

initialState = [0,0,0];

% each consumer has the same probability to get a free sample, and the

% probabilities are independent between firms

initialState(1) = (1-FollowerStrategy.Samples/N) * ...

AmountOfLeadersProductsInMarket;
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initialState(2) = (FollowerStrategy.Samples/N) * ...

(N-AmountOfLeadersProductsInMarket);

initialState(3) = (FollowerStrategy.Samples/N) * ...

AmountOfLeadersProductsInMarket;

ratk = ode45(@duopolyDES,tspan,initialState,[],parame ters,trend,...

LeaderStrategy,FollowerStrategy);

for i = 1:length(t)

revenue(i) = revenueFollower(t(i),ratk, parameters,tre nd,...

LeaderStrategy, FollowerStrategy);

end

netrevenue = trapz(revenue) * (t(2)-t(1));

retVal = netrevenue - FollowerStrategy.Samples. * parameters(6). * ...

(FollowerStrategy.Quality.ˆ2+parameters(7));

end

D.8 duopolyDES.m

function retval = duopolyDES(t,x, parameters,trend, firm 1strategy, ...

firm2strategy)

N = parameters(1);

mu = parameters(2);

beta = parameters(4);

lambda = parameters(5);

a1 = firm1strategy.Quality;

p1 = firm1strategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

q1 = x(1)+x(3); q2 = x(2)+x(3);

if trend.type == 1 % linear trend

effectOfTrendProduct1 = trend.d * a1* q1/N;

effectOfTrendProduct2 = trend.d * a2* q2/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrendProduct1 = a1 * (A * q1ˆ2 + B * q1);

effectOfTrendProduct2 = a2 * (A * q2ˆ2 + B * q2);
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end

denomS = 1 + exp((1/mu) * (a1-p1+effectOfTrendProduct1))+ ...

exp((1/mu) * (a2-p2+effectOfTrendProduct2));

denomI1 = 1 + exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2));

denomI2 = 1 + exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1));

PSI1 = exp((1/mu) * (a1-p1+effectOfTrendProduct1))/denomS;

PSI2 = exp((1/mu) * (a2-p2+effectOfTrendProduct2))/denomS;

PI1I12 = exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2))/denomI1;

PI2I12 = exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1))/denomI2;

I1prime = beta * PSI1 * (N-x(1)-x(2)-x(3))-beta * PI1I12 * x(1)+ ...

lambda * x(3)-lambda * x(1);

I2prime = beta * PSI2 * (N-x(1)-x(2)-x(3))-beta * PI2I12 * x(2)+ ...

lambda * x(3)-lambda * x(2);

I12prime = beta * PI1I12 * x(1)+beta * PI2I12 * x(2)-2 * lambda * x(3);

retval = [ I1prime; I2prime; I12prime];

end

D.9 revenueFollower.m

function retVal = revenueFollower(t,ratk,parameters,tr end,firm1strategy,...

firm2strategy)

% t refers to time

state = deval(ratk,t);

N = parameters(1);

mu = parameters(2);

r = parameters(3);

beta = parameters(4);

c1 = parameters(6);

c2 = parameters(7);

a1 = firm1strategy.Quality;

p1 = firm1strategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

q1 = state(1)+state(3); q2 = state(2)+state(3);
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if trend.type == 1 % linear trend

effectOfTrendProduct1 = trend.d * a1* q1/N;

effectOfTrendProduct2 = trend.d * a2* q2/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrendProduct1 = a1 * (A * q1ˆ2 + B * q1);

effectOfTrendProduct2 = a2 * (A * q2ˆ2 + B * q2);

end

% denomI2, PSI1, PI2I12 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((1/mu) * (a1-p1+effectOfTrendProduct1))+exp((1/mu) * ...

(a2-p2+effectOfTrendProduct2));

denomI1 = 1 + exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2));

%denomI2 = 1 + exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1));

%PSI1 = exp((1/mu) * (a1-p1+effectOfTrendProduct1))/denomS;

PSI2 = exp((1/mu) * (a2-p2+effectOfTrendProduct2))/denomS;

PI1I12 = exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2))/denomI1;

%PI2I12 = exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1))/denomI2;

salesSI2 = beta * PSI2 * (N-state(1)-state(2)-state(3));

salesI1I12 = beta * PI1I12 * state(1);

retVal = exp(-r. * t) * (p2-c1. * (a2.ˆ2+c2)) * (salesSI2+salesI1I12);

end

D.10 profitsLeader.m

function retVal = profitsLeader(duopolytspan, parameter s, trend, ...

LeaderChoices, FollowerChoices,AmountOfLeadersProduc tsInMarket,...

monopolytspan)

t = linspace(duopolytspan(1),duopolytspan(2),duopolyt span(2) * 100);

revenue = zeros(1,length(t));

N = parameters(1);

initialState = [0,0,0];

initialState(1) = (1-FollowerChoices.Samples/N) * ...

AmountOfLeadersProductsInMarket;

initialState(2) = (FollowerChoices.Samples/N) * ...

(N-AmountOfLeadersProductsInMarket);
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initialState(3) = (FollowerChoices.Samples/N) * ...

AmountOfLeadersProductsInMarket;

ratk = ode45(@duopolyDES,duopolytspan,initialState,[] ,parameters,...

trend,LeaderChoices,FollowerChoices);

for i = 1:length(t)

revenue(i) = revenueLeader(t(i),ratk, parameters,trend ,...

LeaderChoices,FollowerChoices, monopolytspan);

end

netrevenue = trapz(revenue) * (t(2)-t(1));

retVal = netrevenue;

end

D.11 revenueLeader.m

function retVal = revenueLeader(t,ratk,parameters,tren d,firm1strategy, ...

firm2strategy, monopolytspan)

% t refers to time

state = deval(ratk,t);

N = parameters(1);

mu = parameters(2);

r = parameters(3);

beta = parameters(4);

c1 = parameters(6);

c2 = parameters(7);

a1 = firm1strategy.Quality;

p1 = firm1strategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

q1 = state(1)+state(3); q2 = state(2)+state(3);

if trend.type == 1 % linear trend

effectOfTrendProduct1 = trend.d * a1* q1/N;

effectOfTrendProduct2 = trend.d * a2* q2/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);
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B = 2* trend.d/trend.c;

effectOfTrendProduct1 = a1 * (A * q1ˆ2 + B * q1);

effectOfTrendProduct2 = a2 * (A * q2ˆ2 + B * q2);

end

% denomI1, PSI2, PI1I12 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((1/mu) * (a1-p1+effectOfTrendProduct1))+ ...

exp((1/mu) * (a2-p2+effectOfTrendProduct2));

%denomI1 = 1 + exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2));

denomI2 = 1 + exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1));

PSI1 = exp((1/mu) * (a1-p1+effectOfTrendProduct1))/denomS;

%PSI2 = exp((1/mu) * (a2-p2+effectOfTrendProduct2))/denomS;

%PI1I12 = exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2))/denomI1;

PI2I12 = exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1))/denomI2;

salesSI1 = beta * PSI1 * (N-state(1)-state(2)-state(3));

salesI2I12 = beta * PI2I12 * state(2);

% The leader discounts to an earlier point of time than the fol lower

% t -> t + monopolytspan(2)

retVal = exp(-r. * (t+monopolytspan(2))) * (p1-c1. * (a1.ˆ2+c2)) * ...

(salesSI1+salesI2I12);

end



Appendix E

MATLAB scripts for the

Simultaneous-choice duopoly model

The script requires four different structures in order to solve the model. These are the vectorstspanandparameters

and the structure arraystrendandlatticeInfo.

The vectortspanis a row vector with two elements. The elements describe the starting and the ending points of

the time interval corresponding to the planning horizons ofboth firms. In this thesis the vectortspanthen is either

(0, 10) corresponding to the time interval[0, 10] or (0, 100) corresponding to the time interval[0, 100]

The vectorparametersis a row vector with seven elements. These elements correspond to the parameter choices

described in chapter 3. Table E.1 describes the compositionof vectorparameters.

Element inparameters Parameter name

parameters1 N

parameters2 µ

parameters3 r

parameters4 β

parameters5 λ

parameters6 c1

parameters7 c2

Table E.1: Composition of vectorparameters

The structure arraytrend describes the trend parameters. The doubletrend.dis the strength of the trend, i.e. the

parameterd. The doubletrend.typedetermines the type of the trend, withtrend.type= 1 standing for a linear trend

andtrend.type= 2 standing for a parabel trend. Finally, the doubletrend.cis the saturation point of the parabel

trend, i.e. the parameterm.

The stucture arraylatticeInfodescribes the choice setsA, Q andP (the sets (3.8)). The script generates each set

from two values, the count and the interval values. As there are three different sets in total, there are six different

values in total inlatticeInfo: the valueslatticeInfo.QualityIntervaland latticeInfo.QualityCountdescribing the

quality setA, the valueslatticeInfo.SamplesIntervaland latticeInfo.SamplesCountdescribing the free samples

setQ, and finally the valueslatticeInfo.PriceIntervaland latticeInfo.PriceCountdescribing the price setP . The

script assumes that the0 will always be a member of each choice set and will generate each sets starting from

108
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it. Differently from the previous monopoly and Stackelbergduopoly scripts, the count value gives the number of

non-zero elements in each set, i.e. the number of elements ineach set minus one. The interval value gives the

interval between the sequential members of the set.

For example, let us consider how to generate quality set{0, 4, 8, 12, 16, 20}. First, we note that the interval value

for the set is4 = 4− 0 = 8 − 4 = . . . = 20− 16, and therefore we setlatticeInfo.QualityInterval= 4. Next, we

note that there are five non-zero members in the set we wish to generate, and therefore we set the count value as

latticeInfo.QualityCount= 5. Generating the free samples and price sets follows the samelogic.

E.1 Example runfile for the Simultaneous-choice duopoly model

The following runfile uses the scripts to solve the Simultaneous-choice duopoly model with parameter choices

described in chapter 3 and choicesr = 0 andT = 10.

% all of the script files should be in the same directory

% defining the path for the script files

functionPath = cd();

addpath(functionPath);

% defining how many cores to use for parallel calculation

matlabpool open 4

latticeInfo.PriceInterval = 3;

latticeInfo.PriceCount = 3;

latticeInfo.SamplesInterval = 200000;

latticeInfo.SamplesCount = 3;

latticeInfo.QualityInterval = 1;

latticeInfo.QualityCount = 3;

tspan = [0 10];

parameters = [1000000 0.5 0.00 1 0.5 0.5 1];

trend.type = 1;

trend.d = 0;

% unnecessary for the no trend case, add for sake of defining a ll

% variables

trend.c = 1 * parameters(1)/3;

FirstStageNEQualities(latticeInfo, tspan, parameters, trend)
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This script generates new folders that contain the profits and the subgame-perfect Nash equilibrium strategies for

both firms.

E.2 FirstStageNEQualities.m

%%%%%%%%%%%%%%%%%%%%%% ubnofqczsqgjpejlcqsidv %%%%%%%%%%%%%%%%%%%%%%%%%%%

% If the reader actually wishes to play around with the script s, please %

% send a message to ville.ka.makinen@gmail.com for the scri pt files %

%%%%%%%%%%%%%%%%%%% ijkwtsczyicrtemmgntuzzpfkspkt %%%%%%%%%%%%%%%%%%%%%%

function retVal = FirstStageNEQualities(latticeInfo, ts pan, parameters, ...

trend)

iterationDirectoryName = ’./FirstStage/’;

mkdir(iterationDirectoryName)

cd(iterationDirectoryName)

matDim = latticeInfo.QualityCount+1;

ProfitMatrixFirm1 = zeros(matDim,matDim);

ProfitMatrixFirm2 = zeros(matDim,matDim);

qualityInterval = latticeInfo.QualityInterval;

for i = 1:matDim % rows

for j = 1:matDim % columns

firm1strategy.Quality = qualityInterval * (i-1);

firm2strategy.Quality = qualityInterval * (j-1);

SampleGameNEs = SecondStageNESamples(latticeInfo, ...

firm1strategy, firm2strategy, tspan, parameters,trend) ;

% It is possible that there are multiple equilibria in the

% third stage price choosing game -> necessary to choose

% between those

% I arbitrarily choose the first NE that the algorithm finds

ProfitMatrixFirm1(i,j) = SampleGameNEs(1).rowPlayerUt ility;

ProfitMatrixFirm2(i,j) = SampleGameNEs(1).columnPlaye rUtility;
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end

end

dlmwrite(’RawProfitMatrix1’, ProfitMatrixFirm1);

dlmwrite(’RawProfitMatrix2’, ProfitMatrixFirm2);

QualityGameNEs = NashEquilibriaBySupportEnumeration .. .

(ProfitMatrixFirm1, ProfitMatrixFirm2);

% profit matrices are edited for saving

Firm2qualitystrats = 0:qualityInterval:latticeInfo.Qu alityCount * ...

qualityInterval;

ProfitMatrixFirm1 = vertcat(Firm2qualitystrats,Profit MatrixFirm1);

ProfitMatrixFirm2 = vertcat(Firm2qualitystrats,Profit MatrixFirm2);

Firm1qualitystrats = transpose(horzcat(666, Firm2quali tystrats));

ProfitMatrixFirm1 = horzcat(Firm1qualitystrats,Profit MatrixFirm1);

ProfitMatrixFirm2 = horzcat(Firm1qualitystrats,Profit MatrixFirm2);

dlmwrite(’ProfitMatrix1’, ProfitMatrixFirm1,’delimit er’,’\t’,...

’precision’,6);

dlmwrite(’ProfitMatrix2’, ProfitMatrixFirm2,’delimit er’,’\t’,...

’precision’,6);

countFID = fopen(’FirstStageCountofNEs’,’w’);

fwrite(countFID,sprintf(’# of NEs: %g’,length(QualityG ameNEs)),’uchar’);

fclose(countFID);

save(’FirstStageNEdump’,’QualityGameNEs’);

dlmwrite(’FirstStageNEStrategiesForRowplayer’,...

[QualityGameNEs(:).rowPlayerStrategyProfile]);

dlmwrite(’FirstStageNEStrategiesForColumnPlayer’,.. .

[QualityGameNEs(:).columnPlayerStrategyProfile]);

dlmwrite(’FirstStageFirstFoundNE’,...

[QualityGameNEs(1).rowPlayerStrategyProfile ...

QualityGameNEs(1).columnPlayerStrategyProfile]);

cd(’..’)

retVal = QualityGameNEs;

end



APPENDIX E. MATLAB SCRIPTS FOR THE SIMULTANEOUS-CHOICE DUOPOLY MODEL 112

E.3 NashEquilibriaBySupportEnumeration.m

% code based on Algorithm 1 in

% "Enumeration of Nash equilibria for two-player games",

% David Avis, Gabriel D. Rosenberg, Rahul Savani, Bernhard v on Stengel,

% 2009

% assumptions:

% nxn-payoff matrices

% the game is non-degenerate

function NashEquilibria = NashEquilibriaBySupportEnume ration(A,B)

NashEquilibria = [];

n = length(A);

% generate all possible subsets of supports for solving the N ash

% equilibria

setOfSupports = 1:n;

generatedSupports(1).support = 0;

generatedSupports(2).support = setOfSupports(1);

for i = 2:length(setOfSupports)

countOfGeneratedSupports = length(generatedSupports);

for j = 1:countOfGeneratedSupports

if generatedSupports(j).support == 0

generatedSupports(j+countOfGeneratedSupports).suppo rt ...

= setOfSupports(i);

else

generatedSupports(j+countOfGeneratedSupports).suppo rt ...

= cat(1,generatedSupports(j).support,...

setOfSupports(i));

end

end

end

for i = 1:length(generatedSupports)

for j = 1:length(generatedSupports)

if (generatedSupports(i).support(1) ˜= 0) && ...

(generatedSupports(j).support(1) ˜= 0) && ...

length(generatedSupports(i).support) == ...

length(generatedSupports(j).support)
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% matrix is constructed to solve the linear equations

constructA = A;

constructB = B;

CountOfDeletedRows = 0;

CountOfDeletedColumns = 0;

for l = 1:n % checking and deleting rows and columns

% row to be deleted

if ismember(l,generatedSupports(i).support) == 0

constructA(l-CountOfDeletedRows,:) = [];

constructB(l-CountOfDeletedRows,:) = [];

CountOfDeletedRows = CountOfDeletedRows +1;

end

% column to be deleted

if ismember(l, generatedSupports(j).support) == 0

constructA(:,l-CountOfDeletedColumns) = [];

constructB(:,l-CountOfDeletedColumns) = [];

CountOfDeletedColumns = CountOfDeletedColumns +1;

end

end

% transposing B

constructB = transpose(constructB);

% adding padding to A and B

k = length(constructA);

constructA(:,k+1) = -1;

constructA(k+1,:) = 1;

constructA(k+1,k+1) = 0;

k = length(constructB);

constructB(:,k+1) = -1;

constructB(k+1,:) = 1;

constructB(k+1,k+1) = 0;

% finalizing the matrix used to solve the linear equations



APPENDIX E. MATLAB SCRIPTS FOR THE SIMULTANEOUS-CHOICE DUOPOLY MODEL 114

k = length(constructB);

constructB = [constructB zeros(k,k)];

k = length(constructA);

constructA = [zeros(k,k) constructA];

finalMatrix = [constructB; constructA];

righthandSide = zeros(length(finalMatrix),1);

righthandSide(k,1) = 1;

righthandSide(2 * k,1) = 1;

%possibleSolution = inv(finalMatrix) * righthandSide;

possibleSolution = finalMatrix\righthandSide;

% saving the possible mixed strategy weights for further use

possibleX = zeros(length(A),1);

possibleY = zeros(length(B),1);

for l = 1:length(generatedSupports(i).support)

possibleX(generatedSupports(i).support(l),1) = ...

possibleSolution(l,1);

end

for l = 1:length(generatedSupports(j).support)

possibleY(generatedSupports(j).support(l),1) = ...

possibleSolution(l+k,1);

end

% saving the utilities required for testing

v = possibleSolution(k,1);

u = possibleSolution(2 * k,1);

% checking if the required conditions hold

isNEFlag = 1;

% x >= 0

if min(possibleX) < 0

isNEFlag = 0;
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end

% y >= 0

if min(possibleY) < 0

isNEFlag = 0;

end

% condition (2)

MatrixProduct = A * possibleY;

maxMatrixProduct = max(MatrixProduct);

% this defines the required accuracy for comparisons -

% better users of MATLAB would probably do this

% differently and better/more elegantly

requiredAccuracy = 10ˆ-6;

for l = 1:length(possibleX)

if possibleX(l,1) > 0 && ...

(abs(MatrixProduct(l,1) - u) > requiredAccuracy...

|| abs(MatrixProduct(l,1) - maxMatrixProduct) ...

> requiredAccuracy || ...

abs(u - maxMatrixProduct) > requiredAccuracy)

isNEFlag = 0;

end

end

% condition (3)

MatrixProduct = transpose(B) * possibleX;

maxMatrixProduct = max(MatrixProduct);

for l = 1:length(possibleY)

if possibleY(l,1) > 0 && ...

(abs(MatrixProduct(l,1) - v) > requiredAccuracy...

|| abs(MatrixProduct(l,1) - maxMatrixProduct) ...

> requiredAccuracy || ...

abs(v - maxMatrixProduct) > requiredAccuracy)

isNEFlag = 0;

end

end

% if all conditions hold we save the found NE

% (last two conditions disregard possible solutions with

% singular finalMatrix)
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if isNEFlag == 1 && max(isnan(possibleX)) == 0 && ...

max(isnan(possibleY)) == 0

currentCountOfNEs = length(NashEquilibria);

NashEquilibria(currentCountOfNEs+1).rowPlayerStrate gyProfile...

= possibleX;

NashEquilibria(currentCountOfNEs+1).columnPlayerStr ategyProfile...

= possibleY;

NashEquilibria(currentCountOfNEs+1).rowPlayerUtilit y = u;

NashEquilibria(currentCountOfNEs+1).columnPlayerUti lity = v;

end

end

end

end

end

E.4 SecondStageNESamples.m

function retVal = SecondStageNESamples(latticeInfo, fir m1strategy, ...

firm2strategy, tspan, parameters,trend)

iterationDirectoryName = sprintf(’./SecondStage.firm1 q %g. firm2q %g/’,...

firm1strategy.Quality, firm2strategy.Quality);

mkdir(iterationDirectoryName)

cd(iterationDirectoryName)

matDim = latticeInfo.SamplesCount+1;

ProfitMatrixFirm1 = zeros(matDim,matDim);

ProfitMatrixFirm2 = zeros(matDim,matDim);

% parfor not implemented here since the code already takes ad vantage

% of parallel computing in ParallelLatticeFindThidStageN EPrices-

% function which is called in the loop

samplesInterval = latticeInfo.SamplesInterval;

for i = 1:matDim % rows
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for j = 1:matDim % columns

firm1strategy.Samples = (i-1) * samplesInterval;

firm2strategy.Samples = (j-1) * samplesInterval;

PriceGameNEs = ThirdStageNEPricesParallel(latticeInfo , ...

firm1strategy, firm2strategy, tspan, parameters,trend) ;

% It is possible that there are multiple equilibria in the

% third stage price choosing game -> necessary to choose

% between those

% I arbitrarily choose the first NE that the algorithm finds

ProfitMatrixFirm1(i,j) = PriceGameNEs(1).rowPlayerUti lity;

ProfitMatrixFirm2(i,j) = PriceGameNEs(1).columnPlayer Utility;

end

end

dlmwrite(’RawProfitMatrix1’, ProfitMatrixFirm1);

dlmwrite(’RawProfitMatrix2’, ProfitMatrixFirm2);

dlmwrite(’NEPriceStrategyFirm1’, ...

PriceGameNEs(1).rowPlayerStrategyProfile);

dlmwrite(’NEPriceStrategyFirm2’, ...

PriceGameNEs(1).columnPlayerStrategyProfile);

SampleGameNEs = NashEquilibriaBySupportEnumeration ...

(ProfitMatrixFirm1, ProfitMatrixFirm2);

% profit matrices are edited for saving

Firm2samplesstrats = 0:samplesInterval:latticeInfo.Sa mplesCount * ...

samplesInterval;

ProfitMatrixFirm1 = vertcat(Firm2samplesstrats,Profit MatrixFirm1);

ProfitMatrixFirm2 = vertcat(Firm2samplesstrats,Profit MatrixFirm2);

Firm1samplesstrats = transpose(horzcat(666, Firm2sampl esstrats));

ProfitMatrixFirm1 = horzcat(Firm1samplesstrats,Profit MatrixFirm1);

ProfitMatrixFirm2 = horzcat(Firm1samplesstrats,Profit MatrixFirm2);

dlmwrite(’ProfitMatrix1’, ProfitMatrixFirm1,’delimit er’,’\t’,...

’precision’,6);

dlmwrite(’ProfitMatrix2’, ProfitMatrixFirm2,’delimit er’,’\t’,...



APPENDIX E. MATLAB SCRIPTS FOR THE SIMULTANEOUS-CHOICE DUOPOLY MODEL 118

’precision’,6);

countFID = fopen(’SecondStageCountofNEs’,’w’);

fwrite(countFID,sprintf(’# of NEs: %g’,length(SampleGa meNEs)),’uchar’);

fclose(countFID);

save(’SecondStageNEdump’,’SampleGameNEs’);

dlmwrite(’SecondStageNEStrategiesForRowplayer’, ...

[SampleGameNEs(:).rowPlayerStrategyProfile]);

dlmwrite(’SecondStageNEStrategiesForColumnPlayer’, . ..

[SampleGameNEs(:).columnPlayerStrategyProfile]);

dlmwrite(’SecondStageFirstFoundNE’,...

[SampleGameNEs(1).rowPlayerStrategyProfile ...

SampleGameNEs(1).columnPlayerStrategyProfile]);

cd(’..’)

retVal = SampleGameNEs;

end

E.5 ThirdStageNEPricesParallel.m

function retVal = ThirdStageNEPricesParallel(latticeIn fo, firm1strategy, ...

firm2strategy, tspan, parameters,trend)

iterationDirectoryName = ...

sprintf(’./ThirdStage.firm1q %g, S %g. firm2q %g, S %g/’, . ..

firm1strategy.Quality, firm1strategy.Samples, ...

firm2strategy.Quality, firm2strategy.Samples);

mkdir(iterationDirectoryName)

cd(iterationDirectoryName)

matDim = latticeInfo.PriceCount+1;

ProfitMatrixFirm1 = zeros(matDim,matDim);

ProfitMatrixFirm2 = zeros(matDim,matDim);

parfor i = 1:matDim % row values

TempProfitsFirm1 = zeros(1,matDim);

TempProfitsFirm2 = zeros(1,matDim);

for j = 1:matDim % column values

TempProfitsFirm1(j) = parallelWrapperProfitsFirm1(i, j , ...

latticeInfo, tspan, parameters, trend, ...
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firm1strategy, firm2strategy);

TempProfitsFirm2(j) = parallelWrapperProfitsFirm2(i, j , ...

latticeInfo, tspan, parameters, trend, ...

firm1strategy, firm2strategy);

end

ProfitMatrixFirm1(i,:) = TempProfitsFirm1;

ProfitMatrixFirm2(i,:) = TempProfitsFirm2;

end

%save the resulting profit matrices

PriceGameNEs = NashEquilibriaBySupportEnumeration ...

(ProfitMatrixFirm1,ProfitMatrixFirm2);

dlmwrite(’RawProfitMatrix1’, ProfitMatrixFirm1);

dlmwrite(’RawProfitMatrix2’, ProfitMatrixFirm2);

% profit matrices are edited for saving

% possibly should be done with a new function

Firm2pricestrats = 0:latticeInfo.PriceInterval:lattic eInfo.PriceCount * ...

latticeInfo.PriceInterval;

ProfitMatrixFirm1 = vertcat(Firm2pricestrats,ProfitMa trixFirm1);

ProfitMatrixFirm2 = vertcat(Firm2pricestrats,ProfitMa trixFirm2);

Firm1pricestrats = transpose(horzcat(666, Firm2pricest rats));

ProfitMatrixFirm1 = horzcat(Firm1pricestrats,ProfitMa trixFirm1);

ProfitMatrixFirm2 = horzcat(Firm1pricestrats,ProfitMa trixFirm2);

dlmwrite(’ProfitMatrix1’, ProfitMatrixFirm1,’delimit er’,’\t’,...

’precision’,6);

dlmwrite(’ProfitMatrix2’, ProfitMatrixFirm2,’delimit er’,’\t’,...

’precision’,6);

% save the found NE

countFID = fopen(’ThirdStageCountofNEs’,’w’);

fwrite(countFID,sprintf(’# of NEs: %g’,length(PriceGam eNEs)),’uchar’);

fclose(countFID);

save(’ThirdStageNEdump’,’PriceGameNEs’);

dlmwrite(’ThirdStageNEStrategiesForRowplayer’, ...
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[PriceGameNEs(:).rowPlayerStrategyProfile]);

dlmwrite(’ThirdStageNEStrategiesForColumnPlayer’, .. .

[PriceGameNEs(:).columnPlayerStrategyProfile]);

dlmwrite( ’ThirdStageFirstFoundNE’, ...

[PriceGameNEs(1).rowPlayerStrategyProfile ...

PriceGameNEs(1).columnPlayerStrategyProfile]);

cd(’..’)

retVal = PriceGameNEs;

end

E.6 parallelWrapperProfitsFirm1.m

function retVal = parallelWrapperProfitsFirm1(i,j, latt iceInfo, tspan, ...

parameters, trend, firm1strategy, firm2strategy)

firm1strategy.Price = (i-1) * latticeInfo.PriceInterval;

firm2strategy.Price = (j-1) * latticeInfo.PriceInterval;

retVal = profitsFirm1(tspan, parameters, trend, firm1str ategy, ...

firm2strategy);

end

E.7 profitsFirm1.m

function retVal = profitsFirm1(tspan, parameters, trend, firm1strategy,...

firm2strategy)

t = linspace(tspan(1),tspan(2),tspan(2) * 100);

revenue = zeros(1,length(t));

A1 = firm1strategy.Samples;

A2 = firm2strategy.Samples;

N = parameters(1);

initialState = [0,0,0];

% each consumer has the same probability to get a free sample, and the

% probabilities are independent between firms

initialState(1) = N. * (A1./N). * (1-A2./N);

initialState(2) = N. * (1-A1./N). * (A2./N);

initialState(3) = N. * (A1./N). * (A2./N);
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ratk = ode45(@duopolyDES,tspan,initialState,[],parame ters,trend,...

firm1strategy,firm2strategy);

for i = 1:length(t)

revenue(i) = revenueFirm1(t(i),ratk, parameters,trend, ...

firm1strategy,firm2strategy);

end

netrevenue = trapz(revenue) * (t(2)-t(1));

retVal = netrevenue - A1. * parameters(6). * ...

(firm1strategy.Quality.ˆ2+parameters(7));

end

E.8 duopolyDES.m

function retval = duopolyDES(t,x, parameters,trend, firm 1strategy,...

firm2strategy)

N = parameters(1);

mu = parameters(2);

beta = parameters(4);

lambda = parameters(5);

a1 = firm1strategy.Quality;

p1 = firm1strategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

q1 = x(1)+x(3); q2 = x(2)+x(3);

if trend.type == 1 % linear trend

effectOfTrendProduct1 = trend.d * a1* q1/N;

effectOfTrendProduct2 = trend.d * a2* q2/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrendProduct1 = a1 * (A * q1ˆ2 + B * q1);

effectOfTrendProduct2 = a2 * (A * q2ˆ2 + B * q2);

end

denomS = 1 + exp((1/mu) * (a1-p1+effectOfTrendProduct1))+...

exp((1/mu) * (a2-p2+effectOfTrendProduct2));
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denomI1 = 1 + exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2));

denomI2 = 1 + exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1));

PSI1 = exp((1/mu) * (a1-p1+effectOfTrendProduct1))/denomS;

PSI2 = exp((1/mu) * (a2-p2+effectOfTrendProduct2))/denomS;

PI1I12 = exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2))/denomI1;

PI2I12 = exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1))/denomI2;

I1prime = beta * PSI1 * (N-x(1)-x(2)-x(3))-beta * PI1I12 * x(1)+...

lambda * x(3)-lambda * x(1);

I2prime = beta * PSI2 * (N-x(1)-x(2)-x(3))-beta * PI2I12 * x(2)+...

lambda * x(3)-lambda * x(2);

I12prime = beta * PI1I12 * x(1)+beta * PI2I12 * x(2)-2 * lambda * x(3);

retval = [ I1prime; I2prime; I12prime];

end

E.9 revenueFirm1.m

function retVal = revenueFirm1(t,ratk,parameters,trend ,firm1strategy,...

firm2strategy)

% t refers to time

state = deval(ratk,t);

N = parameters(1);

mu = parameters(2);

r = parameters(3);

beta = parameters(4);

c1 = parameters(6);

c2 = parameters(7);

a1 = firm1strategy.Quality;

p1 = firm1strategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

q1 = state(1)+state(3); q2 = state(2)+state(3);

if trend.type == 1 % linear trend

effectOfTrendProduct1 = trend.d * a1* q1/N;

effectOfTrendProduct2 = trend.d * a2* q2/N;
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elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrendProduct1 = a1 * (A * q1ˆ2 + B * q1);

effectOfTrendProduct2 = a2 * (A * q2ˆ2 + B * q2);

end

% denomI1, PSI2, PI1I12 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((1/mu) * (a1-p1+effectOfTrendProduct1))+ ...

exp((1/mu) * (a2-p2+effectOfTrendProduct2));

%denomI1 = 1 + exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2));

denomI2 = 1 + exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1));

PSI1 = exp((1/mu) * (a1-p1+effectOfTrendProduct1))/denomS;

%PSI2 = exp((1/mu) * (a2-p2+effectOfTrendProduct2))/denomS;

%PI1I12 = exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2))/denomI1;

PI2I12 = exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1))/denomI2;

salesSI1 = beta * PSI1 * (N-state(1)-state(2)-state(3));

salesI2I12 = beta * PI2I12 * state(2);

retVal = exp(-r. * t) * (p1-c1. * (a1.ˆ2+c2)) * (salesSI1+salesI2I12);

end

E.10 parallelWrapperProfitsFirm2.m

function retVal = parallelWrapperProfitsFirm2(i,j, latt iceInfo, tspan, ...

parameters, trend, firm1strategy, firm2strategy)

firm1strategy.Price = (i-1) * latticeInfo.PriceInterval;

firm2strategy.Price = (j-1) * latticeInfo.PriceInterval;

retVal = profitsFirm2(tspan, parameters, trend, firm1str ategy, ...

firm2strategy);

end

E.11 profitsFirm2.m

function retVal = profitsFirm2(tspan, parameters, trend, firm1strategy,...

firm2strategy)

t = linspace(tspan(1),tspan(2),tspan(2) * 100);
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revenue = zeros(1,length(t));

A1 = firm1strategy.Samples;

A2 = firm2strategy.Samples;

N = parameters(1);

initialState = [0,0,0];

% each consumer has the same probability to get a free sample, and the

% probabilities are independent between firms

initialState(1) = N. * (A1./N). * (1-A2./N);

initialState(2) = N. * (1-A1./N). * (A2./N);

initialState(3) = N. * (A1./N). * (A2./N);

ratk = ode45(@duopolyDES,tspan,initialState,[],parame ters,trend,...

firm1strategy,firm2strategy);

for i = 1:length(t)

revenue(i) = revenueFirm2(t(i),ratk, parameters,trend, ...

firm1strategy, firm2strategy);

end

netrevenue = trapz(revenue) * (t(2)-t(1));

retVal = netrevenue - A2. * parameters(6). * ...

(firm2strategy.Quality.ˆ2+parameters(7));

end

E.12 revenueFirm2.m

function retVal = revenueFirm2(t,ratk,parameters,trend ,firm1strategy, ...

firm2strategy)

% t refers to time

state = deval(ratk,t);

N = parameters(1);

mu = parameters(2);

r = parameters(3);

beta = parameters(4);

c1 = parameters(6);

c2 = parameters(7);
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a1 = firm1strategy.Quality;

p1 = firm1strategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

q1 = state(1)+state(3); q2 = state(2)+state(3);

if trend.type == 1 % linear trend

effectOfTrendProduct1 = trend.d * a1* q1/N;

effectOfTrendProduct2 = trend.d * a2* q2/N;

elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.cˆ2);

B = 2* trend.d/trend.c;

effectOfTrendProduct1 = a1 * (A * q1ˆ2 + B * q1);

effectOfTrendProduct2 = a2 * (A * q2ˆ2 + B * q2);

end

% denomI2, PSI1, PI2I12 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((1/mu) * (a1-p1+effectOfTrendProduct1))+...

exp((1/mu) * (a2-p2+effectOfTrendProduct2));

denomI1 = 1 + exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2));

%denomI2 = 1 + exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1));

%PSI1 = exp((1/mu) * (a1-p1+effectOfTrendProduct1))/denomS;

PSI2 = exp((1/mu) * (a2-p2+effectOfTrendProduct2))/denomS;

PI1I12 = exp((1/mu) * (max(a2-a1,0)-p2+effectOfTrendProduct2))/denomI1;

%PI2I12 = exp((1/mu) * (max(a1-a2,0)-p1+effectOfTrendProduct1))/denomI2;

salesSI2 = beta * PSI2 * (N-state(1)-state(2)-state(3));

salesI1I12 = beta * PI1I12 * state(1);

retVal = exp(-r. * t) * (p2-c1. * (a2.ˆ2+c2)) * (salesSI2+salesI1I12);

end


