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Abstract

Objectives: The objective of this thesis is to build modekeve the demand of a product has an explicit, recog-
nizable trend effect. With the models we seek to infer thgprties of a trend based on observable firm behavior.

Methods: | construct in total three different models: a mumolg model, a Stackelberg duopoly model and a
simultaneous-choice duopoly model. Moreover, | studyeldidferent trend types in each of the models: a nonex-
istent trend, a linear trend and a parabel trend. The denmaaddh of the models is determined through initial
value problems that incorporate the trends into the prditiabifor buying a product. All presented initial value
problems are modified versions of the initial value problerfitte Susceptible-Infective-Susceptible epidemiolog-
ical model. | am unable to find analytical solutions for thiti@h value problems, and so | use numerical methods
for solving them. The numerical solutions are done with MAB. The use of numerical solutions for the initial
value problems means that also the firm behavior is solveceniaally. The firms seek to maximize their profits
by choosing the price, quality and free samples of their petsl | limit the firms’ choices to finite choice sets in
order to be able to optimize using simple brute force. Broted is used to calculate the firms’ profits for every
possible choice combination from the finite choice sets.sHflows us to describe firm behavior either directly
(the monopoly model and the Stackelberg duopoly model) atbgtying the subgame-perfect Nash equilibrium
of an interaction game that the firms play (the simultanezhaiee duopoly model).

Results: We are not able to deduce the properties of a trdaly &1y observing firm behavior. In each model the

values for exogenous variables may be chosen such that finavioe is the same for different trend types. We
may, however, formulate an existence result for trends:dfoliserve at least one firm giving out free products,
we may infer the existence of a trend. The result does notmihd other direction, i.e. we may not infer the

nonexistence of a trend if we observe no firm giving out frespcts.

Keywords: trend, Susceptible-Infective-Susceptiblegaume-perfect Nash equilibrium, duopoly
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Introduction

Trends are widely accepted to exist in consumer marketss dlso0 widely accepted that not all products are
trendy. This thesis is an attempt to build models of trendydpcts to study the existence of trends. | propose
to do this through using models derived from the epidemiicligSusceptible-Infective-Susceptible (SIS) model

(see e.g. Brauer and Castillo-Chavez (2001, p. 411)). ifgadly, | adopt the SIS model to describe the demand
of a product. | study three different models in total: 1. a woly model, 2. a Stackelberg duopoly model and
3. a simultaneous-choice duopoly model. While the modedipgroach allows observing the market state (i.e.
who owns what when) explicitly, | study the existence of ttetthrough firm behavior. For example, if we were

studying whether a particular pair of jeans is trendy or it@tpuld be clearly much easier to observe the behavior
of the firm that makes the jeans rather than how many consumers pair at a particular pointin time.

| argue that the use of an epidemiological model is appropridien we note the similarities between having a

disease and having a product. Both are measurable binaeg ste. you either have or do not have a disease or a
product. Both products and diseases have finite lifetimelsemthere are many infected persons in a population,
the likelihood of becoming infected ourselves increasdsriseparibus. Likewise, when there are many persons
with a certain product, arguably the likelihood of buyin@thproduct should increase. For example, we could

infer that a product is good from the product’s popularithu we might reasonably ask ourselves whether the
dynamics behind epidemics are similar to the dynamics loethie demand for trendy goods.

The evolution of the market, and thereby demand, in each hi®described by an initial value problem inspired
by the SIS model. The initial value problems are unfortulyeaealytically unwieldy, which then leads to the
use of numerical methods for solving them. The use of nurakniethods places demands on the way that the
firms’ decision variables, i.e. the price, quality and freenples of their products, are endogenized. | assume
that the models’ firms are only interested in maximizing theofits. This allows us to determine the firms’
behavior by determining what choices maximize the firmsfipgol assume that the firms’ choices are limited to
finite choice sets to help with solving the maximization peohs and to guarantee the existence of solutions in
the duopoly models. | acknowledge that the use of finite a@wgets is undesirable as it requires us to “define the
range of possible endogenous behavior exogenously” dedace MATLAB was used for the numerical numerical
solutions.

Consumer behavior is simple and uniform across the proposettls. | assume that consumers arrive at buying
decisions, i.e. visit a store, based on the Poisson proGégsconsumer’s buying decision is determined through
the consumer’s indirect utility function such that the aamer makes the decision that maximizes his indirect
utility. The indirect utility function is defined over the gpsible options of the buying decision, i.e. whether to
buy the product of some firm or to buy no product at all. Theriecti utility of an option is dependent on the

quality and the price of the product it represents (the “ipaind price” of not buying any product are assumed
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to be equal to zero). Moreover, | assume that there is a tréfadtén the indirect utility function for options
representing products. The strength of the trend effeatjieddent on how many others own the product that the
option represents. Finally, there is a random variable éitidirect utility to account for the quirks of human
behavior. The random variable leads us to study the prababithat the consumer buys a particular product.

| use the following definition for a trend: A product is trendy a trend exists, if the probability of buying the
productis in any way dependent on how many others own theugtad the time of the buying decision. Otherwise
the product is not trendy, or no trend exists. This definitba trend is very general and allows for a multitude
of different trend types. | consider three different tregpés in this thesis: 1. the “no trend” trend type, 2. a
linear trend type and 3. a parabel trend type. With the “nodtérend type, there is no such effect to the indirect
utility of a product that could be interpreted as stemmirggfra trend. Firm behavior with the “no trend” trend
type gives us a benchmark to which we may compare the firm b@hstemming from the two other trend types.
With the linear trend type, the indirect utility of the pradincreases linearly as the number of people owning the
product increases. With the parabel trend type, the intirlity of the product increases up to some saturation
point and then starts to decrease forming a downward-opg@irabel as the number of people owning the product
increases.

The linear and parabel trend types may be interpreted thraed)-known concepts in economics. Products with
the linear trend type can be seen as examples of network gddustelephone may serve as an example of a
network good, as the usefulness of a telephone increasks asitber of other people with telephones increases
since now there are more people one may call. Next, prodittigparabel trend type can be seen as examples of
“trends in the traditional sense” or of negative exteriegitn consumption. Examples for products with this trend
type could be clothing or cars. A piece of clothing may statbse its appeal when too many others already have
the same piece, leading to behavior typically associatéld tive notion of a trend. Similarly the usefulness of a
car decreases when there is congestion, i.e. too many cagslglon the road, which in turn could be interpreted
as a negative externality in consumption.

| pose the following research questions:

1. Do different trend types lead to observable differenndgin behavior?
2. In particular, are there markets where firms find it optitoaive out free products as samples?

3. Can we deduce the type and the strength of a trend baséyl aolebservable firm behavior?

The research questions are answered by looking at firm bahahich is solved numerically in each of the three
proposed models. | vary a number of exogenous variablesouid® sensitivity analysis on how the exogenous
variables affect firm behavior in each model. These exogenatables are the planning horizon and the discount
rate of firms and the strength of the trend. Each of theseblasas difficult to observe, and each plays a large part
in determining the profits of a firm and thereby the behavidheffirm.

The thesis is structured as follows: Chapter 2 describesitsamption behind consumer behavior in all three
models. Chapter 3 describes the necessary assumptionkentkethods for solving the initial value problems

(and the firms’ profits) numerically. Chapter 4 presents tlomopoly model, chapter 5 the Stackelberg duopoly
model and chapter 6 the simultaneous-choice duopoly mo@ékapter 7 summarizes the work, criticizes the
models and proposes some possible extensions to them.



Consumer behavior

This chapter describes the assumptions regarding condoehavior in each of the proposed models. These
assumptions form the basis for writing the initial valuelgemns that describe the evolution of the markets. The

assumptions are chosen such that they mimic the assumptidhe SIS model and can be interpreted in terms

of economics. Consumer behavior is interpreted in termuf & consumer moves between so-called consumer
compartments. The consumer compartments describe withigigoa consumer in a particular compartment owns.
The movement between consumer compartments is due to aitt@msumer purchasing a product or a product

breakdown. The movement between compartments then detsrttie demand for the products through the

purchases.

The rate of movement between compartments depends on dateest 1. how often a consumer will face a buying
decision, 2. how the consumer makes his buying decision ahd\8 long do the the products last. These factors
are determined by the following assumptions: Consumeses faging decisions according to a Poisson process.
Consumers make their buying decisions by choosing themptithe buying decision that maximizes their indirect
utility. Finally, the product lifetimes are assumed to hameexponential distribution.

The buying decisions are modeled with the multinomial logitdel of discrete choice (see e.g. Anderson et al.
(1992, p. 39)). Consumer behavior at the individual levehdsumed be non-deterministic as the consumer’s
indirect utility function has a random variable by assumiptiThe consumer makes his choices to maximize his
indirect utility, which is in part determined by the realimm of the random variable. As the realizations vary, we

may merely derive the buying probabilities for particulangucts. The buying probabilities depend on the trend
effects, the qualities and the prices of the products.

While the modeling approach for the buying probabilitieaédl-established for describing how a consumer with-
out any products might buy a product, the duopoly modelsirequs to describe the buying probabilities for a
particular product for consumers who already own a (simpapduct. | was unable to find prior research on this
issue and was therefore forced to make my own assumptionartdidnit. A critical reader should note these
assumptions.

2.1 The compartmental view of the market

Let us suppose that we have a set of characteristics and égiopwhere individuals exhibit these characteristics.
For epidemiological models, including the SIS model, thes@racteristics would describe whether an individual
has a particular disease. For the proposed models, thecthdstics describe whether an individual owns a
particular product. The population is then divisible intmpartments depending on the characteristics such that
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each compartment represents mutually exclusive combimafithe characteristics. For example, if we consider an
epidemiological model for a single disease, the populationld be divided into two compartments representing
those who have the disease and those who are healthy. Fuirtherconsider an epidemiological model for two
diseases, the population would be divided into four conmpants representing those who are healthy, those who
have either one of the diseases and those who have bothels&¥%s may naturally divide the population similarly
in the proposed models based on what products the consumers o

Let us next limit our attention to the compartmental stroesuof the proposed models and name the models’
compartments. | use the naming notation of the SIS modehf®icbompartments of the proposed models. The
SIS model names the compartment of those who are susceggilslempartment and the compartment of those
who are infective as compartmehtFollowing this notation, we name the compartment of thoke do not own

any product as compartmesitand the compartments of those who own some particular ptegutompartments

1. In the monopoly model there is only a sindleompartment as the consumers may own only the monopoly’s
product. In the duopoly models there are in total thfemmpartments where the subscript of each compartment
describes what the consumers in that compartment own. Ledme the duopoly firms as firirand firmj. Then

the I-compartments are nameg I; and/;; to denote that the consumers own the product of filon j or both
firms.

Why is it necessary to present such complicated tools to hameand instead of, for example, defining an explicit
demand function? The compartmental view of the market plexs/us with a tractable way to model the effects
of trends to demand. We aim to find functiofi&) and(¢) (or functionsI;(t), I;(t) andI;;(¢) in the duopoly
models) through studying initial value problems to desetiow many consumers are at which compartment at
time ¢. As the functions describe how many consumers own a paatigubduct, we may model the effects of
trends to the product’s buying probability with them.

2.2 Arrivals to buying decision and product lifetime

Let us now describe the assumptions regarding the consumeals and the product breakdowns. These as-
sumptions are made on the basis of the discussion in BradeCastillo-Chavez (2001, p. 351-2) concerning the
background assumptions of the SIR model. The backgroundrgd®ns of the SIR model are equivalent with
the background assumptions of the SIS model as the differeaiwveen models concerns only what happens to a
person at the end of the disease. We therefore wish to fotesilailar assumptions regarding the consumer arrival
and product breakdown rates. From these assumptions wetoviiow that the consumer arrivals and product
breakdowns happen at a constant rate per unit time. Thisstleangiven an infinitesimally small time interval, the
probability of a single consumer arrival or a single produetakdown is independent of time and approximately
proportional to the length of the time interval with someerpairameter. The rate parameter is determined by the
chosen background assumptions in both cases.

| assume that consumer optimization plays no part in deténmiconsumer arrivals or product lifetimes. The
consumers cannot therefore affect the product lifetimefdayexample, varying the product’s rate of use. The
product lifetime is then based solely on the durability af firoduct, which allows us to assume that lifetime of
a product has an exponential distribution. Next, | see thesgmer arrivals as incidental and offer the following
interpretation for a consumer arrival: Consumers visit@esbn other business, happen to pass by a window
exhibition and make the decision whether to buy based onitveed window exhibition. The consumer arrival
rate is then constant and independent of the consumer’'s adment. This allows us to model the consumer
arrivals as arising from a Poisson process.
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2.2.1 Arrivals to buying decision

Let us now consider the arrivals to buying decisions. | maldelconsumer arrivals as a Poisson progess:) :

t > 0} with parameter3, where the procesSN(¢) : t > 0} is a sequence of random variabl&4¢). | use
the definition of Feldman and Valdez-Flores (2010, p. 116)@f@oisson process: Procds¥(t) : ¢ > 0} is a
Poisson process with parameteif 1. P(N(t) = k) = exp(—pBt)(Bt)*/k! for all k > 0,k € N andt > 0,

2. the eventN(s + u) — N(s) = i is independent of the eve(t) = j if ¢ < s, and 3. the probability
P(N(s+u) — N(s) = i) depends only on the value af Let us now consider the number of arrivals on a short
time intervallt, ¢t + A] where timet is some arbitrary starting time and lengtha small positive constant. Because
a Poisson process has independent (condition 2 of the dafindand stationary (condition 3 of the definition)
increments (Feldman and Valdez-Flores (2010, p. 117))ptbbability thatk consumers arrive on time interval
[t,t + A] is given by equation (2.1):

(BA)

P(N(t+4) = N(t) = k) = exp(=BA)=—

= P(N(A) = k) (2.1)

From equation (2.1) we note that the probability th@onsumers arrive on time interval ¢ + A] is independent
of the starting timet, and that it is therefore sufficient to study the arrivals iometintervals starting from time
t = 0. The equation (2.1) allows us to determine the approximetieability of a single person arriving on a short
time intervall0, A]:

o 2 o 3 o 4
P(N(A) = 1) = exp(—BA)BA = (1 + (—BA) + & if) 4 BS!A) L i!A) LA RBA (22)

The approximate (2.2) follows from the shortness of the wred time interval: The higher order terifiA)?,
(BA)3, (BA)* etc. are vanishingly small when lengthis small, which gives us the presented approximate. We
therefore note that the consumer arrivals happen at a camate per unit time, and that the rate parameter. is

For estimating the value of parameteof a Poisson process, the interarrival times of a Poissooceghave an
attractive charasteristic: The interarrival times haveegponential distribution with parametér Let 7' denote

a random variable describing the time interval between twivads. Lett denote some point in time, and let us
consider the probability that, starting from the last atino one has arrived befote This is equivalent to the
interarrival timeT" being longer tham, which gives us equivalence (2.3):

P(T > t) = P(N(t) = 0) = exp(—ft) < P(T <t) = 1 — exp(—f3t) (2.3)

Now, the equation on the right in equivalence (2.3) statas ttne cumulative distribution function of random
variableT is the cumulative distribution function of the exponenditribution with parametes. The interarrival
times therefore have an exponential distribution with pegers.

The Poisson process has also an attractive characteafiéd ¢he superposition principle (see e.g. Feldman and
Valdez-Flores (2010, p. 120)): Given two independent RoiggocesseSN, (t) : ¢t > 0} and{Na(t) : t > 0} with
parameterg); and s, the superpositioning of these processes,{id.(t) : t > 0} = {N1(¢) + Na2(t) : t > 0},
forms a Poisson process with parametert- 5. We may then superposition any number of Poisson processes
by induction and only consider the resulting “sum proce#isi$ therefore sufficient study only a single Poisson
process describing market-wide arrivals.
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2.2.2 Product lifetime

| assume that the product lifetime follows an exponentiatriiution with the parametex. This assumption

is equivalent to the assumption (ii) in Brauer and Casfilltavez (2001, p. 352) with a new interpretation. The
following analysis is reinterpreted from Brauer and Clsithavez (2001, p. 39-40) that deals specifically with the
lifetime of an organism. LeL denote a random variable describing the product lifetinehsbatL ~ Ezp()).

We may now derive an approximation for the probability thgiraduct breaks down on a small time interval
|t,t + A] given that it has not broken down before titme

P(Product breaks down ift, ¢ + A] | Productworkingat) = P(L<t+A|L>1)
P(t<L<t+A)
P(L > t)
P(t<L<t+A)

T T1-PIL<y (2:4)

Using the cumulative distribution functiof(t), we have the approximate probabilii(t < L < t+ A) ~
F(t+ A)— F(t). Moreover, when the time intervil ¢t + A] is small, we have a further approximate (2.5) for the
probability P(t < L < t+ A):

o<t <8y (CEEZFO)) s 29

In approximate (2.5)f (t) = d/dtF (t) is the probability density function of random variafile

The cumulative distribution function of the exponentiatdbution with parametex is F(t) = 1 —exp(—At), ¢ >

0 and the corresponding probability density functiory{g) = Aexp(—At),t > 0. Using these functions and
approximate (2.5), we may manipulate equation (2.4) furthe

Pt<T<t+A) f(HA  Adexp(=A)A

1 - P(T < t) - 1-— F(t) N exp(—)\ﬁ) =AA (26)

PT<t+A|T>t)=

Based on the approximate (2.6) we then note that the pratyadfithe product breaking down before time- A is
independent of timéand approximately proportional to the lengiiof the time interval. The product breakdowns
therefore happen at a constant rate per unit time, and th@aahmeter is.

2.2.3 Estimatings and A

Since the interarrival times and product lifetimes haveogexmtial distributions, we have an easy way to estimate
boths and). Let X ~ Exp(«) denote a random variable with exponential distribution emasider the expected
value of X:

EX = /OO xf(x)dx

= / zaexp(—ax) dz
0

=

. {(1 Ja)

OO

zexp(—ax) — /

exp(ax)dx}

(=)

h exp(—ax)} =1/« (2.7)
0
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The arithmetic meaiX of the realizations of( is an estimator the expected valueXf We may now estimate
using equation (2.7) as ~ 1/ X. If we have data on the average interarrival timhasd average product lifetimes
I, we have the estimates= 1/ and\ = 1/I for parameters and.

2.3 Buying decision

The buying decisions are modeled through buying probaslit The buying probabilities are derived from a
modified multinomial logit model (see e.g. Anderson et a@92)). Specifically, | modify the multinomial logit
model in Anderson et al. (1992, p. 66) and present here theadien of the buying probabilities from Anderson
etal. (1992, p. 39-40). The multinomial logit model deteres the buying probabilities through the indirect utility
function of the consumer. | make two modifications to the riedi utility functions: First, | introduce a trend
effect term to the function to model the effects of trendsxtNas | wish to study duopoly models, | introduce a
compartment-based modification to the indirect utilitie@ssume that already owning a similar product decreases
the indirect utility when purchasing a new product.

2.3.1 Buying probabilities

Let us suppose that at the buying decision therewati#ferent products of which the consumer may choose from.
We model this situation by considering a decision avef 1 different variants. The extra + 1th variant is the
not-buying option, where the consumer chooses not to buthargy The buying probabilities are derived using
indirect utilities. | assume that the indirect utility of varianti is given by equation (2.8). If the termg(I;) is
dropped, the equation (2.8) is identical to the indireditytiunction defined in Anderson et al. (1992, p. 66).

Vi=y—pi+a+ag(li)+e (2.8)

The terms in equation (2.8), where applicable, are intéegras in Anderson et al. (1992, p. 66). The teyis

the consumer’s real income at the buying decision. The fgrisithe price of variant. The terma; is the quality
index of varianti, i.e. a; summarizes all the observable characteristics of vati@mtmoney terms. | refer to

a; as the intrinsic quality of variant The term/; is the amount of variantin the population at the moment of
the buying decision, i.e. how many others own the produdtiatitme of the buying decision. The tewti/;) is

the effect of the trend associated with variamd the consumers indirect utility. Finally, the ternis a random
variable and describes the consumer’s idiosyncratic,fatoig tastes at the buying decision. The realizations of
random variable; would describe why | would prefer Levi’s jeans to Lee jeansaaertain day and the other way
around on another day ceteris paribus. The expected valaeddm variable is assumed to be zero, i.8¢ = 0,
meaning that on average the observable terms determinetisemer’s behavior.

The consumer chooses varianf the varianti's indirect utility is the largest indirect utility of all véants, i.e.
when conditionV; = MaX1<j<nt1 V] holds. | assume, as in Anderson et al. (1992, p. 66), thaturness can
always afford any variant i.e.0 < p; <y,i=1,...,n+ 1. The real income then has no bearing on consumer
choice. Let; be the realization of the random variabjeandV; the associated indirect utility. Then the consumer
chooses variantwhen the equivalent conditions (2.9) hold:

V., = max V
1<j<n+1
Sy—pitatagl)+é = max y—p;+a;+a;g(l;)+é
1<j<n+1
@al—ijLalg(L)qLél = max aj —pj+ajg(1j)+éj (29)

1<j<n+1
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Following Anderson et al. (1992, p. 36), we may now derive Ibuging probability for variant. Lete =
(€1,...,€n41) be a random vector with the joint cumulative distributiomdtion F. The random variables
€, i = 1,...,n + 1 are by assumption independent. We may then write randonoivestcumulative distri-
bution function asF'(x1,...,2n+1) = Fi(z1) - ... - Fus1(zne1). The cumulative functions for each random
variablee; are next assumed to be the same, meaning that we mayiiig = ... = F,,11(z) = H(z). To
lighten the notation, let us write; = a; — p; + a;g(1;). Now, the probability of the consumer choosing variant
is given by equation (2.10):

P(Consumer chooses variant = P(V; = /-
( ai (Vi = max Vj)
= P(u1+€1Sui+€ia"'aun+1+€n+1Sui+€i)
= Pleg<uj+e€—up,. .. enp1 < U+ € — Upt1) (2.10)

Again, leté; be a realization of random variablg Then from equation (2.10) and from random varialaldseing
i.i.d., we may write the probability of choosing variards in equation (2.11):

P(Consumer chooses variante; = ¢;) = Pler <u;+6 —ur,... 641 < U+ 6 — Unt1)
= Flui+é& —up,...,u; + €& — Unyr)
= Fi(ui+é&—up) ...  Fop1(ui+ € — upy1)
= J[H®@+é - uy) (2.11)
i

Accounting then for all possible realizations of randomialale ¢; with the probability density functioh(z) =
d/dzH (x), the buying probability is determined by equation (2.12):

P(Consumer chooses variant = / Ple; =x2)P(er <uj+ax —uty...,€np1 < U+ T — Upyq)de
= / h(x)HH(ul + 1z —uj)de (2.12)
- J#i

To proceed further it is necessary to fix the cumulative iistion functionH (x). Let us assume that the random
variablee; has a double exponential distribution as this assumptafsléo tractable forms for the buying probabil-
ities. The cumulative distribution function fey then isH (x) = exp(— exp(—% — 7)), wherey > 0 is a constant
and~ is Euler’s constant. The probability density functiorepfs h(x) = i exp(—% — ) exp(— exp(—% 7).
Then, following Anderson et al. (1992, p. 39-40), let us fisite z; = exp(u;/p) and change the variable
of integration of equation (2.12) t6 = exp(—xz/u — 7). For the change of variable of integration, we have
dé = —%exp(—m/u — v)dz, and for the limits of the integration, we note thatp(—oco/p — v) = 0 and
exp(—(—00)/u — v) = co. We may now, using equation (2.12), determine the buyinggdities:
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P(Consumer chooses variant = / h(:c)HH(ui + 1z —uj)dz
> i

1 T €T
—exp(——= — ) exp(— exp(—— exp —7)) -
/ 1 1 1

HeXp(_ eXp(_m —))da
ji .
0 Uj (773
= - exp(f(;)Hexp — dexp(—)exp(——) |dd
S 4 H H
J#i
= / exp(—é)H exp (_ 5Zj)d5
0 j#i =
0o n+1 2
= / exp (— 6(2 —J))dé
0 =1 Zi
— 2z oo ntl Z.
= niz exp ( —§( _J)>
Zjill Zjlo ]:Zl Zi
Zi explu;
S . [V (2.13)
D1 % i1 exp(u;/p)

The not-buying optiom + 1 has no intrinsic quality or price, i.e. we haug,; = p,+1 = 0 which means
un+1 = 0. We may therefore rewrite equation (2.13) as equation §2.14

exp(ui/p) exp(Ltiteala)

L+ 370 exp(us/p) 14 > exp(%wm)

P(Consumer chooses variaint=

(2.14)

Anderson et al. (1992, p. 42-5) discusses the propertigstéimis such as (2.14). Two notable characteristics from

the discussion bear restating: Lieti) denoteP(Consumer chooses variant As i — 0, the variance of; tends

to 0. Thenlim P(i) = 1 whenw; > max u;, and asu — oo, lim P(i) = 1/n when there are variants. The
n—0 J#i =00

parametey: therefore describes the informational valueugf A small i, implies that consumers are prudent in

their choices, and thus the prices and the intrinsic gealitf the products play a relatively larger part in the buying

decision. A large: implies that consumers do not care as much about the prighe artrinsic qualities, and thus

firms have more leeway in their price-quality choices.

2.3.2 State-dependent indirect utility

The previously presented buying probabilities describ& haconsumer who does not own any products buys a
product from one of a large number of firms. However, if a consualready owns a product from a firm, the
probability of buying a similar product from a different firim surely affected by this fact. Since the models in
this thesis describe either a monopoly or a duopoly, | wila#e the buying probabilities in only these types of
markets.

| cannot cite previous research that supports (or weakbeshodifications | propose. Nevertheless | argue that
the modifications are in line with common sense. Fortunatbly proposed models allow changing the type of
buying probabilities relatively easily, should it beconeeassary.
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Monopoly

First let us consider a monopoly. Letdenote the quality ang the price that the monopoly sets. LEt) denote
the amount of consumers who own the monopoly’s product & tinThe buying probability for the monopoly’s
product is now given by equation (2.15):

exp (a—p-i-tzg(f(t)))

1+ exp (a—p-HLg(I(t)))

P(Buy from monopoly = (2.15)

As there is only a single firm of in the market, the consumeesda buying decision between two variants. These
variants are the monopoly’s product and the not-buyingooptiVe then note that equation (2.15) is a special case
of equation (2.14) with two variants.

Duopoly

Next let us consider a duopoly. Let us name the duopoly firms fiand firm2. Leta; denote the quality ang;
the price firm:i = 1,2 sets. Let/;(¢) denote the amount of consumers who own the product offiatntimet.
Additionally, let I;2(¢) denote the amount of consumers who own products from botis fitrtimet.

The buying probability for a consumer who does not own anyipets is now given by equation (2.16). The buying
decision is now between three variants: These variantsranel ¥ product, firm2’s product and the not-buying
option. As with the monopoly buying probability, equati@X6) is then a special case of equation (2.14).

exp (ai_pi+ai9(ii(t)+112(t)))

P(Buy from firm: | No product$ =

1+ exp <a1p1+a1g<h<t>+h2<t>>) +exp (azpz+a2g<l2<t>+h2<t>>

W W
(2.16)

As we are considering a duopoly, we may ask what effect doesngaproduct; have on the buying probability
for producti # j. | assume that the products firms produce are "substitat@stiinsic-quality.“ When a consumer
already owns a produgt the intrinsic quality of product is the maximum of;; — a; and0. The consumers do
not therefore experience indirect utility when the prodhely already own is of higher intrinsic quality than the
new product, i.e. whea; > a; we havemax{a; — a;,0} = 0.

The buying probabilities are now given in equation (2.17haf the consumer already owns prodjeind con-
siders buying the other produgthe buying decision is between two variants, prodwaatd the not-buying option.
Equation (2.17) now follows the same logic as equation (?bid with the alternation that the intrinsic qualities
have been changed from to max{a; — a;, 0}.

exp (max{ai—aj,O}—pi:aig(Ii (t)+112(t)) )

P(Buy from firm¢ | Own product from firmj) = (2.17)

max{a;—a;,0}—pi+a;g(L;(t)+112(t))
14 exp ( J m )
From equations (2.16) and (2.17) we may note two implicitieg®ions about the trend effect. First, | assume
that the trend effect is independent of the types of conssim&ning the product. Consumers in compartménts
and I, contribute to the trend effect in the same exact way. Thisbeaseen in ternd;(¢) + I12(t) as the sum
of the consumers enters into the functigid; (t) + I12(¢)). Next, | assume that the trend effect and the effect of
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the intrinsic quality are separate in the buying probabilithe trend effect is seen as an effect of the consumer’s
environment (for example as peer pressure to conform) amat itherefore affected by the ownership of a product.
This assumption can be seen in equation (2.17) as intrimsitity is adjusted in ternmax{a; — a;, 0} but not in
terma;g(L;(t) + I12(t)).



Methods and assumptions for the
numerical solution

The market evolution, and through it the firms’ profits, areedmined by initial value problems. | am unfortunately
unable to provide analytical solutions for these initialueaproblems and therefore have to settle for numerical
solutions. The numerical solutions require us to make a rummbassumptions regarding explicit functional forms
and the values of exogenous variables. This chapter desdtile chosen assumptions and the methods used for
the numerical solutions.

The use of numerical methods naturally leads to questioningt part of firm behavior is due to the chosen
values for the exogenous variables and what part to modeiuiation. To shed light on this issue, | divide the
exogenous variables to constant exogenous variables gedigental exogenous variables. Constant exogenous
variables remain, as their name suggests, constant whikxierimental exogenous variables are varied to provide
information on the behavior of the models with respect tes¢heariables. The aim of this exercise is to do
sensitivity analysis or “comparative-statics-by-othegans,” as the traditional way of doing comparative statics
through linearization is ruled out by the lack of analytisalutions to the initial value problems.

Solving the firm behavior in the models requires us to defieditims’ choice sets beforehand. This requirement
is due to the way optimization is implemented given the gémeeretical structures of the models. The choice sets
describe how a firm may choose its decision variables, andastbey define the range of possible observable
firm behavior. The assumptions regarding these sets aresidpaificant when considering the research questions.

3.1 Numerical methods

In order to be able to maximize profits, we must first be ableatoudate profits. In order to calculate profits, we
must be able to solve an initial value problem and to integeafunction numerically. | solve the initial value
problems by using the (fourth-order) Runge-Kutta method mmegrate numerically by using the Trapezoidal
rule. Both of these methods were chosen because they aesnelyrwell-known. Moreover, MATLAB provides
suitable ready-made functions for both tasks.

3.1.1 Runge-Kutta Method

As mentioned before, the market behavior in each of thevatig models is described by an initial value problem.
An initial value problem, in turn, consists of one or morefeliéntial equations and initial values. | give here

18
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a brief presentation of the classical fourth-order Rungétd&method for an initial value problem with a single
(first-order) differential equation and a single initialva from Nagle et al. (2011, p. 134). For the same method
applied to initial value problems with more than one diffetial equation and initial value, see for example lyengar
and Jain (2009, p. 208) or Chapra (2005, p. 500).

Let us consider the initial value problem (3.1):

Y (x) = f(x,y(2)), y(x0) = Yo (3.1)

We wish to find the function(z) that satisfies the conditions of the initial value probleni}®n a given interval.
Since finding the function analytically might be exceedyrdjfficult, we might choose to approximate the solution
y(x) instead. The classical fourth-order Runge-Kutta methgad@pmates the solution in the following manner:
Suppose that we are interested in how the solugicr) behaves on some intervaly, ¢|. We first choose the
number of stepsV that determine the points at which the solutidr) is approximated. Naturally, in order to stay
in the interval in our steps, our stepsizaatisfiesNh = ¢ — xzg or h = (¢ — xp)/N. We then start to move from
pointz, with step sizéh and approximate the functigi{x) using the following equations (3.2) and (3.3):

Tpyl = Tp+h
1
Yn+1 = Yn + E(kl + 2]€2 + 2]{33 + k4) (32)
where
kl = hf(xnayn)
h k
ky = hf(xn+§7yn+?l)
h k
k3 = hf(xn+§7yn+?2)

Given the initial valuey(z¢) = yo and the step sizk, equations (3.2) and (3.3) can then be used to approximate
the solutiony(x) with eachy,,-value. We note that the presented method is recursive asevéhe valuey,, for
calculating the valug,,;. There are also more sophisticated versions of the Rungiinhethod. Nagle et al.
(2011, p. 136) describes an algorithm that replaces the ofegftbosing the number of steps with a tolerance.

The ready-made function for the fourth-order Runge-Kutédirad in MATLAB is ode45 This function was used
for solving the initial value problems of all three proposaddels.

3.1.2 Trapezoidal rule

In order to be able to calculate profits, it is also necessabgetable to integrate numerically. While there exists
more sophisticated numerical integration methods (fomgda Simpson'’s rule or Gaussian quadrature), | chose to
use the Trapezoidal rule for its ease of implementationve giere a brief presentation of it adopted from Chapra
(2005, p. 399-402). Strictly speaking, the method preskinége is the composite trapezoidal rule (Chapra (2005,
p. 401)). Suppose that we have a functi®(t) that describes the revenue of a firm at titnéVloreover, suppose
that we are interested in the total reveriig, of the firm over some time intervét, b]. To find the total revenue,
we need to integrat®(t) over the intervaja, bl:
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b
Rital = / R(t)dt (3.4)

There is no guarantee that the integral on the right-haredisigquation (3.4) can be calculated analytically. We
therefore wish to find a way to approximate the integral. tFine note that the intervdk, b may be divided

into n smaller intervalgzo, z1], . .., [£n—1, 2] Such thatey = a,z,, = bandz; — ;-1 = z; — x;_1 forall
i,j =1,...,n. We may then write the integral on the right-hand side of &qug3.4) as follows:
b 1 Tn
/ R(t)dt = / R(t)dt + ... +/ R(t)dt (3.5)
a o Tn—1

Calculating the integrals over the smaller intervals inagigun (3.5) is usually as difficult as calculating the inedgr
on the right-hand side of equation (3.4). However, if we calueate the function valueR(t,) at an arbitrary time

to, We may approximate the integrals using the function vadunesreduce the approximation error by considering
smaller intervals. Let us consider segmpnt 1, x;]. We approximate the integral with the area of a trapezoitl tha
is under the straight line connecting poiis_1, R(z;—1)) and(z;, R(z;)). The area of the trapezoid is given by
the product of the trapezoid’s width and its average height.

/ Z R(t)dt ~ (x; — xi_l)w = width - average height (3.6)

As the width of every segmenfit;_1, z;] is the same by assumption, let us denote this width by the teem
x; —x;—1 = (b—a)/n. We may then use the approximate (3.6) for approximatingrttegral over the whole
interval(a, b]:

/abR(t)dt _ /E R(t)dt+...+/% R(t)dt

Zo Tn—1

R(xo) + R(z1)

(x1 —xg) ——————=+ ...+ () — xnil)R(zn,l) + R(zn)

%

2 2
_ hR(mo) + R(x1) - hR(xn_l) + R(xy)
2 2
= 2(R(0)+2 Y Rl + R(z) @7

i=1

We have now constructed a way to approximate the total r@souer the time intervak, b] with the function
valuesR(z;). We may note that trapezoids over smaller intervals proaideetter approximates for the area
between the-axis andR(t). Then as the number of segmentsncreases, the width of the smaller intervals
decreases and the approximate (3.7) approaches the caheetof the integral in equation (3.4).

The ready-made function for the Trapezoidal rule in MATLARrapz This function was used for calculating the
profits in all three proposed models.

3.2 Parameter choices

3.2.1 Firm’s choice set

The models allow a firm to control three aspects of its prodihet quality of the product, the price of the product
and the amount of free samples the firm gives. The naturabapprin modeling these aspects would be to allow



3. METHODS AND ASSUMPTIONS FOR THE NUMERICAL SOLUTION 21

them to be chosen from positive real numbers. However, thisral approach poses problems for the numerical
solution of the duopoly models. The way the firms interachanduopoly models is dictated by the game theoretical
structures of the models. This interaction can be seen agdmmonding where each firm seeks to maximize its
profits by optimizing its choices with respect to the choicthe other firm within the structures of the duopoly

models. | was regrettably unable to find suitable tools tadl@best-responding with choices from positive real
numbers, and so | limit the firms’ choices to the followingssgt.8):

The set of qualitiest = {0,1,2,3}
The set of free samplég = {0,200 000,400 000, 600 000}
The set of price® = {0,3,6,9} (3.8)

With the values in sets (3.8) | hope to allow a multitude ofiche to the firm while keeping the models computable.
| offer the following interpretations for the values: Theoate0 in quality or the free samples represents the case
where the firm does not invest anything to the particular eispithe product. The choickin quality and the
choice200 000 in free samples represents a small investment in that p&tiaspect. The choic2in quality

and the choicd00 000 in free samples represents an average or mid-size investmiat particular aspect. The
choice3 in quality and the choic600 000 in free samples represents a large investment in that pkatiaspect.
Likewise, the price choicé represents a free product, the price ch@icepresents a low price, the price chotce
represents an average price and the price clbiepresents a high price.

3.2.2 Constant exogenous variables

Table 3.1 gives the constant exogenous variable valuesseThaues were chosen arbitrarily. Following the
analysis in section 2.7, we note that with these value clkdloe average interval between arriving consumets is
and the average product lifetimeds Products should not therefore disappear from the populgtirely due to
their short lifetime, since on average two buying decisivilsbe made per one product breakdown.

Parameter name Parameter interpretation Parameter value
N The amount of consumers in market 1000 000
1 The impact of indirect utility 0.5
8 Consumer arrival rate 1
A Product breakdown rate 0.5
c1 Cost scaling coefficient 0.5
Co Minimum cost constant 1
m Trend saturation point 333333

Table 3.1: Constant exogenous variables

Why choose to keep these exogenous variables as constamt2ddon for this is two-fold: In table 3.1, the first
set of variablesV, i, 8, A, c¢1, co are perhaps the easiest parameters to measure. If we weresied in applying
the models in serious research, we could perhaps be abledprdmiate values for these variables. Next, the
variablem is kept constant as it is required by a one of the proposedfiations of the trend effegj(7). Since
the trend effects in this thesis only serve as examples dfilplestrend types, | choose to leaveas a constant.
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3.2.3 Experimental exogenous variables

After describing the constant exogenous variables, | ptdbe experimental variables and their prospective values
in table 3.2.

Parameter name Parameter interpretation Parameter valualue terpretation

T Firm’s planning horizon T=10 Short planning horizon
T =100 Long planning horizon
T Discount rate r=20 Patient firms
r=0.05 Normal Firms
r=10 Impatient Firms
d Strength of the trend d=2 Weak trend
d=38 Strong trend

Table 3.2: Experimental exogenous variables

Why choose to vary these exogenous variables? None of thebles are easily observable or measurable. We
might reasonably expect that firms would keep their plantiogzonsT and discount rates as secrets. The
planning horizoril” and the discount rate along with the strength of the trentl should additionally have large
effects on the profit calculations of a firm and thus on the biehaf the firm. These variables are then the most
interesting exogenous variables with regard to firm behlavtdch is why they are chosen for the “comparative-
statics-by-other-means.”

3.3 Functional form choices

3.3.1 Trend term functionsg(/)

As there seems to be no clear, exact and universal definifisrhat is meant by the word “trend,” | propose to
consider a product trendy if the probability of buying it ieated by the number of other consumers already
owning the product. This broad definition allows for an inmumber of ways to define the relationship between
the buying probability and the number of other consumersiogvthe product. In this thesis | study perhaps the
three simplest ways: the nonexistent relationship, a fingationship in indirect utility and a parabel-shapedrel
tionship in indirect utility. | refer to those products wheethere is no relationship between the buying probability
and the number of other consumers owning the product as pt®dith no trend, to those products where there
is linear relationship as products with a linear trend anthtse products with a parabel-shaped relationship as
products with a parabel trend. Let us next give explicit ferfor these relationships by defining the functional
forms of the trend term functiong).

The functional forms of the trend types are constructedguie previously mentioned exogenous variables and
the compartment-specific functions discussed in sectibnhe parameteN denotes the number of consumers
in the market. The terni denotes the number of other consumers who already own tliigiroFor the models

in this thesis, the ternd takes the forny(¢) or I;(¢) + I;;(t) as we may express the number of other consumers
owning the product at time with the compartment-specific functions. The functionahie for the trend term
functionsg(I) are as follows:

1. Products with no trend have the fog/) = 0
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2. Products with a linear trend have the fogd) = d4,d > 0

3. Products with a parabel trend have the fgifh) = —-%1% +247,d > 0,0 <m < N

The parameted is interpreted as the strength of the trend effect. Whenréhedtis at its peak, the trend increases
the perceived intrinsic quality of producby da;. The parametem is interpreted as the saturation point for the
parabel-shaped relationship. The trend effect will stadiininish afterl becomes larger than. The differences
between the functional forms may best be seen in figures 2 i 3.3.

These functional forms are only a brief glance into all polestrend. For example, we might reasonably assume
that the effects of trends are time-dependent. Insteacedbiimsg(7) for the trend terms, we might argue that an
appropriate functional form could kg (I) = ¢*(I(¢),t) = g(I(¢))/(1+t). The trend effect would now diminish
as time increases as we might reasonably expect in many. c&asgsng further, we might even require that the
trend term has, for example, the fogt (1) = ¢g**(I1(t),t) = g(I(t)) — at? wherea > 0 is some small constant.
As time increases, the second test? will start to dominate which will mean that the buying probigptends to

0. This would mean that the product would eventually disapfrea the market. However, this type of analysis
is out of the scope of this thesis.

We may also question how the trend effect is tied to the quafithe product through the teray () (see e.g.
equation (2.14)). This implies that there is no trend effeleén the intrinsic quality is nonexistent, i.e.= 0 =
ag(I) = Oforall I. Thereis no fundamental reason to assume this. Howevenltvemgue that this is a reasonable
assumption for the purposes of this thesis. After all, comisense seems to suggest that higher quality products
are associated with stronger trends.

3.3.2 Cost function

| assume that the firm has a constant, quality-dependenirpecost given by the functio@(a). The cost is
determined purely by the intrinsic qualityof the product. | assume that cost functiffia) is increasing and
convex in intrinsic quality:. A similar formulation may be found in Anderson et al. (19p2239).

Why not to normalize per-unit costs i Let us consider firmd’s intrinsic quality choice in a monopoly or a
duopoly. A positive quality:; can only increase the buying probabilities (2.15), (2.16) €.17) through terms
a;, max{a; — a;j,0} anda;g(I;(t)). Normalizing the per-unit costs tbwould then lead firm to always choose
the highest possible quality.

| arbitrarily chose the functional form of the per-unit céstction asC(a) = c1(a? + c2), c1,c2 > 0. This cost
functionC(a) is increasing and convex imasd/daC(a) > 0 andd?/da*C(a) > 0. The parameter; may be
interpreted as the cost scaling term of the firm, i.e. adpimplies that the firm is efficient. The parametgemay
be interpreted as the minimum cost constant of the firm,hieparameter valug describes the minimum cost of
making a product witl) quality given some cost scaling termm
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Monopoly

This chapter presents the monopoly model. The key charstiterof the model can be summarized as follows:
The monopoly sells a durable good to large population. Tiseme secondary market for the monopoly’s product.
Consumers in the market will buy only a single product and halld the product until it breaks down. The
monopoly may choose the product’s quality and price. Theapoty may also give out free products to create
demand through a possible trend. The monopoly sets itstyuald price once and for all, and gives out free
products only at the time it enters the market. The monopd@yal is to maximize its profits, and the monopoly
makes its choices accordingly.

The demand for the monopoly’s product is determined thrargimitial value problem inspired by the SIS model.
The initial value problem is determined by the monopoly'sicks which allows the monopoly to influence the de-
mand of its product. The initial value problem is therefaredrporated into the monopoly’s (profit maximization)
problem.

The monopoly’s behavior is determined by the monopoly’'dpgm which is solved in the following manner: We
first calculate the monopoly’s profits for every possibleicea@ombination from the predefined choice sets. The
monopoly then naturally chooses the combination with tlghést profits. After we have found the monopoly’s
optimal choices, we may study the effects of different tsead them.

4.1 Market Structure

The market structure of the model is fairly simple. The pagioh is divided into two compartmentS,and I,
representing whether a consumer has or has not the monsgofduct. Being in compartmeist means that
the consumer does not own the monopoly’s product, and qareingly being in compartmeiritmeans that the
consumer owns the monopoly’s product. Next, we define cotmyeant-specific function§(¢) andI(¢) to describe
how many consumers are at which compartment. The fun&tionthen describes the number of consumers who
do not own the product at timg and similarly the functiord (¢) the number of consumers who own the product
at timet. The functionsS(¢) and(t) are found by solving the initial value problem adopted fréva 8IS model.
These functions may be used to describe how people move &etive compartments, which in turn is partly the
result of consumer purchasing the monopoly’s producttfie demand of the product.

Figure 4.1 gives the compartmental structure and desctif'esnovement between compartments. Movement
between compartments is due to either the breakdown of thdupt (leading the consumer to move from com-
partment/ to compartment) or buying the product (leading to the consumer to move fromgartments to
compartment). In chapter 2 we have established the arrival and breakdiaiensitiesg and A and the buying
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probability Ps_, ; for the monopoly’s product. These now form the basis on wthieéhconsumers move between
compartments in this model.

4.2 Initial value problem

The initial value problem for the monopoly model naturalynsists of the differential equations that describe how
the functionsS(¢) and(t) evolve over time and the initial valug§0) = A andI(0) = B at the starting time
t = 0. The initial value problem takes the form (4.1):

I(t) = BPs_g(a,p,I(t)S(t) — M(t)
S(t) = —BPs_la,p,I(t))S(t)+ M(t)
with 1(0) = A, 5(0) = B (4.1)

The buying probabilityPs_, ; (a, p, I(t)) depends on the prigeand the quality: of the monopoly’s product and
the amount of the product already in the market given by tietfan 7(¢). The form of the buying probability
Ps_1(a,p, I(t)) is given by equation (4.2) which is naturally adopted fromagipn (2.15).

(aprrag(I(t)) )
o
(a—p+a9(1(t)) ) (4-2)
o

exp

Ps_>1(a,p, I(t)) =

14 exp
The monopoly determines the initial conditions of initi@lwe problem (4.1) by choosing what amount of free
samples it gives out. Lej denote the amount of free samples that the monopoly choosgisd¢ out. Then
naturally the initial conditions are given 48)) = A = gandS(0) = B = N — g. We may, for example, interpret
giving out free samples as the monopoly giving steep distsaiorthe firsty consumers as an opening offer.

The terms in the differential equations in initial value Iplem (4.1) have intuitive interpretations: At time
BS(t) consumers who do not own the product arrive at buying detésend of these consumers a total of
BPs_(a,p,I(t))S(t) consumers buy the product. Simultaneously, a totah&f) products break down de-
creasing the number of consumers who own the product. Thirsat I(t) increases by Ps_,1(a,p,I(t)) and
decreases byI(¢). The effects orf(¢) are naturally opposite.

The population size stays constant over time by assumgiaty,dt(S(t) + I1(t)) = S(t) + I(t) = 0. This leads
to identity (4.3):

I(t)+S(t) =N (4.3)

The differential equation system of initial value problefl() may be reduced to a single differential equation by
using the identity (4.3), as we may denét@) = N — I(t). The functionS(t) is therefore completely driven by
1(t), i.e. if we know how the functiod(¢) behaves over time, we, by using the identity (4.3), also khow the
function.S(t) behaves over time. This observation is used in the numesatation of initial value problem (4.1).

4.3 Firm behavior

The behavior of the firm is determined by its objective of grofaximization. As the firm in this model is a
monopoly, the process of maximizing its profits is a straigintvard optimization problem.
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4.3.1 Monopoly’s problem

The monopoly’s problem consists of three components: thectibe function, the decision variables and the
constraints. The objective function of the monopoly is naity the monopoly’s profits. The decision variables of
the monopoly are in this case the quality, the price and theusstrof free samples of its product. The constraints
are formed by the market structure and the natural constrainthe decision variables. This section describes the
construction of the monopoly’s problem.

Let us determine how the monopoly’s profits are calculatede demand for the monopoly’s product at time
is BPs_(a,p, I(t))S(t). The monopoly’s per-unit discounted net profieigp(—rt)(p — C(a)) wherer is the
discount rate and’(a) the per-unit cost at quality. The monopoly’s discounted profit at timds given by the
term exp(—rt)(p — C(a))BPs—1(a,p,I(t))S(t). The total net profit with a planning horizéh may then be
calculated by integrating the monopoly’s discounted pmfér the planning horizon and accounting for the free
sample cost€’'(a)q. The total net profitr(a, ¢, p) as function of quality:, free sampleg and pricep is given by
equation (4.4):

(a1 ,9) = / exp(—rt)(p — C(a))BPs 1 (a,p, I(1))S(t)dt — Cla)g (4.4)

Let us next consider the decision variables. The monopalycbange the pricg and the quality: which enter
into the buying probability (4.2). The monopoly may alsoattgtine the initial conditiom of initial value problem
(4.1) by giving outg free samples. These are then the decision variables of thepoty.

We may now write the monopoly’s problem. The monopoly wisteesaximize its profits (4.4) giving us the
objective function. The market structure imposes resinist on the monopoly’s behavior: The functioh@)
and S(t) are determined by (or, by assumption, are solutions of)nfi@l value problem (4.1). Likewise, the
monopoly cannot set a hegative quality or price nor give cugg@ative amount of free samples. The monopoly’s
problem then is:

max m(a,q,p) s.t.
a,p,q

S(t), I(t) solutions of initial value problem (4.1) df, 77,
a,q,p >0 (4.5)

The structure of the monopoly’s problem (4.5) hints at a wagdlve problem in general terms. The constraints
of the problem do not specifically limit the monopoly’s chescto the sets (3.8). If analytical solutions could be
found for the initial value problem (4.1) and the integragtjuation (4.4), the problem would then become a matter
of constrained optimization. This would allow us to use ttamdard tools such as the KKT conditions for solving
the monopoly’s optimal quality, price and the amount of saeples.

4.3.2 Solving the monopoly’s problem

The monopoly’s choices are, as mentioned before, next asstionbe limited to the sets (3.8). Using limited
choice sets allows us to implement a simple algorithm forifigdhe solution to the monopoly’s problem within
those sets. For the sets (3.8), there is finite number of auatibns of qualities, prices and free samples. The finite
number of choices in each of these aspects means that thedotéer of combinations for all three aspects is
finite as well. This makes it possible to calculate the préditsall combinations. After calculating the profits, we
assume naturally that the monopoly chooses the combinti@diyields the largest profit. The implemented script



4. MONOPOLY 28

mimics this by using simple brute force to calculate the pgdéir all combinations and choosing the combination
with the highest profits.

Figure 4.2 describes the structure of the implementedtscFipe subroutindonopolyOptimizes  calculates

the profits for all possible combinations of quality, freengdes and price, and chooses the combination with the
largest profits. The subroutindonopolyProfits calculates the profits for a given quality, free samples and
price. It solves the initial value problem (4.1) usiode45 uses this solution to generate a vector describing the
discounted revenues over time, and finally generates tHaglg usingtrapzto calculate the integral in equation
(4.4) and accounting for the free sample costs. The sulmraudnopolyDE is the (reduced) differential equation
system of the initial value problem (4.1) required dge45 The subroutindvionopolyRevenue is used to

generate a revenue vector required for numerical integraSee appendix C for the implemented script.

4.4 Qutcomes

Tables 4.1-4.3 give the monopoly behavior.

Planning horizon  Trend type (a,q,p) Profits
T=10 no trend (2,0,3) 499768
linear,d = 2 (2,0,3) 1.67055 - 10°
parabeld =2 | (2,200 000,6) | 7.319-10°
linear,d = 8 | (2,600 000,9) | 2.04485 - 107
parabeld = 8 | (2,200 000,9) | 2.02274 - 107
T =100 no trend (2,0,3) 4.83128 - 10°
linear,d =2 | (3,600 000,6) | 2.77606 - 107
parabeld = 2 | (3,200 000,9) | 8.08869 - 107
linear,d =8 | (2,600000,9) | 2.15405 - 10®
parabeld = 8 | (2,200 000,9) | 1.89226 - 108

Table 4.1: Patient monopoly with= 0, Choices and profits

Based on the results there is little need to doubt the intealality of the model. The monopoly will always set
a positive price and that the monopoly gets a positive profie planning horizofl” and discount rate seem to
have the expected effects: For cases with the same monogladwior (for example cases with no trend term with
firm behavior(a, ¢, p) = (2,0, 3)), we note that the profits are the highest when the discotat ria the lowest
and that the profits are higher as the monopoly’s planningbof is longer. Moreover, the strength of the trend
d seems to also have the expected result: We note that the mlgisoprofits are higher with a strong trend with
strengthd = 8 than a weak trend with strength= 2, although the strength of the trend may also affect the firm
behavior.

Let us now consider the research questions. Based on thisrestables 4.1-4.3 we note that different trend
types lead to different monopoly behavior across cases.eTdre indeed cases where the optimal behavior of the
monopoly involves giving out free samples. However, we alst that there are many cases where different trend
types lead to the same behavior, as for example the casesavitbnd and a linear trend in table 4.3. We cannot
therefore determine the type or the strength of a trendysblebbserving firm behavior.

Based on the results | nevertheless offer the following,ittddly weak result regarding the existence of a trend: If
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Planning horizon  Trend type (a,q,p) Profits
T=10 no trend (2,0,3) 395859
linear,d = 2 (2,0,3) 1.309 - 108
parabeld = 2 | (2,200 000,6) | 5.72545-10°
linear,d =8 | (2,600 000,9) | 1.58237- 107
parabeld = 8 | (2,200 000,9) | 1.61853- 107
T =100 no trend (2,0,3) 973207
linear,d = 2 (2,0,3) 3.28312- 106
parabeld =2 | (3,200 000,9) | 1.51731- 107
linear,d =8 | (2,600 000,9) | 4.18082- 107
parabeld = 8 | (2,200 000,9) | 3.87099 - 107

29

Table 4.2: Normal monopoly with = 0.05, Monopoly choices and profits

Planning horizon| Trend type (a,q,p) Profits
T=10 no trend 2,0,3) 5898.28
linear,d = 2 2,0,3) 6432.81

parabeld = 2 2,0,3) 13306
linear,d = 8 2,0,3) 10162.9

T =100 no trend 2,0,3) 5898.27

2,0,3) 6432.81

linear,d = 2

parabeld = 2 2,0,3) 13306
2,0,3) 10162.8

parabeld = 8 | (1,200 000,6) | 166089

(
(
(
(
parabeld = 8 | (1,200 000,6) | 166090
(
(
(
linear,d = 8 (

Table 4.3: Impatient monopoly with= 10, Monopoly choices and profits

we observe the monopoly giving out free samples, we may théeexistence of a trend. However, if the monopoly
chooses not to give out free samples, we may not infer theex@tence of a trend.
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Stackelberg duopoly

This chapter presents the first of the duopoly models of tigsis. The model is akin to the classical Stackelberg
duopoly model where two firms compete by choosing quantieegientially one after another. The key charac-
teristics of the model are summarized as follows: Thereweefirms, Leader and Follower, who sell durable
goods to a large population of consumers. There are no sapprnmhrkets for the products. A consumer will buy
only a single product from a particular firm and hold it untietproduct breaks down. The consumer may buy
the products from both firms. Both firms choose the quality pirice of their products, and whether to give out
products as free samples. Prices and qualities are set ndderaall, and free samples are given only at the time
of entry into the market. Both firms seek to maximize theirfiisaand will make their choices accordingly. The
firms enter the markets sequentially: First, Leader enkersitarket and remains the only firm for a (small) period
of time. Then Follower enters the market, after which the simmmpete with each other. Leader knows Follower’s
entry time and will use this knowledge in making its choices.

The demand for the both firms’ products are determined thrdnitjal value problems inspired by the SIS model.
As there are two distinct time periods for the market, theeewo initial value problems describing these periods.
The firms determine the initial value problems through tlodioices. The initial value problems are therefore
incorporated into the firms’ optimization problems as then§ir profits depend on the demand determined by the
solutions of the initial value problems.

The behavior of both firms is determined with the help of trgusatial entry assumption. We assume further that
Leader knows the form of the Follower’s problem. Leader theticipates how Follower will behave given its own
choices and incorporates this knowledge into its own prabl&he Follower’s problem is therefore nested into
the Leader’s problem as Leader has to determine Followehs¥ior in order to calculate the profits from its own
choices. We may therefore limit our attention to solving tleader’s problem as its solution will also describe
how Follower behaves.

The Leader’s problem is solved similarly to the way the marpp problem was solved in the preceeding chapter:
We calculate the Leader’s profits for every possible choisehlination and choose the combination with the high-
est profits. However, as calculating the Leader’s profitsafgiven choice combination requires determining the
Follower’s behavior, we solve the Follower’s problem wilte tgiven choice combination every time we calculate
the Leader’s profits. The Follower’s problem is structyrakjuivalent to the monopoly’s problem and is therefore
solved with the same method: Given the Leader’s choices,aleiiate the Follower’s profits for every possible
choice combination and choose the combination with thedsgprofits.

31
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5.1 Market structure

The market's two time periods naturally have different nead¢ructures. The market structures are determined by
the presence of one or both firms in the market and lead to tstmdi initial value problems.

The market structure before the Follower’s entry is simitathe monopoly case. The superscrigtenotes that
we are in the pre-entry market. As the sole supplier of prtsliscLeader, there are two compartmefitsand

Iy with their respective functionS*(t) andI; (¢). The functionS*(¢) describes the number of consumers who
do not own the Leader’s product at timeand similarlyI; (¢t) the number of consumers who own the Leader’s
product at timet. The compartmental structure of the pre-entry market isritesd in figure 5.1. The movement
between compartments is again determined by the breakduemsity\ and the arrival intensity and the buying
probability Ps-_, 1 .

After the Follower’s entry the market structure naturalynges. The population is now divided into four different
compartments:S, I, Ir and I r with the respective functionS(¢), I1.(t), Ir(t) and I r(¢). The function
S(t) describes the amount of people who have neither productutietion I, (¢) the amount of people who
own the Leader’s product, the functidiz(¢) the amount of people who own the Follower’s product and the
function I, ¢ (t) the amount of people who own a product from both firms at timé&igure 5.2 describes the
compartmental structure of the post-entry market. The nma&ve is again determined by the breakdown and
arrival intensities\ andg, which remain unchanged after the market structure chaagédshe buying probabilities
Piji€{S,Ir,Ir},j € {Ir,Ir, I r}.

5.2 Initial value problems

To calculate the profits for either firm we first need to deteerthe demand for the firm’s product. The demand
for the product is again described with the pre- and postyéanctionsS™* () and!; (¢t) andS(t), I (¢), Ir(t) and

I, r(t). These functions are again found by solving the initial egbuoblems for the pre- and post-entry markets
respectively.

5.2.1 Pre-entry initial value problem

The initial value problem describing the pre-entry marketletion is equivalent to the initial value problem (4.1)
of the monopoly model. The pre-entry initial value problegaia consists of differential equations that describe
how the functionss*(¢) andI; (¢) evolve over time and the initial valuég (0) = A andI; (0) = B at the starting
timet = 0. The initial value problem takes the form (5.1):

Ii(t) = BPs_p;(an,pL I1(t)S*(t) — A} (1)
S*(t) = —BPs_1: (ar,pr, I7.(t))S™(t) + ML(t)
with  I3(0) = A%, 5°(0) = B* (5.1)

At time ¢ the buying probability of the Leader’s product depends angtoduct’s pricep;, and qualitya;, and
the amount of the product already in the market given by thetfan I; (¢). The form of the buying probability
Ps-_1:(ar,pr, 17 (t)) for the Leader’s product is given by equation (5.2) whichdegated from equation (2.15).

exp (aL—PL-HlL!](Iz(t)))
Ps«—1: (ar,pr, 17(t)) = - (5.2)

1+ exp (aL*pLJriLg(IZ(t)))
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Leader determines the initial conditions of the initialuwalproblem (5.1) by choosing how many free samples it
gives out. Lety; denote the number of free samples Leader gives out. Thalini@inditions naturally are then
I:(0) = A* = q;, andS*(0) = B* = N — qy.

The terms in the initial value problem (5.1) again have intaiinterpretations: At time a total of 3.5*(¢) con-
sumers who do not own the Leader’s product arrive at the lgugtecision, and of these consumers a total of
BPs-_r: (ar,pr, I7(t))S*(t) consumers buy the Leader’s product. Simultaneously, & ¢btal*(¢) products
break down. Thus at time I*(¢) increases by Ps- . r: (ar,pr, I1 (t))S* (t) and decreases byl (t).

The population again stays constant over time a#(S*(t) + I:(t)) = S*(t) + I;(t) = 0. We therefore have
the following identity:

S*(t) + I (t) = N (5.3)

The identity (5.3) again allows us to reduce the differdraguation system of initial value problem (5.1) to a
single differential equation. This observation is usechmmumerical solution of initial value problem (5.1).

Finally, it is necessary to introduce a new variable to dbscthe length of the pre-entry time period. Let time
tmonopoly denote the time Follower enters the market. Leader is theply firm in the market on the time interval
[0, tmonopoly], @and the market evolution is described by the initial valuebpem (5.1) only on this time interval.

5.2.2 Post-entry initial value problem

The construction of the post-entry initial value problenvésy much similar to the construction of the pre-entry
initial value problem. Determining the buying probabdiinow requires some extra care while the arrival and
breakdown intensities remain exactly the same. For sakeropteteness, let us first construct the buying proba-
bilities from their simplest components.

The buying probabilities at timeare dependent on the quality of both produgtsandar and the prices of the
productsp;, andpr and how many other consumers already own the productsl;i@), I (t) andI.r(t). To
shorten the notation, | denote the qualitiegas (a1, a2), the prices ag = (p1, p2) and the state of the market at
timetasi(t) = (Ir(t), Ir(t), ILr(t)).

| define the term&/;_,;(a, p, I(t)),i € {S,Ir,Ir},j € {Ir,Ir,Irr} in equations (5.4) to shorten the notation
for the buying probabilities.

Usoi, (@,5,1(t) = exp (aL —pL+ aLgLIL(t) + ILF(t)))
Uso1.(a,p, I(t) = exp (aF —PpF + apg/(fp(t) + ]LF(t))>

Utrosroe (@5, 1(1) = exp (maX{aL —ap,0} — pLM+ arg(IL(t) + ILF(t))>

Ul o1, e (@5, 1) = exp (max{ap —ar,0} —pF; arg(Irp(t) + ILF(t))) 5

By using the termd/;_,;(a,p, I(t)),i € {S,I1,Ir},j € {I1,Ir,ILr} we may now define the actual buying

probabilitiesP;_, ; (a, p, I(t)),i € {S, Ir,Ir},j € {Ir,Ir, ILF} in equations (5.5):
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B Us1, (a,p, I(t))
P I(t = _
son(OPIO) = g G R 1) + Usoorr @5, T0)
. UIFHILF (5, D, (t))
P I(t = _
Irp—ILF (avpa ( )) 1+ UIF—>ILF (a p,[(t))
o Us— 1 (a,p, I(t))
P I(t = _
S_>IF(a’7p’ ( )) 1+US~>IL(a;p7 +U %Ip(avﬁal(t))

I(t

_ _ 7 UI —1I (d7pa (t
P, I(t = L LF = 55
IL—>ILF(a’7p) ( )) 1+U]L*>[LF(a,p,I(t)) ( )

The buying probabilities described in equations (5.5) apaéivalent to the probabilities in equations (2.16) and
(2.17).

We may now write the initial value problem describing the kearevolution for the post-entry time period. The
initial value problem again consists of the differentiabiations that describe how the functiofét), I.(t),
Ir(t) and I r(t) evolve over time and of the initial valueS(tenry) = A, Ir(temy) = B, Ir(tenwy) = C
andIz r(tenry) = D at the starting time = ¢enyy. The initial value problem now takes the form (5.6):

S(t) = —BPss1, (@0, 1(t))S(t) = BPs— 1 (a5, 1(1))S(t) + AL (t) + Ar (1)
Ip(t) = BPsor, (@0, I(t)S(t) = BPr, 1,0 (@5, IO L (t) + Mrp(t) — M (t)
Ip(t) = PBPsorp(@p, 1(t)S(t) = BPrp1,p (@0, I()Ir(t) + Mpr(t) — Mp(t)
Ip(t) = BPr 1,0 (a0, L)L) + BPro 1., (a5, L) Ip(t) — 201 p(t)
with  S(temsy) = A, I (temey) = B, Ir(temsy) = C, Inp(temey) = D (5.6)

The starting timegnyy is different for Leader and Follower respectively. For Leadhe market structure changes
at timet = tmonopoly With Follower’s entry, meaning that we have the startingeti@hwy = tmonopoly for Leader. For
Follower, we have the starting tinte.,y = 0, as in the Follower’s point of view there is no history priorentry.

The initial values of initial value problem (5.6) are detémed by the pre-entry evolution of the market and the
free samples choices of Follower. The pre-entry evolutioin iturn described by the solutions of the initial value
problem (5.1) which is in turn determined by the choices adder. Suppose that we have the functiéhét) and
I*(t) that are solutions of the initial value problem (5.1). Th&r{tmonopoly) denotes the number of consumers
who do not have the Leader’s product at the time of Followensy. Correspondinglyi,; (tmonopoly) denotes the
number of consumer who have the Leader’s product at the tfrReltower’s entry. Next, | assume that Follower
cannot observe whether a consumer has or does not have terisgaroduct. Follower therefore gives out free
samples randomly with every consumer having an equal piiityadd receiving a product. The initial values then
take the form (5.7):

qr

W)v B = I (tmonopoly) (1 — ar

A= S* (tMonopon)(1 - W),

c=5" (tMonopoly)qﬁF, D = Iz (tMonopoly)qﬁF (5-7)

The terms in the differential equation system of the in@ue problem (5.6) again have natural interpretations:
Due to purchases, the consumers move from compartdémicompartmenf;, at ratePs_.r, (a, p, I(t))S(t)

and to compartment- at rate3Ps_,1,.(a, p, 1(t))S(t). Again due to purchases, the consumers move to compart-
mentl;r at rate3Pr, .1, (a,p, I(t))IL(t) from compartment; and at rate3P;, 1, ..(a,p, I(t))Ir(t) from
compartmentz. At the same time the products are breaking down at intensitfhen due to product break-
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downs, consumers move from compartmdntsindlx to compartmens at rates\I, (¢) and\Ip (t) respectively.
Additionally, since the consumers in compartmént own both products, they move from this compartment at
rate2\I;,r(t) to compartment$;, and/p.

The formulation of initial value problem (5.6) implies thadth firms’ products have the same expected lifetime
as the breakdown intensity is the same for both firms. | interpret the parameteas reflecting the “state of
technology” in production, with both firms choosing the bagiilable technology to provide the most durable
product. As the same technology is available to both firmes; toth make equally durable products leading to the
same breakdown intensity

The population again stays constant over timé/a (S (t)+ I, +Ir+Irr) = S(t)+ 15 (t)+Ip(t)+ I p(t) = 0.
This leads to identity (5.8):

SE)+ILt)+ Ipt)+ILp(t) =N (5.8)

As before, the identity (5.8) may be used to eliminate onéefdifferential equations in the initial value problem
(5.6). This assumption is again used in the numerical soiwdf initial value problem (5.6).

5.3 Firm behavior

The behavior of both firms is determined by their profit maxiation objective. The profits of both firms depend
also on the choices of the other firm through initial valuebpea (5.6). This dependence forces both firms to
consider how their own choices will affect the choices of ditker firm. The sequential entry of firms allows
us describe this choice-making process explicitly. Sp=adlfi, we may write the firms’ problems in such a way
that the strategic thinking behind the choices becomesaiixplhe firms’ problems again consist of an objective
function, decision variables and constraints. Both of ttebfems are constructed by defining these components.

The choice-making process can be seen as a game with twa stsighe first stage, Leader makes its choices. At
the second stage, Follower observes the choices of Leadeanakes its own choices. We note that during each
stage only a single player chooses an action whilst knowiegentire history up to that stage, i.e. the choices
other players have made previously. We therefore use badkiwduction implicitly as it is the natural approach
in solving games of this type. We first start to study the cbsicf Follower as it is the last player to act. If we
can deduce how Follower will act given the choices of Leadermay implement this behavior to the Leader’s
problem. This approach is equivalent to assuming that Lrezatededuce how its choices will induce the choices
of Follower.

5.3.1 Follower’s problem

First let us describe the information of Follower. Prior wllBwer’s entry, Leader has chosen its quatity, free
samplesy;, and pricepy,. The market has then evolved to some state based on LeaHeit®es. | assume that
Follower is able to observe or calculate the state of the starktime of entry, i.e. Follower observes the values
S* (tmonopoly) @and I (tmonopoly) at time tmonopoly. While it has been previously stated that observing thes sifit
the market is difficult, | nevertheless offer the followirgtionalization for this assumption: The market state is
observable to Follower because it is an operator within theket while the market state remains opaque to the
outside observer. Naturally in addition to the market statdlower knows the choices of Leader. Follower bases
its choices on this information.
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Follower chooses its own qualityz, free samplegr and pricepr which are thus the decision variables of the
Follower’s problem. Naturally Follower may not choose aateg quality or price nor give out a negative amount
of free samples. We thus have the natural constraiptgr, pr > 0 for the Follower’s problem.

Let us next determine the objective function of Followerlléwer seeks to maximize its profits which are deter-

mined by the demand of its product. The tefifs_.;,. (a, p, I(t))S(t) describes the demand for the Follower’s
product from those consumers who have neither product attiand correspondingly the terfPr, _ 1, .. (a, p, I(t))11(t)
describes the demand for the Follower’s product from thobke Wwave the Leader’s product at time The
per-unit discounted profits at timeof Follower are described by the tereap(—rt)(pr — C(ar)). The total

profits are then calculated by integrating the product texg(—rt)(pr — C(ar))[8Ps—1,(a,p, I(t))S(t) +

BPr, 1,.(@,p, I(t))IL(t)] over the planning horizof0, T]. After accounting for the Follower’s free sample
costsC (ar)qr, Follower’s profitst™'o"er are given by equation (5.9):

T
WFoIIower(aF7 qr,PF | ar, qlan) = / eXp(*Tt)(pF - C(GF)) [ﬂPS%IF(_J_), f(t))S(t) +
0

ﬂPIL‘}ILF(_7Z_)’ f(t))IL(t)}dth(ap)qp (59)

Follower operates within the post-entry market structurke functionsS(t), Ir(t), Ir.(t) andILp(t) affecting
the profits (5.9) are therefore determined by the initialeaproblem (5.6). This gives us the final constraint
for Follower’s problem: Functions$(¢), I1(t), Ir(t), ILr(t) are solutions of initial value problem 5.6 over the
interval[0, T'].

We may now write Follower’s problem (5.10):

7rFoIIower(

max ar,qr,pr | ar,qr,pr) s.t.

afF,;PF,qF

S(t), IL(t), Ir(t), I r(t) solutions of initial value problem (5.6) df, 77,
ar,qr,pr =0 (5.10)

Let us next define the Follower’s three best-response fomstihat will aid in constructing Leader’s problem.
Given the choicesar, g1, pr) of Leader, each best-response function describes Folwptimal choice of a
decision variable. We define the best-response functioBRES ™ (a, qz,pr) = a}, BRIV (ay, qr,pr) =

q5 and B@O”O"Ve'(aL,qL,pL) = p% such that quality., free sampleg. and pricep}. are a solution of the
Follower’s problem (5.10) given the Leader’s choies, qr, pr.). By assumption Leader knows the form of the
Follower’s problem and that Follower will best-respondt®adwn choices. We may then use these functions in
constructing the Leader’s problem to account for this krealgke.

5.3.2 Leader’s problem

We construct the Leader’s problem by utilizing the knowledge assume Leader to have regarding Follower’s
behavior, i.e. Leader’s information. We have assumed teatker knows time of Follower’s entry and the form
of the Follower’s problem. This knowledge allows Leader tdicpate the Follower’s choices given its own
choices. These assumptions are questionably strong,dudlally also in line with the assumptions of the classical
Stackelberg model. Leader makes its choices with this inédion in mind.

Leader chooses the quality, and the pricepy, of its product and how many free samplgsto give out. These
are then the natural decision variables of the Leader'slenobNaturally Leader may not set a negative quality or
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price nor give out a negative amount of free samples. Thisgyils the natural constraintg, ¢z, pr, > 0 on the
decision variables.

Leader’s profits now depend on the demand of its product fieendifferent time periods. These time periods

are defined by the Follower’s presence in the market: Firadee operates alone in the pre-entry market. Next,
after the Follower’s entry, Leader operates in the postyanarket together with Follower. Constructing Leader’s

objective function requires us then to first construct thades’s profits from the pre-entry and the post-entry
periods.

Let us now construct the pre-entry profits. The demand fordega product at time is given by the term
BPs-_r:(ar,pr, I} (t))S] (t). The per-unit discounted profits are given by terap(—rt)(pr, — C(ar)). The
discounted profits for this time period are then calculatethtegrating the product of these terms over the interval
[0, tmonopoy]- Leader’s pre-entry profits are then given by equation (5.11

tMonopo\y
Thretan\ AL 4L, PL) = /0 exp(—rt)(pr — Clar))BPs- 13 (ar, pr, I7(t)) ST (t)dt (5.11)

Let us next construct the post-entry profits. The Followensy changes the market structure to the post-entry mar-

ket structure described by initial value problem (5.6). Téven3Ps_ 1, (a,p, I(t))S(t) then describes the demand
for Leader’s product from those consumers who have neitteglyzt at timer, and the ternB P;,. .7, ,. (@, p, 1(t))Ir(t)
the demand from those consumers who have the Follower'sipt@d timet. The total demand at timeis then
given by the sunBPs_, 1, (@,p, I(t))S(t) + BPr. 1, (@, p, [(t))Ir(t). The per-unit discounted profits are again
given by termexp(—rt)(pr, — C(ar)). We may then calculate the profits by integrating the prodbitiese terms

over the intervaltmonopoly, I’ + tmonopaly]. Leader’s post-entry profits are thus given by equation2)5.1

T+tMonopo\y _ _
Flﬁ’ggggatr)(aLv QL,pL) = / exp(_rt)(pL_C(a’L))[ﬁPS—UL (dvﬁa I(t))S(t)+6PIF—>ILF (daﬁa I(t))IF (t)]dt
tMonopol
- (5.12)

The total profits of Leader are given by the sum of the preyeaid post-entry profits minus the sample costs
C(ar)qr. The equations (5.11) and (5.12) then allow us to constreeider’s total profitsr-®2"in equation
(5.13) giving us the objective function of Leader:

Leader

WLeader(aL, qL,PL) = Tpre-Entn 0L, 4L, PL) + Wlﬁggggmr)(ab qr,pr) — Clar)qr (5.13)

As Leader operates both in the pre- and the post-entry nsartket pre- and post-entry market structures impose
the following restrictions: The functionS*(¢) and I; (¢) are solutions of initial value problem (5.1) over the
interval [0, tmonopolyl, @and the functions(¢), I1,(t), Ir(t), [Lr(t) are solutions of initial value problem (5.6) over
the interval[tmonopoly, 7' + tMonopoly) -

The Leader’s problem requires a final set of constraints stieig from the game theoretical structure of the
model. Leader anticipates that Follower will best-resptmdts own choices and what these best responses
will be. Using the previously defined best-response fumstive have the constrainis = BR, r(ar,qr,pL),

gr = BRy r(ar,qr,pr) andpr = BR, r(ar,qr,pr) to signify that the Follower’s choice@ir, gr, pr) are
indeed the best responses to the Leader’s chdices;.., pr.).

Leader’s problem then has the form (5.14):
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7.‘_Leader(

max ar,qrL,pr) s.t.

ar,PrL,qrL

S*(t), I (t) solutions of initial value problem (5.1) d, tmonopoly] ;
S(t), Ir(t), Ir(t), ILr(t) solutions of initial value problem (5.6) dfwionopoly, 7" + tMonopoly] s
ap = BRZO”O\Ner(aLa QL;pL)a qr = BRZO|IOWQr(aL7 QLapL)7pF = BR:EOHOWEF(GL, QvaL)a

ar,qr,PL > 0 (514)

The structure of the Leader’s problem (5.14) hints at the thayproblem may be solved without resorting to finite
choice sets. With the use of best-response functions tHagmobecomes a matter of constrained optimization.
If the initial value problems (5.1) and (5.6) and the intdg&.9), (5.11) and (5.12) had easy analytical solutions
and we could find the forms of the best-response functiomsptbblem (5.14) itself could perhaps be solved by
using the KKT conditions. Should we wish to apply more sotitesed numerical optimization methods to the
Leader’s problem, we would need a more imaginative appraacthe best-response functions makes it difficult to,
for example, calculate gradients numerically.

The choices given by the solution of the Leader’s problerigbform a Nash equilibrium as the solution first
gives us the optimal choices of Leader to which Follower dbesponds, i.e. makes its own choices optimally
given the choices of Leader. Neither firm can then improvpritdits by unilaterally deviating from the choices of
the solution.

5.3.3 Solving the Leader’s problem

As Follower best-responds to the Leader’s choices, we matethe solution of the Leader’s problem will also
describe the Follower’s behavior. Solving the Leader'dpgm is then sufficient to determine the behavior of both
firms. We therefore limit our attention to it.

| use a simple nested brute force algorithm to find the satutibLeader’s problem for the finite choice sets
(3.8). With finite choice sets, the number of all possibleice@ombinations is also finite allowing us to calculate
the Leader’s profits for all of these to find the combinatiotimthe largest profits. However, as Follower best-
responds to all of the Leader’s choices and thereby affeetseader’s profits, it is necessary to solve the Follower’s
problem (5.10) for each of the Leader’s choice combinatidrie Follower’s problem can be seen to be a slight
modification of the monopoly’s problem (4.5) and is therefsolved similarly by calculating the Follower’s profits
for all possible choice combinations of Follower to find tlenbination with the largest profits. Thus brute force
is used in two instances: firstly to calculate the Leadeditmfor Leader’s all possible choice combinations, and
secondly to calculate the Follower’s profits for Followealspossible choice combinations given a single choice
combination of Leader. See appendix D for the script.

Figure 5.3 gives the structure of the implemented script.ividd the structure of the script into three parts
based on the role that each part plays in solving the Leagenslem (5.14). These parts are calculating the
Leader’s pre-entry profits, which comprises of the subrmgpreentryProfitsLeader , monopolyDE and
MonopolyRevenue , calculating the Follower’s best responses to the Leadbaidices, which comprises of the
subroutineg-ollowerOptimizes , profitsFollower ,duopolyDES andrevenueFollower ,and cal-
culating the Follower’s post-entry profits, which compsisé the subroutinegrofitsLeader , duopolyDES
andrevenuelLeader . The subroutindeaderOptimizes  forms the backbone of the script as it utilizes the
presented subroutines to calculate the Leader’s profit8)%or all Leader’s choice combinations, and after which
it chooses the combination with the highest profits therelthyiisg the Leader’s problem.
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The subroutin@reentryProfitsLeader calculates the Leader’s pre-entry profits (5.11) for a giyeality,
free samples and price choice. It solves the initial valuebjam (5.6) withode45 generates a revenue vector
and uses the vector to calculate the integral determiniagtk-entry profits. Additionally, the state of the pre-
entry market at the time of entry is saved in order to deteentiire initial values of initial value problem (5.6).
The subroutinenonopolyDE is the reduced differential equation system of the initelre problem (5.1). The
subroutineMonopolyRevenue is used to generate the revenue vector for numerical iniegra

The Follower’s best responses are calculated using theamétn solving the monopoly’s problem (with finite
choice sets), as the Follower’s problem (5.10) can be séem the Leader’s choices, as the monopoly’s problem
(4.5) with a different initial value problem. The subrowiRollowerOptimizes calculates the Follower's
profits for all combinations of quality, free samples andcgriand chooses the combination with the Follower’s
highest profits. It uses the subroutipeofitsFollower to calculate the profits for a given combination of
quality, free samples and price. The subroutimefitsFollower in turn solves the initial value problem
(5.6) usingode4§ generates a revenue vector for the integral in equati®),(Bsedrapzto calculate the integral
and determines the profits after accounting for the Folltsrffeee sample costs. The subroutitheopolyDES

is the (reduced) differential equation system of initialueaproblem (5.6) required bgde45 The subroutine
revenueFollower is used to generate the revenue vector for numerical iniegra

Finally, the post-entry profits of Leader are calculated lxy $ubroutinerofitsLeader . The calculation
method is the same as in the subroupnefitsFollower : For the given choices of Leader and the Follower’s
best responses to these choices, the subroptioi@sLeader solves the initial value problem (5.6) using
ode45 generates a revenue vector for the integral in equatidi2}&nd usesrapzto calculate the integral. The
subroutinaduopolyDES is the same (reduced) differential equation system ofahitilue problem (5.6) required
by ode45 The subroutineevenuelLeader is used to generate the revenue vector for numerical irtiegra

5.4 Outcomes

5.4.1 New parameter choices

The model requires an additional, model-specific paramgtgppoy that has not been discussed in chapter 3. |
chose to use the valugionopoy = 1. This value was chosen to model a case where Leader hasiaalglamall
amount of monopoly time considering the planning horizéns 10 andT" = 100.

5.4.2 Optimal firm behavior

Tables 5.1-5.3 give the behavior of Leader and Follower.

The results do not offer us a reason to doubt the internaditalbf the model. We note that both firms always set
a positive price and get a positive profit. The parametersdT also have the expected effects on profits. First,
we note that in the no trend cases both firms always ch@gse;, p;) = (2,0,3),i = L, F providing us a way to
study the effects of parameterand7’. We then note that profits of both firms are larger with the Ernganning
horizonT" = 100 than with the shorter planning horizdh= 10. Likewise, the profits of both firms are larger with
smaller discount rates.

Rather surprisingly, we may note that there is no universst-flnover advantage in this model. With a long
planning horizoril’ = 100, a small parabel trend with strength= 2 and a reasonable discount rate= 0 or
r = 0.05, Leader chooses to produce cheaper, “less promoted” (ith.l@gs free samples) product with a lower
price @ =1 < 3 = ap, qr = 200 000 < 400 000 = qr andpy, = 3 < 9 = pp) that leads to greatly smaller
profits compared with FolloweB(35463 - 107 < 6.40932 - 107 and6.66545 - 106 < 1.10186 - 107). The result
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Planning Trend Leader Leader Follower Follower
horizon type (arn,qL,pL) Profits (ap,qr,pF) Profits
T=10 no trend (2,0,3) 447156 (2,0,3) 390692
linear,d =2 | (2,200000,3) | 1.41643-10° (0,0,3) 40590.9
parabeld = 2 | (2,200 000,6) | 4.04282-10% | (2,400 000,6) | 4.8304-10°
linear,d =8 | (3,400 000,9) | 1.33737-107 | (3,400 000,9) | 8.90953 - 10°
parabeld = 8 | (2,200 000,9) | 2.07803-107 | (2,200 000,9) | 1.90821 - 107
T =100 no trend (2,0,3) 3.82225 - 106 (2,0,3) 3.76579 - 106
linear,d =2 | (2,600000,3) | 1.51397 - 107 (0,0,3) 413134
parabeld = 2 | (1,200 000, 3) | 3.35463 - 107 | (3,400 000,9) | 6.40932 - 107
linear,d = 8 | (3,400000,9) | 1.33333-10% | (3,400 000,9) | 1.04931-108
parabeld = 8 | (2,200 000,9) | 1.80691-108 | (2,200 000,9) | 1.78989 - 108
Table 5.1: Patient firms with = 0, Choices and profits
Planning Trend Leader Leader Follower Follower
horizon type (ar,qL,pL) Profits (ap,qr,pF) Profits
T =10 no trend (2,0,3) 349776 (2,0,3) 309763
linear,d =2 | (2,200 000, 3) 991930 (0,0,3) 31814.9
parabeld =2 | (2,400 000,6) | 3.53393-10° | (2,400 000,6) | 2.62231 - 10°
linear,d =8 | (3,400 000,9) | 9.96657 - 10° | (3,400 000,9) | 6.62314 - 10°
parabeld = 8 | (2,200 000,9) | 1.62338-107 | (2,200 000,9) | 1.52606 - 107
T =100 no trend (2,0,3) 777698 (2,0,3) 759625
linear,d =2 | (2,600 000,3) | 1.78793 - 10° (0,0,3) 82044.8
parabeld = 2 | (1,200 000, 3) | 6.66545-10° | (3,400 000,9) | 1.10186 - 107
linear,d = 8 | (3,400000,9) | 2.51758-107 | (3,400 000,9) | 1.94214 - 107
parabeld = 8 | (2,200 000,9) | 3.65084-107 | (2,200 000,9) | 3.6574-107

is very peculiar and seemingly valid as | was unable to findabwous mistakes that would lead to the described

behavior.

Let us now consider the research questions: Different ttgpes indeed lead to observable differences in firm
behavior but the specific type of the trend may not be infeparely from firm behavior. For example, suppose
that we observe Leader’s and Follower’s behaviof@s qr.,pr) = (ar,qr,pr) = (2,0,3) and we are asked to

give an opinion on the existence of trend. Based on table5.8,.we would not be able to distinguish between a

Table 5.2: Normal firms withr = 0.05, Choices and profits

no trend case or a linear case trend with impatient firms édgde 6.3, = 10, d = 2).

We also note that there indeed cases with trends such thairdsah firms optimally give out products as free
samples. We now again have an “existence result” for a tresuahely if we observe a firm giving out free samples
we may infer the existence of some trend. As before, thidtrdeas not run in the other direction, i.e. we may not

infer the nonexistence of a trend from observing that nefih@ gives out free samples.
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Planning Trend Leader Leader Follower Follower
horizon type (ar,qL,pL) Profits | (ar,qr,pr) Profits
T=10 no trend (2,0,3) 5898.34 (2,0,3) 4793.41
linear,d = 2 (2,0,3) 6432.83 (2,0,3) 3656.58
parabeld = 2 (2,0,3) 13306.3 (0,0,3) 312.674
linear,d = 8 (2,0,3) 10160.7 (0,0,3) 295.01
parabeld = 8 | (1,200 000,6) | 166082 | (1,200 000,6) | 147940
T =100 no trend (2,0,3) 5898.34 (2,0,3) 4793.41
linear,d = 2 (2,0,3) 6432.83 (2,0,3) 3656.58
parabeld = 2 (2,0,3) 13306.3 (0,0,3) 312.673
linear,d = 8 (2,0,3) 10160.7 (0,0,3) 295.01
parabeld = 8 | (1,200 000,6) | 166082 | (1,200 000,6) | 147939

Table 5.3: Impatient firms with = 10, Choices and profits
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Figure 5.3: Script structure, Stackelberg duopoly
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Simultaneous-choice Duopoly

This chapter presents the second of the duopoly modelssofitbsis. Where as in the Stackelberg duopoly model
the firms chose their product’s quality, free samples ancemequentially, these choices in this model are made
simultaneously similarly to the classical Cournot and Eertl duopoly models. The key characteristics of the
model are as follows: There are two firms, fifmand firm2, who sell durable goods to a large population of
consumers. There is no secondary market for the productghardirm. A consumer will buy only a single
product from a particular firm and hold it until the producelks down. The consumer may choose to buy the
products of both firms. Both firms choose the quality and pofddeir products, and whether to give out products
as free samples. Prices and qualities are set once and,fandlfree samples are given only at the time of entry
into the market. Both firms seek to maximize their profits aiitimake their choices accordingly. The interaction
between the firms is modeled as a game.

The demand for the both firms’ products are determined thrauigitial value problem inspired by the SIS model.
The firms determine the initial value problem through théibices. Differing from the two preceeding models, we
use the initial value problem to calculate payoffs for theiaction game rather than implementing it to the firms’
optimization problems.

The interaction game is a multi-stage game with three stabesh determines the firms’ behavior by its subgame-
perfect Nash equilibrium (SPNE). The SPNE of the game istcocied by solving Nash equilibria (NEa) in
the three stages, as each possible stage can be seen asvatuadiormal-form game. The range of possible
observable firm behavior may be seen from the probabilityitigions that form the constructed SPNE.

6.1 Market Structure

The market structure of this model is equivalent to the mosty market structure of the Stackelberg duopoly
model. The population is divided into four different comipaents:S, 11, I> and ;5 with the respective functions
S(t), I (t), I>(t) and I12(t). The functionS(t) describes the amount of people who have neither product, the
function I (¢) the amount of people who own a product from fiimthe function/>(¢) the amount of people
who own a product from firn2 and the function/;2(¢) the amount of people who own a product from both
firms at timet. Figure 6.1 describes the compartmental structure and tdvement between compartments. The
movement between the compartments is determined by th&dwea and arrival intensitiea and g and the
buying probabilities?;_, ;,i € {S, 1,2}, 5 € {11, I, 12}

As with the two previous models, we wish to determine the afi both firms given their choices of quality, free
samples and price. The profits are determined by the prddigcteands which can be described using the functions

43
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S(t), I1(t), I>(t) andI12(t). The functions are again found by solving the initial valuelgem describing the
market.

6.2 Initial value problem

The initial value problem of this model is almost equivalenthe post-entry initial value problem of the Stack-
elberg duopoly model. The differential equations in bottiahvalue problems are the same after changing the
names, F, LF'to 1,2, 12. However, the initial conditions are now slightly diffetelVhereas the construction of
the initial conditions of the post-entry initial value pten of the Stackelberg duopoly model required the solution
of the pre-entry initial value problem, the initial conditis of the initial value problem of the simultaneous-choice
duopoly model are constructed simply from the choices ofditrand2. For the sake of completeness, let us next
reiterate the construction of the differential equations.

The buying probabilities;,;,i € {S,Ii,I»},j € {I1,I2, 12} at timet are dependent on three factors: the
qualitiesa; andas, the price®; andps of firms1 and2 and how many other consumers already own the product at
thattime, i.e. the state of the marklett), I»(¢t) andI 2 (¢). To shorten the notation, | choose to denote the qualities
asa = (a1, as), the prices ap = (p1, p2) and the state of the market at tihas/(t) = (I (t), I2(t), I12(t)).

| again define term#;_,;(a, p, I(t)),i € {S, 1, I2},j € {1, 2, I12} in equations (6.1) to shorten the notation
for the buying probabilities.

Us_r, (a,p,I(t) = exp —p1 +a1g(Li(t) + 112(t)))

1
as —pa + a29(12(7f) + 112(7f)))

S
Us_r,(a,p,I(t) = exp(
o

max{a; — az, 0} p1+a1g(li(t) + IlQ(t))>
1

max{as — a1,0} — p2 + asg(I2(t) + IlQ(t))>
1

U11H112(a71_)aj(t)) = eXp( (61)

With the termdJ;,;(a, p, I(t),i € {S, 1, Ix}, j € {I1, I2, I12} we may now define the actual buying probabilities
P j(a,p,I(t)),i € {S,I1,I2},j € {1, s, 12} in equations (6.2):

Us_1,(a,p, I(t))
1+ Usor,(a,p, [(t)) + Us—1,(a,p, 1(t))
Ur,>1,5 (a,p,](t))
1+ Ur,r,(@,p, I(t
(

)

_ _ Us—1,(a,p,1(t))

I(t)) 14 Us_y, (@, p, I(t) + Us—1, (a, p, I(t))
Ur —1.,(@,p,I(t))

1 + U11—>112 (aapa I_(ﬁ))

(6.2)

The buying probabilities in equations (6.2) are equivaterthe buying probabilities in (2.16) and (2.17).

After defining the buying probabilities we may write the iaitvalue problem which describes the market evolution.
The initial value problem consists once again of the diffiéieg equations that describe how the functidi(g),

I, (t), I(t) andI 2 (t) evolve over time and of the initial value€g0) = A, I;(0) = B, I5(0) = C, I12(0) = D at
the starting time = 0. The initial value problem now takes the form (6.3):
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S(t) = —BPs1,(@p, I[(t)S(t) — BPs—1,(a,p, 1(1)S(t) + A1 (t) + Ma(t)
Li(t) = BPsor, (a,p,1(t)S(t) — BP—1,,(@,p, I(t) 11 (t) + Mia(t) — A1 (t)
L(t) = BPsp,(@p, [(t)S(t) = BP—1,,(a,p, 1()Ia(t) + Mia(t) — Ma(t)
ha(t) = BPr 1, (@0, L)1 (1) + BP0, (@, P, 1(1)) I () — 2ATha(t)
with S(0) =A,I,(0) = B,15(0) = C, I12(0) =D (6.3)

The initial conditions of the initial value problem (6.3)eadetermined by the following simple assumptions: All
consumers are assumed to have an equal and independerbifitylba@ get either product. The firms cannot
observe by assumption whether a person already owns a pifodienthe other firm. Moreover, a single consumer
is content by assumption with a single product from a paldicfirm. Letg; andg. denote the amounts of free
samples that firms 1 and 2 give out. Then the probability dirggefirm 1's product isq; /N, and the probability
of getting firm2’s product isg2/N. Since the probabilities are independent, the initial dbors A, B, C, D are
given by equations (6.4):

Ly o=N1-8Y2 p_NLE (6.4)

A=N-B-C-D,B=N&@-
N NN NN

N

The terms in the differential equation system of the initallie problem (6.3) again have the natural interpretations
At time ¢ consumers arrive at buying decisions at intensityDue to purchases, consumers move from compart-
mentS to compartment; at ratesPs_,y, (a,p, [(t))S(t) and to compartment, at ratePs_. 1, (a, p, I(t))S(t).
Again due to purchases, the consumers move to compartineat rates Py, _.r,,(a, p, 1(t))1(t) from compart-
ment/; and at rate3Pr, ,1,, (@, p, I(t))I2(t) from compartmenf,. At the same time the products are breaking
down at intensity\. Then due to product breakdowns, consumers move from cameats/; and/, to compart-
mentS at rates\I; (t) and A1 (t) respectively. Additionally, since the consumers in cortpant/;» own both
products, they move from this compartment at &8té,-(¢) to compartment$; andls.

As with the Stackelberg duopoly model, the formulation dfiah value problem (6.3) implies that both firms’
products have the same expected lifetime as the breakddemsity \ is the same for both firms. | again interpret
the parametek as reflecting the “state of technology” in production, witttofirms choosing the best available
technology to provide the most durable product. As the sactalogy is available to both firms, they both make
equally durable products leading to the same breakdownsitte).

Finally, the population size stays constant over timel & (S (t) + I, (t) + Io(t) + La(t)) = S(t) + I, (t) +
I1(t) + I12(t) = 0. This leads to identity (6.5):

S(t) + L(t) + I2(t) + Li2(t) = N (6.5)

The identity (6.5) may be used to eliminate one of the diffiéisd equations in the initial value problem (6.3) as
we may, for example, writ€(t) = N — I (t) — I>(t) — I12(t). This assumption is again used in the numerical
solution of initial value problem (6.3).

6.3 Firm behavior

Firm behavior in the model is ultimately determined by theN&Pof the interaction game. However, before de-
scribing the game | formulate the duopolist’s problem. Wliile duopolist’s problem does not explicitly enter into
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the game, | hope that it will illustrate the incentives behthe behavior of a single firm and highlight the simi-
larities between this model and those presented in the gdétg chapters. Moreover, describing the duopolist's
problem tells us how to calculate the duopolist’s profitsichfare then used as payoffs in the interaction game.

6.3.1 Duopolist’s Problem

The duopolist’s problem is constructed in the same way akdrpteceeding chapters, i.e. the duopolist's objec-
tive function, the decision variables and constraints apdi@t defined and combined. As the model’s firms are
symmetrical, let us consider firine {1, 2} as our duopolist and firm € {1,2},;j # i as its competitor. Firni
naturally seeks to maximize its profits, giving us the prabiteobjective function, by choosing the quality and

the pricep; of its product and whether to give out free samplggiving us the decision variables of the problem.

Firm i’s profits are determined by the demand of its product. The &Ps_, 1, (a, p, I(t))S(t) describes the de-

mand for firmi's product at time from those consumers who own neither product. The {1, (a, p, I(t))1;(t)
describes the demand for firi’s product at timet from those consumers who own firfis product. Firm

i’'s total sales at time are then3Ps_.j, (a,p, 1(t))S(t) + BPr,-1,,(a,p, 1(t))1;(t). The per-unit discounted
profit at timet are given by the termaxp(—rt)(p; — C(a;)). We may then integrate the produstp(—rt)(p; —
C(as))(BPs—1,5(t)+ fP1,1,,1;(t)) over the planning horizo# and account for the free sample caStg:; )¢
to calculate firmi's profit. Firmi's profits«(a,, ¢;, p; | a5, g;, p;) are given by equation (6.6):

T
mi(ai, ¢i, i | aj,q5,p5) = / exp(—1t)(pi—C(a;))(BPs—1, (@, B, L(t))S(t)+BPr, -1, (@, b, I(t)) 1 (1)) dt—C (ai)g;
0 (6.6)
The constraints of firm’s problem are again simple. Firincannot choose a negative quality or a price nor give
out a negative amount of free samples, giving us the natoratcaintsa;, ¢;, p; > 0 for the decision variables.
Firm ¢ naturally operates within the described market structame, we therefore require that the functigh@),
I,(t), I>(t) andI;2(t) are solutions of the initial value problem (6.3).

Firm ¢’s problem then, given the choicés;, g;, p;) of firm j, takes the form (6.7):

Jnax. mi(ai, i, pi | aj,q5,p;5) s.t.
S(t), I1(t), I2(t), I12(t) solutions of initial value problem (6.3) df, T']

The duopolist’s problem (6.7) illustrates what firnseeks to do given the choices of fifm We may note the
similarity between problem (6.7) and the problems, esfigdiae Follower’'s problem (5.10), presented in the
preceeding chapters. The similarity of the problems refitinet similarity of incentives for firms across the models.
Since the firms make their choices simultaneously, soiiegiuopolist’s problem is impossible as we would need
to know the choices of firnj to find the optimal choices for firmm We circumvent this problem by modeling the
interaction between the firms as a game.

6.3.2 Proposed interaction game

To model the interaction between the firms | propose a mtates (multi-stage in the sense of Fudenberg and
Tirole (1991, p. 70-2)) game with three stages: First, thradichoose their qualities simultaneously and observe
each other’s choices. Next, the firms simultaneously chbesemany free samples they give out and observe



6. SIMULTANEOUS-CHOICE DUOPOLY 47

each other’s choices. Finally, the firms simultaneouslyosleqorices, enter the market simultaneously and receive
the profits (6.6) dependent on the choices of both firms. Ei§L2 illustrates the game structure.

| offer the following rationalization for choosing this gampecification: The firms choose their quality first as it
is the most difficult variable to change, as, for example,films may have built quality-specific manufacturing
machines. The firms choose their free samples next. If wegréechoosing quality as building the appropriate
machines, it is natural that the firm may not give out any freelpcts before setting up the appropriate infrastruc-
ture. Finally, the firms choose their prices last as the prare clearly the easiest variables to change (firms may
change their prices simply by announcing a price change).

| assume that the choice sets and the way to calculate proditsommon knowledge to both firms. Moreover, |
assume that when faced with situation that can be represasta normal-form game the both firms are equally
capable at calculating NE strategies and deducing thatttres irm will be able to do the same. The play in each
normal-form game should then converge to a NE by assumption.

More precisely speaking, the proposed interaction gamea iexéensive-form game. An extensive-form game
consists of a set of players, the order of moves (i.e. who mexeen), the players’ payoffs as a function of the
moves, what the players’ choices are when they move, whatmager knows when he makes his choices and the
probability distributions over any exogenous events (Fbeeg and Tirole (1991, p. 77)). For the proposed game,
the set of players consists of the two firms, the players’ fifayare determined by the profits (6.6). As there are
no exogenous events, there is no need to define any propalidiitibutions for them. A structure called the game
tree provides the rest of the required components. The garaalescribes the order in which the players make
their choices. Unfortunately, the game tree for the proggsene is too large to be presented in its entirety. Figure
6.3 illustrates a pruned game tree of the proposed gamee lcaimplete game tree of the proposed game each of
the pruned branch nodes expands to a whole branch that hesttgestructure as the presented branch at that node
level.

Each node of the game tree is a decision point for a player. géinge starts at the highest node, denoted by an
empty circle around the node, and moves down the game treediesndenoted by filled circles. The nodes of

figure 6.3 are named eithéor 2 to indicate whether firm or 2 is making its choices at that particular node. Each

branch stemming from a node describes an action that themptagy choose. The action sets are naturally the
choice sets (3.8) at the appropriate nodes, and the chaiee waturally conforms to figure 6.2.

While the game tree in figure 6.3 specifically describes tlikioin which a specific player makes a choice, it
may still be used to model simultaneous choice. Simultagetwice in the game tree is modeled by using
information sets. An information set describes what a plapews when it is choosing its action. The nontrivial

information sets in the game tree in figure 6.3 are marked dashed lines and the trivial information sets with

only a single member are naturally left unmarked. When theegarrives to a node which is a member of a
nontrivial information set, the player who is choosing it§i@n at that node is unaware in which of the information
set's member nodes the game actually is.

To emphasize that the use of information sets indeed allets model simultaneous choice, | offer the following
informal example: Let us consider Rock-Paper-Scissorsingame. The traditional way of playing Rock-Paper-
Scissors is the players making their choices of rock, papseiesor at the same time. This approach can naturally
be modeled with a normal-form game in which rock, paper ambssc form the row and column choices of the
players. The same game may also be played in a way where tieeslawe not made at the same time. Suppose
that the first player writes his choice on a paper that is sdalan envelope. The second player then writes down
his choice, opens the envelope and the game concludes amgtrd rules of Rock-Paper-Scissors and the choices
of both players. This second way can be modeled with an extefierm game with a single information set.
When the second player receives the sealed envelope, #esad-form game has arrived to some unknown node
in the information set as the second player knows that thiepiiayer has made a choice but does not know what
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that choice is. These two approaches are clearly equivasetitey model the same game.

With the Rock-Paper-Scissors example in mind, we may inéttpe first two node levels of the game tree as the
first stage, the third and the fourth node levels as the sestag# and the fifth and sixth node levels as the third
stage of the game structure in figure 6.2. For future referelet us name the nodes in the first two node levels
as the “first stage nodes”, nodes in the third and the fourtterievels as the “second stage nodes” and finally
the nodes in the fifth and sixth node levels as the “third staapges” of firms 1 and 2. Each of the “stages” can
be likened to a normal-form game as in the Rock-Paper-Ssigs@ample, and this observation will be used to
construct the SPNE for the whole game later on.

The play in an extensive-form game is determined by theegii@s$ of both players. The strategy of a player is a set
of instructions that describes how the player should chb@sactions at each decision node. These instructions
are written before the play starts, and the players canremgsh their strategies midplay. The instructions are
written on basis of the past actions and the information efglayer at the decision node. The instructions may
instruct the player to randomize his choices over the astian there is no guarantee that the decision node has
a “self-evidently best” action. For example, when playingcR-Paper-Scissors if the second player knows the
first player’s choice, he may always choose the winning actiithout this information the second player needs
to randomize his choices (for example by putting equal poditaweights to each of his actions). Finally, the
instructions cover all possible contingencies, i.e. aagnawill provide instructions for all decision nodes of the
player.

We may now give a more formal definition of a strategy for thepmsed game. The strategies described here can
be likened to behavior strategies (see e.g. Fudenberg aolé 11991, p. 83-5)). First, let us denote the number of
possible qualities ag A, i.e. the set of quality choice4 has# A different members, the number of possible free
samples agtQ and the number of possible prices7a®. For the sets (3.8), we hayeAd = #Q = #P = 4. The
strategy of firmi is a structurél;, n;, h;) such that; € R#*4,n; : Ax A — R#¥Qandh; : AxAxQxQ — R#P,
Vector!; is a probability distribution over the actions in its firsageé node, i.e. the firm choose actipnvith
probability (1;); in its first stage node. The functions(a1, az) andh; (a1, a2, ¢1, ¢2) are rules that firm uses in
choosing its strategies given the game’s history. The vacte n; (a1, a2) € R# is a probability distribution over
the actions of firmi in its second stage node given that fitrhas chosen quality; and firm2 has chosen quality
as, i.e. the history(as, as), in their first stage nodes. Correspondingly, the vegter h; (a1, as, q1, g2) € R is

a probability distribution over the actions of firhin its third stage node given the histaiy: , as, g1, ¢2). As they

are probability distributions, each component of vectgrs andy is non-negative and the sum of the components
of [;, x andy is 1.

After giving the definition of a strategy,, n;, h;), | think it appropriate to also give an interpretation. Thategy
may be thought of as a book that is is written before the sfatiedgame and that gives the firm instructions on
how to choose an action at every possible decision node.rEltreictions describe how a firm should weight a dice
such that the result of the dice roll determines the firm'soactAs there are three parts in the stratégyn;, h;),

we may consider the book to have three chapters. The firste@haghich may be thought to consists of the
information ini;, describes how the firm should weight its dice in the firststabhe second chapter, consisting
of the information inn;, describes how the firm should weight its dice in the secoagestfor all possible choice
combinations from the first stage. Finally the third chaptensisting of the information ih,, describes how the
firm should weight its dice in the third stage for all possiti®ice combinations from the first and second stages.

Why choose such a complicated definition of a strategy idstéafor example, assuming that firms choose their
actions deterministically? Allowing the firms to randomaeer their actions allows us the invoke Nash’s theorem
(see e.g. Fudenberg and Tirole (1991, p. 29)) which guaeartes existence of a NE in the stage normal-form
games as each of the normal-form games has a finite numbeaydrpland actions. When each of the possible
normal-form games has a NE, we may construct the SPNE for tiidepproposed game using the found NEa.
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6.3.3 Subgame-perfect Nash equilibrium

As the proposed game is an extensive-form game, | natursdlyhe SPNE as my equilibrium concept. The SPNE
is, as the name suggests, a refinement of the classical NEegorieor sake of completeness, let us retrace the
steps through which we arrive at the SPNE from the classi€atdhcept for the proposed game.

The classical NE for an arbitrary two player game may be défmeefollows. Lets;,i = 1,2 denote player
i's strategy, andr;(s1, s2) playeri's (expected) payoff for the strategy pdir, s2). Strategy paifsy, s3) is the
game’s NE if the following conditions (6.8) hold:

m1(s7, 85) > m1(s],s3) forall s}

mo (8T, 55) > ma(sT, s5) for all s, (6.8)

Conditions (6.8) state that neither player can improve higoff by unilaterally changing its strategy. Since we
assume that the players are rational, we may reasonablgakpeeplayers to have optimized their own strategies to
the point where there are no unilateral payoff improvemeérite play with rational players will therefore converge
to a NE. In order to be able to use the conditions (6.8) for loppsed game, we need to determine the payoffs for
the firms.

The construction of the payoffs for the proposed game regusome care. As we have allowed the firms to
randomize over their choices, we cannot use the profits @&he payoffs as such. Rather, the payoffs for
the game are the expected profits from a chosen strategy Tmiefine the expected profits, it is necessary to
present compact notation for the possible choice comlinatnd the probability for reaching a particular choice
combination.

First let us denote a particular choice combination:as (a1, as, ¢1,42,p1,p2) Where naturallys; € A, q; €
Q,p; € P,i = 1,2. Next let setC denote the set of all choice combinations, &= {(a1, a2, q1, g2, p1,p2) |
a; € A,q; € Q,p; € P,i = 1,2}. Now given any choice combinatian we may write the profits (6.6) of both
firms 1 and2 simply asm; (¢) = m;(as, ¢, pi | a5, ¢, p;)-

The probability of reaching a particular choice combinati® determined by the strategies of both firms. Let
si = (I;,n, h;) denote firm's strategy and let = (a4, a2, g1, g2, p1, p2) denote some choice combination. Let us
now suppose that the choiag is thekth and the choice; the jth choice in the sefi. Now the probability of firm

1 choosinga; in the first stage is naturally given k¥, ), (the kth component of vectads ), and correspondingly
the probability of firm2 choosingas in the first stage is given bil,);. Naturally then the probability of firm

1 choosinga; and firm2 choosinga, at the first stage is the produ@t )x(l2);. Next, let us suppose that the
choicesq; is the k'th and the choices, the j'th choice in sety. Now given the first stage choicéa, az),
firm 1 choosesy; with the probability(ni (a1, a2))r and firm2 choosesy, with the probability(ns(ai, az2));:.
Naturally then the probability of firm 1 choosing and firm 2 choosing, together at the second stage is the
product(ni (a1, az2))r (n2(a1,a2)),; . After applying this reasoning to determine the probabditfor the third
stage choices (whegg is chosen with the probability given by th&th component ofy (a1, a2, q1, ¢2) etc.), we
may write the probability?(c) for the choice combinatioain equation (6.9):

P(c) = (l)k(l2)j(n1(a1, a2))r (nalar, a2)) s (hi(a1, az, q1, g2))k (h2(a1, az, g1, g2)) (6.9)

We may now determine the payoff functions for both firms. Lstabuse the notation even more and define
functions;(s1,s2),7 = 1,2 as our payoff functions given strategies and so. The payoff of firm: is the
expected value of firm’s profits given the strategi€s,, s2). Accounting for all possible choice combinations
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(i.e. summing through the set of all possible combinatiofsthe payoff functionsr;(s1, s2) are then written as
in equation (6.10):

mi(81,82) = Z P(e)m;i(c) (6.10)
ceC

While using the payoffs (6.10) together with the strategies- (I;, n;, h;) allows us to write the NE conditions
(6.8) for the proposed game, solving the NE strate@igsss;) is difficult due to the complicated definition of a
strategy. There is no requirement for the NE to be unique e tnay exists many paifs;, s3), (s7,s5), ...
that satisfy the conditions (6.8). As the proposed game exémsive-form game, the conditions (6.8) also allow
for equilibria that are in a sense unbelievable. Since thesficommit to their strategies before the game starts, it
is possible for the firms to “threaten” each other by committio make detrimental choices. For example, firm
1 may construct its strategy such that it always chooses pripe = 0 in the third stage if it observes firm 2
choosing a high quality (i.ei.2 = 2 or as = 3) in the first stage to undercut firm 2's profits. These type$idts
are unbelievable since when the game has reached the tageé, st is never optimal for firm 1 to choose price
p1 = 0 as it would always lead to a negative profit. The example thisgaus an empty one. Nevertheless, empty
threats may form a part of firm 1's strategy to influence thdeadwof firm 2. The use of the SPNE concept allows
us to avoid these types of equilibria.

Defining the SPNE concept requires first defining what is miegatproper subgame. Roughly speaking (an exact
definition may be found in Fudenberg and Tirole (1991, p. 8QJoper subgame is an extensive-form game that
forms a part of the whole extensive-form game and sharesatine snformation sets. We may construct proper
subgames from figure 6.3 by taking a single node and all itsessor nodes. If the first node is a member of an
information set, we also have to include all the nodes oftfigrimation set and all their successor nodes.

Fudenberg and Tirole (1991, p. 95) defines the SPNE as falléwsehavior-strategy profile of an extensive-
form game is a SPNE if the restriction 6fto G is a NE of G for every proper subganm@. Let us interpret this
definition in terms of the proposed game. | have likened treteggiess; = (I;, n;, h;) to behavioral strategies. |
therefore further liken the behavior-strategy profileo a pair of strategie6s;, s2). A restriction ofo to a proper
subgame is then the parts efthat describe play in the parts of the whole extensive-foamg that form the
proper subgame. For example, suppose that we have sormeggtpeair(s;, s2) and wish to see what form one of
its restriction takes. Suppose further that firm 1 has chgseatity a; = 1 and firm 2 has chosen quality = 1.
Then a restriction of the strategy p&ir , s2) to the subgame takes the fo® | a; = 1,a2 = 1) = (n;(1,1), f)
wheref(z,y) = h(1,1,z,y),z,y € Q. The form of the restriction naturally depends on which ntiieproper
subgame is created.

Why does the subgame-perfection requirement rule out ethpggts in the equilibrium strategies in the proposed
game? This property comes from the requirement that theatishs of a SPNE strategies form NEa in all of its
subgames. Suppose that the firms have already chosen thétieguand free samples and the game has entered
the third stage. In a SPNE, the restricted strategies inhind stage will then have to form a NE (i.e. satisfy
conditions (6.8)) for this subgame. This precludes chapsaiisuboptimal price and thereby fulfilling a possible
threat. We may use the same argument to preclude threatglofihiounts of free samples in the second stage.
Moreover, as each extensive-form game is a proper subgaitseldfa SPNE is necessarily also a NE (Fudenberg
and Tirole (1991, p. 96)).

After presenting the definition and the properties of the BPIEt us consider what conditions should the SPNE
strategies fulfill. It is now useful to recall that each stagé¢he proposed game may be seen as a normal-form
game. Starting from the last stage, we may note that the $tdge is equivalent to a normal-form game where
the firms are simultaneously choosing their prices with ttheoprofit-determining variables having already been
set. Then the SPNE requirement states that the third staggeetions of the strategies need to form the NEa for all
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possible third stage normal-form games. Next, as how we khatweach third stage normal-form game has a NE
that the play adheres to, we may associate the NE profits tnerthird stage normal-form games to each second
stage choice pair. The situation the firms then face in thergkstage is equivalent to a normal-form game, as
the qualities have already been set and the prices will bbystite NE strategies of the third stage normal-form

games. As with the third stage normal-form game, we may sble@Ea of these new second stage normal-form
games and associate their NE profits to the first stage chibiaekead to each particular second stage. Finally, this
procedure then gives us a first stage normal-form game. Welmaysolve the NEa for the first stage normal-form

game. The NE profits for the first stage normal-form game nawespond to the expected profits of the proposed
game. Moreover, the NE strategies for the third, second astsfiages may be combined to form the SPNE
strategies for the whole proposed game.

Let us now try to state the preceeding reasoning in a moregeretanner. We wish to consider firils strategy
s; = (li, ni, h;) for the proposed game, and construct the conditions forahsip, n; andh; such that the strategy
s; satisfies the SPNE requirements. These conditions are oestracted stage-by-stage.

Let us first consider the third stage conditions. Suppogetiegproposed game has entered the third stage with his-
tory (a1, as, q1,q2). Leth; = hi(a1, a2, q1, g2) denote firmi’s strategy, anelriThiml 990y, hy) firm i's (expected)
profits for strategieéh, ho) at the third stage normal-form game. Each of the third stagmal-form games then
has the form of the normal-form game in figure 6.4. Then usorgldions (6.8), we may write conditions (6.11)
to guarantee that the strategies in the third stage form a NE:

Foralla; € A,q; € Q,i = 1,2
ﬂ_l’hird Stage(h*{, hy) WIhird Stage(h/l, h3) for all h/1

ﬂ_;’hird Stagethik, hy) > ﬂ_'QI'hird StagethL h’2) for all b, (6.11)

Y

When the NE conditions (6.11) for the third stage normaifgame hold, we note that with the second stage
choices(q1, ) with history (a1, a), firm i will have the expected profits] "™ S®%% A7, h3). We therefore asso-
ciate the third stage expected NE profits as the (induceaateg profits for choice , gz ). Letr>°" S8%; n,),
wheren; = n;(a1, a2), denote firm’s induced profits in the second stage normal-form game. Battie second
stage normal-form games now has the form of the normal-famegin figure 6.6. Again using conditions (6.8),
we may write the conditions (6.12) to guarantee that theéegias in the second stage form a NE:

Foralla; € A,i=1,2
Second Sta * %
™ g€n17”2)

Second Sta * %
Ty g(anunz)

Y

Second St
7 oS n3) for all n)

Y

7_‘_Second Stag, n n/ for all n/ 6.12
2 1,742 2

When the NE conditions (6.12) and (6.11) hold, firmill have the expected profits " S@%z n3),i = 1,2

for first stage choicegu;, az). We therefore again associate the second stage (indugeeijtex! NE profits as the
(induced) expected profits for the choides, az). Letx "™ 591, 1,) denote firmi's induced profits in the first
stage normal-form game with strategiés l2). The first stage normal-form game then has the form of the abrm
form game in figure 6.8. Once again using conditions (6.8)mag write the conditions (6.13) to guarantee that
the strategies in the first stage form a NE:
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First St
1SR 1)

First Stage 7% 7
Ty 6(11 ,13)

Y

FrStSRegy 1) for all I}

rEStSROG 11y for all 1] (6.13)

V

When the strategy pais;, s2) satisfies conditions (6.11), (6.12) and (6.13), it will foansPNE for the proposed
game. The construction of the presented conditions alsdgee us now with the method for actually solving the
SPNE strategies.

6.3.4 Solving the SPNE

As the initial value problem (6.3) is (almost) equivalenttie post-entry initial value problem (5.6), it too has no
easy analytical solutions. | therefore use numerical ndstas solving the initial value problem is necessary to
determine the profits, and thereby the behavior, of the twasfir

The approach for solving the firm behavior is a process verghsaimilar to backward induction in games of
perfect information. Whereas in the standard applicatisackward induction we only need to consider the
actions of a single player at a time, in this instance we a®rghe behavior of two firms in a single normal-form
game at a time. We study the proposed game stage by stagegsteotn the third stage normal-form games. We
first solve a NE for each of the third stage normal-form gaross,the NE strategies to construct the functions
hi(a1,a2,q1,¢92),i = 1,2 and the NE profits as the induced profits for the second stageatdorm games. We
then solve a NE for each second stage normal-form gamesndtlced profits, use the NE strategies to construct
the functionsn;(aq1,a2),7 = 1,2 and the NE profits as the induced profits for the first stage abform game.
Finally, we solve a NE for the first stage normal-form game aselthe NE strategies as the strategiies= 1, 2

and the NE profits as the expected profits of the whole propgasetk. The strategies = (I;,n;, hi),i = 1,2
then form a SPNE for the whole proposed game and determinatige of possible firm behavior we may expect
to observe.

NEa in the normal-form games for each stage are solved wétlsulpport enumeration algorithm (algorithm 1 of
Avis et al. (2010, p. 13)) which finds all NEa of a given nondegrate bimatrix normal-form game. The algorithm
iterates through all combinations of possible supportsrategies (a support of a strategy is the set of actions to
which the strategy assigns a positive probability) andtiéesolve a system of linear equations determined by the
supports. If the solution of the system of linear equati@tisies the best response conditions and is non-negative,
the solution forms a NE for the game.

For each subgame, | arbitrarily use the first NE that is fourts choice bypasses the questions of equilibrium
choice that could be raised, as considering them would leadw complications in an already overcomplicated
model. | acknowledge the possibility that multiple NEa ie #'econd or third stage games may now hide possible
NEa in earlier stages. For example, let us suppose that#énemaultiple NEa in a third stage normal-form game.
Since the approach chooses the first found NE and uses itdolatd the induced profits for all preceeding stages
leading to this third stage normal-form game, the choicec$fall subsequent normal-form games through profits.
This choice may then mask other possible NEa in earlier stage

For sake of clarity, let us walk through the solving approatp by step. We start by considering all possible
third stage normal-form games. Suppose that the game haredrhe third stage corresponding to the fifth and
the sixth decision nodes in figure 6.3 with histdmy, as, g1, g2). The third stage with the given history is then
equivalent to the normal-form game in figure 6.4. We now stiheeNE strategies and (expected) profits of the
equivalent normal-form game. Let us denote fire(i = 1, 2) NE strategy by:! and firmi's expected profits as
mMASR99 2y Given the historyas, ag, 1, ¢2) We then simply sek; (a1, az, q1,¢2) = h}. Going through all
possible(as, as, ¢1, g2)-combinations then completes the construction of funestiofa,, az, g1, ¢2).
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Next, solving the NEa of all possible third stage normahfagames we may eliminate the third stage nodes in
figure 6.3 and study instead a truncated game tree in figurel6.this new game tree the second stage nodes
lead to the previously calculated third stage NE profjts™ S®9x1, h3). We now apply the same procedure to
the second stage nodes as to the third stage nodes. Giversthiy (1, a2) the second stage is equivalent to
a normal-form game given in figure 6.6. We again solve the N&egies and the expected NE profits of the
equivalent normal-form game. Let novj denote firmi's (i = 1,2) NE strategy and->2°°" S%%x n3) firm i's
expected NE profits. We may then again®gii;, az) = n} to construct the function; (a1, a2). Going through

all possible(ay, a2)-combinations then completes the construction of funstiafia, , az).

Finally, solving the NEa of all possible second stage notfoah games we may eliminate the second stage nodes
in figure 6.5 and study instead an even more truncated gamatfigure 6.7. In this new game tree the first stage
nodes now lead to the second stage NE prafff§®™ S?%,x n3). Again, the new game tree is equivalent to the
normal-form game in figure 6.8. We again solve the NE strategnd the expected NE profits of the equivalent
normal-form game. Lett' denote firmi's (i = 1, 2) NE strategy and' "' 5973 I3) firm i's expected NE profits.
These components complete the construction of the SPNtegia for the proposed game, as we may now set
I; = I completing the strategy; = (I, n;, h;). Moreover, the expected NE profit§"™' 5?9z, 13) for the (first
stage) normal-form game give us the expected NE profits ofvtitee proposed game.

Figure 6.9 describes the structure of the implementedtscilihe structure of the script is a close reflection to
the way the SPNE strategies are constructed. The scripyéretrates numerically the payoff matrices for all of
the third stage normal-form games and solves the NE stestegid profits for the normal-form games. Next, the
script generates the payoff matrices of the second stageatdorm games from the NE profits of the third stage
normal-form games and solves the NE strategies and profitadanewly-constructed second stage normal-form
games. Finally, the script generates the payoff matricéiseofirst stage normal-form game from the NE profits of
the second stage normal-form games and solves the NE sty profits of the final first stage normal-form
game. From the solved NE strategies from the third, secoddil stage normal-form games the script generates
SPNE strategies for the proposed game. See appendix E fonphemented script.

The subroutine&irstStageNEQualities , SecondStageNESamples and ThirdStageNEPrices-

Parallel  in figure 6.9 construct the SPNE strategy components fronfitste second and third stage normal-
form games respectively. For each of the normal-form gahmsdreate the appropriate payoff matrices, solve and
store the NE strategies. The payoff matrices for third stexyenal-form games are generated by calculating profits
(6.6), and the payoff matrices for the second and first stiigesthe NE profits from following stages. Solving the
NE strategies for a given normal-form game is done with thecutineNashEquilibriaBySupportEnume-

ration

The subroutindNashEquilibriaBySupportEnumeration is an implementation of the support enumera-
tion algorithm (Avis et al. (2010, p. 13)). The algorithm tégs an input of a nondegenerate bimatrix game, which
are provided by the subroutinEgstStageNEQualities , SecondStageNESamples andThirdStage-
NEPricesParallel and gives as an output all NEa of the given game. This impléatien requires that the
payoff matrices arex x n-square matrices. This requirement stems from the impléatien itself while the
algorithm could handle x m-matrices.

The payoff matrices for the third stage normal-form gamesalculated parallely in order to save computing time.
The subroutineparallelWrapperProfitsFirm1 andparallelWrapperProfitsFirm2 are “wrap-
pers” for implementing parallel computing with MATLABgarfor-command. The subroutinpsofitsFirm1
andprofitsFirm2 calculate the actual profits of firm 1 and 2 given choiges as, g1, g2, p1, p2). The profits

are again calculated using the same methods as in the psevioumodels: The subroutines first solve the ini-
tial value problem (6.3) usingde45 They then generate the appropriate revenue vectors by sairoutines
revenueFirml andrevenueFirm2 and usdrapzto calculate the integral in equation (6.6) numericallyeTh
profits for the firms are then determined by accounting fofie samples costs from the calculated integrals. The
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subroutinesevenueFirm1l andrevenueFirm2 generate the revenue vectors required for numerical iategr
tion. The subroutineluopolyDES is the (reduced) differential equation system of initialueaproblem (6.3)
required byode45

6.4 Outcomes

We wish to determine how the firms will behave in order to cdesthe research questions. The firm behavior in
the model is determined by the SPNE strategies. Howevenghae of the SPNE strategies creates difficulties in
presenting them in their entirety. First, let us recall tiwt functionsn; (a1, a2) andh;(as, a2, q1, g2) for firm i's
strategys; are constructed by associating a probability distributiosach member of setsx A andAx Ax Q x Q.

If we were then to present the probability distribution asated to a particular member on a single line, we would
need in totak# A - #A lines to describe the functiom; (a1, a2) and#A - #A - #Q - #Q lines to describe the
function h; (a1, as, g1, g2) for firm i's strategy, whergt A denotes the number of members in deand#Q the
number of members in sé€. For the sets (3.8), we haygA - #A = 16 and#A - #A - #Q - #Q = 256. Since

we are interested in studying firm behavior in fifteen difféereombinations of trend type and strength, planning
horizon length and firm patience, completely describindg3R&IE strategies of even a single firm for all considered
cases would require prohibitively many lines. | therefdrease to present here only the parts of both firms’ SPNE
strategies that directly affect firm behavior. | acknowledgat the complete strategies for the proposed game
would be required to verify that the strategies indeed for&PAIE. | invite the reader interested in checking the
subgame-perfection claim to run the supplied script to geehe appropriate information. See appendix B for
an example pair of complete SPNE strategies.

6.4.1 SPNE strategies
First stage SPNE strategie$;

Tables 6.1-6.3 present the first stage normal-form gameegies of the SPNE that determine the quality choices.
Since each vector in the tables is a probability distrioutiwer the quality choice set of sets (3.8), we may
describe how the quality choices are made by studying thepooents of the vectors. First component of vector
l; gives the probability that firmd chooses quality,; = 0, the second the probability that firichooses quality

a; = 1 etc.

Table 6.1 describes how the quality choices are made in th&=S8r patient firms with discount rate= 0. We
note that in most cases the quality decisions are made detstically, as in most cases the vectors take the form
(0,0,1,0)T or (0,0,0,1)T. These vectors correspond to fifshoosing the quality; = 2 or a; = 3 for certain.
We also note that quality choices in cases with parabel tnétindstrengthi = 2 and planning horizong = 10 and

T = 100 are nondeterministic. With planning horizGh= 10, we havel; = (0,0.085328,0.46174,0.45293)7
which leads to firmi choosing qualitys; = 1, a; = 2 or a; = 3. With planning horizorl’ = 100, we have

I; = (0,0.28001, 0,0.71999)7 which leads to firm choosing either quality; = 1 ora; = 3.

Table 6.2 describes how the quality choices are made in th&ESBr normal firms with discount rate = 0.05.
Again we note that in most cases the quality choices are metdendinistically, as in most cases the vectors take the
form (0,0,1,0)7 or (0,0,0,1)”. These vectors correspond to fifmhoosing quality;; = 2 or a; = 3 for certain.

We also note that quality choices in cases with parabel twatidstrengthd = 2 and planning horizon® = 10
andT = 100 are nondeterministic. With planning horizéh= 10, we havel; = (0,0.0155,0.58875,0.39575)T
which leads to firmi choosing qualitys; = 1, a; = 2 or a; = 3. With planning horizorl” = 100, we have

I; = (0,0.25943,0.14396, 0.59661) which leads to firm choosing qualitys; = 1, a; = 2 ora; = 3.
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Planning horizon|  Trend type 1 lo

T=10 no trend (0,0,1,0)T (0,0,1,0)T
linear,d = 2 (0,0,1,0)T (0,0,1,0)T
parabeld = 2 | (0,0.085328,0.46174,0.45293)7 | (0,0.085328, 0.46174, 0.45293)
linear,d = 8 (0,0,0,1) (0,0,0,1)
parabeld = 8 (0,0,1,0)T (0,0,1,0)T

T =100 no trend (0,0,1,0) (0,0,1,0)
linear,d = 2 (0,0,1,0)T (0,0,1,0)T
parabeld = 2 (0,0.28001,0,0.71999)7 (0,0.28001,0,0.71999)7
linear,d = 8 (0,0,0,1)T (0,0,0,1)7
parabeld = 8 (0,0,1,0)T (0,0,1,0)T

Table 6.1: First stage normal-form game SPNE strategi¢gmdirms,r = 0

Planning horizon|  Trend type Iy lo

T =10 no trend (0,0,1,0) (0,0,1,0)
linear,d = 2 (0,0,1,0)T (0,0,1,0)T
parabeld = 2 | (0,0.0155,0.58875,0.39575)7 | (0,0.0155,0.58875,0.39575)T
linear,d = 8 (0,0,0,1)7 (0,0,0,1)T
parabeld = 8 (0,0,1,0)T (0,0,1,0)T

T =100 no trend (0,0,1,0) (0,0,1,0)
linear,d = 2 (0,1,0,0) (0,0,1,0)
parabeld = 2 | (0,0.25943,0.14396,0.59661)7 | (0,0.25943,0.14396, 0.59661)7
linear,d = 8 (0,0,0,1)T (0,0,0,1)T
parabeld = 8 (0,0,1,0) (0,0,1,0)

Table 6.2: First stage normal-form game SPNE strategiemaldirms,r = 0.05
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Planning horizon| Trend type Iy lo
T =10 no trend (0,0,1,0)7 | (0,0,1,0)T
linear,d =2 | (0,0,1,0)" | (0,0,1,0)T
parabeld =2 | (0,0,1,0)T | (0,0,1,0)T
linear,d =8 | (0,0,1,0)T | (0,0,1,0)T
parabeld =8 | (0,0,1,0)T | (0,1,0,0)T
T =100 no trend (0,0,1,0)7 | (0,0,1,0)
linear,d =2 | (0,0,1,0)" | (0,0,1,0)T
parabeld =2 | (0,0,1,0)T | (0,0,1,0)T
linear,d =8 | (0,0,1,0)7 | (0,0,1,0)7
parabeld =8 | (0,0,1,0)T | (0,1,0,0)

Table 6.3: First stage normal-form game SPNE strategigsmiient firms; = 10

Table 6.3 describes how the quality choices are made in thEESBr impatient firms with discount rate= 10.
We note that the quality choices are made deterministigakyery case. With the vectéy = (0,0,1,0)7 firm i
chooses quality; = 2 for certain, and with the vectdy = (0, 1,0,0)7 firm i chooses quality; = 1 for certain.

Second stage SPNE strategies (a1, az)

The free samples choices in the second stage depend on titg guaices in the first stage that are determined by
tables 6.1-6.3. Tables 6.4-6.6 give the second stage ndamalgame strategies of the SPNE that determine the
free samples choices. We describe how the free sampleseshaie made by determining the vectaréa, a2)

that are dependent on the quality choi¢es az2). The vectors:; (a1, a2) are probability distributions over the free
samples sef) of sets (3.8). Again, the first component of vectg(ai, as) is the probability that firm chooses
free sampleg; = 0, the second component the probability that firohooses free samples= 200 000 etc.

Table 6.4 describes how the free samples choices are mdake 8PINE for patient firms with discount rate= 0.
We again note that in most cases the free samples choicestarendhistic: Firmi chooses free samples = 0
whenn;(ai,as) = (1,0,0,0)7, free samples; = 200 000 whenn;(ai,az) = (0,1,0,0)7, free samples
¢; = 400 000 whenn;(ay,az) = (0,0,1,0)T and free sampleg; = 600 000 whenn;(a1,as) = (0,0,0,1)7
for certain. We also note that free samples choices in the wéb linear trend with strengtti = 2 and plan-
ning horizons" = 10 are nondeterministic. As firnis free samples choice strategy is in this casg,2) =
(0.34668,0.21864, 0.43468, 0)T, firm i chooses free samples= 0, ¢; = 200 000 or ¢; = 400 000.

Table 6.5 describes how the free samples choices are madie IBRNE for normal firms with discount rate
r = 0.05. We again note that in most cases the free samples choicatetmaninistic: Firmi chooses free
samplesy; = 0 whenn;(a,as) = (1,0,0,0)T, free sampleg; = 200 000 whenn;(a1,as) = (0,1,0,0)” and
free sampleg; = 400 000 whenn;(ai,az) = (0,0,1,0)T and free sampleg;, = 600 000 whenn;(ay,az) =
(0,0,0,1)T for certain. We also again note that free samples choicedeiase with linear trend with strength
d = 2 and planning horizon$' = 10 is nondeterministic. As firni's free samples choice strategy is in this case
ni(2,2) = (0.20827,0.56213, 0.2296, 0)7, firm i chooses free samplgs= 0, ¢; = 200 000 or ¢; = 400 000.

Table 6.6 describes how free samples choices are made ifPthE ®r impatient firms with discount rate= 10.
We note that free samples choices are deterministic in easg. With the vectar; (a1, a2) = (1,0,0,0)7 firm i
chooses free samples= 0 for certain, and with the vectar; (a1, as) = (0, 1,0,0)7 firm i chooses free samples
q; = 200 000 for certain.
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Planning horizon| Trend type | (a1, as2) ny(ai, az) na(ai, az)

T=10 no trend (2,2) (1,0,0,0)T (1,0,0,0)T
linear,d = 2 (2,2) | (0.34668,0.21864, 0.43468,0)T | (0.34668,0.21864,0.43468,0)7

parabeld =2 | (1,1) (0,1,0,0) (0,1,0,0)

(1,2) (1,0,0,0) (0,1,0,0)T

(1,3) (0,1,0,0)T (0,0,1,0)7

(2,1) (0,1,0,0) (1,0,0,0)

(2,2) (1,0,0,0) (1,0,0,0)T

(2,3) (1,0,0,0)" (0,1,0,0)T

(3,1) (0,0,1,0) (0,1,0,0)7

(3,2) (0,1,0,0)7 (1,0,0,0)

(3,3) (0,1,0,0)T (0,1,0,0)7

linear,d = 8 (3,3) (0,0,0, )T (0,0,0,1)T

parabeld =8 | (2,2) (0,1,0,0)T (0,1,0,0)T

T =100 no trend (2,2) (1,0,0,0)" (1,0,0,0)7

linear,d =2 | (2,2) (0,0,1,0)T (0,0,1,0)T

parabeld =2 | (1,1) (0,1,0,0) (0,1,0,0)

(1,3) (0,1,0,0)" (0,0,1,0)7

(3,1) (0,0,1,0)T (0,1,0,0)T

(3,3) (0,1,0,0)T (0,1,0,0)7

linear,d =8 | (3,3) (0,0,0,1)" (0,0,0,1)T

parabeld =8 | (2,2) (0,1,0,0)T (0,1,0,0)T

Table 6.4: Second stage normal-form game SPNE strategigsnpfirms, = 0
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Planning horizon| Trend type | (a1, as2) ny (a1, az) na(ai, az)

T=10 no trend (2,2) (1,0,0,0)T (1,0,0,0)T
linear,d =2 | (2,2) | (0.20827,0.56213,0.2296,0)” | (0.20827,0.56213,0.2296,0)7

parabeld =2 | (1,1) (0,1,0,0)T (0,1,0,0)T

(1,2) (1,0,0,0)T (0,1,0,0)T

(1,3) (0,1,0,0)T (0,0,1,0)T

(2,1) (0,1,0,0)T (1,0,0,0)T

(2,2) (1,0,0,0)T (1,0,0,0)T

(2,3) (1,0,0,0)T (0,1,0,0)T

(3,1) (0,0,1,0)T (0,1,0,0)T

(3,2) (0,1,0,0)T (1,0,0,0)T

(3,3) (0,1,0,0) (0,1,0,0)T

linear,d =8 | (3,3) (0,0,1,0)T (0,0,1,0)T

parabeld =8 | (2,2) (0,1,0,0) (0,1,0,0)

T =100 no trend (2,2) (1,0,0,0)T (1,0,0,0)T

linear,d = 2 (1,2) (1,0,0,0)T (1,0,0,0)T

parabeld =2 | (1,1) (0,1,0,0)T (0,1,0,0)T

(1,2) (1,0,0,0)T (0,1,0,0)

(1,3) (0,1,0,0)T (0,0,1,0)T

(2,1) (0,1,0,0)T (1,0,0,0)T

(2,2) (1,0,0,0)T (1,0,0,0)T

(2,3) (1,0,0,0)T (0,1,0,0)T

(3,1) (0,0,1,0)T (0,1,0,0)T

(3,2) (0,1,0,0)T (1,0,0,0)T

(3,3) (0,1,0,0) (0,1,0,0)T

linear,d =8 | (3,3) (0,0,0,1)T (0,0,0,1)T

parabeld =8 | (2,2) (0,1,0,0) (0,1,0,0)

Table 6.5: Second stage normal-form game SPNE strategiggahfirms,r = 0.05
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Planning horizon| Trend type | (ai,a2) | ni(a1,az2) | na(ai,asz)
T=10 no trend (2,2) | (1,0,0,0)T | (1,0,0,0)T
linear,d = 2 (2,2) | (1,0,0,0)T | (1,0,0,0)T

parabeld =2 | (2,2) | (1,0,0,0)T | (1,0,0,0)T

linear,d = 8 (2,2) | (1,0,0,0)T | (1,0,0,0)T

parabeld =8 | (2,1) | (1,0,0,0)T | (0,1,0,0)T

T =100 no trend (2,2) | (1,0,0,0)T | (1,0,0,0)T
linear,d = 2 (2,2) | (1,0,0,0)T | (1,0,0,0)T

parabeld =2 | (2,2) | (1,0,0,0)T | (1,0,0,0)T

linear,d =8 | (2,2) | (1,0,0,0)T | (1,0,0,0)T

parabeld =8 | (2,1) | (1,0,0,0)T | (0,1,0,0)

Table 6.6: Second stage normal-form game SPNE strategipatient firmsy = 10

Third stage SPNE strategies; (a1, as, g1, ¢2)

The price choices in the third stage depend on the qualiticeban the first stage (determined by tables 6.1-6.3)
and the free samples choices in the second stage (deterhyinables 6.4-6.6). Tables 6.7-6.9 give the third stage
normal-form game strategies of the SPNE that determine fiice phoices. We describe how the price choices
are made by determining the vectédr$a1, aq, ¢1, g2) that are dependent on the previous quality and free samples
choiceday, a9, q1,g2). The vectord; (a1, as, g1, g2) are probability distributions over the price gebf sets (3.8).
Again, the first component of vectbr (a1, as, g1, ¢2) is the probability that firmi chooses pricg; = 0, the second
component the probability that firichooses price; = 3 etc.

We note that the price choices in the SPNE of all considerscbdint rates and cases are deterministic. With the
vectorh;(ay, az, q1,q2) = (0,1,0,0)T firm i chooses pricg; = 3 for certain. With the vectoli; (a1, az, 1, ¢2) =
(0,0,1,0)7 firm i chooses pricg; = 6 for certain. With the vectol; (a1, az, 1, g2) = (0,0,0,1)7 firm i chooses
pricep; = 9 for certain.

6.4.2 Observable firm behavior

As firm behavior in the SPNE may be nondeterministic, we aresih to consider a range of possible firm behavior
profiles instead of a single pair of deterministic firm bebayprofiles. Tables 6.10-6.12 give the possible firm
behavior profiles and table 6.13 the expected SPNE profits.

The results again do not offer us a reason to doubt the irteafidity of the model. We note that both firms will
always set a positive price to guarantee nonnegative exgp&RNE profits. Again, the SPNE behavior in each of
the no trend cases for both firms(is;, ¢;, p;) = (2,0, 3),7 = 1,2. This allows us to consider the effects of the
planning horizon and the discount rate to the expected SRNfiig We note that with longer planning horizons
the expected SPNE profits are larger, and with larger didaates the expected SPNE profits are correspondingly
smaller.

Let us next consider the research questions: Differentittgpes again lead to observable differences in firm
behavior but the specific type and strength of the trend magamferred purely from firm behavior. For example,
we note that both (patient) firms with short planning horganay end up choosin@:;, ¢;,p;) = (2,0,3) in
cases with no trend, a linear trend with strendth= 2 or a parabel trend with strength= 2 (see table 6.10,

T = 10). Thus if the observer happened to know the discount ratetlglanning horizons of both firms
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Planning horizon|  Trend type (a1,a2,q1,q2) hi(a1,az2,q1,q2) | he(ai,az,q1,q2)
T =10 no trend (2,2,0,0) (0,1,0,0) (0,1,0,0)7
linear,d = 2 (2,2,0,0) (0,1,0,0) (0,1,0,0)
(2,2,0,200 000) (0,1,0,0) (0,1,0,0)7
(2,2,0,400 000) (0,1,0,0)" (0,1,0,0)7
(2,2,200 000, 0) (0,1,0,0)T (0,1,0,0)T
(2,2,200 000, 200 000) (0,1,0,0) (0,1,0,0)7
(2, 2,200 000, 400 000) (0,1,0,0)" (0,1,0,0)7
(2, 2,400 000, 0) (0,1,0,0)" (0,1,0,0)7
(2, 2,400 000, 200 000) (0,1,0,0) (0,1,0,0)7
(2,2,400 000, 400 000) (0,1,0,0) (0,1,0,0)7
parabeld =2 | (1,1,200 000, 200 000) (0,1,0,0)" (0,1,0,0)7
(1,2,0, 200 000) (0,1,0,0)" (0,0,1,0)7
(1, 3,200 000, 400 000) (0,1,0,0) (0,0,0,1)7
(2, 1,200 000, 0) (0,0,1,0) (0,1,0,0)7
(2,2,0,0) (0,1,0,0)" (0,1,0,0)7
(2,3,0,200 000) (0,1,0,0) (0,0,1,0)T
(3, 1,400 000, 200 000) (0,0,0,1)7 (0,1,0,0)7
(3,2,200 000, 0) (0,0,1,0)" (0,1,0,0)7
(3, 3,200 000, 200 000) (0,0,1,0)" (0,0,1,0)7
linear,d =8 | (3,3,600 000,600 000) (0,0,0,1)7 (0,0,0,1)T
parabeld = 8 | (2,2,200 000,200 000) (0,0,0,1) (0,0,0,1)T
T =100 no trend (2,2,0,0) (0,1,0,0) (0,1,0,0)
linear,d =2 | (2,2,400 000,400 000) (0,1,0,0) (0,1,0,0)T
parabeld =2 | (1,1,200 000, 200 000) (0,1,0,0)" (0,1,0,0)7
(1, 3,200 000, 400 000) (0,1,0,0)" (0,0,0,1)7
(3, 1,400 000, 200 000) (0,0,0,1)7 (0,1,0,0)7
(3, 3,200 000, 200 000) (0,0,1,0) (0,0,1,0)7
linear,d =8 | (3,3,600 000,600 000) (0,0,0,1) (0,0,0,1)7
parabeld = 8 | (2,2,200 000,200 000) (0,0,0,1)7 (0,0,0,1)T

Table 6.7: Third stage normal-form game SPNE strategi¢gmdirms,r = 0
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Planning horizon  Trend type (a1,a2,q1,q2) hi(a1,a2,q1,q2) | ha(ai,a2,q1,q2)
T=10 no trend (2,2,0,0) (0,1,0,0) (0,1,0,0)T
linear,d = 2 (2,2,0,0) (0,1,0,0)" (0,1,0,0)T
(2,2,0,200 000) (0,1,0,0) (0,1,0,0)7
(2,2,0,400 000) (0,1,0,0)7 (0,1,0,0)7
(2,2,200 000, 0) (0,1,0,0)" (0,1,0,0)T
(2,2,200 000, 200 000) (0,1,0,0)T (0,1,0,0)7
(2,2,200 000, 400 000) (0,1,0,0)T (0,1,0,0)7
(2, 2,400 000, 0) (0,1,0,0)" (0,1,0,0)7
(2, 2,400 000, 200 000) (0,1,0,0)T (0,1,0,0)7
(2,2,400 000, 400 000) (0,1,0,0)T (0,1,0,0)7
parabeld =2 | (1,1,200 000,200 000) (0,1,0,0) (0,1,0,0)T
(1,2,0, 200 000) (0,1,0,0) (0,0,1,0)T
(1, 3,200 000, 400 000) (0,1,0,0)T (0,0,0,1)T
(2, 1,200 000, 0) (0,0,1,0)” (0,1,0,0)7
(2,2,0,0) (0,1,0,0)" (0,1,0,0)T
(2,3,0,200 000) (0,1,0,0)" (0,0,1,0)T
(3, 1,400 000, 200 000) (0,0,0,1)T (0,1,0,0)7
(3,2,200 000, 0) (0,0,1,0)” (0,1,0,0)7
(3,3, 200 000,200 000) (0,0,1,0)T (0,0,1,0)7
linear,d =8 | (3,3,400 000,400 000) (0,0,0,1)T (0,0,0,1)T
parabeld = 8 | (2,2,200 000,200 000) (0,0,0,1)T (0,0,0,1)T
T =100 no trend (2,2,0,0) (0,1,0,0)" (0,1,0,0)7
linear,d = 2 (1,2,0,0) (0,1,0,0) (0,1,0,0)
parabeld =2 | (1,1,200 000,200 000) (0,1,0,0) (0,1,0,0)T
(1,2,0, 200 000) (0,1,0,0)" (0,0,1,0)T
(1, 3,200 000, 400 000) (0,1,0,0)T (0,0,0,1)T
(2, 1,200 000, 0) (0,0,1,0)” (0,1,0,0)7
(2,2,0,0) (0,1,0,0)" (0,1,0,0)7
(2,3,0,200 000) (0,1,0,0)" (0,0,1,0)T
(3, 1,400 000, 200 000) (0,0,0,1)T (0,1,0,0)7
(3,2,200 000, 0) (0,0,1,0) (0,1,0,0)7
(3,3, 200 000,200 000) (0,0,1,0)T (0,0,1,0)7
linear,d =8 | (3,3,600 000,600 000) (0,0,0,1)T (0,0,0,1)7
parabeld = 8 | (2,2,200 000,200 000) (0,0,0,1)T (0,0,0,1)T

Table 6.8: Third stage normal-form game SPNE strategigsyaldirms,r = 0.05
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Planning horizon  Trend type (a1,a2,q1,q92) | hi(a1,a2,q1,q2) | ha(a1,a2,q1,q2)
T =10 no trend (2,2,0,0) (0,1,0,0) (0,1,0,0)
linear,d = 2 (2,2,0,0) (0,1,0,0) (0,1,0,0)
parabeld = 2 (2,2,0,0) (0,1,0,0)" (0,1,0,0)7
linear,d = 8 (2,2,0,0) (0,1,0,0)T (0,1,0,0)7
parabeld = 8 | (2,1,0,200 000) (0,1,0,0) (0,0,1,0)T
T =100 no trend (2,2,0,0) (0,1,0,0)" (0,1,0,0)7
linear,d = 2 (2,2,0,0) (0,1,0,0) (0,1,0,0)
parabeld = 2 (2,2,0,0) (0,1,0,0) (0,1,0,0)
linear,d = 8 (2,2,0,0) (0,1,0,0)" (0,1,0,0)7
parabeld = 8 | (2,1,0,200000) (0,1,0,0)T (0,0,1,0)T

Table 6.9: Third stage normal-form game SPNE strategigsaii@nt firms; = 10

(clearly an unrealistic assumption), the trend type cotildret be inferred from observing both firms choosing

(ai,qi,pi) = (2,0,3),i=1,2.

We again note that there exists cases with trends such tlia¢ ISPNE one or both firms give out free products
as samples. As with the two preceeding models, we may agasept an existence result for the trends: If we
observe either firm giving out free products, we may infet thizkend exists. Again, the result does not run in the
other direction, i.e. we may not infer the nonexistence okad from observing that neither firm gives out free
samples.

Even though the firms are symmetric, we note that the SPNEegtes are not necessarily symmetric. The non-
symmetric SPNE strategies lead to nonsymmetric expectdiE$Pofits. We find three cases of this type in table
6.13: See the cases with impatient firms with discountrate10 and parabel trends with strength= 8 or the
case with normal firms with discount rate= 0.05 and planning horizoff’ = 100 and linear trend with strength

d = 2. Appendix A reveals that for the last case there are three iNHze first stage normal-form game. For
the first two cases there are three NEa in a few of the seconthaddstage normal-form games. We may then
raise the question whether we could find a SPNE that leadsnongyric expected SPNE profits with different
equilibrium choices. Additionally, we note that the nonsyatric SPNE strategies guarantee that the observable
firm behavior is nonsymmetric, although the symmetric SPM&egies also allow the observable firm behavior
to be nonsymmetric.

We may note that firms randomize differently depending oriythe and strength of the trend. The firms randomize
over their free samples choices when there is a linear tregrlt@bles 6.4 and 6.5), and over quality choices when
there is a parabel trend (see tables 6.1 and 6.2). This lhanlso only evident when there is a weak trend with
strengthd = 2 and disappears in cases with strong trends with strefhgth8. Moreover, the planning horizon
seems to have an effect on the randomization. We first notéhtbaandomization over the free samples choices
disappears as planning horizon lenghtens ffor 10 to 7' = 100. Next, if we interpret that a large amount of
observable firm behavior profiles signifies “strong” randmation, we note that randomization is stronger in cases
with shorter planning horizons. This last observation isdabsolely on tables 6.10 and 6.11 and may be of little
use when studying trends in more general settings.
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Planning horizon| Trend type (a1,q1,p1) (az2,q2,p2)
T=10 no trend (2,0,3) (2,0,3)
linear,d = 2 (2,0,3) (2,0,3)
(2,0,3) (2,200 000, 3)
(2,0,3) (2,400 000, 3)
(2,200 000, 3) (2,0,3)
(2,200 000,3) | (2,200 000, 3)
(2,200 000,3) | (2,400 000, 3)
(2,400 000, 3) (2,0,3)
(2,400 000,3) | (2,200 000, 3)
(2,400 000,3) | (2,400 000, 3)
parabeld = 2 | (1,200 000,3) | (1,200 000, 3)
(1,0,3) (2,200 000, 6)
(1,200 000,3) | (3,400 000,9)
(2,200 000, 6) (1,0,3)
(2,0,3) (2,0,3)
(2,0,3) (3,200 000, 6)
(3,400 000,9) | (1,200 000, 3)
(3,200 000, 6) (2,0,3)
(3,200 000,6) | (3,200 000,6)
linear,d =8 | (3,600 000,9) | (3,600 000,9)
parabeld = 8 | (2,200 000,9) | (2,200 000, 9)
T =100 no trend (2,0,3) (2,0,3)
linear,d =2 | (2,400 000,3) | (2,400 000, 3)
parabeld = 2 | (1,200 000,3) | (1,200 000, 3)
(1,200 000, 3) | (3,400 000,9)
(3,400 000,9) | (1,200 000, 3)
(3,200 000,6) | (3,200 000,6)
linear,d = 8 | (3,600 000,9) | (3,600 000,9)
parabeld = 8 | (2,200 000,9) | (2,200 000, 9)

Table 6.10: SPNE firm behavior, patient firms= 0
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Planning horizon| Trend type (a1,q1,p1) (az2,q2,p2)
T=10 no trend (2,0,3) (2,0,3)
linear,d = 2 (2,0,3) (2,0,3)
(2,0,3) (2,200 000, 3)
(2,0,3) (2,400 000, 3)
(2,200 000, 3) (2,0,3)
(2,200 000,3) | (2,200 000, 3)
(2,200 000,3) | (2,400 000, 3)
(2,400 000, 3) (2,0,3)
(2,400 000, 3) | (2,200 000, 3)
(2,400 000,3) | (2,400 000, 3)
parabeld = 2 | (1,200 000,3) | (1,200 000, 3)
(1,0,3) (2,200 000, 6)
(1,200 000,3) | (3,400 000, 9)
(2,200 000, 6) (1,0,3)
(2,0,3) (2,0,3)
(2,0,3) (3,200 000, 6)
(3,400 000,9) | (1,200 000, 3)
(3,200 000, 6) (2,0,3)
(3,200 000,6) | (3,200 000,6)
linear,d =8 | (3,400 000,9) | (3,400 000,9)
parabeld = 8 | (2,200 000,9) | (2,200 000,9)
T =100 no trend (2,0,3) (2,0,3)
linear,d = 2 (1,0,3) (2,0,3)
parabeld = 2 | (1,200 000,3) | (1,200 000, 3)
(1,0,3) (2,200 000, 6)
(1,200 000,3) | (3,400 000, 9)
(2,200 000, 6) (1,0,3)
(2,0,3) (2,0,3)
(2,0,3) (3,200 000, 6)
(3,400 000,9) | (1,200 000, 3)
(3,200 000, 6) (2,0,3)
(3,200 000,6) | (3,200 000, 6)
linear,d =8 | (3,600 000,9) | (3,600 000,9)
parabeld = 8 | (2,200 000,9) | (2,200 000, 9)

Table 6.11: SPNE firm behavior, normal firmss= 0.05
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Planning horizon Trend type | (a1,q1,p1) (a2, q2,p2)

T =10 no trend (2,0,3) (2,0,3)
linear,d = 2 (2,0,3) (2,0,3)
parabeld = 2 (2,0,3) (2,0,3)
linear,d = 8 (2,0,3) (2,0,3)
parabeld = 8 (2,0,3) (1,200 000, 6)

T =100 no trend (2,0,3) (2,0,3)
linear,d = 2 (2,0,3) (2,0,3)
parabeld = 2 (2,0,3) (2,0,3)
linear,d = 8 (2,0,3) (2,0,3)
parabeld =8 | (2,0,3) | (1,200000,6)

Table 6.12: SPNE firm behavior, impatient firms= 10
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Figure 6.1: Compartmental Graph, Simultaneous-choic@diyo
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Discount rate| Planning horizon|  Trend type m D)
r=20 T=10 no trend 397150 397150
linear,d = 2 295220 295220
parabeld = 2 | 1.76699 - 10° | 1.76699 - 10°
linear,d = 8 9.0159 - 108 9.0159 - 108
parabeld =8 | 1.8715-107 | 1.8715-107
T =100 no trend 3.7722 - 106 3.7722 - 106
linear,d = 2 6.3709 - 106 6.3709 - 108
parabeld = 2 | 3.29188-107 | 3.29188- 107
linear,d = 8 1.1702 - 108 1.1702 - 108
parabeld =8 | 1.7863-10% | 1.7863-10%
r = 0.05 T =10 no trend 315800 315800
linear,d = 2 155230 155230
parabeld = 2 | 1.07646- 10° | 1.07646 - 10°
linear,d = 8 7.8276 - 106 7.8276 - 106
parabeld = 8 | 1.4874-107 | 1.4874-107
T =100 no trend 765670 765670
linear,d = 2 111450 3.2737-10°
parabeld =2 | 5.52684-10° | 5.52684 - 10°
linear,d =8 | 2.0854-107 | 2.0854-107
parabeld =8 | 3.6188-107 | 3.6188-107
r=10 T =10 no trend 5225.2 5225.2
linear,d = 2 5574.9 5574.9
parabeld = 2 8516.8 8516.8
linear,d = 8 7232.4 7232.4
parabeld = 8 371.03 165390
T =100 no trend 5225.2 5225.2
linear,d = 2 5574.9 5574.9
parabeld = 2 8516.8 8516.8
linear,d = 8 7232.4 7232.4
parabeld = 8 371.03 165390

Table 6.13: SPNE expected profits
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choose choose choose
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Stage 1

Figure 6.2: Duopoly Game

Order of choosing
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6. SIMULTANEOUS-CHOICE DUOPOLY
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Figure 6.8: First stage normal-form game
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Conclusions

7.1 Research summary

7.1.1 The definition of a trend

Atrend is defined in this thesis as an effect to the consuriratirect utility that is dependent solely on the number
of products already in the market. The effect of the trend m@ither positive or negative depending on the
way the effect has been defined and the prevailing situatiche market. Indirect utility is used to determine
the consumer’s buying probabilities for a given productisTdefinition was chosen because it fits well one of the
conceptions that arises from the word "trend:“ If a prodsdténdy, then the probability that a particular consumer
buys it is most likely dependent on how many others alreagrg tt@e product.

We may also imagine other conceptions for a trend. For exaym@ could require that when a product is trendy,
its popularity should tail off after an initial boom. This widl mean that the trend effects should be time-dependent
and fading. Arguing further, we might require that when aduret is trendy, it should disappear from the market
after the trend has run its course. This would mean that thmgyrobabilities fade to zero as time goes on. The
trend effects presented in this thesis can easily be moddiadcount for also these types of requirements.

In order to determine firm behavior in each of the presentedaiso it is necessary to give concrete functional
forms for the trend effects. These functional forms are the frend”, the linear and the parabel trend effect,
and which seek to model the archetypal ideas of a trend. Tberémd” effect is a constant zero to model the
nonexistence of a trend. This gives us a benchmark for firnaiehby determining the behavior of firms in an
environment lacking a trend. Next, the linear trend effacteases linearly as the number of the products already
in the market increases. This arguably models markets wherproduct is a network good, i.e. the utility from
the product increases as the number of other people owrgngrdducts increases. Finally, the parabel trend effect
increases up to some saturation point after which it startietrease as the number of others already owning the
product increases. This arguably models markets whereahsumption of the product is affected by a "club
effect,”i.e. the consumption of the product is increagjragsirable when it is limited to a small number of people,
but when it becomes too widespread the consumption becaseshd less appealing.

7.1.2 Model specifications

The three models presented in this thesis are models of fegi@ompetition. In each of the models, a number of
firms are selling their products to a large population. Thealed for the products is determined by initial value
problems which are modified versions of the initial valuelpems of the SIS model and incorporate the trend
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effects explicitly. The firms determine the forms of theiaivalue problems through their choice of quality, price
and possible free samples of their products. The firms magsghto give out free samples in order to create
demand through a possible trend. These choices are madawdder all from finite choice sets.

The first of the presented models is the monopoly model. Ismmdel a single firm chooses its quality, free
samples and price to maximize its profits. The monopoly mzdedry simple, and serves as the basis for building
the next two models.

The second of the presented models is the Stackelberg dugyalel. In this model there are two firms, Leader
and Follower, which have different market entry times wittader entering the market first. As in the monopoly
models, both of the firms choose the quality, free samplespaied of their products to maximize their profits.
Profit maximization is now complicated by the different metrkntry times. It is assumed that both firms know
that behavior of the other firm is based on profit maximizatida Leader enters the market first and knows that
Follower maximizes its profits, Leader incorporates thiswledge to its maximization problem and makes its
choices accordingly.

The third and final of the presented models is the simultagieboice duopoly model. In this model there are
two firms, firm 1 and 2, which enter the market at the same tinie firms choose the quality, free samples and
price of their products in course of a game with three stalgassthe firms play prior to their entry to the market.
The choices are made on the basis of strategies that the firmsifiate at the start of the game to maximize their
expected profits. The strategies are instructions on howatkenghoices at each possible stage of the game and
may require the firms to randomize their choices at some stadee randomization of the choices means that we
have to consider a range of possible firm behavior ratherttideterministic firm behavior of the previous two
models.

7.2 Results

The results in this thesis serve two functions: They prouisia way to consider the internal validity of the models
and perhaps allow us to very minutely increase the overalhkadge of economics concerning trends.

By internal validity of the models | mean checking whethex thsults of the models are blatantly false. Examples
for this kind of blatant falseness would be firms setting zmtioes or receiving negative profits. On the whole,
none of the results is blatantly wrong which means that wel me¢ consider the models worthless out of hand.

Based on the results we note that firms behave similarly a@asultitude of different trend types and strengths.
We cannot therefore deduce the type or the strength of a byepdrely studying firm behavior. We may, however,
formulate an existence result for a trend in each of the thredels. We note that we may infer the existence of a
trend in each model if we observe at least one firm giving ceg Bamples. Additionally, we note that the result
does not run in the other direction in any of the models, i.e.may not infer the nonexistence of a trend if we
observe no firms giving out free samples.

7.3 Criticism

When we construct models with simplistic assumptions, fsemptions are wisely chosen when everything within
the model may be determined analytically. While the assionptehind the three presented models in this thesis
are simplistic, we note that analytical solutions were taiaable. The models can be characterized as forced
marriages between the SIS model and the multinomial logdehfor the buying decisions. As such, there are too
many exogenous variables to be able to offer reasonablgietations for the cumbersome formulas and results.
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Future work would be needed in choosing new assumptionsdcagtee analytical solutions while maintaining
the essence of the presented models.

In the end, the validity of a model is determined by empirteats. The goodness of a model is then derived from
the possibility of constructing such tests. When we apply ¢hiterion to the three proposed models, we note that
the models are "not even wrong," i.e. it is difficult to constr empirical tests to either validate or invalidate the
results of the models. The models as such are therefordlefddientific merit. However, | hope that the models
may serve as starting points for constructing empiricaitable models of trendy goods.

Finally, we note that some of the stage games in the simwteiehoice duopoly model have multiple Nash
equilibria. This forces us to make difficult equilibrium débes and leads us thereby to question whether we might
alter the game specification to avoid this. Perhaps a bedtaegpecification could be found with a more in depth
knowledge of how real firms interact in duopoly situations.

7.4 [Extensions

7.4.1 Epidemiological viewpoints

There are further possibilities for utilizing epidemioiogl models for modeling trends. | would like to highlight
two possible approaches for economics applications fremwvikalth of epidemiological literature: the reproduction
rate Ry and the SIRS model.

From the SIS model and other epidemiological model it is ipbes$o calculate the so-called reproduction r&ie
(see e.g. Brauer and Castillo-Chavez (2001, p. 353, 4TR)% number describes the mean number of secondary
infections per a single primary infection. The number has ah interesting property regarding the outbreak of an
epidemic: If the reproduction ratR, is greater than one, there will be an epidemic in the pomriatnd if the
reproduction rate is smaller or equal to one, the diseadaigibut in the population. If we were able to calculate
an equivalent number in models of trendy goods to describertban number of secondary purchases stemming
from a single primary purchase, we would have a natural measitrendiness. The higher the hypothetical
"reproduction rate for purchases" would be, the more tremdycould call the product.

Next, the Susceptible-Infective-Resistant-Susceptiibelel (Brauer and Castillo-Chavez (2001, p. 427)) could
have interesting applications in economics. In this moldeldured individuals move to a new compartment R,
denoting that they have a temporary immunity to and do natagbthe disease. The immunity disappears after
a period of time and the individuals move to the compartmemeBoting that they are again susceptible to the
disease. If we would apply this compartmental structurénheorhodels of trendy goods, we could interpret the
time period that the individual is in compartment R as a gkabindignation stemming from a product breakdown
when the individual refuses to consider buying any produldtss approach, combined with product lifetimes that
have been endogenized to firms’ choices, could be used ty sthdther firms should produce flimsy products
on purpose to guarantee resales or whether firms should rizaxihe lifetime of their products to maximize their
profits.

7.4.2 Economical viewpoints

I would like to highlight two major extension to the presehteodels that perhaps could be done using the standard
tools of economics. These are the use of intervals as cheise@rd optimal control.

When we use finite sets as the firms’ choice sets, we implidefjne the range of possible endogenous behavior
beforehand. This is especially problematic if we would wisfit our results to empirical observations as we would
need to define the finite choice sets with supernatural ceisethlerefore desirable to get rid of this assumption and
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rather study maximization problems where the firms choosetlality, price and free samples of their products
from intervals such as the positive real numbers. It woudththe necessary to use more sophisticated optimization
methods to solve the firms’ maximization problems. Applythg new optimization methods to the duopoly
models would then provide us with two interesting probleRisstly, we would need to handle the best-responding
in the Stackelberg duopoly model in a feasible manner. SHgowhen the action sets in the proposed game in
the simultaneous-choice duopoly model are intervals rathan finite sets, we cannot rely on Nash'’s existence
theorem to guarantee the existence of Nash equilibriumdh efithe stage games. Solving these problems seems
to be very much nontrivial.

Real firms vary the price of their products all the time. Ithisriefore desirable to allow the firms vary their prices
also in the proposed models. When the market evolution isrithesl with price-dependent differential equations
and the firms are allowed to vary their prices over time, we g/ optimal control for the monopoly model or
differential games for the duopoly models to study the ba&ranf the firms. Rather than choosing a constant
price, the firms would now choose a price schedule that dessthe price of the product as a function of time.
We could then study markets where the price of a product sragted by a price schedule and the trend effects
of the product are decreasing in time. If the optimal prideestles would also be decreasing in time, we might
ask ourselves could we explain the existence of cleararles gdth the existence of decreasing trend effects in,
for example, markets for clothes.
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Appendix A

Count of Nash equilibria in stage
normal-form games

As mentioned before the Nash equilibrium strategies at amiiqular normal-form game may not be unique. In
the calculations for this thesis each normal-form gameitlier have a single unique Nash equilibrium, or three
separate Nash equilibria. Tables A.1, A.2 and A.3 give thentoof Nash equilibria at each stage of the proposed
game.
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APPENDIX A. COUNT OF NASH EQUILIBRIA IN STAGE NORMAL-FORM GMES

1

Discount| Planning Trend Games with Games with
rate horizon type one Nash equilibrium three Nash equilibrig
r=20 T=10 no trend 1 0
lineard = 2 1 0
parabell = 2 1 0
lineard = 8 1 0
parabell = 8 1 0
T =100 no trend 1 0
lineard = 2 1 0
parabell = 2 0 1
lineard = 8 1 0
parabell = 8 1 0
r=0.05| T=10 no trend 1 0
lineard = 2 1 0
parabell = 2 1 0
lineard = 8 1 0
parabell = 8 1 0
T =100 no trend 1 0
lineard = 2 0 1
parabel = 2 1 0
lineard = 8 1 0
parabell = 8 1 0
r=10 | T =10 no trend 1 0
lineard = 2 1 0
parabell = 2 1 0
lineard = 8 1 0
parabell = 8 1 0
T =100 no trend 1 0
lineard = 2 1 0
parabell = 2 1 0
lineard = 8 1 0
parabell = 8 1 0

Table A.1: Count of first stage normal-form game Nash equdlib
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APPENDIX A. COUNT OF NASH EQUILIBRIA IN STAGE NORMAL-FORM GMES

1

Discount| Planning Trend Games with Games with
rate horizon type one Nash equilibrium three Nash equilibrig
r=20 T=10 no trend 16 0
lineard = 2 15 1
parabell = 2 14 2
lineard = 8 14 2
parabell = 8 16 0
T =100 no trend 16 0
lineard = 2 15 1
parabell = 2 14 2
lineard = 8 14 2
parabell = 8 16 0
r=0.05| T=10 no trend 16 0
lineard = 2 16 0
parabell = 2 14 2
lineard = 8 14 2
parabell = 8 16 0
T =100 no trend 16 0
lineard = 2 15 1
parabell = 2 14 2
lineard = 8 14 2
parabell = 8 16 0
r=10 | T =10 no trend 16 0
lineard = 2 16 0
parabell = 2 16 0
lineard = 8 16 0
parabell = 8 15 1
T =100 no trend 16 0
lineard = 2 16 0
parabell = 2 16 0
lineard = 8 16 0
parabell = 8 15 1

Table A.2: Count of second stage normal-form game Nashibgail
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APPENDIX A. COUNT OF NASH EQUILIBRIA IN STAGE NORMAL-FORM GMES

1

Discount| Planning Trend Games with Games with
rate horizon type one Nash equilibrium three Nash equilibrig
r=20 T=10 no trend 256 0
lineard = 2 256 0
parabell = 2 243 13
lineard = 8 256 0
parabell = 8 256 0
T =100 no trend 256 0
lineard = 2 256 0
parabell = 2 253 3
lineard = 8 256 0
parabell = 8 256 0
r=0.05| T=10 no trend 256 0
lineard = 2 256 0
parabell = 2 243 13
lineard = 8 256 0
parabell = 8 256 0
T =100 no trend 256 0
lineard = 2 256 0
parabel = 2 251 5
lineard = 8 256 0
parabell = 8 256 0
r=10 | T =10 no trend 256 0
lineard = 2 256 0
parabell = 2 253 3
lineard = 8 255 1
parabell = 8 254 2
T =100 no trend 256 0
lineard = 2 256 0
parabell = 2 253 3
lineard = 8 255 1
parabell = 8 254 2

Table A.3: Count of third stage normal-form game Nash elidi
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Appendix B

A complete subgame-perfect Nash
equilibrium strategy pair

This appendix gives the subgame-perfect Nash equilibriradegjies for both firms for the parabel trend case
with parametersl = 2, r = 0.05 and7" = 10. Firm 1 is the row player and firm 2 the column player in
the normal-form games. First stage strategy for firm 1;is= (0,0.0155,0.58875,0.39575)7 and for firm 2

ls = (0,0.0155,0.58875,0.39575) 7.
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APPENDIX B. A COMPLETE SUBGAME-PERFECT NASH EQUILIBRIUM SHATEGY PAIR

(a17a2) nl(a1;a2) n2(a1,a2)
(0,0) | (1,0,0,0)" | (1,0,0,0)"
(0,1) | (1,0,0,0)T | (0,1,0,0)T
(0,2) | (1,0,0,0)T | (0,1,0,0)T
(0,3) | (1,0,0,0)" | (0,1,0,0)"
(1,0) | (0,1,0,0)T | (1,0,0,0)T
(1,1) | (0,1,0,0)T | (0,1,0,0)T
(1,2) | (1,0,0,0)" | (0,1,0,0)"
(1,3) | (0,1,0,0)" | (0,0,1,0)"
(2,0) | (0,1,0,0)T | (1,0,0,0)T
(2,1) | (0,1,0,0)T | (1,0,0,0)T
(2,2) | (1,0,0,0)" | (1,0,0,0)"
(2,3) | (1,0,0,0)T | (0,1,0,0)T
(3,0) | (0,1,0,0)T | (1,0,0,0)T
(3,1) | (0,0,1,0)" | (0,1,0,0)"
(3,2) | (0,1,0,0)" | (1,0,0,0)"
(3,3) | (0,1,0,0) | (0,1,0,0)T

Table B.1: Firms’ 1 and 2 functions, (a1, a2) andni (a1, as)
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APPENDIX B. A COMPLETE SUBGAME-PERFECT NASH EQUILIBRIUM SHATEGY PAIR 83

(a15a25q17q2) hl(a1,a2aQ17Q2) (a17a27q15q2) hl(a17a27q15q2)

(0,0,0,0) (0,1,0,0)T (0,0,0,200000) (0,1,0,0)T
(0,0,0,400000) (0,1,0,0)7 (0,0,0,600000) (0,1,0,0)7
(0, 0,200000, 0) (0,1,0,0)” | (0,0,200000,200000) |  (0,1,0,0)T
(0,0,200000,400000) |  (0,1,0,0)T | (0,0,200000,600000) |  (0,1,0,0)T
(0, 0,400000, 0) (0,1,0,0)” | (0,0,400000,200000) |  (0,1,0,0)7
(0,0,400000,400000) |  (0,1,0,0)T | (0,0,400000,600000) |  (0,1,0,0)"
(0, 0,600000, 0) (0,1,0,00T | (0,0,600000,200000) |  (0,1,0,0)7
(0,0,600000,400000) |  (0,1,0,0)T | (0,0,600000,600000) |  (0,1,0,0)T
(0,1,0,0) (0,1,0,0)7 (0,1,0,200000) (0,1,0,0)7

(0, 1,0,400000) (0,1,0,0)7 (0,1,0,600000) (0,1,0,0)7
(0, 1, 200000, 0) (0,1,0,00T | (0,1,200000,200000) |  (0,1,0,0)7
(0,1,200000,400000) |  (0,1,0,0)T | (0,1,200000,600000) |  (0,1,0,0)T
(0, 1, 400000, 0) (0,1,0,0)” | (0,1,400000,200000) |  (0,1,0,0)”
(0, 1,400000,400000) |  (0,1,0,0)T | (0, 1,400000,600000) |  (0,1,0,0)T
(0, 1,600000, 0) (0,1,0,00T | (0,1,600000,200000) |  (0,1,0,0)7
(0,1,600000,400000) |  (0,1,0,0)T | (0,1,600000,600000) |  (0,1,0,0)T
(0,2,0,0) (0,1,0,0)7 (0, 2,0,200000) (0,1,0,0)7

(0,2, 0,400000) (0,1,0,0)T (0, 2,0,600000) (0,1,0,0)T
(0, 2, 200000, 0) (0,1,0,00T | (0,2,200000,200000) |  (0,1,0,0)7
(0, 2,200000,400000) |  (0,1,0,0)T | (0,2,200000,600000) |  (0,1,0,0)"
(0, 2, 400000, 0) (0,1,0,0)” | (0,2,400000,200000) |  (0,1,0,0)”
(0, 2,400000,400000) |  (0,1,0,0)T | (0,2,400000,600000) |  (0,1,0,0)T
(0, 2,600000, 0) (0,1,0,00" | (0,2,600000,200000) |  (0,1,0,0)7
(0, 2,600000,400000) |  (0,1,0,0)T | (0,2,600000,600000) |  (0,1,0,0)T
(0,3,0,0) (0,1,0,0)T (0,3, 0,200000) (0,1,0,0)T

(0,3, 0,400000) (0,1,0,0)T (0,3, 0,600000) (0,1,0,0)T
(0, 3, 200000, 0) (0,1,0,0)” | (0,3,200000,200000) |  (0,1,0,0)”
(0, 3,200000,400000) |  (0,1,0,0)T | (0,3,200000,600000) |  (0,1,0,0)7
(0, 3, 400000, 0) (0,1,0,00T | (0,3,400000,200000) |  (0,1,0,0)7
(0, 3,400000,400000) |  (0,1,0,0)" | (0,3,400000,600000) |  (0,1,0,0)T
(0, 3, 600000, 0) (0,1,0,0)” | (0,3,600000,200000) |  (0,1,0,0)”
(0,3,600000,400000) |  (0,1,0,0)T | (0,3,600000,600000) |  (0,1,0,0)T

Table B.2: Firm 1's functiork, partial
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(al,az,fhv(]z)

hi(a1,az2,q1,q2)

((11, az, qi, Q2)

hi(ay,az2,q1,q2)

(1,0,0,0)
(1,0,0,400000)
(1,0, 200000, 0)

(1,0, 200000, 400000)
(1,0, 400000, 0)
(1,0, 400000, 400000)
(1,0, 600000, 0)
(1,0, 600000, 400000)

(1,1,0,0)
(1,1,0,400000)
(1,1, 200000, 0)

(1,1, 200000, 400000)
(1,1, 400000, 0)
(1,1, 400000, 400000)
(1,1,600000, 0)
(1,1, 600000, 400000)

(1,2,0,0)
(1,2,0,400000)
(1,2, 200000, 0)

(1,2, 200000, 400000)
(1,2, 400000, 0)
(1,2, 400000, 400000)
(1,2,600000, 0)
(1,2, 600000, 400000)

(1,3,0,0)
(1,3,0,400000)
(1,3,200000, 0)

(1,3, 200000, 400000)
(1,3, 400000, 0)
(1,3, 400000, 400000)
(1,3,600000, 0)
(1, 3,600000, 400000)

(

(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)7
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"

(1,0,0,200000)
(1,0,0,600000)
1,0, 200000, 200000
1,0, 200000, 600000
1,0, 400000, 200000
1,0, 400000, 600000
1,0, 600000, 200000
1,0, 600000, 600000
(1,1,0,200000)
(1,1,0,600000)
(1,1, 200000, 200000)
(1,1, 200000, 600000)
(1,1, 400000, 200000)
(1,1, 400000, 600000)
( )
( )

o~ o~ o~ o~ o~ o~

)
)
)
)
)
)

1,1, 600000, 200000
1,1, 600000, 600000
(1,2,0,200000)
(1,2,0,600000)
(1, 2, 200000, 200000)
(1, 2, 200000, 600000)
(1, 2, 400000, 200000)
(1, 2, 400000, 600000)
(1, 2,600000, 200000)
(1, 2,600000, 600000)
(1,3,0,200000)
(1,3,0,600000)
(1, 3, 200000, 200000)
(1, 3, 200000, 600000)
(1, 3,400000, 200000)
(1, 3,400000, 600000)
(1, 3,600000, 200000)
(1, 3,600000, 600000)

0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

0,1,0,0)7

0,1,0,0)T
0,1,0,0)7
0,1,0,0)T
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

(

(

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)T
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

T

0,1,0,0)7

0,1,0,0)
0,1,0,0)"
0,1,0,0)7
0,1,0,0)7
0,1,0,0)"
0,1,0,0
0,1,0,0

T
T

0,1,0,0)

0,1,0,0
0,1,0,0

T
T

0,1,0,0)7

0,1,0,0)7
0,1,0,0)7
0,1,0,0)7

Table B.3: Firm 1's functiork, continued
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(al,az,fhv(]z)

hi(a1,az2,q1,q2)

((11, az, qi, Q2)

hi(ay,az2,q1,q2)

(2,0,0,0)
(2,0,0,400000)
(2,0, 200000, 0)

(2,0, 200000, 400000)
(2,0, 400000, 0)
(2,0, 400000, 400000)
(2,0, 600000, 0)
(2,0, 600000, 400000)

(2,1,0,0)
(2,1,0,400000)
(2,1, 200000, 0)

(2,1, 200000, 400000)
(2,1,400000, 0)
(2,1, 400000, 400000)
(2,1,600000, 0)
(2,1, 600000, 400000)

(2,2,0,0)
(2,2,0,400000)
(2,2, 200000, 0)

(2,2, 200000, 400000)
(2,2,400000, 0)
(2,2, 400000, 400000)
(2,2,600000, 0)
(2, 2,600000, 400000)

(2,3,0,0)
(2,3,0,400000)
(2,3,200000, 0)

(2, 3, 200000, 400000)
(2,3, 400000, 0)
(2,3, 400000, 400000)
(2,3, 600000, 0)
(2, 3,600000, 400000)

(
(0,1,0,0)
(0,1,0,0)
(0,0,1,0)"
(0,0,1,0)"
(0,0,1,0)”
(0,0,1,0)”
(0,0,1,0)"
(0,0,1,0)"
(0,1,0,0)
(0,1,0,0)7
(0,0,1,0)"
(0,1,0,0)
(0,0,1,0)”
(0,0,1,0)"
(0,0,1,0)"
(0,0,1,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)T
(0,0,1,0)”
(0,1,0,0)"
(0,0,1,0)"
(0,1,0,0)
(0,0,1,0)”
(0,1,0,0)"

(2,0,0,200000)
(2,0,0,600000)
2,0, 200000, 200000
2,0, 200000, 600000
2,0, 400000, 200000
2,0, 400000, 600000
2,0, 600000, 200000
2,0, 600000, 600000
(2,1,0,200000)
(2,1,0,600000)
(2,1, 200000, 200000)
(2,1, 200000, 600000)
(2,1, 400000, 200000)
(2,1, 400000, 600000)
( )
( )

o~ o~ o~ o~ o~ o~

)
)
)
)
)
)

2,1,600000, 200000
2,1, 600000, 600000
(2,2,0,200000)
(2,2,0,600000)
(2, 2, 200000, 200000)
(2, 2, 200000, 600000)
(2, 2, 400000, 200000)
(2, 2, 400000, 600000)
(2, 2, 600000, 200000)
(2, 2, 600000, 600000)
(2,3,0,200000)
(2,3,0,600000)
(2, 3,200000, 200000)
(2, 3, 200000, 600000)
(2, 3,400000, 200000)
(2, 3,400000, 600000)
(2, 3,600000, 200000)
(2, 3,600000, 600000)

0,1,0,0)7
0,1,0,0)7
0,0,1,0)7
0,0,1,0)7
0,0,1,0
0,0,1,0

0,0,1,0

T
T
T

0,0,1,0)7

0,1,0,0)T
0,1,0,0)7
0,1,0,0)T
0,1,0,0
0,0,1,0
0,0,1,0

T
T
T

(

(

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(0,0,1,0)T
(0,0,1,0)
(0,1,0,0)T
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

T

0,1,0,0)7

0,1,0,0)
0,1,0,0)"
0,1,0,0)7
0,1,0,0)7
0,1,0,0)"
0,1,0,0
0,1,0,0

T
T

0,1,0,0)

0,1,0,0
0,1,0,0

T
T

0,1,0,0)7

0,1,0,0)7
0,1,0,0)7
0,1,0,0)7

Table B.4: Firm 1's functiork, continued
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(al,az,fhv(]z)

hi(a1,az2,q1,q2)

((11, az, qi, Q2)

hi(ay,az2,q1,q2)

(3,0,0,0)
(3,0,0,400000)
(3,0, 200000, 0)

(3,0, 200000, 400000)
(3,0, 400000, 0)
(3,0, 400000, 400000)
(3,0, 600000, 0)
(3,0, 600000, 400000)

(3,1,0,0)
(3,1,0,400000)
(3,1, 200000, 0)

(3,1, 200000, 400000)
(3,1,400000, 0)
(3,1, 400000, 400000)
(3,1,600000, 0)
(3,1,600000, 400000)

(3,2,0,0)
(3,2,0,400000)
(3,2, 200000, 0)

(3,2, 200000, 400000)
(3,2,400000, 0)
(3,2, 400000, 400000)
(3,2,600000, 0)
(3, 2,600000, 400000)

(3,3,0,0)
(3,3,0,400000)
(3,3,200000, 0)

(3,3, 200000, 400000)
(3,3,400000, 0)
(3,3, 400000, 400000)
(3,3,600000, 0)
(3,3, 600000, 400000)

(

(0,0,1,0)T
(0,0,1,0)”
(0,0,0,1)"
(0,0,0,1)"
(0,0,0,1)7
(0,0,0,1)7
(0,0,0,1)"
(0,0,0,1)"
(0,0,1,0)”
(0,0,1,0)
(0,0,1,0)"
(0,0,1,0)
(0,0,0,1)7
(0,0,0,1)"
(0,0,0,1)
(0,0,0,1)
(0,0,1,0)
(0,0,1,0)"
(0,0,1,0)T
(0,0,1,0)”
(0,0,1,0)"
(0,0,1,0)"
(0,0,1,0)”
(0,0,1,0)”
(0,0,1,0)"
(0,0,1,0)T
(0,0,0,1)7
(0,0,1,0)"
(0,0,0,1)"
(0,0,1,0)
(0,0,0,1)
(0,0,1,0)"

(3,0,0,200000)
(3,0,0,600000)
3,0, 200000, 200000
3,0, 200000, 600000
3,0, 400000, 200000
3,0, 400000, 600000
3,0, 600000, 200000
3,0, 600000, 600000
(3,1,0,200000)
(3,1,0,600000)
(3,1, 200000, 200000)
(3,1, 200000, 600000)
(3,1, 400000, 200000)
(3,1, 400000, 600000)
( )
( )

o~ o~ o~ o~ o~ o~

)
)
)
)
)
)

3,1,600000, 200000
3,1,600000, 600000
(3,2,0,200000)
(3,2,0,600000)
(3, 2, 200000, 200000)
(3, 2, 200000, 600000)
(3, 2,400000, 200000)
(3, 2,400000, 600000)
(3, 2,600000, 200000)
(3, 2,600000, 600000)
(3,3,0,200000)
(3,3,0,600000)
(3, 3,200000, 200000)
(3, 3, 200000, 600000)
(3, 3,400000, 200000)
(3, 3,400000, 600000)
(3, 3,600000, 200000)
(3, 3,600000, 600000)

(
(0,0,1,0)7
(0,0,1,0)7
(0,0,0,1)T
(0,0,0,1)
(0,0,0,1)
(0,0,0,1)
(0,0,0,1)
(0,0,0,1)
(0,0,1,0)7
(0,0,1,0)7
(0,0,1,0)7
(0,0,1,0)
(0,0,0,1)
(0,0,0,1)
(0,0,0,1)
(0,0,0,1)
(0,0,1,0)7
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(o, )
( )
( )
( )

T
T
T
T

T

T
T
T
T

T

0,0,1,0)7

0,0,1,0)
0,0,1,0)"
0,0,1,0)T
0,0,1,0)T
0,0,1,0)"
0,0,1,0

0,0,1,0

T
T

0,0,1,0)

0,0,1,0
0,0,1,0

T
T

0,1,0)7

0,0,1,0)7
0,0,1,0)7
0,0,1,0)7

Table B.5: Firm 1's functiork, continued and concluded
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(a15a25q17q2) h2(a1,a2aQ17Q2) (a17a27q15q2) hQ(a17a27q15q2)

(0,0,0,0) (0,1,0,0)T (0,0,0,200000) (0,1,0,0)T
(0,0,0,400000) (0,1,0,0)7 (0,0,0,600000) (0,1,0,0)7
(0, 0,200000, 0) (0,1,0,0)” | (0,0,200000,200000) |  (0,1,0,0)T
(0,0,200000,400000) |  (0,1,0,0)T | (0,0,200000,600000) |  (0,1,0,0)T
(0, 0,400000, 0) (0,1,0,0)” | (0,0,400000,200000) |  (0,1,0,0)7
(0,0,400000,400000) |  (0,1,0,0)T | (0,0,400000,600000) |  (0,1,0,0)"
(0, 0,600000, 0) (0,1,0,00T | (0,0,600000,200000) |  (0,1,0,0)7
(0,0,600000,400000) |  (0,1,0,0)T | (0,0,600000,600000) |  (0,1,0,0)T
(0,1,0,0) (0,1,0,0)7 (0,1,0,200000) (0,1,0,0)7

(0, 1,0,400000) (0,1,0,0)7 (0,1,0,600000) (0,1,0,0)7
(0, 1, 200000, 0) (0,1,0,00T | (0,1,200000,200000) |  (0,1,0,0)7
(0,1,200000,400000) |  (0,1,0,0)T | (0,1,200000,600000) |  (0,1,0,0)T
(0, 1, 400000, 0) (0,1,0,0)” | (0,1,400000,200000) |  (0,1,0,0)”
(0, 1,400000,400000) |  (0,1,0,0)T | (0, 1,400000,600000) |  (0,1,0,0)T
(0, 1,600000, 0) (0,1,0,00T | (0,1,600000,200000) |  (0,1,0,0)7
(0,1,600000,400000) |  (0,1,0,0)T | (0,1,600000,600000) |  (0,1,0,0)T
(0,2,0,0) (0,1,0,0)7 (0, 2,0,200000) (0,0,1,0)7

(0,2, 0,400000) (0,0,1,0)T (0, 2,0,600000) (0,0,1,0)T
(0, 2, 200000, 0) (0,1,0,00T | (0,2,200000,200000) |  (0,0,1,0)7
(0, 2,200000,400000) |  (0,0,1,0)T | (0,2,200000,600000) |  (0,0,1,0)T
(0, 2, 400000, 0) (0,1,0,0)” | (0,2,400000,200000) |  (0,0,1,0)7
(0, 2,400000,400000) |  (0,0,1,0)T | (0,2,400000,600000) |  (0,0,1,0)T
(0, 2,600000, 0) (0,1,0,00" | (0,2,600000,200000) |  (0,0,1,0)7
(0, 2,600000,400000) |  (0,0,1,0)T | (0,2,600000,600000) |  (0,0,1,0)"
(0,3,0,0) (0,0,1,0)T (0,3, 0,200000) (0,0,0,1)T

(0,3, 0,400000) (0,0,0,1)T (0,3, 0,600000) (0,0,0,1)T
(0, 3, 200000, 0) (0,0,1,0)” | (0,3,200000,200000) |  (0,0,0,1)T
(0, 3,200000,400000) |  (0,0,0,1)T | (0,3,200000,600000) |  (0,0,0,1)T
(0, 3, 400000, 0) (0,0,1,0)T | (0,3,400000,200000) |  (0,0,0,1)7
(0, 3,400000,400000) |  (0,0,0,1)T | (0,3,400000,600000) |  (0,0,0,1)T
(0, 3, 600000, 0) (0,0,1,0)” | (0,3,600000,200000) |  (0,0,0,1)T
(0,3,600000,400000) |  (0,0,0,1)T | (0,3,600000,600000) |  (0,0,0,1)T

Table B.6: Firm 2’s functiorh., partial
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(al,az,fhv(]z)

ha(ay,az2,q1,q2)

((11, az, qi, Q2)

ha(ay,az2,q1,q2)

(1,0,0,0)
(1,0,0,400000)
(1,0, 200000, 0)

(1,0, 200000, 400000)
(1,0, 400000, 0)
(1,0, 400000, 400000)
(1,0, 600000, 0)
(1,0, 600000, 400000)

(1,1,0,0)
(1,1,0,400000)
(1,1, 200000, 0)

(1,1, 200000, 400000)
(1,1, 400000, 0)
(1,1, 400000, 400000)
(1,1,600000, 0)
(1,1, 600000, 400000)

(1,2,0,0)
(1,2,0,400000)
(1,2, 200000, 0)

(1,2, 200000, 400000)
(1,2, 400000, 0)
(1,2, 400000, 400000)
(1,2,600000, 0)
(1,2, 600000, 400000)

(1,3,0,0)
(1,3,0,400000)
(1,3,200000, 0)

(1,3, 200000, 400000)
(1,3, 400000, 0)
(1,3, 400000, 400000)
(1,3,600000, 0)
(1, 3,600000, 400000)

(
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)7
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,0,1,0)"
(0,1,0,0)T
(0,0,1,0)”
(0,1,0,0)"
(0,0,1,0)"
(0,1,0,0)
(0,0,1,0)”
(0,0,1,0)"
(0,0,0,1)
(0,0,1,0)”
(0,0,0,1)"
(0,0,1,0)"
(0,0,0,1)7
(0,0,1,0)”
(0,0,0,1)

(1,0,0,200000)
(1,0,0,600000)
1,0, 200000, 200000
1,0, 200000, 600000
1,0, 400000, 200000
1,0, 400000, 600000
1,0, 600000, 200000
1,0, 600000, 600000
(1,1,0,200000)
(1,1,0,600000)
(1,1, 200000, 200000)
(1,1, 200000, 600000)
(1,1, 400000, 200000)
(1,1, 400000, 600000)
( )
( )

o~ o~ o~ o~ o~ o~

)
)
)
)
)
)

1,1, 600000, 200000
1,1, 600000, 600000
(1,2,0,200000)
(1,2,0,600000)
(1, 2, 200000, 200000)
(1, 2, 200000, 600000)
(1, 2, 400000, 200000)
(1, 2, 400000, 600000)
(1, 2,600000, 200000)
(1, 2,600000, 600000)
(1,3,0,200000)
(1,3,0,600000)
(1, 3, 200000, 200000)
(1, 3, 200000, 600000)
(1, 3,400000, 200000)
(1, 3,400000, 600000)
(1, 3,600000, 200000)
(1, 3,600000, 600000)

0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

0,1,0,0)7

0,1,0,0)T
0,1,0,0)7
0,1,0,0)T
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

(

(

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(0,1,0,0)T
(0,1,0,0)
(0,0,1,0)T
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(0 )
( )
( )
( )

T

0,0,1,0)7

0,1,0,0)
0,0,1,0)"
0,1,0,0)7
0,0,1,0)T
0,1,0,0)"
0,0,1,0
0,0,1,0
0,0,0,1
0,0,1,0
0,0,0,1

,0,1,0
0,0,0,1)T
0,0,1,0)"
0,0,0,1)T

T

T

T

T

T

T

Table B.7: Firm 2’s functiorhs, continued
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(al,az,fhv(]z)

ha(ay,az2,q1,q2)

((11, az, qi, Q2)

ha(ay,az2,q1,q2)

(2,0,0,0)
(2,0,0,400000)
(2,0, 200000, 0)

(2,0, 200000, 400000)
(2,0, 400000, 0)
(2,0, 400000, 400000)
(2,0, 600000, 0)
(2,0, 600000, 400000)

(2,1,0,0)
(2,1,0,400000)
(2,1, 200000, 0)

(2,1, 200000, 400000)
(2,1,400000, 0)
(2,1, 400000, 400000)
(2,1,600000, 0)
(2,1, 600000, 400000)

(2,2,0,0)
(2,2,0,400000)
(2,2, 200000, 0)

(2,2, 200000, 400000)
(2,2,400000, 0)
(2,2, 400000, 400000)
(2,2,600000, 0)
(2, 2,600000, 400000)

(2,3,0,0)
(2,3,0,400000)
(2,3,200000, 0)

(2, 3, 200000, 400000)
(2,3, 400000, 0)
(2,3, 400000, 400000)
(2,3, 600000, 0)
(2, 3,600000, 400000)

(
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)7
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,0,1,0)"
(0,0,1,0)T
(0,0,1,0)”
(0,0,1,0)"
(0,0,1,0)"
(0,0,1,0)
(0,0,1,0)”
(0,0,1,0)"

(2,0,0,200000)
(2,0,0,600000)
2,0, 200000, 200000
2,0, 200000, 600000
2,0, 400000, 200000
2,0, 400000, 600000
2,0, 600000, 200000
2,0, 600000, 600000
(2,1,0,200000)
(2,1,0,600000)
(2,1, 200000, 200000)
(2,1, 200000, 600000)
(2,1, 400000, 200000)
(2,1, 400000, 600000)
( )
( )

o~ o~ o~ o~ o~ o~

)
)
)
)
)
)

2,1,600000, 200000
2,1, 600000, 600000
(2,2,0,200000)
(2,2,0,600000)
(2, 2, 200000, 200000)
(2, 2, 200000, 600000)
(2, 2, 400000, 200000)
(2, 2, 400000, 600000)
(2, 2, 600000, 200000)
(2, 2, 600000, 600000)
(2,3,0,200000)
(2,3,0,600000)
(2, 3,200000, 200000)
(2, 3, 200000, 600000)
(2, 3,400000, 200000)
(2, 3,400000, 600000)
(2, 3,600000, 200000)
(2, 3,600000, 600000)

0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

0,1,0,0)7

0,1,0,0)T
0,1,0,0)7
0,1,0,0)T
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

(

(

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)T
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
o, )
( )
( )
( )

T

0,1,0,0)7

0,1,0,0)
0,1,0,0)"
0,1,0,0)7
0,1,0,0)7
0,1,0,0)"
0,1,0,0
0,0,1,0

T
T

0,0,1,0)

0,0,1,0
0,0,1,0

T
T

0,1,0)7

0,0,1,0)7
0,0,1,0)7
0,0,1,0)7

Table B.8: Firm 2's functiorhs, continued
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(al,az,fhv(]z)

ha(ay,az2,q1,q2)

((11, az, qi, Q2)

ha(ay,az2,q1,q2)

(3,0,0,0)
(3,0,0,400000)
(3,0, 200000, 0)

(3,0, 200000, 400000)
(3,0, 400000, 0)
(3,0, 400000, 400000)
(3,0, 600000, 0)
(3,0, 600000, 400000)

(3,1,0,0)
(3,1,0,400000)
(3,1, 200000, 0)

(3,1, 200000, 400000)
(3,1,400000, 0)
(3,1, 400000, 400000)
(3,1,600000, 0)
(3,1,600000, 400000)

(3,2,0,0)
(3,2,0,400000)
(3,2, 200000, 0)

(3,2, 200000, 400000)
(3,2,400000, 0)
(3,2, 400000, 400000)
(3,2,600000, 0)
(3, 2,600000, 400000)

(3,3,0,0)
(3,3,0,400000)
(3,3,200000, 0)

(3,3, 200000, 400000)
(3,3,400000, 0)
(3,3, 400000, 400000)
(3,3,600000, 0)
(3,3, 600000, 400000)

(
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)7
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,0,1,0)"
(0,1,0,0)T
(0,1,0,0)
(0,1,0,0)"
(0,1,0,0)"
(0,1,0,0)
(0,1,0,0)
(0,0,1,0)"
(0,0,0,1)
(0,0,1,0)”
(0,0,1,0)"
(0,0,1,0)"
(0,0,1,0)
(0,0,1,0)”
(0,0,1,0)"

(3,0,0,200000)
(3,0,0,600000)
3,0, 200000, 200000
3,0, 200000, 600000
3,0, 400000, 200000
3,0, 400000, 600000
3,0, 600000, 200000
3,0, 600000, 600000
(3,1,0,200000)
(3,1,0,600000)
(3,1, 200000, 200000)
(3,1, 200000, 600000)
(3,1, 400000, 200000)
(3,1, 400000, 600000)
( )
( )

o~ o~ o~ o~ o~ o~

)
)
)
)
)
)

3,1,600000, 200000
3,1,600000, 600000
(3,2,0,200000)
(3,2,0,600000)
(3, 2, 200000, 200000)
(3, 2, 200000, 600000)
(3, 2,400000, 200000)
(3, 2,400000, 600000)
(3, 2,600000, 200000)
(3, 2,600000, 600000)
(3,3,0,200000)
(3,3,0,600000)
(3, 3,200000, 200000)
(3, 3, 200000, 600000)
(3, 3,400000, 200000)
(3, 3,400000, 600000)
(3, 3,600000, 200000)
(3, 3,600000, 600000)

0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0)7
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

0,1,0,0)7

0,1,0,0)T
0,1,0,0)7
0,1,0,0)T
0,1,0,0
0,1,0,0
0,1,0,0

T
T
T

(

(

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(0,1,0,0)T
(0,1,0,0)
(0,0,1,0)T
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
o, )
( )
( )
( )

T

0,0,1,0)7

0,1,0,0)
0,1,0,0)"
0,1,0,0)7
0,1,0,0)7
0,1,0,0)"
0,1,0,0
0,0,0,1
0,0,0,1
0,0,1,0
0,0,1,0

T
T
T
T
T

0,1,0)7

0,0,1,0)7
0,0,1,0)7
0,0,1,0)7

Table B.9: Firm 2's functiors, continued and concluded
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Appendix C

MATLAB scripts for the monopoly model

The script requires four different structures in order twsthe model. These are the vecttsganandparameters
and the structure arrayend andlatticelnfo.

The vectortspanis a row vector with two elements. The elements describetdréirgg and the ending points of
the time interval corresponding to the monopoly’s planriogizon. In this thesis the vecttspanthen is either
(0, 10) corresponding to the time intervigl, 10] or (0, 100) corresponding to the time intervil, 100]

The vectomparameterds a row vector with seven elements. These elements comddpahe parameter choices
described in chapter 3. Table C.1 describes the compositieactorparameters

Element inparameters Parameter name

parameters N
parameters 1
parameters r
parameters 153
parameters A
parameters c1
parameterg Co

Table C.1: Composition of vect@arameters

The structure arratrend describes the trend parameters. The dotreled.dis the strength of the trend, i.e. the
parameted. The doubldrend.typedetermines the type of the trend, witbnd.type= 1 standing for a linear trend
andtrend.type= 2 standing for a parabel trend. Finally, the doutsend.cis the saturation point of the parabel
trend, i.e. the parametet.

The stucture arralatticelnfodescribes the choice sets Q and P (the sets (3.8)). The script generates each set
from two values, the count and the interval values. As thezdlaee different sets in total, there are six different
values in total inlatticelnfa the valuedatticelnfo.Qualitylntervaland latticelnfo.QualityCountdescribing the
quality setA, the valuedatticelnfo.Samplesintervaindlatticelnfo.SamplesCoundescribing the free samples set
Q, and finally the valuekatticelnfo.Pricelntervabndlatticelnfo.PriceCountlescribing the price sdt. The script
assumes that the will always be a member of each choice set and will generatk sats starting from it. The
count value gives the number of elements in each set. Thevattealue gives the interval between the sequential
members of the set.
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For example, let us consider how to generate the qualitt set{0, 4, 8,12, 16, 20}. First, we note that the interval
value forthe setid =4—-0=8—-4 = ... = 20— 16, and therefore we sé#itticelnfo.Qualitylnterval= 4. Next,
we note that there are six members in the set we wish to generad therefore we skitticelnfo.QualityCount=

6. Generating the free samples and price sets follows the kagite

C.1 Example runfile for the monopoly model

The following runfile uses the scripts to solve the monopobdel with parameter choices described in chapter 3
and choices = 0 and7" = 10.

% all of the script files should be in the same directory

% defining the path for the script files

functionPath = cd();
addpath(functionPath);

tspan = [0 10];
parameters = [1000000 0.5 0.00 1 0.5 0.5 1];

latticelnfo.Pricelnterval = 3;
latticelnfo.PriceCount = 4;

latticelnfo.Samplesinterval = 200000;
latticelnfo.SamplesCount = 4;

latticelnfo.QualityInterval = 1,
latticelnfo.QualityCount = 4;

1

trend.type
trend.d = 0O;

% unnecessary for the no trend case, add for sake of defining a I
% variables
trend.c = 1 parameters(1)/3;

[firmChoices maxprofits] = MonopolyOptimizes(latticeln fo, tspan, ...
parameters, trend);

The script generates a structural arfaynChoicesand a doublemaxprofits The structural arrafirmChoices
contains the optimal behavior of the monopoly, and the demalxprofitshe optimal profits of the monopoly.
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C.2 MonopolyOptimizes.m

%%%%%%%%% %% %% % %% %% %%%% ubnofqczsqgjpejlcgsidv YWY Y%0 %% %% %% %% %% % %%
% If the reader actually wishes to play around with the script s, please %
% send a message to ville.ka.makinen@gmail.com for the scri pt files %
%%%%% %% %% %% %% %% %% %% ijkwtsczyicrtemmgntuzzpfkspkt  %%% %% % %% %% %% %% %% % %%

function [MonopolyOptimalChoices Profits] = MonopolyOpt imizes ...
(latticelnfo, tspan, parameters, trend)

MonopolyOptimalChoices.Quality = O;
MonopolyOptimalChoices.Samples = O0;
MonopolyOptimalChoices.Price = 0;

Profits = -1077;
for i = 1:latticelnfo.QualityCount

for j = Ll:latticelnfo.SamplesCount
for k = 1:latticelnfo.PriceCount

firmChoices.Quality = (i-1) * [atticelnfo.Qualitylnterval;
firmChoices.Samples = (j-1) + |atticelnfo.Samplesinterval;
firmChoices.Price = (k-1) * |atticelnfo.Pricelnterval;

CalculatedMonopolyProfits = MonopolyProfits(tspan, ...
parameters, trend, firmChoices);

if CalculatedMonopolyProfits > Profits
Profits = CalculatedMonopolyProfits;

MonopolyOptimalChoices.Quality = firmChoices.Quality;
MonopolyOptimalChoices.Samples = firmChoices.Samples;
MonopolyOptimalChoices.Price = firmChoices.Price;

end
end
end
end
end

C.3 MonopolyProfits.m
function retVal = MonopolyProfits(tspan, parameters, tre nd, firmChoices)

t = linspace(tspan(1), tspan(2),tspan(2) * 100);
revenue = zeros(1,length(t));
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end

initialState = firmChoices.Samples;

94

ratk = ode45(@monopolyDE,tspan,initialState,[], parame ters, ...
trend, firmChoices);
for i = 1:length(t)
revenue(i) = MonopolyRevenue(t(i), ratk, parameters, ...
trend, firmChoices);
end
netrevenue = trapz(revenue) * (1(2)-t(2));
retVal = netrevenue - firmChoices.Samples * parameters(6)  *...

(firmChoices.Quality"2+parameters(7));

C.4 monopolyDE.m

function retVal = monopolyDE(t, x, parameters,trend,firm

end

N = parameters(1);

mu = parameters(2);
beta = parameters(4);
lambda = parameters(5);

a = firmChoices.Quality;
p = firmChoices.Price;

if trend.type == 1 % linear trend
effectOfTrend = trend.d * a* X/IN;
elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.c™2);
B = 2+trend.d/trend.c;

effectOfTrend = a  *(A*X'2 + B *X);
end

retVal = beta *(1+exp(-(a-p+effectOfTrend) *mu™-1))~-1

C.5 MonopolyRevenue.m

function retvVal = MonopolyRevenue(tratk, parameters, tr

Choices)

* (N-x)-lambda  *x;

end, firmChoices)
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end

x = deval(ratk,t);
N = parameters(1);
mu = parameters(2);

beta = parameters(4);

r = parameters(3);

cl = parameters(6);
c2 = parameters(7);
= firmChoices.Quality;

p = firmChoices.Price;

if trend.type == 1 % linear trend
effectOfTrend = trend.d * a* X/N;

elseif trend.type == 2 % parabeloid trend
A = -trend.d/(trend.c™2);
B = 2xtrend.d/trend.c;
effectOfTrend = a  *(A*X'2 + B *X);

end

retVal = exp(-r *1) x(p-cl *(a"2+c2)) =beta *...

(1/(1+exp(-(a-p+effectOfTrend) * (1/mu))))

* (N-x);
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Appendix D

MATLAB scripts for the Stackelberg
duopoly model

The script requires five different structures in order toredhe model. These are the vectanenopolytspan
duopolytsparandparametersand the structure arrayrend andlatticelnfo.

The vectorsmonopolytsparand duopolytsparare row vectors with two elements. The elements describe the
starting and the ending points of the time intervals in theleloFirst, the vectomonopolytspadescribes the time
interval when the Stackelberg leader operates alone in grken In this thesis the vectartonopolytspathen is

(0, 1) corresponding to the time interv@, 1]. Next, the vectoduopolytsparmescribes the time interval when the
Stackelberg leader and the Stackelberg follower opergtether in the market. The time interval corresponds to
the planning horizon of both firms. In this thesis the vectoopolytsparthen is either(0, 10) corresponding to

the duopoly time intervdD, 10] or (0, 100) corresponding to the duopoly time interyaJ) 100]

The vectomparameterss a row vector with seven elements. These elements comddpdhe parameter choices
described in chapter 3. Table D.1 describes the composifigactorparameters

Element inparameters Parameter name

parameters N
parameters 1
parameters r
parameters

parameters A
parameters c1
parameters Co

Table D.1: Composition of vectgrarameters

The structure arratrend describes the trend parameters. The dotreled.dis the strength of the trend, i.e. the
parameted. The doubldrend.typedetermines the type of the trend, witbnd.type= 1 standing for a linear trend
andtrend.type= 2 standing for a parabel trend. Finally, the doutsend.cis the saturation point of the parabel
trend, i.e. the parametet.

The stucture arralatticelnfodescribes the choice sets ¢Q and P (the sets (3.8)). The script generates each set
from two values, the count and the interval values. As thezdlaee different sets in total, there are six different
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values in total inlatticelnfa the valuedatticelnfo.Qualitylntervaland latticelnfo.QualityCountdescribing the
quality setA, the valuedatticelnfo.Samplesintervaindlatticelnfo.SamplesCoundescribing the free samples set
@, and finally the valuektticelnfo.Pricelntervabndlatticelnfo.PriceCountlescribing the price sdt. The script
assumes that the will always be a member of each choice set and will generatk sats starting from it. The
count value gives the number of elements in each set. Thevattealue gives the interval between the sequential
members of the set.

For example, let us consider how to generate qualit{8et, 8, 12,16, 20}. First, we note that the interval value
forthe setist =4 —-0=8 —4 = ... = 20 — 16, and therefore we sédtticelnfo.QualityInterval= 4. Next, we
note that there are six members in the set we wish to genarateherefore we sédtticelnfo.QualityCount 6.
Generating the free samples and price sets follows the sagie |

D.1 Example runfile for the Stackelberg duopoly model

The following runfile uses the scripts to solve the Stackegjloleiopoly model with parameter choices described in
chapter 3 and choices= 0 and7T = 10.

% all of the script files should be in the same directory

% defining the path for the script files

functionPath = cd();

addpath(functionPath);

monopolyTimeLength = 1;

duopolytspan = [0 10];
monopolytspan = [0 monopolyTimelLength];

parameters = [1000000 0.5 0.00 1 0.5 0.5 1];

latticelnfo.Pricelnterval = 3;
latticelnfo.PriceCount = 4;

latticelnfo.Samplesinterval = 200000;
latticelnfo.SamplesCount = 4;

latticelnfo.QualityInterval = 1;
latticelnfo.QualityCount = 4;

trend.type = 1;
trend.d = 0O;

% unnecessary for the no trend case, add for sake of defining a I
% variables
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trend.c = 1 +parameters(1)/3;

[LeaderOptimalChoices FollowerOptimalChoices LeaderOp timalProfits ...
FollowerOptimalProfits] = LeaderOptimizes(latticelnfo , monopolytspan, ...
duopolytspan, parameters, trend);

This script generates two structural arrays and two douflbe two structure arrayiseaderOptimalChoiceand
FollowerOptimalChoicesontain the optimal behavior of both firms. The two doulilleaderOptimalProfiteind
FollowerOptimalProfitontain the optimal profits determined by firm behavior.

D.2 LeaderOptimizes.m

%%%%%%%%% %% %% % %% %% %%%% ubnofqczsqgjpejlcgsidv YWYV Y%0 %% %% %% %% %% %% %
% If the reader actually wishes to play around with the script s, please %
% send a message to ville.ka.makinen@gmail.com for the scri pt files %
%%%%% %% %% %% %% %% %% %% ijkwtsczyicrtemmgntuzzpfkspkt  %%% %%%%%%% %% %% %% %% %

function [LeaderOptimalChoices FollowerOptimalChoices
LeaderOptimalProfits FollowerOptimalProfits] = ...
LeaderOptimizes(latticeInfo, monopolytspan, duopolyts pan, ...
parameters, trend)

FollowerOptimalChoices.Quality = O;
FollowerOptimalChoices.Samples = 0;
FollowerOptimalChoices.Price = 0;

FollowerOptimalProfits = -1077;

% optimal choices defined and formatted
LeaderOptimalChoices = FollowerOptimalChoices;
LeaderOptimalProfits = FollowerOptimalProfits;

for i = 1:latticelnfo.QualityCount
for j = 1:latticelnfo.SamplesCount
for k = 1:latticelnfo.PriceCount

LeaderChoices.Quality = (i-1) * latticelnfo.QualityInterval;
LeaderChoices.Samples = (j-1) * [atticelnfo.Samplesinterval,
LeaderChoices.Price = (k-1) * [atticelnfo.Pricelnterval,

% market evolves as it was a monopoly

[netLeaderMonopolyRevenue AmountOfLeadersProductsinM arket] = ...
preentryProfitsLeader(latticelnfo, monopolytspan, ...
duopolytspan, parameters, trend, LeaderChoices);
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% The Follower enters the market and optimizes its behavior
% w.r.t. the market situation/the Leaders choices

[FollowerChoices FollowerProfits] = ...
FollowerOptimizes(latticelnfo, monopolytspan, ...
duopolytspan, parameters, trend, LeaderChoices, ...
AmountOfLeadersProductsinMarket);

% FollowerChoices now gives the follower choices in the
% duopoly stage, thus enabling us to calculate the leader’'s
% profits

netLeaderDuopolyProfits = profitsLeader(duopolytspan,
parameters, trend, LeaderChoices, FollowerChoices, ...
AmountOfLeadersProductsinMarket, monopolytspan);

CalculatedLeaderProfits = netLeaderDuopolyProfits + ...
netLeaderMonopolyRevenue - ...
LeaderChoices.Samples. * parameters(6). * .
(LeaderChoices.Quality.”2+parameters(7));

% LeaderOptimalChoices checked and updated if approriate

if CalculatedLeaderProfits > LeaderOptimalProfits
LeaderOptimalProfits = CalculatedLeaderProfits;
LeaderOptimalChoices = LeaderChoices;
FollowerOptimalChoices = FollowerChoices;
FollowerOptimalProfits = FollowerProfits;

end

end
end
end
end

D.3 preentryProfitsLeader.m

function [netLeaderMonopolyRevenue AmountOfLeadersPro ductsinMarket] ...
= preentryProfitsLeader(latticelnfo, monopolytspan, ..
duopolytspan, parameters, trend, LeaderChoices)

MonopolyT = linspace(monopolytspan(1), monopolytspan(2 ), ..
monopolytspan(2)  *100);

LeaderMonopolyRevenue = zeros(1,length(MonopolyT));

MonopolylnitialState = LeaderChoices.Samples;
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ratk = oded45(@monopolyDE,monopolytspan, ...
MonopolylnitialState,[], parameters, ...
trend, LeaderChoices);

for | = 1:length(MonopolyT)

LeaderMonopolyRevenue(l) = MonopolyRevenue(MonopolyT( D, ...
ratk, parameters, trend, LeaderChoices);

end

netLeaderMonopolyRevenue = trapz(LeaderMonopolyRevenu e) *...

(MonopolyT(2)-MonopolyT(1));
AmountOfLeadersProductsinMarket = deval(ratk, monopoly tspan(2));

end

D.4 monopolyDE.m

function retVal = monopolyDE(t, x, parameters,trend,firm Choices)
N = parameters(1);
mu = parameters(2);

beta = parameters(4);
lambda = parameters(5);

a = firmChoices.Quality;
p = firmChoices.Price;

if trend.type == 1 % linear trend
effectOfTrend = trend.d * a* X/N;

elseif trend.type == 2 % parabeloid trend
A = -trend.d/(trend.c™2);
B =

2x trend.d/trend.c;

effectOfTrend = a  *(A*X'2 + B *X);
end

retVal = beta = (1+exp(-(a-p+effectOfTrend) *mu™-1))~-1  *(N-x)-lambda *Xx;

end
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D.5 MonopolyRevenue.m

function retval = MonopolyRevenue(tratk, parameters, tr
x = deval(ratk,t);
N = parameters(1);
mu = parameters(2);

beta = parameters(4);

r = parameters(3);

cl = parameters(6);
c2 = parameters(7);
= firmChoices.Quality;

p = firmChoices.Price;

if trend.type == 1 % linear trend
effectOfTrend = trend.d * a* X/IN;

elseif trend.type == 2 % parabeloid trend
A = -trend.d/(trend.c™2);
B = 2«trend.d/trend.c;
effectOfTrend = a  *(A*X2 + B *X);

end

retVal = exp(-r *t) *(p-cl *(a"2+c2)) =*beta *...
(1/(1+exp(-(a-p+effectOfTrend) * (1/mu))))

end

D.6 FollowerOptimizes.m

% By assumption the Leader may not alter its choices during th

% evolution.

% The Follower can then optimize its own profits w.r.t. to the

% choices

function [FollowerOptimalChoices FollowerOptimalProfi

parameters, trend, LeaderChoices, ...
AmountOfLeadersProductsinMarket)

end, firmChoices)

e market

Leaders

ts] = ...

FollowerOptimizes(latticelnfo, monopolytspan, duopoly tspan, ...
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FollowerOptimalChoices.Quality = 0;
FollowerOptimalChoices.Samples = 0;
FollowerOptimalChoices.Price = 0;

FollowerOptimalProfits = -1077;
for i = 1:latticelnfo.QualityCount

for j = L:latticelnfo.SamplesCount
for k = 1:latticelnfo.PriceCount

FollowerChoices.Quality = (i-1) * [atticelnfo.Qualitylnterval;
FollowerChoices.Samples = (j-1) * [atticelnfo.Samplesinterval,
FollowerChoices.Price = (k-1) * [atticelnfo.Pricelnterval,
CalculatedFollowerProfits = profitsFollower(duopolyts pan,...

parameters, trend, LeaderChoices, FollowerChoices, ...
AmountOfLeadersProductsinMarket);

if CalculatedFollowerProfits > FollowerOptimalProfits
FollowerOptimalChoices = FollowerChoices;
FollowerOptimalProfits = CalculatedFollowerProfits;
end

end
end
end
end

D.7 profitsFollower.m

function retVal = profitsFollower(tspan, parameters, tre nd, ...
LeaderStrategy, FollowerStrategy, AmountOfLeadersProd uctsinMarket)
t = linspace(tspan(1),tspan(2),tspan(2) *100);

revenue = zeros(1,length(t));

N = parameters(l);

initialState = [0,0,0];

% each consumer has the same probability to get a free sample, and the
% probabilities are independent between firms

initialState(1) = (1-FollowerStrategy.Samples/N) *
AmountOfLeadersProductsinMarket;
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initialState(2) = (FollowerStrategy.Samples/N) * .
(N-AmountOfLeadersProductsinMarket);
initialState(3) = (FollowerStrategy.Samples/N) * .

AmountOfLeadersProductsinMarket;

ratk = ode45(@duopolyDES,tspan,initialState,[],parame ters,trend,...
LeaderStrategy,FollowerStrategy);

for i = 1:length(t)
revenue(i) = revenueFollower(t(i),ratk, parameters,tre nd,...
LeaderStrategy, FollowerStrategy);

end
netrevenue = trapz(revenue) * (1(2)-t(2));
retVal = netrevenue - FollowerStrategy.Samples. * parameters(6).

(FollowerStrategy.Quality.”2+parameters(7));
end

D.8 duopolyDES.m

function retval = duopolyDES(t,x, parameters,trend, firm lstrategy, ...
firm2strategy)

N = parameters(1);

mu = parameters(2);
beta = parameters(4);
lambda = parameters(5);

al = firmlstrategy.Quality;

pl = firmlstrategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

gl = x(1)+x(3); g2 = x(2)+x(3);

if trend.type == 1 % linear trend

effectOfTrendProductl = trend.d *alxql/N;

effectOfTrendProduct2 = trend.d *a2* (2/N;
elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.c™2);

B = 2xtrend.d/trend.c;

effectOfTrendProductl = al *(A+xql2 + B *ql);

effectOfTrendProduct2 = a2 *(A*xQ22 + B *Q2);
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end

denomS

1 + exp((/mu) = (al-pl+effectOfTrendProductl))+ ...
exp((1/mu) = (a2-p2+effectOfTrendProduct?));

denomil = 1 + exp((1/mu) =*(max(a2-al,0)-p2+effectOfTrendProduct2));
denomi2 = 1 + exp((1/mu) =*(max(al-a2,0)-pl+effectOfTrendProductl));

PSI1
PSI2
PI1112
P12112

[1prime

[2prime

exp((/mu) = (al-pl+effectOfTrendProductl))/denomsS;
exp((/mu) = (a2-p2+effectOfTrendProduct2))/denomsS;

= exp((1/mu) * (max(a2-al,0)-p2+effectOfTrendProduct2))/denomll;
= exp((1/mu) * (max(al-a2,0)-pl+effectOfTrendProductl))/denomi2;

= beta *PSI1 * (N-x(1)-x(2)-x(3))-beta *PI1112 *x(1)+ ...
lambda * x(3)-lambda  *x(1);
= beta *PSI2*(N-x(1)-x(2)-x(3))-beta *PI2112 *x(2)+ ...

lambda * x(3)-lambda  * x(2);

[12prime = beta =*PI1I12 *x(1)+beta *PI2112 *x(2)-2 =*lambda *x(3);

retval =

end

[ 1lprime; 12prime; I12prime];

D.9 revenueFollower.m

function retval = revenueFollower(t,ratk,parameters,tr

state =

firm2strategy)
% t refers to time
deval(ratk,t);
N = parameters(1);
mu = parameters(2);
r = parameters(3);
parameters(4);

beta =

cl = parameters(6);
c2 = parameters(7);

al = firmlstrategy.Quality;
pl = firmlstrategy.Price;

a2 = firm2strategy.Quality;
p2 = firm2strategy.Price;

gl = state(1)+state(3); g2 = state(2)+state(3);

end.firmlstrategy,...
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if trend.type == 1 % linear trend
effectOfTrendProductl = trend.d *alxql/N;
effectOfTrendProduct2 = trend.d *a2x q2/N;
elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.c™2);
B = 2+trend.d/trend.c;

effectOfTrendProductl = al *(A+xql2 + B *ql);
effectOfTrendProduct2 = a2 *(A*xQ2°2 + B *q2);
end
% denoml2, PSI1, PI2112 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((1/mu) =*(al-pl+effectOfTrendProductl))+exp((1/mu)
(a2-p2+effectOfTrendProduct?));

denomil = 1 + exp((1/mu) =*(max(a2-al,0)-p2+effectOfTrendProduct2));

%denoml2 = 1 + exp((l/mu) =*(max(al-a2,0)-pl+effectOfTrendProductl));

%PSI1 = exp((1/mu) =*(al-pl+effectOfTrendProductl))/denoms;
PSI2 = exp((1/mu) =*(a2-p2+effectOfTrendProduct2))/denoms;
PI11112 = exp((1/mu) * (max(a2-al,0)-p2+effectOfTrendProduct2))/denomll;
%PI12112 = exp((/mu) *(max(al-a2,0)-pl+effectOfTrendProductl))/denomi2;

salesSI2 = beta *PSI2 * (N-state(1)-state(2)-state(3));
sales|ll12 = beta  *PIl1112 = state(1);

retVal = exp(-r. *1) *(p2-cl. =*(a2./2+c2)) =*(salesSl2+salesl|1I12);
end

D.10 profitsLeader.m

function retvVal = profitsLeader(duopolytspan, parameter s, trend, ...
LeaderChoices, FollowerChoices,AmountOfLeadersProduc tsInMarket,...
monopolytspan)
t = linspace(duopolytspan(1),duopolytspan(2),duopolyt span(2) =*100);

revenue = zeros(1,length(t));

N = parameters(l);

initialState = [0,0,0];

initialState(1) = (1-FollowerChoices.Samples/N) * .
AmountOfLeadersProductsinMarket;
initialState(2) = (FollowerChoices.Samples/N) * .

(N-AmountOfLeadersProductsinMarket);
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initialState(3) = (FollowerChoices.Samples/N) * .
AmountOflLeadersProductsinMarket;

ratk = ode45(@duopolyDES,duopolytspan,initialState,[] ,parameters,...
trend,LeaderChoices,FollowerChoices);

for i = 1:length(t)
revenue(i) = revenuelLeader(t(i),ratk, parameters,trend

LeaderChoices,FollowerChoices, monopolytspan);
end

netrevenue = trapz(revenue) * (1(2)-t(2));

retVal = netrevenue;
end

D.11 revenuelLeader.m

function retVal = revenueleader(t,ratk,parameters,tren d,firmlstrategy, ...
firm2strategy, monopolytspan)

% t refers to time
state = deval(ratk,t);
N = parameters(1);
mu = parameters(2);

r = parameters(3);
beta = parameters(4);

cl = parameters(6);

c2 = parameters(7);

al = firmlstrategy.Quality;

pl = firmlstrategy.Price;

a2 = firm2strategy.Quality;

p2 = firm2strategy.Price;

gl = state(l)+state(3); g2 = state(2)+state(3);

if trend.type == 1 % linear trend

effectOfTrendProductl = trend.d *alxql/N;
effectOfTrendProduct2 = trend.d *a2* (2/N;
elseif trend.type == 2 % parabeloid trend

A = -trend.d/(trend.c™2);



APPENDIX D. MATLAB SCRIPTS FOR THE STACKELBERG DUOPOLY MOOE

B = 2+trend.d/trend.c;

effectOfTrendProductl = al *(Axql2 + B *ql);
effectOfTrendProduct2 = a2 *(A*xQ22 + B *Q2);
end
% denomll, PSI2, PI1112 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((/mu) =*(al-pl+effectOfTrendProductl))+ ...
exp((1/mu) = (a2-p2+effectOfTrendProduct2));

%denomll = 1 + exp((/mu) *(max(a2-al,0)-p2+effectOfTrendProduct?));

denoml2 = 1 + exp((/mu) =*(max(al-a2,0)-pl+effectOfTrendProductl));

PSI1 = exp((1/mu) =*(al-pl+effectOfTrendProductl))/denoms;
%PSI2 = exp((1/mu) =*(a2-p2+effectOfTrendProduct?))/denoms;
%PI1112 = exp((/mu) *(max(a2-al,0)-p2+effectOfTrendProduct2))/denomil;
PI12112 = exp((1/mu) * (max(al-a2,0)-pl+effectOfTrendProductl))/denomi2;

salesSI1 = beta *PSI1 *(N-state(1)-state(2)-state(3));
sales|2l12 = beta  *PI2112 = state(2);

% The leader discounts to an earlier point of time than the fol lower
% t -> t + monopolytspan(2)

retVal = exp(-r. * (t+monopolytspan(2))) *(pl-cl. =*(al.”2+c2)) =*...
(salesSl1+salesl2112);
end
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Appendix E

MATLAB scripts for the
Simultaneous-choice duopoly model

The script requires four different structures in order tvsthe model. These are the vectteganandparameters
and the structure arrayend andlatticelnfo.

The vectortspanis a row vector with two elements. The elements describetdréireg and the ending points of
the time interval corresponding to the planning horizonkaih firms. In this thesis the vectapanthen is either
(0, 10) corresponding to the time intervigl, 10] or (0, 100) corresponding to the time intervil, 100]

The vectomparameterss a row vector with seven elements. These elements comddpdhe parameter choices
described in chapter 3. Table E.1 describes the compositieectorparameters

Element inparameters Parameter name

parameters N
parameters 7
parameters r
parameters

parameters A
parameters c1
parameters Co

Table E.1: Composition of vect@arameters

The structure arrayrend describes the trend parameters. The dotreled.dis the strength of the trend, i.e. the
parameted. The doubldrend.typedetermines the type of the trend, witbnd.type= 1 standing for a linear trend
andtrend.type= 2 standing for a parabel trend. Finally, the doutsend.cis the saturation point of the parabel
trend, i.e. the parametet.

The stucture arralatticelnfodescribes the choice sets Q and P (the sets (3.8)). The script generates each set
from two values, the count and the interval values. As thezdlaee different sets in total, there are six different
values in total inlatticelnfa the valuedatticelnfo.Qualitylntervaland latticelnfo.QualityCountdescribing the
quality setA, the valuedatticelnfo.Samplesintervand latticelnfo.SamplesCourtescribing the free samples
set@, and finally the valuefatticelnfo.Pricelntervabndlatticelnfo.PriceCountescribing the price sd?. The
script assumes that thiewill always be a member of each choice set and will generath eats starting from
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it. Differently from the previous monopoly and Stackelbdrgpoly scripts, the count value gives the number of
non-zero elements in each set, i.e. the number of elememacdin set minus one. The interval value gives the
interval between the sequential members of the set.

For example, let us consider how to generate qualit{8et, 8, 12,16, 20}. First, we note that the interval value
forthe setist =4 —-0=8 —4 = ... = 20 — 16, and therefore we sédtticelnfo.QualityInterval= 4. Next, we
note that there are five non-zero members in the set we wisbrtergte, and therefore we set the count value as
latticelnfo.QualityCount= 5. Generating the free samples and price sets follows the kagite

E.1 Example runfile for the Simultaneous-choice duopoly moel

The following runfile uses the scripts to solve the Simultareechoice duopoly model with parameter choices
described in chapter 3 and choices: 0 and7" = 10.

% all of the script files should be in the same directory

% defining the path for the script files

functionPath = cd();
addpath(functionPath);

% defining how many cores to use for parallel calculation
matlabpool open 4

latticelnfo.Pricelnterval = 3;
latticelnfo.PriceCount = 3;

latticelnfo.Samplesinterval = 200000;
latticelnfo.SamplesCount = 3;

latticelnfo.Qualitylnterval = 1,
latticelnfo.QualityCount = 3;

tspan = [0 10];
parameters = [1000000 0.5 0.00 1 0.5 0.5 1];

trend.type = 1;
trend.d = 0O;

% unnecessary for the no trend case, add for sake of defining a I
% variables

trend.c = 1 +parameters(1)/3;

FirstStageNEQualities(latticelnfo, tspan, parameters, trend)
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This script generates new folders that contain the profitisthe subgame-perfect Nash equilibrium strategies for
both firms.

E.2 FirstStageNEQualities.m

%%6%%%%%%% %% %% % %% %%%%%% ubnofqczsqgjpejlcgsidv YWY YY0%0%%6%% %% %% %% %%
% If the reader actually wishes to play around with the script s, please %
% send a message to ville.ka.makinen@gmail.com for the scri pt files %
%%%%% %% %% %% %% %% %% %% ijkwtsczyicrtemmgntuzzpfkspkt  %%% %% % %% %% %% %% %% % %%

function retVal = FirstStageNEQualities(latticelnfo, ts pan, parameters, ...
trend)
iterationDirectoryName = './FirstStage/’;

mkdir(iterationDirectoryName)
cd(iterationDirectoryName)

matDim = latticelnfo.QualityCount+1;

ProfitMatrixFirm1l = zeros(matDim,matDim);
ProfitMatrixFirm2 = zeros(matDim,matDim);

qualitylnterval = latticelnfo.QualityInterval;
for i = 1:matDim % rows
for j = L:matDim % columns
firmlstrategy.Quality = qualitylnterval * (i-1);
firm2strategy.Quality = qualitylnterval *(j-1);

SampleGameNEs = SecondStageNESamples(latticelnfo, ...
firmlstrategy, firm2strategy, tspan, parameters,trend) ;

% It is possible that there are multiple equilibria in the

% third stage price choosing game -> necessary to choose
% between those

% | arbitrarily choose the first NE that the algorithm finds

SampleGameNEs(1).rowPlayerUt ility;
SampleGameNEs(1).columnPlaye rUtility;

ProfitMatrixFirm2(i,j)
ProfitMatrixFirm2(i,j)
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end
end

dimwrite('RawProfitMatrix1’, ProfitMatrixFirm1);
dimwrite('RawProfitMatrix2’, ProfitMatrixFirm2);

QualityGameNEs = NashEquilibriaBySupportEnumeration .. .
(ProfitMatrixFirm1, ProfitMatrixFirm?2);

% profit matrices are edited for saving

Firm2qualitystrats = 0:qualityinterval:latticelnfo.Qu alityCount =« ...
qualityInterval,

ProfitMatrixFirm1 = vertcat(Firm2qualitystrats,Profit MatrixFirm1);
ProfitMatrixFirm2 = vertcat(Firm2qualitystrats,Profit MatrixFirm2);
Firmlqualitystrats = transpose(horzcat(666, Firm2quali tystrats));
ProfitMatrixFirm1 = horzcat(Firmlqualitystrats,Profit MatrixFirm1);
ProfitMatrixFirm2 = horzcat(Firmlqualitystrats,Profit MatrixFirm2);
dimwrite('ProfitMatrix1’, ProfitMatrixFirm1, delimit er/\t,...
'precision’,6);
dimwrite('ProfitMatrix2’, ProfitMatrixFirm2,’delimit er\t,...
‘precision’,6);

countFID = fopen('FirstStageCountofNEs’,'w’);
fwrite(countFID,sprintf('# of NEs: %g’,length(QualityG ameNEs)),'uchar’),
fclose(countFID);

save('FirstStageNEdump’,’QualityGameNES’);

dimwrite('FirstStageNEStrategiesForRowplayer’,...
[QualityGameNEs(:).rowPlayerStrategyProfile]);

dimwrite('FirstStageNEStrategiesForColumnPlayer’,..
[QualityGameNEs(:).columnPlayerStrategyProfile]);

dimwrite('FirstStageFirstFoundNE’,...

[QualityGameNEs(1).rowPlayerStrategyProfile ...
QualityGameNEs(1).columnPlayerStrategyProfile]);

cd(’..)

retVal = QualityGameNEs;
end
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E.3 NashEquilibriaBySupportEnumeration.m

% code based on Algorithm 1 in

% "Enumeration of Nash equilibria for two-player games",

% David Avis, Gabriel D. Rosenberg, Rahul Savani, Bernhard v on Stengel,
% 2009

% assumptions:

% nxn-payoff matrices

%  the game is non-degenerate

function NashEquilibria = NashEquilibriaBySupportEnume ration(A,B)
NashEquilibria = [];

n = length(A);

% generate all possible subsets of supports for solving the N ash
% equilibria

setOfSupports = 1:n;

generatedSupports(1).support = 0;
generatedSupports(2).support = setOfSupports(1);

for i = 2:length(setOfSupports)
countOfGeneratedSupports = length(generatedSupports);
for j = 1:countOfGeneratedSupports
if generatedSupports(j).support ==

generatedSupports(j+countOfGeneratedSupports).suppo re ...
= setOfSupports(i);
else
generatedSupports(j+countOfGeneratedSupports).suppo re ...
= cat(1,generatedSupports(j).support,...
setOfSupports(i));
end

end
end

for i = 1:length(generatedSupports)
for j = 1:length(generatedSupports)
if (generatedSupports(i).support(l) "= 0) && ...
(generatedSupports(j).support(1) "= 0) && ...
length(generatedSupports(i).support) == ...
length(generatedSupports(j).support)
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% matrix is constructed to solve the linear equations

constructA A;

B;

constructB

CountOfDeletedRows = 0;
CountOfDeletedColumns = O;

for | = 1:n % checking and deleting rows and columns

% row to be deleted

if ismember(l,generatedSupports(i).support) ==
constructA(l-CountOfDeletedRows,:) = [];
constructB(l-CountOfDeletedRows,:) = [];
CountOfDeletedRows = CountOfDeletedRows +1;

end

% column to be deleted

if ismember(l, generatedSupports(j).support) ==
constructA(:,I-CountOfDeletedColumns) = [];

constructB(:,I-CountOfDeletedColumns) = [];

CountOfDeletedColumns = CountOfDeletedColumns +1;
end

end

% transposing B
constructB = transpose(constructB);

% adding padding to A and B

k = length(constructA);

constructA(;,k+1) = -1;
constructA(k+1,:) = 1;
constructA(k+1,k+1) = O;

k = length(constructB);

constructB(:,k+1) = -1;
constructB(k+1,:) = 1;
constructB(k+1,k+1) = O;

% finalizing the matrix used to solve the linear equations
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k = length(constructB);

constructB = [constructB zeros(k,k)];

k = length(constructA);

constructA = [zeros(k,k) constructA];

finalMatrix = [constructB; constructA];

righthandSide = zeros(length(finalMatrix),1);

righthandSide(k,1) = 1;
righthandSide(2 *k1) = 1,

%possibleSolution = inv(finalMatrix) *righthandSide;
possibleSolution = finalMatrix\righthandSide;

% saving the possible mixed strategy weights for further use

possibleX = zeros(length(A),1);
possibleY = zeros(length(B),1);

for | = 1:length(generatedSupports(i).support)
possibleX(generatedSupports(i).support(l),1) = ...
possibleSolution(l,1);
end

for | = 1:length(generatedSupports(j).support)
possibleY(generatedSupports(j).support(l),1) = ...
possibleSolution(l+k,1);
end

% saving the utilities required for testing

<
1

possibleSolution(k,1);
possibleSolution(2 *K,1);

% checking if the required conditions hold

isNEFlag = 1;

% x >= 0

if min(possibleX) < 0
isNEFlag = O;
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end

%y >=0

if min(possibleY) < 0
isNEFlag = O;
end

% condition (2)

MatrixProduct = A *possibleY;
maxMatrixProduct = max(MatrixProduct);

% this defines the required accuracy for comparisons -
% better users of MATLAB would probably do this

% differently and better/more elegantly
requiredAccuracy = 107-6;

for | = 1:length(possibleX)
if possibleX(l,1) > 0 && ...
(abs(MatrixProduct(l,1) - u) > requiredAccuracy...
|| abs(MatrixProduct(l,1) - maxMatrixProduct) ...
> requiredAccuracy || ...
abs(u - maxMatrixProduct) > requiredAccuracy)
isNEFlag = 0;
end
end

% condition (3)

MatrixProduct = transpose(B) * possibleX;
maxMatrixProduct = max(MatrixProduct);

for | = 1:length(possibleY)
if possibleY(l,1) > 0 && ...
(abs(MatrixProduct(l,1) - v) > requiredAccuracy...
|| abs(MatrixProduct(l,1) - maxMatrixProduct) ...
> requiredAccuracy || ...
abs(v - maxMatrixProduct) > requiredAccuracy)
isNEFlag = 0;
end
end

% if all conditions hold we save the found NE
% (last two conditions disregard possible solutions with
% singular finalMatrix)
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if iSNEFlag == 1 && max(isnan(possibleX)) == 0 && ...
max(isnan(possibleY)) ==

currentCountOfNEs = length(NashEquilibria);

NashEquilibria(currentCountOfNEs+1).rowPlayerStrate gyProfile...
= possibleX;
NashEquilibria(currentCountOfNEs+1).columnPlayerStr ategyProfile...
= possibleY;
NashEquilibria(currentCountOfNEs+1).rowPlayerUtilit y = u;
NashEquilibria(currentCountOfNEs+1).columnPlayerUti lity = v;
end

end
end
end

end

E.4 SecondStageNESamples.m

function retval = SecondStageNESamples(latticelnfo, fir mlstrategy, ...
firm2strategy, tspan, parameters,trend)

iterationDirectoryName = sprintf(’./SecondStage.firm1 g %g. firm2q %g/,...
firmlstrategy.Quality, firm2strategy.Quality);

mkdir(iterationDirectoryName)
cd(iterationDirectoryName)

matDim = latticelnfo.SamplesCount+1;

ProfitMatrixFirm1l = zeros(matDim,matDim);
ProfitMatrixFirm2 = zeros(matDim,matDim);

% parfor not implemented here since the code already takes ad vantage
% of parallel computing in ParallelLatticeFindThidStageN EPrices-
% function which is called in the loop

samplesinterval = latticelnfo.Samplesinterval;

for i = 1:matDim % rows
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for j = L:matDim % columns

firmlstrategy.Samples = (i-1) * samplesinterval;

firm2strategy.Samples = (j-1) * samplesinterval;

PriceGameNEs = ThirdStageNEPricesParallel(latticelnfo ) e
firmlstrategy, firm2strategy, tspan, parameters,trend)

% It is possible that there are multiple equilibria in the
% third stage price choosing game -> necessary to choose

% between those

% | arbitrarily choose the first NE that the algorithm finds

ProfitMatrixFirm1(i,j) = PriceGameNEs(1).rowPlayerUti lity;
ProfitMatrixFirm2(i,j) = PriceGameNEs(1).columnPlayer Utility;

end
end

dimwrite('RawProfitMatrix1’, ProfitMatrixFirm1);
dimwrite('RawProfitMatrix2’, ProfitMatrixFirm2);

dimwrite('NEPriceStrategyFirm21’, ...
PriceGameNEs(1).rowPlayerStrategyProfile);

dimwrite(NEPriceStrategyFirm2’, ...
PriceGameNEs(1).columnPlayerStrategyProfile);

SampleGameNEs = NashEquilibriaBySupportEnumeration ...
(ProfitMatrixFirm1, ProfitMatrixFirm?2);

% profit matrices are edited for saving

Firm2samplesstrats = 0:samplesinterval:latticelnfo.Sa mplesCount *...
samplesinterval;

ProfitMatrixFirm1 = vertcat(Firm2samplesstrats,Profit MatrixFirm1);
ProfitMatrixFirm2 = vertcat(Firm2samplesstrats,Profit MatrixFirmz2);
Firmlsamplesstrats = transpose(horzcat(666, Firm2sampl esstrats));
ProfitMatrixFirm1 = horzcat(Firmlsamplesstrats,Profit MatrixFirm1);
ProfitMatrixFirm2 = horzcat(Firmlsamplesstrats,Profit MatrixFirm2);
dimwrite('ProfitMatrix1’, ProfitMatrixFirm1, delimit er/\t,...

'precision’,6);
dimwrite('ProfitMatrix2’, ProfitMatrixFirm2,’delimit er\t',...
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'precision’,6);

countFID = fopen(’SecondStageCountofNES’,'w’);
fwrite(countFID,sprintf('# of NEs: %g’,length(SampleGa meNESs)),’uchar’);
fclose(countFID);

save('SecondStageNEdump’,’'SampleGameNESs’);

dimwrite('SecondStageNEStrategiesForRowplayer’, ...
[SampleGameNEs(:).rowPlayerStrategyProfile]);

dimwrite('SecondStageNE StrategiesForColumnPlayer’, .
[SampleGameNEs(:).columnPlayerStrategyProfile]);

dimwrite('SecondStageFirstFoundNE’,...
[SampleGameNEs(1).rowPlayerStrategyProfile ...
SampleGameNEs(1).columnPlayerStrategyProfile]);

cd(’..)

retVal = SampleGameNEs;
end

E.5 ThirdStageNEPricesParallel.m

function retVal = ThirdStageNEPricesParallel(latticeln fo, firmlstrategy, ...
firm2strategy, tspan, parameters,trend)
iterationDirectoryName = ...
sprintf(./ThirdStage.firm1lq %g, S %g. firm2q %g, S %g/, .
firmlstrategy.Quality, firmlstrategy.Samples, ...
firm2strategy.Quality, firm2strategy.Samples);

mkdir(iterationDirectoryName)
cd(iterationDirectoryName)

matDim = latticelnfo.PriceCount+1;

ProfitMatrixFirm1l = zeros(matDim,matDim);
ProfitMatrixFirm2 = zeros(matDim,matDim);

parfor i = 1:matDim % row values
TempProfitsFirm1 = zeros(1,matDim);
TempProfitsFirm2 = zeros(1,matDim);

for j = L:matDim % column values
TempProfitsFirm1(j) = parallelWrapperProfitsFirm1(i, | -
latticelnfo, tspan, parameters, trend, ...
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firmlstrategy, firm2strategy);
TempProfitsFirm2(j) = parallelWrapperProfitsFirm2(i, | -
latticelnfo, tspan, parameters, trend, ...
firmlstrategy, firm2strategy);
end

ProfitMatrixFirm1(i,:) = TempProfitsFirm1,
ProfitMatrixFirm2(i,:) = TempProfitsFirm2;

end

%save the resulting profit matrices

PriceGameNEs = NashEquilibriaBySupportEnumeration ...
(ProfitMatrixFirm1,ProfitMatrixFirm?2);

dimwrite('RawProfitMatrix1’, ProfitMatrixFirm1);
dimwrite('RawProfitMatrix2’, ProfitMatrixFirm2);

% profit matrices are edited for saving
% possibly should be done with a new function

Firm2pricestrats = O:latticelnfo.Pricelnterval:lattic elnfo.PriceCount * L.
latticelnfo.Pricelnterval;

ProfitMatrixFirm1 = vertcat(Firm2pricestrats,ProfitMa trixFirm1);
ProfitMatrixFirm2 = vertcat(Firm2pricestrats,ProfitMa trixFirmz2);
Firmlpricestrats = transpose(horzcat(666, Firm2pricest rats));
ProfitMatrixFirm1 = horzcat(FirmZlpricestrats,ProfitMa trixFirm1);
ProfitMatrixFirm2 = horzcat(FirmZlpricestrats,ProfitMa trixFirm2);
dimwrite('ProfitMatrix1’, ProfitMatrixFirm1, delimit er/\t,...
'precision’,6);
dimwrite('ProfitMatrix2’, ProfitMatrixFirm2,’delimit er\t',...
‘precision’,6);

% save the found NE

countFID = fopen('ThirdStageCountofNES’,'w’);

fwrite(countFID,sprintf('# of NEs: %g’,length(PriceGam eNEs)),’'uchar’);
fclose(countFID);

save('ThirdStageNEdump’,’PriceGameNEs’);

dimwrite('ThirdStageNEStrategiesForRowplayer’, ...
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[PriceGameNEs(:).rowPlayerStrategyProfile]);
dimwrite('ThirdStageNEStrategiesForColumnPlayer’, ..
[PriceGameNEs(:).columnPlayerStrategyProfile]);

dimwrite( 'ThirdStageFirstFoundNE’, ...
[PriceGameNEs(1).rowPlayerStrategyProfile ...
PriceGameNEs(1).columnPlayerStrategyProfile]);

cd(’..)

retVal = PriceGameNEs;
end

E.6 parallelWrapperProfitsFirml.m

function retvVal = parallelWrapperProfitsFirm1(i,j, latt icelnfo, tspan, ...
parameters, trend, firmlstrategy, firm2strategy)

firmlstrategy.Price = (i-1) * latticelnfo.Pricelnterval;

(-1) * latticelnfo.Pricelnterval;

firm2strategy.Price

retVal = profitsFirml(tspan, parameters, trend, firmlstr ategy, ...
firm2strategy);
end

E.7 profitsFirml.m

function retvVal = profitsFirml(tspan, parameters, trend, firmlstrategy,...
firm2strategy)
t = linspace(tspan(1),tspan(2),tspan(2) *100);
revenue = zeros(1,length(t));

Al = firmlstrategy.Samples;
A2 = firm2strategy.Samples;
N = parameters(l);

initialState = [0,0,0];

% each consumer has the same probability to get a free sample, and the
% probabilities are independent between firms

initialState(1) = N. *(AL/N). = (1-A2./N);
initialState(2) = N. *(1-A1./N). = (A2./N);
initialState(3) = N. *(AL1./N). = (A2./N);
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ratk = ode45(@duopolyDES,tspan,initialState,[],parame ters,trend,...

firml1strategy,firm2strategy);

for i = 1:length(t)
revenue(i) = revenueFirm1(t(i),ratk, parameters,trend,
firm1strategy,firm2strategy);
end
netrevenue = trapz(revenue) * (1(2)-t(2));
retVal = netrevenue - Al. * parameters(6). * .

end

(firm1strategy.Quality.”2+parameters(7));

E.8 duopolyDES.m

function retval = duopolyDES(t,x, parameters,trend, firm lstrategy,...

firm2strategy)

N = parameters(1);
= parameters(2);

mu

beta

= parameters(4);

lambda = parameters(5);

al
pl

a2
p2

gl

firml1strategy.Quality;
firml1strategy.Price;

firm2strategy.Quality;
firm2strategy.Price;

X(1)+x(3); 92 = x(2)+x(3);

if trend.type == 1 % linear trend

effectOfTrendProductl = trend.d *alxql/N;
effectOfTrendProduct2 = trend.d *a2* (2/N;
elseif trend.type == 2 % parabeloid trend

end

A = -trend.d/(trend.c™2);
B = 2+trend.d/trend.c;

effectOfTrendProductl
effectOfTrendProduct2

al *(A*ql2 + B *ql);
a2 *(A*xQ22 + B *Q2);

denomS = 1 + exp((1/mu) =*(al-pl+effectOfTrendProductl))+...

exp((1/mu) = (a2-p2+effectOfTrendProduct?));
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denomil = 1 + exp((1/mu) =*(max(a2-al,0)-p2+effectOfTrendProduct2));
denomi2 1 + exp((/mu) *(max(al-a2,0)-pl+effectOfTrendProductl));

PSI1 = exp((1/mu) =*(al-pl+effectOfTrendProductl))/denoms;
PSI2 = exp((1/mu) =*(a2-p2+effectOfTrendProduct2))/denoms;
PI11112 = exp((1/mu) * (max(a2-al,0)-p2+effectOfTrendProduct2))/denomll;
PI12112 = exp((1/mu) * (max(al-a2,0)-pl+effectOfTrendProductl))/denomi2;

[1prime = beta *PSI1*(N-x(1)-x(2)-x(3))-beta *PI1112 *x(1)+...
lambda * x(3)-lambda  *x(1);
[2prime = beta *PSI2 * (N-x(1)-x(2)-x(3))-beta *PI2112 *x(2)+...

lambda * x(3)-lambda  *x(2);
[12prime = beta =*PI1I12 *x(1)+beta *PI2112 *x(2)-2 =*lambda *x(3);

retval = [ Ilprime; [2prime; 112prime];
end

E.9 revenueFirml.m

function retVal = revenueFirm1(t,ratk,parameters,trend Jfirmlstrategy,...
firm2strategy)

% t refers to time
state = deval(ratk,t);
N = parameters(1);
mu = parameters(2);

r = parameters(3);
beta = parameters(4);

cl = parameters(6);
c2 = parameters(7);
al = firmlstrategy.Quality;

pl = firmlstrategy.Price;

a2 = firm2strategy.Quality;
p2 = firm2strategy.Price;

gl = state(1)+state(3); g2 = state(2)+state(3);
if trend.type == 1 % linear trend

effectOfTrendProductl = trend.d +*al* q1/N;
effectOfTrendProduct2 = trend.d *a2x q2/N;
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elseif trend.type == 2 % parabeloid trend
A = -trend.d/(trend.c™2);
B = 2xtrend.d/trend.c;

effectOfTrendProductl = al *(A*xql2 + B *ql);
effectOfTrendProduct2 = a2 *(A*xQ2°2 + B *q2);
end
% denomll, PSI2, PI1112 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((/mu) =*(al-pl+effectOfTrendProductl))+ ...
exp((l/mu) = (a2-p2+effectOfTrendProduct?));

%denomll = 1 + exp((/mu) =*(max(a2-al,0)-p2+effectOfTrendProduct?));

denoml2 = 1 + exp((1/mu) =*(max(al-a2,0)-pl+effectOfTrendProductl));

PSI1 = exp((1/mu) =*(al-pl+effectOfTrendProductl))/denoms;
%PSI2 = exp((1/mu) = (a2-p2+effectOfTrendProduct2))/denoms;
%PI11112 = exp((/mu) = (max(a2-al,0)-p2+effectOfTrendProduct?))/denomil;
PI12112 = exp((1/mu) * (max(al-a2,0)-pl+effectOfTrendProductl))/denomi2;

salesSI1 = beta *PSI1 * (N-state(1)-state(2)-state(3));
salesl2l12 = beta *PI12112 = state(2);

retVal = exp(-r. *t) *(pl-cl. =*(al.”2+c2)) = (salesSll+salesl2I12);

end

E.10 parallelWrapperProfitsFirm2.m

function retVal = parallelWrapperProfitsFirm2(i,j, latt icelnfo, tspan, ...
parameters, trend, firmlstrategy, firm2strategy)

firmlstrategy.Price = (i-1) * |atticelnfo.Pricelnterval;

firm2strategy.Price = (j-1) * latticelnfo.Pricelnterval;

retVal = profitsFirm2(tspan, parameters, trend, firmlstr ategy, ...

firm2strategy);
end
E.11 profitsFirm2.m
function retval = profitsFirm2(tspan, parameters, trend, firmlstrategy,...
firm2strategy)

t = linspace(tspan(1),tspan(2),tspan(2) * 100);
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end

E.12

revenue = zeros(1,length(t));
Al = firmlstrategy.Samples;
A2 = firm2strategy.Samples;
N = parameters(l);

initialState = [0,0,0];

% each consumer has the same probability to
% probabilities are independent between firms

initialState(1) = N.
initialState(2) = N.
initialState(3) = N.

«(ALIN).  *(1-A2./N);
«(1-ALIN).  *(A2./N);
«(ALIN).  *(A2.N);

get a free

ratk = ode45(@duopolyDES,tspan,initialState,[],parame
firml1strategy,firm2strategy);

for i = 1:length(t)

revenue(i) = revenueFirm2(t(i),ratk, parameters,trend,

end

netrevenue = trapz(revenue)

retVal = netrevenue - A2.

* ((2)-1(1));

* parameters(6).

firmlstrategy, firm2strategy);

* e

sample,

(firm2strategy.Quality.”2+parameters(7));

revenueFirm2.m

function retvVal = revenueFirm2(t,ratk,parameters,trend

% t refers to time

state = deval(ratk,t);
N = parameters(1);
mu = parameters(2);
r = parameters(3);

beta = parameters(4);
cl = parameters(6);
c2 = parameters(7);

and
ters,trend, ...
Jfirmlstrategy, ...
firm2strategy)

the
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al = firmlstrategy.Quality;
pl = firmlstrategy.Price;
a2 = firm2strategy.Quality;
p2 = firm2strategy.Price;
gl = state(1)+state(3); g2 = state(2)+state(3);
if trend.type == 1 % linear trend
effectOfTrendProductl = trend.d *alxql/N;
effectOfTrendProduct2 = trend.d * a2 q2/N;
elseif trend.type == 2 % parabeloid trend
A = -trend.d/(trend.c™2);
B = 2xtrend.d/trend.c;
effectOfTrendProductl = al *(A+xql2 + B *ql);
effectOfTrendProduct2 = a2 *(A*xQ22 + B *Q2);
end
% denoml2, PSI1, PI2112 commented as unnecessary for firm 1 r evenue

denomS = 1 + exp((/mu) =*(al-pl+effectOfTrendProductl))+...
exp((1/mu) = (a2-p2+effectOfTrendProduct2));

denomil = 1 + exp((1/mu) =*(max(a2-al,0)-p2+effectOfTrendProduct2));

%denoml2 = 1 + exp((/mu) *(max(al-a2,0)-pl+effectOfTrendProductl));

%PSI1 = exp((1/mu) =*(al-pl+effectOfTrendProductl))/denoms;
PSI2 = exp((1/mu) =*(a2-p2+effectOfTrendProduct2))/denoms;
PI11112 = exp((1/mu) * (max(a2-al,0)-p2+effectOfTrendProduct2))/denomll;
%PI2112 = exp((/mu) *(max(al-a2,0)-pl+effectOfTrendProductl))/denomi2;

salesSI2 = beta *PSI2 x (N-state(1)-state(2)-state(3));
salesl1l12 = beta *PI11112 = state(1);

retVal = exp(-r. *t) *(p2-cl. =*(a2."2+c2)) =*(salesSI2+salesll1l12);

end
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