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In this study we examine di↵erent numerical solution methods that can be used to
solve di↵erential equations arising from real options analysis and present two case
studies that are solved numerically.

First we examine commonly used methods in valuating investments with uncertainty.
The most suitable method for long-term investments with high uncertainty is the
real options analysis, which uses an underlying stochastic variable in valuation.

We introduce the framework for real options and examine the di↵erences between
infinite and finite time horizon real options. Short literature review reveals that
there are several problems within real options theory for which a closed-form solution
does not exist and hence numerical methods should be applied. We introduce three
numerical methods commonly used in real options analysis: the Monte Carlo (MC)
method, binomial lattice (BL) method, and finite di↵erence method (FDM) with
explicit and implicit solution scheme. Then we present two case studies, investment
option that is used to benchmark numerical solutions, and abandonment option
which cannot be solved analytically.

Comparison of numerical methods reveals that even though the MCmethod is stable,
it is inaccurate and slow in comparison to other methods. The implicit FDM is
superior to the explicit method as the latter is very unstable to grid parameters.
Even though the BL method outperforms other methods with respect to simulation
time and accuracy, the implicit FDM is the most advantageous method as it provides
always convergent solution in the whole time domain at once. Finally, we apply BL
method and FDM to solve the abandonment option case the option to abandon can
be exercised at any point of time during the project.

On the grounds of the study, we suggest using the implicit FDM in further real
option applications due to the output, convergence and stability properties, and the
flexibility over the boundary conditions. We recommend investigating additional
case studies with the presented numerical methods along with their extensions, as
well as completely new approaches such as the finite element method.

Keywords Real options, finite time horizon, abandonment option, numerical
methods, Monte Carlo, binomial lattice, finite di↵erence method.
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Chapter 1

Introduction

”A ship is safe in harbor, but that’s not what ships are for.”
-William G.T. Shedd

From the beginning of the human history, people have always taken risks.
Relocating a tribe from one place to another in order to find food and hunting
dangerous animals have been daily decisions in the prehistoric era. The
decisions at that time have been most probably based on historic data and
gut feeling. This immeasurable justification on decisions stayed mostly the
same also on the historic era until the concept of probability was invented1.

While the gamblers that lived in Ancient Greece had the concept of nu-
merals and could determine the number of possible outcomes, they strongly
believed that the outcome of games was determined by gods. Concept of
modern arithmetic, i.e. numbers and symbols, came from Hindus during
the Dark Ages and made the analysis of games possible in the 16th century.
Italian mathematician Geralamo Gardano (1501–1576) was the first one to
determine the theoretical probability correctly by dividing the number of re-
quired outcomes with the number of possible outcomes. However, Gardano’s
ideas were not that rigorously presented or proven. Famous scientists such as
Galileo Galilei (1581–1585), Blaise Pascal (1623–1662) and Pierre de Fermat
(1607–1665) studied and extended Gardano’s ideas and finally Christianus
Huygens (1629–1695) published a mathematical formulation of expectations
and probabilities. More extensive and in-depth analysis was shortly pub-
lished in Abraham de Moivre’s (1667–1754) famous book The Doctrine of
Chances, which is considered to be the cornerstone of probability. This led

1Naturally there has been some common rules, i.e. strategies, for games played before
the emergence of probability theory, e.g. Roman emperor Claudius (10 BC – 54 AD) wrote
a book on how to win at dice, that didn’t unfortunately survive to this date [18].

1



CHAPTER 1. INTRODUCTION 2

to explosion of mathematical texts on probability and consequently to the
birth of probability theory as a branch of mathematics. [18]2

From these days forwards, the concept of risk became measurable. Part of
the decisions under a risk could be validated through mathematics and thus
the dice seemed to be more favorable for those enlightened of the underlying
mathematics. This competitive edge has intrigued every decision maker ever
since the time of the invention. Naturally it has also been a great interest
for companies to this date in their mission of seeking endless profits.

1.1 Decisons under uncertainty

Companies face several tough decisions throughout their existence. Some of
them might be easier, such as firing a bad employee, but many decisions can
essentially determine the fate of a company. The most crucial decisions are
usually investments, which have visible and direct e↵ect on company’s bal-
ance sheet. In addition, the di�culty of investment decision usually increases
as the uncertainty on the outcome increases. Some examples of di�cult ques-
tions that are typically asked before initiating a long investment project are:
should we invest into project A or B, when we will see some results from
the project, what will be the market demand after the project is complete,
when the first competitors will arrive to the designated market, and should
we exercise the patent before that? Before answering to these questions, let
us take a step back and consider what are some of the frameworks companies
use when making investment decisions.

Consider a company that has an option to invest into a project. Aside
from underlying strategic aspects, the company should choose the project
for which the expected return is the highest. One commonly used metric
is return on investment (ROI), which is simply calculated by dividing the
net profit from the investment with the cost of investment. However, the
problem with ROI and similar fixed metrics is that they do not take account
the time value of the money as the net present value is not contained in the
metric. This arises serious problems when the time range of the investment
is longer then one year.

If the project duration and consequently the payback time is long, one
might consider using discounted cash flow analysis (DCF ), which takes ac-
count the time value of the money. In DCF the possible future cash flows are
discounted with chosen interest rate to the present value. DCF is very popu-
lar method throughout the industries and especially in the finance sector but

2In this study, a citation mark outside the dot at the end of the paragraph denotes
that the citation refers to the whole paragraph.
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it has several drawbacks. First of all, the main parameters, the interest rate
and cash flows, are static estimates and thus vulnerable to bias. In addition,
the underlying parameters in the model are similarly static estimates relying
on highly questionable and sensitive models, which decreases the credibility
of the model, cf. Figure 1.1 for a representation of the weaknesses.

Figure 1.1: Some drawbacks of parameters with the discounted cash flow
analysis [55].

Moreover, the general decision rule for DCF is that the option to invest
should be executed now if the net present value is positive. All the possible
projects are not that straightforward as they might consist several di↵er-
ent phases or there might be an underlying uncertainty within the possible
outcomes.

Typically used method to model such projects and to determine the
strategic decisions is decision tree analysis, which is illustrated in Figure 1.2.
The main idea is to determine the probabilities on all the possible outcomes
branching from a single event and calculate the expected final outcomes.
Hence a validation for a decision can be derived from the final outcomes,
which are usually classified to di↵erent scenarios, such as optimistic, neutral
and pessimistic.

Decision tree analysis is widely used in decision-making as it is a simple
and understandable framework suitable in multiple situations. However, as
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Figure 1.2: Example of a decision tree analysis scheme applied to product
development project with three possible market states and two possible out-
comes for cash flow [19].

most of the models are extremely simple, they lack many properties, such as
modeling stochastic processes of continuous time and, once again, the option
to delay the investment.

Decision-makers throughout the world use the frameworks presented above
nearly everyday, even though the frameworks lack the option for delaying.
Possible reasons for the wide usage could be their simplicity, wide acceptance
within the business scene and assumed suitability to a given situation. While
some or even all of these reasons might be true for some cases, there are still
several cases where the frameworks presented are just highly unusable.

Moreover, the economy has changed dramatically over the last few decades.
Prior to the globalization and Internet Revolution there were a handful of in-
vestment options and the risk of expanding to new areas was relatively low.
In the current business world the companies are surrounded with a blind-
ing amount of di↵erent investment options to choose from. Furthermore,
the underlying risk has been increasing due to fierce, global competition.
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This paradigm shift in business environment has arisen the need for new ap-
proaches when making investment decisions under uncertainty. One possible
and highly embraced remedy is real options analysis.

1.2 Real options analysis

Real options analysis is a study of di↵erent kind of options that a business
can take in its endeavors. The ”real” word signals that real options are
mainly focused on options on tangible assets, contrary to financial options.
To put it short, real option analysis is extension of financial option theory
to real assets. The main idea, described more technically, is that the value
of the real option is defined as a function of a stochastic variable, and by
using some common tools of stochastic calculus, the value of the option can
be determined from a di↵erential equation.

1.2.1 History of real options

Staring point for real options analysis emerged from the notorious Black-
Scholes3 equation that revolutionized the Wall Street, both positively and
negatively. In 1973 Fischer Black and Myron Scholes published a famous
paper that described a theoretical valuation formula for options. The main
idea of the paper was to derive the price of an option by delta hedging,
that is, mitigating the risk by taking both the long and short position of the
underlying stock [7]. During the same year, Robert C. Merton completed
and extended the mathematical theory behind the Black-Scholes by deriving
the equation with a ”replication method” [53]. Both Scholes and Merton
received a Nobel prize in 1997 for their contribution, two years after Black
deceased4.

The consequences of the Black-Scholes equation were tremendous – bankers
on the Wall Street could construct nearly arbitrary exotic options with the
Black-Scholes equation and o↵er them to several di↵erent customer, rang-
ing from gambling individuals to companies hedging their mainstream of
revenues against market risks. Furthermore, it gave ideas and concepts for
fields outside financial industry.

3Also sometimes referred as Black-Scholes-Merton equation to honor the work done by
Robert C. Merton.

4Coincidence or not? One reasonable argument for the latter is that the Nobel prize
committee was reluctant to give a prize to someone working in financial industry – Black
left the academics in 1984 and joined investment bank Goldman Sachs.
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Dan Galai and Ronald W. Masuilis were the first ones to suggest using
option pricing in corporate investment decisions in 1976 [29]. One year later
Stewart C. Myers published a paper where he discussed using the concepts
of call options with corporate assets and referred them as ”real options” [56].
In 1983 Paddock, Siegel and Smith introduced an option pricing method for
real assets, using an o↵shore petroleum lease as an example [60]. During
the same year Myers and Saman Majd presented a model for abandoning a
project by using the similarities found in American put option [58]. Several
other applications and extensions for real options were arising in the mid
1980s and simultaneously the criticism over the other methods accelerated.

In 1984 Myers pointed out several inconsistencies in use of discounted
cash flow analysis in strategic planning and applications [57] and emphasized
the positive aspects of using real options within corporate finance. The
main statement was that DCF techniques, that were widely used at that
time, underestimate the option value and does not work well with businesses
with high growth opportunities or intangible assets. Further inconsistencies
with the DCF technique were pointed out in 1985 by Hodder et al. [36],
arguing that the method is shortsighted and produces excessive risk aversion
on biased perceptions mainly due to the fixed discount rate over long period
of time. Trigeorgis et al. [73] joined the chorus two years later underlining
the lack of flexibility on decision time for DCF techniques which ultimately
produces biased results. This insight brought upon the fact that information
itself can actually have a real, measurable value.

The pace of uprising number of applications for real options and criticism
for commonly used methods inspired part of the industry to use real options
as a valuation method. Consequently real options analysis rose from the
academic circles to the everyday use of practitioners in the early 1990s, and
the interest towards the method has been increasing ever since. This is not a
tremendous shock, as the real options analysis is highly applicable in many
di↵erent fields of industry.

1.2.2 Applications for real options

Naturally, there exists a massive number of articles on real options to this
date and consequently di↵erent applications can be classified with multiple
ways. Lander et al. [45] discussed the challenges of practical implementation
for real options in an article published in 1998. The classification among dif-
ferent areas where real options have been applied were the following; natural
resources, competition and corporate strategies, manufacturing, real estate,
international, R&D, regulated firms and utilities, M&A and corporate gov-
ernance, interest rates, inventory, labor force, venture capital, advertising,
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law, environmental compliance and conservation. We note that the num-
ber of di↵erent applications is vast, even though the first educational book
that deals exclusively with real options was published in 1994 by Dixit and
Pindyck [22].

Following more recent discussion [55], some industries where real options
analysis has been used successfully applied are automobile and manufactur-
ing, computer, airline, oil and gas, telecommunications, utilities, real estate,
pharmaceutical and high-tech industry. More specific examples within these
industry sectors are General Motors Company’s usage of material switching
options with di↵erent vendors in producing new cars, and the application
of growth option by Sprint Corporation to justify the enormous investments
into telecommunication infrastructure for which the technology did not yet
exist at the time.

From the long list of di↵erent applications, we will discuss the energy and
R&D sector more in detail as they provide interesting problems for further
examination.

1.2.2.1 Energy sector

The energy sector has experienced large economic shifts from the 1970s to this
date. The changes are mainly due to the significant technological and regu-
latory changes within the sector. Overall, the sector has transformed from
highly regulated and monopolistic sector to deregulated and highly competi-
tive sector with high uncertainty. This has led to inaccurate valuations with
traditional capital budgeting methods such as the net present value method.
Consequently, the search of other methods that provide an option to wait,
such as real options theory have gained ground. [3]

One of the first applications of real options theory to the energy sector
was the research done in 1979 by Tourinho [72], where a natural reserve was
valuated with uncertainty in the future price of the resource. Similar appli-
cations with some extensions were made in 1985 by Brennen and Schwartz
[13] on the decision whether to open or close a copper mine with uncertainty
in the price of copper. Applications within the oil industry were published
few years later by Siegel et al. [67] on the valuation of o↵shore oil properties
and Paddock et al. [60] on valuating o↵shore petroleum leases, where in both
the price of oil was uncertain.

Most of the research presented by the end of the 1980s were considered
as extensions of the financial theory. This reasoning was expected to be
even more rational as the electric utility industry was becoming progres-
sively deregulated in the mid 1990s [25]. Several articles were published on
the real options related to the di↵erent types of financial options on the elec-
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tricity market, such as [38], [20] and later [1]. Further applications of real
options theory can be found e.g. within the field of power generation and
environmental policy, such as optimizing the usage of Brazilian power plants
[51] and analyzing the e↵ects of emission regulation policy in Finland [47].

1.2.2.2 R&D sector

The investment problems within the R&D sector suit perfectly into the real
options framework as the investment period is typically long and uncertainty
is high. Examples of possible real option models applied to R&D are optimal
timing and amount of investment, sequential choice over continuation and
abandonment, and option to exercise a project through a patent. In other
words, a decision-maker may seek an answer from the real options theory to
questions such as when and how much should one invest into R&D projects,
at what level one should abandon a sinking R&D project, and should one
patent a product or not in order to keep the competition away?

As most of the applications of the real options theory within the R&D
sector usually deal with an uncertainty in an investment project, we will
focus our discussion on the di↵erent methods and possible challenges, con-
trast to the discussion of the energy sector where di↵erent applications were
examined.

The uncertain variable, i.e. the stochastic variable, is typically the value
[34], [21] or cost [65], [62] of the R&D project. Further complexity to a
model can be introduced by including additional stochastic variables, such
as assuming that the success of the project is probabilistic and the value of
the patent is stochastic [75].

The stochastic variables in real option models can be either static or dy-
namic. In static models the parametric values of the stochastic variables
are constant over the time while in the dynamic models the parameters can
change over time, e.g. due to updated beliefs or competitive actions. Exam-
ples of these dynamic multiple-stage model are [30] and [66].

One of the main challenges with real R&D options is the choice of pa-
rameters. Most authors simply set some parameter, e.g. volatility of a R&D
project, that seems reasonable but may not have been that fully verified. In-
stead of assigning a nearly arbitrary value as a parameter, one can seek some
validation from the historical data, such as comparing the stock price with
the company’s announcements on R&D breakthroughs. However, a suitable
value for a parameter might not always be available as companies tend to
exclude the full specifications of R&D investments from the public. Needless
to say, the choice of parameter is dependent on the model examined but al-
ways highly relevant. Many authors have pointed out that the determination
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of valid parameters is highly important especially in the field of R&D [61].

1.3 Motivation for the study

As noted from the brief outlook on the history of the real option analysis,
the field is still remarkably young in comparison to other fields within science
and economics. The number of articles has risen progressively year by year
since the early 1990s. There are still several applications yet to be covered
and also improvements to be made within the existing applications.

One of the main challenges within the real option analysis is that as the
models become more complex, finding a closed-form solution to a di↵erential
equation describing the model becomes even more di�cult. However, before
delving into these issues, we need to define real options mathematically.



Chapter 2

Theory

In this chapter we examine the mathematical theory behind real option mod-
els. First we introduce real options models starting from a simple determinis-
tic case without any uncertainty. Then we extend the basic model to stochas-
tic case and examine real options with finite and infinite decision horizon.
As we will notice, there is a vast di↵erence between these two settings. In
deriving the models, we mostly follow [22], which we suggest to refer for fur-
ther details on real option models. Finally, we examine di↵erent cases within
real options theory that lead to problems for which a closed-form solution
does not exist.

2.1 Infinite horizon investment

Suppose that a decision-maker has an opportunity to invest into a project for
which the value V (x, t) is dependent on some stochastic variable x over the
time period t 2 [0,1). Let W (t) be a Wiener process. We assume that the
stochastic variable x follows geometric Brownian motion with the increment
dW (t) and that the value of the project is determined from the equation

dx(t) = ↵x(t)dt+ �x(t)dW (t), (2.1)

where ↵, � are some constant parameters of the model.
Few remarks about the stochastic variable we introduced. As x(t) follows

Brownian motion, it is described mathematically by the Wiener process1.
Thus for x(t) that follows a Wiener process has three crucial properties. First,
the Wiener process is a Markov process, which implies that the probability

1
Wiener process. Then it has the following properties; W (0) = 0, the mapping t !

W (t) is almost surely continuous, and it has independent increments for which W

t

�W

s

⇠
N(0, t� s) for 0  s  t.

10
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distribution for all future values of the process are independent on the history
of values. Second, the increments of the Wiener process are independent.
Third, the changes in the process are normally distributed over arbitrary
finite interval of time. Consequently, the increment of a Wiener process can
be described as a function of time t and it is given as

dW (t) = ✏
p
dt, (2.2)

where ✏ is a normally distributed random variable with the properties ✏ ⇠
N(0, 1).

Now suppose that there is a investment cost I involved. Then the prob-
lem that a decision-maker has is to maximize the value of the investment
opportunity, that is

V (x, t) = maxE
⇥
(x(t)� I)e�⇢t

⇤
, (2.3)

where the payo↵ for the investment, x
t

�I, is discounted to the present value
with a discount rate ⇢ from the time t when the investment will be exercised.
Note that we must assume that ↵ < ⇢ as otherwise the value of the project
would grow indefinitely larger as the time t advances. Therefore we define a
variable � := ⇢� ↵ > 0, that we will use later in the discussion.

2.1.0.3 Deterministic case

We start by deriving the value of the investment in the deterministic case,
that is, assuming that there is no uncertainty. Hence we set � = 0 and the
stochastic variable is given as

dx = ↵x(t)dt ) x(t) = x0e
↵t,

where x0 = x(0). From this follows that the value of the investment oppor-
tunity is given as

V (x⇤, t) = (x0e
↵t � I)e�⇢t. (2.4)

Note that Equation 2.4 is still dependent on the values of parameters ↵ and
⇢. Suppose first that ↵  0. Then x(t) = x0e

↵t is decreasing or constant as
the time passes and thus one should invest immediately if x0e

↵t > I. Hence
the solution for the case ↵  0 is the following:

V (x⇤, t) = max{x0e
↵t � I, 0}.

Suppose then that 0 < ↵ < ⇢. In this case there might be a point of
time when it is more optimal to invest than in the beginning. To obtain the
optimal point of time, we di↵erentiate Equation 2.4 to obtain

dV (x⇤, t)

dt
= (↵� ⇢)x0e

(↵�⇢)t + ⇢Ie�⇢t = 0
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and hence

t =
1

↵
ln

⇢I

(⇢� ↵)x0
) t⇤ = max

⇢
1

↵
ln

⇢I

(⇢� ↵)x0
, 0

�
, (2.5)

which describes the optimal time for the investment. Clearly, since we had
↵ > 0, one should invest immediately if

ln
⇢I

(⇢� ↵)x0
> 0 ) ⇢I

⇢� ↵
> x0,

since Equation 2.5 gives t⇤ = 0. If x0 > ⇢I

⇢�↵

, the immediate investment is
not the best response as one should wait for another opportunity for which
the value is derived by substituting Equation 2.5 into Equation 2.4. Hence
we obtain the best response strategy for the investment opportunity when
0 < ↵ < ⇢ holds:

V (x⇤, t⇤) =

8
<

:

⇣
I↵

⇢�↵

⌘⇣
(⇢�↵)x0

⇢I

⌘ ⇢
↵

if x0  ⇢I

⇢�↵

x0 � I if x0 >
⇢I

⇢�↵

Next we derive the same case as above but with a positive stochastic
component, that is � > 0. There are essentially two ways to derive the
solution, with dynamic programming or contingent claims. We will present
the both methods to obtain the solution.

2.1.1 Solution by dynamic programming

The main idea behind dynamic programming2 is to break down a larger
problem into a set of smaller, overlapping subproblems that are more easily
solvable and then construct the solution to the initial problem from these
subproblems. Describing the idea within the context of mathematical op-
timization, it usually means that a function that is defined over all time
periods t is divided into discrete steps �t and the full solution is formed by
solving the value of the function one time step at the time.

Let ⇡(x(t), t) be the rate of the profit flow from the investment. Hence the
total profit is given by ⇡(x(t), t)�t and the total discounting over a discrete

2The grandfather of the dynamic programming, Richard Bellman (1920-1984) coined
the term in the 1950s while working for RAND Corporation to hide out the research content
in his study on optimization problems – the term ”programming” was more suitable within
military purposes [5].
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step is 1
1+⇢�t

. Consequently the value of the investment at continuous time t
is given as

V (x(t), t) = max

⇢
⇡(x(t), t) +

1

1 + ⇢
E [V (x(t+ 1), t+ 1)]

�
. (2.6)

This is commonly referred as Bellman equation in continuous time. Then on
every discrete time step �t we have the following equation

V (x(t), t) = max

⇢
⇡(x(t), t)�t+

1

1 + ⇢�t
E [V (x(t+ 1), t+�t)|x(t)]

�

from which we obtain

⇢�tV (x(t), t) = max{⇡(x(t), t)(1 + ⇢�t)�t

+ E [V (x(t+ 1), t+�t)� V (x(t), t)]}
= max{⇡(x(t), t)(1 + ⇢�t)�t+ E [�V (x(t), t)]}.

Dividing by �t and letting �t ! 0 results in

⇢F (x, t) = max

⇢
⇡(x, t) +

1

dt
E [dV (x, t)]

�
,

where we have denoted x := x(t) for simplicity.
Following the assumptions we set in the beginning of this example, there

are no profits as the investment project generates cash flows only at the
time when the investment is undertaken, i.e. ⇡(x, t) = 0. Thus the Bellman
equation reduces to

⇢V (x, t)dt = E[dV (x, t)].

Note that x follows Brownian motion as assumed above and thus is given
by Equation 2.1. Hence by using the Itô’s Lemma3, the properties of Wiener
process (2.2), and the fact that E[dW (t)] = 0, we obtain

E[dV (x, t)] = E

@V (x, t)

@x
(↵xdt+ �xdW (t)) +

1

2

@2V (x, t)

@x2
(↵xdt+ �xdW (t))2 + . . .

�

= E

@V (x, t)

@x
↵xdt+

@V (x, t)

@x
�xdW (t) +

1

2

@2V (x, t)

@x2
�2x2dt

�

=
@V (x, t)

@x
↵xdt+

1

2

@2V (x, t)

@x2
�2x2dt = ⇢V (x, t)dt,

3
Itô’s Lemma. Let x(t) be a Itô’s drift-di↵usion process and let the derivative be

defined as dx(t) := a(x, t)dt + b(x, t)dW (t), where W (t) is a Wiener process. Then the

total derivative on arbitrary function F (x, t) is given as dF (x, t) = @F (x,t)
@t

dt+ @F (x,t)
@x

dx+
1
2
@

2
F (x,t)
@x

2 (dx)2.
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where we assumed that @V (x,t)
@t

= 0 since we are dealing with infinite time
horizon case where the value of the project may remain constant for long
periods of time. Diving by dt and substituting the definition � = ⇢ � ↵, we
obtain the following di↵erential equation:

1

2
�2x2@

2V (x, t)

@x2
+ (⇢� �)x

@V (x, t)

@x
� ⇢V (x, t) = 0. (2.7)

We note that there is no dependence on time t and thus we will denote
V (x) := V (x, t) for simplicity.

We note that the Equation 2.7 is a second order homogeneous nonlin-
ear di↵erential equation. To solve the equation we need some boundary
conditions. One boundary condition arises from the properties of stochas-
tic processes, i.e. if x hits zero, it will stay there due to the independent
increments. Thus we have a boundary condition

V (0) = 0. (2.8)

In addition, we have two optimality conditions for the solution:

V (x⇤) = x⇤ � I, (2.9)

dV (x⇤)

dx
= 1. (2.10)

The first optimality condition (2.9) determines valid payo↵ at the opti-
mal stopping point and the second (2.10) determines unique stopping point
as other conditions would break the continuity condition or contradict the
definition of optimal point. The latter is commonly referred as ”smooth-
pasting” condition, for further details, see [22].

Note that as we have no dependence on time, we are seeking a solution
boundary where one should invest at all periods of time. The solution bound-
ary for Equation 2.7 that satisfies the boundary and optimality conditions
can be derived analytically. We make a sophisticated guess that the solution
must take the form V (x) = Ax�, where A is a constant. Substituting this
into Equation 2.7 gives

1

2
�2�(� � 1) + (⇢� �)� � ⇢ = 0

from which we obtain two possible values for �, given as

�1,2 =
1

2
� ⇢� �

�2
±
r

(
⇢� �

�2
� 1

2
)2 + 2

⇢

�2
.
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Since the di↵erential equation (2.7) is linear in the dependent variable and
its derivatives, the general solution can be presented as a linear combination.
Hence the solution can be written as

V (x) = A1x
�1 + A2x

�2 . (2.11)

However, the first boundary condition (2.8) implies that A2 = 0 as �2 < 0
and thus the solution is in from

V (x) = A1x
�1 . (2.12)

Substituting Equation 2.12 into other two boundary conditions (2.9, 2.10)
we obtain the critical value for the stochastic variable x when one should
invest, giving

x⇤ =
�1

�1 � 1
I,

and the value for constant

A1 =

✓
�1 � 1

�1I

◆
�1 I

�1 � 1
, (2.13)

where

�1 =
1

2
� ⇢� �

�2
+

s✓
⇢� �

�2
� 1

2

◆2

+ 2
⇢

�2
.

Hence we have derived an analytical solution to the investment problem
with uncertainty. Using some reasonable values as constants gives us the
value of the investment as a function of the underlying stochastic variable
x. Thus we may for example investigate how the investment opportunity is
dependent on the parameter values with a sensitivity analysis.

However, there is one problem with the solution derived with the dynamic
programming. The discount rate ⇢ that we assumed to be constant, is up
to the decision-makers to decide without greater justification. Next we will
derive the solution with contingent claims analysis, which will exempt the
decision-maker from setting a value for the discount rate.

2.1.2 Solution by contingent claims analysis

The crucial assumption that di↵ers the contingent claims analysis from dy-
namic programming is that the stochastic variable x must be spanned by
a variable in the economy. This is essential assumption of the contingent
claims analysis, implying that there must exist a variable within the econ-
omy that can be used to replicate the properties of the stochastic variable.
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Note that the assumption is very convenient in some cases, e.g. when us-
ing publicly traded commodities such as price of oil and electricity as the
stochastic variable. However, in some cases such as modeling an innovation
rate as a stochastic variable, it may be rather hard to find a replicate for the
stochastic variable within an economy.

Let x̂ be a replicate for the stochastic variable x. We assume that the
replicate x̂ is perfectly correlated with the stochastic variable x, and that
the return of the replicate variable, r

x̂

, is correlated with the return of the
market portfolio r

m

with some value corr(r
x̂

, r
m

). Hence the movements of
x̂ are given as

dx̂ = µx̂dt+ �x̂dW (t),

where µ is the drift rate that determines the expected rate of return for the
stochastic replicate variable. According to the capital asset pricing model,
this parameter should reflect the asset’s systematic, nondiversifiable risk.
Hence the drift rate can be defined as

µ = r +
r
m

� r

�
m

corr(r
x̂

, r
m

)�,

where �
m

is the standard deviation of the market, and r is the risk-free
interest rate. The interpretation of the drift rate µ is that it determines the
rate of return for the project that investors would require. We assume that
the expected percentage rate of change of x, given by ↵, is less than the risk-
adjusted return µ, that is ↵ < µ. Otherwise an investor would always rather
wait and than invest. We denote � := µ � ↵ > 0 and thus the parameter �
plays the same role as in the dynamic programming problem. Note that with
our definition � represents the opportunity cost of delaying the investment.

Now suppose that the value of the investment option is V (x, t) as in the
previous section. We construct a risk-free investment by shorting n = @V (x,t)

@x

units of the investment option, which is equivalent to shorting the replicator
variable x̂ as they are perfectly correlated. Hence the value of the investment
option is � = V (x, t)� nx = V (x, t)� @V (x,t)

@x

x.
The excess rate of return from the investment in comparison to the repli-

cate is � = µ � ↵ and thus the total return from the investment is �x.
However, taking a short position has a natural cost related to it. The pay-
ment from taking a short position must be equal to the excess returns of the
investment as otherwise nobody would take a long position on this portfolio.
Since the investment was shorted n = @V (x,t)

@x

units, the total cost of shorting

the investment is �xn = �x@V (x,t)
@x

per time period to keep things rational.
The risk-free return R

rf,i

of the investment over one time period is given
as the total change in value of the investment minus the shorting payments
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over one time period, that is

R
rf,i

= d�� �x
@V (x, t)

@x
dt,

which gives us

R
rf,i

= dV (x, t)� @V (x, t)

@x
dx� @2V (x, t)

@x2
x� �x

@V (x, t)

@x
dt

= dV (x, t)� @V (x, t)

@x
dx� �x

@V (x, t)

@x
dt,

since @

2
V (x,t)
@x

2 = 0 as the number of short positions are held fixed over the
interval. Once again, by using the Itô’s Lemma and the properties of a
Wiener process, we obtain

R
rf,i

=
1

2
�2x2@

2V (x, t)

@x2
dt� �x

@V (x, t)

@x
dt,

where we neglected the partial derivative over time as we are dealing with
infinite time horizon. Note that this is the risk-free return of the investment
that can be obtained within a time period dt. To avoid arbitrage possibilities,
it must equal the risk-free return from the market during the same time
period, that is R

rf,i

= R
rf,m

:= r�dt. This equality results in the equation

1

2
�2x2@

2V (x, t)

@x2
dt� �x

@V (x, t)

@x
dt = r

✓
V (x, t)� @V (x, t)

@x
x

◆
dt

from which we obtain

1

2
�2x2@

2V (x, t)

@x2
+ (r � �)x

@V (x, t)

@x
� rV (x, t) = 0. (2.14)

Note once again that Equation 2.14 is time-independent. In addition, we
note that Equation 2.14 identical to Equation 2.7 with the exception that
the risk-free interest rate r equals the discount rate ⇢ used in the dynamic
programming.

The same boundary and optimality conditions used previously apply also
here, and thus the solution has the form

V (x) = Ax�1 , (2.15)

where the parameter �1 is defined as

�1 =
1

2
� r � �

�2
±
r
�r � �

�2
� 1

2
)2 + 2

r

�2
(2.16)

and A is similar as in Equation 2.13.
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2.1.3 Comparison of the derivation methods

We demonstrated above how to calculate the optimal stopping value for an
investment with a stochastic variable that follows Brownian motion. When
the contingent claims analysis was used to derive the value of the investment,
the stochastic variable was linked to a stochastic replicator variable within
a economy, while in the dynamic programming case the stochastic variable
represented a direct stochastic variable related to the investment.

The di↵erential equation derived was similar in both cases. However, the
equation derived with the dynamic programming method included a discount
rate parameter that has to be set by a decision-maker, while in the contingent
claims method the same parameter was the risk-free interest rate. While both
of the methods are valid for deriving the set of equations to be solved, the
di↵erence on the parameters sets limitations to the methods.

When choosing a method to derive the equations, one should consider
does there exist a credible replicator within an economy for the stochastic
variable in the model so that a risk-free investment can be constructed. In
case there exist a credible replicator, the contingent claims method should
be used as it exempts fixing one parameter. However, one should bear in
mind that the contingent claims method is based on the capital asset pricing
model that has been under heavy criticism lately, see for example [24].

2.2 Finite horizon investment

In the previous chapter we solved the value of the investment with infinite
time horizon. The di↵erential equation derived along with the boundary
and optimality conditions were such that a closed-form solution could be
derived. This was mainly due to the choice of infinite time horizon for which
the dependence on time t vanished and thus the solution was static over the
time of the investment option. While the infinite time horizon simplifies the
analysis and produces usually an analytical solution to the problem, it may
not be the most realistic assumption in all the cases.

Major part of the real option models presented in the literature are based
on infinite horizon case, especially in the beginning of real option analysis
era. One could argue that this is mainly due to the fact that assuming in-
finite time horizon conditions, the model usually reduces to one dimension
which simplifies the analysis substantially and thus often leads to simple an-
alytical solutions. Nowadays there are also several articles on finite horizon
investments, but for example within real option games, which combine real
options with game theoretic concepts, infinite time horizon is assumed es-
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sentially in every article, cf. [4]. Choosing infinite time horizon for a model
might ease the analysis but poses some restrictions to the model. Conse-
quently, using infinite time horizon in cases where there exist a clear ending
date, i.e. terminal time, is highly questionable. Some examples of situa-
tions where finite time horizon has been used successfully are for example
the o↵shore petroleum leases [60] and investment decision on nuclear power
plant before the competition arrives [39]. In the latter article it was showed
that the investment rules between using infinite and finite time horizon dif-
fer substantially, which points out that using infinite time horizon recklessly
in improper settings leads to false results. Taking a step back and consid-
ering the characteristics of investments in real business world, de facto all
the investments are limited with finite time horizon. Thus one should really
consider carefully when using infinite time horizon over finite time horizon
solely for simplification purposes.

Let us examine what are the e↵ects of constraining time frame from in-
finite to finite. Assume that there exists some finite time T after which the
option for investment is expired. Thus the time domain for the problem is
t 2 [0, T ]. Adding a constrain to the time horizon has substantial e↵ects on
the problem setting. With the infinite time horizon the problem looks the
same at every time period t as there is no dependence on time. However,
with the finite time horizon the problem varies between the points of time,
that is, when the time passes the possible investment time decreases as T � t
where t increases.

We consider similar risk-free investment as in the contingent claims anal-
ysis by shorting the investment with associated cost. The initial steps are
the same as with the infinite horizon case and thus the risk-free return of the
investment is given as

R
rf,i

= d�� �x
@V (x, t)

@x
dt = dV (x, t)� @V (x, t)

@x
dx� �x

@V (x, t)

@x
dt.

However, when Itô’s Lemma is used, the term with derivative over time does
not vanish. Consequently along with the properties of a Wiener process, the
risk-free return of the investment is

R
rf,i

=
1

2
�2x2@

2V (x, t)

@x2
dt+

@V (x, t)

@t
dt� �x

@V (x, t)

@x
dt.

Once again, to avoid the possibility for arbitrage, this must equal the risk-free
return of market, R

rf,m

, and hence

1

2
�2x2@

2V (x, t)

@x2
+ (r � �)x

@V (x, t)

@x
� rV (x, t) = �@V (x, t)

@t
. (2.17)
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Note that the partial derivative with respect to time did not vanish and
we are dealing with a parabolic partial di↵erential equation, whereas the
di↵erential equation in the infinite horizon case (2.14) was merely a simple
homogeneous di↵erential equation.

To derive a solution for Equation 2.17, we need some boundary conditions.
A reasonable set of boundary and optimality conditions csould be

V (0, t) = 0, (2.18)

V (x⇤, t) = x⇤ � S, (2.19)

@V (x⇤, t)

@x
= 1. (2.20)

V (x, T ) = max{x� S, 0}, (2.21)

Note that the time-independent boundary conditions (2.18-2.20) are similar
to ones used in the infinite time horizon case, cf. Equations 2.8-2.10. In
addition we need to define a boundary condition for the value of the option
when the finite time horizon ends. One reasonable boundary condition is
given with Equation 2.21, which implies that the investment option will be
exercised if the value of the stochastic variable is greater than some fixed
value S, that is x > S.

Contrast to the infinite horizon case, Equation 2.17 along with the bound-
ary conditions (2.18-2.20) cannot be solved analytically and thus numerical
methods are required. In addition to the problem described above, there
are several other problems within real options theory that does not have a
closed-form solution.

2.3 Review on real option valuation methods

Real option valuation methods can be categorized into two sections - analyt-
ical and numerical methods. They can be further divided into subsections as
represented in Figure 2.1.

Analytical solutions can divided into two types of solutions – closed-form
and approximative solutions. For some problems, such as the infinite horizon
investment problem presented in the previous section, a closed-form solution
exists. Additional examples of problems that have a closed-form solution are
valuation of two risky assets with restricted option to exercise [68], valua-
tion of options with possibility to exchange one asset for another [50], [16]
and valuation of compound options [31]. In some cases a closed-form solu-
tion does not exist but an approximative solution with reasonable accuracy
can be derived, for example by using polynomial approximations [32], linear
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Real option valuation methods

Analytical methods

Closed-form Approximative

Numerical methods

PDE

FDM

Explicit Implicit

FEM

Stochastic variable

MC Lattice

Figure 2.1: Classification of real option valuation methods.

linearpolation [27] or posing restrictions on feasible exercise strategies [6],
[41].

However, there are several types of problems for which cannot be solved
analytically. Some of the key features that break the solvability with analyti-
cal methods, in addition to previously discussed finite horizon, are increasing
number of variables and non-constant variables. Needless to say, there are
highly important features when modeling the real world. Limiting the num-
ber of variables or assuming constant features are major restrictive elements
in real options models, which are typically implemented merely for academic
reasons or to obtain some solution to problem.

Numerical methods can be used to derive a solution by approximating the
underlying stochastic process or partial di↵erential equation (PDE) of the
model. Commonly used methods for approximating a stochastic process are
Monte Carlo method (MC) and di↵erent types of lattice methods. In Monte
Carlo method the possible outcome is simulated by repeated random sam-
pling, while in the lattice methods the underlying stochastic process modeled
by dividing the process into discrete steps. Monte Carlo method is typically
used on relatively simple problems, e.g. real option valuation problems with
no possibility to early exercise [9]. Lately the Monte Carlo method has also
been used with more complex problems with an early exercise option [15].
Lattice methods, such as binomial and trinomial lattice tree methods, are
commonly used in various types of problems due to their intuitive approach
and usability [17], and in some cases they are easily extendable [10].

Numerical solution can also be derived by approximating a partial dif-
ferential equation of the real option model. This can be done with methods
such as finite di↵erence method (FDM) and finite element method (FEM).
The underlying idea in both methods is to discretize the solution domain and
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calculate an approximative solution of the di↵erential equation in the whole
domain. Finite di↵erence method and its two solution schemes, explicit and
implicit schemes, are more commonly used within real options theory. Exam-
ples of usages vary from using the explicit finite di↵erence method to optimize
the cut-o↵ policy of mines [70] to modeling of generalized jump process with
implicit finite di↵erence method [12]. Finite element method has not been
used that extensively the options theory probably due to its relatively high
level of complexity, but there are several examples within financial options,
such as combined penalty method for American options [? ] and at least one
example within real options theory [2].

Comparing the two real option valuation method approaches used in the
corresponding literature, we note that there are three major disadvantages
with analytical methods. First, the problem at hand should be simple enough
so that an analytical solution can be derived. This widely restricts the prob-
lems to a small subset of problems for which a closed-from solution exists.
These problems are rarely an accurate description of reality as several sim-
plifying assumption are usually made to obtain an analytical solution, such
as assuming infinite horizon, constant risk-free rate or restricting the exercise
of an option. This fact cannot be stressed highly enough – in practice it is
essentially the same thing as designing an airplane with approximative solu-
tions for Navier-Stokes equation describing fluid flow on a wing. Even though
the required accuracy with real options is not at the same level, the result
would be devastating. Secondly, a considerable amount of work is usually
required to work out an analytical solution for even slightly realistic prob-
lems. The level of mathematics involved with deriving an analytical solution
can be at high level and hence out of reach for common practitioners. In
addition, it also takes a considerable amount of time to derive a closed-form
solution for some problems that could be solved instantly with numerical
methods. Thirdly, the derived analytical solutions are not anymore viable
when the complexity of the problem increases. For example, introducing an
additional stochastic variable to the model breaks up the analytical solution
totally. Consequently, the flexibility of analytical solutions is non-existent.
This is a major problem considering the need for minor adjustments and the
increasing complexity in the economic world.

Large part of the problems described above can be solved by using numer-
ical methods. Numerical solution can be derived essentially for any type of
problem with arbitrary level of complexity. Discretizing a partial di↵erential
equation simplifies the problem at hand by definition without neglecting the
key items in the model, and the accuracy of the problem can be enhanced
by increasing the simulation time, e.g. by choosing more dense grid. Once a
numerical method has been implemented, it is very flexible to various types
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of minor and major adjustments. For example, the Monte Carlo method
is essentially negligible to number of variables and arbitrary type of di↵er-
ential equation can be used with FDM and FEM. In addition, the level of
detail numerical methods provide is exhaustive to a single solution provided
by analytical methods. Furthermore, the numerical methods are relatively
easy for practitioners to use as they can be easily implemented e.g. into a
spreadsheet software.

Summarizing, even though analytical methods play a key role in devel-
oping the theoretical framework of real options, they are very restricted to
simple problems that have merely an academic interest and does not have
capabilities to meet the demand of flexibility and ability to model even in-
creasing complexity of the real world. In the next chapter we delve more
deeply into di↵erent types of numerical methods by presenting the mathe-
matical framework behind the methods and introducing two case studies.



Chapter 3

Numerical methods

In this chapter we give a short introduction to the most commonly used
numerical methods in the field of real options, and present two case studies
that we will solve with the numerical methods discussed.

3.1 Introduction

3.1.1 Short history of numerical methods

We noted in the previous chapter that raising the complexity of a real option
model even a little bit usually leads to a situation where a solution cannot
be derived analytically. This situation is actually quite usual in the world of
mathematics. One of the oldest mathematical problems that we can prove
to be approximated numerically, was the length of the diagonal in a unit
square that was approximated with the Old Babylonian tablet YBC 7289
[28] around 1800 BC. The first person that was credited with the proof was
naturally Pythagoras over a millennium later. The same trend has followed
throughout the history from linear interpolation to Archimedes’ numerical
integration and to Newton’s and Euler method up until the modern days
methods of deriving a numerical approximations for complex partial di↵er-
ential equations.

Shortly before the time of computers numerical approximations of func-
tions were looked up from gathered tables or calculated by hand one iteration
at time. This was a daunting task for some of the mathematical problems, but
it was soon to change around the time of the World War II. The Axis powers
used the Enigma machine to send encrypted messages to their peers. The
Allied forces were puzzled how to break the encryption until pioneering but
misunderstood computer scientist Alan Turing developed cipher machines

24
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that were used to break the code1. The cipher machines can be regarded as
first computing machines, so called Turing machines, that led to the invention
of the modern computer.

The study of numerical methods exploded with the invention of the mod-
ern computer after the World War II. Brilliant minds such as John von Neu-
mann devoted part of their precious time to the development of numeri-
cal methods, such as the Monte Carlo method and finite di↵erence method
(FDM).

The underlying concept behind the Monte Carlo method was used the first
time by Enrico Fermi in the 1930s in his study of neutron energies. Around
fifteen years later von Neumann alongside with his colleague Stanislaw Ulam
formulated the modern version of the Monte Carlo2 method for the study of
nuclear fission at Los Alamos Scientific Laboratory. Thus the Monte Carlo
method played a significant role in the Manhattan Project that eventually
led to the invention of the first atomic bomb and end of the World War II.
[54]

While the concept beneath the FDM dates back to the time of Isaac
Newton, the first idea of using FDM in solving problems within the field of
physics can be considered to be given in 1928. More rigorous and extended
formulations were given by von Neumann, e.g. on the stability conditions of
finite di↵erence schemes. The analysis of the finite di↵erence methods broke
out thereafter and also other numerical methods gained ground. [69]

3.1.1.1 Numerical methods in real option analysis

Considering the field of real options analysis, several di↵erent numerical
methods have been used to obtain a solution for a di↵erential equation that
usually arises from the real option analysis. The most commonly used meth-
ods are di↵erent types of stochastic simulation methods, lattice methods, and
finite di↵erence methods.

In addition to basic usage of the methods, the methods are typically
tailored to fit into a specific problem at hand. Some examples of these ex-
tensions are stretched trinomial lattices for valuation of public sector R&D
investments [74], least-square Monte Carlo method for valuation of power

1Polish mathematician Marian Rejewski was the first one to solve the encryption on
the first versions of the Enigma machine in 1932 by using the permutation and group
theory. However, this e↵ort was soon to be fruitless as the Axis powers made continuous
improvements to the Enigma machine. [37]

2The name ”Monte Carlo” was suggested by Nicholas Metropolis, a colleague of von
Neumann and Ulam at Los Alamos, according to Ulam’s uncle that would borrow money
from his relatives because he ”just had to go to Monte Carlo” [54].
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transmission investments [63] and flux-limited upwind scheme for finite dif-
ference method to determine the optimal cut-o↵ policy for mines [70]. Fur-
thermore, additional numerical methods have been examined for use in real
option analysis, such as finite element method [2] which is similar to the finite
di↵erence method.

However, in this study we will focus on comparing the basic versions of the
three numerical methods most commonly used in real options analysis; the
Monte Carlo method, the binomial lattice method and the finite di↵erence
method.

3.1.2 Monte Carlo method

The main idea of the Monte Carlo method is to approximate the probability
of some outcome by repeated random sampling. The method as such does
not have any rigorous mathematical definition. It is based on the classical
definition of probability, which is defined as the number of desired events
divided by the number of possible outcomes. These sets of numbers can be
regarded as areas or volumes, and distributing a random sampling over the
whole domain of possible outcomes ultimately produces the desired outcome.

One classic example on the intuition of Monte Carlo method is the esti-
mation of ⇡. Suppose we have a circle with radius R inside a square with
side length 2R. The ratio between the area of circle and square equals ⇡/4.
Thus the estimation for the value of ⇡, which we denote with ⇡̃, can be
estimated with the Monte Carlo method by generating random points over
the whole domain and counting the number of points N inside the circle and
square, that is ⇡ ⇡ ⇡̃ = 4 Ncircle

Nsquare
. See Figure 3.1 for an illustrative simulation.

Clearly as the random sample size approaches infinity, the whole domain will
be filled and thus the approximation ⇡̃ ! ⇡.

The Monte Carlo method is highly convenient in the numerical integration
schemes. Consider a simple integral

I =

Z

[0,1]d
f(x)dx,

where f(x) is assumed to be integrable over the defined domain. The integral
can be defined with expected value E[f(X)] = I, where X ⇠ unif [0, 1]d.
Evaluating the value of the function f(X

i

) at n � i � 1 random points and
gives the Monte Carlo estimate

Ĩ =
1

n

nX

i=1

f(X
i

).
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Figure 3.1: Monte Carlo simulation for approximating the value of ⇡. Here
we used sample size n = 10000 which resulted in ⇡̃ = 3.1356.

Consequently, by the strong law of large numbers3 we note that Ĩ ! I as
n ! 1. Thus we obtained an estimate for arbitrary integrable function with
the Monte Carlo method. [33]

The increasing sample size is the essence of the Monte Carlo method
which ultimately allows the convergence to the exact value. The number
of simulations required to obtain a reasonable value can be investigated by
examining the rate of convergence. For the Monte Carlo method, the con-
vergence rate is obtained from the central limit theorem and it is of order
O( 1p

n

), where n denotes the sample size. While this is not the most e�cient
rate of convergence in comparison to other numerical integration schemes,
the convergence rate holds also in higher dimensions, that is, when d > 1.
Thus evaluating integrals in higher dimensions is relatively e↵ortless with
the Monte Carlo method as with other deterministic methods the rate of
convergence decreases as the dimension increases. [33]

The Monte Carlo method has various applications throughout di↵erent
fields due to its applicability to higher dimension problems with uncertainty.
It is used heavily in computational physics, chemistry and biology, and in
several everyday applications such as weather forecasting and artificial in-

3
Strong law of large numbers. Let (X

i

: n � 1) be independent identically distributed

random variables with E|X
i

| < 1. Then
Pn

i=1 Xi

n

! E[X
i

] almost surely as n ! 1.
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telligence, just to give few examples. Taking into account that the field of
finance and economics usually involves expected values, high dimensions and
uncertainty, the Monte Carlo method is also highly attractive method for our
study.

3.1.3 Binomial lattice model

The general idea of behind di↵erent types of lattice models is to simulate
the continuous stochastic process of a stochastic variable with discrete steps.
This is obtained by dividing the time domain into discrete steps where the
value of a stochastic variable is evaluated. In the binomial lattice model
the value may go either up or down with a given probability, while in the
trinomial lattice model the value has three di↵erent states in the next step.
However, in this study we will focus only to the binomial lattice model, see
Figure 3.2 for an illustration of the binomial grid. The binomial lattice model
was originally introduced by Cox et al. in 1979 [17] as a framework to price
options. The model is known as the CRR model in the literature, which
abbreviation we will also use.

Figure 3.2: Schematic illustration of a binomial lattice grid where the stochas-
tic variable x can either increase or decrease in the discrete time grid.

Suppose that we have a continuous stochastic process x, which is divided
into n � i � 0 discrete steps. Thus the value of the stochastic variable at each
node is given as x

i

. Advancing from a node forwards, the value can either
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increase by the factor u with probability p, or decrease by the factor d < u
with probability (1� p). Let U

n

denote the number of movements upwards
and thus the movements U

n

follow Binomial distribution with n trials with
probability p, that is U

n

⇠ B(n, q). Consequently, for the binomial model at
the terminal time i = n, we have

x
n

= puUndn�Un = peUn ln(u
d )+n ln(d).

We assume that the probability for the up and down is the same, that is
p = 1

2 , and that

u = eb�t+�

p
�t, d = eb�t��

p
�t,

where we have

b =
1

2

ln(u) + ln(d)

�t
, � =

1

2
=

ln(u)� ln(d)p
�t

.

Consequently, with the given assumptions the value of the stochastic variable
at the terminal time T = n�t is given as

x
n

= pe
bT+�

p
T

⇣
2Un�np

n

⌘

.

Now, using the central limit theorem4, we note that

x
n

! pebT+�W (T ) = x(T ) as n ! 1.

Thus with given parameters the terminal value of the binomial model con-
verges to the exact value of the continuous stochastic process. [43]

Few remarks about the convergence. Note that we made some assump-
tions about the parameters and assumed that we know the terminal value
of the stochastic variable. Regarding the convergence of the binomial lat-
tice model, it is unrelevant how the probability p is chosen. However, if the
stochastic variable is not dependent on the terminal value, the proof pre-
sented above does not guarantee the convergence to the exact value. To
prove that the binomial lattice method also applies in cases where the value
of the stochastic variable is dependent on the whole time domain, more rig-
orous methods should be applied. Using Donsker’s Theorem, which is a
extension of the central limit theorem, it can be proven that the binomial
lattice method converges weakly to the geometric Brownian motion that is

4
Central limit theorem (Lindeberg-Lèvy). Let (X

i

: n � 1) be independent identically

distributed random variables with E[X
i

] = µ and V ar[X
i

] = �

2
< 1. Then

Pn
i=1 Xi�nµp

n

!
N(0,�2) almost surely as n ! 1.



CHAPTER 3. NUMERICAL METHODS 30

the essence of real option models. However, we will not go through the prove
here as it is slightly out of the scope of this study. [44]

Note that the binomial lattice model has similarities with the decision
tree analysis that was discussed earlier, but it has two distinct di↵erences.
First, the shape of the lattice, i.e. the tree, has a fixed symmetry while
in decision tree analysis there can be an arbitrary number of outcomes at
every branch. Second, the nodes in the lattice describe the current state of
a variable that evolves discretely through time. Thus the binomial lattice
method only provides information on the value of a stochastic variable and
not the decision itself.

The binomial lattice model introduced above takes us one step closer to
finite di↵erence method, which can be regarded as an extension of the lattice
model.

3.1.4 Finite di↵erence method

The main idea of finite di↵erence method is to create a discrete grid over the
domain of a di↵erential equation, calculate an initial value at some grid point,
and move along the grid by calculating an approximation of the derivative
at the next grid point. Hence a discrete image of the domain will be formed
as all the nodes in the grid are calculated.

Let us start with a simple example. Assume that we are seeking a solution
in domain x 2 [x0, xn

] for a first order ordinary di↵erential equation described
by the following set of equations:

8
<

:

dy

dx
= f(x, y),

y(x0) = y0.

The first step is to form a discrete grid by dividing the continuous domain to
non-overlapping intervals. Hence set up a discrete grid x0 < x1 < . . . < x

n

.
For simplicity, we assume that the grid is regular, that is, the length of
interval is given by a constant h and thus x

i

= x0 + ih, see Figure 3.3 for
illustration.

Next we will start at some initial value and move along the grid to de-
termine the discrete image of the domain. There are several interpolation
methods to move along the grid. The most simplest is the classical Euler’s
method, where the approximation of the di↵erential equation at the neigh-
boring grid point is determined from equation

y
i+1 = y

i

+ hf(x
i

, y
i

). (3.1)
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Figure 3.3: Illustration of one dimensional discrete grid.

Hence starting from the initial value y0, the next grid point can be calcu-
lated according to Equation 3.1. Consequently, moving a single step forwards
through the discrete grid until point x

n

, a numerical approximation of the
di↵erential equation at every grid point can be determined. However, Euler’s
method is rarely used in practice as the local and global truncation errors5

are of order O(h2) and O(h), respectively, which imply that the Euler’s
method is rather ine↵ective. However, based on the same single step forward
-principle, there other more e↵ective methods available. One example is the
fourth order Runge-Kutta method for which the local and global truncation
errors are of order O(h5) and O(h4).

Both of the two methods are explicit methods as the approximation of
the di↵erential equation is calculated by taking account only the previous
value of equation. Contrast to the explicit methods, in implicit methods the
current value of the equation is also taken into account. Classical example of
an implicit method is the backward Euler method, for which the numerical
scheme is the following:

y
i+1 = y

i

+ hf(y
i+1, xi+1). (3.2)

We note from Equation 3.2 that the state of the system, y
i+1, is included on

5The local truncation error measures the error made at a single step, while the global
truncation error measures the sum of local errors for multiple steps. For example in
Euler’s method, reducing the step size to a half the local and global discretization errors
are reduced by a quarter and half, respectively.
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the both sides of the equation, which indicates an implicit method. If the
di↵erential equation is linear and an initial value is assigned, it is possible
to solve Equation 3.2 from the previous step. However, if the di↵erential
equation is nonlinear, it is usually necessary to calculate all the steps to
obtain a solution.

As noted in the beginning of this section, there are multiple interpo-
lation methods to consider when solving a problem with finite di↵erence
method. Considering di↵erential equations outside the illustrative example
we presented, the basic idea of finite di↵erence method stays the same as the
derivatives of a function are simply replaced with approximations and the
discrete values within the grid are calculated one by one. For further details,
see for example [49], [23].

3.2 Applications

Next we present two possible applications for the numerical methods dis-
cussed above. In the first case we consider an option to invest into a project
where the cash flows are uncertain. We assume that the payo↵ from the
project will be given at the terminal time when the project is complete. For
this type of investment problem a closed-form solution exists, which we will
use as a benchmark for the numerical methods. In the second case we con-
sider an abandonment option for an ongoing project with uncertainty in cash
flows. We assume that project has some salvage value and thus a decision-
maker has to decide at every point of time whether to continue the project
or abandon the project with a salvage value. Thus the second problem is
a optimal stopping problem for which a closed-form solution does not exist
and hence numerical methods are required to obtain a solution.

3.2.1 Investment option

Suppose that we are seeking a valuation to a project with a finite lifetime t 2
[0, T ]. The cash flows x from the investment are stochastic with a standard
deviation �. Hence the evolution of cash flows over time are described as

dx(t)

x(t)
= rdt+ �dW (t), (3.3)

where r is the risk-free interest rate. No initial investment is required at t = 0,
but if the investment to the project is executed it has a fixed investment cost
I.
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Consequently, we are dealing with a finite time horizon and thus by follow-
ing the discussion in Chapter 2.2 and assuming that there are no dividends,
the set of equations to be solved are given as

8
>>><

>>>:

1

2
�2x2@

2V (x, t)

@x2
+ rx

@V (x, t)

@x
� rV (x, t) = �@V (x, t)

@t
,

V (0, t) = 0,

V (x, T ) = max{x� I, 0}.

(3.4a)

(3.4b)

(3.4c)

The first boundary condition (3.4b) is a typical Dirichlet boundary condi-
tion that follows from the properties of the stochastic process for the stochas-
tic variable x. The second boundary condition (3.4c) determines the optimal
investment strategy at the terminal time – the value of the investment op-
tion has no value if the fixed investment cost I is greater than the cash flows
x at the terminal time. The boundary conditions can be visualized on the
(x, t)-domain, which is illustrated in Figure 3.4. Note that there are two
fixed boundaries, V (x = 0, t) and V (x, t = T ), otherwise the boundaries are
free. In addition, note that if a solution in the whole domain is calculated,
the maximum value for x has to be fixed to some value x = X.

Figure 3.4: Domain of the case problem, where the fixed boundaries V (x =
0, t) and V (x, t = T ) are marked with red and blue color, respectively.

Note that the case study on investment problem described with set of
equations (3.4a-3.4c) has a close resemblance to the pricing of an European
call option6 with the Black-Scholes equation. The analogies between the two
approaches are listed in Table 3.1.

6In finance, a European option can be exercised only at the expiration time of the
option, while an American option can be exercised at any point of time during the option
lifetime. Given the price of underlying security P and the strike price S, the payo↵ for a
call option is defined as max{P � S, 0} and for a put option as max{S � P, 0}.
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Table 3.1: Analogies of the investment problem with a European call option.

Call option Investment problem

Stock price Investment cash flows (x)

Exercise price Fixed investment cost (I)

Time to expiration Time to invest (T )

Volatility of stock price S.d. of cash flows (�)

Risk-free interest rate Risk-free interest rate (r)

Contrast to several other real option problems with a finite time horizon,
a closed-form solution has been derived to the set of equations (3.4a-3.4c)
describing the case problem. The value of the investment is given as

V (x, t) = �(d1)x� �(d2)Ie�r(T�t), (3.5)

d1 =
1

�
p
T � t


ln
⇣x
I

⌘
+

✓
r +

�2

2

◆
(T � t)

�
,

d2 = d1 � �
p
T � t,

where �(·) is the standard normal distribution cumulative distribution func-
tion7. The reasoning behind choosing a case study with a closed-form solution
is that we can use the analytical solution as a benchmark when comparing
di↵erent numerical methods.

Next we will apply the numerical methods presented in Chapter 3.1 to
the investment case study.

3.2.1.1 Monte Carlo method

In this section we derive a valuation for the investment case study problem
(3.4a-3.4c) by using the Monte Carlo method. We follow the steps given by
Glasserman in [33] and advise the reader to refer it for further details.

Given the evolution of cash flows (3.15) and the properties of a Wiener
process (2.2), we may solve the cash flows at terminal time T , giving us

x
i

(T ) = x(0)e(r�
1
2�

2)T+�

p
TZi ,

7The value for the standard normal distribution cumulative distribution function can

be calculated from equation �(x) = 1
2


1+ erf

✓
xp
2

◆�
, where the error function is given as

erf(x) = 2p
⇡

R
x

0 e

�t

2

dt.
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where (Z
i

: n � i) is a random vector containing pseudorandom values drawn
from the standard normal distribution. We have a boundary condition (3.4c)
that holds at the terminal time T , which we can use to solve the value of the
investment. For all the randomly generated values in the random vector Z

i

,
the value of the investment option given as a vector is

V
i

= e�rT max{x
i

(T )� I, 0},

where the cash flow at the terminal time has been discounted with a factor
e�rT to obtain the present value. Hence the estimate for the value of the
investment can be derived from the mean of the investment option vector,
that is

Ṽ =

P
n

i=1 Vi

n
.

The estimate Ṽ is unbiased for any n � 1 and strongly consistent as Ṽ ! V
with probability 1 when n ! 1. Clearly a finite sample size is su�cient for
an approximative value. The asymptotic (1 � !) confidence interval can be
calculated from equation

Ṽ ± z
!/2

Ṽ
s.d.p
n
, (3.6)

where Ṽ
s.d.

is the standard deviation of investment option vector V
i

, that is

Ṽ
s.d.

=

vuut 1

n� 1

nX

i=1

(V
i

� Ṽ )2.

Consequently for example with 95% confidence interval we have ! = 0.05
and z

!/2 ⇡ 1.96.
Note that with the given variant of the Monte Carlo method, the value of

the investment option was independent on the path between 0 and T . Thus
the procedures given above are not applicable with options that are path-
dependent, such as an American option in finance where the option can be
exercised at any time during the lifespan of the option.

3.2.1.2 Binomial lattice method

The binomial lattice method we present below is originally the work of Cox
et al. [17], which we will follow here on the implementation to the investment
case study.

The method consists of two phases. In the first phase the lattice with n
states and consequently n� 1 discrete time steps is created by starting from
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the current value of cash flows x(0) and moving either up or down on every
time step. The up and down factors given as

u = e�
p
�t, (3.7)

d = e��

p
�t, (3.8)

where �t = T

n

is the length of the discrete time step. Thus the value of
cash flow at every node is given by x

i,j

:= (uidjx(0) : n � 1 � i + j). After
deriving the values for all the nodes and consequently the investment value
at the terminal time, boundary conditions (3.4c) are applied at the terminal
nodes according to equation

V
i,j

= max{x
i,j

� I} 8(i+ j) = n� 1.

See Figure 3.5 for a illustration with two time steps.
In the second phase the investment values at intermediate nodes are cal-

culated according to equation

V int

i�1,j�1 =
�
pV up

i,j�1 + (1� p)V down

i�1,j

�
e�r�t 8(i+ j)  n� 1, (3.9)

where p is the probability for the up-movement given as

p =
er�t � d

u� d
.

Note that Equation 3.9 is similar to the backward Euler scheme which
utilizes the fact that terminal value is defined. Consequently moving back-
wards in time according to Equation 3.9 the value of the investment at t = 0
can be obtained.

Figure 3.5: Illustration of the binomial lattice method for the case study
with two time steps.
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3.2.1.3 Finite di↵erence method

Finally, we present a finite di↵erence implementation for the investment case
study. Contrast to other numerical methods presented so far, we will use two
di↵erent schemes, explicit and implicit, within the finite di↵erence method
to fully compare the e�ciency of the method. For a practical reference on
finite di↵erence methods, see [77], and for more theoretical discussion, see
[46].

In both cases, we begin by setting up the discrete grid which remains the
same for both schemes. Since we are calculating the value of the investment
in the whole domain, we have to set some upper boundary for the cash flows
x given as X, cf. 3.4. Consequently we discretize the cash flows into a grid
by setting 0 = x0 < x1 < . . . < x

N

= X with x
i

= i�x, where �x = X

N

.
The continuous time t is discretized similarly in similar manner by setting
0 = t0 < t1 < . . . < t

M

= T with t
j

= j�t, where �t = T

M

. Note that in this
case we have a regular grid for both variables, see an illustration of the grid
in Figure 3.6. Hence the discrete approximation of every value is determined
uniquely from the grid points, that is Ṽ

i,j

⇡ V (x
i

, t
j

).

Figure 3.6: Schematic illustration of a regular grid used in the case study.

Next we apply the boundary conditions of the case study to the generated
grid. The boundary conditions given in Equations (3.4b-3.4c) are given in
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grid notation as

Ṽ0,j = 0 j = 0, 1, . . . ,M

Ṽ
i,M

= max{x
i

� I, 0} i = 0, 1, . . . , N

Ṽ
N,j

= X � Ie�r(T�tj) j = 0, 1, . . . ,M.

Note that as the domain was also limited with respect to cash flows x in
addition to the finite time horizon, we have to set a boundary condition at
the boundary V (x = X, t) = ˜V

N,j

= X � Ie�r(T�tj). The reasoning behind
this is that the value of the investment option asymptotes to x � Ie�r(T�tj)

with large values for x, where the fixed investment I is discounted to present
value.

The main idea of finite di↵erence method is to estimate an unknown
value of the grid from neighboring grid points. The estimation is performed
with approximative values for di↵erentials. The approximations vary slightly
depending on the direction of movement. For the forward di↵erence, we have
equations

@V

@x
⇡ Ṽ

i+1,j � Ṽ
i,j

�x
,

@V

@t
⇡ Ṽ

i,j+1 � Ṽ
i,j

�t
,

and for the backward di↵erence, we have

@V

@x
⇡ Ṽ

i,j

� Ṽ
i�1,j

�x
,

@V

@t
⇡ Ṽ

i,j

� Ṽ
i,j�1

�t
.

Central di↵erence is more accurate than the forward and backward di↵erence,
and it is given as

@V

@x
⇡ Ṽ

i+1,j � Ṽ
i�1,j

2�x
,

@V

@t
⇡ Ṽ

i,j+1 � Ṽ
i,j�1

2�t
.

The di↵erence for the second derivative is obtained from the di↵erence in
forward and backward di↵erence, which is

@2V

@x2
⇡ Ṽ

i+1,j � 2Ṽ
i,j

+ Ṽ
i�1,j

(�x)2
.

In explicit di↵erence scheme, steps are taken backwards in time. Thus
we use the backward di↵erence for time t and the central di↵erence for x.
Substituting the di↵erences into Equation 3.4a along with x ⇡ i�x gives us

1

2
�2i2(�x)2

Ṽ
i+1,j � 2Ṽ

i,j

+ Ṽ
i�1,j

(�x)2
� rṼ

i,j

+ ri�x
Ṽ
i+1,j � Ṽ

i�1,j

2�x
= � Ṽ

i,j

� Ṽ
i,j�1

�t
,
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and hence by using some basic algebra we obtain

Ṽ
i,j�1 = a

i

Ṽ
i�1,j + b

i

Ṽ
i,j

+ c
i

Ṽ
i+1,j (3.10)

with i = 0, . . . , N � 1, and j = 1, . . . ,M � 1. That is, we are calculating the
values at the inner nodes which are inside the boundaries. The coe�cients
in Equation 3.10 are given as

a
i

=
1

2
(�2i2 � ri)�t,

b
i

= 1� (�2i2 + r)�t,

c
i

=
1

2
(�2i2 + ri)�t.

Hence we can calculate an approximation for the current value of the
option, Ṽ

i,0, starting from the boundaries at the terminal time and working
our way back to t = 0. Note that the method derives the option value at
every grid point. To obtain the option value at some other data point, e.g.
between grid points, some reasonable interpolation method should be used
such as bilinear interpolation.

A simple way to perform the calculations is to transfer the set of equations
(3.10) into matrix form

ṽ
j�1 = Aṽ

j

+ k
j

j = M, . . . , 1, (3.11)

where the system of equations at time j are given as

2

666666664

Ṽ1,j�1

Ṽ2,j�1
...
...

Ṽ
N�2,j�1

Ṽ
N�1,j�1

3

777777775

=

2

6666666664

b1 c1 0 · · · · · · 0

a2 b2 c2
. . .

...

0 a3 b3 c3
. . .

...
...

. . . . . . . . . . . . 0
...

. . . a
N�2 b

N�2 c
N�2

0 · · · · · · 0 a
N�1 b

N�1

3

7777777775

2

666666664

Ṽ1,j

Ṽ2,j
...
...

Ṽ
N�2,j

Ṽ
N�1,j

3

777777775

+

2

666666664

a1Ṽ0,j

0
...
...
0

c
N�1ṼN,j

3

777777775

.

The solution scheme with the matrix formulation presented above is relatively
easy to implement into a computer environment.

In implicit di↵erence scheme, steps are taken forward in time. The dif-
ference of the explicit and implicit scheme is illustrated in Figure 3.7. In
both methods the value is calculated from the three values before or after
with respect to time depending on the scheme. There are also other methods
available, such as Crank-Nicholson scheme where the nodal value is calcu-
lated implicitly from five neighboring grid points. However, in this study we
will present only the typical explicit and implicit scheme.



CHAPTER 3. NUMERICAL METHODS 40

(a) Explicit (b) Implicit

Figure 3.7: Determining the nodal value with the explicit and implicit
method.

As noted from Figure 3.7, the desired node value in implicit scheme is
derived from the nodes prior in time. Thus we use forward di↵erence to
approximate the time di↵erential and central di↵erence for the other variable.
Plugging the expressions into 3.4a gives us

1

2
�2i2(�x)2

Ṽ
i+1,j � 2Ṽ

i,j

+ Ṽ
i�1,j

(�x)2
� rṼ

i,j

+ ri�x
Ṽ
i+1,j � Ṽ

i�1,j

2�x
= � Ṽ

i,j+1 � Ṽ
i,j

�t
, (3.12)

which can be rewritten as

a
i

Ṽ
i�1,j + b

i

Ṽ
i,j

+ c
i

Ṽ
i+1,j = Ṽ

i,j+1 (3.13)

with i = 0, . . . , N � 1, and j = 1, . . . ,M � 1, where the coe�cients are given
as

a
i

=
1

2
(ri� �2i2)�t,

b
i

= 1 + (�2i2 + r)�t,

c
i

= �1

2
(ri+ �2i2)�t.

Hence we have a set of equations where the time-zero vector can be solved.
The calculation scheme (3.13) can be presented as matrix formulation:

Bṽ
j

= ṽ
j+1 � k

j+1 j = M � 1, . . . , 0, (3.14)
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where the system of equations at time j is the following:

2

6666666664

b1 c1 0 · · · · · · 0

a2 b2 c2
. . .

...

0 a3 b3 c3
. . .

...
...

. . . . . . . . . . . . 0
...

. . . a
N�2 b

N�2 c
N�2

0 · · · · · · 0 a
N�1 b

N�1

3

7777777775

2

666666664

Ṽ1,j

Ṽ2,j
...
...

Ṽ
N�2,j

Ṽ
N�1,j

3

777777775

=

2
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Ṽ1,j+1
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Note that even though we used forward di↵erence to approximate the
value at the next grid point, the system of equations (3.14) is such that it
can be solved by moving backwards in time. To carry out this, we need to
compute the inverse of matrix B to derive the solution vector ṽ

j

. However, as
the matrix B tridiagonal and constant in time, this is not a major problem.
In addition, due to given properties of the matrix, some factorization method
such as LU decomposition can be used to speed up the calculation time.

3.2.2 Abandonment option

Next we present our second case study in which we consider an option to
abandon a project under finite lifetime t 2 [0, T ]. Let the project gener-
ate uncertain cash flow x at the terminal time T and thus the cash flow is
described with Brownian motion

dx(t)

x(t)
= rdt+ �dW (t), (3.15)

where r is the risk-free interest rate and � is the standard deviation of cash
flow. The project can be abandoned at any time with a fixed salvage value
S.

The possibility for abandonment at any given time causes substantial
changes to the set of equations derived for the finite time horizon investments.
We partly follow [76] in the derivation of the set of equations and in the
implementation of numerical methods.

In Chapter 2.2 it was assumed that the risk-free return of the investment
R

rf,i

and risk-free return of market R
rf,m

were equal to avoid arbitrage.
However, as it is up to the holder of the project to decide if the project
should be abandoned or not, it is possible that the decision-maker makes
wrong decision and does not abandon the project at optimal time. In this
case the value of project is less than the value obtained from the market
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and if the decision-maker acts optimally, the value of the project equals the
market value. Hence we note that it must hold R

rf,i

 R
rf,m

at all periods
of time and thus we have the following condition:

L(x, t) := 1

2
�2x2@

2V (x, t)

@x2
+ rx

@V (x, t)

@x
� rV (x, t) +

@V (x, t)

@t
 0,

The payo↵ from the abandonment option is clearly  (x, t) := max{S �
x(t), 0}. Now suppose that V (x, t) <  (x, t). Then the underlying replicate
variable for the cash flows x can be bought from the market to cover the
project value and risk-free profit is obtained. Hence to avoid this arbitrage
opportunity, we must have the inequality condition V (x, t) �  (x, t). Here
clearly if the abandonment value is larger than the payo↵, that is, V (x, t) >
 (x, t), it makes no sense to abandon the project and if the abandonment
value equals the payo↵, V (x, t) =  (x, t), the project should be abandoned
immediately.

Combining the two inequalities we obtain two regions where the project
should be continued or abandoned together define the boundary where the
project should be abandoned. In the abandoning region the value of project
equals the payo↵ and the rate of return from the project is less than from
the market, giving us

V (x, t) =  (x, t), L(x, t) < 0,

and then in the holding region the value of the project is larger than the
payo↵ and the rate of return from the project equals the rate of return from
the market, that is

V (x, t) >  (x, t), L(x, t) = 0.

In addition to the two regions, we need to define the boundary conditions
for the abandonment option. Since we are dealing with finite time horizon,
the option to abandon the project ends at terminal time where the option
value is V (x, T ) =  (x, T ). Then, clearly if the cash flow from the project is
su�ciently large the option has no value and thus lim

x!1 V (x, t) = 0.
Hence given all the required conditions, we may formulate the abandon-

ment problem as the following free boundary problem:

8
>>>>>><

>>>>>>:

L(x, t)  0,

V (x, t) �  (x, t),
L(x, t)(V (x, t)� (x, t)) = 0,

V (x, T ) =  (x, T ),

lim
x!1

V (x, t) = 0.

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)
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Finding a solution for the free boundary problem involves finding the optimal
abandonment boundary xf (t), see Figure 3.8, which cannot be determined
a priori. We note that the abandonment problem is similar to finding an
optimal price for an American put option, see Table 3.2 for analogies between
the approaches.

Figure 3.8: Finite domain for the abandonment problem, where the fixed
boundaries V (x = X, t) and V (x, t = T ) are marked with red and blue
color, respectively, and the whole domain ⌦ is divided with the abandonment
boundary xf into the continuation region ⌦

c

⇢ ⌦ and the abandonment
region ⌦

a

⇢ ⌦.

Table 3.2: Analogies of the abandonment problem with an American put
option.

Put option Abandonment problem

Stock price Project cash flows (x)

Exercise price Salvage value (S)

Time to expiration Time to abandon (T )

Volatility of stock price S.d. of cash flows (�)

Risk-free interest rate Risk-free interest rate (r)

Contrast to the first case, the free boundary problem does not have a
closed form solution8 and hence must be solved numerically. Naturally, there

8Note that if we would have similar boundary conditions as in the first case study but
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are several numerical methods that can be applied to obtain a solution. Con-
sidering the numerical methods presented in the previous discussion, deriv-
ing a solution with the Monte Carlo method is not that straightforward due
to the path-independence feature. It is nevertheless possible for example
with variance reduction methods [8] and Lagrangian martingales [64]. How-
ever, instead of delving into these extensions of the Monte Carlo method, we
present how to obtain a solution for the abandonment option with binomial
lattice and finite di↵erence method for which the procedures are very similar
to the implementations presented in Chapter 3.2.1.

3.2.2.1 Binomial lattice method

Next we apply the binomial lattice method into the abandonment problem
with option for early exercise. The basic idea and steps are similar to the
first case study with a small adjustments.

We initialize the lattice with n states according to the future value of
cash flows from the project x(0) where the value can go either up (3.7) or
down 3.8) between discrete time steps n � 1 with length �t = T

n

. Next the
boundary condition (3.16d) at the terminal nodes is applied, given for the
abandonment problem as

V
i,j

= max{S � x
i,j

} 8(i+ j) = n� 1.

The second phase follows the principles of dynamic programming, where
the optimal stopping time is determined by starting from the terminal time
and advancing one step at time to the initial time by solving a subproblem
at every step. The subproblem is the choice between continuing and aban-
doning the project. If the project is continued, the value is the same as in
the first case study, that is, given by Equation 3.9. Then, if the project is
abandoned, the project holder receives the payo↵ max{S � V

i�1,j�1}. Hence
the subproblem that is solved at every time step for the value maximizing
decision-maker is given by

V int

i�1,j�1 = max
�
max {S � V

i�1,j�1} , e�r�t

�
pV up

i,j�1 + (1� p)V down

i�1,j

� 
,

which holds for all (i+j)  n�1. Consequently by moving backwards to the
initial time t = 0 the value of the abandonment option can be determined.
Note that even though the optimal price for the abandonment option is de-
termined at the initial time, this implementation method does not naturally

the possibility to exercise the option at any given time, it would not be reasonable to
exercise the option until the terminal time. Hence the set of equations would reduce to
Equations 3.4a-3.4c, and thus a closed-form solution would exist. However, this would not
hold if payments would be given during the life of an option. [76]
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determine the free boundary in a strict sense. However, it can be constructed
manually with di↵erent methods by examining the state values. For further
details on this, see for example [42].

3.2.2.2 Finite di↵erence method

Starting from the free boundary value problem (3.16a-3.16e), there are several
ways to solve the problem. One possibility is to use front-fixing method
where a change of variables is executed to convert the free boundary into
a fixed boundary or penalty method where the free boundary eliminated
by introducing a penalty term that essentially converts the inequalities into
equalities [59]. Another option is to take the dynamic programming approach
and neglect the free boundary for a moment. This will impose only few
adjustments to the finite di↵erence method implementation of the first case
study and thus we will use it here.

We begin by initializing a discrete grid on a fixed domain where the
cash flows are discretized with 0 = x0 < x1 < . . . < x

N

= X and time
discretized with 0 = t0 < t1 < . . . < t

M

= T . The discrete steps are given
by x

i

= i�x = iX
N

and t
j

= j�t = j T

M

. Hence we have a regular grid with

discrete approximations Ṽ
i,j

⇡ V (x
i

, t
j

). The boundary conditions for the
abandonment problem in grid notation are given by

Ṽ0,j = Se�r(T�tj) j = 0, 1, . . . ,M

Ṽ
i,M

= max{S � x
i

, 0} i = 0, 1, . . . , N

Ṽ
N,j

= 0 j = 0, 1, . . . ,M,

which are applied to the initialized grid.
We will employ only the implicit finite di↵erence method for the aban-

donment problem. For the explicit method the concept is exactly the same as
for the binomial lattice method, but with the implicit few additional modifi-
cations are required. At every time step we solve the subproblem whether to
continue or abandon the project. If the project is continued, the value is given
by Equation 3.13 and if the project is abandoned the payo↵ max{S � x

i

, 0}
is obtained. Hence, following the matrix notation given in Equation 3.14, we
solve at every time step j the following equation:

ṽ
j

= max
�
max {S � x, 0} ,B�1(ṽ

j+1 � k
j+1)

 
j = M � 1, . . . , 0.

Consequently we obtain the abandonment option value at the whole fixed
domain.

Note that this requires that the matrix B is invertible, which is true for
our case as the matrix B is tridiagonal. More robust and accurate method
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would be to use iterative methods such as projected successive over-relaxation
(PSOR), which is commonly used in the implicit finite di↵erence method, cf.
[76].

Furthermore, note that by taking the dynamic programming approach
to solve the option value, the abandonment boundary is not solved directly.
We will construct an approximation x̃f for the abandonment boundary xf a
posteriori by solving the following equation:

x̃f

j

= kṽ
j

� (S � x)k < " 8j

where the first element of ṽ
j

is chosen for which the condition holds. Here " >
0 is used as the relaxation parameter that gives a reasonable approximation
of the abandonment boundary when the parameter value is very small.



Chapter 4

Results

In this chapter we present numerical solutions for the case studies and analyze
the results. In addition a comparison of numerical methods is performed.
All of the numerical methods were implemented in MATLAB R2014b [52]
numerical computing environment, see Appendix A for detailed code on the
implementation procedures.

4.1 Investment option

We begin by choosing a reasonable set of parameters for the investment
option. We assume that the investment period is ten years (T = 10) during
which the risk-free interest rate is assumed to be low, three percent on average
(r = 0.03), reflecting weak economic conditions. The future cash flows are
assumed to be highly uncertain, and thus we adjust standard deviation to 35
percent (� = 0.35). The current value of cash flows is assumed to be hundred
million euros (x(0) = 100). The parameters are summarized in Table 4.1.

Table 4.1: Parameters used in the investment option case.

Parameter Symbol Value Unit

Current CF from investment x(0) 100 EURm

Fixed investment cost I 150 EURm

Time to invest T 10 years

S.d. of cash flows � 0.35 -

Risk-free interest rate r 0.03 -

47
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Plugging the given parameters into Equation 3.5 yields V
exact

⇡ 38.9566
as the closed-form solution, which we will use to benchmark the numerical
results. Clear interpretation of this result is that a company should not
pursue the project if there is an opportunity available with a greater value.

4.1.1 Monte Carlo simulation

We begin the analysis by running the Monte Carlo simulation with the pa-
rameters given in Table 4.1. Using a sample size of n

max

= 1.5 · 106 and 95%
confidence level, the simulation yields

Ṽ inv

MC

= 39.1506± 0.2207

as the value of investment option. We note that the value is reasonably close
to the exact value. To investigate the convergence properties we run the
simulation with smaller sample sizes, descending evenly to n

min

= 5 · 104.
The results of the simulation are presented in Figure 4.1 along with the 95%
confidence level.
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Monte Carlo simulation with 95% confidence level

Figure 4.1: The value of the investment option (blue) and the 95% confidence
level (light green area) with a Monte Carlo simulation in comparison to the
analytical solution (red).

Examining Figure 4.1, we note that the 95% confidence level contracts as
the number of simulations increases as expected, cf. Equation 3.6. Clearly,
Ṽ inv

MC

! V
exact

as n
max

! 1. However, notice that the sample size for
the Monte Carlo simulation should be su�ciently large to obtain accurate
values as the rate of convergence is of order O �

n�1/2
�
. The slow convergence

e↵ect is also clearly visible in Figure 4.1. Hence, even though the Monte
Carlo simulation returns always reasonable values with absolutely contracting
confidence level, the slow convergence can also be disadvantageous as in the
investment option case where the dimension number is low.
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4.1.2 Binomial lattice

Next we valuate the investment option with the binomial lattice model. Di-
viding the finite time horizon into n

max

= 150 discrete time steps yields

Ṽ inv

BL

= 38.9688.

We examine the convergence properties by running simulations with dif-
ferent grid sizes 1  n

max

. The simulation results are given in Figure 4.2,
where the grid size was increased in every simulation by one.
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Figure 4.2: Value of the investment option (blue) in comparison to the ana-
lytical solution (red line) with di↵erent number of grid points.

We notice two distinctive trends in the convergence; a sawtooth and oscil-
latory e↵ect. That is, the convergence is oscillatory and non-monotonic. The
sawtooth e↵ect is commonly referred as distribution error in corresponding
literature. This arises due to the fact that a discrete binomial probability is
used to approximate the log-normal distribution of the stochastic di↵usion
process [26].

The oscillatory e↵ect, more commonly known as the non-linearity error,
can be seen as a periodic expansion of the investment option value which
diminishes as number of grid points are added. The e↵ect arises only when
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the current position di↵ers from the at the money position, that is x(0) 6=
I. Hence the non-linearity error emerges due to large discontinuity in the
terminal region between the current value and investment cost [26].

Thus by comparing the convergence e↵ects, we note that the distribution
error is not that harmful as by increasing the number of steps the error
diminishes. However, the non-linearity error is quite negative aspect of the
method as the derived value of the option might be far away from the exact
value even with a large number of steps. Leisen et al. [48] showed that the
convergence rate for the CRR model isO(n�1), which is quite poor. However,
several di↵erent solutions have been proposed, e.g. replacing values at the
end nodes with the investment cost values [35], smoothing out the payo↵
functions to maturity [35], or by using adaptive meshes [26].

4.1.3 Finite di↵erence method

Finally, we solve the investment option case with finite di↵erence method. We
derive a numerical solution both with the explicit and implicit interpolation
scheme to compare the e�ciency of the schemes. In addition to parameters
listed in Table 4.1, we have to set additional parameters for the grid. Limiting
the domain to X = 900 with N = 250 nodes and using M = 105 time steps,
we obtain:

Ṽ inv

FDM,exp

= 38.9567, Ṽ inv

FDM,imp

= 38.9565.

Comparing the values to the exact solution, we note that the values are
very close to the exact solution with both methods. Moreover, note that the
investment is valuated naturally in the whole domain with finite di↵erence
method, which is not possible for example with the Monte Carlo method
due to path independency. Examples of resulting solution surfaces for the
investment option are given in Figures 4.4.

Adjusting the grid size has a significant e↵ect on the accuracy as we note
from Table 4.2, which shows the results from additional simulations with
di↵erent grid sizes. Comparing the option values, we note that the error in
both methods is approximately the same and decreases rapidly as the length
of the time step decreases. Corresponding error plot of the values in log-log
scale is given in Figure 4.3. We note that the convergence of both methods
follows approximately the expected the convergence rate, which is determined
from the di↵erence approximations of the partial derivatives, giving O(�t)
and O(�x2) for both methods [46]. However, by running simulations with
various combinations of grid parameters we notice that the explicit method
is very sensitive to chosen grid parameters as the explicit method does not
convergence constantly.
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Table 4.2: Comparison of the explicit and implicit FDM with respect to the
absolute error for the case study.

FDM Explicit FDM Implicit

�t Value Error Value Error

0.1 39.691497763 0.734869664 39.545121521 0.588493422

0.01 39.124475131 0.167847031 39.106936177 0.150308077

0.001 38.937438616 0.019189482 38.935679028 0.020949070

0.0001 38.956664454 0.000036355 38.956488743 0.000139355

∆ t
10-4 10-3 10-2 10-1
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Figure 4.3: Absolute error for the case study in log-log scale for the explicit
and implicit FDM according to Table 4.2.

Examining the matrix formulations for the explicit and implicit method
(3.11, 3.14), we note that the stability and convergent requirements are

kAk1  1, kB�1k1  1

for the explicit and implicit scheme, respectively, where we denote k·k1 as
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the maximum norm1. Note that these conditions hold for all the possible
di↵erential equations that are approximated with the explicit or implicit finite
di↵erence method. Considering the investment option case, the stability
condition for the di↵erential equation of the case equation (3.4a) can be
written as

�t  1

�2N2
.

This poses serious limitations to the explicit method as with small values
of volatility � the time step size should be very small. Unlike the explicit
method, the implicit method is always stable and convergent as the maximum
eigenvalue is always less than one. For further details on the stability and
convergence of finite di↵erence method, see for example [11], [46].

Figure 4.4: Solution surface for the investment option with the explicit and
implicit FDM with given case parameters in Table 4.1 and grid parameters
X = 300, N = 30,M = 1000.

1For x 2 RN , the maximum norm is defined as kxk1 = max
iiN

|x
i

| and for X 2
RNxM , we have kXk1 = max

iiN

P
n

j=1|xij

|.



CHAPTER 4. RESULTS 53

4.1.4 Comparison of numerical methods

Generally, it is rather di�cult to rigorously compare di↵erent types of numer-
ical methods as they are constructed in a di↵erent way. Using the accuracy
of the numerical solution as only metric is problematic since by increasing
the number of iterations by one step does not equal increasing the grid size
by one node. In addition, the requirements for a numerical method vary by
user, e.g. a company might seek fast and easily implementable solution while
a researcher may seek as accurate solution as possible.

To investigate these two dimensions, we run additional simulations with
the case study parameters given in Table 4.1 with varying requirements for
the simulation. First we seek solutions with a condition that the absolute
error is smaller than 0.1 percent. Then we examine what is the accuracy
of the numerical methods when the wall-clock time on simulation is fixed
approximately to one second. The results of the simulations are given in
Table 4.3 and illustrated graphically in Figure 4.5.

Table 4.3: Comparison of the numerical methods for the investment case
with respect to fixed absolute error and wall-clock time in seconds. The
inputs correspond the random sample size for the Monte Carlo method (MC),
number of time steps for binomial lattice method (BL) and the grid size with
notation (N,M) for fixed X = 900 for both finite di↵erence methods (FDM).
The upper value from 95% confidence level was used in the MC comparison.

MC BL FDM Exp. FDM Impl.

kṼ�V k
V

⇡ 0.001

Input 100 · 106 88 (80, 9000) (80, 9000)

Ṽ 38.99119 38.99474 38.97428 38.97232

Clock time 46.86585 0.001758 0.368636 0.397352

Clock time ⇡ 1

Input 13 · 106 1800 (90, 15000) (80, 9000)

Ṽ 39.02310 38.95732 38.93714 38.93597
kṼ�V k

V

0.001706 0.000018 0.000500 0.000500

We notice that the binomial lattice method outperforms all the other
methods in both scenarios in the case study with given parameters. With
the fixed limit for the absolute error, the performance for the Monte Carlo
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Figure 4.5: Comparison of the performance of numerical methods in the
case study according to Table 4.3, where unit of the simulation clock time is
seconds.

method is clearly the worse as the clock time is close to a minute while other
are able to perform calculation under half a second. When the clock time
is fixed to one second, the absolute error is very low with all the methods
but once again the performance of the Monte Carlo method is the weakest.
Overall, there does not seem to be that significant di↵erence between FDM
with the explicit and implicit scheme. This does not however remove the
weak convergence properties for the explicit method.

In addition, note that the comparison given in Table 4.3 is not by any
means complete comparison of the numerical methods as only one set of
equations derived from the investment case was examined. Note also that
the outputs for the simulation methods are di↵erent, e.g. finite di↵erence
methods calculate the solution in the whole domain while the output for the
Monte Carlo method and binomial lattice method is merely a scalar value for
the option. Furthermore, there is plenty of room for improving the numerical
procedures implemented into computer environment as the code is not fully
optimized for fast calculation.

Summary of the key features of the numerical methods is given in Table
4.4. The performance estimates are based on the previous discussion within
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this study. Note that most of the features examined in the case study can
be considered global, as they are mostly independent on the set of equations
to be solved.

Table 4.4: General overview of numerical methods’ capabilities, where the
excellence of a feature is directly proportional to the filled area of a pie. The
features that are also applicable outside the investment case are denoted with
a dagger symbol.

MC BL FDM Exp. FDM Imp.

Case study

Implementability†

Clock time†

Accuracy

Convergence†

Stability†

Extensions

Inequalities

High dimensions

Boundary conditions

In addition to the case study comparison in Table 4.4, we consider the
competence of the numerical methods with possible extensions outside the
investment case. Inequalities can be used to allow an early exercise for an
investment option, which we will examine more closely with the following
case study. Allowing an early exercise for an option is particularly di�cult
in the Monte Carlo method due to path independency in comparison to other
methods where the condition can be simply applied at every node of lattice or
grid. However, in higher dimensions the Monte Carlo method excels over the
other methods as the rate of convergence is independent on the dimension
number. The di�culty of setting a di↵erent boundary condition is hard
to estimate as it is clearly highly dependent on the boundary condition to
be set. For example, changing the option to buy an investment to sell is
very easily implementable with all the methods but implementing more free
boundaries on the domain can be a daunting task especially for the basic
Monte Carlo method due to path independency. Comparing the binomial
lattice and the finite di↵erence method, the latter is more flexible on di↵erent
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types of boundary conditions due to mathematical nature of deriving the
numerical scheme. However, some boundaries, such as an infinite boundary
condition, are still very di�cult implement with the finite di↵erence method.

Naturally, there are also other numerical methods available for solving
a di↵erential equation arising from the real options analysis in addition the
numerical methods presented so far in this study. One particularly impor-
tant is finite element method (FEM), which has been used very successively
within the field of engineering for decades. The main idea for FEM is the
same as for the FDM, that is, approximate the solution of a di↵erential equa-
tion with a discrete solution in the whole domain. However, the method of
obtaining the discretization and the discrete solution are a bit more elegant2

in FEM. Even though the methods are similar with regards to idea, there
are several advantages and disadvantages between the FDM and FEM. Some
advantages in FEM are arbitrary and adaptive geometry of the grid, nearly
arbitrary boundary conditions that are easily implemented, reduced require-
ments on the regularity of the solution and more robust convergence and
error estimates. However, there is no free lunch in numerical methods. Com-
paring to the FDM and other numerical methods presented in this study,
the implementation of FEM is rather di�cult task and it can be regarded
as an overkill to some of the problems within real options analysis. This
is probably the main reason why FEM has not been used that often in the
field of finance and economics. However, the flexibility it provides through
nearly arbitrary grid and boundary conditions is enormous. This cannot be
underestimated when considering the increasing complexity of the economic
world.

4.2 Abandonment option

Next we turn into our second case study and present the results for the
abandonment option. Let us suppose that the projected cash flows from
a project are three hundred million euros (x(0) = 300) with a standard
deviation of 30 percent (� = 0.3). We assume that option to abandon the

2In FEM the solution of a di↵erential equation is approximated with a simple algebraic
equations. To obtain this, three steps are usually required. First, the di↵erential equation
has to be transformed into a variational formulation, i.e. the weak form of the boundary
value problem. Then the initial domain is discretized into a mesh consisting of elements,
such as triangles or cubes, and nodes connecting the elements. Finally the approximation
of the infinite dimensional di↵erential equation is calculated for the discretized variational
formulation in a finite dimensional subspace consisting of piecewice polynomials that are
connected over the elements. For further details on FEM, see for example [71], [40] and
[14].
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project is valid for five years (T = 5) with a fixed salvage value two hundred
million euros (S = 200). Finally, let the risk-free interest rate from the
market be three percent (r = 0.03). Summary of the parameters is given in
Table 4.5.

Table 4.5: Parameters used in the abandonment option case.

Parameter Symbol Value Unit

Projected CF from project x(0) 300 EURm

Salvage value S 200 EURm

Time to abandon T 5 years

S.d. of cash flows � 0.3 -

Risk-free interest rate r 0.03 -

As noted in Chapter 3, a closed-form solution for the abandonment prob-
lem does not exist and thus numerical methods are required to derive a
solution.

4.2.1 Numerical results

Following the discussion and results in the previous section where numerical
methods were compared, we derive a solution with the binomial lattice and
implicit finite di↵erence method. The reasoning behind choosing two meth-
ods instead of one is that we are able to compare and verify the numerical
results as analytical solution is not available.

Guided by the previous discussion and results, we choose grid size of
n
max

= 500 for the binomial lattice method that should be su�cient for the
problem at hand. Along with the given case parameters in Table 4.5, the
binomial lattice method valuates the abandonment option to

Ṽ Ab

BL

= 18.1683.

Note that the derived value represents the value of the abandonment
option at the beginning of the project and thus does not provide relevant
information during the project. That is, it can be used only to verify is
it reasonable to sign a contract with the abandonment option. Clearly, if
the cost of option exceeds the value of the option one should not sign the
contract. The convergence of the binomial lattice with increasing number of
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Figure 4.6: Convergence of the binomial lattice method on the abandonment
option.

discrete time steps is given in Figure 4.6 to verify that the derived value is
within the ballpark.

To further verify the result and obtain additional information on the
abandonment option, we solve the corresponding problem with the implicit
finite di↵erence method, which was chosen over the explicit method due to
superior convergence properties. Limiting the domain to X = 900 with
N = 200 nodes and using M = 300 time steps yields

Ṽ Ab

FDM,imp

= 18.1240.

First of all, we note the value is relatively close to the value derived with
the binomial lattice method verifying the both results to some extent. In
addition to scalar value of the option at the beginning of project, we are able
to examine the corresponding solution surface which is given in Figure 4.7.
Note that as the projected cash flow from the project (x) increases, the value
of the option decreases as the salvage value is constant.

Moreover, the three dimensional graph reveals the value of the option at
every given point of time. This feature can be used to determine the optimal
abandonment boundary, which is given in Figure 4.8 with relaxation parame-
ter ✏ = 0.001. The graph reveals directly whether the ongoing project should
be abandoned or not, e.g. if the expected cash flows from the project decline
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from 150 to 130 million euros after three years due to external conditions,
such as emerging of new competitors to the market, then the optimal deci-
sion is to abandon the project. The information obtained from the optimal
abandonment boundary is crucial for any decision-maker holding an option
to abandon a project.

Figure 4.7: Solution surfaces for the abandonment option derived with the
implicit finite di↵erence method with case parameters given in Table 4.5 and
grid parameters X = 900, N = 200 and M = 300.
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Figure 4.8: Optimal abandonment boundary for the abandonment option
with relaxation parameter ✏ = 0.001 and grid parameters X = 900, N = 200
and M = 300.



Chapter 5

Conclusions

In this study we examined di↵erent numerical solution methods that can be
used to solve di↵erential equations arising from real options analysis and pre-
sented two case studies where the discussed numerical methods were applied.
a solution to a case study within real options theory for which a closed-form
solution does not exist.

We begun by investigating di↵erent methods that are commonly used to
validate decisions under uncertainty. All of the discussed methods lack one
crucial property – an option delay the investment. This feature is especially
important in the current economy, where the investment periods are typically
long and highly uncertain. One possible method that suits perfectly into the
situation is real options analysis, which can be considered as an extension
of financial option theory into real assets. Technically the idea is to use a
stochastic variable and determine the real option value from a di↵erential
equation.

Following a brief literature review on real options, we investigated the
di↵erences in real option formulations between an infinite and finite time
horizon problems. While the infinite time horizon cases can usually be solved
analytically, the suitability to di↵erent real-life situations is highly question-
able. Investment problems with finite time horizon typically lead to a set of
equations for which a closed-form does not exist. Examining the literature
on real options, we concluded that there are several other problems within
real options theory that can not be solved analytically in addition to finite
time horizon problems. Hence numerical methods are required to obtain a
solution.

We introduced three numerical methods that are commonly used within
real options theory: the Monte Carlo method, binomial lattice method and
finite di↵erence method with explicit and implicit scheme. Then we presented
two case studies: investment and abandonment option. In both cases the cash
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flows from the project were uncertain and the time horizon was finite, but
in the latter case there was an option to abandon the project at any given
time during the project. All numerical procedures were implemented into
MATLAB computing environment.

Investment option case was used to compare the numerical methods pre-
sented and benchmark the solutions against the closed-form solution which
existed for the first case study. All of the numerical methods were suitable
for the case study as the numerical solutions were su�ciently close to the
exact solution. However, there were clear di↵erences between the methods.
Obtaining the solution with the Monte Carlo method was inaccurate and
very slow with respect to the wall-clock time in comparison to other numer-
ical methods. The performance of the explicit and implicit finite di↵erence
method was similar, but the stability of the explicit method was extremely
sensitive to the grid parameters. Considering only the value of the option at
the beginning of project as the only requirement, the binomial lattice model
outperformed the other numerical methods in every aspect excluding the
convergence, which was relatively slow and presented some negative features.
Remark that with finite di↵erence method the whole time domain is solved at
once in roughly the same time as only single value with binomial lattice and
thus finite di↵erence method provides substantial benefits over the binomial
lattice model. Considering extensions outside the investment option case, the
Monte Carlo methods suits perfectly into problems with higher dimensions
since the rate of convergence stays at the same level. With other extensions,
such as inequalities and more complex boundary conditions, we suggest using
the implicit finite di↵erence method from the numerical methods examined
due to the stability and convergence properties and the reasonable flexibility
over the boundary conditions.

Abandonment option case was used to illustrate the e↵ectiveness and
usability of numerical methods in solving a di↵erential equation for which a
closed-form solution does not exist. The abandonment option was solved with
both the binomial lattice and implicit finite di↵erence method to verify the
results against each other. In addition, optimal abandonment boundary was
derived from the finite di↵erence method solution as the solution is directly
calculated in the whole time domain. The derived boundary is extremely
useful for any decision-maker involved in a project with an option to abandon
the project.

Overall, the implicit finite di↵erence methods proved to be the most suit-
able for the discussed case studies and further possible extensions. For further
research, we recommend to investigate the performance of the three numeri-
cal methods along with their extensions with additional case studies for which
a closed-form solution does not exist. Particularly interesting would be to
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examine the feasibility of di↵erent boundary conditions with the given meth-
ods. In addition, we suggest looking also into completely new approaches,
such as the finite element method.
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Appendix A

MATLAB Code

Here we present the MATLAB code that was used for solving both the invest-
ment and abandonment option numerically. The code includes the Monte
Carlo method, binomial lattice method, and finite di↵erence method with
both the explicit and implicit scheme for the investment option case and the
binomial lattice and implicit finite di↵erence method for the abandonment
option case.

% Arto Sorsimo | arto.sorsimo@aalto.fi
% Aalto University School of Business
% Helsinki, 19.1.2015
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % COMPARISON OF NUMERICAL METHODS IN ROA %
% % Case study #1 %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This file solves the case study equation with the Monte Carlo,
% binomial lattice and finite difference method.
% The case problem is the following:
%
% { 1/2*sigmaˆ2*xˆ2*V xx + rxV x - rV + V t = 0,
% { V(0,t) = 0,
% { V(x,T) = max{x-I,0},
%
% where
%
% V: value of the investment option,
% x: stochastic variable (e.g. cash flows),
% I: fixed investment cost,
% T: terminal time,
% r: risk-free interest rate,
% sigma: standard deviation of stochastic variable.
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%
% The problem is similar to European call option.
%
% This code is not fully optimized to be efficient.
% Use with care.

clear all;
close all;

%% Global parameters
x0 = 100;
I = 150;
r = 0.03;
sigma = 0.35;
T = 10;

%% Closed-form solution
t=0;

d 1 = 1/(sigma*sqrt(T-t)) * (log(x0/I)+(r+sigmaˆ2/2)*(T-t));
d 2 = d 1 - sigma*sqrt(T-t);

Phi 1 = 1/2 * (1+erf(d 1/sqrt(2)));
Phi 2 = 1/2 * (1+erf(d 2/sqrt(2)));

V exact = Phi 1*x0 - Phi 2*I*exp(-r*(T-t));

display(V exact);

%% MONTE CARLO METHOD
nMC = 1e6;
data interval = 50000;

% Choose whether to plot or not (yes=1, no=0)
PLOTTING MC = 1;

if PLOTTING MC == 0
data interval = nMC;

end

sim vec = zeros(4,nMC/data interval);
sim vec(1,:) = (1:data interval:nMC);

j=1;
for k=data interval:data interval:nMC

RandVec = randn(k,1);

% Calculate terminal value
x term = x0*exp((r-0.5*sigmaˆ2)*T + sigma*sqrt(T)*RandVec);
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% Apply the BCs, calculate the mean of the sample
% and boundaries for 95% confidence level
V i = exp(-r*T)*max(x term-I,0);
V est = mean(V i);

V sd = std(V i);
V conf up = V est + 1.96*V sd/sqrt(k);
V conf low = V est - 1.96*V sd/sqrt(k);

% Save the data to simulation vector
sim vec(2,j) = V est;
sim vec(3,j) = V conf up;
sim vec(4,j) = V conf low;

j = j+1;
end

if PLOTTING MC == 1
hFig = figure;
set(hFig, 'Position', [300 300 1000 300])
tempX = [sim vec(1,:), fliplr(sim vec(1,:))];
tempY = [sim vec(4,:),fliplr(sim vec(3,:))];
fill(tempX,tempY,[0 1 0], 'FaceAlpha', 0.05);

xlim([sim vec(1) sim vec(1, end)]);

set(gca,'XMinorTick','on','YMinorTick','on')
grid on;

hTitle = title(['Monte Carlo simulation with ' ...
'95% confidence level']);

hXLabel = xlabel('Number of simulations');
hYLabel = ylabel('Investment option value');

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel],'FontName','Helvetica');
set([hXLabel, hYLabel],'FontSize',12);
set( hTitle,'FontSize',14,'FontWeight','bold');

hold on;
plot(sim vec(1,:),V exact*ones(nMC/data interval,1), ':r');

hold on;
plot(sim vec(1,:),sim vec(2,:),'b');

end

V MonteCarlo = [V conf low V est V conf up];
display(V MonteCarlo);
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relerror mc = (V conf up - V exact)/V exact;
display(relerror mc);

%% BINOMIAL LATTICE METHOD
nBL = 180;
data interval = 1;

% Choose whether to plot or not (yes=1, no=0)
PLOTTING BL = 1;

if PLOTTING BL == 0
data interval = nBL;

end

sim vec = zeros(3,nBL/data interval);
sim vec(1,:) = (1:data interval:nBL);

count = 1;
for m=data interval:data interval:nBL

dt = T/m;
u = exp(sigma*sqrt(dt));
d = exp(-sigma*sqrt(dt));
p = (exp(r*dt)-d)/(u-d);

% Initialize the lattice matrix and fill the first row
% with up values
V lattice fw = zeros(m);
for k=1:m+1

V lattice fw(1,k) = x0*uˆ(k-1);
end

% Calculate down values column-by-column
for k=1:m

for j=1:m
V lattice fw(1+k,j+1) = V lattice fw(k,j)*d;

end
end

% Apply call/put boundary condition at the terminal time
V lattice bw = zeros(size(V lattice fw));
V lattice bw(:,m+1) = max(V lattice fw(:,m+1)-I,0);

% Calculate previous values with backward induction
for j=1:m

for k=1:m
V lattice bw(k,m+1-j) = (p*V lattice bw(k,m+2-j) ...

+(1-p)*V lattice bw(k+1,m+2-j))*exp(-r*dt);
end
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end

V BinomialLattice = V lattice bw(1,1);
sim vec(2,count) = V BinomialLattice;

count = count + 1;
end

if PLOTTING BL == 1
hFig = figure;
set(hFig, 'Position', [100 700 600 500])
plot(sim vec(1,:),sim vec(2,:),'b');
hold on;
plot(sim vec(1,:),V exact*ones(nBL/data interval,1), 'r');

xlim([sim vec(1) sim vec(1, end)]);
grid on;

hTitle = title('Binomial lattice simulation');
hXLabel = xlabel('Number of grid points');
hYLabel = ylabel('Investment option value');

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel],'FontName','Helvetica');
set([hXLabel, hYLabel],'FontSize',12);
set( hTitle,'FontSize',14,'FontWeight','bold');

end

display(V BinomialLattice);
rel error bl = abs(V BinomialLattice - V exact)/V exact;
display(rel error bl);

%% FINITE DIFFERENCE METHOD WITH EXPLICIT AND IMPLICIT SCHEME
% Grid ik = Grid(x,t)
%
% (x=0,t=0) ----------------- (x=0,t=T)
% | |
% | | x
% | | |
% | | v
% | |
% (x=X,t=0) ----------------- (x=X,t=T)
% t -->

Nt = 10000;
Nx = 90;
xMax = 900;
xMin = 0;
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dt = T/Nt;
dx = (xMax-xMin)/Nx;

% Create a regular mesh
V grid = nan(Nx+1,Nt+1);
xAxis = xMin:dx:xMax;
tAxis = 0:dt:T;

% Set the BCs
V grid(:,Nt+1) = max(xAxis-I,0); %F(x,T)=max(x-S,0)
V grid(Nx+1,:) = xAxis(Nx+1)-I*exp(-r*(T-tAxis)); %F(X,t)=x-Seˆ(-r(T-t))
V grid(1,:) = 0; %F(0,t)=0

% Choose which method to use (0=no, 1=yes)
METHOD EXPLICIT = 1;
METHOD IMPLICIT = 1;

if METHOD EXPLICIT == 1
V grid exp = V grid;
% Calculate tri-diagonal coefficient matrix
abc exp = zeros(Nx-1,3);

for i=1:Nx-1
abc exp(i,1) = 0.5*(sigmaˆ2*iˆ2-r*i)*dt;
abc exp(i,2) = 1-(sigmaˆ2*iˆ2+r)*dt;
abc exp(i,3) = 0.5*(sigmaˆ2*iˆ2+r*i)*dt;

end

A exp = gallery('tridiag',abc exp(2:end,1), ...
abc exp(:,2),abc exp(1:end-1,3));

% Calculate values at inner nodes starting from terminal time
% and going backwards into t=0
for k=Nt+1:-1:2

V grid exp(2:Nx,k-1) = A exp*V grid exp(2:Nx,k);
V grid exp(2,k-1) = V grid exp(2,k-1) ...

+ abc exp(1,1)*V grid exp(1,k);
V grid exp(Nx,k-1) = V grid exp(Nx,k-1) ...

+ abc exp(end,3)*V grid exp(Nx+1,k);
end

% Display figures
hFig = figure;
set(hFig, 'Position', [1000 400 1000 850])
subplot(2,2,1);
plot(xAxis,V grid exp(:,1),'b-',xAxis,V grid exp(:,end),'r-');

hTitle = title('FDM (Explicit)');
hXLabel = xlabel('x');



APPENDIX A. MATLAB CODE 76

hYLabel = ylabel('V(x,t)');
legend('t=0','t=T','Location','northwest')

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel],'FontName','Helvetica');
set([hXLabel, hYLabel],'FontSize',10);
set( hTitle,'FontSize',12,'FontWeight','bold');

subplot(2,2,3);
mesh(xAxis,tAxis,V grid exp');
xlim([0 xAxis(end)]);

hTitle = title('FDM (Explicit)');
hXLabel = xlabel('x');
hYLabel = ylabel('t');
hZLabel = zlabel('V(x,t)');

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel, hZLabel],'FontName','Helvetica');
set([hXLabel, hYLabel, hZLabel],'FontSize',10);
set( hTitle,'FontSize',12,'FontWeight','bold');

% Interpolate the values
V FDM Exp = interp1(xAxis,V grid exp(:,1),x0);
error exp = V FDM Exp - V exact;
relerror exp = (V FDM Exp - V exact)/V exact;
display(V FDM Exp);
display(error exp);
display(relerror exp);

end

if METHOD IMPLICIT == 1
V grid imp = V grid;
% Calculate tri-diagonal coefficient matrix
abc imp = zeros(Nx-1,3);

for i=1:Nx-1
abc imp(i,1) = 0.5*(r*i-sigmaˆ2*iˆ2)*dt;
abc imp(i,2) = 1+(sigmaˆ2*iˆ2+r)*dt;
abc imp(i,3) = 0.5*(-r*i-sigmaˆ2*iˆ2)*dt;

end

A imp = gallery('tridiag',abc imp(2:end,1), ...
abc imp(:,2),abc imp(1:end-1,3));

% Calculate values at inner nodes starting from terminal time
% and going backwards into t=0
leftover const = zeros(size(abc imp(:,2)));
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for k=Nt:-1:1
leftover const(1) = abc imp(1,1)*V grid imp(1,k);
leftover const(end) = abc imp(end,3)*V grid imp(Nx+1,k);
V grid imp(2:Nx,k) = A imp\(V grid imp(2:Nx,k+1) ...

- leftover const);
end

% Display figures
%hFig = figure;
%set(hFig, 'Position', [1400 400 1000 850])
subplot(2,2,2);
plot(xAxis,V grid imp(:,1),'b-',xAxis,V grid imp(:,end),'r-');

hTitle = title('FDM (Implicit)');
hXLabel = xlabel('x');
hYLabel = ylabel('V(x,t)');
legend('t=0','t=T','Location','northwest')

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel],'FontName','Helvetica');
set([hXLabel, hYLabel],'FontSize',10);
set( hTitle,'FontSize',12,'FontWeight','bold');

subplot(2,2,4);
mesh(xAxis,tAxis,V grid imp');
xlim([0 xAxis(end)]);

hTitle = title('FDM (Implicit)');
hXLabel = xlabel('x');
hYLabel = ylabel('t');
hZLabel = zlabel('V(x,t)');

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel, hZLabel],'FontName','Helvetica');
set([hXLabel, hYLabel, hZLabel],'FontSize',10);
set( hTitle,'FontSize',12,'FontWeight','bold');

% Interpolate the values
V FDM Imp = interp1(xAxis,V grid imp(:,1),x0);
error imp = V FDM Imp - V exact;
relerror imp = (V FDM Exp - V exact)/V exact;
display(V FDM Imp);
display(error imp);
display(relerror imp);

end

% Copyright 2015, Arto Sorsimo, All rights reserved.
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% Arto Sorsimo | arto.sorsimo@aalto.fi
% Aalto University School of Business
% Helsinki, 16.3.2015
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % COMPARISON OF NUMERICAL METHODS IN ROA %
% % Case study #2 %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This file uses two different numerical
% solution methods (binomial lattice and FDM)
% for solving the equation
%
% { L(x,t) := 1/2*sigmaˆ2*xˆ2*V xx + rxV x - rV + V t <= 0,
% { V(x,t) >= max{S-x,0},
% { L(x,t)(V(x,t) - max{S-x,0}) = 0,
% { V(x,T) = max{S-x,0},
% { lim x->inf V(x,t) = 0,
%
% where
%
% V: value of the abandonment option,
% x: stochastic variable (e.g. cash flows),
% S: salvage value of the project,
% T: terminal time (time to abandon),
% r: risk-free interest rate,
% sigma: standard deviation of stochastic variable.
%
% The problem is similar to American put option.
%
% This code is not fully optimized to be efficient.
% Use with care.

clear all;
close all;

%% Global parameters
x0 = 300;
S = 200;
r = 0.03;
sigma = 0.30;
T = 5;

%% Binomial lattice
tic;
nBL = 500;
data interval = 1;

% Choose whether to plot or not (yes=1, no=0)
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PLOTTING BL = 1;

if PLOTTING BL == 0
data interval = nBL;

end

sim vec = zeros(3,nBL/data interval);
sim vec(1,:) = (1:data interval:nBL);

count = 1;
for m=data interval:data interval:nBL

dt = T/m;
u = exp(sigma*sqrt(dt));
d = exp(-sigma*sqrt(dt));
p = (exp(r*dt)-d)/(u-d);

% Initialize the lattice matrix and
% fill the first row with up values
V lat fw = zeros(m);
for k=1:m+1

V lat fw(1,k) = x0*uˆ(k-1);
end

% Calculate down values column-by-column
for k=1:m

for j=1:m
V lat fw(1+k,j+1) = V lat fw(k,j)*d;

end
end

% Apply call/put BCs at the terminal time
V lat bw = zeros(size(V lat fw));
V lat bw(:,m+1) = max(S-V lat fw(:,m+1),0);

% Calculate value for the open exercise option
for j=1:m

for i=1:m
hold value = (p*V lat bw(i,m+2-j) ...

+(1-p)*V lat bw(i+1,m+2-j))*exp(-r*dt);
V lat bw(i,m+1-j) = max(hold value, ...

S-V lat fw(i,m+1-j));
end

end

V BinomialLattice = V lat bw(1,1);
sim vec(2,count) = V BinomialLattice;

count = count + 1;
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end

timer bl = toc;
display(timer bl);

if PLOTTING BL == 1
plot(sim vec(1,:),sim vec(2,:),'b');
xlim([sim vec(1) sim vec(1, end)]);
grid on;

hTitle = title('Binomial lattice simulation');
hXLabel = xlabel('Number of grid points');
hYLabel = ylabel('Abandonment option value');

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel],'FontName','Helvetica');
set([hXLabel, hYLabel],'FontSize',12);
set( hTitle,'FontSize',14,'FontWeight','bold');

end

display(V BinomialLattice);

%% Finite difference method with implicit method
% Grid ik = Grid(x,t)
%
% (x=0,t=0) ----------------- (x=0,t=T)
% | |
% | | x
% | | |
% | | v
% | |
% (x=X,t=0) ----------------- (x=X,t=T)
% t -->
tic;
Nt = 300;
Nx = 200;
xMax = 900;
xMin = 0;

dt = T/Nt;
dx = (xMax-xMin)/Nx;

% Create a regular mesh
V grid = nan(Nx+1,Nt+1);
xAxis = xMin:dx:xMax;
tAxis = 0:dt:T;

% Set the BCs
V grid(:,Nt+1) = max(S-xAxis,0); %F(x,T)=max(S-x,0)
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V grid(1,:) = S*exp(-r*(T-tAxis)); %F(0,t)=Seˆ(-r(T-t))
V grid(Nx+1,:) = 0; %F(X,t)=0

% Calculate tri-diagonal coefficient matrix
abc = zeros(Nx-1,3);

for i=1:Nx-1
abc(i,1) = 0.5*(r*i-sigmaˆ2*iˆ2)*dt;
abc(i,2) = 1+(sigmaˆ2*iˆ2+r)*dt;
abc(i,3) = 0.5*(-r*i-sigmaˆ2*iˆ2)*dt;

end

A = gallery('tridiag',abc(2:end,1), ...
abc(:,2),abc(1:end-1,3));

% Calculate values at inner nodes starting from
% terminal time and going backwards into t=0
leftover const = zeros(size(abc(:,2)));

for k=Nt:-1:1
leftover const(1) = abc(1,1)*V grid(1,k);
leftover const(end) = abc(end,3)*V grid(Nx+1,k);

holding = A\(V grid(2:Nx,k+1) - leftover const);
V grid(2:Nx,k) = max(holding,S-xAxis(2:end-1)');
V grid(1,k) = max(S,S*exp(-r*(T-tAxis(k))));

end

V grid(2:Nx,1) = max(holding,S-xAxis(2:end-1)');

% Display figures
hFig = figure;
set(hFig, 'Position', [400 400 1000 350])
subplot(1,2,2);
plot(xAxis,V grid(:,1),'b-',xAxis,V grid(:,end),'r-');

hTitle = title('FDM (Implicit)');
hXLabel = xlabel('x');
hYLabel = ylabel('V(x,t)');
legend('t=0','t=T','Location','northwest')

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel],'FontName','Helvetica');
set([hXLabel, hYLabel],'FontSize',12);
set( hTitle,'FontSize',14,'FontWeight','bold');

subplot(1,2,1);
mesh(xAxis,tAxis,V grid');
xlim([0 xAxis(end)]);
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hTitle = title('FDM (Implicit)');
hXLabel = xlabel('x');
hYLabel = ylabel('t');
hZLabel = zlabel('V(x,t)');

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel, hZLabel],'FontName','Helvetica');
set([hXLabel, hYLabel, hZLabel],'FontSize',12);
set( hTitle,'FontSize',14,'FontWeight','bold');

% Interpolate the values
V FDM Imp = interp1(xAxis,V grid(:,1),x0);
display(V FDM Imp);
timer fdm imp = toc;
display(timer fdm imp);

% Find the optimal abandonment boundary
x f index = zeros(1,length(tAxis));
epsilon = 0.001; % relaxation parameter for the search

% Find the indexes in x-vector for boundary at all time periods
for j = 1:length(tAxis)

x f index(1,j) = find(abs(V grid(:,j)- ...
(S-xAxis)') < epsilon,1,'last');

end

% Find time indexes when the value changes
time indexes = find(diff(xAxis(x f index(1,:))) > epsilon);
time indexes = [1 time indexes Nt];

% Calculate the mean from the jump
meanvalue = (xAxis(x f index(1,time indexes+1))+ ...

xAxis(x f index(1,time indexes)))/2;

% Plot the curve
figure;
plot(tAxis(time indexes),meanvalue);

hTitle = title('Optimal exercise boundary ');
hXLabel = xlabel('t');
hYLabel = ylabel('x');

set(gca,'FontName','Helvetica');
set([hTitle, hXLabel, hYLabel],'FontName','Helvetica');
set([hXLabel, hYLabel],'FontSize',12);
set( hTitle,'FontSize',14,'FontWeight','bold');

annotation('textarrow',[0.35,0.45],[0.32,0.265], ...
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'String','Exercise boundary', ...
'FontSize', 12 ...
);

annotation('textbox', [0.4,0.5,0.1,0.1], ...
'String', 'Holding region', ...
'FontSize', 16, ...
'Color', [1 0 0], ...
'LineStyle','none',...
'Margin', 10 ...
);

annotation('textbox', [0.65,0.15,0.1,0.1], ...
'String', 'Exercise region', ...
'FontSize', 16, ...
'LineStyle','none',...
'Color', [0 0.8 0] ...
);

% Copyright 2015, Arto Sorsimo, All rights reserved.


