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Abstract 

OBJECTIVES OF THE STUDY:  
 
In this thesis, I look into a hedge fund strategy known as a yield curve arbitrage, where 
arbitrageurs take relative value bets on interest rates. Earlier research has shown that the strategy 
produces favourable returns in the USD swap rates market in 1988-2004. My objective is to study 
whether the strategy yields attractive risk-adjusted returns and multifactor alpha in the recent 
period of 2002-2015 in the EUR swap rates space. I shall employ an enhanced modelling 
framework to implement the trading strategy. Moreover, I test the replicated strategy returns with 
respect to high-level and style-specific hedge fund index returns. Finally, I look into whether ‘high-
noise’ periods in the markets coincide with large model-implied mispricing of rates. The empirical 
objectives of the thesis are linked to literature on yield curve formation and no-arbitrage.  
 
DATA AND METHODOLOGY:  
 
The dataset consists of monthly mid-market observations of constant maturity EUR swap rates for 
maturities of one to ten years. Also, Hedge Fund Research and Credit Suisse hedge fund index data 
for both high-level and style-specific indices is employed. Moreover, noise measure data by Jun 
Pan is employed to study the relationship of replicated returns to the level of noise. The 
methodology builds on Cox-Ingersoll-Ross and Longstaff-Schwartz two-factor stochastic short-
rate models of interest rates. A calibration and trading algorithm is constructed based on these 
models to replicate the arbitrage strategy returns. Back tested trading is done explicitly out-of-the 
sample.  
 
FINDINGS OF THE STUDY:  
 
The yield curve arbitrage is found to produce attractive risk-adjusted returns and favourable 
return distributions. Moreover, the alpha of the strategy is statistically and economically 
significant when controlled by a number of commonly employed risk factors. Additionally, it is 
found that the replicated arbitrage strategy does not have statistically meaningful connection to 
neither high-level nor style-specific hedge fund indices. Finally, it is shown that high noise 
coincides with large model-implied mispricings when the measure of the mispricings is smoothed. 
No evidence is found in support of the idea that yield curve arbitrage alpha is compensation for 
carrying tail risk. 
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TUTKIMUKSEN TAVOITTEET:  
 
Tässä lopputyössä tutkin vipurahastostrategiaa, joka tunnetaan korkokäyrän arbitraasina, missä 
arbitraasitoimijat tekevät suhteelliseen arvoon perustuvia sijoituksia koroissa. Aikaisempi 
tutkimus on näyttänyt, että strategia tuottaa hyvin dollarikorkomarkkinalla aikavälillä 1988–
2004. Tavoitteenani on tutkia, tuottaako strategia mielenkiintoisia riskikorjattuja tuottoja ja 
monifaktori-alphaa tuoreella 2002–2015 aikavälillä eurokorkomarkkinalla. Käytän edistynyttä 
mallinnuskehikkoa strategian toteuttamiseen. Lisäksi vertaan mallinnetun strategian tuottoja 
erilaisiin vipurahastoindekseihin. Viimeisenä tutkin, havaitaanko markkinalla korkea 
hinnoitteluvirhe samaan aikaan kun mallini näyttää korkeaa hinnoitteluvirhettä.  Lopputyön 
empiiriset tavoitteet sidotaan kirjallisuuten koskien korkokäyrän muodostusta ja arbitraasivapaata 
hinnoittelua. 
 
DATA JA METODOLOGIA:  
 
Data koostuu kuukausittaisista vakiopituisten euro-määräisten koronvaihtosopimusten 
korkotasoista, joiden maturiteetti on yhdestä kymmeneen vuotta. Tämän lisäksi käytän Hedge 
Fund Researchin ja Credit Suissen dataa koskien sekä yleisen tason että tyylikohtaisia 
vipurahastoindeksejä. Lisäksi käytän dataa liittyen Jun Panin kehittämään hinnoitteluvirhe-
estimaattoriin tutkiakseni havaitun ja mallin näyttämän hinnoitteluvirheen yhteyttä. Metodologia 
perustuu Cox-Ingersoll-Rossin ja Longstaff-Schwartzin kahden faktorin stokastisiin lyhyenkoron 
malleihin. Rakennan kalibrointi- ja kaupankäynti-algoritmin perustuen näihin malleihin, jotta 
voin muodostaa arvion arbitraasituotoista. Tuotot muodostetaan erityisesti siten, että 
kaupankäynnin mallintamisessa ei käytetä tulevaisuuden dataa.  
 
TUTKIMUKSEN TULOKSET:  
 
Korkokäyräarbitraasin havaitaan tuottavan hyvää riskikorjattua tuottoa sekä suosiollisia 
tuottojakaumia. Lisäksi strategian alpha on tilastollisesti ja taloudellisesti merkittävä, kun sitä 
kontrolloidaan yleisesti tunnetuilla riskitekijöillä. Tämän lisäksi havaitsen, että 
arbitraasistrategialla ei ole merkittävää tilastollista yhteyttä korkean tason tai tyylikeskeisiin 
vipurahastoindekseihin nähden. Lopuksi näytän että korkea yleisesti havaittu hinnoitteluvirhe 
tapahtuu markkinalla samaan aikaan kun mallini näyttää korkeaa hintavirhettä, ottaen huomioon 
että hintavirhe on tasoitettu. En löydä tukea väitteelle, että korkokäyräarbitraasin alpha olisi 
kompensaatiota harvinaisista romahduksista. 
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1. Introduction 

 

Hedge funds and other arbitrageurs engage in many trading and investment activities of highly 

varying nature. One of the most interesting categories of hedge fund styles is ‘arbitrage’ strategies, 

as they supposedly yield positive returns in all market environments, whether the general market 

is in a bull or a bear mode. As the term ‘arbitrage’ implies, these strategies are hedged in some 

way, and are thus meant to carry a relatively low risk in terms of e.g. volatility. Although some 

managers may be looking for the kind of textbook arbitrage, where an arbitrageur would generate 

genuine riskless profits with no initial capital, an ‘arbitrage’ in the in industry parlance usually 

refers to trades that are made neutral to changes in the key market variables. Such strategies do 

carry risk, yet the risks may be associated with unconventional premia with attractive 

characteristics.  

Out of these arbitrage strategies, fixed income arbitrage styles are highly intriguing, as 

many of them are fairly complex, reducing competition in the area. Less competition generally 

leads to higher risk-adjusted returns for those involved, as implied by the weakened performance 

of a number of increasingly competed hedge fund strategies, such as convertible arbitrage, as 

illustrated by e.g. Agarwal et al. (2011). Moreover, earlier literature has indeed verified that many 

such strategies yield large multifactor alpha, high risk-adjusted returns by numerous measures, and 

are little correlated with the common risk factors and high-level hedge fund indices. Duarte, 

Longstaff and Yu (2007) show that yield curve arbitrage is one the most profitable strategies in 

the space of well-known fixed income arbitrage strategies. In essence, the yield curve arbitrage is 

a relative value trading strategy in the space of government debt or related interest rates. Hence, 

the strategy is about identifying overtly rich and cheap points on the yield curve with the 

assumption that these mispricings convergence in the near future, so that they can be traded 

profitably. Duarte et al. attribute the performance of this arbitrage mostly to the complexity of the 

analytical methodology necessary to implement a sophisticated strategy in this niche. Higher 

sophistication calls for additional human capital to employ a relevant modeling framework to both 

generate the trading signals and to hedge the bets.  

This thesis builds on the theoretical framework of Vayanos and Vila (2009), who 

contemplate a preferred-habitat model of the term structure of interest rates. In their model, the 
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yield curve is formed through the interaction of bond suppliers, investors and risk-averse 

arbitrageurs. Both demand and supply shocks can affect the term structure when arbitrageurs are 

risk-averse, yet it is the role of the arbitrageurs to render the yield curve arbitrage free. As the 

arbitrageurs shall impose the no-arbitrage condition through trading, their positions will in 

equilibrium carry risk associated with the bond risk premia. The arbitrageurs are explicitly 

assumed to observe an exogenous short-rate of interest, based on which they choose to dynamically 

take long and opposing short positions in the bonds and in the short-rate. This framework is a 

natural building block for this thesis, given that it explicitly calls for the arbitrageurs, and those 

arbitrageurs are assumed to incorporate expectations of the future short-rate into the bond prices. 

Similar to Duarte et al. (2007), as well as to this thesis, Vayanos and Vila let the short-rate follow 

a stochastic mean-reverting process. Building theoretically on the model by Vayanos and Vila, the 

agenda of this thesis is to model the strategies of those yield curve arbitrageurs who employ a 

quantitative approach to initiate and hedge the arbitrage trades. Vayanos and Vila also directly 

point out that the kind of risky yield curve arbitrage their arbitrageurs are thought to perform is 

similar to those strategies executed by hedge funds and proprietary-trading desks. 

While the idea of generating excessive returns from trading liquid fixed income 

instruments certainly sounds lucrative, the only paper directly related to the replication of such 

strategies remains the one by Duarte et al. (2007). In their paper, the authors model the yield curve 

by employing Vasicek two-factor short-rate model, which they calibrate to the market curve. Based 

on the implied differences between the market and the model rates, they engage in making two-

factor neutral long/short trades on the mispriced rates. Such trades are called the yield curve 

arbitrage, pertaining mostly to the fact of extensive market neutrality.  

As to the contribution of this thesis, I set out to further develop the methodology outlined 

by Duarte et al. (2007) with a different and more recent data. For one, I am using the two-factor 

models by Cox, Ingersoll and Ross (CIR two-factor model, CIR2F) and Longstaff and Schwartz 

(Longstaff-Schwartz two-factor model, LS2F) to model the yield curve. I conduct the analysis of 

the arbitrage strategies with EUR swap rate data in the range of years 2002 and 2015, while Duarte 

et al. looked at the USD space during an earlier period of 1988 to 2004. Moreover, I study different 

trading strategies as logically implied by the models. Furthermore, throughout the thesis, I shall 

have an explicit out-of-the-sample focus in implementing the back test of the trades. Duarte et al. 
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acknowledge that their reported strategy is actually calibrated to the whole sample, including 

future information.  

After replicating the arbitrage strategies, I carry out regressions to isolate the multifactor 

alpha of the strategies. I study the replicated returns with respect to the high-level hedge fund 

indices, as well as to the more specific style subindices. Finally, I employ the noise metric 

suggested by Hu et al. (2013) to study if high noise coincides with high model implied mispricings. 

Also, I look into whether information in the noise measure can be leveraged upon to produce better 

trading outcomes. The tests regarding the hedge fund subindices and the noise measure are 

included in the contribution of this paper.  

I hypothesize that the yield curve arbitrage generates attractive risk-adjusted returns also 

in the EUR rates market in this more recent sample period. Additionally, I hypothesize that the 

return distributions have favorable characteristics. Secondly, I hypothesize that the strategies have 

a limited exposure to priced risk factors, i.e. that the multifactor alpha is positive and significant 

both economically and statistically. Also, I hypothesize that the arbitrage strategies I replicate 

explain to a significant extent the most relevant hedge fund subindex returns (e.g. the fixed income 

arbitrage style indices). Further, I make the hypothesis that the mispricings of the rates in the 

market are greater when there is a lot noise as quantified by the Hu et al. (2013) measure. 

Extrapolating this thought, I hypothesize that returns from the strategies are greater during the 

noisy periods. 

I find evidence strongly in support of the hypotheses pertaining to the attractiveness of the 

returns. The yield curve arbitrage has continued to generate attractive risk-adjusted returns, and 

the phenomenon is replicated in the EUR swap space with the recent sample period from 2002 to 

2015. The returns are basically pure multifactor alpha, and have high Sharpe and Gain-Loss ratios, 

as well as distributions that are heavily positively skewed with fat tails. Strong evidence is also 

found in support of the yield curve arbitrage yielding multifactor alpha. Moreover, the replicated 

returns are at best vaguely correlated with any of the considered hedge fund indices, implying that 

the returns are also ‘hedge fund alpha’. Finally, it is shown that the smoothed model implied 

mispricings correlate heavily with the Hu et al. (2013) noise measure, and that leveraging in the 

high-noise market environments does weaken the risk-adjusted trading performance. 
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As the volatility of the strategies is low, they can and need to be leveraged; Duarte et al. 

leverage their strategies so that the ex post volatility is 10% annually. As the strategies are 

implemented with swaps, scaling is straight forward and cost-effective, as one only needs to 

choose a higher amount of notional for a given trade. Thus, the leveraged annual returns are in the 

magnitude of 10%, which is economically very satisfactory for an annualized 10% volatility level. 

Thereby it seems that the risk-taking yet risk-averse arbitrageurs theoretically depicted in Vayanos 

and Vila (2009) do indeed enjoy attractive risk-adjusted returns, as suggested by their model.  

The rest of the thesis is organized as follows. Section 2 presents the motivation and 

background for the ideas developed in this paper, including contribution and limitations of the 

study. Section 3 elaborates on the literature and theoretical framework of the ideas considered. 

Section 4 presents the hypotheses to be tested in the study, and Section 5 illustrates the data 

employed and goes through the methodology in detail. Section 6, 7, 8, and 9 present the results of 

the thesis, including conclusion regarding the hypotheses stated in Section 4. Section 10 concludes 

the thesis and its key findings.  

 

2. Motivation and background 

 

The idea behind studying the yield curve arbitrage as a trading strategy comes from the notion that 

some points of the term structure of interest rates may not at all times be in sync with each other. 

The yields for different maturities are not determined independently; they are all linked across the 

yield curve, as shown by e.g. Cox, Ingersoll, and Ross (1985). As pointed out in earlier research 

by Duarte, Longstaff and Yu (2007), trading of the rates that are out of the line with each other 

can result in highly attractive return profiles. No-arbitrage should guarantee that the yield curve is 

internally consistent, i.e. that all the forward rates are unique, and no ‘textbook arbitrage’ is 

possible. Nevertheless, the ‘mispricings’ on the yield curve arise from the nearby bond maturities 

trading at prices dissimilar enough. In other words, arbitrage opportunities related to the bond risk 

premia can exist in spite of the uniqueness of all forward rates. Such arbitrage opportunities are 

theoretically depicted in the preferred-habitat model of interest rates by Vayanos and Vila (2009), 

and the strategies were sought to be replicated in Duarte et al. (2007). Moreover, Vayanos and Vila 
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(2009) discuss that it is the kind of premia-driven arbitrage that the hedge funds and proprietary 

trading desks typically engage in practice.  

As shown by Duarte et al. (2007), yield curve arbitrage in the USD space was highly 

profitable in the period from 1988 to 2004. Given the tide of material developments and events 

since 2004, it is certainly necessary to update the view on the attractiveness of the yield curve 

arbitrage strategy. This is logical given the pace of evolution in the hedge fund industry, as well 

other developments in finance from the rise of electronic trading to the increased regulation. 

Moreover, ever since 2004, the world has seen both the building and bursting of a housing and 

credit bubble, the advent of highly unorthodox central bank policies, ultra-low global rates, and 

the pre-crisis tightening cycle. In Europe in particular, we have witnessed escalation of the 

sovereign debt crisis, the near break-up of the Eurozone, the beginning of Outright Monetary 

Transaction, as well as an early ECB credit tightening, and finally the prospect of and advent of 

the ECB Quantitative Easing. In all, all the developments would warrant the studying of yield 

curve arbitrage in their own right. What is more, the strategies are yet to be tested in the EUR rates 

space, so I chose to combine studying the fresh time period with expanding the study to the euro 

space.  

As a starting point in approaching the problem of arbitrage trading profits, the question is 

how exactly is the yield curve formed, and how does its construction allow for the risk premia 

related arbitrage that carries a risk. The theory on yield curve formation through no-arbitrage is 

built on Vayanos and Vila (2009) and Greenwood and Vayanos (2010). The empirical 

implementation is based on Duarte et al. (2007), and building on their work, I hypothesize in this 

thesis that the premia-related yield curve arbitrage generates attractive returns also in the EUR 

space. This is equivalent to saying that the term structure is not consistently priced at all times, and 

there is a role for arbitrageurs in enforcing the mispriced rates back into the line with the rest of 

the curve.  

The specific purpose of the paper is, on the lines of Duarte et al., to model the behavior of 

the yield curve arbitrageurs – hedge funds, for instance – in order to get a picture of both what 

such arbitrageurs might be doing, and what are the characteristics of the returns their trading 

strategies yield. In essence, this thesis seeks to combine the theoretical models of yield curve 
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arbitrage with the empirical replication methodology to study and explain the returns available for 

arbitrageurs in the EUR rates space.  

Contributions to the literature include the expansion of the Duarte et al. (2007) study to the 

EUR swap space. Moreover, the time period is more recent, from 2002 to early 2015, as compared 

to the 1988 to 2004 period. Further, I employ somewhat more realistic two-factor models, namely 

the Cox-Ingersoll-Ross and Longstaff-Schwartz two-factor models. Additionally, I follow an 

explicit out-of-the-sample focus in trading, which is in contrast to the reported strategies in Duarte 

et al. Finally, the contribution includes testing of the strategy sensitivities to slight modifications, 

comparison of the replicated strategies to the most relevant hedge fund subindices, and application 

of the Hu et al. (2013) noise measure in explaining the mispricings, as well as in the 

implementation of the strategies.  

As to the limitations of this paper, the focus is on the EUR constant maturity swap rate 

space, which differs from the definition of a vanilla interest rate swap. Therefore, strategy 

implementation with the vanilla swaps might differ from what is covered in this paper. The data 

employed consist of mid-swap rate quotes, which may be only partially executable in practice, 

given that a trader may have to trade at bid and ask prices occasionally, or even most of the time. 

In general, taking liquidity from the market by hitting existing best bids and offers would be 

detrimental to an arbitrageur, yet given the mature state of the swap market today, and hence the 

tight spreads, the effect to profit-and-loss should remain marginal.    

The methodology with respect to the chosen short-rate models faces limitations in that it 

does not aim to cover all the relevant short-rate models, which are plentiful in the literature. 

Moreover, as the models are numerically calibrated to the data through analytical solutions for 

zero-coupon bond prices, a lot of the results may be sensitive to deliberate choices in calibration. 

At the end of the day, calibration is a blend of art and science, as the complexity of solving certain 

minimization problems, among other things, is an iterative process with no single best practice 

available.   

Regarding the performance of the replicated strategies, two points are worth noting. First, 

no transaction costs are included, and second, the returns are before fees. When compared to the 

actual hedge fund returns, for instance, the reader should bear in mind that the reported returns by 

funds are usually after both performance and management fees, which can be substantial (often 
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20% and 2%, respectively). As a caveat regarding the ignorance of transaction costs, I note that 

the vanilla swap market is so mature and intensely competed that the associated bid-ask spreads 

should have an insignificant effect on the returns for a serious player in this space. 

Considering the rest of this paper, I shall begin Section 3 by illustrating the above 

mentioned theory by Vayanos and Vila (2009) about term structure formation that calls explicitly 

for the arbitrageurs. This is important in order to understand the framework in which the work of 

the yield curve arbitrageurs happens in theory. After that, literature in general is review as relevant 

to the ideas in this thesis. Section 4 states the hypotheses, while Section 5 elaborates on the 

methodology and illustrates related key concepts. Sections 6 to 9 discuss findings of the thesis, as 

well as tests of the hypotheses. Finally, Section 10 concludes the agenda, context and findings of 

this paper.  

 

3. Theory and literature 

 

3.1. Formation and integration of the yield curve 
 

As the dynamics of the yield curve are at the heart of this thesis, it is a key to have a solid economic 

framework for how the curve takes the shape and characteristics perceived in the market place. 

Vayanos and Vila (2009) offer a robust and tractable theoretical framework in this regard in their 

preferred habitat model of the term structure of interest rates. Their framework is more compatible 

with the recent empirical evidence from the market than the previous theories about the yield curve, 

and interestingly, their model explicitly assumes a role for the arbitrageurs. As the point of my 

research is to replicate the behavior and trading returns of such arbitrageurs, it is helpful to first 

take a glance at a high-level model illustrating the formation of term structure of interest rates 

through the workings of supply, demand and no-arbitrage.  

In their work, Vayanos and Vila (2009) discuss the drivers for interest rates for different 

maturities. First, they point out that in standard economic theory interest rates for certain maturities 

can be explained by the willingness of agents to substitute consumption between now and the 

maturity of the bonds in question. After concluding that this approach would not explain e.g. the 
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U.S. Treasury’s 2000-2002 bond buyback program’s consequences, they look into the so-called 

preferred-habitat model for interest rates that was originally proposed by Culbertson (1957) and 

Modigliani and Sutch (1966). As the name implies, the idea in this view is that the interest rate for 

a particular maturity is driven by the supply and demand shocks local to the specific maturity. As 

pointed out by Cox, Ingersoll and Ross (1985), no-arbitrage conditions do not allow interest rates 

for different maturities to be independently determined, as they should be correlated with the 

nearby rates. Vayanos and Vila (2009) go on to develop a model where the yield curve is 

determined by the interaction between investor clienteles and risk-averse arbitrageurs. In the 

model, the investors have preferences for certain maturities (e.g., pension funds for longer and 

asset managers for shorter maturities), while the arbitrageurs’ role is to render the yield curve 

arbitrage-free though trading.  

No-arbitrage means that all extractable forward rates are unique, i.e. that the term structure 

is internally consistent, precluding a simple ‘textbook arbitrage’. Given that the yield curve is 

swiftly rendered arbitrage free, in equilibrium the arbitrageurs’ positions will carry risk related to 

the bond risk premia. In spite of the uniqueness of all forward rates, risky ‘arbitrage’ opportunities 

may arise, should the nearby bonds trade at prices (yields) dissimilar enough with respect to the 

nearby maturities. This kind of arbitrage situations could be labeled ‘mispricings’ to distinguish 

from the traditional textbook arbitrage. The arbitrageurs in Vayanos and Vila (2009) are able to 

locate such mispricings by observing the stochastic mean-reverting short-rate, similar to the ones 

employed in this thesis and in the paper by Duarte et al. (2007). By observing the short-rate, 

arbitrageurs are able to incorporate information about current and expected short-rates into the 

bond prices.  

As the arbitrageurs are assumed to be risk-averse, the demand shocks inflicted by the 

investor clienteles (or the supply shocks caused by the issuers) affect the yield curve, given that 

the arbitrageurs cannot absorb the demand shocks perfectly. Thus, the yield curve is determined 

by both the supply-demand shocks as well as the exogenous stochastic short-rate, which can be 

affected by e.g. the Central Bank policy or macroeconomic conditions. As the investors are only 

interested in trading their preferred maturity, they are not interested in the short-rate; it is the 

arbitrageurs who can dynamically trade between the bonds and the short-rate. By doing this, the 

arbitrageurs integrate the maturity markets by making the mispricings to converge. 
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In the framework of Vayanos and Vila, arbitrageurs exercise carry trades based on their 

view on the evolution of the short-rate (the instantaneous interest rate for an infinitesimal time 

period). When the short-rate is seen rising, arbitrageurs will short bonds and invest at the short-

rate (roll-up carry trade), as the bonds are expected to have a negative premia when the yield curve 

is inverting. Conversely, when they see the short-rate dropping, they shall go long bonds, 

borrowing at the short-rate (roll-down carry trade). This trading by the arbitrageurs provides the 

mechanism through which the yield curve is finally rendered consistent in terms of bond risk 

premia, as yields are adjusted to reflect changes in the current and expected future short-rates. In 

the absence of the arbitrageurs, the yield curve would be disconnected from the stochastic short-

rate, and moreover, it would remain constant, should the investor clienteles’ demands be constant 

over time.  

Given that the carry trades executed by the arbitrageurs are not riskless, arbitrageurs will 

trade only when they assess that there are positive expected returns available from the arbitrage 

opportunities that compensate for the risks involved. Moreover, in the case where the bond prices 

are determined by both the short-rate and demand factors, the arbitrageurs will hedge their bets by 

taking offsetting long and short bond positions. For instance, a shock pushing the short-rate up 

will make the arbitrageurs go short the short-term bonds, and long long-term ones to hedge 

duration risk. This would have the effect of pushing short-term rates up and long-term rates down.  

As further discussed in Greenwood and Vayanos (2010), the arbitrageurs basically buy 

bonds with low clientele demand (high rates) and sell bonds with high clientele demand (low rates), 

ensuring thereby that nearby maturities trade at similar prices. The arbitrageurs face fundamental 

and non-fundamental risks in bridging the maturity markets; the fundamental one being the 

changes in the short-rate, and the non-fundamental being the shocks to the demand for bonds with 

particular maturities. Arbitrageurs receive compensation for taking these risks. As the arbitrageurs 

intermediate between bonds of different maturities, the bonds most sensitive to the demand shocks 

are the ones most sensitive to the market price of short-rate risk. When arbitrageurs are particularly 

risk-averse, multiple risk factors become relevant; if there are numerous such factors, arbitrageurs 

are less able to integrate the maturity markets, given the increasingly complex hedging 

requirements. As a consequence, the demand effects shall become more local.  
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The work of Vayanos and Vila (2009), and Greenwood and Vayanos (2010), offer an 

intriguing theoretical backdrop for the ideas developed in this thesis, as the point in my work is 

indeed to model the trading strategies of the arbitrageurs that these papers depict on a general level. 

If their theoretical assumptions are correct in that arbitrageurs are necessary for maintaining the 

consistency of the yield curve, and that arbitrageurs demand positive expected returns, it follows 

from this that the yield curve arbitrage strategies I employ should describe in some form the returns 

available from being such an arbitrageur. Moreover, Vayanos and Vila are very explicit in the risk-

averse nature of the arbitrageurs. Linking this idea to the limits to arbitrage literature (more of 

which in the later section), one can logically move to the conclusion that the more risk-averse the 

arbitrageurs are, and the more they have limitations (e.g., arbitrageurs have limited capital), the 

less they will exercise the kind of yield curve integration trades described by Vayanos and Vila.  

Greenwood and Vayanos (2014) find that low arbitrageur wealth makes the government 

bond supply and the yield curve slope stronger predictors of the future returns. This means that 

after the arbitrageurs have endured losses, they will be weaker in integrating the yield curve. 

Resulting from the increased limits to arbitrageurs’ trading, mispricings on certain points of the 

yield curve should be larger and exist for longer, thereby possibly offering more attractive risk-

adjusted returns to those arbitrageurs able to exercise their strategies. On the other hand, consistent 

with Vayanos and Vila (2009) and Greenwood and Vayanos (2014), it is also possible that low 

arbitrage capital will obstruct the convergence of the mispricings, given that shocks will be 

absorbed less efficiently.  

 

3.2. Yield curve arbitrage methodology 
 

Duarte, Longstaff, and Yu, in their paper “Risk and Return in Fixed Income Arbitrage: Nickels in 

Front of a Steamroller?” (2007, Review of Financial Studies), bring seminally light into the space 

of how hedge funds and bank proprietary trading desks presumably approach the modeling of fixed 

income arbitrage opportunities. Moreover, they study the characteristics of the resulting returns, 

which turn out to be highly favorable. Duarte et al. look at five strategies: swap spread, yield curve, 

mortgage, volatility and capital structure arbitrage. Out of these, the yield curve arbitrage is among 
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the top three strategies that require more human capital to implement, which presumably explains 

the stronger risk-adjusted returns they generate.  

Duarte et al. approach the yield curve arbitrage modeling the same way they think several 

large hedge funds view the problem: they employ a two-factor short-rate model to depict the yield 

curve. Namely, the model they use is Vasicek (1977) two-factor model. The model has two sources 

of uncertainty, meaning that it is built upon two mean-reverting stochastic processes. It has a well-

known analytical solution for zero-coupon bond prices, i.e. for the discount factors. By turning 

swap rates into discount factors, the authors can match the model prices to the market prices. They 

use monthly USD swap rate data from 1988 to 2004 for swap maturities of one, two, three, four, 

five, seven and ten years. Section 5 in this thesis explores more carefully how discount factors, 

swaps, swap rates and the short-rate models play together in this context.  

The authors make their short-rate model match exactly the 1-year and 10-year swap rates 

for each month, so that the two, three, four, five and seven year rates are fitted closely to the market 

rates but not necessarily exactly. The matching of model rates to market rates is achieved through 

a calibration procedure, essentially by minimizing the sum of squared differences between the 

market and the model rates. The calibration methodology is at the very core of the whole modeling 

exercise, so I will restate below how Duarte et al. iteratively calibrate the model.  

To begin with, the Vasicek two-factor model has two factors, x1 and x2, as well as six 

parameters, three for each mean-reverting process; these can be described as mean-reversion speed 

of the short-rate (k), long-run mean of the short-rate (theta) and the instantaneous volatility of the 

short-rate (sigma). The model shall be introduced below, in Equation 1, where I present the 

analytical solution for the price of a zero-coupon bond in the model, as well as the underlying 

stochastic short-rate processes.  
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Equation 1 (Vasicek two-factor model zero-coupon bond price) 

Vasicek two-factor model is built upon the two mean-reverting stochastic differential equations 

for x1 and x2, where dWi terms are standard Brownian motions 

𝑑𝑥1(𝑡) = 𝑘1(𝜃1  −  𝑥1(𝑡))𝑑𝑡 + 𝜎1𝑑𝑊1(𝑡) 

 

𝑑𝑥2(𝑡) = 𝑘2(𝜃2 − 𝑥2(𝑡))𝑑𝑡 + 𝜎2𝑑𝑊2(𝑡) 

 

A discount factor, or a zero-coupon bond, with a maturity T, as seen at time t, is priced by 

 

𝐷𝐹(𝑡, 𝑇) = 𝐴1(𝑡, 𝑇)𝐴2(𝑡, 𝑇)𝑒−𝑥1(𝑡)𝐵1(𝑡) − 𝑥2(𝑡)𝐵2(𝑡)  (1) 

Where,  

𝐵𝑖(𝑡, 𝑇) =
1 − 𝑒−𝑘𝑖(𝑇−𝑡)

𝑘𝑖
 

𝐴𝑖(𝑡, 𝑇) = 𝑒𝑥𝑝 {(𝜃𝑖 −
𝜎𝑖

2

2𝑘𝑖
2) (𝐵𝑖(𝑡, 𝑇) − 𝑇 + 𝑡) −

𝜎𝑖
2

4𝑘𝑖
𝐵𝑖

2(𝑡, 𝑇)} 

 

i = 1, 2 standing for the two factors. 

 

Using the above analytical formulation, Duarte et al. calibrate the model to the market data 

by initially choosing trial values for the six parameters. The authors do not reveal what these values 

are, although it is often of relevance to the calibration process. After picking the trial values, the 

model is made to fit the 1-year and 10-year market rates exactly by choosing the factors x1 and x2 

appropriately. After that, the sum of squared differences between the model and market rates is 

minimized within the whole sample period for the two, three, four, five, and seven year rates. 

Essentially, this means finding the six parameters that minimize the distance between the model 

and market rates jointly for the whole sample period for the ‘illiquid rates’. 
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The sample period for model calibration that Duarte et al. use is the whole 1988-2004 

period for which they have monthly data. As they discuss, this would appear to create a look-ahead 

bias, which the authors, however, contest by saying the parameters are only used for computing 

the hedge ratios (which include the price of the zero-coupon bond). Moreover, they also calibrated 

the model to an in-the-sample period and tested it on a separate out-of-the-sample period, acquiring 

thereby similar results as with using the entire period as the sample for calibration.   

After the six parameters are fixed after this calibration, the modeling continues so that for 

each month going forward, the values of the factors x1 and x2 are again chosen so that the respective 

1-year and 10-year market rates are exactly fit to the model rates. Hence, the model shall imply 

market-to-model rate differences, or ‘mispricings’, for the rest of the points on the yield curve, 

namely for the ‘illiquid rates’ that are not fitted exactly. These mispricings are then considered as 

trading signals. Naturally, the arbitrageur goes short rich and long cheap market swap rates on the 

points of the curve where the mispricings are deemed large enough. After establishing positions, 

the trader waits for the market rates to converge to the model rates. Should this happen, positions 

will be unwound. The methodology shall be further discussed in Section 5.  

 

3.3. Performance of yield curve arbitrage 
 

Duarte et al. find strong evidence that yield curve arbitrage strategies generate monthly excess 

returns on the scale of 43.7 to 61.5 basis points after leveraging the positions so that they have an 

ex post annualized volatility of 10%. Leverage is hence around 16 times the equity in the respective 

swap trades. The excess returns are statistically significant as implied by the Newey-West (1987) 

autocorrelation robust test statistic, which attains a value of 3.42 for the equally weighted (EW) 

portfolio that trades all the rate maturities.  

The authors look into strategies where only a single swap maturity is traded, as well as into 

an equally weighted portfolio made of all the maturities. The single-maturity strategies trade 2-

year, 3-year, 5-year and 7-year swap rates. The monthly leveraged mean returns for these strategies 

are 54, 48.6, 61.5 and 43.7 bps, respectively, while the EW portfolio yields 51.9 bps. Sharpe ratios 

range from 0.524 to 0.738 in the single-swap trades, while the EW strategy has the highest Sharpe 

ratio at 0.785.  
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The returns from the strategy are highly positively skewed (0.995 for the EW strategy), 

which is in contrast to the common perception that fixed income arbitrage equals to collecting 

small returns most of the time, while suffering large losses occasionally (i.e., ‘picking nickels in 

front of a steamroller’). Kurtosis ranges for the EW portfolio is 3.269, meaning that the return 

distribution has fat tails, i.e. that extreme values for returns are more likely than is implied by the 

normal distribution. While positive skewness is certainly good for the arbitrageur, the favorability 

of heavy tails is more contestable, given that it may also increase exposure to extreme losses. Only 

34.7% of the returns fall into the negative territory as reported by the authors.  

Given the non-normality of the return distributions, Bernardo and Ledoit (2000) Gain-Loss 

ratios are also reported. These range from 1.643 to 2.355, the EW strategy having a ratio of 1.980, 

implying highly favorable performance. The ratio is basically computed as the ratio between the 

expected gain and the expected loss.  

Yield curve arbitrage yields a highly statistically significant alpha of 59.8 bps per month 

before fees, the test statistic being 3.14, when the returns are controlled by priced risk factors, 

including Fama-French four factors, as well as rate and credit factors. R2 of the regression is only 

9.7%, implying that the beta factors explain little of the variation in the strategy’s returns. In 

contrast to the other fixed income arbitrage strategies discussed in Section 3.4., yield curve 

arbitrage has statistically significant alphas for all the portfolio modifications considered by Duarte 

et al. (2007). Finally, the yield curve arbitrage strategy appears to have no statistically meaningful 

connection to the actual high-level hedge fund indices, as Duarte et al. report a correlation 

coefficient close to zero between the two.  

 

 

3.4. Performance of other arbitrage strategies 
 

Mitchell and Pulvino (2001) study the risk arbitrage (merger arbitrage) strategy, where the 

arbitrageur usually takes a long position in the M&A target company while selling short the 

acquirer as a hedge. In the dataset spanning years from 1963 to 1998, the authors find that the 

strategy generated (annualized) Sharpe ratios from 0.44 to 1.0.  The linear model alphas in the 

absence of transaction costs were 74 bps per month. Mitchell et al. liken the strategy to selling 
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index put options, as the strategy does correlate positively with  the general market during severe 

declines, yet earns stable returns most of the time. This characteristic also leads to the questioning 

of the Sharpe ratio as a prudent measure of risk-adjusted performance. This point shall be further 

discussed in Section 6 that delves deeper into the analysis of results.  

Gatev et al. (2006) look into a classical Wall Street relative value, or statistical arbitrage 

strategy known as pairs trading. The strategy takes long/short positions in stocks that are 

historically cointegrated, i.e. have a long-run mean to which their spread convergences to. Stocks 

are matched to such pairs by minimizing the distances of normalized historical prices. The authors 

test a simple trading rule in a period 1962 to 2002, where the strategy yields up to 11% in 

annualized excess returns. The return distribution has a positive skew. The strategy generates 

Sharpe ratios that are four to six times higher than that of the market; the aggregate strategy has 

an annualized ratio of 1.56. As the excess returns are fairly robust, it seems that the strategy profits 

from the temporary mispricing of close substitutes. The returns are finally linked to a common 

factor that is uncorrelated with the conventional risk factors.  

Yu (2006) studies capital structure arbitrage, where an arbitrageur takes off-setting 

positions in a company’s debt and equity based on the trading signals generated by a Merton (1974) 

style structural model. Trades are entered into when a certain market-to-model spread threshold is 

exceeded, and similarly the trades are closed when the gap tightens, enough of losses accumulate, 

or if a time limit is reached. The trades are executed as credit default swap (CDS) positions versus 

stock positions. A core finding is that the capital structure arbitrage is very risky given a high 

drawdown potential. The most promising version of the strategy with a relatively high bound for 

trading yields an annualized Sharpe ratio of 1.54, yet the maximum loss in a month can be as high 

as 33%. Most of the losses occur when the arbitrageur is short the CDS and the spread soars 

abruptly, making the equity hedge ineffective. Strategy modifications that have less restrictive 

bounds trade more often, but also have much lower Sharpe ratios, ranging from 0.11 to 0.39. The 

returns have a weak positive statistical connection to the CSFB/Tremont Fixed Income Arbitrage 

index.  

Duarte et al. (2007) also look into swap spread, volatility, capital structure and mortgage 

arbitrage. Equally weighted swap spread arbitrage strategy, where an arbitrageur trades swaps 

against Treasuries, has a monthly excess return of 41 bps and a Sharpe ratio of 0.597. Returns are 
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negatively skewed and 39.4% of returns are negative. Gain-Loss ratio stands at 1.643 for the EW 

strategy. Mortgage arbitrage, where an arbitrageur isolates the prepayment risk, has an excess 

return of 40.8 bps and a Sharpe ratio of 0.514. Returns have a large positive skew of 6.369, yet 

39.2% of the returns are negative. Gain-Loss ratio is reported at 1.489. Fixed income volatility 

arbitrage, where an arbitrageur basically sells rate volatility, has a monthly excess return of 58.4 

bps for the EW strategy, with a Sharpe ratio of 0.72, and a Gain-Loss ratio of 1.709. The returns 

are not, however, statistically significant as the test statistic stands at only 1.79. Just 34.4% of 

returns are negative, yet the returns are negatively skewed, and the absolute minimum return 

exceeds the absolute maximum return. Again, capital structure arbitrage, where an arbitrageur 

forms a long/short portfolio of company’s debt and equity, is reported to yield 70.5 bps per month 

with a Sharpe ratio of 1.203, and a Gain-Loss ratio of 4.117. Skewness is positive at 2.556, and 

the tails are very heavy with kurtosis at 8.607. 33% of the returns are negative. In spite of otherwise 

solid statistics, the returns are not statistically significantly different from zero, as the t-statistic is 

only 1.70 for the EW strategy. Out of these fixed income arbitrage strategies, only capital structure 

arbitrage has statistically significant alpha when controlled by the priced risk factors.  

Avellaneda and Lee (2008) look into typical statistical arbitrage strategies in the U.S. 

equities market, and find that Principle Component Analysis (PCA) based strategies have an 

average annual Sharpe ratio of 1.44 in a period from 1997 to 2007. The performance is much 

stronger prior to 2003; after that the average ratio was 0.9. Exchange-traded fund (ETF) based 

strategies yielded a Sharpe ratio of 1.10 from 1997 to 2007, yet experienced a similarly degrading 

performance post-2002. Avellaneda et al. also find that taking into account daily trading volume 

information in the trading signals, the Sharpe ratio strengthens to 1.51 for the period 2003 to 2007 

for the ETF-based strategies. 

Agarwal et al. (2011) take a glance into common convertible arbitrage strategies, where an 

arbitrageur usually goes long convertible bonds and delta hedges the directional equity risk away. 

In terms of risk-adjusted performance, their synthetic hedge fund portfolios yield Sharpe ratios 

between 0.30 and 0.62. Basic OLS regression implies a significant monthly alpha of 40 bps, but 

controlling for the convertible bond supply effects, the alpha become negative, yet stays 

significant. This would suggest that the supply shock risk is priced in the convertibles market, as 

liquidity shocks (e.g. the LTCM event) are seen to hit the CB arbitrage funds rather hard.  
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3.5. Possible explanations for performance 
 

Possible explanations as to why the yield curve arbitrage results in attractive returns include its 

analytical complexity, as suggested by Duarte et al. (2007), as well as challenges in 

implementation, especially the calibration. This explanation pertains to limited competition among 

the arbitrageurs; barriers to entry are relatively high due to extensive and costly human capital 

investments, resulting in a limited number of sophisticated hedge funds who resort to the strategies 

through the advanced analytical frameworks.  

Other explanations are related to the efficiency of the markets and limits of arbitrage. 

Generally, in an efficient market, there are no limits to arbitrage, which itself makes the market 

efficient. Sophisticated arbitrageurs have unlimited firepower and frictions do not restrict trading, 

which will instantly correct any mispricings of securities. Today, there is an extensive pile of 

leading research on the limitations that the arbitrageurs face. These limitations are numerous and 

come in all flavors, yet one can think of them as being either exogenous to the arbitrageurs – like 

a cap on the leverage available – or choices made by the arbitrageurs themselves to maximize e.g. 

their expected risk-adjusted returns (or utility of wealth). In the ensuing subsections, I shall delve 

more in depth into these ideas that lend themselves as possible explanations for the superb 

performance of the yield curve arbitrage strategies. It should be noted that by and large, these 

possible explanations would be relevant for most fixed income or other arbitrage strategies; they 

are not unique to the yield curve arbitrage. On the footsteps of Duarte et al. (2007), I consider 

analytical complexity as a key differentiator between the yield curve arbitrage and most other 

strategies ranging from merger arbitrage to swap spread arbitrage.  

3.5.1. Complexity of analytical methodology and model risk 
 

Duarte et al. (2007) suggest that yield curve and capital structure arbitrage outperform other fixed 

income arbitrage strategies, as well as other less complex trading strategies due to their increased 

analytical complexity and thus the need to have additional human capital. As the yield curve 

arbitrage is a quantitative and systematic strategy employing little to no discretionary views of the 

arbitrageur, the quality of and insights in modeling are naturally key performance drivers. The 
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complexity and innovativeness of the analytical methodology can act as a differentiator between 

hedge funds competing in this niche. Moreover, the number of hedge funds and other arbitrageurs 

competing in the space is limited by the supply of human capital. The arbitrageurs need to have 

the capacity to employ relevant multifactor interest rate models for pricing and hedging, as well as 

numerical methods necessary in calibrating the models.   

Additionally, a trading strategy driven by mathematical and numerical methodologies is 

exposed to the risk that such methods end up losing their historical edge, or fail to hedge the risks 

appropriately. Thus, it appears logical that actual quantitative arbitrageurs would reserve dry 

powder for potentially large failures in terms of modeling. This would leave some of the perceived 

trading opportunities unharnessed and thus also alpha on the table.  

In all, the necessary human capital investments and model risks associated with running 

the quantitative yield curve arbitrage strategy may act as constraints to driving the available alphas 

towards zero. Hence, those capable of running the respective strategies well enough may continue 

to be rewarded disproportionally in terms of risk-adjusted returns.  

 

3.5.2. Limits of arbitrage 
 

Shleifer and Vishny (1997) discuss the difference between textbook and real world arbitrage, 

noting the former requires no capital and carries no risk. They point out that in reality arbitrage 

does require capital, as well as entails risk. Moreover, such arbitrage is run by a limited number of 

highly specialized investors employing the capital from outside sources. Shleifer et al. show that 

especially in extreme circumstances, such arbitrage may not be fully effective in pushing price 

back to fundamental levels. In spite of the attractive returns available from mispricings, 

arbitrageurs would expose themselves to volatility and losses, and thereby to liquidations in the 

fund on the investors’ part. In conclusion, their work establishes that the avoidance of return 

volatility by arbitrageurs can hinder their ability to eliminate certain anomalies through trading.  

Xiong (2001) studies convergence traders in particular, assuming logarithmic utility of 

wealth to them. In general, convergence traders reduce price volatility and provide liquidity to the 

market. However, when the arbitrageurs endure losses due to an unfavorable shock, they are forced 
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to liquidate their positions as risk-bearing capacity shrinks, thereby amplifying the original shock. 

In other words, non-convergence of arbitrageurs’ positions can lead to a vicious cycle of no 

convergences, as arbitrageurs’ wealth is diminished, and their risk-aversion increases.  

Mitchell and Pulvino (2010) discuss how arbitrageurs employing financial leverage are 

able to force even small pricing discrepancies to converge. They study the 2008 financial crisis, 

looking into the sudden and dramatic decrease in leverage available to hedge funds. From the 

arbitrageurs’ point of view, seemingly long-term debt became short-term one, thus creating a 

mismatch between their assets and liabilities. Resulting from the withdrawal of financing, many 

hedge funds with relative-value strategies were unable to make assets with similar payoffs worth 

all but the same, i.e., to impose the no-arbitrage condition. The authors discuss how the magnitude 

and convergence time of the mispricings during the crisis can provide an indication of the 

arbitrageurs’ role in enforcing no-arbitrage during the normal times.  

Finally, Gromb and Vayanos (2010) summarize theoretical literature on the limits of 

arbitrage. They discuss how different mechanisms inflict costs to arbitrageurs, thereby preventing 

them from correcting mispricings and providing liquidity to other investors. First, Gromb et al. 

consider demand shocks that generate mispricings stemming from behavioral or institutional 

reasons. Secondly, they classify cost faced by arbitrageurs into categories: fundamental and non-

fundamental risk, short-selling costs, leverage and margin constraints, and constraints on equity 

capital. Given the nature of this thesis, most promising single factor is probably risk. As Gromb et 

al. discuss, a number of papers explore dynamic multi-asset equilibrium settings with models 

assuming that the only cost for the arbitrageurs is risk. Greenwood (2005) and Hau (2009) portray 

arbitrageurs who absorb demand shocks of index investors following index redefinitions. In 

Gabaix et al. (2007), arbitrageurs have the unique ability to hold mortgage-backed securities; as 

they hedge interest-rate risk in the bond market, they continue to carry prepayment risk. Similarly, 

in Garleanu et al. (2009), arbitrageurs absorb shocks in the options market, delta hedging in the 

cash stock market, and thereby bearing the jump and volatility risk. On the same lines, as discussed 

earlier, are Vayanos and Vila (2009) and Greenwood and Vayanos (2010), where arbitrageurs 

absorb demand and supply shocks to specific maturities in the government bond market, hedging 

the bets by trading other maturities on the yield curve. While depicting different markets, the above 

literature comes together in that arbitrageurs transmit asset-specific shocks to other assets so that 
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the effects are largest for the assets with the highest covariance with the original shock-hit asset. 

Jylhä and Suominen (2009), Plantin and Shin (2009), as well as Hau (2014), study similar effects 

in the FX market, while Naranjo (2009) looks into the futures space.   

 

3.5.3. Noise in the markets 
 

Hu, Pan and Wang (2013) propose a market-wide liquidity measure based on observed price 

deviations in the U.S. Treasury bonds, connecting this to the amount of arbitrage capital in the 

market. Similar to the reasoning of Vayanos and Vila (2009), Hu et al. consider that during normal 

times in the markets, there is abundant arbitrage capital that makes the Treasury yield curve smooth 

and keeps deviations small. However, during market stress periods, or crises, there will be 

shortages in the arbitrage capital, which can result in some of the yields moving out of the line 

with respect to the rest of the curve, meaning that there is more ‘noise’ in the bond prices. 

Hu et al. choose the U.S. Treasury bond market as the space where they look for a measure 

that would capture market-wide liquidity short-falls. The logic behind the choice is that the 

Treasury market is known to be one of the largest and most liquid markets, and it is important also 

in collateral sense for funding purposes, as well as naturally as being a key asset class for 

investment. The point, however, is not to find a liquidity measure pertaining solely to the fixed 

income market, but for the broader financial markets across assets classes. The key is that the 

liquidity shocks that originate in other, potentially less liquid markets will be felt also in the very 

liquid Treasury bond market, especially when the liquidity shocks are significant enough. The 

measure is also designed to be robust in that it incorporates a number of points on the yield curve, 

and is therefore not concentrated on any single maturities, for instance.  

The authors suggest that the noise as captured by their measure can be informative about 

the liquidity conditions of the broader market. They show that their noise measure is able to capture 

a number of liquidity crises across the financial markets in a way that is superior to earlier 

suggestions as proxies for liquidity. Moreover, Hu et al. show that employing their measure as a 

priced risk factor helps to explain the returns of hedge funds, which are understood to be sensitive 

to the broad liquidity conditions of the market.  
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The connection between the noise and yield curve arbitrage returns is thus based on the 

idea that high noise coincides with high mispricings, thereby offering arbitrageurs better trading 

opportunities. The stress periods presumably decrease the level of arbitrageur activity in the 

markets after the arbitrageurs endure losses, are unwilling to employ their capital to the full extent, 

or face tightened leverage and margin constraints. As a result, increased noise will be measured in 

the bond prices given that they are not smoothed aggressively enough by the arbitrageurs. This in 

turn may explain why those arbitrageurs willing to step in can reap attractive returns from relative 

value bets.  

 

3.5.4. Compensation for tail risk 
 

In general, hedge funds and certain strategies typical to hedge funds are often seen as having 

particular exposure to the negative tail of an asset price distribution, which is referred to as tail 

risk. The tail risk basically equals disaster, crash or rare-event risk. Having such exposure can 

naturally explain outperformance during an observation period when no tail risk materializes. In 

this subsection, I shall shortly present some literature discussing the tail risk, as it is a feasible 

explanation for the perceived and potential strength of the yield curve arbitrage strategy studied in 

this thesis.  

Mitchell and Pulvino (2001) contemplate that merger arbitrage has similar characteristics 

to a strategy selling index put options. In other words, the strategy earns small profits most of the 

time, and has a limited correlation with the overall market, yet suffers heavily during the market 

downturns, when the correlation becomes significantly positive. Writing put options naturally 

equals selling disaster insurance and loading on the tail risk.  

As Duarte, Longstaff and Yu (2007) discuss, fixed income arbitrage strategies’ returns are 

often considered to be negatively skewed. This means that the strategies are thought to generate 

small returns on average, yet to suffer large losses occasionally. Should this be the case, then any 

alpha such strategies generate in a finite time period could be attributed as compensation for 

bearing crash risk. Taking long exposure to the crash risk has been shown to be characteristic to 

both hedge funds in general and to specific hedge fund styles in particular.  
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Brunnermeier et al. (2009) provide evidence of a strong link between currency carry and 

currency crash risk. The strategy of being long high interest rate currencies and short low interest 

rate ones delivers returns with a negative skew. They show that speculators invest in high-carry 

currencies, arguing that currency crashes are linked to sudden unwinding of these positions. This 

may be explained by withdrawal of liquidity and lower speculator capital, as the currency crashes 

are positively correlated with the VIX index and the TED spread.  

Jiang and Kelly (2012) document large and persistent hedge fund exposures to the 

downside tail risk. They show that funds with exposure to the tail risk earn annual returns of nearly 

6% higher than their peers whom are tail risk-hedged, controlling for commonly employed hedge 

fund factors. They conclude that their results are consistent with the notion that a large part of 

hedge fund returns can be seen as compensation for selling disaster insurance.  

 

4. Hypotheses 

 

Based on the prior literature discussed in Section 3, as well as on general financial theory, I shall 

state a number of hypotheses to be tested in this thesis. Firstly, I hypothesize that the yield curve 

arbitrage in the EUR swap space generates attractive risk-adjusted returns within a sample period 

from 2002 to 2015, with a focus on out-of-the-sample trading from the late 2005 onward. 

Additionally, it is hypothesized that the core strategy’s return distribution is tilted favorably to the 

arbitrageurs’ benefit. Secondly, I hypothesize that these returns are mostly multifactor alpha, 

having thus limited exposure to known priced risk factors. Moreover, I make the hypothesis that 

the replicated yield curve arbitrage strategies explain to a statistically significant degree the most 

relevant hedge fund subindex returns, namely the HFR and Credit Suisse fixed income arbitrage, 

or relative value, indices. Further, I hypothesize that the mispricing of rates in the market is greater 

when there is a lot ‘noise’ as defined by Hu et al. (2013). Finally, I hypothesize that the returns 

from the strategies are greater during these noisy periods. 

The Hypotheses 1 to 5 follow directly from the findings of Duarte et al. (2007). They are 

formulated so that the strategies are tested with the EUR swap dataset, with an enhanced 

methodology, as well as with modifications to the strategies.   
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Hypothesis 1: Replicated yield curve arbitrage trading strategies generate attractive risk-

adjusted returns in the EUR swap rates space.  

 

Hypothesis 2: Replicated core yield curve arbitrage trading strategy’s return distribution is non-

normal, i.e. it is positively skewed with a high kurtosis. 

 

Hypothesis 3 pertains to the different implementations of the strategies, given that one can choose 

to trade the mispricings in a number of ways. The hypothesis states that the strategy directly 

following Duarte et al. (2007) will have the best risk-adjusted returns when compared to the other 

elementary modifications of the strategy.  

 

Hypothesis 3: A yield curve arbitrage trading strategy that trades multiple largest monthly 

mispricings at the same time will result in the most attractive risk-adjusted returns in the space of 

elementary strategy variations. 

 

Hypothesis 4: Replicated yield curve arbitrage trading strategies’ returns are mostly multifactor 

alpha, when controlled by known and potential risk factors across asset classes. 

 

Hypothesis 5: Replicated yield curve arbitrage trading strategies’ returns will not have a 

statistically significant explanatory power with respect to the high-level hedge fund indices. 

 

Hypothesis 6 is modification of Hypothesis 5 in that while the high-level hedge fund indices are 

expected to have no significant relation with the replicated strategy, the subindices closer to the 

EUR fixed income arbitrage space are conversely expected to have such a connection.  
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Hypothesis 6: Replicated yield curve arbitrage trading strategies’ returns will have a statistically 

significant explanatory power with respect to the most relevant hedge fund subindices. 

 

Hypotheses 7 and 8 are of a formulation that is yet to be tested anywhere. They intend to connect 

the yield curve arbitrage strategy to the research on the ‘noise’ in the (fixed income) markets, as 

well as to the limits of arbitrage literature as discussed in Section 3.  

 

Hypothesis 7: The extent of model implied mispricing of rates is highly positively correlated with 

the amount of ‘noise’ in the market. 

 

The Hypothesis 7 leads logically to the Hypothesis 8 on the grounds that noisy market 

environments are expected to coincide with the withdrawal of arbitrage capital [Hu et al. (2013), 

Greenwood and Vayanos (2014)], thereby possibly providing active arbitrageurs with more 

attractive opportunities to trade on. 

 

Hypothesis 8: Replicated yield curve arbitrage trading strategies’ performance in terms of risk-

adjusted returns is highly positively correlated with the amount of ‘noise’ in the market. 

 

Tests of the Hypotheses 1, 2, and 3 shall be discussed in Section 6. The Hypothesis 4 is covered 

in Section 7, while tests of the Hypotheses 5 and 6 are reported in Section 8. Finally, the 

Hypotheses 7 and 8 related to the noise measure are tested in Section 9.  
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5. Data and methodology 

 

5.1. Data 
 

The data consists of monthly observations of 1-year to 10-year constant maturity (‘par’ or ‘zero’) 

EUR swap rates. This swap data is available on the Bundesbank’s website. The data ranges from 

the beginning of January 2002 until the end of January 2015. The rates are mid-swap rates, i.e. the 

average of the bid and offer quotes for a given rate maturity at the end of each month. The data is 

validated by cross-checking to a similar dataset extracted from a Bloomberg terminal. Figures 1 

and 2 illustrate the swap rate data in question. Data regarding hedge fund indices and the noise 

measure by Hu et al. (2013) shall be illustrated in the related Sections 8 and 9, respectively.  

 

 

Figure 1. EUR swap rates evolution in time. 

This figure illustrates the constant maturity EUR par swap rate data from the beginning of 2002 until the January of 

2015. The swap rates are for maturities of one to ten years. The rates illustrated are mid-market quotes at the end of 

each calendar month, as available from the Bundesbank’s website.  
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Figure 2. Yield curve's evolution in time. 

This figure illustrates the constant maturity EUR par swap yield curve data from the beginning of 2002 until 

the January of 2015. The swap rate data is for maturities from one to ten years. The swap rate curve is depicted 

by the slope in the figure. The rates illustrated are mid-market quotes at the end of each calendar month, as 

available from the Bundesbank’s website. 

 

5.2. Swaps, swap rates and discount factors 
 

A swap is a derivative agreement between two counterparties to exchange future cash flows related 

to a certain asset on pre-agreed dates. A vanilla fixed-to-floating interest rate swap is a contract 

where one party agrees to pay a fixed ‘swap rate’ and to receive a periodically determined ‘floating 

rate’ in exchange (payer swap). The counterparty would agree to have the opposite position 

(receiver swap). The floating rate is usually LIBOR or EURIBOR, and commonly itself has a 

maturity of three or six months. In the EUR space, the reference floating rate is generally the 3-

month EURIBOR, in which case the payments are exchanged, or ‘swapped’, every 3 months. The 

fixed rate in question is chosen so that the value of the swap is zero at initiation. Therefore, the 
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fixed rate’s value depends on the expected future spot EURIBOR rate, namely its forward term-

structure observed at the time.  

The swap rate (or ‘par swap rate’) refers to the fixed rate at which at a given time a swap contract 

has a mark-to-market value of zero. As a swap is worth zero at initiation, this means that the 

counterparties entering into the contract would need capital only for collateral purposes, as the 

swap itself does not ‘cost’ anything to enter for neither of the parties. This is in contrast to dealing 

in the options market, for instance, where a premium would be paid or received when entering into 

the contract.  

Below, Equation 2 presents the computation of a discount factor, or a zero-coupon bond, in the 

context of swap rates, which shall be employed throughout the thesis when moving from the swap 

rates to the discount factors for different maturities.  

 

Equation 2 (Discount factor) 

Making the observation at t = 0, the value of a unit notional zero-coupon bond, or a discount 

factor, is given by the below formula, where ST refers to the yield, or swap rate, for that particular 

maturity T.  

 𝐷𝐹0,𝑇 =  
1

(1+𝑆𝑇)𝑇     (2) 

 

Equation 3 below illustrates the computation of the par swap rate. Such calculation is not necessary 

in this paper, given that the data itself is in the form of par swap rates. Hence, the equation is 

provided for the reader as a context for understanding how the market prices the swap rates. 
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Equation 3 (Par swap rate)  

For t ≤ t0, the swap rate is given by the below formula, where t is the time of observation, t0 is the 

initiation of the swap, and T is the maturity of the swap. In this thesis, it is necessary only to 

consider the case t = t0 = 0 when computing the swap rates, i.e. to deal solely with the spot rates.  

 

 𝑆𝑡,𝑇 =
𝐷𝐹𝑡,𝑡0  − 𝐷𝐹𝑡,𝑡0+𝑇

∑ 𝐷𝐹𝑡,𝑖
𝑇
𝑖=1

   (3) 

 

5.3. Modeling methodology 
 

Modeling is obviously at the very heart of replicating the returns available from arbitrage trading. 

The hypotheses and prior literature imply that the attractive returns from quantitative yield curve 

arbitrage strategies are at least partially explained by the relatively sophisticated methods 

employed. This is logical in the sense that required sophistication from arbitrageurs heightens 

barriers to entry to the arbitrage business.  

In short, the modeling methodology chosen ought to be capable of replicating the behavior 

of arbitrageurs as discussed by Vayanos and Vila (2009) in their theory of yield curve formation 

and integration. By attempting to imitate the trading and hedging decisions of the depicted yield 

curve arbitrageurs, I hope to replicate the return characteristics of their strategies.  

The modeling approach shall be similar across the short-rate models and the specific 

strategies considered. When studying the individual strategies, some modifications can be made, 

for instance the sample period for calibration can be made rolling instead of static. By and large, 

however, the core of the methodology described below will pertain to all of the strategies being 

considered.  

First, in order to quantitatively locate potential mispricings in the market swap curve, one 

has to specify a certain model that is used as a framework for the analysis. Secondly, the model 

chosen has to match the market rates to a certain extent for the model to be relevant at any level. 

Thirdly, the model has to be able to point out tradable and economically significant mispricings to 
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be of a practical benefit. This does not have to be true at all times; it is sufficient that the model 

points out mispricings frequently enough to offer economically acceptable (leveraged) total 

returns. Further, it has to be possible for the market rates to converge to the model rates to a decent 

degree, so that one can observe when a mispricing no longer exists. Finally, one needs to be able 

to extract some sort of sensitivity measures from the model. Namely, the model must be first-order 

differentiable with respect to the risk factors. This is necessary for an arbitrageur to be able to 

construct an arbitrage portfolio, which, by definition, is a portfolio that is neutral to (incremental) 

movements in the risk factors. If one were unable to find sensitivities to these factors, or the ‘hedge 

ratios’, then there would be little point in locating a mispricing in the market rates, as one would 

not be able to ‘lock in’ low-risk (or riskless) profits at any given time.  

I chose Cox-Ingersoll-Ross (CIR2F) and Longstaff-Schwartz (LS2F) two-factor models as 

the tools for modeling the yield curve. This choice was motivated by the fact that both models are 

essentially considered state-of-the-art in the short-rate literature. In general, two factors are 

sufficient to explain around 99% of the variation in the bond returns, as shown by e.g. Litterman 

et al. (1991). Duarte et al. employed Vasicek two-factor model for this purpose. I hope that the 

choice of CIR2F and LS2F produces even better outcomes on the basis that the CIR2F model in 

particular adds sophistication to the Vasicek model by disallowing negative rates, for instance. 

Even in the present ultra-low rate environment, this seems to be a desirable property, given that 

the EUR swap rates are yet to go to the negative territory. Moreover, the Vasicek model implies 

normally distributed rates, whereas the CIR2F model has a non-central Chi-squared distribution, 

which seems like an enhancement, given that rates are certainly not normally distributed [see Cox 

et al. (1985) and Vasicek (1977) for further details of the models]. 

The modeling itself begins with the idea that the rates in the market have to fit the model 

rates to a reasonable degree, or more specifically, some rates have to match more or less exactly. 

Duarte et al. (2007) fit the model exactly to the 1-year and 10-year rates in the market data; as in 

my dataset, these are the end points of the yield curve. While Duarte et al. do not explicitly say 

why they choose specifically these rates, it is rather obvious:  these are the most liquid rates in the 

1-year to 10-year space. Amihud (2002) and Amihud et al. (1991), among others, show that 

liquidity affects the efficiency of pricing in the markets, and thus one can infer that other things 

being equal, the most liquid securities, or rates, convey the best information to a trader. In this 
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regard, I will follow Duarte et al. in considering the 1-year and 10-years to be the ‘liquid rates’ 

and the 2-year to 9-year rates to be the ‘illiquid rates’.  

To move towards fitting the models to the market rates, one can look into the analytical 

solutions of the models: both CIR2F and LS2F have an analytical solution for a zero-coupon bond 

price, or for a discount factor. This discount factor can then be easily turned into a corresponding 

yield, or equivalently, into a swap rate. So basically, one moves from discount factors to swap 

rates, and vice versa, when calibrating the models with respect to the rates observed in the market. 

Section 5.2 further elaborates on the swap rates and discount factors. 

I follow the approach of Duarte et al. in fitting the models to the market rates. First I choose 

an in-the-sample period (my standard selection is four years) to which I calibrate the model, and 

where no trading is done. This ensures that I do not look in any way to the future data when 

choosing the model parameters. The historical calibration is done so that first, for each month in 

the sample, the models’ factors (x1 and x2 in CIR2F; r and V in LS2F) are chosen so that the 1-

year and 10-year rates match exactly (or as close to as possible, at worst) the corresponding 

markets rates. Then, given these factor choices, the sum of squared differences between the market 

and the model is minimized for the ‘illiquid rates’ jointly across the sample. Illiquid rates mean all 

the rates from the 2-year rate to the 9-year rate. Calibrating ‘jointly across the sample’ means that 

the objective function in the minimization problem is the sum of squared differences across all the 

months in the sample, and for each month it contains the squared differences for rates from two to 

nine years. This step selects the 6 parameters that both models have. To illustrate, CIR2F’s 

parameters have a straight-forward economic interpretation: theta is the long-run mean of the 

short-rate, sigma is the volatility of the short-rate, and k stands for the speed of mean-reversion of 

the short rate. As there are two factors in the CIR2F, there are these three parameters regarding 

both of them, summing up to the six in the whole model.  

Equation 4 presents the formula for the CIR2F zero-coupon bond price, while Equation 5 

does the same for the LS2F model. Both the underlying stochastic short-rate processes and the 

resulting analytical formulations are presented. For the derivation of the bond price and further 

details, the reader is referred to Cox et al. (1985) and Vasicek (1977). The two-factor models 

follow straight-forwardly from the original one-factor models. 
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Equation 4 (CIR2F zero-coupon bond price) 

 

CIR2F model has to factors that follow these stochastic processes 

 

𝑑𝑥1(𝑡) = 𝑘1(𝜃1  −  𝑥1(𝑡))𝑑𝑡 + 𝜎1√𝑥1(𝑡)𝑑𝑊1(𝑡) 

 

𝑑𝑥2(𝑡) = 𝑘2(𝜃2 −  𝑥2(𝑡))𝑑𝑡 + 𝜎2√𝑥2(𝑡)𝑑𝑊2(𝑡) 

 

A discount factor, or a zero-coupon bond, with a maturity T, as seen at time t, is priced by 

 

𝐷𝐹(𝑡, 𝑇) = 𝐴1(𝑡, 𝑇)𝐴2(𝑡, 𝑇)exp (−𝑥1(𝑡)𝐵1(𝑡, 𝑇)  −  𝑥2(𝑡)𝐵2(𝑡, 𝑇))  (4) 

 

Where, 

𝐴𝑖(𝑡, 𝑇) =  (
2ℎ𝑖𝑒(ℎ𝑖+𝑘𝑖)(𝑇−𝑡)/2

2ℎ𝑖 + (ℎ𝑖 + 𝑘𝑖)(𝑒ℎ𝑖(𝑇−𝑡) − 1)
)

2𝑘𝑖𝜃𝑖/𝜎𝑖
2

 

 

𝐵𝑖(𝑡, 𝑇) =  (
2(𝑒ℎ𝑖(𝑇−𝑡) − 1)

2ℎ + (ℎ + 𝑘)(𝑒ℎ𝑖(𝑇−𝑡) − 1)
) 

 

ℎ𝑖 =  √𝑘𝑖
2 + 2𝜎𝑖

2 

 

i = 1, 2 standing for the two factors. 
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Equation 5 (LS2F zero-coupon bond price) 

 

A discount factor, or a zero-coupon bond, with a maturity T as seen at time t is priced by 

 

𝐷𝐹(𝑇) = 𝐴2𝛾(𝑇)𝐵2𝜂(𝑇)exp (𝜅𝑇 + 𝐶(𝑇)𝑟 + 𝐷(𝑇)𝑉)   (5) 

 

Where, 

𝐴(𝑇) =
2𝜙

(δ + 𝜙) exp((𝜙𝑇) − 1) + 2𝜙
 

 

𝐵(𝑇) =
2𝜓

(𝜈 + 𝜓) exp((𝜓𝑇) − 1) + 2𝜓
 

 

𝐶(𝑇) =
𝛼𝜙(exp(𝜓𝑇) − 1)𝐵(𝑇) − 𝛽𝜓(exp(𝜙𝑇) − 1)𝐴(𝑇)

𝜙𝜓(𝛽 − 𝛼)
 

 

𝐷(𝑇) =
𝜓(exp(𝜙𝑇) − 1)𝐴(𝑇) − 𝜙(exp(𝜓𝑇) − 1)𝐵(𝑇)

𝜙𝜓(𝛽 − 𝛼)
 

 

And, 

𝜈 = 𝜉 + 𝜆 

 

𝜙 = √2𝛼 +  δ2 

 

𝜓 = √2𝛽 +  𝜈2 
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𝜅 = 𝛾(δ + 𝜙) + 𝜂(𝜈 + 𝜓) 

 

The next step is to employ these selected six parameters as we move forward in time, 

stepping into the out-of-the-sample space, which explicitly was left out of the calibration scheme 

thus far. Now, as the trading is to begin, month-by-month the model is fitted to the market data by 

selecting the two factors so that there is, again, a perfect (or as perfect as possible, at worst) match 

in the 1-year and 10-year rates between the market and the model. As these ‘liquid rates’ are made 

to fit the market exactly, the model will not fit the rest of the rates (2-year to 9-year rate) exactly 

most of the time, which is the purpose here. As there is a discrepancy between the market pricing 

and model pricing of the illiquid rates, it implies that either the market is wrong, or the model is 

wrong is determining the premia related no-arbitrage price of a given rate. The view here is 

obviously that the model is right, at least most of the time, in giving the arbitrage-free rate. The 

logic behind this view is that the model is internally arbitrage-free by construction, and if the 1-

year and 10-year rates are more efficiently priced than the rest of the rates, then the model will 

imply arbitrage opportunities, should it differ from the observed market rates.  

For a model to be relevant with respect to the market rates, it needs to have a proper 

specification of what is called the ‘market price of risk’ (interest rate risk in this case). This 

specification is attained through the calibration procedure. As the calibration is exact only for the 

1-year and 10-year rates, the choice of the market price of risk quantity is also largely based on 

the assumption that these rates convey it appropriately, or in some sense better than the rest of the 

rates. Given that the choice of the parameters is based on the historical ‘illiquid rates’, part of the 

market price of risk calibration lies naturally in that data. Hence, one can say that the market price 

of risk is found as the combination of historical data and current liquid rate observations.  

Now that the model is made to quantify the differences between the market and the model 

rates for the illiquid rates, one can consider if there is a mispricing in the markets. Again following 

the Duarte et al. (2007) approach, I consider there to be a mispricing, should the market rate deviate 

from the model rate by a certain level of basis points (bps, 1% is 100 bps). Duarte et al. set the 

limit to 10 bps; I shall also use the 10 bps as the standard choice, but will, in certain instances, also 

employ a five and a twenty basis point limit. When one concludes that there is a mispricing, it 

remains to decide how exactly to trade that observation.  
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Direction of the trade is clear: if the market rate is higher than the model rate, one expects 

the market rate to come down, and would thus receive the fixed rate and pay the floating leg, which 

is, of course, equal to being short the floating rate (or short-rate). If the opposite is true, and the 

market rate is lower than the model rate, then one would assume that the market rate would 

converge higher. In this case the trader would go long the floating rate and short the fixed rate, i.e. 

would enter into a payer swap. In either of these cases, one would enter into offsetting position in 

the liquid 1-year and 10-year rates to make the overall trade market neutral in the two factors. This 

is further discussed in Section 5.5.  

Besides the direction and hedging of the trade, one would also need to decide which exact 

rate or rates to trade. It is often the case that the model implies multiple mispricings; in the extreme, 

the model would show that all the illiquid rates are mispriced (in practice, this does rarely if ever 

occur, however). One therefore has the choice to trade only the largest mispricing, some 

mispricings, or all of them. I will consider the strategies where only the largest mispricing is traded, 

as well as the strategy where all the mispricings are traded. Moreover, one can decide whether 

multiple trades initiated at different points in time are allowed. One can either decide that only a 

single trade can be on at any given time, and that until that trade is closed for any reason, no other 

trades are entered. I consider this strategy as the ‘elementary version’ of the possible choices. It 

can also be decided that for every month going forward, one chooses to trade the largest mispricing 

found in the market that month, but that as time goes by, one can have multiple trades on that 

originated in different months in history. This multi-trade specification is what Duarte et al. 

basically used, and it is the core strategy specification in this thesis. I do also consider a strategy 

where all the mispricings are traded. This means that for any given month, the arbitrageur opens 

positions in all the mispriced rates and hedges them. Going forward, any of these trades can be 

closed independently of each other if and when the mispricings disappear, for instance.  

After initiating the trades in any possible strategy specification, one needs to naturally 

decide also when the trades are closed. The trades are closed when they achieve the purpose they 

were initiated for, or when they do not do so. Namely, if the market rate converges to the model 

rate, the mispricing is considered to have disappeared, and the trade and its hedges are closed. The 

convergence is not assumed to be perfect; I will consider it to have happened should 50% of the 
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original difference have converged, or been eliminated from the market rates. If the trade does not 

converge in 12 months, it is closed due to a time limit, following the Duarte et al. (2007) approach.  

The above described the modeling aspect itself. Below, I will go through the trading 

implementation in more detail to make sure the reader understands how the trading rules are 

structured. In the section after the trading decisions, I will go through the hedging procedure, which 

is also at the very core of the strategies.  

 

5.4. Trading methodology 
 

Once the modeling of the yield curve has been accomplished as described above, the arbitrageur 

needs to focus on how specifically he wants to trade the potential mispricings. Decision rules need 

to be in place for both initiating trades as well as closing them. The basic idea is to initiate trades 

when mispricings are found, and to close trades when the mispricings disappear, meaning that the 

market and model rates ‘converge’ enough. The model implied rates for the illiquid rates (2-year 

to 9-year maturities) generally deviate from the market rates by at least some basis points. One 

therefore has to decide how large a deviation is necessary in order to consider it a tradable 

mispricing, or an arbitrage opportunity. Following Duarte et al. (2007), I employ a 10 bps limit as 

the standard choice for the difference between the market and model rate that is considered to 

signal a trading opportunity (i.e., the difference has to be 10 bps or larger).  Also 15 and 20 bps 

differences as the limit for trading are explored.  

Overall, the model will imply one, several or no mispricings. If there is no mispricing, then 

the arbitrageur simply will not initiate a trade during that month. If there is only one mispricing, 

then the arbitrageur would set to arbitrage that mispricing. In the case of multiple mispricings – as 

is the most common case for the model – the arbitrageur can choose one or several trades. If he 

were to choose just one trade, it would be logical to choose the largest mispricing. If he were to 

choose multiple mispricings to be arbitraged, then basically any number can be chosen. I will run 

a strategy where only the largest mispricing is traded, as well as a strategy where all the mispricings 

are traded.  

The other choice the arbitrageur can make is whether he wishes to have multiple trades 

going on in his portfolio. He can choose to trade just one mispricing and wait until it converges, 
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or he can have multiple independent trades that are initiated and closed based on the traded rates’ 

individual deviation and convergence with respect to the market. 

The first and simplest trading methodology is to search for the largest single mispricing in 

the market yield curve by comparing it to the modeled curve (“One mispricing”). The point here 

is to trade only the largest difference between the curves, even if there were multiple differences 

exceeding a set limit. This approach looks at the returns available from being conservative in the 

trading decisions in that only the ‘lowest hanging fruit’ is picked up, with the expectation that it 

offers the best risk-adjusted return. The logic is that by committing capital only to the largest 

mispricing, one has the largest expected return, and presumably the smallest chance of an 

erroneous bet. Also, the largest mispricing can be assumed to get in line with the model the fastest, 

thereby contributing to annualized returns through increased turnover of capital from one 

profitable trade to another. With this trading methodology, the hedge fund that is modeled has at 

all times only one trade that it manages, i.e. the trade can be closed when some pre-defined 

conditions (e.g., convergence to the market rate) are met, and a new trading opportunity can then 

be looked for.  

The second trading methodology attempts to trade all the mispricings exceeding a set limit 

at any given time (“All mispricings”). Therefore, if no trades are in place currently, and the model 

points to several mispricings, then this strategy would initiate trades in all the rates deemed enough 

mispriced. Then, going forward, the strategy checks if converge happens to any of the trades, and 

closes them based on that. At the same time, new trades are initiated on a rolling basis, given that 

the same maturity is not being traded already. In this strategy, the arbitrageur will enter to trades 

in all the mispricings he perceives every month going forward in the trading period.  

Finally, there is the strategy replica of Duarte et al. (2007), i.e. the modeling of a ‘hedge 

fund index’ (“DLY”) so that at any given time only one trade can be initiated, namely the one with 

the largest mispricing. The difference to the first strategy described is that multiple trades are 

allowed, and a new trade can start every month. Therefore this strategy can be thought of as a 

combination of the two above; it allows for multiple trades, yet it only trades the largest perceived 

mispricing each month.  

All of these strategies work so that the market yield curve is compared to the fitted model, 

and then the differences between the ‘illiquid’ market and model rates are looked at. If the 



37 
 

difference is great enough, usually set to the mentioned 10 bps, a trade is initiated as described 

above. Going forward, the trades are monitored for profit and loss (PNL) and for converge. If the 

convergence is deemed clear enough, the trade is closed as the mispricing is considered to have 

vanished. One could, of course, employ other trading rules such as a stop-loss or a stop-gain level. 

Following Duarte et al. (2007), I shall solely employ the convergence and time limit rules. This is 

a sound approach as the convergence rule, after all, is based on the assumption and theoretical 

framework that the mispricings, or arbitrage opportunities, will vanish in time as the arbitrageurs 

take action.  

 

5.5. Hedging methodology 
 

Theoretically broadly consistent with Vayanos and Vila (2009), Greenwood and Vayanos (2010), 

as well as the broader set of literature on arbitrageur behavior outlined in Section 3, the arbitrageurs 

in my work will hedge their bets. More specifically, I shall follow the practical ‘butterfly’ hedging 

approach outlined in Duarte et al. (2007). The theme in the literature is that arbitrageurs engage in 

hedging activities in order to isolate a less conventional source of return – such as bond, volatility 

or prepayment risk premia – they specialize in arbitraging. What is left unhedged by the 

arbitrageurs in this thesis is the convergence of the mispriced rates; the premia there might be best 

described as local bond risk premia. This section will shed light on how the trades are hedged in 

more detail.  

To have an arbitrage trading portfolio, an arbitrageur needs to make his overall portfolio 

neutral to the (incremental) changes in the key risk factors affecting the mark-to-market value of 

the portfolio. Such a portfolio is comprised of the trade targeting the perceived mispricing, as well 

as the hedging instruments. I will call an ‘arbitrage portfolio’ a portfolio that is made of the 

arbitrage trade plus the hedges of that trade. In the two-factor short-rate modeling context, there 

are two sources of randomness, and thus two securities are necessary to fully hedge the trade. The 

arbitrage portfolio must be overall neutral to those two factors. Namely, the factors are x1 and x2 

in the CIR2F model, and r and V in the LS2F model.  

The hedges in the strategies are structured so that each arbitrage trade is hedged separately. 

One could alternatively choose to hedge the overall position, as the sensitivities, or ‘Greeks’, can 
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simply be summed across all the positions in the portfolio. From the modeling perspective, I found 

it convenient to choose the hedges for each trade separately. To begin with, when one initiates a 

trade, the two-factor sensitivities for the rate (discount factor) to be traded are computed. The same 

sensitivities are computed also for the 1-year and 10-year rate, which are always the two rates 

employed for hedging. Then one simply finds the weights, or hedge ratios, for the hedging 

instruments (1-year and 10-year rates) that make the arbitrage portfolio’s sensitivity zero to both 

of the factors. The formulas for these two-factor sensitivities are shown in Equations 7 to 10.  

 

Equations 7 and 8 (CIR2F sensitivities) 

DF, B1 and B2 are as defined in Section 5.3, 

𝜕𝐷𝐹

𝜕𝑟
=  𝛥 = −𝐵1(𝑡)𝐷𝐹(𝑇)  (7) 

 

𝜕𝐷𝐹

𝜕𝑉
= 𝜈 = −𝐵2(𝑡)𝐷𝐹(𝑇)   (8) 

 

Equations 9 and 10 (LS2F sensitivities) 

DF, C(T) and D(T) are as defined in Section 5.3, 

𝜕𝐷𝐹

𝜕𝑥1
= 𝛥 = 𝐶(𝑇)𝐷𝐹(𝑇) (9) 

 

𝜕𝐷𝐹

𝜕𝑥2
= 𝜈 =  𝐷(𝑇)𝐷𝐹(𝑇) (10) 

 

One solves the below outlined linear algebra problem (Equation 6) for weights w1 and w2 

to find the hedge ratios that make the arbitrage portfolio market neutral. Once the hedge ratios are 

known, one enters into a trade where the hedging instruments’ weights have an opposite sign to 

the core trade itself. In other words, if the arbitrageur is short e.g. the 5-year floating rate, then he 



39 
 

would be long both the 1-year and 10-year floating rate in the quantity specified by the hedge 

ratios. With respect to the notation, I will call sensitivities of the discount factors to the two factors 

delta and vega. This is not unlike in options trading, where delta and vega would be the first-order 

partial derivatives of the option price with respect to the price of the underlying instrument and 

implied volatility, respectively. Here, the derivatives are with respect to the factors in the models; 

for the CIR2F model, for instance, the economic interpretation of the differentials is less obvious 

than in the options’ context. Nevertheless, the meaning and use of such sensitivities is by and large 

the same as it is in the case of hedging options with respect to the delta and vega, leading to the 

notation. Again, as there is the link between discount factors and swap rates, computing the 

sensitivities to the discount factors is equivalent to computing the same metric for the swaps in 

terms of how much the profit-and-loss changes when the factors move incrementally. 

 

Equation 6 (Two-factor market-neutrality problem) 

Δ and ν refer to the sensitivities of the discount factors to the two factors in the short-rate models. 

Subscripts indicate the part of the arbitrage portfolio to which the sensitivity pertains to; ‘1y’ and 

‘10y’ mean the 1-year and 10-year rates (discount factors) employed as hedges, whereas the 

‘trade’ refers to the mispriced rate targeted by the arbitrage.  

[
𝛥1𝑦 𝛥10𝑦

𝜈1𝑦 𝜈10𝑦
] [

𝑤1𝑦

𝑤10𝑦
] = [

𝛥𝑡𝑟𝑎𝑑𝑒

𝜈𝑡𝑟𝑎𝑑𝑒
]  (6) 

 

As to why the arbitrageur has these two opposing positions, and specifically in the 1-year 

and 10-year rates, follows from the two-factor model. In such a model, there are two sources of 

risk (or randomness) that need to be hedged; this is equal to having two equations to be solved, as 

in the above matrix specification. For the two equations to be solved, one needs to variables, which 

are the two rates used for the hedging. The 1-year and 10-year rates are considered to be the liquid 

rates that are most efficiently priced. Therefore, it is natural to use them to offset the factor risk in 

the mispriced rate, as the arbitrageur can assume that these two rates do not converge themselves 

to the model. By and large, such convergence for the liquid rates is not even possible, as they are 
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made to fit the market curve exactly in the first place. With this logic in mind, the arbitrageur 

solves the system of the equations by choosing appropriate weights for the liquid rates.   

 

6. Yield curve arbitrage returns 

 

This section discusses the core findings of the thesis by presenting the returns of the backtested 

yield curve arbitrage strategies. The related Tables and Figures shall be presented in the 

subsections of 6.1 to 6.4. In general, the explored strategies produce economically and statistically 

significant leveraged monthly returns. As the Sharpe ratios for the strategies are high, leveraging 

them to an annualized ex post volatility of 10% results in returns of around 10% per annum. Return 

distributions of the strategies are positively skewed and have a high kurtosis. Summary statistics 

for the strategies are illustrated through Tables 1 to 6. The tables depict the trading outcomes of 

different trading strategies with different calibration choices.  Tables 1 to 4 show the results for 

the Cox-Ingersoll-Ross two-factor model (CIR2F), while Tables 5 and 6 do the same for the 

Longstaff-Schwartz two-factor model (LS2F).  

As the summary statistics in below subsection show, the replicated strategies generate 

economically significant leveraged monthly excess returns that are positively skewed with fat tails 

(positive kurtosis). Both the Sharpe ratios and Gain-Loss ratios are high, implying attractive risk-

adjusted returns. At maximum a third of the returns are negative, and generally the highest return 

is larger than the lowest return. The returns differ significantly from zero, as implied by the Newey-

West (1987) autocorrelation robust t-Statistics. A general conclusion is that the strategies that trade 

in-the-sample perform better than the ones trading out-of-the-sample, as could be assumed. Also, 

the strategies where the sample period for calibration is longer or rolling, instead of fixed, seem to 

fare better.  

It also seems that trading each and every perceived mispricing (“All mispricings”) is not 

attractive in terms of risk-adjusted returns. This is probably because trading only the largest 

mispricings offers greater expected returns and more consistency in convergences. When 

lengthening the calibration sample from four years to eight, very attractive trading outcomes result. 

The returns are actually even better than those from calibrating the model in-the-sample, where 
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the in-the-sample procedure incorporates the whole 14-year sample. This can suggest either a data 

mining issue, or that the trading environment is more favorable towards the end of the sample, 

which is where the strategy with the 8-year sample trades.  

Trading solely a one mispricing at a time (“Single mispricing”) is not either the optimal 

solution. This is logical, as the strategy can always hold only one trade at a time, can thus miss 

superb opportunities, and is also less well diversified across mispricings. The strategy is mainly 

tested as a simplified benchmark for the core DLY strategy, yet its performance is highly correlated 

with the other strategies, implying robustness of the general methodology.  

As suggested, among others, by Bernardo and Ledoit (2000), and Mitchell and Pulvino 

(2001), Sharpe ratio is generally not a good measure of the risk-adjusted performance of a strategy, 

should the returns be highly non-normally distributed. As this is the case in most of the arbitrage 

strategies, including the yield curve arbitrage, one must consider also other metrics in order to 

attain a more robust picture of the attractiveness of the risk-adjusted returns in question. Having 

this in mind, I employ the Bernardo and Ledoit Gain-Loss measure, which compares the expected 

gains to the expected losses in a given return sample. A fairly valued investment in the risk-neutral 

world should have a Gain-Loss ratio of one, yet both Duarte et al. (2007) and this thesis show that 

it is possible for the returns to exhibit much higher ratios, which is obviously an attractive 

characteristic for the strategies.  

The CIR two-factor model consistently outperforms the LS two-factor model. This may be 

due that CIR does not allow negative rates, or because it is analytically more tractable and thus 

possibly also more stable regarding numerical calibration. See the Section 6.4 for more discussion 

on the performance of the LS2F model. 

As to the Hypotheses, I find strong evidence in support of the Hypothesis 1, which states 

that the replicated strategies generate attractive risk-adjusted returns. This is indeed the case, as is 

shown by e.g. the Sharpe and Gain-Loss ratios in Tables 1 to 6. Strong evidence is found also in 

support of the Hypothesis 2, which states that the returns are far from normally distributed, and 

tilted to the arbitrageurs’ benefit. This is shown by the positive skewness and high kurtosis of the 

returns, as well as the plotted distribution of the returns in Figure 3. The Hypothesis 3 states that 

following the exact strategy implementation of Duarte et al. (2007) will yield the best risk-adjusted 

performance. This is found to be true across the Tables 1 to 4.  
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Overall, the results are consistent with each other, and it can be concluded that slight 

modifications to the strategies do not cause major differences, especially given the data mining 

considerations. This is promising in the sense that the methodology proves to be robust to 

secondary changes in implementation, giving credibility to the core of the analytical methodology. 

The Hypotheses regarding the attractiveness of returns are accepted on the basis on strong 

evidence.  

 

6.1. CIR2F return statistics 
 

This subsection collects the tables of the summary statistics for the returns regarding the studied 

yield curve arbitrage strategies. The covered strategies are “DLY”, “Single Mispricing”, and “All 

Mispricings”. Elaboration on the strategy specifications can be found in Section 5.4 on the trading 

methodology. Shortly put, the “DLY” strategy is the exact replica following Duarte et al. (2007), 

where the strategy trades the largest mispricing every month, should the mispricing exceed a given 

limit of basis points. The DLY strategy can carry multiple trades at the same time. “Single 

Mispricing” trades also the largest mispricing every month, but can carry only a single trade at a 

time, i.e. no new trades are enter before the earlier one is closed. “All Mispricings” strategy trades 

all the mispricing every month that exceed the given basis point limit. Trades are closed based on 

the individual performance (or lack thereof) of each trade in the portfolio.  

“Out-of-the-sample” refers to a methodology where a model is calibrated solely to a dataset 

that is different from the one where the trading is done. In contrast, “In-the-sample” means that a 

model is calibrated also to the data where the trading is done, i.e. the calibration includes also 

‘future’ data points, which would not be available in the reality. The sample period for model 

calibration (when trading out-of-the-sample) is either a fixed four or eight year period, or a rolling 

four year period, as indicated case by case.  
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Table 1. Summary statistics for yield curve arbitrage strategies. The below table reports the indicated 

summary statistics for the monthly percentage excess returns of different yield curve arbitrage strategies 

modeled by the Cox-Ingersoll-Ross two-factor framework. ‘DLY’ refers to the strategy employed by Duarte 

et al. (2007) that trades the largest mispricing every month. The DLY is modified with a rolling calibration 

period where trading is done out-of-the-sample, as well as with an in-the-sample version. Different trigger 

levels for trading are indicated in the parenthesis. ‘One mispricing’ refers to a strategy where a single trade is 

held in the portfolio at a time. N denotes the number of monthly excess returns. Capital is the initial amount of 

capital required per €100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation 

of the excess returns. Mean is the leveraged monthly excess return. Test statistics are computed with the 

Newey-West (1987) autocorrelation robust measure. Min/max are the minimum and maximum of the leveraged 

monthly excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for the strategy. Sharpe 

ratios are annualized. The overall sample period for the strategies is January 2002 to January 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIR2F model

4-year sample period, 5 / 10 bps limit to initiate a trade

Std. Ratio Serial Gain/ Sharpe

Strategy N Capital Mean t -Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

DLY (5bps) 110 6.132 0.780 2.79 2.887 -7.175 10.599 0.615 5.125 0.327 0.040 2.314 0.939

DLY Rolling (5bps) 110 5.959 0.900 2.94 2.887 -6.713 10.740 0.489 5.387 0.236 0.242 2.658 1.082

DLY In-Sample 157 5.348 0.750 3.20 2.887 -8.040 12.527 1.242 7.135 0.198 0.042 2.670 0.903

DLY In-Sample (5bps) 157 5.937 1.050 4.22 2.887 -7.243 11.285 0.603 5.110 0.274 0.166 3.034 1.257

One Mispricing 110 6.445 0.600 2.28 2.887 -7.758 12.724 0.965 6.636 0.282 -0.075 2.079 0.726
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Table 2. Summary statistics for the yield curve arbitrage strategies (20 bps trigger). The below table 

reports the indicated summary statistics for the monthly percentage excess returns of different yield curve 

arbitrage strategies modeled by the Cox-Ingersoll-Ross two-factor framework. ‘DLY’ refers to the strategy 

employed by Duarte et al. (2007) that trades the largest mispricing every month. The DLY is modified with a 

rolling calibration period where trading is done out-of-the-sample, as well as with an in-the-sample version. 

Different trigger levels for trading are indicated in the parenthesis. ‘One mispricing’ refers to a strategy where 

a single trade is held in the portfolio at a time. ‘All mispricings’ refers to a strategy where all the mispricings 

are traded each month. N denotes the number of monthly excess returns. Capital is the initial amount of capital 

required per €100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of the 

excess returns. Mean is the leveraged monthly excess return. Test statistics are computed with the Newey-West 

(1987) autocorrelation robust measure. Min/max are the minimum and maximum of the leveraged monthly 

excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for the strategy. Sharpe ratios are 

annualized. The overall sample period for the strategies is January 2002 to January 2015. 

 

 

 

 

 

 

 

 

 

CIR2F model

4-year sample period, 20 bps limit to initiate a trade

Std. Ratio Serial Gain/ Sharpe

Strategy N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

DLY 110 4.583 0.890 3.20 2.887 -6.109 12.655 1.659 7.483 0.136 0.016 4.165 1.064

All mispricings 110 5.356 0.570 2.03 2.887 -9.521 11.949 1.072 9.275 0.155 0.051 2.524 0.688

One mispricing 110 4.380 0.780 2.80 2.887 -6.393 12.102 1.755 8.074 0.136 0.015 3.652 0.931
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Table 3. Summary statistics for the yield curve arbitrage strategies (8-year sample). The below table 

reports the indicated summary statistics for the monthly percentage excess returns of different yield curve 

arbitrage strategies modeled by the Cox-Ingersoll-Ross two-factor framework. ‘DLY’ refers to the strategy 

employed by Duarte et al. (2007) that trades the largest mispricing every month. The DLY is modified with a 

rolling calibration period where trading is done out-of-the-sample, as well as with an in-the-sample version. 

Different trigger levels for trading are indicated in the parenthesis. ‘One mispricing’ refers to a strategy where 

a single trade is held in the portfolio at a time. N denotes the number of monthly excess returns. Capital is the 

initial amount of capital required per €100 notional of the arbitrage strategy to give a ten-percent annualized 

standard deviation of the excess returns. Mean is the leveraged monthly excess return. Test statistics are 

computed with the Newey-West (1987) autocorrelation robust measure. Min/max are the minimum and 

maximum of the leveraged monthly excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio 

for the strategy. Sharpe ratios are annualized. The overall sample period for the strategies is January 2002 to 

January 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIR2F model

8-year sample period, 10 bps limit to initiate a trade

Std. Ratio Serial Gain/ Sharpe

Strategy N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

DLY 62 5.406 0.950 2.82 2.887 -5.365 12.024 1.835 7.989 0.242 -0.171 3.714 1.135

One mispricing 62 6.105 0.730 2.19 2.887 -6.388 13.432 1.816 9.643 0.258 -0.198 2.634 0.871
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Table 4. Summary statistics for the yield curve arbitrage strategies (8-year sample / 15 bps trigger). The 

below table reports the indicated summary statistics for the monthly percentage excess returns of different yield 

curve arbitrage strategies modeled by the Cox-Ingersoll-Ross two-factor framework. ‘DLY’ refers to the 

strategy employed by Duarte et al. (2007) that trades the largest mispricing every month. The DLY is modified 

with a rolling calibration period where trading is done out-of-the-sample, as well as with an in-the-sample 

version. Different trigger levels for trading are indicated in the parenthesis. ‘One mispricing’ refers to a strategy 

where a single trade is held in the portfolio at a time. ‘All mispricings’ refers to a strategy where all the 

mispricings are traded each month. N denotes the number of monthly excess returns. Capital is the initial 

amount of capital required per €100 notional of the arbitrage strategy to give a ten-percent annualized standard 

deviation of the excess returns. Mean is the leveraged monthly excess return. Test statistics are computed with 

the Newey-West (1987) autocorrelation robust measure. Min/max are the minimum and maximum of the 

leveraged monthly excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for the strategy. 

Sharpe ratios are annualized. The overall sample period for the strategies is January 2002 to January 2015. 

 

 

 

 

 

 

 

 

 

CIR2F model

8-year sample period, 15 bps limit to initiate a trade

Std. Ratio Serial Gain/ Sharpe

Strategy N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

DLY 62 4.038 0.980 2.94 2.887 -3.963 15.355 2.672 12.667 0.161 -0.192 5.352 1.170

All mispricings 62 4.251 1.170 3.37 2.887 -3.293 13.408 2.122 8.253 0.161 -0.099 6.854 1.409

One mispricing 62 3.990 0.980 2.96 2.887 -4.010 15.540 2.672 12.883 0.161 -0.196 5.300 1.171
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Figure 3. DLY strategy’s return distribution. 

Probability density function for the unleveraged core DLY strategy. Mean of the monthly excess returns is 4.8 

bps and standard deviation 17.7 bps. The observed distribution is far from normal, i.e. it has fat tails and is 

positively skewed. Little evidence is found in support of frequent negative tail events. 
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6.2. CIR2F cumulative returns 
 

This subsection illustrates graphically the cumulative returns of the explored yield curve arbitrage 

strategies. The covered strategies are “DLY”, “Single Mispricing”, and “All Mispricings”. 

Elaboration on the strategy specifications can be found in Section 5.4 on the trading methodology. 

Shortly put, the “DLY” strategy is the exact replica following Duarte et al. (2007), where the 

strategy trades the largest mispricing every month, should the mispricing exceed a given limit of 

basis points. The DLY strategy can carry multiple trades at the same time. “Single Mispricing” 

trades also the largest mispricing every month, but can carry only a single trade at a time, i.e. no 

new trades are enter before the earlier one is closed. “All Mispricings” strategy trades all the 

mispricing every month that exceed the given basis point limit. Trades are closed based on the 

individual performance (or lack thereof) of each trade in the portfolio. 

“Out-of-the-sample” refers to a methodology where a model is calibrated solely to a dataset 

that is different from the one where the trading is done. In contrast, “In-the-sample” means that a 

model is calibrated also to the data where the trading is done, i.e. the calibration includes also 

‘future’ data points, which would not be available in the reality. The sample period for model 

calibration (when trading out-of-the-sample) is either a fixed four or eight year period, or a rolling 

four year period, as indicated case by case.  
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Figure 4. Cumulative returns for the DLY and Single Mispricings strategies. 

The chart describes the evolution of the cumulative unleveraged returns of the out-of-the-sample ‘DLY’ (five 

bps trigger level) and ‘Single Mispricing’ (10 bps trigger level) strategies  with a four year sample period for 

model calibration. The DLY results are nearly identical for the 10 bps trigger level, but in that case the strategy 

does not begin trading immediately. See the beginning of Section 6.2, or alternatively Section 5.4 for more 

detail on the strategy specifications. 
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Figure 5. Cumulative returns for the DLY strategy with an 8-year sample. 

The chart describes the evolution of the cumulative unleveraged returns for the in-the-sample ‘DLY’ and 

‘Single Mispricing’ (10 bps trigger level) strategies with an eight year sample period for model calibration. See 

the beginning of Section 6.2, or alternatively Section 5.4 for more detail on the strategy specifications. 
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Figure 6. Cumulative returns for the DLY strategy with a rolling sample.  

The chart describes the evolution of the cumulative unleveraged returns for the out-of-the-sample ‘DLY’ 

strategy (five and ten bps trigger levels), whose calibration period is always four years from the latest trading 

observation (trades only out-of-the-sample). See the beginning of Section 6.2, or alternatively Section 5.4 for 

more detail on the strategy specifications. 
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Figure 7. Cumulative returns for the in-the-sample DLY strategy. 

The chart describes the evolution of the cumulative unleveraged returns for the in-the-sample ‘DLY’ strategy. 

The model is calibrated to the whole sample of rates, i.e. also to ‘future’ information. See the beginning of 

Section 6.2, or alternatively Section 5.4 for more detail on the strategy specifications. 
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Figure 8. Cumulative returns for the out-of-the-sample ‘All Mispricings’ strategy (8-year sample). 

The chart describes the evolution of the cumulative unleveraged returns of the out-of-the-sample strategy that 

trades all the mispricings every month, if the mispricing exceed the limit of 15 basis points. Trades are closed 

based on the individual performance. The model is calibrated to the first eight years in the overall sample, and 

it trades only out-of-the-sample. Performance of a strategy with a four year sample period for calibration yields 

similar returns, but trades less often in the beginning of the trading period. See the beginning of Section 6.2, or 

alternatively Section 5.4 for more detail on the strategy specifications. 
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6.3. CIR2F market-to-model differences 
 

‘Mispricing’ is considered as the market-to-model difference in the respective swap rates. Figures 

9 and 10 show the extent of the mispricings, as well as their evolution in time. Overall, the 

mispricings are small enough to make the model credible, yet large enough to generate 

economically significant trading signals. The mispricings of the rates seem to move in sync so that 

usually the sign of the difference is equal to all or most of the rates.   

Figure 9. Market-to-model differences in the out-of-the-sample strategy. 

The figure shows the basis point difference between the market and model implied swap rates for different 

maturities (2 to 9 years) in time as produced by the core DLY strategy. See the Appendix for the differences 

of individual rates.  
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Figure 10. Market-to-model differences regarding the in-the-sample strategy. 

The figure shows the basis point difference between the market and model implied swap rates for different 

maturities (2 to 9 years) in time as produced by the in-sample DLY strategy. 

 

 

6.4. LS2F return statistics 
 

Although the Longstaff-Schwartz two-factor model can be shown to equal the Cox-Ingersoll-Ross 

two-factor model under certain assumptions, it is analytically less tractable than the CIR model. It 

also allows for negative rates, which is yet to be true for the EUR swaps. Possibly because of these 

features, or due to instability with respect to calibration, the LS2F model by and far yields inferior 

trading results compared to the CIR2F model. The Return statistics section below shall describe 

the outcomes of a number of strategy variations. I will not analyze more in depth the results from 

this model, given that the CIR2F has shown more promise, and thereby constitutes the core model 

of this paper in analyzing the results.  
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Table 5. Summary statistics for the yield curve arbitrage strategies (LS2F). The below table reports the 

indicated summary statistics for the monthly percentage excess returns of different yield curve arbitrage 

strategies modeled by the Longstaff-Schwartz two-factor framework. ‘DLY’ refers to the strategy employed 

by Duarte et al. (2007) that trades the largest mispricing every month. The DLY is modified with a rolling 

calibration period where trading is done out-of-the-sample, as well as with an in-the-sample version. Different 

trigger levels for trading are indicated in the parenthesis. ‘One mispricing’ refers to a strategy where a single 

trade is held in the portfolio at a time. ‘All mispricings’ refers to a strategy where all the mispricings are traded 

each month. N denotes the number of monthly excess returns. Capital is the initial amount of capital required 

per €100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of the excess 

returns. Mean is the leveraged monthly excess return. Test statistics are computed with the Newey-West (1987) 

autocorrelation robust measure. Min/max are the minimum and maximum of the leveraged monthly excess 

returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for the strategy. Sharpe ratios are 

annualized. The overall sample period for the strategies is January 2002 to January 2015. 

 

 

 

 

 

 

 

 

 

 

 

LS2F model

4-year sample period, 5 /10 bps limit to initiate a trade

Std. Ratio Serial Gain/ Sharpe

Strategy N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

DLY 110 7.184 0.480 1.83 2.887 -9.466 11.554 0.676 5.928 0.327 -0.105 1.727 0.571

One mispricing 110 7.318 0.410 1.57 2.887 -7.516 11.343 0.750 5.235 0.327 -0.076 1.593 0.498

DLY In-Sample 157 9.504 0.520 2.24 2.887 -8.734 11.469 0.575 5.651 0.312 0.028 1.741 0.627

DLY In-Sample (5bps) 157 9.622 0.470 2.08 2.887 -8.626 13.199 0.683 6.303 0.369 -0.055 1.623 0.560
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Table 6. Summary statistics for yield curve arbitrage strategies with an 8-year sample (LS2F). The below 

table reports the indicated summary statistics for the monthly percentage excess returns of different yield curve 

arbitrage strategies modeled by the Longstaff-Schwartz two-factor framework. ‘DLY’ refers to the strategy 

employed by Duarte et al. (2007) that trades the largest mispricing every month. The DLY is modified with a 

rolling calibration period where trading is done out-of-the-sample, as well as with an in-the-sample version. 

Different trigger levels for trading are indicated in the parenthesis. ‘One mispricing’ refers to a strategy where 

a single trade is held in the portfolio at a time. ‘All mispricings’ refers to a strategy where all the mispricings 

are traded each month. N denotes the number of monthly excess returns. Capital is the initial amount of capital 

required per €100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of the 

excess returns. Mean is the leveraged monthly excess return. Test statistics are computed with the Newey-West 

(1987) autocorrelation robust measure. Min/max are the minimum and maximum of the leveraged monthly 

excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio for the strategy. Sharpe ratios are 

annualized. The overall sample period for the strategies is January 2002 to January 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

LS2F model

4-year sample period, 20 bps limit to initiate a trade

Std. Ratio Serial Gain/ Sharpe

Strategy N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

DLY 110 6.416 0.540 2.10 2.887 -6.546 12.936 1.385 7.190 0.236 -0.140 2.010 0.644

All mispricings 110 7.037 0.540 2.20 2.887 -10.231 11.794 1.091 7.997 0.246 -0.200 2.057 0.649

One mispricing 110 6.664 0.520 2.05 2.887 -8.103 12.454 1.157 6.837 0.236 -0.160 1.960 0.622
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7. Multifactor regression of the returns 

 

Hedge funds’ existence is largely based on the idea that they can generate alpha, or uncorrelated 

returns that cannot be explained by well-known risk factors (betas). If the returns are not 

statistically explained by the betas, it can be deduced that they do not stem from a priced risk 

exposure, which is a valuable property for an investment. As suggested by Vayanos and Vila 

(2009), the returns available for yield curve arbitrageurs should be related to the bond risk premia. 

Therefore, instead of being a genuine arbitrage, the trading of mispriced rates is assumed to carry 

risk. The risk should be highly limited, though, given the fairly sophisticated two-factor butterfly 

hedging strategy employed, where both the parallel shifts as well as twists of the curve are hedged 

extensively. In other words, the yield curve arbitrage strategy is a market neutral one, just as many 

relative value bets characteristically are. Market neutrality, however, does not mean that the 

strategy is neutral to all risks; in fact, the neutrality can be seen as a way to isolate more elusive 

risk premia, in this case the local bond risk premia that is assumed to converge.  

As discussed by Fung and Shieh (1997), factor analysis of the market neutral funds is 

extraordinarily challenging, as exposure to the market betas is by construction made very close to 

zero. Even the analysis of funds that are not market neutral is demanding enough, due to the highly 

dynamic asset allocation strategies. For one, a certain hedge fund might never be genuinely market 

neutral, but if it alters long and short positions in an asset frequently enough and in a balanced 

way, its return correlation with the asset will approach zero in a sufficiently long time period.  

In spite of the complexities regarding the market neutral strategies, I shall follow Duarte et 

al. (2007) in building the multifactor regression model for explaining the replicated arbitrage 

returns. To gain insight into whether the yield curve arbitrage as a trading strategy generates alpha, 

it is necessary to run such a regression analysis, where one controls the returns of the replicated 

strategy by the risk factors that have been shown to systematically explain returns elsewhere.  

Ever since Fama and French (1992), equity-related returns are often controlled by at least 

the original three Fama-French factors, where the CAPM by Sharpe (1964) and Lintner (1965) is 

augmented by the small-minus-big (SMB) and high-minus-low (HML) factors that control for size 

and value premiums, respectively. One could add any number of equity-related long/short 

portfolios or indices as controls to the regression model, and I shall follow Duarte et al. (2007) by 
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going with a four-factor model that incorporates the momentum (WML) factor to the classical 

Fama-French model. Additionally, given the banking context of fixed income trading, bank stock 

portfolios (S&P 500 Banks and MSCI European Financials) are used here as additional equity 

controls for the strategies.  

In the fixed income space, one would generally seek to attain control for systematic rate 

and credit factors. On the lines of Duarte et al. (2007), I choose to employ industrial and bank bond 

(rated A/BBB, or investment grade) index excess returns as controls for the credit spread premia. 

Moreover, Duarte et al. used Fama-French Treasury portfolios (two, five, and ten year maturities) 

to control for rates. I control for the rates by employing EUR constant maturity swap rates directly, 

so that the duration adjusted returns from receiving the fixed constant maturity swap rates are used 

as independent variables in the regression (all of the rates from one to ten years). Both the Treasury 

and swap portfolios should capture the roll-down effect of the yield curve, i.e. the term premia of 

interest rates. 

The regression equation (Equation 11) is formulated below, and summary statistics for the 

regression output are reported in Table 7 for the core DLY strategy (5 bps trigger level), its in-the-

sample version, and for the relevant hedge fund indices. RS1 is the European bank stock index 

(MSCI Financials Europe), and RS2 is the U.S. equivalent (S&P 500 Banks). RI is an industrial 

bond portfolio, and RB a bank bond portfolio, where the subscript states whether it is A or BBB 

rated iBoxx total return index. Rj refers to the returns from receiving the fixed leg in a constant 

maturity swap of maturity j. The returns are in excess of the risk-free rate, except for the swaps.    

 

𝑅𝑖,𝑡 = 𝛼 + 𝛽1𝑅𝑀,𝑡 + 𝛽2𝑆𝑀𝐵𝑡 + 𝛽3𝐻𝑀𝐿𝑡 + 𝛽4𝑊𝑀𝐿𝑡 + 𝛽5𝑅𝑆1,𝑡  + 𝛽6𝑅𝑆2,𝑡 + 𝛽7𝑅𝐼𝐴,𝑡 +

𝛽8 𝑅𝐼𝐵𝐵𝐵,𝑡 +   𝛽9𝑅𝐵𝐴,𝑡 + 𝛽10 𝑅𝐵𝐵𝐵𝐵,𝑡 +  ∑ 𝛽10+𝑗𝑅𝑗,𝑡
10
𝑗=1  +  εt   (11) 
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As can be seen from the summary statistics in Table 7, the multifactor regression model 

explains very little of the replicated arbitrage strategy’s (“DLY”) returns compared to the hedge 

fund indices. Around 80% of the return variation in the hedge fund indices is accounted for by the 

model, as implied by the R2. The regression shows a considerably higher monthly alpha of 1.2% 

for the replicated strategy than for any of the hedge fund indices, out of which the Global Macro 

style fares the best with its 0.47% alpha. The alpha is also easily statistically significant, whereas, 

for example, the CS Fixed Income Arbitrage index struggles to attain the 5% significance level for 

the returns. Out of the control variables, only the BBB-rated bank bond index has statistically 

significant explanatory power on the strategy’s returns, coefficient for which is actually -0.48, 

meaning that the replicated strategy is short the BBB bank bonds. To elaborate on this, Fung and 

Hsieh (2002) find that by and large, fixed income hedge funds have static exposure to fixed income 

spreads, with weak evidence that these funds employ convergence and market timing strategies. 

This regression in contrast implies little to no static exposure to such spreads regarding the yield 

curve arbitrage’s returns.   

My regression model explains the arbitrage strategy’s return variation better than reported 

previously, as the R2 is now 20%, whereas Duarte et al. report a figure of 10% or less. This can be 

seen as an evidence of a weakening relation between the indices and the strategy, as my model 

explains starkly better the indices than the replicated returns, while Duarte et al.’s model does not 

explain either well. Discrepancy in explanatory power is interesting, given that it implies a 

genuinely uncorrelated alpha for the replicated strategy particularly in the more recent observation 

period.  

Turning attention to the hedge fund indices in the regressions, Duarte et al. (2007) report 

mostly insignificant loadings to the risk factors when explaining the indices, as well as a low R2. 

My regression model explains the return variation of the hedge fund indices rather robustly in 

contrast to Duarte et al. This may be due to the dilution of the actual arbitrageurs’ alphas in time, 

as Duarte et al. studied an earlier period of 1988-2004, after which some alphas have shown a 

tendency to decline, as is discussed in Section 3.4.  

In all, I find strong support for the Hypothesis 4 stating that the replicated core strategy’s 

returns are multifactor alpha. As the Table 7 illustrates, the priced risk factors explain relatively 

little of the return variation of the replicated DLY strategy. Hence, also the alpha is large and 
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statistically significant. Moreover, there is a stark contrast between the alphas of the hedge fund 

indices and the replicated strategy, even after noting that the hedge fund returns are after fees. This 

further lends support for the idiosyncratic nature of the returns generated by the DLY strategy.  

To conclude, it seems that while most of the hedge fund and fixed income arbitrage indices 

have significant positive alpha, the replicated yield curve arbitrage strategy has this effect even 

more pronounced. It is hard to explain the replicated returns of the yield curve arbitrageurs by the 

known and priced risk factors. This implies that the yield curve arbitrageurs who follow the here 

outlined quantitative methodology to pick relative value market neutral bets do enjoy economically 

and statistically significant multifactor alpha. This is broadly consistent with Vayanos and Vila 

(2009), as their model predicts that the risk-averse arbitrageurs would trade only when 

compensated sufficiently for the bond risk premia related uncertainty in their positions. Vayanos 

and Vila do not imply whether their arbitrageurs should be able to gain extraordinary risk-adjusted 

returns. It is known that their arbitrageurs do hedge in a similar fashion than in this thesis and in 

Duarte et al. (2007), indicating that low market exposure is expected also from the theoretical 

strategies.  

As a final point to the literature discussing tail risk compensation in hedge fund returns, I 

find no evidence (in here or in Section 6) that the considerable tail events such as the 2007 quant 

meltdown, the 2007-2008 global financial crisis, the 2012 euro sovereign crisis nor the highly 

unconventional central bank policies of the Federal Reserve, Bank of Japan, as well of the ECB, 

would have constituted such a realized negative outcome in terms of large losses (diminished 

alphas) to the strategy. Hence, the yield curve arbitrage strategy’s alpha is difficult to see solely as 

a compensation for the tail risk. On the other hand, a positive tail event could be identified in the 

form of the extraordinary monetary policies, as Vayanos and Vila (2009) show that the central 

bank policies cater to the arbitrageurs. This phenomenon may thus have been in motion ever since 

the 2008 meltdown, after which the Fed begun the first round of Quantitative Easing.  
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8. Hedge fund indices and replicated returns 

 

At this point we have replicating the returns available for arbitrageurs involved in the integration 

of the yield curve as described in theory by Vayanos and Vila (2009), and further discussed in 

Section 3. Now, a question naturally arises whether the actual fixed income arbitrageurs have had 

similar results. If the replicated returns resemble those of the related hedge fund indices (from HFR 

and Credit Suisse), one can say that the replicated arbitrage strategy characterizes what many of 

the actual funds do. If there is no connection, it is likely that the strategy or methodology 

introduced in this thesis differ enough from the average strategies captured by the hedge fund 

indices so as to have explanatory power. In other words, it is possible that even hedge fund 

subindices contain rather heterogeneous strategies either by nature or methodology.  

Whether the replicated returns do or do not explain the hedge fund index returns is 

interesting for different reasons. Firstly, if there is a connection between the replicated and actual 

returns, then one can say that leaning on the methodology in this paper, we know to a certain 

degree what the hedge funds in this space are doing. Secondly, if there is no connection, then we 

can say that the methodology developed here differs enough from what managers on average 

employ so as to offer a differentiated source of returns, and alpha. Differentiated alphas would 

actually be even more precious than those copied from the existing funds, as they would be less 

prone to competition, and thereby would also be less likely to suffer from liquidity or similar 

shocks to crowded positions among the arbitrageurs. 

I shall give a brief introduction to the hedge fund indices here, further illustrated by the 

Figures 11 and 12. CS Hedge Fund Index is a Credit Suisse’s aggregate hedge fund index, the 

other indices being specific strategy subindices. Credit Suisse Fixed Income Arbitrage Index (CS 

FI Arb.) is a subindex made of funds that have said they focus on making relative value bets in the 

fixed income space. CS Global Macro is an index made of funds focusing on trading rates, 

currencies and equities globally, either on a directional or relative value basis. CS Multi Strategy 

index is comprised of funds that have indicated that they are inclined to run a set of different 

strategies given market conditions.  HFRI Fund Weighted Composite Index is HFR’s aggregate 

hedge fund index, the other HFR indices being specific strategy subindices. HFRI RV Total is an 

aggregate relative value index, under which all the relative value funds belong regardless of an 
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asset class focus. HFRI Macro Total is a subindex made of funds focusing on trading rates, 

currencies and equities globally, either on a directional or relative value basis. HFRI Macro 

Systematic is a global macro subindex that comprises of funds focusing on trading e.g. rates, 

currencies and equities globally, either on a directional or relative value basis, so that the trading 

signals are generated through quantitative, systematics methods. HFRX RV FI Sovereign is a fixed 

income subindex whose participant funds focus on trading government debt securities on a relative 

value basis. HFRX Western/Pan Europe is a cross-strategy index of funds that focus on trading 

exposures in the geographical area of Europe. 

 

Figure 11. Credit Suisse hedge fund index data. 

The figure illustrates the Credit Suisse cumulative hedge fund index and subindex returns that are considered 

relevant regarding the yield curve arbitrage strategy. CS Hedge Fund Index is a Credit Suisse’s aggregate hedge 

fund index, the other indices being specific strategy subindices. CS FI Arb is a fixed income arbitrage subindex, 

i.e. an index made of funds that have said that they focus on making relative value bets in the fixed income 

space. CS Global Macro is an index made of funds focusing on trading rates, currencies and equities globally, 

either on a directional or relative value basis. CS Multi Strategy index is made of funds that have indicated that 

they are inclined to run opportunistically a set of different strategies given market conditions.  
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Figure 12. Hedge Fund Research hedge fund index data. 

The figure illustrates the Hedge Fund Research cumulative hedge fund index and subindex returns that are 

considered relevant regarding the yield curve arbitrage strategy. HFRI Fund Weighted Composite Index is 

HFR’s aggregate hedge fund index, the other indices being specific strategy subindices. HFRI RV Total is an 

aggregate relative value index, under which all relevant value strategies funds belong regardless of an asset 

class focus. HFRI Macro Total is a subindex made of funds focusing on trading rates, currencies and equities 

globally, either on a directional or relative value basis. HFRI Macro Systematic is a global macro subindex 

made of funds focusing on trading rates, currencies and equities globally, either on a directional or relative 

value basis, so that the trading signals are generated through quantitative, systematics methods. HFRX RV FI 

Sovereign is a fixed income subindex whose participant funds focus on trading government debt securities on 

a relative value basis. HFRX Western/Pan Europe is an aggregate index of funds who focus on trading 

exposures in the geographical area of Europe.  

 

As illustrated by the Tables 8 to 11 below, the replicated returns have rather little 

statistically significant connection to the related hedge fund indices. Correlation between the 

indices and the strategy is at most 12.8% for the out-of-the-sample strategy (Table 8). At best, the 

relation is spurious and subject to data mining bias, as the correlations, for instance, are highly 

dependent on the time period of observation. It would be difficult to show in a robust manner that 

there existed a systematic relation between the indices and the replicated returns. This is consistent 
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with the Duarte et al. (2007), where they find that actual-to-replicated hedge fund correlations 

range from -10% to 30% for all the fixed income arbitrage strategies, and from -2% to 2% for the 

yield curve arbitrage strategies in particular. The most likely explanation for this is that the indices 

are made of tons of somewhat varied strategies, many of which are completely different in nature 

and some of which have a different modeling methodology even if the basic idea was the same. 

Especially the market neutrality of the replicated strategy can be seen as a hindrance to finding a 

statistically significant connection.  

In contrast, Mitchell et al. (2001) find that their replicated merger arbitrage strategy has a 

36% correlation with the general HFR index, and a somewhat varying correlation with the 

selection of individual hedge funds, with a correlation coefficient up to 41% within the whole 

sample. In this regard, the merger arbitrage replication seems to better explain the hedge funds’ 

behavior, yet the sample period and market focus is rather different from my work. Regarding 

other hedge fund strategies, Jylhä and Suominen (2009) find that their risk-adjusted carry trade 

strategy explains 16% of the overall hedge fund index returns, and 33% of the fixed income 

arbitrage subindex returns.   

The Hypothesis 5 stating that the high-level hedge fund indices do not have a statistically 

significant relation with the replicated strategy is accepted. This is evident given the regression 

outputs (Tables 10 and 11) and the levels of correlation (Tables 8 and 9).  Interestingly enough, 

the Hypothesis 6 stating that the most relevant hedge fund subindices have a statistically significant 

connection with the replicated returns is discarded. Thus, even if the most relevant style indices 

comprised yield curve arbitrage funds, this does not come across from the data. A number of issues 

could explain this, ranging from the diversity of the indices to the differences in strategy 

implementations. Of course, it also possible that the relative value or fixed income arbitrage 

indices do not actually comprise of funds making this kind of yield curve arbitrage bets, at least 

not in the EUR space. 

Finally, I make the inference that even the hedge fund subindices – such as Fixed Income 

Arbitrage or Global Macro – are diversified enough not to explain the replicated yield curve 

arbitrage in the EUR swap rates space. Moreover, I would suggest that the U.S. market focus of 

the hedge fund indices in any case limits the exposure to the EUR fixed income arbitrage even 

further. Evidence to this direction comes from the fact that it is the European focused hedge fund 
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index HFRX Western/Pan Europe that has the highest correlation and strongest sensible regression 

outcome with respect to the replicated returns. The conclusion is that the yield curve arbitrage, 

besides yielding multifactor alpha, also produces ‘hedge fund alpha’ in the sense that no 

combination of the relevant hedge fund indices can explain the returns well.  

 

 

Table 8. Out-of-the-sample strategy’s correlation with hedge fund indices. The table illustrates the 

correlations between the different hedge fund indices and subindices and the replicated, leveraged yield curve 

arbitrage strategy referred to as the DLY. The DLY is the strategy implemented following the methodology of 

Duarte et al. (2007), further discussed in Section 5.4. Out-of-the-sample means that the model is calibrated to 

a different dataset where the trading is done. The time period for computing the correlations is December 2005 

to January 2015. Descriptions of the hedge fund indices are given earlier in this Section 8. 

 

 

 

 

 

Table 9. In-the-sample strategy’s correlation with hedge fund indices. The table illustrates the correlations 

between the different hedge fund indices and subindices and the replicated, leveraged yield curve arbitrage 

strategy referred to as the DLY. The DLY is the strategy implemented following the methodology of Duarte et 

al. (2007), further discussed in Section 5.4. In-the-sample means that the model is calibrated to the same dataset 

where the trading is done. The time period for computing the correlations is January 2002 to January 2015.  

Descriptions of the hedge fund indices are given earlier in this Section 8. 

 

 

 

 

CS Hedge 

Fund Index
CS FI Arb

CS Global 

Macro

CS Multi 

Strategy

HFRI RV 
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HFRI RV 

Total

HFRI 

Macro 

Total

HFRI 

Macro 

Systematic

HFRI Fund 

Weighted 

Composite

HFRX RV 

FI Sov.

HFRX 

Western/Pan 

Europe

Leveraged DLY 5.4 % 0.4 % 0.8 % 0.0 % 2.5 % 1.8 % 2.7 % -1.4 % 6.9 % 6.3 % 12.8 %

CS Hedge 

Fund Index
CS FI Arb

CS Global 

Macro

CS Multi 

Strategy

HFRI RV 

FI Corp.

HFRI RV 

Total

HFRI 

Macro 

Total

HFRI 

Macro 

Systematic

HFRI Fund 

Weighted 

Composite

HFRX RV 

FI Sov.

HFRX 

Western/Pan 

Europe

Leveraged DLY 9.0 % -5.5 % 12.5 % 6.7 % -6.8 % 3.1 % 19.3 % 15.1 % 7.1 % 2.0 % 17.4 %
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Table 10. Explaining the out-of-the-sample replicated returns with hedge fund indices. The table shows 

the output of a regression where the monthly excess returns of the core DLY strategy trading out-of-the-sample 

are explained with the indicated hedge fund indices’ returns. Descriptions of the hedge fund indices are given 

earlier in this Section 8. DLY refers to the yield curve arbitrage strategy that is modeled directly after Duarte 

et al. (2007). Stars indicate standard levels of statistical significance. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11. Explaining the in-the-sample replicated returns with hedge fund indices. The table shows the 

output of a regression where the monthly excess returns of the core DLY strategy trading in-the-sample are 

explained with the indicated hedge fund indices’ returns. Descriptions of the hedge fund indices are given 

earlier in this Section 8. DLY refers to the yield curve arbitrage strategy that is modeled directly after Duarte 

et al. (2007). Stars indicate standard levels of statistical significance.  

 

 

 

 

 

 

 

 

Factor Coefficient t-Stat.

Constant 0.01** 3.10

CS Hedge Fund Index 2.06* 1.68

CS FI Arb -0.06 -0.16

CS Global Macro -0.28 -0.68

CS Multi Strategy -1.53** -2.14

HFRI RV FI Corp. 0.44 0.87

HFRI RV Total -0.73 -0.73

HFRI Macro Total 0.91 1.21

HFRI Macro Systematic -0.70* -1.87

HFRI Fund Weighted Comp. -0.84 -0.97

HFRX RV FI Sov. 0.23 0.93

HFRX Western/Pan Europe 0.51** 2.16

R
2 0.11

Factor Coefficient t-Stat.

Constant 0.01 1.61

CS Hedge Fund Index 0.14 0.11

CS FI Arb -0.27 -0.70

CS Global Macro -0.17 -0.39

CS Multi Strategy -0.07 -0.10

HFRI RV FI Corp. -0.90* -1.70

HFRI RV Total 1.75* 1.70

HFRI Macro Total 1.31* 1.69

HFRI Macro Systematic -0.48 -1.23

HFRI Fund Weighted Comp. -0.86 -0.97

HFRX RV FI Sov. 0.04 0.14

HFRX Western/Pan Europe 0.41* 1.70

R
2 0.14
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9. Arbitrage returns and noise in the markets 

 

As is discussed in Section 3, building on Vayanos and Vila (2009), and Greenwood and Vayanos 

(2014), one can draw the assumption that high arbitrageur risk-aversion, as well as diminished 

arbitrageur capital (endured losses), will limit the arbitrageurs’ capability to integrate maturity 

markets. Decreased arbitrageur participation would make other factors more pronounced in 

explaining the future bond returns. Namely, bond supply and yield curve slope would become 

stronger attributes, as shown by Greenwood and Vayanos (2014). Given the decreased arbitrageur 

participation, local demand-supply shocks would affect the term structure with more impact, as 

the arbitrageurs would not have the firepower to connect the curve to the information in the short-

rate they perceive and trade, as discussed in Section 3.1. In all, one can connect the high arbitrageur 

risk-aversion to the amount of noise in the market prices. In other words, it can be assumed that 

high noise coincides with the arbitrageurs withdrawing bets and enduring losses. In this thesis, 

‘noise’ refers to the measure developed by Hu, Pan and Wang (2013), which incorporates U.S. 

Treasury bond data. The measure is discussed more in depth in Section 3.5.3. Figure 13 below 

depicts the measure’s evolution in time. 

Figure 13. Noise measure data. 

The figure shows how the noise measure by Hu et al. (2013) evolves in time. Data for the measure is available 

until the December 2014. The noise measure is observed at the end of each calendar month. The data is 

available on the website of Jun Pan. See Section 3.5.3 for more details on the measure’s construction.  
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Following the theoretical connection between the noise measure and the arbitrageur risk-

aversion, the Hypothesis 7 stated in Section 4 says that the mispricings on the yield curve are larger 

when there is a lot of noise in the markets as measured by the Hu et al. (2013) metric. As a measure 

of ‘mispricing’ I look at the differences between the market and the model implied rates, i.e. at by 

how many basis points (bps) the model implied rates deviate from those observed in the market. I 

consider both the core DLY strategy and its in-the-sample version in connecting the mispricings 

to the noise. The core DLY strategy explicitly trades out-of-the-sample, whereas the in-the-sample 

version is calibrated to and trades within the whole sample.  

As is obvious from Figures 9 and 10 in Section 6.3, the market-to-model differences, or 

mispricings, are fairly unstable quantities themselves. To make them smoother, I take a 12-month 

moving average (MA) of both the noise measure and the average absolute mispricing to attain a 

more robust picture of their relation. Figures 14 and 15 below illustrate the considerable positive 

correlation that the smoothed mispricings have with the noise measure. To be specific, the 

correlations with respect to the noise measure are 60% and 48% for the out-of-the-sample and in-

the-sample strategies’ implied mispricings, respectively.  
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Figure 14. Noise measure and out-of-the-sample strategy mispricings. 

The figure plots 12-month moving averages of the Hu et al. (2013) noise measure and the model implied 

mispricing in the case of trading done out-of-the-sample. The mispricing refers to the mean of the absolute 

market-to-model differences of the two to nine year rates (‘illiquid rates’). Correlation between the two series 

is 60%. The time period for the observations is November 2006 to December 2014.  
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Figure 15. Noise measure and in-the-sample strategy mispricings.  

The figure plots 12-month moving averages of the Hu et al. (2013) noise measure and the model implied 

mispricing in the case of trading done in-the-sample. The mispricing refers to the mean of the absolute market-

to-model differences of the two to nine year rates (‘illiquid rates’). The mispricing refers to the mean of the 

absolute market-to-model differences for the two to nine year rates. Correlation between the two series is 48%. 

The time period for the observations is December 2002 to December 2014. 

 

Given the high correlations between the moving averages, regressions where the 

mispricings are explained by the noise measure naturally yield highly significant betas of 1.14 and 

0.48 with the test statistics of 7.4 and 5.1 for the out-of-the-sample and in-the-sample strategies, 

respectively. The noise measure explains 36% of the variation in the out-of-the-sample strategy’s, 

and 18% of the variation in the in-the-sample strategy’s implied mispricings. This lends support 

for the Hypothesis 7, which states that high noise coincides with high model implied mispricings. 

After employing the moving averages to smoothen the measures of the implied mispricings, one 

indeed finds a high positive correlation to the noise measure. The caveat is that the relation would 

significantly weaken, should one employ the non-smoothed measure of the mispricings, which is 

fairly unstable in itself.  

The other noise related hypothesis, the Hypothesis 8, states that a high noise environment 

would lead to attractive trading outcomes. I run a strategy that leverages the basic DLY strategy 
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two times (2x) when the noise measure is above its 70th percentile, and leverages 0.5x (i.e., under 

leverages) when it is below the 30th percentile. I refer to this strategy as ‘leveraging high noise’. 

Moreover, I do the opposite, i.e. leverage more when the noise measure is low; this strategy is 

referred to as ’leveraging low noise’. Both of the leveraging strategies trade also the average noise 

conditions, yet in that case employ the unaltered leverage of 1x.  

In contrast to the Hypothesis 8, I find evidence that favorable trading outcomes coincide 

with low noise, as shown in Table 12 and Figure 16, which illustrate the attractive risk-adjusted 

performance of (further) leveraging when there is low noise. Therefore, The Hypothesis 8 is 

discarded on decent evidence. This is defensible in the sense that convergences can actually be 

expected to happen in the low-noise environment. Given the inferior performance of leveraging in 

a noisy market, I suggest that while noisy market environments (high risk-aversion, low liquidity) 

may offer extraordinary buying opportunities in general, it does not facilitate the work of 

arbitrageurs making their living on convergence, or relative value, based bets. This view is further 

discussed in the convergence context by e.g. Xiong (2001).   
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Table 12. Leveraging high and low noise periods. The table presents the performance of three strategies. 

First is shown the basic version of the strategy as in Section 6, directly according to Duarte et al. (2007), then 

the same strategy which leverages 2x when the noise measure exceeds the 70th percentile, and leverages 0.5x 

when the measure is below the 30th percentile. Lastly is depicted the strategy which leverages 2x when the 

noise measure is below the 30th percentile, and leverages 0.5x when the measure is above the 70th percentile. 

Percentiles for the noise measure are computed in-the-sample. N denotes the number of monthly excess returns. 

Capital is the initial amount of capital required per €100 notional of the arbitrage strategy to give a ten-percent 

annualized standard deviation of the excess returns. Mean is the leveraged monthly excess return. Test statistics 

are computed with the Newey-West (1987) autocorrelation robust measure. Min/max are the minimum and 

maximum of the leveraged monthly excess returns. Gain/Loss is the Bernardo and Ledoit (2000) gain/loss ratio 

for the strategy. Sharpe ratios are annualized. The overall sample period for the strategies is January 2002 to 

December 2014. Trading is replicated out-of-the-sample. 

 

 

 

CIR2F model

4-year sample period, 5 bps limit to initiate a trade

Std. Ratio Serial Gain/ Sharpe

Strategy N Capital Mean t-Stat Dev. Min. Max. Skew. Kurt. Neg. Corr. Loss Ratio

Basic DLY 109 6.159 0.787 2.79 2.887 -7.139 10.564 0.605 5.079 0.330 0.040 2.314 0.944

Leverage high noise 109 9.069 0.620 2.01 2.887 -9.695 13.825 0.764 8.196 0.330 0.251 2.100 0.744

Leverage low noise 109 6.769 0.909 3.60 2.887 -5.986 16.112 1.859 10.159 0.330 -0.168 2.999 1.091
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Figure 16. Cumulative returns from leveraging noise. 

The figure plots the cumulative unleveraged returns of the basic version of the strategy (‘DLY’) as in Section 

6, directly according to Duarte et al. (2007), then the same strategy but leveraging 2x when the noise measure 

is above its 70th percentile, and leveraging 0.5x when the measure is below its 30th percentile (‘Leverage high 

noise’). Also plotted is the strategy that leverages 2x when the noise measure is below its 30th percentile, and 

leverages 0.5x when the measure is above its 70th percentile (‘Leverage low noise’). Percentiles for the noise 

measure are computed in-the-sample. 

 

 

10. Conclusion 

 

Hedge funds have been shown to generate highly favorable returns in the space of fixed income 

arbitrage, as illustrated in e.g. Duarte et al. (2007). As the term ‘arbitrage’ implies, these strategies 

are in a way or another hedged, and thus carry a low risk in terms of volatility. Although some 

may look for the kind of textbook arbitrage, where one would generate riskless profits with no 

capital, ‘arbitrage’ in the in industry parlance usually refers to portfolios that are made neutral to 

changes in priced high-level risk factors. In essence, yield curve arbitrage is a relative value trading 

strategy where an arbitrageur trades overtly high or low interest rates against the more efficiently 

priced ones, assuming that the perceived mispricings shall be eliminated in time. Duarte et al. 
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(2007) attribute the yield curve and capital structure arbitrage strategies’ performance mostly to 

the increased complexity and thus additional human capital required to employ the relevant models 

in locating the mispricings and implementing the trades.  

The theoretical foundation of the yield curve formation and no-arbitrage, as discussed in 

this paper, is based chiefly on Vayanos and Vila (2009), complemented by Greenwood and 

Vayanos (2010 and 2014). The practical methodology and its execution is either directly or with 

modifications after Duarte et al. (2007). In general, the driving idea in my work is to combine the 

theoretical view of yield curve arbitrage with the empirical arbitrageur trading methodology to 

paint a picture of the attractiveness of the yield curve arbitrage in the EUR rates space, as done by 

hedge funds or proprietary trading desks.  

I set out to further develop the methodology outlined in Duarte et al. (2007) with a different 

and more recent dataset. For one, Duarte et al. employ a two-factor Vasicek model, while I am 

using two-factor models suggested by Longstaff and Schwartz (LS two-factor model) and Cox, 

Ingersoll and Ross (CIR two-factor model). I conduct the analysis of the strategies with recent 

(2004-2015) data on the EUR swap rates, while the earlier paper looks at the USD space in 1988-

2004. Moreover, I test different trading implementations as logically implied by the models. 

Finally, I study the strategies with respect to hedge fund indices and subindices, as well as with 

respect to the noise metric by Hu et al. (2013). Throughout the thesis, I make explicitly sure that 

no look-ahead bias emerges, unless when done on purpose for comparison. Duarte et al. imply that 

they calibrate their model to the whole sample (while conducting as a diagnostic also an explicit 

out-of-the-sample trading test), which includes also future data in choosing the parameters. 

I hypothesize that the yield curve arbitrage strategy in the EUR space generates attractive 

risk-adjusted returns in terms of common ratios and regarding the return distributions. Strategies’ 

exposure to priced risk factors (betas) is hypothesized to be low, meaning that returns would be 

driven by multifactor alpha. Additionally, I hypothesize that the arbitrage strategy explains to a 

significant degree the most relevant hedge fund subindex returns. Further, it is hypothesized that 

mispricing of rates in the market is greater when there is a lot of ‘noise’ as implied by the Hu et 

al. (2013) measure, and that returns from the strategies are greater during these noisy periods.  

I find evidence strongly in support of the hypotheses regarding the attractiveness of the 

replicated returns. The yield curve arbitrage strategies have generated attractive risk-adjusted 
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returns in the EUR swap space, having high Sharpe and Gain-Loss ratios. Moreover, the returns 

are statistically significant as measured by the autocorrelation robust Newey-West (1987) statistic. 

The return distributions are far from normal, as they are highly positively skewed with heavy tails. 

The positive skew is certainly favorable to the arbitrageurs, yet the attractiveness of the fat tails in 

the distributions can be contested.  

The returns are basically pure multifactor alpha, as priced risk factors lack explanatory 

power regarding the strategies. As the volatility of the strategies is low, they can and need to be 

leveraged. Duarte et al. (2007) leverage their strategies so that the ex post volatility is 10% 

annually. With the same specifications, the yield curve arbitrage strategies are found to be capable 

of achieving leveraged returns up to 10% annually in the EUR swap rates market. This is actually 

superior to the earlier results by Duarte et al. both in the yield curve arbitrage space and when 

compared to other fixed income arbitrage styles (e.g. capital structure and MBS arbitrage).  

When the replicated yield curve arbitrage returns are compared to the actual hedge fund 

indices, both high-level and style-specific, little connection between the returns is found. The yield 

curve arbitrage is essentially ‘hedge fund alpha’ in the sense that no combination of the hedge fund 

indices explains the replicated returns to any significant extent. Similar to Duarte et al. (2007), 

high-level hedge fund indices are not explained by the strategy. Against my hypothesis, I find that 

neither the most relevant subindices are not well explained by the arbitrage strategy. This suggests 

that either the strategy itself or its deliberate implementation diverge enough from the average 

strategies in the indices so as to offer little explanatory power in the cross-section. This can be 

seen as an attractive characteristic for the strategy, as it is differentiated from the mainstream 

relative value trades, thereby leading to less competition and less crowded positioning.  

As hypothesized, high model implied mispricings coincide with high noise in the markets 

as measured by the Hu et al. (2013) metric. As the model implied mispricing is a fairly unstable 

quantity in itself, this result is statistically robust only when the time series is smoothed by taking 

a moving average. Moreover, high noise in the markets does not lead to stronger trading outcomes, 

which is in a sense intuitive given the nature of convergence trading. Evidence is found that further 

leveraging positions when there is low noise leads to better risk-adjusted returns.  

This thesis also sheds further light into the subtleties of modeling, as well as describes more 

in-depth the sensitivities of the strategies to certain variations in implementation. In all, yield curve 
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arbitrage produces highly favorable risk-adjusted returns with little sensitivity to the exact choices 

made through modeling, calibration and implementation, yet with a data mining angle one can 

certainly find parameters that maximize the out-of-the-sample performance of the strategies. The 

robustness of the results regarding the choices in the modeling highlights the attractiveness of the 

core methodology, as one can say that with all likelihood the findings cannot be solely due to data 

mining.  

As Duarte, Longstaff and Yu (2007) concluded, there seems to be little evidence to label 

fixed income arbitrage as ‘picking nickels in front of a steamroller’, which says that one would 

have decent returns most of the time and large losses every now and then. More to the contrary, 

the return distributions have a mean, skew and kurtosis of the caliber that the yield curve arbitrage 

can be considered to be a highly attractive trading strategy in terms of gains to losses and excess 

returns to volatility, as well as in yielding uncorrelated returns.  

The quantitative yield curve arbitrage seems to produce both economically and statistically 

significant alpha that seriously outperforms the alphas of the related hedge fund indices. This is 

consistent with the evidence that the strategies modeled here have little correlation with the hedge 

fund indices. If some of the hedge fund indices comprise similar yield curve arbitrage strategies, 

their weight is small enough to get neutralized in aggregate. In a sense, this makes the returns from 

the replicated strategies even more attractive, as the evidence points to the direction that they are 

sourced from a relatively rare origin that the bulk of sophisticated investors do not in practice seem 

to harness.  

Divergence from the positioning of other arbitrageurs can be extremely beneficial for a 

hedge fund, as it will hold less crowded positions. This is because crowded trading positions will 

suffer more when competitors are forced to liquidate, as was shown by the 2007 quant meltdown, 

for instance. As for the rare event risks, evidence does not suggest that the tail event of 2008 

Lehman Brothers bankruptcy, for example, would have caused the strategy to blow up, or even to 

cause a major drawdown to the returns. In conclusion, a strategy that appears little competed and 

does not amount to selling disaster insurance would be a valuable add to basically any portfolio as 

a source of alpha.  
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Appendix A (Model implied mispricings per rate maturities) 

 

This Appendix shows the basis point differences between the market and model implied swap rates for 

individual rate maturities from two to nine years in time as produced by the core DLY strategy trading out-

of-the-sample. The interpretation for all the following Figures is that they plot the ‘mispricing’, or basis 

point spread between the market-observed and model implied constant maturity swap rate. The observation 

period for the differences is from December 2005 to January 2015. Details on how the model implied rate 

is computed can be found in Section 5.3.  

 

 

 

Figure 16. 2-year rate market-to-model differences in the out-of-the-sample DLY strategy. 
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Figure 17. 3-year rate market-to-model differences in the out-of-the-sample DLY strategy. 

 

 

 

Figure 18. 4-year rate market-to-model differences in the out-of-the-sample DLY strategy. 
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Figure 19. 5-year rate market-to-model differences in the out-of-the-sample DLY strategy. 

 

 

 

Figure 20. 6-year rate market-to-model differences in the out-of-the-sample DLY strategy. 

-60

-40

-20

0

20

40

60

80

100

M
a
rk

et
 t

o
 M

o
d

el
 d

if
fe

re
n

ce
 (

b
p

s)

Time

-60

-40

-20

0

20

40

60

80

100

M
a
rk

et
 t

o
 M

o
d

el
 d

if
fe

re
n

ce
 (

b
p

s)

Time



85 
 

 

 

Figure 21. 7-year rate market-to-model differences in the out-of-the-sample DLY strategy. 

 

 

 

Figure 22. 8-year rate market-to-model differences in the out-of-the-sample DLY strategy. 
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Figure 23. 9-year rate market-to-model differences in the out-of-the-sample DLY strategy. 

-60

-40

-20

0

20

40

60

80

100

M
a
rk

et
 t

o
 M

o
d

el
 d

if
fe

re
n

ce
 (

b
p

s)

Time


