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Abstract 

 
The objective of this study is to formulate and model a multi period scenario optimisation problem 
and to obtain recommendations for optimal balance sheet item portfolio. To do this the study 
gathers data from the public financial statements of the case company Aktia PLC, explains the 
relevant framework and model specifications, describes the actual optimisation model and finally 
presents the analysis of the results. The process combines many aspects of finance, decision making 
and optimisation. The portfolio optimisation problem is done over multiple periods with simulated 
future scenarios by formulating a tree representing the possible future outcomes.  

The academic background combines aspects from information management and finance. The 
frameworks are selected from several different journals and fields in business studies and 
economics. The study explains the theoretical framework around the main topics of financial 
portfolio management, decision making and scenario optimisation. For the methodology the thesis 
aims to form qualitative research on the theories behind the model and the case company data in 
the form of literature review. The more quantitative research is done on the actual optimisation 
model and the analysis of these results. The case company was selected to allow for quantitative 
research and to show that the model works in real life. 

The results from the model conclude with an optimal solution and a suggestion for changes made 
in one year for the balance sheet item portfolio. The results were heavily affected by the inputs and 
thus different solutions could be obtained easily. The base line model performed very well in 
comparison to other options. When comparing to the actual realisation for the most recently 
published data, the model showed a slight reduction in profits with the strong positive effect on 
balance sheet growth. In this solution the profits were 2 384 000€ lower in the model than those 
observed in year 2013 but the balance sheet total was 1 959 281 000€ larger. 
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1. INTRODUCTION 

Ever since the financial crisis 2007-2008, bank decision making has been under the microscope 

(Shiller, 2008). Although optimal bank capital and balance sheet optimisation have been a popular 

topic in the 20th century (Modigliani & Miller, 1958), the developing investment options and 

financial innovations have brought more variables to the equation (Schwartz, 2008). Thus solving 

optimal bank balance sheet is not easy, with difficulties in uncertain future and forecasting asset 

returns. 

From a wider perspective, having a stable economy, where bank risk taking is not excessive, is 

preferred by the entire economy. The problem is that when banks aim for better profitability and 

growth, problems with volatility tend to arise (Hnatkovska & Loayza, 2003). From the bank 

decision maker’s point of view, the aim is to maximise profits while avoiding bankruptcy. To 

counter this conflict of interests, bank regulation has been introduced to prevent banks from taking 

too much risk (Dothan & Williams, 1980).  

In this setup the aim of this study is to find optimal bank balance sheet structure for the case 

company and analyse the results. The model used for this optimisation problem generates scenarios 

to simulate the future outcomes of the uncertain returns on assets. The model solves the 

optimisation problem through several time periods. The problem can be referred to as multi period 

balance sheet scenario optimisation. 

1.1. Motivation 

The reason for taking on such a challenging problem is that it offered the author a chance to 

combine knowledge from studies with experience from working in Santander Consumer Finance 

Oy. This thesis is a continuation of previous work on the author’s Bachelor’s thesis, where a simple 

one period optimisation model was formulated. The thesis combines studies in optimisation, 

finance and statistical tools.  
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Relevant master’s degree courses include advanced studies in optimisation, investment science, 

time series analysis, advanced statistical methods and simulation. These courses are offered in the 

information management program under information and service management master’s degree in 

Aalto University. Thus the thesis is a continuation of earlier work put together with more advanced 

studies and real life work experience. 

1.2. Background of the research and target group 

Previous studies on balance sheet optimisation are often portfolio optimisation and risk focused. 

For example Markowitz (Markowitz, 1959) portfolio theory and various mathematical models 

have been used to estimate and analyse optimal bank portfolios (Crane, 1971) and (Kalman & 

Hammer, 1967). Since the banking industry and assets have become more complex over time, 

more complex models have been introduced to estimate asset risks and profitability (Glantz & 

Kissell, 2013). 

These previous studies have optimised bank balance sheet items or individual investments by 

maximising profits or profits with respect to risk. However, this thesis deviates from standard 

portfolio optimisation and uses random scenarios to solve the maximisation problem. Previous 

scenario optimisation research and research with large scale optimisation solver software include 

studies for example in the forest industry in Finland (Rämö, 2013) or South America (Kallio, et 

al., 2012) and real investment options (Hilli, et al., 2007). Scenario optimisation is often used in 

stochastic problems with uncertainty, including economics, and can be applied to portfolio 

optimisation problems (Mausser & Rosen, 2001).  

The target group for this thesis are students and people interested in scenario optimisation. Another 

target group is financial and other organisations interested in balance sheet or product mix 

optimisation. The results of this study can be applied to budgeting problems, and with some 

modifications to product management. The thesis assumes some understanding on mathematical 

optimisation and finance. 
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1.3. Research problem and aims of the study 

Although bank balance sheet optimisation is complex, it offers interesting study options. This 

thesis aims to solve a multi period scenario optimisation problem. To do this it presents a 

mathematical optimisation model that is built to produce realistic results that provide real life 

implications.  These results are presented and analysed in chapter 6. In short the research goals can 

be stated as: 

1. Obtaining, editing and analysing the data from the case company 

2. Explaining relevant framework and theory 

3. Selecting and formulating a mathematical optimisation model 

4. Using the model to solve optimal solution for selected data and time horizon 

5. Analysing the results 

The expected results should be somewhat close to the real life values of the case company. 

Moreover, the results should yield some implications and provide useful information about the 

case company. 

Portfolio scenario optimisation and the methods used are important as a study subject because they 

make complicated portfolio optimisation easy to solve with a model that can be easily modified. 

Adding more information and complexity in the model is fairly easy and provides more precise 

results. Thus the model can respond to user needs or changing problem settings. Moreover, the 

method of scenario optimisation deviates from the standard portfolio optimisation, making it a 

great tool to cross check initial optimal values obtained with other methods. 

1.4. Limitations 

The study is limited by the fact that the focus is on information management systems and not 

finance or traditional portfolio optimisation. Compared to traditional budgeting problems where 

balance sheet items are selected to yield optimal portfolio, the model selected for this thesis is 

fairly simple and uses scenarios. Although the selected method of scenario optimisation model 
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allows adding more information to the model, the model presented in this thesis does not include 

many properties. Some problems and limitations may occur due to the following factors: 

 Balance sheet items are cut down to five: cash, loans, other assets, savings and debt 

 Time horizon is one year with 4 quartiles, in reality decision making is more continuous 

 Risk is taken into account in the form of exponential utility function and decreasing 

marginal returns 

 Future returns are forecast with a simple model based on historical averages 

 Emphasis on information management and decision making rather than finance 

 The data analysis is done with available case company specific data 

 Quarterly profits are maximised and expected to be paid out, rather than contributing to 

balance sheet growth 

For better end results, the model could be improved by adding more financial information in the 

model for example in the form of better time series analysis or more precise inputs. Moreover, if 

the model was used in practise, the company could provide far better estimates of asset returns, 

forecast returns or possible future scenarios. For these improvements further studies are 

encouraged. 

The results of this study can be used to get indication on what are the optimal values for the selected 

balance sheet items with the selected model and specifications. The results obtained this way 

represent the average yearly changes with the generated scenarios. In reality the final outcome and 

the realisation is one of the endpoints of the scenario tree, rather than the average. 

1.5. Structure of the thesis 

The structure of this thesis is as follows. The first two chapters are introductory, including 

necessary information about the case company and the collected data. Research problem, questions 

and main findings are also included in this chapter. 

The third chapter goes through the necessary framework for this thesis and the fourth presents the 

model specifications. These two chapters form the literature review for this thesis. They include 
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various topics in stochastic optimisation, financial portfolio optimisation, modelling and calculus. 

The fifth chapter explains the mathematical model used to solve the optimisation problem. This 

chapter advances from introducing the scenario tree structure further on to variables and 

constraints. 

The results chapter reports the output of the optimisation model with two different inputs. It then 

compares the outcomes in terms of profits and changes in the balance sheet total items. These 

results are compared with historical changes and the actual changes from the year 2013 financial 

statement. The sensitivity analysis, which uses different input variables to obtain alternative output 

and results, is reported at the end of this chapter. 

The final chapter concludes that the model performs well and is a good option compared to the 

actual changes for the year 2013. The model suggests on average a higher total for the balance 

sheet items with some reductions in profitability. This leads to higher market share and profits in 

the long run, arguing that the model produces realistic and efficient results. The real life 

implications are thus significant and the model could be applied to the decision making process.  
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2. CASE COMPANY AKTIA 

The case company Aktia Oyj is a fairly small Finnish bank with a market share of 3,8% on Finnish 

loans and 3,0% on savings (Finanssialan Keskusliitto, 2012). It was founded 1826 in Helsinki and 

merged later in 1991 with other local banks (Aktia, 2014).  

The main reason why this case company was chosen over several other options is that it has 

relatively simple balance sheet. The most important drivers of Aktia’s business include giving out 

loans, managing different assets and holding on to savings. They do not specialise in complex 

investment options and have for example only derivatives that aim to counter economic 

fluctuations (Aktia, 2013). 

However, there are some complications with the data related to the case company. For one, the 

data used for the purpose of this study only spans from 2006 to 2012. The historic data has only 7 

data points from yearly data. For better precision one should aim to use more precise and current 

data. Furthermore, the company could have more company specific information about the future 

than the public data used in this thesis can predict. 

One issue regarding the historic data is that it includes the economic crisis that hit especially the 

banking industry, preceding the euro crisis that started later in 2009 (Hall, 2012). Even if Finland 

did manage to maintain high credit rating, the economic recession greatly affected the interest rates 

in that period (Santis, 2012). Since the data is from this high risk period with low interest rates and 

high fluctuations, it might be seen as a disturbance when trying to forecast future data. 

2.1. Case company data 

The data used in this thesis was gathered from the public financial statements of the case company 

Aktia from the years 2006-2012 (Aktia, 2014). It was edited to fit the purpose of this research. The 

values of the balance sheet items were fairly easy and straightforward to obtain from the documents, 

but the corresponding profits needed some calculations and assumptions. Appendix 1 and 2 show 

the tables for the return calculations and Table 1 below explains the key aspects. 
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Calculations were made for the balance sheet items in order to obtain the desired 5 classes. The 

company used somewhat differing notations over the years and the income for the balance sheet 

items often consisted of several different income variables, so some assumptions needed to be 

made. Moreover, since the other assets didn’t really have reported income, the income was 

calculated with a formula: 

𝑂𝑡ℎ𝑒𝑟 𝐴𝑠𝑠𝑒𝑡𝑠 𝑖𝑛𝑐𝑜𝑚𝑒

= 𝐴𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝐶𝑎𝑠ℎ 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝐼𝑛𝑐𝑜𝑚𝑒 𝑓𝑟𝑜𝑚 𝐿𝑜𝑎𝑛𝑠

+ 𝑑𝑖𝑟𝑒𝑐𝑡 𝑂𝑡ℎ𝑒𝑟 𝐴𝑠𝑠𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒

+ 𝑑𝑖𝑟𝑒𝑐𝑡 𝑂𝑡ℎ𝑒𝑟 𝐴𝑠𝑠𝑒𝑡  𝑐𝑜𝑠𝑡𝑠 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)𝑖𝑛𝑐𝑜𝑚𝑒 

Thus the income on other assets is a sum of other interest incomes and various other income costs 

and profits (Appendix 2). For the purpose of the study it was important to include this variable in 

the model, in order to avoid having loans and cash as only assets. The returns displayed below in 

Table 1 show the development of asset returns in the past six years.  

There are significant changes in balance sheet item values and their returns. Some of these 

differences can be explained by the financial crisis and some variation by the random walk in the 

balance sheet item returns. These balance sheet item changes and returns are used to model the 

problem. 
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Table 1: Balance sheet items and returns (1000 €) 

 

One important observation from this data is that the cost of borrowing is in the observation period 

always lower than the interest incomes on the assets. In order to be profitable, the bank needs to 

make money by getting higher interest for the investment than the interest rate of the debtors 

(Freixas & Rochet, 2008). Moreover, the bank should aim to keep the relation between the costs 

and income reasonable. Since the return on assets is higher than the cost of liabilities, on average 

it would seem profitable to increase the balance sheet items excessively. 

If the bank would like increase savings or debt, the costs for borrowing would start to rise. This is 

due to the increasing cost of debt as debt increases by increased default risk or increased interest 

rates (Angbazo, 1997). Similarly, if the bank would like to invest in loans or other assets, after a 

while available investment options would start to yield smaller interest profits. In order to consider 

this, the model includes marginal effects on returns. Decreasing marginal effects mean that as the 

volume of a balance sheet item is increased, the return for that variable decreases. 

Balance sheet 2006 2007 2008 2009 2010 2011 2012

Assets

Cash (Ci) 307 907 235 273 506 311 340 960 273 364 475 042 587 613

Loans (Li) 3 797 018 4 757 011 5 526 194 6 141 562 6 637 551 7 152 124 7 360 225

Other Assets (Ai) 1 385 455 2 960 529 3 507 568 4 073 317 4 108 238 3 428 897 3 292 352

Total 5 490 380 7 952 813 9 540 073 10 555 839 11 019 153 11 056 063 11 240 190

Liabilities

Savings (Yi) 3 340 385 3 729 991 5 015 277 4 753 586 4 356 327 4 757 179 4 689 040

Debts (Di) 1 728 973 2 740 892 3 130 482 4 045 926 4 827 366 4 464 037 4 584 724

Equity (Ei) 249 880 339 009 316 775 466 157 497 290 523 756 657 409

Other Liabilities (Oi) 171 142 1 142 921 1 077 539 1 290 170 1 338 170 1 311 091 1 309 017

Total 5 490 380 7 952 813 9 540 073 10 555 839 11 019 153 11 056 063 11 240 190

Returns %

Cash (Ci) 1.72 % 3.43 % 1.84 % 0.92 % 0.91 % 0.69 % 0.21 %

Loans (Li) 3.71 % 4.39 % 5.07 % 3.10 % 2.29 % 2.60 % 2.36 %

Other Assets (Ai) 2.99 % 2.99 % 3.99 % 3.02 % 3.28 % 3.18 % 3.27 %

Savings (Yi) -1.85 % -2.87 % -3.41 % -1.66 % -1.25 % -1.33 % -1.22 %

Debts (Di) -2.18 % -2.67 % -3.36 % -2.03 % -1.69 % -2.40 % -2.30 %

Equity (Ei) -16.80 % -17.90 % -1.80 % -8.70 % -12.00 % -7.10 % -8.50 %

Other Liabilities (Oi) 1.47 % -0.28 % -0.81 % 2.16 % 3.37 % 2.77 % 3.65 %
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For each increase in loans, cash or other assets, the rate of return decreases. Similarly, for each 

increase in debt and savings, the cost of additional increase goes up. Adding these marginal effects 

to the model improves the interpretation of the data and the model better predicts the real life 

situations. This idea of decreasing marginal effects is supported by the data presented. 

Further analysis on the returns and marginal effects is done in the model specifications chapter, 

where the return variables are formulated and analysed. The historical prices presented in this 

chapter are used to formulate the model. 
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3. LITERATURE REVIEW AND FRAMEWORK 

The field of bank and balance sheet optimisation has long been a topic of interest in the academic 

field, with studies from 1960s (Kalman & Hammer, 1967), (Koehn & Santomero, 1980), 

(Diamond & Rajan, 2000). Because of the financial crisis in 2007-2009, the topic of optimal bank 

capital has generated numerous new articles, journals and discussions. The theory of modern bank 

balance sheet optimisation dates back to Markowitz portfolio theory (Markowitz, 1952). Relevant 

to the topic of portfolio optimisation is the randomness and stochasticity of the future outcomes 

(Aoki, 1989). 

In addition to portfolio optimisation theory, this thesis includes scenario optimisation (Dembo, 

1991). As financial assets become more complex, it might be easier to simulate reality rather than 

solve absolute values. Both optimisation topics have been thoroughly covered in financial 

literature and this thesis aims to combine these two main topics. In addition to these two main 

topics, this chapter introduces topics on time series modelling, large scale optimisation software 

and other theoretical framework behind the mathematical model presented in chapter 3.  

3.1. Stochasticity 

Stochasticity refers to a situation where a system or a process is non-deterministic and must be 

analysed using probability theory (Aoki, 1989). In other words there is a random element or an 

unpredictable parameter in the system. The randomness must be controlled as this thesis does with 

the use of mathematical programming (Luhandjula, 2004). In this thesis the unknown parameters 

are simulated from the selected distribution, thus taking into account the stochasticity. 

In this study the randomness comes in the form of unknown future returns. This can be seen as a 

result of the banking industry being prone to fluctuations. Crises and changing economic 

conditions greatly affect the industry and investment returns (Eickmeier, et al., 2006). In order to 

take this randomness into account, this study generates random scenarios of different economic 

conditions. 
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Historical data is used to predict possible future returns and scenarios are simulated in order to 

give possible future outcomes for returns. The different future scenarios are then used to solve the 

optimal solution. The stochasticity and uncertainty can in this way be controlled, modelled and 

taken into account. In this thesis the stochasticity is countered with scenario optimisation and 

simulation. 

Another option to solve problems with uncertainty is by using solving a theoretical absolute value. 

For example, in portfolio optimisation expected profits are often maximised with respect to risk 

(Markowitz, 1952). In scenario optimisation future forecasts can be simulated using historic data 

and the complicated problem can be solved fairly easily. This way the actual optimisation model 

can be more complex and additional changes can be made easily. 

 Modelling financial time series  

There are several options for modelling financial time series. As the main focus of this thesis is 

optimisation and not time series analysis, a simple model was selected. However, there are more 

sophisticated options available for analysing financial time series.  

For example different autoregressive models (Akaike, 1969) assume that the future values of the 

dependent variable depend linearly on its previous values. More complex models include for 

example AutoRegressive Conditional Heteroskedasticity ARCH models (Engle, 1982) and others 

derived with the same principles. Moving average models are also widely used, and the model 

used in this thesis is somewhat related to the idea of average returns (Pindyck & Rubinfeld, 1998). 

These models often show a clear trend in the data. 

When modelling and forecasting financial time series, it is important to choose an appropriate 

model. However, no matter how well the model performs on historical data, it might fail to predict 

changes or shocks to the economy (Grabel, 2003). Financial models often include some degree of 

random walk (Spitzer, 1964). Most often a model is formed to give an estimate for future outcomes 

and the random walk occurs around this estimate.  
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A non-complex solution for forecasting future values for prices or returns R is by a simple model 

using only the mean μ and an error term ɛ: 

𝑅 = 𝜇 + 𝜀  

This simple model does not take directly into account the momentums or the movement of the 

time series data, but rather uses the mean to estimate future values. For better results, one might 

consider formulating a more complex model. Moreover, this model does not include any other 

variables but the mean. For example using a separate variable for general economic conditions 

might help in forecasting.  

The graph below illustrates the observed historical data and provides simulated future forecasts 

that are generated randomly using the model selected for this thesis. This comparison is done to 

illustrate that the model produces reasonable returns by simulation. The model is presented later 

on in chapter 3.  

 

Figure 1: Historic quarterly returns and forecast made with the thesis model 

This figure captures the element of randomness and uncertainty in financial forecasting and 

provides an estimate for future values. The output of the model does not efficiently predict or 

forecast similar economic recessions as can be seen in the historic data 2006-2008, but rather relies 

more on the average values and random walk. Relying on the average values is the downside of 

the model used in this thesis.  
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However, for the purpose of this study, this model predicts future values with sufficient precision. 

Moreover, for scenario optimization it can be seen as a desirable quality to have the development 

of the returns close to the mean and to have generally less extreme outcomes. In other words the 

model generates numerous random scenarios. Some of these scenarios will have extreme values 

such as those observed in times of economic turbulence, but on average it provides forecasts close 

to the average values. When there is no time trend, the scenario tree branches do not often wander 

off to far extremes. 

3.2. Scenario optimisation 

Scenario optimisation is an important tool when dealing with uncertainty. In scenario optimisation, 

when faced with uncertainty, possible outcomes and their corresponding probabilities are 

estimated (Dembo, 1991). Two important topics discussed in this thesis under scenario 

optimisation are large scale optimisation problems and optimisation software. 

The model used in this thesis estimates 5 random scenarios for each time period. The probabilities 

for each outcome are the same and thus the decision tree follows a random walk with the number 

of decision nodes increasing exponentially. Thus for the scenario optimisation setup the scenarios 

are random, given equal probabilities and increasing exponentially in numbers each time period.  

 Large scale optimisation problems 

Since scenario optimisation is used over multiple periods, the number of decision nodes is 

increasing exponentially. For a one period model with four quartiles and 5 scenarios on each period, 

the number of individual final outcomes is 5^4 = 625. If 5 scenarios was used in a monthly data 

for modelling a yearly decision making process, the last stage alone would have 5^12 = 244 140 

625 decision nodes. Since this is a model with multiple decision periods, decisions need to be made 

on every period.  

There can be thousands of decisions to be made in a multi period scenario optimisation model. 

Moreover, the decisions made earlier often affect the decisions later on in the scenario tree. For 

each node, there are previous decisions, possible future scenarios and current scenario situation 
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that affect the decision making process. Thus the problems become quickly very complex and 

complicated to solve with traditional optimisation models. 

In order to solve large scale scenario optimisation problems, one needs to use software in order to 

avoid infinite solver calculation process. 

 AMPL optimisation software 

AMPL provides optimisation software for large scale optimisation problems for linear and 

nonlinear problems (Fourer, et al., 2002). The program includes numerous different solvers that 

work in AMPL to find optimal solutions. These different solvers can be used to solve linear, 

nonlinear, quadratic, mixed integer and other types of optimisation problems (AMPL Optimization 

LLC, 2014). The distribution of different solver software and different solvers can be seen in the 

following graph (NEOS Server, 2013): 

 

Figure 2: Market share of solver software and solvers 2000-2014 (NEOS Server 2013) 

Since it is possible for anyone to create a solver using AMPL, there are plenty of options to choose 

from. However, there are a few software and solvers that dominate the market in terms of market 

share. In software AMPL and GAMS are most used, when in solvers MINLP and MINOS are most 
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preferred. For the purpose of this study, the solver MOSEK was selected, as it offers a free and 

efficient solver for nonlinear optimisation. 

The model needs to be written in AMPL code language in order to solve the large scale 

optimisation problem. Different solver software and solvers have different requirements for how 

the code should be represented. The model is presented in the way it is inserted into AMPL solver 

software using MOSEK solve (Appendix 6, 7 and 8) 

The problem consists of three separate files: the model (Appendix 6), the data (Appendix 7) and 

the run (Appendix 8) file. The run file is used to operate the other two files and print the output. 

For each of the files, the code is written on the left hand side and comments indicated with # are 

written on the right hand side. They have no operational function but are only included to explain 

the code. In addition to the AMPL software, in order to operate, one needs to obtain the MOSEK 

solver. 

The run file orders the commands to operate the model and the data files. Moreover, it prints the 

output of the optimisation solution, presented in Appendix 5. The output includes returns from the 

data file, all the decision variables and expected profits, final stage outcome node expected profits 

and at the end the expected average yearly changes in each balance sheet item.  

3.3. Portfolio optimisation 

Portfolio optimisation refers to a set of assets which are chosen to find an optimal solution, most 

often by maximising profits with respect to risk. As mentioned before, this theory dates back to 

Markowitz theory explained in his book (Markowitz, 1959). As the financial markets have 

developed throughout the years, the portfolio optimisation problem settings and models have 

become more complex, offering for example solutions for large scale financial problems (Perold, 

1984).  

The focus in the field of bank balance sheet optimisation is often in portfolio management and 

investment decisions, where risk with respect to maximum profits is being optimised (Brodt, 1978). 

Previous portfolio optimisation research include studies with generally two main themes: 
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theoretical and mathematical emphasis often related to operations research (Oguzsoy & Guven, 

1997) or more practical background with focus on analytics and financial studies (Selhausen, 

1977). In addition to portfolio optimisation, scenario optimisation is used with simulation in 

economics (Pflug, 2001). However, studies using scenario optimization with simulation in multi 

period model for bank balance sheet portfolio optimisation were not discovered.  

Scenario tree optimization might not always be the best alternative. For example, the use of more 

advanced computer algorithms may be able to forecast with the given data more precisely, leading 

to better results (Beraldi, et al., 2013). The more advanced forecasting methods and tools may be 

superior in financial forecasting. On the other hand, often in finance the key to success is personal 

experience with the markets and the ability to forecast economic conditions and financial situations 

(Selhausen, 1977). To counter the problem of relying too much on data or expert knowledge, 

models that combine expert opinions with mathematical optimisation modelling have been 

produced (Lutgens & Schotman, 2010). 

To answer the question of which optimisation method to use there is no single answer. Different 

options have different pros and cons. Simple models can usually be easily expanded where as more 

complex methods usually provide greater precision. To select one model over the others one needs 

to justify the reasons for selecting the model. 

One of the most used portfolio optimisation models is the Markowitz model, that optimises 

portfolio returns with respect to risk (Markowitz, 1959). Figure 3 illustrates the Markowitz 

optimisation of profits with respect to risk. However, as Markowitz model is nonlinear, there have 

been several suggestions to a linear programming portfolio optimisation model. Two main linear 

programming models include the mean absolute deviation model (MAD) (Konno & Yamazaki, 

1991) and the conditional value at risk model (CVaR) (Rockafellar & Uryasev, 2000).  
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Figure 3: Markowitz portfolio optimisation and the efficient frontier (Markowitz, 1952) 

As seen from the figure, balance sheet optimisation can be seen as a nonlinear trade-off between 

profits and risk. In the picture, the expected profits E is on the horizontal axis and volatility V is 

on the vertical axis. The circle represents the possible portfolios, with corresponding expected 

profits and volatility. For the decision maker, the best options lie on the frontier that has the highest 

expected profits or lowest volatility. The efficient frontier is marked on bottom right with a thicker 

line, where no point is dominated by lower volatility and higher profits. This curve represents 

feasible solutions for an optimisation problem. The decision maker must choose the optimal point 

according to his profits per volatility trade off. 

The different optimisation models often combine at least one of the two: profits and risk. However, 

this thesis uses a nonlinear model which includes the cost of risk within the model in the parameter 

returns. Thus it aims to maximise the profits, where the risk is included in the model in the form 
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of decreasing returns and exponential utility function. These topics are discussed further in this 

chapter. 

3.4. Bank regulation and capital requirements1 

The idea of bank regulation aims to prevent banks from taking too much risk. It should be clear 

that with the financial crisis in 2007 the banks were taking too much risk and operating in a way 

that was not optimal for the whole economy or the banks in the long run (Miles, et al., 2013). As 

a result of the crisis it can be seen that the bank regulatory framework which was based on the 

Basel II recommendations was unsuccessful in preventing the crisis (Danielsson, et al., 2001). 

When talking about optimal solution for banks' balance sheet it is important to see that the optimal 

level for bank capital is different from the banks' point of view when compared to the whole 

society's interests. The society would prefer a stable banking sector with no crises, but the banks 

need to take risk in order to stay competitive. The banks with better loan and service prices attract 

more customers and thus banks are encouraged to take more risk. To solve this problem of 

increasing risks, bank regulation aims to prevent banks from taking too much risk. Stricter bank 

regulation results in a more stable banking sector, but there are also costs related to it. 

Although the mathematical model in this thesis does not include bank capital, it is important to 

understand how it affects decision making and how bank regulation works. 

 Bank equity and leverage 

Bank decision making is about managing different balance sheet items or the bank portfolio in 

changing market situations. A decision maker chooses to change the different bank balance sheet 

items by taking into account the future prospects of the returns on these items. Looking at it this 

way the optimisation problem for the banks' decision maker is to maximise the expected utility of 

                                                 

1 This master’s thesis is a direct continuation to my earlier work on bachelor’s thesis and I wanted this chapter to be 

published with some modifications in this framework section. 
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the profits by changing certain decision variables on the balance sheet. (Fletcher, 1995) and 

(Sinkey, 2002) 

Capital requirements and bank regulation work as constraints in the optimisation problem for the 

decision maker. For example Berger, Herring and Szegö discuss the role of capital in financial 

institutions in their article (Berger, et al., 1995). Bank capital most often refers to the bank capital 

stock which consists of shareholders' equity and disclosed reserves (Basel Committee on Banking 

Supervision, 2006). Another form of bank regulation is minimum requirements for cash, which 

can be directly and easily imposed on banks. 

Capital requirements mean that banks have to hold a certain amount of equity with respect to their 

total assets. The capital ratio is defined as the share of equity in total assets  
𝐸𝑞𝑢𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
 . Setting a 

minimum capital requirement means a bank has to acquire equity and cannot expand unlimitedly 

by borrowing money and increasing debt. 

Because this method of measuring capital ratio does not take into account the risks related to 

different assets, most of the capital requirement models use weights to valuate risk. To estimate 

the risk weighted assets, the banks categorise their assets and have each category multiplied with 

the corresponding risk weight. The Basel accords set the minimum requirement capital according 

to  
𝐸𝑞𝑢𝑖𝑡𝑦

𝑅𝑖𝑠𝑘 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑠𝑠𝑒𝑡𝑠
 and they have different categories for equity – Tier 1 capital, Tier 2 capital 

etc. (Balin, 2008). 

 Leverage is closely related to the idea of capital requirements and is defined as  
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠

𝐸𝑞𝑢𝑖𝑡𝑦
 = 

(
𝐸𝑞𝑢𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
)
−1

. Thus in a highly leveraged company the equity is small compared to the total 

assets. This means that imposing a capital requirement would mean setting a maximum value for 

leverage. To understand the effects of capital requirements one needs to understand how leverage 

affects the banks.  

Whether high leverage is a good or a bad thing depends on the market situation (Chew, 1996). 

This means that in a good economic situation the return on equity increases with leverage since 
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the profits of a profitable company, with high leverage, are shared with a small amount of 

shareholders. Similarly a high leverage in poor economic situation causes the return on equity to 

decrease and even turn negative. The article by the Committee on the Global Financial System 

(Committee on the Global Financial System, 2009) discusses how leverage is closely linked with 

risk as high leverage increases risk but also the potential profits and amplifies the effects of the 

economic situation.   

Limiting leverage is important for the stability of the banking sector, which has a huge impact on 

the welfare of the country (Miles, et al., 2013). When bank regulation and capital requirements are 

increased, the decision makers will have to increase the capital stock beyond the original optimal 

value for the bank (Koehn & Santomero, 1980). The total effect from increased bank regulation is 

a more stable banking sector, but decreased returns for the individual banks. 

 Bank regulation development 

The reason why individual banks would not operate on the optimal bank capital level for the whole 

economy comes from the fact that they need to take risk in order to stay competitive on the markets 

(Boyd & De Nicoló, 2005). Bank regulation was introduced to solve this issue. By forcing banks 

with laws to have enough equity and cash in the bank the government can ensure a safe banking 

sector.  

In general, this means a bank would be required to have enough cash and other liquid assets to 

cover for the customers’ need for cash. If the amount of cash and other liquid assets drops or 

remains low for a long period of time, the bank is likely to have liquidity problems and may 

experience a bank run (Diamond & Dybvig, 1983). The cash constraint introduced in the model 

specifications is an important influencer in the optimal solution of the model presented in this 

thesis. 

In addition to the bank run, another disaster scenario is when the bank does not have enough capital 

or equity. When a bank runs out of equity to cover for the losses of falling asset prices it goes 

bankrupt. A bank that goes bankrupt has a significant negative effect on the whole economy. 

(Gruber & Warner, 1977). This is what happened in the financial crisis in 2007 when the losses 
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from risky assets grew large and the banks ran out of equity to cover for the losses. Equity is 

dropped out of the optimisation problem due to its complexity and the bad fit with the model 

specifications and other balance sheet items. 

Comparing the two effects of better stability of the banking sector and poorer profitability explains 

the main issue of bank regulation. Banks need to take risks in order to stay competitive, but the 

risks related to highly leveraged banks can cause bankruptcy or bank runs that have major negative 

impacts to the whole society. One of the most used models for estimating the cost of capital was 

presented in an article by Modigliani and Miller (Modigliani & Miller, 1958).  

In addition to the problem of optimal bank capital, there are significant challenges in the 

implementation of bank regulation. The problem with capital requirements is that as banks have 

an incentive to increase leverages beyond the values of regulative limits to maximize profits, they 

will find ways to increase risks and leverages in other ways in order to avoid the higher capital 

requirements (Tett, 2010). For example before the financial crisis, banks increased risks and 

leverages with new financial innovations as explained in the article discussing the causes of the 

financial crisis (Baily, et al., 2008). The increase in risks was mainly possible because of financial 

innovations that enabled banks to increase risks and leverages (Culp & Neves, 1998). 

When the capital requirements fail to effectively stop banks from increasing leverages above the 

optimal solutions for the whole society, regulation is needed. There are several suggestions on how 

to improve the regulation on the banking sector to efficiently stop the banks from taking too much 

risk. 

The two major proposals on how to improve the regulation include the Basel Accords and the 

Independent Banking Commission’s report - also known as Vickers report. They all aim to solve 

the problem with the banking sector by combining higher capital requirements with stricter 

regulation. The Basel I and Basel II agreements had been widely implemented already before the 

financial crisis (Drumond, 2009), but as they did not prevent the financial crisis they have received 

criticism (Balin, 2008). Moreover, even before the financial crisis, some of the weak points of 

Basel II were already pointed out by researchers (Danielsson, et al., 2001). 
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Basel II already included a capital requirement of 8% out of risk weighted assets. This meant that 

the assets were given weights according to their risk. As explained before the use of financial 

innovations allowed the banks to work around such capital requirements and thus the Basel II was 

insufficient to prevent the financial crisis alone. The Basel III agreement aimed to update the Basel 

accords in order to successfully prevent future crises.  

Vickers report was released September 2011 and the implementation of the recommendations was 

started in the UK immediately. The recommendations were aimed for the UK’s government and 

were even more complex than those of Basel recommendations (Independent Commission on 

Banking, 2011) . 

Both Basel III and Independent Banking Commission’s recommendations included higher capital 

requirements combined with other regulatory changes to prevent the banks from taking too much 

risk and increasing leverages beyond the values optimal for the whole economy. The Basel I and 

II failed to prevent the financial crisis mainly because they lacked regulation and the banks were 

able to go around the capital requirements and increase risk beyond the point where they can still 

bear the losses.  

The Basel III and Vickers recommendations aim to fix this problem and introduce a sufficient 

regulatory reform for the financial sector to prevent future crises spreading from the banking sector 

to the real economy. In addition to these capital requirements and stricter bank regulation, both 

Basel III and the Vickers report included liquidity requirements.  

The following table shows the capital requirements for different capital ratios in the Basel III 

framework. 

Table 2: Basel III requirements for bank capital 

 Basel III requirement 

Additional 
countercyclical 
buffer   

Tier 1 Capital/Risk Weighted Assets 8 %  

Tier 1 + 2 Capital / RWA 6 % +2,5% 

Common equity / RWA 4,5 % +2,5% 
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As Aktia’s  
𝑇𝑖𝑒𝑟 1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑅𝑖𝑠𝑘 𝑊𝑒𝑖𝑔𝑡𝑒𝑑 𝐴𝑠𝑠𝑒𝑡𝑠
= 11,8%, it clearly has a good financial standing and any capital 

constraints on equity would not be constraining (Aktia, 2013). Most Nordic banks have very high 

levels of capital. Moreover, since equity is not included in the model because it fits poorly the 

model setting, trying to force any equity constraints would be illogical. Thus, bank regulation 

should be included in the model in the form of cash constraints. 
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4. MODEL SPECIFICATIONS AND METHODS 

This thesis formulates a mathematical optimisation model to solve a multi period balance sheet 

optimisation problem. Since the model is stochastic, scenario optimisation is used. The framework 

necessary for modelling is introduced in chapter 2 and the model is presented in the following 

chapter. In order to solve the problem, this thesis uses the AMPL optimisation software. In other 

words the methodology of this thesis is quite straight forward: the necessary framework is 

explained, then the model is presented and finally the obtained results are analysed. 

The model selected for thesis uses several theories in order to solve the maximisation problem. 

The framework provided in the following subchapters is aimed to explain some concepts that are 

required to fully understand the model. In addition to explaining the theories, some justification 

for the selection of these theories is provided. 

 Lognormal distribution and lognormal returns 

The lognormal distribution refers to a variable whose logarithm is normally distributed 

(Balakrishnan & Chen, 1999). Lognormal distribution X values can be created from normal 

distribution Y. It is possible to express the lognormal distribution Y as the logarithm of the normal 

distribution X or the other way around: 

𝒀 = log (𝑿) and thus also 𝑿 = 𝑒𝑥𝑝(𝒀) 

The values of the lognormal distribution X are always positive with a mean and variance that can 

be defined. It is important that the return distribution follows a lognormal distribution with strictly 

positive values and long tail representing unlikely crisis situations. Since the returns need to follow 

a lognormal distribution, the return vector R for all assets i can be generated using normal 

distribution, with the observed mean µ and the variances from the covariance matrix V.  

log(𝑹)~ 𝑁(𝜇, 𝑉) 
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The lognormal distribution can be drawn as a graph. Here is a simple illustration of the lognormal 

distribution with a standard normal distribution of mean 0 and variance of 1. 

 

Figure 4: Lognormal distribution with standard normal distribution N(0,1) 

The reason why lognormal distribution was selected for this study is that it produces returns that 

are always positive and they simulate returns realistically. This means that returns are generated 

with the same average and corresponding variances, with some extreme values in high returns or 

returns close to 0. Scenarios with very high returns are possible but not very likely, similarly 

scenarios with returns that are close to 0 are possible. This would be the case for example in a 

financial crisis, where assets returns might have strong fluctuations. 

 Exponential utility function 

Utility theory is often used in economics and has a background on behavioural sciences. It aims to 

provide a measurement of utility for monetary gain (von Neumann & Morgenstern, 1953). 

Important theories include Von Neumann–Morgenstern utility theorem with four key axioms for 

utility theorem and Bernoulli's formulation, originally published in Latin 1738 and later translated 

in 1954  (Bernoulli, 1954). 
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In a stochastic system that includes uncertainty, using exponential utility function and maximising 

expected utility is often used in portfolio optimisation (Pratt, 1964). Using this method, each 

possible outcome is denoted with a utility according to the selected utility function. The expected 

utility is then calculated multiplying the utility of the outcome by the probability of that event. The 

total sum of different expected utilities is the expected utility of the decision.  

Exponential utility function can be expressed in terms of portfolio profits p in a single time period 

and the Arrow-Pratt coefficient of absolute risk aversion γ (Arrow, 1965) (Pratt, 1964). 

𝑢(𝑝) = −𝑒−𝛾𝑝 

The exponential utility function resembles a risk averse decision maker preference, where the 

utility function is exponentially concave (Rabin, 2000). In this function very small values are given 

more weight, having a large impact on the decision making where as high returns yield much less 

additional utility. The decreasing marginal utilities represent the risk averseness of the decision 

maker.  

A concave exponential utility function resembles the decision maker’s relation to risk. For a larger 

risk factor γ, the curve is sharper, resulting in more risk averse behaviour. Similarly, if γ is very 

small, the decision maker is more risk neutral. For a convex utility function the decision maker 

can be classified as a risk taker. To estimate the risk averseness, the Arrow-Pratt measure of 

absolute risk-aversion (ARA) can be calculated (Pratt, 1964) and (Arrow, 1965): 

𝐴(𝑃) = −
𝑢′′(𝑝)

𝑢′(𝑝)
= 𝛾 

Since the absolute risk-aversion coefficient is a constant γ and not a function of profits p, it can be 

concluded that changes in profits P do not affect preferences of risk (Pratt & Zeckhauser, 1987). 

The fact that profits do not affect risk preferences can be argued to be unrealistic, but for the profits 

obtained in this thesis, the problem is quite insignificant. 

Decision makers in the banking sector are often trying to minimise volatility and maximise profits 

according to portfolio theory (Prigent, 2007). To include this risk averseness in the optimisation 
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model, this thesis uses exponential utility function. However, exponential utility function has 

received some criticism for the reason that the absolute risk aversion is assumed constant (French 

& Buccola, 1978). 

The gamma factor γ is estimated so that the utilities from the profits form a reasonable concave 

curve. This can be challenging when the true gamma factor of the company is unknown. When the 

selected –γ is multiplied by profits (p) and included inside an exponential function, the results from 

the utilities form a curve that resembles the risk tolerance of the bank (Pratt, 1964).  

 

Figure 5: Exponential utility function randomised example with γ = 3,4E-05 

In order to form a reasonable utility curve, the gamma factor γ is selected so that the exponent  

–γ*p is close to negative one. The reason why the utility function is scaled to this number is that 

since the utility is changing exponentially, e raised to the power of one result in reasonable changes 

in the utility for values below and above the profits p. If some other number was selected, the 

steepest part of the curve would move from the middle towards one of the ends.  
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The selected scaling factor proposes an estimation of the decision maker preferences, but for better 

results, one should select a utility curve that matches the company’s unknown true gamma factor. 

The value for the gamma factor can be estimated with the profits from historical data. The profits 

per quartile are one fourth of the average yearly returns. Using the average yearly returns 

(calculated from Appendix 1), the gamma factor is estimated to be: 

 𝛾 =
1

𝑝
   =>     𝛾 =

1
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑦𝑒𝑎𝑟𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑠

4
=

4

117345
≈ 0,000034 

Using this gamma yields a utility function that gives the portfolio values reasonable concave 

functions. Other gamma factors can be used and the risk tolerance should be estimated and selected 

by the decision maker. However, since there is no knowledge of Aktia’s true gamma factor or risk 

tolerance, this rough estimate is used for the purpose of this study. 

 Cholesky factorisation 

To use the Cholesky decomposition one needs a positive definite covariance matrix from the data 

(Watkins, 2004). This matrix can be obtained by calculating the covariance between error terms. 

As mentioned before, the model uses lognormal returns, mean and error term to model future 

returns. The returns can be expressed in vector form R = (Ri) for a single time period. The model 

for the returns can thus be written as: 

log(𝑹) = 𝜇 + 𝜀                𝑤ℎ𝑒𝑟𝑒              log(𝑹) ≡ {log(𝑅𝑖)} 

The observed error terms of this model form m-by-n matrix denoted the error term matrix E. In 

the data used, this matrix was 5-by-7 and included the data from 2006-2012 and 5 different balance 

sheet items. The error terms are calculated from the mean. 

𝑬 = [

𝜀11 𝜀12 …
𝜀21 … …
… … 𝜀𝑚𝑛

]  𝑤ℎ𝑒𝑟𝑒 

𝜖𝑚 = {𝜀𝑚1, 𝜀𝑚2, … , 𝜀𝑚𝑛, } 
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The error term covariance matrix V can be calculated from the error term matrix E by solving the 

covariance between the rows of the balance sheet item error terms ϵm. In other terms the covariance 

is calculated between two balance sheet item rows at a time from the data. This error term 

covariance matrix is denoted V and can be expressed as: 

𝑉 = [

σ11 σ12 …
σ21 … …
… … σ𝑚𝑚

] 𝑤ℎ𝑒𝑟𝑒  

𝜎𝑘𝑙 =  𝑐𝑜𝑣(𝜖𝑘, 𝜖𝑙) 

𝜎𝑘𝑙 = 𝜎𝑙𝑘 

𝜎𝑘
2  = 𝜎𝑘𝑘 = 𝑣𝑎𝑟(𝜖𝑘) 

To use the Cholesky decomposition, one needs to solve the Cholesky factor C from the covariance 

matrix V = CTC. Here the covariance matrix is decomposed into upper and lower triangular 

Cholesky matrixes. The lower matrix, named Cholesky factor C, is the matrix that need to be 

obtained. In the following calculations ckk denotes the elements in the Cholesky factor C, with 

arbitrary c and k denoting specific row and column element. The solution can be found by using 

matrix calculations that are explained further in the literature. (Watkins, 2004). 

𝑉 =

[
 
 
 
 
σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55]
 
 
 
 

= 𝐶𝐶𝑇

= 

[
 
 
 
 
c11 0 0 0 0
c21 c22 0 0 0
c31 c32 c33 0 0
c41 c42 c43 c44 0
c51 c52 c53 c54 c55]

 
 
 
 

∗

[
 
 
 
 
c11 c21 c31 c41 c51

0 c22 c32 c42 c52

0 0 c33 c43 c53

0 0 0 c44 c54

0 0 0 0 c55]
 
 
 
 

 

 

Now for the diagonal elements: 

𝑐𝑘𝑘 = √σ𝑘𝑘 − ∑ 𝑙𝑘𝑛
2𝑘−1

𝑛=1    for example  𝑐33 = √σ33 − (𝑐31
2 + 𝑐32

2 )  
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For the elements below the diagonal line, where l > k in clk then: 

𝑐𝑙𝑘 =
1

𝑐𝑘𝑘
√σ𝑙𝑘 − ∑ 𝑐𝑙𝑛𝑐𝑘𝑛

𝑘−1
𝑛=1   for example 𝑐32 =

1

𝑐22
√σ32 − 𝑐31𝑐21 

Thus solution for the Cholesky factorisation 𝐶 =  

[
 
 
 
 
c11 0 0 0 0
c21 c22 0 0 0
c31 c32 c33 0 0
c41 c42 c43 c44 0
c51 c52 c53 c54 c55]

 
 
 
 

 can be obtained. 

The Cholesky factor C can be used to solve linear equations. Moreover, multiplying the Cholesky 

factor C with a random uncorrelated vector U of standard normal variables, the output vector CU 

has the same covariance properties as the original covariance vector V (Rubinstein & Kroese, 

2011). As mentioned before, this random vector R follows a multivariate lognormal distribution, 

since the logarithm of returns is used and the error terms are lognormally distributed.  

The simulation of new returns can be performed as a function of C, U, the identity matrix I and 

the mean vector µ of historical logarithmic returns: 

log(𝑹) =  𝜇 + 𝐶𝑈            𝑤ℎ𝑒𝑟𝑒             𝑈~(0, 𝐼) 

Here the Cholesky decomposition is used to correlate randomly generated lognormally distributed 

error terms of the returns. The error terms are used to simulate returns that follow a correlated 

lognormal distribution. The returns are thus similar in terms of mean values and correlations to 

those of the historical values. 
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5. MULTI PERIOD SCENARIO OPTIMISATION MODEL 

To model a financial stochastic model, this thesis uses multi period scenario optimisation model. 

It aims to optimise case company Aktia’s balance sheet by creating scenarios based on historical 

data and finding the optimal solution over a time period of 4 quartiles.  

The returns for scenarios are randomly created using error terms that are lognormally distributed. 

Lognormal distribution is used so that the returns would follow a realistic nonnegative and long 

tailed distribution. Return for each scenario is created separately and different scenarios do not 

follow any pre-set pattern. However, based on historical data, the model does use methods that 

affect the randomness of the returns described later in chapter 5.2. These methods are used in order 

to take into account several real life factors, such as the drift in he observed data and the decreasing 

marginal returns. 

This chapter explains the formulation of the optimisation model. It starts with the structure of the 

scenario tree and the decision variables. It then moves on to the return simulations, which use the 

theories presented in the previous chapter to simulate future returns. The marginal effects and the 

drift factor is shown in here since they are a part of the return simulation. Next the objective 

function is explained and the constraints are listed. The chapter finishes with the AMPL files used 

to solve this problem. 

5.1. Scenario tree structure 

The time horizon for this problem is one year, including four quartiles. Different time periods are 

denoted with the STAGE variable and for example STAGE = 0 represents the start of the year and 

the first quartile. The final time period, STAGE = 4, does not include any decisions but is used to 

assess the outcomes of the final decision period, denoted STAGE = 3. Each of the quartiles 

represents one stage, with the first stage only including decisions and the last stage only including 

results. The stage can be represented as a set with STAGE = {0, 1, 2, 3, 4} 

For each stage there are five possible future scenarios. Scenarios represent different outcomes in 

the returns for the balance sheet items. There are 5 balance sheet items: Loans (L), Other Assets 



32 

 

(O), Savings (S), Debt (D) and Cash (Cs). For each stage the decision maker must choose any 

changes to be made for any of the five balance sheet items. Nodes represent different scenarios 

and decisions that need to be made. Thus the scenario tree can be drawn (with the nodes after stage 

1 overlapping): 

 

Figure 6: Decision tree structure with individual nodes overlapping after stage 1 

Each node in each stage has an identification number. The first stage has one node 0 and the 

following stage has nodes 1, 2, 3, 4 and 5. Each decision node has 5 scenarios in the next stage. 

For example next nodes for node 1 are 7, 8, 9, 10 and 11 on stage 2.  
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The total number of nodes is growing exponentially. Looking from the current moment at stage 0 

and forecasting future returns for four periods leads to hundreds of different possible outcomes. 

For each time period a decision should be made with these forecast future scenarios. The total 

number of nodes per stage can be expressed as: 

Table 3: Number of nodes in each stage 

 

For example in stage 3 there are 125 separate decision nodes, with 5 outcomes each. The decision 

maker has to make a decision based on the possible future scenarios in each node. After the 

decision, there are 5 outcomes for each decision node in stage 3, resulting in a total of 625 final 

outcomes for the problem in stage 4. In this model, the decisions are made in stages 0, 1, 2 and 3 

whereas the outcomes of each decision can be calculated for the next stages, namely 1, 2, 3 and 4.  

Throughout the thesis, node[t] refers to the set of nodes in period t. Similarly pre[k] stands for the 

previous node of node k and next[k] refers to the set of nodes that are the succeeding scenarios of 

node k. For example the next nodes of node 0 are 1, 2, 3, 4 and 5, while the previous node of 4 is 

0. 

 Decision variables and budget constraints 

The decision variables, denoted Xik, are chosen for each balance sheet item (i) for each decision 

node (k) in stages 0, 1, 2 and 3. Each decision variable represents the quarterly change for a balance 

sheet item i in thousand euros (1000 €). They are chosen in order to maximise the utility of the 

expected future profits as explained in the objective function. Each decision variable Xik is 

multiplied by the corresponding return affected by the decreasing marginal effects. In addition to 

these returns from the decision variables, the total profits include returns from the entire portfolio, 

denoted Yik and explained later. 

Nodes

Stage 0 1

Stage 1 5

Stage 2 25

Stage 3 125

Stage 4 625
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The decision variables Xik represent the changes for Loans (L), Other Assets (O), Savings (S) and 

Debt (D) for each stage. Since Cash (Cs) depends on the other assets, this constraint can be written 

as a function of the decision variables Xik, where i denotes different balance sheet items and k 

different decision nodes: 

𝑋1𝑘 = −𝑋2𝑘 − 𝑋3𝑘 + 𝑋4𝑘 + 𝑋5𝑘 

In other words, cash can be increased by taking in savings or debt and decreased by issuing loans 

or buying other assets. These five assets are the decision variables to be chosen in each decision 

node to maximise expected future profits. 

One important aspect of a multi period portfolio optimisation problem is that for each decision, 

the increase in portfolio affects the returns for future periods. In this model the decision variable 

Yik represents the total portfolio value for balance sheet item i in node k. The value of the portfolio 

is always the value in the previous period plus the selected optimal increase Xik. Notice that since 

the objective is to maximise the utility of profits and these profits are expected to be paid out to 

investors, the only increases in the portfolio come from Xik, rather than increases from the returns 

of the portfolio. 

In the optimisation software AMPL, this is done by adding a separate decision variable Yik for the 

total portfolio value, with k denoting the node and pre[k] denoting the previous node of k and i 

denoting balance sheet item. This constraint can be expressed as a function of the portfolio value 

variable Yik, where pre[k] stands for the previous node preceding node k: 

𝑌𝑖0 = 𝑝𝑜𝑟𝑡𝑜𝑙𝑖𝑜 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 2012  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑘 > 0:  𝑌𝑖𝑘 = 𝑌𝑖𝑝𝑟𝑒[𝑘] + 𝑋𝑖𝑝𝑟𝑒[𝑘] 

Although this portfolio value variable Yik is directly dependent on the decision variables Xik, they 

need to be separately defined for optimisation purposes. This way the model takes into account the 

direct effects of increases or decreases in balance sheet items with the variable Xik and captures 

the effect of portfolio development with the variable Yik. 
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 Cash constraint 

Constraints are used in the model in order to impose certain rules to the maximisation problem. 

Here the most important rules deal with the minimum amount of cash and how cash depends on 

increases in liabilities and assets. The budget constraint, discussed in under decision variables is 

also considered as a constraint and a decision variable. The cash constraint is another important 

part of the optimisation problem, but it is not considered as a decision variable. 

The bank is required to have certain amount of its assets in cash or other liquid assets so that it can 

allow its customers to withdraw money or make other transactions. These requirements are often 

directly imposed on the banks by legislation (Fama, 1980). For the model the bank regulatory 

minimum cash requirement is included as a simple constraint for the Cash asset. 

In this thesis, since the real cash per assets requirement is unknown, the cash per assets ratio is 

estimated from most recent historical data. In other words it is assumed that the future cash per 

assets ratio must be higher than the future cash per assets ratios. This constraint can be calculated 

from the year 2012 historical data (Appendix 1) and be expressed with cash (Cs), all assets (a) and 

total yearly changes in the balance sheet (Δ). The changes in cash (ΔCs) and total balance sheet 

assets (Δa) can be easily calculated from the data. In the AMPL model, the easiest way to solve 

the change in total balance sheet is from the liabilities, Savings and Debt. 

𝐶𝑠

𝑎
≤

𝐶𝑠 + ∆𝐶𝑠

𝑎 + ∆𝑎
       =>      ∆𝐶𝑠 ≥

𝐶𝑠

𝑎
∗ ∆𝑎 

Since the total amount of assets and cash are always positive in a balance sheet, it is possible to 

calculate the value of cash per assets and formulate the constraint. From the data of 2012 the value 

of cash per assets is approximately 5.23%. If the sum of the decision variables for all the assets is 

multiplied by the cash per asset value, then it should always be greater or equal to the decision 

variable for cash. Thus the constraint for cash per assets can be written as: 

∆𝐶𝑠 ≥
𝐶𝑠

𝑎
∗ ∆𝑎 = 0.052 ∗ ∆𝑎 
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The change in cash assets should always be greater or equal to the change in the sum of all assets 

multiplied by a constant of 0.052. Since bank regulation gives requirements for liquid assets such 

as cash, these assets can and should be implemented in the model in the form of constraints. The 

decision maker and the bank has usually more precise information on the cash, but for this thesis 

a simple cash requirement is used. For more realistic results, more regulative rules on cash or any 

other asset can be implemented in the model in the form of constraint. 

5.2. Simulating returns 

The method for simulating future returns is selected to model the observed data. This thesis uses 

the covariance table of the error terms to simulate new error terms by using Cholesky factorisation 

(Rubinstein & Kroese, 2011). This leads to the error terms of the simulated returns to have same 

covariance properties as the original data. Moreover, returns are expressed as logarithms to 

simulate realistic, non-negative values. Thus the simulated returns have the same mean and 

correlation with the historical data. 

The returns are treated as positive quarterly net returns for all balance sheet items, ranging from 

1.5% to 0.005% (Appendix 8). For the liabilities, the return values are changed into negative for 

the final return values. This is due to the fact that the lognormal distribution used for the return 

simulation (Figure 4) creates positive returns with the specified mean and variance. The first three 

balance sheet items result in positive returns and the remaining two result in negative costs, since 

the final simulated returns always yield negative values. 

The returns are net returns, suggesting that the total quarterly return for any balance sheet item is 

obtained by multiplying the volume of that balance sheet item multiplied by the return. Further in 

the model specifications we learn that the marginal effects affect the return for the specific 

quarterly change in the balance sheet. Thus the total return is affected by the simulated return, the 

amount of quarterly change and the marginal effect affecting the return of this increase in balance 

sheet item. 
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 Simulating error terms and generating returns for assets 

First the logarithms of the returns from historical data (RHij) are calculated. The notation used 

refers to different assets with the subscript i and for different historical time periods with j. Next 

the error terms (εij) of each observation from the mean (µi) are calculated. Thus the returns can be 

expressed as a function of the mean and the error term: 

log RH𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗  with 𝜀𝑖𝑗~𝑁(0, σ𝑖
2)   

With this simple model the error terms can be calculated. The logarithm of returns, mean of these 

logarithms and the calculated error term matrix E is reported in Appendix 3. The error terms can 

be seen to be approximately normally distributed. The normal distribution is later used to generate 

new error terms and it was selected since it is the best distribution with the following historic 

distribution of error terms:  

 

Figure 7: Evidence of normal error term frequency distribution 

Next, a covariance matrix V is calculated with these error terms. As shown before, the covariance 

matrix V required to solve the Cholesky factorisation can be obtained from the error term matrix 

E. Each covariance presented in the covariance matrix is the covariance between two balance sheet 

item error term row vectors.  

𝑉 = [

σ11 σ12 …
σ21 … …
… … σ𝑚𝑚
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Using this covariance matrix V it is possible to calculate the Cholesky decomposition V = CCT 

(Watkins, 2004). The matrix C has the property that when multiplied with a random vector of 

standard normal variables, the resulting vector has the same variances and covariance as the 

original covariance matrix V. This means that by calculating the Cholesky factor C, one can 

multiply it with vector U to generate randomly simulated error terms that have the same covariance 

as the historic data. The vector U variables are distributed normally, with I denoting the identity 

matrix.  

𝑈 = [

𝑢1

…
𝑢𝑛

]~N(0, I) 𝑡ℎ𝑢𝑠 𝑤ℎ𝑒𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒𝑠 log R𝑖𝑘 = 𝜇𝑖 + (𝐶𝑈)𝑘 

By first calculating the covariance matrix V, then solving the Cholesky factor C and multiplying 

it with U, one can simulate new error term values. For each decision node k, a new random vector 

U should be created. Since the error terms were historically approximately normally distributed, 

variables following the normal distribution should be selected to generate the new values. The 

random vector U is then normally distributed with a mean of 0 and variance equal to that of the 

identity matrix I, and the returns are lognormally distributed.  

Simulating correlated returns is important since the data supports the idea of the individual balance 

sheet items having significant correlations. For example in good and bad economic situations the 

returns on assets tend to move together. The covariance matrix V and the Cholesky factor C are 

reported in Appendix 4. The following figure shows the importance of correlation, as the historic 

data seems to move together, having significant correlation. 
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Figure 8: Error term distribution, signs of time trend 

This effect of the asset returns moving together can essentially be captured by using the Cholesky 

decomposition. The historic error terms displayed in Figure 8 support the idea of a time trend in 

the returns. This trend can be included in the model with the drift factor, explained in chapter 5.2.3. 

Further deriving the formula for the new simulated returns yields the following formula, with k 

denoting nodes and i balance sheet items. The final outcome for returns follows a lognormal 

distribution. 

R𝑖𝑘 = 𝑒𝜇𝑖+(𝐶𝑈)𝑘  

By using the formula above, the Cholesky factor C and a random vector U with normally 

distributed values it is possible to simulate new returns that are lognormally distributed, have the 

same mean and same correlation as the original historical data. Here Rik represents the return R for 

balance sheet item i in node k. 

The returns for all the scenarios are generated using random numbers. For scenario optimisation, 

it is possible to generate pre-selected scenarios, for example good, average and bad. It is also 

possible to select different scenarios directly. These two methods can easily be added to the model, 

but they require the decision maker to make the choices different scenarios. For the purpose of this 
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thesis, random scenarios are used. In order to create selected scenarios, more knowledge from the 

industry is required. 

 Decreasing marginal effect on returns 

The idea of decreasing marginal effects comes from real life situations. In order to get more loan 

applications from customers or more depositors, the bank must offer better rates or invest in 

marketing. Similarly if the bank wants to increase its debt, give out more loans or buy more various 

assets, the quality of these options become worse as volume increases. These lead to increased 

costs, increased default risk or decreased returns. For all the balance sheet items, as volume is 

increased the returns are decreasing. (Knight, 1944). 

The marginal effects make it impossible to exploit such situations where the return on loans is 

higher than cost of debt – as the historical data suggests – by increasing loan amounts infinitely. It 

offers better real life implications in the multi period model as it makes large scale changes less 

likely and more costly. Increasing any asset yields profits only to the point where it can be financed 

with the balance sheet liabilities. Increasing it further will decrease profits. 

Since this thesis uses public data from Aktia PLC, the marginal effects need to be estimated from 

the available data (Aktia, 2014). The methods used in this thesis to estimate the marginal effects 

is limited to the small amount of data available. For better results, one should use company specific 

data obtained from the managers.  

In the simulation all the returns and marginal effects are considered positive. The change is done 

after the returns are simulated for the liabilities, so that the returns are negative and can be 

considered as costs. However, in and throughout the simulation the marginal effects are positive 

in all observations. The returns with marginal effects rik for the decision variables Xik, which 

represent the selected quarterly changes in the balance sheet, can be expressed with the return 

without marginal effects Rik, where i denotes the balance sheet item, k denotes the node and pre[k] 

denotes the previous node. 

r𝑖𝑘 = 𝑅𝑖𝑘 − 𝑋𝑖𝑝𝑟𝑒[𝑘] ∗ 𝑚𝑖 
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The marginal effects mi for each asset can be estimated using historic data. In reality, marginal 

effects can depend on many factors and can be difficult to measure. Here total historical balance 

sheet item is denoted as aij with the subscript i for each balance sheet item and j for different 

historical time periods. The change in a balance sheet item i for a specific year j can be expressed 

as Δaij and the historical returns RHij. Moreover, while RHij is the year specific return, rhij 

represents the return with marginal effect mi. The mean for the returns of all the balance sheet 

items for a specific year is µj.  

𝑟ℎ𝑖𝑗 = 𝑅𝐻𝑖𝑗 − ∆𝑎𝑖𝑗 ∗ 𝑚𝑖 

Notice that since the return simulation uses positive numbers for both assets and liabilities until 

the final phase, all returns, mean returns and marginal effects are considered positive in this phase. 

Moreover it makes the marginal effect estimation simpler when one does not need to consider 

assets and liabilities separately. Since only yearly data is available, the yearly returns are 

transformed into quarterly returns by dividing the yearly returns by four. 

To estimate the marginal effects, the model assumes that RHij represents the return without 

marginal effects and can be calculated from the data. In reality the return calculated by dividing 

total returns is usually slightly less because the marginal effects decrease the return for the newly 

increased balance sheet item Δaij. However, since the marginal effects and Δaij is relatively small 

to the entire portfolio, this estimate is used. 

RH𝑖𝑗 = ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 =  𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 𝑓𝑜𝑟 𝑎𝑠𝑠𝑒𝑡 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑗/𝑎𝑖𝑗 

Next the impact of the marginal effect is estimated. To achieve this one should consider the 

following graphical presentation of the return. The marginal effect represents the decrease in return 

that depends on the change in the balance sheet item Δaij and change in the return: 
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Figure 9: the effect of marginal effect on balance sheet item return 

The marginal effect can be obtained by estimating the relation between the changes in return and 

change in balance sheet item increase. The change in balance sheet item can be directly obtained 

from the data, but the change in the return is more difficult to estimate.  

For the purpose of this study and considering the optimisation model used, it is estimated that the 

marginal effects tend to fix the balance sheet item returns towards the mean. This means that the 

decision maker would increase the balance sheet items to the point where the asset returns are 

close to the cost of liabilities. This rough estimate cannot be applied to all situations or claimed to 

be accurate, but on average with data from several years it yields results that can be used for the 

purpose of this study. 

The marginal effect for one year can be written by using the change in the asset, historical return 

without marginal effects and the historical mean return. The change in balance sheet item return is 

here expressed as the deviation from the average return. Thus the marginal effect can be estimated 

as the change in the difference between the returns divided by the change in balance sheet item. 

𝑚𝑖𝑗 =
RH𝑖𝑗 − 𝜇𝑗

∆𝑎𝑖𝑗
 

When calculated for each year one can see that the marginal effects vary from year to year. For the 

purpose of this study one needs to obtain one single marginal effect for each balance sheet item. 

To get this estimate for the marginal effect, the average from all the years T in the historic dataset 

is calculated: 
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𝑚𝑖 =
1

𝑇
∑𝑚𝑖𝑗

𝑇

𝑗=1

 

Thus the marginal effect mi for a specific balance sheet item can be estimated by calculating the 

average of all the marginal effects for a specific balance sheet items through all the historical time 

periods. The resulting marginal effects for each balance sheet item is reported in the following 

table: 

Table 4: Marginal effects for each year and average marginal effects mi  

 

 Drift factor 

The drift factor φ improves the model by generating returns that are affected by the previous 

returns, instead of generating random returns. Thus for example shocks or extreme values tend to 

affect the economy longer than just one period. For a factor of 0 the error terms are generated with 

given covariance from a random lognormal distribution. However, for a factor of 0.5 the return is 

the average of the randomly simulated return and the previous return.  

The data suggests there is some drift, where new returns are affected by the returns for the previous 

year. Adding this drift factor to the model modifies it to be very close to the Autoregressive model 

(Madsen, 2007). This is a simple model used to simulate simple drift, where the new return is a 

certain percentage of the old return and the rest is the newly simulated return. In this formulation 

i stands for different assets, k for different decision nodes and pre[k] for the previous node of node 

k.  

log R𝑖𝑘 = (1 − 𝜑)(𝜇𝑖 + 𝜀𝑖𝑘) + 𝜑(log R𝑖𝑝𝑟𝑒[𝑘]) 

Whereas the Autoregressive model would state: 

2006 2007 2008 2009 2010 2011 2012 Average

Cash 8.72E-08 8.09E-08 9.40E-09 3.84E-09 7.64E-09 1.83E-09 5.43E-09 2.80E-08

Loans 1.33E-08 8.55E-09 1.35E-08 9.77E-09 7.93E-09 9.88E-09 2.26E-08 1.22E-08

Other Assets 7.14E-09 4.74E-09 2.00E-08 6.36E-09 8.14E-09 1.79E-08 5.74E-08 1.74E-08

Savings 6.55E-09 2.49E-08 8.13E-09 2.21E-08 1.22E-08 1.16E-08 6.12E-08 2.10E-08

Debt 9.87E-09 9.08E-09 2.65E-08 7.31E-09 7.62E-09 2.01E-08 5.68E-08 1.96E-08
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log R𝑖𝑘 = 𝜇𝑖 + 𝜑 logR𝑖𝑝𝑟𝑒[𝑘] + 𝜀𝑖𝑘 

To avoid increasing the returns over time, the mean and error term are multiplied by (1 – φ) 

ensuring that the mean remains close to the historic mean µi. A reasonable drift factor of φ  = 0.25 

is selected for the purpose of this study in order to get more realistic results. This means that 75% 

of the returns are random, and the remaining 25% is carried from previous returns. 

Notice that when using the drift factor φ, the previous returns affect the simulation of the new 

returns. Thus for the first simulated returns, the drift factor does not affect the simulation. For 

better results, another option would be to use the latest returns, obtained from the historical data. 

However, this does not have significant impact on the end results and thus the first period simulated 

returns do not include the drift factor. 

5.3. Objective function 

The objective function defines the maximisation problem, where the decision maker tries to 

maximise the utility of the portfolio profits P in the multi period problem with respect to set 

constraints. The utility of the profits are calculated in each time period and each node pk. Thus the 

utility of the entire optimisation problem is referred to as 𝑢(𝑃)  and the utility of profits in 

individual nodes k is referred to as 𝑢(𝑝𝑘). Each utility of individual profits is multiplied by the 

probability of the node occurring, giving the expected utility of the entire system 𝑢(𝑃). 

The profits are maximised and they are not invested back into the system. In this model, it is 

expected that the obtained profits are paid out to the shareholders. The reason why profits are the 

focus of this thesis and not equity or portfolio growth is that the thesis is from the department of 

Information and Service Management. Thus the optimisation objective is closer to operations 

research and profit optimisation rather than financial portfolio optimisation. For further studies the 

model could take into account the growth in the balance sheet items, so that the balance sheet items 

are increasing with respect to the corresponding returns and maximising equity would be the 

objective. 
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The model maximises the expected utility of the portfolio on each stage. Since the profits are 

calculated in periods 1, 2, 3 and 4, with 5 scenarios the probabilities are always 5^t depending on 

the stage t. By using ke[t] for the last node of stage t and thus kf[t] = ke[t-1]+1 for the first node 

on stage t, the total expected utilities can be written as: 

𝑢[𝑃] = ∑ ∑ [
1

5𝑡
∗ 𝑢(𝑝𝑘)]

𝑘𝑒[𝑡]

k=kf[t]

𝑇

𝑡=1

 

The profits depend on the returns and the value of the balance sheet items. As discussed before in 

chapter 3.2 the returns are generated with the specified model for each asset (i) and the marginal 

effects (mi) affect this simulation. The total profits in node k can be written as a function of the 

decision variables Xij, the returns with marginal effects rik, returns without marginal effects Rik and 

the current balance sheet item values in the portfolio Yik, where pre[k] stands for the previous node: 

𝑝𝑘 = ∑[𝑋𝑖𝑝𝑟𝑒[𝑘] ∗ 𝑟𝑖𝑘 + 𝑌𝑖𝑝𝑟𝑒[𝑘] ∗ 𝑅𝑖𝑘]

5

𝑖=1

 

The notation here includes the increases in the asset in the previous year Xipre[k], the marginal 

effects mi, the portfolio value for each balance sheet item in the previous time period Yipre[k] and 

the simulated returns Rik.  

The notation should be interpreted such that the amount of selected change in the previous time 

period Xipre[k] is multiplied by the return, which is obtained by reducing the total marginal effect 

from the simulated return. The total marginal effect is calculated by multiplying the marginal effect 

with the volume of change in the previous time period, Xipre[k]. In addition to these profits, the total 

portfolio profits in the previous time period Yipre[k] are calculated by multiplying the portfolio value 

with the simulated return.  

This way it is possible to calculate the profits in each node. For the optimisation problem, the 

utility function or 𝑢(𝑝) = −𝑒−𝛾 ∗ 𝑝 presented in the next chapter is needed. One important aspect 

of the optimisation problem noticeable in the total profits function above, is its concave nature. 

Modifying the formula it is possible to see the negative quadratic form using vectors: 
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𝑝𝑘 = ∑[−𝑋𝑖𝑝𝑟𝑒[𝑘]
2 ∗ 𝑚𝑖 + 𝑋𝑖𝑝𝑟𝑒[𝑘] ∗ 𝑅𝑖𝑘 + 𝑌𝑖𝑝𝑟𝑒[𝑘] ∗ 𝑅𝑖𝑘]

5

𝑖=1

 

The objective function is a sum of concave functions. In other words increasing any balance sheet 

item will at some point start to decrease profits. Notice that even when the portfolio values include 

previous decision variables Yipre[k], it can be assumed concave and thus the profits are decreasing 

if any decision variable is increased excessively. The second derivative of the function above is 

always negative and the function is concave. Objective function concavity is important when 

determining optimal solution. For a concave objective function, the found maximum solution is 

known to be global. When compared to Markowitz portfolio theory, this model has one optimal 

solution instead of an efficient frontier. (Dantzig, 1955). 

The complete objective function can be written by combining the exponential utility function, the 

utility of the portfolio in node k and the probabilities of each node through all the stages. In this 

formulation ke[t] is used to denote the last node of stage t, kf[t] for the first node on stage t and the 

function utility function 𝑢(𝑝) = −𝑒−𝛾𝑃 denoting the utility of all portfolio profits in all stages.  

𝑢(𝑃) = ∑
1

5𝑡

𝑇

𝑡=1

∑ −𝑒−𝛾∗ (∑ [𝑋𝑖𝑝𝑟𝑒[𝑘]∗𝑟𝑖𝑘+𝑌𝑖𝑝𝑟𝑒[𝑘]∗𝑅𝑖𝑘]5
𝑖=1 )

𝑘𝑒[𝑡]

k=kf[t] 

 

The objective of the optimisation problem is to maximise the expected utility of the portfolio 

profits over the selected time period. This can be achieved by maximising 𝑢(𝑃) presented above. 

 Optimisation problem mathematical presentation 

The entire optimisation problem and the constraints can be expressed mathematically in the 

following formulation. 

max∑
1

5𝑡

𝑇

𝑡=1

∑ −𝑒−𝛾∗ (∑ [𝑋𝑖𝑝𝑟𝑒[𝑘]∗𝑟𝑖𝑘+𝑌𝑖𝑝𝑟𝑒[𝑘]∗𝑅𝑖𝑘]5
𝑖=1 )

𝑘𝑒[𝑡]

k=kf[t] 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜: 
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𝑋1𝑘 + 𝑋2𝑘 + 𝑋3𝑘 = 𝑋4𝑘 + 𝑋5𝑘 

𝑋1𝑘 ≥ 0,052 ∗ (𝑋4𝑘 + 𝑋5𝑘) 

𝑌𝑖𝑘 = 𝑌𝑖𝑝𝑟𝑒[𝑘] + 𝑋𝑖𝑝𝑟𝑒[𝑘]   𝑓𝑜𝑟 0 < 𝑘 

𝑌𝑖0 = 𝑎𝑖2012  

𝑤ℎ𝑒𝑟𝑒: 

𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒𝑠 

𝑖 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑠ℎ𝑒𝑒𝑡 𝑖𝑡𝑒𝑚𝑠 

𝑡 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠, 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝑠 

𝑘𝑓[𝑡] 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑓𝑖𝑟𝑠𝑡 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 

𝑘𝑒[𝑡] 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 

𝛾 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑔𝑎𝑚𝑚𝑎 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑟𝑖𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑛𝑐𝑒 𝑠ℎ𝑒𝑒𝑡 𝑎𝑠𝑠𝑒𝑡 𝑤𝑖𝑡ℎ 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 

 
𝑅𝑖𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑠ℎ𝑒𝑒𝑡 𝑖𝑡𝑒𝑚 𝑖𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 

 

6. MODEL RESULTS AND ANALYSIS 

The model explained in the previous chapter is used to simulate balance sheet item returns for 

multiple periods and for 5 scenarios branching off from each node. This means that the problem 

follows a decision tree with 4 stages of decision nodes. As discussed before, this method leads to 

having 156 decision nodes and 780 nodes with resulting profits.  

This chapter compares the results from two models with different outputs.  The results are analysed 

and compared in order to estimate model efficiency. To provide better comparison, these obtained 
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results are compared with historical data and most recent data from 2013. The profits and balance 

sheet totals are compared. Finally this chapter presents the sensitivity analysis, which aims to study 

the effect of changing the input variables on the final output. 

6.1. Comparison of two models with different inputs 

Here the model is solved with two different sets of inputs. Since these inputs are based on estimates 

and should in reality be chosen by the decision maker, the outputs offer alternative views. Two 

solutions are given in order to perform comparison and analysis on the differences.  

The first solution presents a simple model with no drift factor φ = 0 and the marginal effects are 

equal to the averages of the marginal effects estimated from the data, as explained in the previous 

section. The second model offers an alternative view with more precise inputs. It solves the optimal 

solution using a drift factor of φ = 0.25 (which means 25% of the return on a balance sheet item is 

carried to the next period) together with the estimated marginal effects from year 2009. 

 Results with no drift factor φ = 0 and average decreasing marginal effects calculated 

from historical data 

To look at the results of this model with no drift factor and selected marginal effects, one needs to 

start from the balance sheet item return simulations. The marginal effects calculated from the data 

are presented earlier in chapter 5.2.2.  

The results of the simulation of asset returns are shown in graph 10. The graph shows the 

distribution of the simulated prices and how they fluctuate in different scenarios in all nodes. The 

simulation produces some extreme values, which would resemble crises or boom periods in real 

life. 
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Figure 10: Model 1 simulated balance sheet item returns for all nodes 

This graph can be used to analyse the nature of the optimisation problem. Giving out loans yields 

on average the best returns, but other assets have smaller volatility. Cash is the least profitable, 

with return smaller than the cost of debt or savings. However, bank regulation dictates that in order 

for bank to operate and meet the minimum liquidity requirements, it needs to hold certain 

percentage amount of its assets in cash.  

On the liabilities side of the balance sheet it is possible to see that savings cost less on average, but 

have slightly higher volatility compared to the cost of debt. Debt on the other hand is linked to the 

bank’s leverage and might cause trouble if increased excessively (Baxter, 1967). Similarly 

increasing savings might have drawbacks as the bank is required to hold higher level of cash 

reserves and it might be costly to try to increase savings in a competitive market. The average 

returns and variances for each asset can be seen in the following table: 
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Table 5: Balance sheet item historical mean net quarterly returns and variance with corresponding 

simulated values 

 

The optimisation software AMPL makes decisions with the returns simulated in the previous 

Figure 10. It takes into account all the future values of the successor scenarios and chooses balance 

sheet items Xik, where i stands for balance sheet items and k for nodes. This optimal solution is 

listed in Appendix 5. The expected yearly increase can be calculated by multiplying the decision 

variable with the probability of occurrence and compared with the historical changes: 

Table 6: Optimal solution expected yearly changes and historical yearly changes, 1000 € 

 

From expected yearly changes in the balance sheet items (Table 6), it can be seen that the model 

output is somewhat close to the historical averages. However, the historical values seem to be 

putting more emphasis on giving out loans and debt while savings are increasing less.  

This difference can be explained with a few different answers. It is highly likely that the cost for 

attracting more savings is higher than estimated in the model. This means that it is more costly to 

attract new savings customers than the model estimates. Thus the true value of the marginal effect 

on savings is higher and would result in an optimal solution with fewer savings. Since savings are 

decreasing due to the increased negative marginal effect, more debt needs to be accumulated in 

Historical mean Simulated mean Historical variance Simulated variance

Cash 3.44E-03 3.48E-03 6.89E-06 1.10E-05

Loans 8.29E-03 8.28E-03 6.80E-06 6.20E-06

Other Assets 8.01E-03 8.02E-03 7.33E-07 5.58E-07

Savings -4.82E-03 -4.78E-03 4.53E-06 3.73E-06

Debt -5.89E-03 -5.87E-03 1.69E-06 1.44E-06

Expected total asset change in a year: Historical average yearly changes 2006-2012:

Cash 56 021 43 421

Loans 326 719 583 867

Other Assets 306 327 327 957

Savings 493 561 340 068

Debt 195 505 517 561
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order for the cash to remain positive. Suggesting that the bank aims not to increase debt may be 

more profitable, but not necessarily realistic because of the cash constraint.  

The high historical increases in loans can be explained by strategic decisions: the bank tries to 

capture higher market share in loans even if they are less profitable for optimal solution. This kind 

of strategic decision is not taken into account in the mathematical model. Another reason could be 

that the profits for other assets were not clearly reported in the financial statements and there is 

some problem estimating the returns for other assets.  

It can be seen from the balance sheet average returns that the positive return on issued loans is on 

average higher than the cost of debt (0.83% versus 0.59%). This is one reason why the bank might 

choose to increase loans and debt and it is taken into account in the model in the form of decreasing 

marginal effects (the mi factor). In other words, there may be some estimation error in the marginal 

effects that contribute the solved values to have lower loans and debt than the historical values. 

To understand the objective function and the solution to the problem one needs to look at the 

profits. As explained before, the model aims to maximise expected utility with exponential utility 

function. By selecting the decision variables Xik, the profits for each node can be calculated. The 

following graph presents the profits on each node for the simulated prices with marginal effects 

and solved balance sheet item changes Xik. The objective is to select decision variables to 

maximise utility. 
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Figure 11: Profits in each node using a solved optimal portfolio Xik 

The graph presents the profits from the decision variables Xik and illustrates the direct profits from 

the decisions made. Notice that here, the portfolio profits are excluded from this illustration. By 

maximising the expectation of the utilities from the profits on all the nodes, the system finds the 

optimal solution with maximal utility. As explained before, the expected utility of the whole 

system can be calculated by multiplying utility of the profits in each node with the probability of 

its occurrence. In the solution presented here, the solver gives the following output for the 

maximisation problem: 

Table 7: MOSEK solver optimal solution for φ=0 and average marginal effects 

 

This output does not really tell much about the actual problem, but it can be compared later with 

other models to see which performs better with the chosen utility function. For more information 

about the optimal solution, one should look at balance sheet item returns and average yearly 

changes presented before in graph 10 and table 6. 
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 Results with drift factor of φ = 0.25 and marginal effects from year 2009 

In this simulation, the returns are simulated with a drift factor. This means that a return has 25% 

impact on the next return and thus also 6.25% impact on the return after the next return and so 

forth. There tends to exist less extreme values as seen from the graph, but the time trend is clearer. 

Consecutive returns tend to be close to one another and a shock persists longer, affecting returns 

on several years. 

 

Figure 12: Simulated balance sheet item returns for all nodes with a drift factor of 25% 

Because of the time trend the mean net quarterly returns and the variances are slightly affected. 

The distributions are clearly different to those without a drift factor. To fully understand the 

distributions one should look at the mean and variance of each of these simulated returns. These 

can be seen in the following table: 
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Table 8: Historical and simulated mean net quarterly returns and variances with drift 

 

One clear difference in the simulated returns with these inputs is that with the drift factor of φ=0.25 

the variances are lower than those of the original data. This is due to the fact that part of the 

simulated returns is carried from previous time period return. Thus on average the returns are 

closer to the mean, leading to the decrease in volatility. Using the drift factor in return simulation 

affects the mean, variance and randomness. This might be seen to have a negative effect on the 

model results as they yield less extreme values and might lead into problems in forecasting.  

By using the simulated returns, it is possible to solve the model. The expected yearly increase can 

be calculated and compared with the historical changes. The changes here are due to the selected 

inputs, namely drift factor and marginal effects. 

Table 9: Optimal solution expected yearly changes and averages of historical changes (1000 €) 

 

As seen here, the optimal solution puts a lot of emphasis on other assets, while increasing savings 

and debt. Moreover, the general tolerance towards risks seems to be higher as balance sheet items 

grow more on a yearly level than before. These outcomes can be explained by the selected inputs. 

Since the variances are lower with the drift factor, the volatility of the returns is smaller, leading 

to more risk taking. This can be seen in the following graph. There seem to be a few extreme 

values, and values are closer together. 

Historical mean Simulated mean Historical variance Simulated variance

Cash 3.44E-03 3.06E-03 6.89E-06 4.37E-06

Loans 8.29E-03 8.18E-03 6.80E-06 3.48E-06

Other Assets 8.01E-03 8.00E-03 7.33E-07 3.39E-07

Savings -4.82E-03 -4.65E-03 4.53E-06 2.00E-06

Debt -5.89E-03 -5.83E-03 1.69E-06 8.53E-07

Expected total asset change in a year: Historical average yearly changes 2006-2012:

Cash 74 606 43 421

Loans 375 484 583 867

Other Assets 889 350 327 957

Savings 519 340 340 068

Debt 820 099 517 561
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Figure 13: Profits in each node using a solved optimal portfolio Xik 

The graph presents the profits from the chosen optimal balance sheet item changes Xik and the 

returns with marginal effects mi. With the profits closer together and with less extreme values, the 

decision makers are now more willing to take risk. Including the drift factor in the model is a bit 

problematic because it decreases the volatility leading to more risk taking. However, this idea is 

supported by he observed data. Thus further research on the time trend is encouraged. 

It is possible to solve the optimisation problem with these profits. The model maximises the 

expectation of the utilities on all the nodes and finds the optimal solution with maximal utility. 

The output from the solver with the final objective function value is expressed in the following 

table. 

Table 10: MOSEK solver optimal solution for φ=0.25 and marginal effects from 2009 

 

This objective function value does not explain much of the problem alone, but can be compared 

with the solution from the first model. In this model the drift factor causes the variance in balance 
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sheet items to be lower, leading to more risk taking. This risk taking can be seen in the form of 

higher proposed balance sheet average changes. Because of these higher changes, the utility in this 

problem solution is higher. Thus model 2 gives out a solution with more changes and higher 

expected profits. This is due to the inputs used in the model. In order to understand the difference 

between the two models, more comparisons need to be made. 

 Most recent data released by the case company after the model was formulated 

The data used in formulating the model was obtained from Aktia’s financial statements from the 

years 2006-2012 and the model used in this thesis was created with this data. During the final 

stages of the thesis work, new data was released from 2013. This new data provides an opportunity 

to compare the different optimal solutions and the actual realisation of Aktia’s balance sheet. By 

comparing these alternatives it is also possible to look at and analyse the reasons why the model 

fails or succeeds in predicting certain changes in the balance sheet. 

Table 11: Balance sheet items 2013 and percentage changes from 2012 (1000 €) 

 

From the table above it is possible to see the actual realisations for the yearly changes in Aktia’s 

balance sheet items from year 2012 to year 2013. The percentage changes are also listed, to give 

an idea about the scale of the change. One important observation is that in general the trend in the 

balance sheet items and the totals is upwards up until the year 2013. 

Balance sheet 2010 2011 2012 2013 Change % change

Assets

Cash (Ci) 273 364 475 042 587 613 414 328 -173 285 -29.49 %

Loans (Li) 6 637 551 7 152 124 7 360 225 6 897 349 -462 876 -6.29 %

Other Assets (Ai) 4 108 238 3 428 897 3 292 352 3 622 129 329 777 10.02 %

Sum 11 019 153 11 056 063 11 240 190 10 933 806 -306 384 -2.73 %

Liabilities

Savings (Yi) 4 356 327 4 757 179 4 689 040 4 892 982 203 942 4.35 %

Debts (Di) 4 827 366 4 464 037 4 584 724 4 106 018 -478 706 -10.44 %

Equity (Ei) 497 290 523 756 657 409 641 709 -15 700 -2.39 %

Other Liabilities (Oi) 1 338 170 1 311 091 1 309 017 1 293 097 -15 920 -1.22 %

Sum 11 019 153 11 056 063 11 240 190 10 933 806 -306 384 -2.73 %
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There is a 30% drop in cash assets, while only the other assets were increasing. On the liabilities 

side debt was cut down by 10% while more savings were accumulated. The balance sheet shrank 

a little which contributes to some loss of market share. To understand why the balance sheet would 

be decreased by the decision maker, the profits of each balance sheet item need to be considered. 

Table 12: Balance sheet item profits and returns 2013 and comparison to year 2012 (1000 €) 

 

From the table it is obvious that the returns and costs on almost all of the balance sheet items have 

gone down. As the returns go down, it is rational for the bank to decrease the total balance sheet. 

If the profits would go up, increasing would be a good solution. The returns show a significant 

increase in profitability of other assets, which can explain the increase in other assets. For the costs 

there have been some improvements in profitability. By comparison the costs have gone down 

more than the returns, which would argue for better profitability, combined with smaller balance 

sheet. 

The positive changes in other assets and the negative changes in the rest of the balance sheet 

emphasises the importance of the market conditions. It would seem that in a bad market situation 

the returns go down, but since the volatility of the return on other assets is small, it becomes more 

desirable. Thus in a bad market situation it is rational to decrease balance sheet totals and put more 

emphasis on other assets. These other assets include for example buildings and other real 

investments. 

Income 2010 2011 2012 2013 Change % Change

Cash (Ci) 2 485 3 290 1 237 775 -462 -37.35 %

Loans (Li) 152 164 186 132 173 496 126 325 -47 171 -27.19 %

Other Assets (Ai) 134 868 109 172 107 504 126 458 18 954 17.63 %

Sum 240 326 262 563 232 296 172 952 -59 344 -25.55 %

Savings (Yi) -54 411 -63 252 -57 149 -45 970 11 179 -19.56 %

Debts (Di) -81 692 -107 039 -105 647 -94 832 10 815 -10.24 %

Equity (Ei) -59 675 -37 187 -55 880 -51 978 3 901 -6.98 %

Other Liabilities (Oi) 45 084 36 343 47 779 80 493 32 714 68.47 %

Sum -91 019 -133 948 -115 017 -60 309 54 708 -47.57 %
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It can be argued that some of these changes may be stochastic random walk, which can be taken 

into account in the simulation and some are not random, meaning that strategic planning or 

decision making is taking place. For random differences, one could say that for example the 

realisation of the balance sheet item returns were very negative. After observing and forecasting 

more negative future returns, the bank decision makers adjust and decrease balance sheet item 

values. The other explanation is that the changes were not based on a random factor, but rather a 

strategic decision. 

The model cannot take into account strategic choices. This is because by default it maximises 

expected utility of the profits. However, if one would apply game theory to the process, it would 

no longer be possible or reasonable to solve the problem using multi period scenario optimisation 

(von Neumann & Morgenstern, 2007). For decision making purposes and actual budgeting issues, 

this model and the solutions could provide significant and important information. In the current 

situation however, it is very likely that the decisions are made with other methods, where strategic 

positioning is given more emphasis than pure maximisation of expected profits. This would argue 

that the problem setting follows more closely game theory than profit maximisation problem. 

In the long run increasing and decreasing balance sheet yearly probably leads to high costs related 

to acquiring the assets and financing them with liabilities. Moreover, the benefit of steadily 

increasing the balance sheet and market share most likely leads to higher profits. In the model and 

assumptions presented in this thesis, there exists no such optimal solution in multi period 

optimisation where balance sheet items are increased and decreased in consecutive years. 

 Comparison of different solutions and expected profits 

To compare all the results from the two models presented and the actual observed outcome, one 

needs to understand the big picture. For the models, the solutions depend heavily on the inputs 

selected. Thus one can obtain many results by using the model with different inputs. Even the same 

solution that can be observed in real life may be obtained by selecting the correct inputs.  

When considering the observed outcome of 2013, it is the same as looking back and seeing only 

final node of the entire scenario tree of possible outcomes. Thus comparison of the 2013 outcome 
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and model optimal solutions can be done, but the differences can be big because one is looking 

backwards where the others are looking forward. The following table summarises the changes in 

balance sheet items through different time periods and model solutions. 

Table 13: Comparison of balance sheet between different solutions and observations (1000 €) 

 

It can be seen from table above how the two model solutions are fairly close to the historical values, 

providing more similar optimal solutions. The selected model uses historical averages in the return 

simulation, which contributes to the solution values to follow the historical values to some degree. 

The model solutions are fairly close to the observed values in 2012 as well. However, for the year 

2013 the model was unable to predict the radical change in the asset returns that caused the 

decrease in balance sheet items. 

It is important to understand why the model did not predict the 2013 values. The 2013 balance 

sheet item values presented in the table represent the end values and the outcome. When making 

decisions with unknown outcomes, it is much harder to predict radical changes. Year 2013 data 

represents such radical changes where all returns decrease significantly. Even if some simulations 

did predict such extreme values, on average the returns were higher and the optimal solution has 

increasing balance sheet items. These changes can be taken into account in the model by decreasing 

the average returns. 

The model did succeed in predicting high increases in other assets compared to the rest and the 

first model the increase in savings compared to debt. However, such situations where in year 2012 

Historical averages 2012 changes 2013 changes 1st model 2nd model

Cash (Ci) 43 421 112 571 -173 285 56 021 74 606

Loans (Li) 583 867 208 101 -462 876 326 719 375 484

Other Assets (Ai) 327 957 -136 545 329 777 306 327 889 350

Total 955 246 184 127 -306 384 689 067 1 339 440

Liabilities .

Savings (Yi) 340 068 -68 139 203 942 493 561 519 340

Debts (Di) 517 561 120 687 -478 706 195 505 820 099

Total 857 628 52 548 -274 764 689 066 1 339 439



60 

 

the savings are decreasing and debt is increasing when in year 2013 savings are increasing and 

debt is decreasing are very hard to predict. For any model without a separate economic variable it 

would be hard to predict changes that are exact opposites in consecutive years. It seems like there 

is some strategic agenda, or the decision maker may have done some new analysis on future 

economic conditions.  

If for example the decision maker was expecting a growth period in 2012 and thus wanted to 

increase debt, loans and cash, but after some change in 2013 changed the views of the future to a 

more negative forecast. Thus the year 2012 and 2013 differ greatly in terms of balance sheet item 

yearly changes. It is also harder to solve optimal bank balance sheet item yearly changes in such 

situations.  

For better precision that may possibly take into account the radical changes in 2013 the decision 

maker may adjust the expected average returns and marginal effects in the model. Furthermore, 

the gamma factor represents the decision makers risk tolerance and can be used to counter risky 

scenarios whereas the cash constraint can be used to meet regulatory requirements on cash assets. 

Another option would be to include an economic indicator that forecasts future economic situation. 

Such indicator could be for example the skirt length indicator. (van Baardwijk & Franses, 2010) 

6.2. Analysis 

To analyse the performance of the different solutions, one must look at the profits of the different 

options. For comparison, one should use the actual realisation of balance sheet item returns from 

year 2013. These returns can be used to estimate what would have been the impact of selecting a 

model and using the averages as yearly budget. It is not possible to determine the actual profits for 

a specific model solution, since the data is not publicly available. The profits can be calculated 

with the marginal effects, the returns from the yearly changes can be calculated with a simple 

formula, where Xi represents the selected optimal solution and Ri the return on balance sheet item 

i for year 2013: 



61 

 

𝑃𝑟𝑜𝑓𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 = ∑𝑋𝑖 ∗ (𝑅𝑖𝑘 − 𝑋𝑖 ∗ 𝑚𝑖)

5

𝑖=1

 

It is important to understand that in scenario optimisation there are several time periods, and the 

yearly averages expressed as optimal solutions for models 1 and 2 are only averages. If in the 

scenario optimisation the decision maker would realize they are in a difficult node, namely in a 

bad economic situation, he would adjust the future possible scenarios and the optimal balance sheet 

items. Looking at the final changes for year 2013 or comparing profits to these values thus gives 

unfair disadvantage for any model that reports yearly averages. However, this way some 

comparison on profits can be made across different solutions or decision maker options. 

Table 14: Profits from yearly changes in different solutions, with marginal effects (1000 €) 

 

It can be seen from the table 14 how in the market condition of 2013 and with the corresponding 

returns, the bank decision making was efficient. Using the averages from model 1 or model 2 

would have not been as efficient in terms of pure profit. Another significant aspect is the big 

difference between the two models. Model 1 outperforms the historical average values, 2012 

values and model 2. Model 2 on the other hand performed worst of all the selected solutions in a 

bad economic situation. 

The reasons behind these results lie in the economic situation. It would seem from looking at the 

returns that there is an economic downturn or a bad period in 2013. Model 2 has the biggest 

proposed total balance sheet increase, whereas year 2012 has the smallest. The model 2 solution 

takes most risk and 2012 solution takes least amount of risk in terms of total balance sheet changes. 

Profits from the yearly changes using returns from 2013 with marginal effects

Historical 2012 changes 2013 changes 1st model 2nd model

Cash (Ci) 28.37 -144.63 -1165.78 16.82 -16.46

Loans (Li) 6523.69 3281.66 -11098.30 4678.17 5152.45

Other Assets (Ai) 9579.67 -5091.33 9622.39 9063.06 17296.65

Savings (Yi) -5618.68 542.87 -2787.75 -9742.48 -10531.92

Debts (Di) -17203.87 -3072.86 6564.49 -5264.53 -32123.44

Total -6690.81 -4484.29 1135.05 -1248.96 -20222.72
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This can be seen as the reason why model 2 performs worst and the 2012 solution offer better 

profitability with a more risk averse solution. 

The most important observation is the good performance of model 1. The solution suggests 

increasing the total balance sheet, which can be seen beneficial in the long run as the company 

would lose less market share and customers. Even when it performs worse in the bad economic 

condition, it might be argued that it gives better setting for the future. Increasing and decreasing 

balance sheet totals every second year might yield better short term gains, but in the long run the 

multi period model aims for increasing the balance sheet totals, leading to bigger market share and 

profits. 

 Sensitivity analysis 

A sensitivity analysis helps to understand the relationship between the input and output variables. 

It gives important information on how the output is affected by the input and thus the results can 

be better understood.  Moreover, a sensitivity analysis improves the reliability of the model. 

(Saltelli, et al., 2000) 

Because the model is not linear, a simplified analysis is performed. In this analysis, the inputs are 

changed to yield different results which are still in a reasonable range. The changes are done one 

input at a time and the amount of change is selected to show reasonable results.  The base case 

used here is the model 1 setup without drift factor and the marginal effects. The marginal effects 

equal to the mean marginal effects from the data, as explained in the model specification section. 

The inputs that are changed in this sensitivity analysis are marginal effects mi, cash requirements 

and gamma factor γ.  

For the first analysis, the marginal effects are changed. If one considers the output of the 1st model 

and compares it with other results, it would seem that other assets are over emphasised, cost for 

acquiring more savings might be higher compared to the marginal effect of debt. In other words, 

acquiring more other assets might provide less profits as the investment options become fever, 

when on the other side it seems like it would be more costly to increase savings compared to debt. 

Using these ideas it is possible to give new values for the marginal effects. 
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Table 15: Sensitivity analysis with marginal effects increased for other assets and savings, decreased 

for debt 

  

Using these new marginal effects it is possible to solve the new optimal solution. Note that here 

the marginal effects for other assets and savings is increased and to control these increased costs, 

the marginal effect for debt are decreased. This means that the relation between the liabilities 

savings and debt is changed so that the cost of increasing savings is higher and the cost of 

increasing borrowing is lower. By not changing the marginal effects too much in one direction the 

total balance sheet item sum should be close to the original. In this situation with the changed 

marginal effects, the optimal solution with average yearly changes would be: 

 

 

Table 16: Average yearly changes with modified marginal effects (1000 €) 

   

As can be seen from table 17, the marginal effects directly affect the relationship and size of the 

proposed changes on balance sheet items. This can be argued to be one of the reasons why there 

are significant changes in the balance sheet throughout the years. By changing and estimating the 

Marginal effects sensitivity analysis

Original mi New mi

Cash 2.80E-08 2.80E-08

Loans 1.22E-08 1.22E-08

Other Assets 1.74E-08 3.74E-08

Savings 2.10E-08 4.10E-08

Debt 1.96E-08 9.60E-09

Original mi New mi Change

Cash 56 021 63 508 7 487

Loans 326 719 442 049 115 330

Other Assets 306 327 168 967 -137 360

Savings 493 561 246 864 -246 697

Debt 195 505 427 660 232 155

Total 1 378 133 1 349 048 -29 085



64 

 

marginal effects more precisely, one can obtain better solutions. If the relation between two 

balance sheet items should be changed, it is possible to increase and decrease the marginal effects 

which was done in this example where the marginal effect of savings was increased and marginal 

effect of debt was decreased 

For the cash requirement the cause and effect relationship should be quite straightforward. 

Increasing cash requirements would cause banks to hold more of its assets in cash, which would 

limit investing in something more profitable. On the other hand it brings more stability as the bank 

is less likely to meet liquidity problems due to changing economic conditions. Bank regulation, 

capital and cash requirements were discussed earlier in this study.  

For the purposes of this sensitivity analysis, the cash requirement constraint is increased from 

0.05228 to 0.15228. This is a significant 191 % increase, but still the cash assets remain the 

smallest and least profitable unit. To further analyse the costs of cash constraints and bank 

regulation, one should run separate models and study the costs for the entire economy. The results 

of this sensitivity analysis can be seen below: 

 

 

Table 17: Average yearly changes with model 1 and increased cash requirements (1000 €) 

   

It is possible to see a significant 20% drop in total sum of these balance sheet items when cash 

constraints are increased. This has a direct negative effect on profitability, but on the other hand 

the bank is less likely to meet problems with liquidity. The results could be used to further estimate 

Basic model New cash requirements Change

Cash 56 021 102 092 46 071

Loans 326 719 320 009 -6 710

Other Assets 306 327 129 223 -177 104

Savings 493 561 229 082 -264 479

Debt 195 505 322 241 126 736

Total 1 378 133 1 102 647 -275 486
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the costs of increasing cash constraints. However, as this is not the emphasis of this research, it 

will be merely pointed out, but further research could be done with this model. 

The final input factor to consider is the gamma factor γ determining the slope of the exponential 

utility function. For a higher gamma factor, the utility curve is steeper and it results in the decision 

maker to be more risk averse. Any deviation for lower profits would result in large negative utility. 

This would lead to the decision maker choosing safer and less volatile portfolios. These would 

include putting more emphasis on cash assets, other assets and savings. The results for increasing 

the gamma factor γ from 3.41E-05 to 7.41E-05 can be seen below: 

Table 18: The effect of changing the gamma factor on average yearly changes in balance sheet 

    

As gamma factor is increased in table 19, more emphasis is put on the safer assets and liabilities. 

Moreover, the table argues how changing the gamma factor has complex effects on the output. 

Even when the decision maker is more risk averse, the balance sheet totals are increased when 

gamma is increased. As the gamma factor is changed, the objective function values are no longer 

comparable, since the values are on a different scale. Thus the decision maker should aim to choose 

the correct or most appropriate gamma factor in an early phase of the optimisation process. 

All in all the effects of changing the inputs are significant. Changing the marginal effects and cash 

constraint had a more direct and predictable results, whereas changing the gamma factor had more 

complex effect on the resulting average balance sheet changes. By changing these inputs, the 

decision maker can influence the output. By selecting the correct inputs, the output can be very 

close to the true optimal values in real life.  

Basic model Increased gamma Change

Cash 56 021 128 170 72 149

Loans 326 719 189 014 -137 705

Other Assets 306 327 438 074 131 747

Savings 493 561 590 528 96 967

Debt 195 505 164 730 -30 775

Total 1 378 133 1 510 516 132 383
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The benefit of scenario optimization is seen in these results and analysis. One can make 

adjustments to the model fairly easily and solve the optimal solution. The closer to the real values 

the inputs are, the closer the output is to a theoretical situation where maximum profits are obtained. 

Scenario simulation proves to be a fairly efficient and fast way of finding optimal solutions for 

portfolio optimization problems with the methods shown in this thesis. 
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7. CONCLUSIONS 

The aim of this thesis was to find optimal bank balance sheet structure in a multi period scenario 

optimisation model. In order to reach these goals, this thesis analysed and reported the public case 

company data that was presented in chapter 2. The next chapters summarised the most important 

methods, frameworks and model specifications. The model itself was presented in chapter 5. 

Chapter 6 reported the results from the model and the analysis on these results, including the 

sensitivity analysis.  

To determine the success of this study the research problems need to be revisited. The research 

goals were set as: 

1. Obtaining, editing and analysing the data from the case company 

2. Explaining relevant framework and theory 

3. Selecting and formulating a mathematical optimisation model 

4. Using the model to solve optimal solution for selected data and time horizon 

5. Analysing the results 

All of the above mentioned goals were reached within the limits of this study. For better results 

one should consider using the company’s own private data, improving the time series analysis on 

the data and improve the analysis on the results. These are excellent areas for further research and 

could each be made into a study of its own. For the purpose of this study, the goals were met 

successfully. 

The data gathering and analysing step was quite straightforward. The data was successfully 

obtained from the financial statements and proved to be very useful in later parts of the study. 

Although the historical data was limited to only six years and only 5 balance sheet items were 

analysed in the end, the quality of the data was sufficient to produce accurate and significant results. 

Moreover it was possible to predict future returns and balance sheet changes efficiently even with 

the little amount of data available. 
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The important findings of this thesis are related to the relevant frameworks, the formulated model, 

obtained results and company specific analysis. The literature review revealed portfolio 

optimisation studies in both finance and operations management, but few combined the two or 

made significant connections. The third chapter summarised the main elements in stochastic 

optimisation, financial portfolio optimisation and scenario optimisation. Even in such challenging 

environment as bank portfolio optimisation, the model performed fairly well and the results 

obtained fell in line with the previous studies and observed outcomes.   

Another important finding from the literature review was the role of bank regulation. The analysis 

suggested that Aktia had sufficient capital levels, but a cash constraint should be included in the 

model. The model itself was presented in the fifth chapter where it was successfully explained in 

simple terms. The main output of this chapter was the model in AMPL, presented at the end of the 

chapter.  

In the results the importance of the inputs and the data was highlighted. For example bank 

regulation or changes in bank risk aversion coefficient would have direct effects on the output. 

The uncertainty and high importance of the input variables created challenges for the optimisation 

model, but the results were realistic because of the large number of simulated scenarios. Moreover, 

with scenario optimisation the inputs could easily be modified and changed to meet the needs of 

the decision maker or the market situation.  

Combining portfolio optimisation with scenario optimisation in the model presented in this thesis 

proved to be very efficient when compared to other historical values. It can be argued that the 1st 

model performed very well when comparing to other alternative options. Here are the average 

yearly changes of the original model and profits with the later observed 2013 returns data: 

Table 19: Proposed or observed yearly changes and profits related to these changes (1000 €) 

 

Balance sheet item yearly proposed or observed changes Profits from yearly changes using returns from 2013 with marginal effects

Historical 2012 changes 2013 changes 1st model 2nd model Historical 2012 changes 2013 changes 1st model 2nd model

C 43 421 112 571 -173 285 56 021 74 606 28.37 -144.63 -1165.78 16.82 -16.46

L 583 867 208 101 -462 876 326 719 375 484 6523.69 3281.66 -11098.30 4678.17 5152.45

O 327 957 -136 545 329 777 306 327 889 350 9579.67 -5091.33 9622.39 9063.06 17296.65

S 340 068 -68 139 203 942 493 561 519 340 -5618.68 542.87 -2787.75 -9742.48 -10531.92

D 517 561 120 687 -478 706 195 505 820 099 -17203.87 -3072.86 6564.49 -5264.53 -32123.44

Totals 1 812 874 236 675 -581 148 1 378 133 2 678 879 -6690.81 -4484.29 1135.05 -1248.96 -20222.72
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The 1st model solution proposes a change where there is a significant increase in the balance sheet 

assets and relatively small negative effect on the total profits of the company related to these 

changes. On the other hand the changes are not free, as the return on these increased assets is 

negative. The balance sheet for the 1st model was significantly larger with assets totalling 9.1% 

larger than the observed 2013 data. Moreover, since the balance sheet is growing, future profits 

and prospects are improved. Thus one could even argue that the model solution presented in this 

thesis is strategically better than the one observed in the in the financial statement of 2013.  

One reason for decreasing the balance sheet size might be the maximisation of short term profits 

in year 2013. Maximising short term profits might be more tempting for the decision maker and 

avoiding any kind of costs or losses related to these new changes is desirable. The model 1 solution 

proposed changes that would have cost the company 1.2 million whereas the 2013 changes resulted 

in 1.1 million profits.  

This difference of approximately 2.4 million which occurred between the baseline case and the 

observed outcome of 2013 can be further analysed. In terms of absolute profits the 2013 was fairly 

efficient. However, on average over several years, the 9.1% increase in the total balance sheet 

would bring more profits in the future. It can be argued that this increase in the balance sheet items 

is an investment. Furthermore, it can be concluded that the increased balance sheet would quickly 

pay itself back because of the improved future profit prospects.  

As explained before, since the returns on assets were higher than the cost of liabilities, increasing 

the balance sheet steadily should yield higher profits in the long run. The difference between short 

term and long term profits is vital in decision making. It might be more beneficial for the decision 

maker to aim for short term profits.  

The model presented in this thesis is a multi-period model and optimisation is done over several 

periods. It does not take into account strategic short term win maximisation but provides a more 

general and long term solution. Moreover, looking back after observing the outcome of 2013 is 

the same as looking back from the final node of the decision tree and comparing it to the average 

solution which includes the entire decision tree. 
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For the results the general conclusion is clear. The model outperformed many other alternatives 

and even when the profits were smaller compared to the observed results of 2013 the total balance 

sheet was bigger. The inputs had a significant effect on the output and the decision maker could 

possibly reach far better results when using the correct inputs together with more precise data. 

With more work on the model and better data the model would perform even better. 

7.1. Implications 

This thesis successfully builds a multi period scenario optimisation model that is efficient and 

provides realistic results. The model can be implemented directly or with easy modifications to 

both academic research and company decision making. The model used here can be improved by 

using more precise inputs as the sensitivity analysis shows, in order to gain more precise results 

for business purposes. The model can be modified to fit the needs of either different academic 

interests or different business optimisation problem.  

In the academic field, similar techniques have already been applied to for example the forest 

industry (Kallio, et al., 2012). Other research that can benefit from this study are stochastic 

optimisation research that use large scale optimisation software to find optimal solutions. The main 

contributions from this thesis for other academic research are the scenario creation process, 

optimisation over multiple periods and the use of AMPL optimisation software.  

In business life the model could be used in different fields to solve optimal production or budgeting 

problems. With some modifications, the methods and model specifications could be used for 

example in product portfolio optimisation or financial portfolio management. The main 

contribution to decision makers in the field of business is the use of scenario optimisation. With 

the methods presented here, scenario optimisation could be applied to numerous problems. The 

further the field deviates from a simple portfolio optimisation problem, the more customisation 

and modifications need to be made in the model.  

The most important thing in scenario optimisation is that the model should generate realistic 

scenarios that represent possible events from real life. If the scenario creation process is successful, 

then finding the optimal solution is fairly straightforward. Thus creating random scenarios can be 
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very efficient when dealing with complex large scale problems. As this thesis shows, it is possible 

to apply scenario optimisation to a bank balance sheet portfolio optimisation problem. 

7.2. Improvements in the model for future research 

After the optimal solution was found there were findings as to how the model could have been 

improved or made better. Because of the time limitations as a master’s thesis, these improvements 

are merely pointed out for further research and they work as a way of reporting important learning 

points that were discovered during the research. The thesis has a clear focus on optimisation and 

simulation from information management point of view. To improve he financial impact one 

should consider the improvements discussed in this section. 

The most significant improvement in the model would be including equity in the model, such that 

each balance sheet item would have the returns reinvested in that balance sheet item. This way the 

balance sheet items and the portfolio would grow according to the simulated returns. This method 

would better explain the frequent changes in the balance sheet in the historical data. Including 

equity in the model would mean that the maximisation problem would aim to maximise the 

expected utility of the increase in equity (or decrease).  

Equity would be equal to the increase in balance sheet asset side minus the increase in the balance 

sheet liabilities side. By introducing equity in the model, it would be possible to further study the 

relationships between bank regulation, bank equity and decision making. Moreover, this way the 

model would be more realistic, where instead of always paying out the profits they would be 

reinvested in the company, and dividends would be paid out to the investors on a yearly basis.  

Another important point for future research would be to improve the time series analysis of the 

model. In the thesis this was done with an elementary drift factor, but further research could 

implement a more complex model for return simulation based on time series analysis. One option 

for improving the time series analysis would be to include an economic indicator to the model, 

such as the hemline index discussed earlier in this paper (van Baardwijk & Franses, 2010). Related 

to the time series analysis, one point for further study would be to improve the data analysis phase, 

by either obtaining more specific data or by performing deeper analytics on the data. 
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Other improvement options include analysing the data for better inputs as discussed in the 

sensitivity analysis, analysing the impact of bank regulation on the entire economy as discussed 

under bank regulation development or the optimal risk for the economy with the model presented 

in this thesis. In addition to these topics, it would be great if studies in other fields related to large 

scale scenario optimisation would benefit from the methods and model presented in this thesis. 
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APPENDICES 

Appendix 1: Balance sheet items and returns over historic data period from 2006-2012 (1000€) 
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Appendix 2: Other Asset return calculations (1000€) 

 

Other Assets income and costs 2006 2007 2008 2009 2010 2011 2012

Muut korkotuotot 35 241 55 541 96 686 92 086 85 677 73 141 57 563

Osinkotuotot 1 222 1 541 1 395 607 1 105 173 53

Palkkiotuotot netto 40 061 47 346 41 034 46 346 57 030 60 565 65 319

Henkivakuutus netto 0 138 078 91 037 13 991 16 477 22 732 27 304

Rahoitusvarojen ja velkojen nettotuotot 736 2 257 -3 359 826 -5 585 -14 815 2 940

Kiinteistöt 4 880 480 6 010 406 518 266 338

Liiketoiminnan muut tuotot 5 433 3 067 14 958 3 565 7 916 4 361 4 682

Sum of income 87 573 248 310 247 761 157 827 163 138 146 423 158 199

Muut korkokulut 2 512 -3 246 -8 769 27 839 45 084 36 343 47 779

Vakuutuskorvauskulut ja vastuuvelan nettomuutos 0 -113857 -75664 0 0 0 0

Henkilöstö -41691 -57325 -60605 -79219 -82842 -73 203 -75 352

IT/muut kulut -26869 -35501 -38419 -44783 -50247 -26 380 -31 419

Negatiivisin liikearvon tuloutus 0 12084 0 140 0 0 0

Poistot -3634 -5121 -5682 -6884 -7237 -5 914 -7 158

Liiketoiminnan muut kulut -11752 -12464 -16186 -23413 -18705 -41 238 -40 291

Arvonalentumistappiot 0 0 743 -563 0 0 -1 817

Sum costs -81434 -215 430 -204 582 -126 883 -113947 -110392 -108 258

Other Assets income calculation:

All income from assets + 181 306 272 404 386 129 285 576 240 326 262 563 232 296

Cash (Ci) income - 5 291 8 065 9 320 3 126 2 485 3 290 1 237

Loans (Li) income - 140 774 208 798 280 123 190 364 152 164 186 132 173 496

Sum of Other Assets income + 87 573 248 310 247 761 157 827 163 138 146 423 158 199

Sum of Other Assets costs + -81434 -215430 -204582 -126883 -113947 -110392 -108258

Other Assets Income 41 380 88 421 139 865 123 030 134 868 109 172 107 504
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Appendix 3: Historic quarterly returns, logarithms of returns, means and error term matrix E 

 

 

Appendix 4: Covariance matrix V and Cholesky factor C 

 

  

Quarterly returns (1+yearly return)^(1/4)-1

2006 2007 2008 2009 2010 2011 2012 Mean

Cash 0.00427 0.00846 0.00457 0.00228 0.00226 0.00173 0.00053 0.00344

Loans 0.00914 0.01080 0.01244 0.00766 0.00568 0.00644 0.00584 0.00829

Other Assets 0.00738 0.00738 0.00982 0.00747 0.00811 0.00787 0.00807 0.00801

Savings 0.00460 0.00711 0.00843 0.00413 0.00311 0.00331 0.00303 0.00482

Debt 0.00542 0.00660 0.00830 0.00504 0.00420 0.00594 0.00571 0.00589

Logarithm of quarterly returns

2006 2007 2008 2009 2010 2011 2012

Cash -5.456 -4.772 -5.388 -6.082 -6.090 -6.361 -7.550 -5.957

Loans -4.695 -4.528 -4.387 -4.872 -5.170 -5.045 -5.143 -4.834

Other Assets -4.908 -4.908 -4.623 -4.897 -4.815 -4.845 -4.820 -4.831

Savings -5.381 -4.947 -4.776 -5.490 -5.774 -5.712 -5.798 -5.411

Debt -5.218 -5.020 -4.792 -5.291 -5.472 -5.126 -5.165 -5.155

Error terms

2006 2007 2008 2009 2010 2011 2012 Mean

Cash 0.501 1.185 0.569 -0.124 -0.133 -0.404 -1.593 0.007

Loans 0.139 0.306 0.447 -0.037 -0.336 -0.210 -0.309 0.026

Other Assets -0.077 -0.077 0.208 -0.066 0.016 -0.014 0.011 0.032

Savings 0.030 0.464 0.635 -0.079 -0.363 -0.300 -0.387 0.014

Debt -0.064 0.135 0.363 -0.136 -0.317 0.029 -0.010 0.021

Error Term Covariance Matrix

Cash Loans Other Assets Savings Debt

Cash 0.673 0.188 -0.002 0.246 0.057

Loans 0.188 0.081 0.008 0.105 0.043

Other Assets -0.002 0.008 0.009 0.013 0.010

Savings 0.246 0.105 0.013 0.142 0.059

Debt 0.057 0.043 0.010 0.059 0.039

Cholesky factor C

0.824 0 0 0 0

0.231 0.172 0 0 0

-0.003 0.052 0.078 0 0

0.302 0.219 0.042 0.061 0

0.070 0.164 0.032 0.026 0.080
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Appendix 5: Optimal solution Xik, 1 out of 2 pages in 1000€ 

 

Node Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Node Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

0 12271 103092 118481 176045 57799 40 30345 58470 5815 50491 44139

1 11679 88520 117016 155003 62212 41 17010 18235 37370 56122 16493

2 13469 142094 94609 170066 80105 42 22779 40497 24144 58017 29404

3 10443 100718 82170 138353 54978 43 19577 7793 53312 60211 20472

4 12983 147099 79446 158270 81259 44 21096 17630 39303 56813 21217

5 12131 103990 109566 166791 58896 45 19767 42751 15920 54555 23883

6 10924 107434 46345 113944 50760 46 20056 9461 48544 59146 18914

7 9878 88981 45043 101506 42396 47 17932 -2728 63509 60645 18068

8 10695 61772 85598 107811 50254 48 19245 32833 31809 60557 23330

9 9232 25026 108221 110236 32243 49 18996 19937 40609 56601 22941

10 10202 63058 81706 110341 44624 50 20964 26353 29735 54795 22257

11 10332 74233 69667 105618 48613 51 26193 41390 18017 52103 33497

12 9269 48551 74261 95000 37080 52 18266 22913 34582 55106 20655

13 9405 67818 64764 103213 38774 53 16859 11699 49302 61912 15948

14 9602 79187 55572 101674 42687 54 18012 9013 49877 60666 16237

15 9835 82312 48059 94325 45881 55 25440 36497 20862 50776 32023

16 10714 78899 75291 113495 51410 56 26337 44964 18778 49824 40254

17 11030 87744 71258 110483 59550 57 19655 29113 33294 55344 26718

18 11403 109859 49665 111980 58947 58 19511 36850 15747 55335 16773

19 9836 100146 38867 107585 41264 59 21403 36950 21357 53867 25843

20 11739 117099 51851 114661 66028 60 18848 28282 35608 55364 27374

21 10798 65983 84739 109404 52116 61 17089 11566 44391 58844 14202

22 11276 92804 52408 103752 52736 62 27153 52582 9356 49988 39103

23 10013 91262 46041 100419 46896 63 20656 22561 35578 61169 17625

24 10565 87137 55391 94539 58554 64 29743 72496 -25537 44231 32471

25 8826 56440 66709 100065 31909 65 22015 38613 27771 54712 33687

26 9241 47230 83207 101378 38300 66 18722 37986 19008 52572 23144

27 9403 79577 53060 103546 38494 67 15667 12167 36772 56513 8093

28 8806 70622 55099 100678 33849 68 17433 47321 8924 56591 17087

29 8592 43183 74944 98192 28527 69 23649 46717 14530 51172 33723

30 9308 70216 61120 104262 36381 70 19154 46196 18415 54417 29347

31 22855 39302 24383 55044 31496 71 17954 14512 38253 56472 14247

32 20232 29291 31928 54820 26631 72 19646 35669 21671 52387 24599

33 17495 32711 26445 58124 18528 73 30055 58846 2847 46685 45064

34 21793 26301 37148 57156 28086 74 17801 35630 19471 53452 19450

35 17043 23748 30675 58191 13275 75 16730 906 56242 59764 14115

36 27225 33418 23824 56198 28269 76 27521 37873 24230 51737 37887

37 19814 37175 18084 53790 21283 77 22251 46093 16475 54724 30097

38 23589 57324 8052 55174 33791 78 17543 7158 54706 61519 17888

39 22782 43798 19630 56176 30035 79 24525 42671 18908 55847 30256
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Appendix 5: Optimal solution Xik, 2 out of 2 pages 

 

Node Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Node Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

80 25436 32553 29701 57989 29701 120 21291 47848 14784 52189 31733

81 17389 39366 14459 48589 22625 121 21633 44787 10096 55979 20538

82 16343 2136 54112 57557 15033 122 18672 27012 33187 52390 26482

83 20462 34209 21207 52413 23466 123 17096 8569 43660 53660 15665

84 29368 40129 22624 57907 34214 124 16357 48128 6715 50073 21127

85 17576 10355 45400 59658 13672 125 25884 37492 27944 56066 35254

86 18729 27482 28293 54589 19915 126 17977 9510 48865 57224 19128

87 19326 19012 41155 55301 24192 127 29602 54319 8549 48514 43956

88 23836 52283 8872 51881 33110 128 31194 31338 25986 54559 33960

89 24232 47338 14212 52794 32988 129 22544 61580 -763 49021 34340

90 19897 23186 37970 59136 21916 130 19065 17301 39126 59474 16018

91 24062 34363 29759 54801 33383 131 17619 21895 32091 54083 17522

92 22410 35698 27236 58246 27099 132 22660 41509 16623 50788 30004

93 28692 34329 26211 57964 31268 133 23635 24363 33391 54248 27141

94 18058 19986 38076 55025 21095 134 22384 24428 37017 56103 27726

95 26437 47786 11262 54466 31019 135 19932 28263 31686 55189 24692

96 18179 37950 12191 57490 10831 136 20243 22105 39181 58982 22548

97 18653 10747 49439 59871 18969 137 26920 72152 -13817 44122 41133

98 22628 -1693 57629 58794 19770 138 20395 30056 30822 55383 25890

99 22358 34416 23628 58717 21686 139 16256 22168 36151 61463 13113

100 18445 7253 50147 59793 16052 140 34819 62908 -5443 46060 46224

101 16986 32854 20857 53525 17173 141 22967 28045 28314 54474 24852

102 20309 33562 26371 55126 25117 142 20023 22689 35554 55743 22523

103 17513 17677 38829 57054 16965 143 20117 4478 56053 58007 22640

104 20040 38500 18374 54620 22295 144 21130 36262 17683 49884 25191

105 19039 17735 39013 54336 21451 145 16751 38159 17164 58622 13451

106 19235 5593 52934 58158 19604 146 22240 26332 32223 55786 25010

107 19152 21973 30491 58360 13256 147 24889 33306 24985 50691 32489

108 17921 16762 41270 57993 17961 148 18733 20059 38378 53636 23533

109 22069 21556 41918 56956 28586 149 20106 36926 18469 56231 19270

110 24913 52254 4803 48122 33848 150 31654 34266 21153 51757 35316

111 33049 56834 -183 45249 44450 151 19124 30228 29476 58470 20359

112 33360 36838 21788 55330 36655 152 17111 12537 43419 59321 13746

113 21122 50503 1747 51580 21792 153 17441 37024 16154 57910 12709

114 23135 43537 15946 55471 27147 154 22040 45705 13596 54117 27223

115 19295 5931 52884 56284 21826 155 25324 41664 13467 48989 31466

116 24118 35280 22469 55867 25999

117 24870 41963 20889 52887 34836

118 28867 43363 14510 51582 35158

119 16748 3526 55949 60524 15698
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Appendix 6: MOSEK solver optimisation model, gradu.mod file 
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Appendix 7: MOSEK solver gradu.dat data file 

 

 

  



88 

 

Appendix 8: MOSEK solver gradu.run executive file 

 

 


