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ABSTRACT 
28.2.2010 

IDIOSYNCRATIC RISK, FINANCIAL DISTRESS AND THE CROSS 
SECTION OF STOCK RETURNS 
 
PURPOSE OF THE STUDY 

This study examines the asset pricing impact of idiosyncratic risk and financial distress on 
cross sectional stock returns. Specifically, I investigate whether financial distress can explain 
the correlation between conditional idiosyncratic volatility and return and vice versa. 
Idiosyncratic volatility is defined as standard deviation of the firm return that cannot be 
explained by the Fama French (1993) three factor model. This study is the first to investigate 
the interaction between idiosyncratic risk and financial distress by employing generalized 
autoregressive conditional heteroskedasticity GARCH models to measure conditional 
idiosyncratic volatility and in addition to unpublished working paper by Song (2008), first to 
employ Campbell et al. (2008) measure of financial distress using both market and accounting 
variables.  
 
DATA 

This study targets all common shares that are traded in NYSE, AMEX and NASDAQ during 
the period between 1971 and 2008. The market data is obtained from Center for Research in 
Security Prices (CRSP) and the accounting data from COMPUSTAT database. The sample 
consists of 18 795 unique stocks. 
 
RESULTS 

The results indicate a positive relation between idiosyncratic risk and expected stock returns, 
which like many other anomalies is mainly driven by smaller stocks. The relation between 
distress risk and expected stock returns is found to be negative. 
 
I find that both idiosyncratic volatility and financial distress maintain their explanatory power 
when both variables are included in the cross-sectional regression. In the multivariate 
independent sort, the positive relation between idiosyncratic volatility and stock returns is 
shown to be conditional on low distress risk. A positive relation is found in low distress risk 
quintiles but in high distress risk quintiles the idiosyncratic volatility spread is insignificant. 
The negative effect of distress risk persists after controlling for idiosyncratic volatility across 
idiosyncratic volatility quintiles in multivariate independent sort. The findings indicate that 
financials distress risk has a more fundamental asset pricing impact than idiosyncratic 
volatility. 
 
KEYWORDS 

Asset pricing, idiosyncratic risk, financial distress, expected returns  
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Henri Kotiaho 

 

TIIVISTELMÄ 
28.2.2010 

IDIOSYNKRAATTINEN RISKI, KONKURSSIRISKI JA ODOTETUT 
OSAKETUOTOT 
 
TUTKIELMAN TAVOITE 

Tutkielman tavoitteena on selvittää idiosynkraattisen riskin ja konkurssiriskin vaikutusta 
osaketuottoihin. Tavoitteena on erityisesti tutkia selittääkö konkurssiriski idiosynkraattisen 
riskin ja osaketuottojen korrelaatiota ja päinvastoin. Idiosynkraattisen riskin mittarina on 
osaketuottojen volatiliteetti, joka ei selity Faman ja Frenchin (1993) kolmen faktorin mallilla. 
Tutkielma on ensimmäinen, jossa idiosynkraattisen riskin ja konkurssiriskin interaktion 
tutkimisessa ehdollista idiosynkraattista volatiliteettiä mallinnetaan GARCH –prosessilla.  
 
AINEISTO 

Tutkielman aineisto koostuu NYSE, AMEX ja NASDAQ pörsseissä listattujen yritysten 
osaketuotoista vuosien 1971 ja 2008 välillä. Osakemarkkinadata on haettu Center for 
Research in Security Prices (CRSP) tietokannasta ja tilinpäätösinformaation COMPUSTAT 
tietokannasta. Lopullinen aineisto sisältää 18 195 yksittäistä osaketta. 
 
TULOKSET 

Tulokset osoittavat että idiosynkraattinen riskin ja osaketuottojen välillä on positiivinen 
suhde, joka keskittyy lähinnä pienten yritysten osakkeisiin. Konkurssiriskin ja osaketuottojen 
välinen suhde on puolestaan negatiivinen. 
 
Regressioanalyysin tulokset osoittavat että idiosynkraattinen riski ja konkurssiriski säilyttävät 
merkitsevyytensä, kun molemmat muuttajat ovat mallissa mukana. Portfoliot, joiden osakkeet 
on lajiteltu itsenäisesti idiosynkraattisen riskin ja konkurssiriskin mukaan osoittavat, että 
korkean idiosynkraattisen riskin osakkeilla on positiiviset epänormaalit tuotot vain jos 
konkurssiriski on samalla matala. Korkean konkurssiriskin ja osaketuottojen välillä on 
puolestaan negatiivinen suhde sekä matalan että korkean idiosynkraattisen riskin portfolioissa. 
Tulokset osoittavat että konkurssiriski on merkittävämpi tekijä osakkeiden hinnoittelussa kuin 
idiosynkraattinen riski. 
 
AVAINSANAT 

Idiosynkraattinen riski, konkurssiriski, osaketuotot 
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1. Introduction 

 

Idiosyncratic risk and financial distress have been under close scrutiny recently in the asset 

pricing literature and have been used to explain otherwise anomalous patterns in the cross 

section of stock returns (e.g. Fu, 2009; Campbell et al., 2008; Ang et. al., 2006). Contrary to 

the conventional expectation of insignificant asset pricing impact of these measures, previous 

empirical literature has found positive or even negative pricing impact of idiosyncratic 

volatility and distress risk. These concepts have also become current due the recent financial 

crisis, during which we have seen the level of both measures increasing substantially from 

historically low levels between 2003 and early 2007. My results show that the average 

idiosyncratic volatility has more than doubled between 2006 and 2008. Global default rates 

for sub investment grade bonds have meanwhile broken the post Depression record. The 

trailing 12 month average rose to 12.4% in October 2009. For comparison, a year ago the 

global default rate stood at only 3.0%1.  

 

The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965a) and Black (1972) 

predicts that only systematic risk is priced in the stock returns. This is because investors are 

assumed to be able to diversify away  idiosyncratic risk by holding well-diversified portfolios. 

However, in practice investors may fail to hold diversified portfolios for various reasons (e.g. 

Malkiel & Xu, 2004; Merton, 1987). This would lead in less diversified investors demanding 

a risk premium for bearing idiosyncratic risk. Furthermore, Barberis and Huang (2001) show 

that if investors are loss averse over individual stock fluctuations, expected premiums will 

depend on prior performance and also total risk will be positively correlated with expected 

returns. 

 

The role of idiosyncratic risk on asset pricing has been under intense academic debate since 

an influential study by Campbell, Lettau, Malkiel, and Xu (2001). They explore the volatility 

of U.S. stocks at the market, industry, and firm levels over the period from 1962 to 1997. 

Campbell et al. (2001) find that while the market and industry level volatilities have remained 

quite stable, the average firm-level volatility exhibits a strong positive deterministic trend, 

more than doubling over the period.  

 

                                                 
1 Moody’s (2008) 
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Numerous papers have explored the relation between idiosyncratic risk and return both on 

cross-section and across time. However, the results have been inconsistent and depend heavily 

on the selected methodology to measure idiosyncratic risk. 

 

Malkiel and Xu (2004) provide empirical evidence to the under-diversification hypothesis and 

find a positive relation between idiosyncratic risk and cross-sectional stock returns. Using 

exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model to 

estimate conditional idiosyncratic volatility, Spiegel and Wang (2005) and Fu (2009) also find 

a significantly positive relation between idiosyncratic risk and expected returns.  

 

On the other hand, some authors have found a puzzling negative relation between 

idiosyncratic risk and cross-sectional stock returns. Using daily data to estimate idiosyncratic 

risk, Ang et al. (2006, 2009) find that stocks with high idiosyncratic volatility have abysmally 

low average returns both in US and in other G7 countries. This negative cross-sectional 

relation contradicts the basic fundamental of finance that higher risk is compensated with 

higher returns. Guo and Savickas (2006) argue that idiosyncratic risk can be a proxy for 

dispersion in opinion among investors. Their hypothesis is that an increase in idiosyncratic 

risk leads the most optimistic investors to hold a particular stock, and thus we should find a 

negative relation between idiosyncratic risk and return. 

 

Financial distress has also been theorized to impact stock returns. The idea is that stocks of 

financially distressed companies tend to move together so that their risk cannot be diversified 

away (Chan & Chen, 1991). Fama and French (1996) argue that financial distress is a driving 

factor behind the size and value effects. The covariation can exist if corporate failures are 

correlated with a measure not accounted in the standard CAPM, such as deteriorating 

investment opportunities (Merton, 1973) or declines in unmeasured components of wealth 

such as human capital (Fama & French, 1996) or debt securities (Ferguson & Shockley, 

2003). 

 

Several papers have studied the impact of financial distress on stock returns with 

contradictory results. Griffin and Lemmon (2002) find supporting evidence to Fama and 

French (1996) and show that the value premium is most significant among firms with high 

probability of financial distress. Vassalou and Xing (2004) also demonstrate that both the size 

and book-to-market effects are concentrated in high default risk firms. However, Dichev 
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(1998) and Campbell, Hilscher, and Szilagyi (2008) document that firms with high risk of 

financial distress have delivered anomalously low returns. 

 

There is an intuitive reason to believe that these two puzzles are related to each other. 

According to the Merton’s (1974) model, corporate debt is a risk-free bond less a put option 

on the value of the firm’s assets, with strike price of the face value of the debt. Thus, a firm 

with more volatile equity is more likely to reach the boundary condition of default. Based on 

this argument, Campbell and Taksler (2003) show that idiosyncratic firm-level volatility can 

explain a significant part of cross-sectional variation in corporate bond yields. This suggests a 

possibility that the idiosyncratic volatility-return relationship may be due to a distress-return 

relationship or vice versa.  

 

Only two recent working papers explore this interaction. Following Ang et al. (2006), Song 

(2008) estimate idiosyncratic volatility using daily data from one month period and find that 

while the volatility spread is -1.68% for the most distressed stocks, it is actually positive and 

significant at 0.61% per month for the least distressed ones. Similarly, Chen and Chollete 

(2006) find that after controlling for distress risk, stocks with high idiosyncratic volatility earn 

significantly low returns only in the highest distress risk quintile. Both conclude that distress 

risk has a more fundamental asset pricing impact than idiosyncratic volatility. 

 

However, Fu (2009) argues that due to the time varying property of idiosyncratic volatility, 

lagged one month volatility may not be an appropriate proxy for the expected volatility this 

month. In order to capture the time varying property of idiosyncratic volatility, Fu suggest the 

use of GARCH models. Therefore, it is of interest to study the interaction of idiosyncratic 

volatility and financial distress using these more sophisticated models. 

 

1.1 Objectives of the study 

 

Purpose of this study is to empirically explore the asset pricing impact of idiosyncratic risk 

and financial distress on cross-sectional stock returns. I investigate whether financial distress 

can explain the correlation between conditional idiosyncratic volatility and return and vice 

versa. 

 



9 
 
This study contributes to the existing literature by relating the idiosyncratic risk to financial 

distress. To my best knowledge, in addition to an unpublished paper by Song (2008), this is 

the first paper to examine the relation of idiosyncratic volatility and distress risk using a 

sophisticated measure of financial distress by Campbell et al. (2008). Furthermore, this is the 

first study to investigate the interaction of idiosyncratic risk and financial distress by using a 

generalized autoregressive conditional heteroskedasticity (GARCH) models to estimate 

idiosyncratic risk. In addition, by employing several GARCH models, I test whether the 

positive relation of idiosyncratic volatility and returns found for example by Fu (2009) is 

model specific to EGARCH. I employ to commonly used approach to identify anomalies in 

my study: cross-sectional Fama-Macbeth regressions and sorts of portfolios on idiosyncratic 

volatility and distress risk. 

 

1.2 Main results 

 
By using EGARCH(1,1) model to estimate the expected conditional idiosyncratic volatility, I 

find a positive relation between idiosyncratic risk and expected stock returns in cross-

sectional regressions. The relations is shows to be non model specific as a positive relation is 

also found by using GJR and GARCH(p,q) models. The relation is robust after controlling for 

market beta, size, book-to-market, momentum, short term return reversal and liquidity effects. 

The results are consistent with Spiegel and Wang (2005) and Fu (2009).  However, a closer 

inspection of size effects by running the regressions in different size groups reveals that the 

relation is driven by micro and small stocks, defined by 20% and 50% percentile breakpoints 

of market capitalization for NYSE stocks. Due to this reason, the positive relation in portfolio 

sorts is found only with equally weighted portfolios. The relation between distress risk and 

expected stock returns is found robustly negative in both cross-sectional regressions and 

portfolio sorts. The results are consistent with previous empirical work by Campbell et al. 

(2008).  

 

I find that both idiosyncratic volatility and financial distress maintain their explanatory power 

when both variables are included in the cross-sectional regression. This result is to the 

contrary of previous results of Song (2008) and Chen and Chollette (2006) who find that 

idiosyncratic volatility loses its asset pricing impact when distress risk is included in the 

regressions.   
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In the multivariate independent sort, the positive relation between idiosyncratic volatility and 

stock returns is shown to be conditional on low distress risk. A positive relation is found in 

low distress risk quintiles but in high distress risk quintiles the idiosyncratic volatility spread 

is insignificant. This moderating effect of distress risk on the asset pricing impact of 

idiosyncratic volatility, meaning that lower distress risk is associated with more positive 

idiosyncratic volatility spread, is consistent with findings of Song (2008) and Chen and 

Chollette (2006). However, contrary to Song (2008), I do not find a negative relation between 

idiosyncratic volatility and distress risk even in the highest distress risk quintile.  

 

The negative effect of distress risk persists after controlling for idiosyncratic volatility across 

idiosyncratic volatility quintiles in multivariate independent sort. This is consistent with 

findings of Song (2008) and Chen and Chollette (2006) that distress risk has a more 

fundamental asset pricing impact than idiosyncratic volatility.  

 

1.3 Structure of the study 

 

The remaining of the study is structured as follows. In Section 2, I look at the existing 

theoretical and empirical literature on the relation between risk and expected returns and 

specifically effects of idiosyncratic volatility and financial distress. In Section 3, I present the 

hypotheses. Section 4 provides the description of the data and introduces the methodologies. 

In Section 5 I describe my tests and section 6 presents the empirical results and analysis. 

Finally, Section 7 concludes.  
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2. Literature review 

 
This chapter reviews the relevant literature for my study. The first section discusses the 

theories of market risk and return including CAPM and intertemporal CAPM, which form the 

basis for subsequent discussion. In the second and third section I focus on the most relevant 

theories for my study, namely those concerning idiosyncratic risk and financial distress. In 

addition, these sections review the most important empirical evidence that has strongly 

promoted the theoretical development in these areas. Finally, I review the recent empirical 

studies exploring the link between idiosyncratic risk and financial distress effects and discuss 

the theoretical similarities between them.  

 

2.1 Market risk and return 

 

Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965a) and Black (1972) 

implies that a positive relation exists between the expected return on securities and their 

market betas and other variables should not capture the cross-sectional variation in expected 

returns. Early empirical cross-sectional tests of CAPM (see eg. Blume & Friend, 1973; Fama 

& MacBeth, 1973) seem support a positive cross-sectional relation between market risk and 

expected stock returns. However, many subsequent authors find that market beta alone cannot 

capture all the dimensions of risk, the size effect documented by Banz (1981), book-to-market 

effect by Rosenberg et al., 1985 and leverage effect by Bhandari (1988). Basu (1983) shows 

that price to earnings ratio helps to explain the cross-sectional returns. Moreover, Roll (1977) 

points out that it is difficult if not impossible to test CAPM empirically because market 

portfolio cannot be defined completely. Later, Fama and French (1992) show that in cross 

section, the relation between market beta and average return is flat and size and book-to-

market equity alone capture the cross-sectional variation in stock return. Other cross-sectional 

explanatory variables of stock returns include the momentum effect of Jegadeesh and Titman 

(1993) and the liquidity risk documented by Pástor & Stambaugh (2003).  

 

 A static, single period CAPM has been extended to intertemporal setting (e.g., Merton, 1973; 

Campbell 1993, 1996). Unlike in CAPM where an investor is expected to maximize his return 

over a single period, in intertemporal setting an investor takes into account the current period 

returns and the returns that will be available in the future, i.e. future investment opportunities. 

Merton (1973) shows that when investment opportunities vary over time, the conditional 
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expected excess return on the stock market should vary positively with the market’s 

conditional variance: �������� = 	 + ��
��������, (1) 

where γ is the coefficient of investor’s relative risk aversion and the mean term µ should be 

zero. Merton’s model is intuitive as it predicts that investors require larger risk premium 

during times when the payoff from the security is more risky.  

 

Empirical tests on ICAPM have been inconclusive. Often the relation between risk and return 

has been found insignificant, and sometimes negative.  Pindyck (1984) shows that increase in 

variance of stock returns can explain a large amount of the decline in stock prices between 

1965 and 1981. French et al. (1987) find a positive relation between expected stock market 

return and conditional volatility using a GARCH model. Positive relation between volatility 

and expected returns is also found by Whitelaw (1994) and Scruggs (1998).  On the other 

hand, Glosten et al. (1993) and Campbell (1987) find evidence to support a negative time-

series relation between risk and expected returns.  

 

Theoretical relation between market risk and return on a stock as opposed to the whole market 

across time is, however, not as clear as market return and risk relation. Campbell’s (1993, 

1996) ICAPM shows that investors care about both market risk and risk of changes in 

forecasts of future market returns. In Campbell’s model, risk-averse investors want to hedge 

against changes in aggregate volatility because volatility positively affects future expected 

market returns as in Merton (1973). Chen (2002) extends Campbell’s model to 

heteroskedastic environment to allow market volatility directly affect the expected returns. In 

Chen’s model risk averse investors also want to directly hedge against changes in future 

market volatility. Chen shows that for a risk averse investor, an asset that has a positive 

covariance between its return and a variable that positively forecasts future market volatilities 

causes the asset to have a lower expected return.  In other words, the relation between market 

risk and return of a stock across time can also be negative. Several studies using options on an 

aggregate market index or options on individual stocks as a measure of aggregate volatility 

have found a negative relation between sensitivity to market volatility and stock returns (eg. 

Coval & Shumway, 2001;Ang et al., 2006).  
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2.2 Idiosyncratic risk and return 

 

The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965a) and Black (1972) 

relies on the assumption that investors are well diversified. However, many authors have 

suggested that both systematic and idiosyncratic risk might matter to investors in practice due 

to poor diversification or behavioral reasons. Moreover, idiosyncratic risk is a proxy for 

omitted factors in the CAPM model, which may cause a relation between idiosyncratic risk 

and stock returns. 

 

2.2.1 Theoretical motivation 

 

Firstly, Levy (1978), Merton (1987) and Malkiel and Xu (2004) suggest that idiosyncratic risk 

is priced because many investors hold poorly diversified portfolios. This means that the 

remaining, “unconstrained”, investors are also unable to hold market portfolios. This is 

because the undiversified investors’ and unconstrained investors’ holdings together make up 

the whole market. An inability to hold the market portfolio will force investors to care about 

total risk and not simply market risk. As Malkiel and Xu (2004) note: “an idiosyncratic risk 

premium can be rationalized to compensate investors for the “over supply” or “unbalanced 

supply” of some assets”. Transaction costs are an obvious reason to prevent individual 

investors from holding large numbers of individual stocks though behavioral reason can be 

even stronger. Goetzmann and Kumar (2004) shown that more than 25% of retail investors 

hold only one stock in their portfolio, over half of the investor portfolios contain no more than 

three stocks and less than 10% of the investor portfolios contain no more than 10 stocks.  

 

Furthermore, institutional investors too rarely hold an indexed portfolio. Approximately only 

10 percent of the mutual funds held by individuals were indexed in 2003 while about one 

quarter of institutional funds were indexed (Malkiel and Xu, 2004). Importance of 

idiosyncratic risk in active portfolio management is also highlighted by Cremers and Petajisto 

(2009) who find that active managers who have the highest exposure to idiosyncratic risk 

have outperformed their benchmarks both before and after expenses. 

 

Second, a behavioral model by Barberis and Huang (2001) predicts that idiosyncratic 

volatility should be positively related to expected stock returns. Key ideas behind the model 

include investors’ loss aversion and narrow framing. Loss aversion is a is a finding that 
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people are more sensitive to losses than gains, first demonstrated by Kahneman and Tversky 

(1979). Furthermore, evidence suggests that degree of loss aversion depends on prior gains 

and losses.  Narrow framing means that when people evaluate changes in their wealth, they 

often appear to pay attention to narrowly defined gains and losses such as price appreciation 

of a stock they own rather than the change in their total wealth. Barberis and Huang show that 

investors’ loss aversion over individual stock fluctuations leads the expected premium to 

depend on prior performance. The model also predicts that total risk is positively correlated 

with expected returns, implying that idiosyncratic risk should also command a premium. 

 

Third, idiosyncratic risk premium may be related to omitted assets problem in the market 

portfolio proxy. Eiling (2006) shows that the idiosyncratic risk premium is related to hedging 

demand due to investors’ non-tradable human capital. When labor income is correlated with 

stock returns, exposure to the firm specific risk induces a hedging demand for an employee 

and consequently, human capital can affect the risk premium for stocks.  

 

Fourth, idiosyncratic risk could be a determinant of equity premium due to omitted risk 

factors. By construction, it measures conditional variance of the risk factors of a multi-factor 

ICAPM model omitted from CAPM (Merton, 1973; Campbell, 1993, 1996). Hence, 

idiosyncratic volatility can be seen as a proxy for omitted factors such as liquidity risk or 

dispersion of analysts’ opinion (Guo & Savickas, 2006). Brunnermeier and Pedersen (2009) 

generate a positive relationship between idiosyncratic risk and return within a market liquidity 

model where investors face margin requirements that limit their ability to maintain levered 

positions when stock prices turn downward. Empirical paper by Spiegel and Wang (2005) 

finds also an inverse relation between idiosyncratic risk and liquidity, though they find that 

idiosyncratic volatility itself explains cross-sectional stock returns more than liquidity. 

 

On the other hand, idiosyncratic risk as a proxy for dispersion of opinion predicts a negative 

relationship between idiosyncratic risk and return. Miller (1977) shows that under short-sale 

constraints, increases in risk imply higher divergence of opinion, resulting in most optimist 

investors to hold a particular stock. Thus it is possible that expected return can be lower for 

riskier securities.   

 

Ang et al. (2006) hypothesize that stocks with large idiosyncratic risk have large exposure to 

movements in aggregate volatility. According to Ang et al. this could imply a negative 
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relation between idiosyncratic risk and expected returns as they find a negative relation 

between stock returns and sensitivity to market volatility.  Idiosyncratic volatility can also be 

priced with a negative price of risk if it can predict changes in market volatility following 

Chen’s (2002) model in which risk averse investors want to hedge future changes in aggregate 

volatility. Campbell et al. (2001) indeed find that firm level volatility can predict changes in 

market volatility.  Ang et al. (2008) test their hypothesis but find only partial support that 

exposure to aggregate volatility can explain low returns of high idiosyncratic risk stocks.2  

 

Finally, Boyer et al. (2007) document empirical evidence that idiosyncratic volatility is a 

good predictor of expected skewness. Barberis and Huang (2008) show that investors have a 

strong preference for positively skewed portfolios under the assumption that investors have 

preferences based on the cumulative prospect theory of Tversky and Kahneman (1992). Under 

cumulative prospects theory, investors are risk averse and use transformed rather than 

objective probabilities for returns, which overweigh the tails of the objective distribution. This 

captures the common preference for a lottery-like, or positively skewed, wealth distribution. 

Under these assumptions, a positively skewed portfolio can be overpriced and earn a negative 

average excess return. 

 

To sum up, theories for a positive relation between idiosyncratic risk and stock returns 

include both long term fundamental explanations such as under-diversification and short term 

behavioral reasons like narrow framing of gains and losses. Negative theories focus on short 

term effects such as dispersion of analyst opinion and behavioral reasons such as skewness of 

returns, or relate to more general theories of intertemporal relation between risk and return 

which include also a possibility for a negative relation.  

 

2.2.2 Empirical evidence  

 

An influential study by Campbell et al. (2001) explores the volatility of U.S. stocks at the 

market, industry, and firm levels over the period from 1962 to1997. Campbell et al. find that 

while the market and industry level volatilities have remained quite stable, the average firm-

level volatility exhibits a strong positive deterministic trend, more than doubling over the 

                                                 
2 Ang et al. (2006) find that exposure to aggregate volatility partially explains the puzzling low returns to high 
idiosyncratic volatility stocks, but only for stocks with very negative and low past loadings to aggregate 
volatility innovations. 
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period. In addition, firm level volatility accounts for the greatest share of total average firm 

volatility and for the greatest share of movements over time in total firm volatility. Firm level 

volatility can also predict changes in market volatility though market volatility tends to lead 

other components of volatility.  Numerous studies have since studied the asset pricing impact 

of idiosyncratic volatility. Table 1 presents an overview of the empirical results both on the 

intertemporal and cross-sectional relationship. 

 

Table 1. Empirical evidence on idiosyncratic risk and return 
The table presents an overview of the previous empirical literature on the intertemporal and cross-sectional 
relations between idiosyncratic risk and expected stock returns.  FF-3 refers to Fama French (1993) three factor 
model and EGARCH to exponential GARCH introduced by Nelson (1991). 

Study Sample period 
Idiosyncratic risk 
definition 

Measure of expected 
volatility 

Result 

Panel A: Intertemporal relationship 

Goyal & Santa-Clara (2003) 1926-1999 Total variance Lagged Positive relation 

Bali et al. (2005) 1962-2001 Total variance Lagged No relation 

Guo & Savickas (2006) 1963-2002 Total variance Lagged Negative relation 

Panel B: Cross-sectional relationship 

Lintner (1965b) 1954-1963 CAPM residuals Lagged Positive relation 

Lehmann (1990) 1931-1983 CAPM residuals Lagged Positive relation 

Malkiel & Xu (2004) 1975-2000 Total variance Lagged Positive relation 

Spiegel & Wang (2005) 1962-2003 FF-3 residuals EGARCH Positive relation 

Ang et al. (2006) 1963-2000 FF-3 residuals Lagged  Negative relation 

Eiling (2006) 1959-2005 CAPM residuals EGARCH Positive relation 

Huang et al. (2007) 1963-2004 FF-3 residuals EGARCH Positive relation 

Brockman & Schutte (2007) 1980-2007 FF-3 residuals EGARCH Positive relation 

Bali & Cakici (2008) 1963-2004 FF-3 residuals Lagged No relation 

Fu (2009) 1963-2006 FF-3 residuals EGARCH Positive relation 

 

Studies investigating the intertemporal relationship between idiosyncratic risk and future 

stock market return have found contradictory results. Goyal and Santa-Clara (2003) find a 

positive relationship between idiosyncratic volatility3 and future stock market returns. Bali et 

al. (2005) argue that Goyal and Santa-Clara results are mainly driven by small stocks and 

                                                 
3 Goyal and Santa-Clara use average stock variance which is a measure of total risk as a proxy for idiosyncratic 
risk. 
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partly due to a liquidity premium. Guo and Savickas (2006) find a negative relation between 

the market level idiosyncratic risk and expected returns.  

 

The most relevant papers for my study are those, which investigate the cross-sectional 

relationship between idiosyncratic risk and stock returns. Early studies by Lintner (1965b) 

and Lehmann (1990) find a positive relation between idiosyncratic volatility and cross section 

of stock returns. Malkiel and Xu (2004) find a positive relation between idiosyncratic risk and 

cross-sectional stock returns using monthly data. Switching to daily data, Ang et al. (2006, 

2009) find that stocks with high idiosyncratic risk have abysmally low average returns both in 

US and in other G7 countries.  However, Bali and Cakici (2008) show that Ang et al. (2006) 

results are not robust with different estimation methods. They show that results are sensitive  

to (i) data frequency (daily or monthly) used to estimate idiosyncratic volatility, (ii) weighting 

scheme (value- or equally-weighted) used to compute average portfolio returns and, (iii) 

breakpoints (CRSP, NYSE, equal market share) used to sort portfolios into quintiles and (iv) 

using a screen for size, price and liquidity. Furthermore, Huang et al. (2007) and Fu (2009) 

using different methods show that Ang et al. (2006) results are driven by monthly stock return 

reversals. 

 

Using EGARCH method to estimate conditional idiosyncratic volatility, Spiegel and Wang 

(2005), Eiling (2006), Huang et al. (2007) and Fu (2009) find a significantly positive relation 

between idiosyncratic risk and expected returns. Brockman and Schutte (2007) find a positive 

relationship also in the international data. Furthermore, Brockman and Schutte show that the 

size of the idiosyncratic risk premium is related to the level of investor under-diversification. 

Baker and Wurgler (2005) find that conditional on investor sentiment idiosyncratic risk can 

be positively or negatively correlated with the expected return. 

 

To summarize, majority of empirical studies support a positive relation between idiosyncratic 

risk and stock returns. However, with shorter term measures derived from daily return data, 

the relation between idiosyncratic volatility and stock returns is also found to be negative. 

Overall, the empirical evidence seems to support theories that idiosyncratic risk commands a 

risk premium due to under-diversification or omitted risk factors.  The negative relation 

observed with daily data may indicate that in short term may be due to dispersion of analyst 

opinion or due to return reversals. 
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2.3 Risk of financial distress and return 

 

Financial distress has been frequently invoked in the asset pricing literature to explain 

anomalies in the cross-section of stock returns. Value and size effects have been attributed to 

be proxies for financial distress (Chan & Chen, 1991; Fama & French, 1996). Chan and Chen 

(1991) show that the returns of financially distressed firms move together in a way that is not 

captured by the market return. Due to this covariation, the elevated risk of financial distress 

cannot be diversified away and hence investors charge a premium for bearing such risk. 

Similarly, Fama and French (1996) show that book-to-market equity and loadings of high-

minus-low (HML) portfolio are proxy for relative distress. 

 

2.3.1 Theoretical motivation 

 

The premium of distress risk may not be captured by the CAPM if corporate failures are 

correlated either across time or an asset that is not included in the proxy for the market 

portfolio. Campbell et al. (2008) point out that corporate failures may not be captured by 

CAPM if they are correlated with deteriorating investment opportunities, which are related to 

expected returns in Merton’s (1973) ICAPM model. In other words, one can formulate a 

version of ICAPM where default risk affects the investment opportunity set, and hence, 

investors want to hedge against this source of risk (Vassalou & Xing, 2004). 

 

Fama and French (1996) attribute distress risk, of which they use the term “relative distress”, 

to an unmeasured component of the market portfolio, human capital. Workers with 

specialized human capital are more likely to be sensitive to negative shocks to a firm’s 

prospects if the firm is in distress. This is because as a shock is more likely to lead a 

contraction of employment in that firm as firm needs to reduce costs to stay afloat. Thus 

workers with specialized human capital have an incentive to avoid holding their firms stock. 

Furthermore if the variation in distress is correlated across firms, workers have an incentive to 

avoid the stocks of all distressed firms. This can result in distress risk to command a risk 

premium in the expected returns of distressed stocks.  

 

Ferguson and Shockley (2003) argue that distress risk is priced in equity returns because it 

captures the missing beta risk of an equity only market proxy. Betas estimated using an 

equity-only proxy for the market portfolio will understate equity betas, with the error 
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increasing with the firm’s relative degree of leverage and level of financial distress. Hence, 

firm specific variables that correlate with leverage such as market-to-book and size will 

appear to explain returns after controlling for proxy beta, simply because they capture the 

missing beta risk. Using a three factor model incorporating the market return along with 

portfolios formed on variables statistically related to relative leverage and relative distress, 

Ferguson and Shockley (2003) find that the model outperforms the Fama and French (1993) 

three factor model in explaining returns on the 25 size and book-to-market sorted portfolios.  

 

Despite the above plausible theories why distress risk might command a risk premium, low 

returns of distressed stocks documented for example by Dichev (1998) and Campbell et al. 

(2008) present a substantial puzzle as they are in violation of traditional risk-return models. 

Possible explanations for a negative relation of distress risk and expected returns include an 

in-sample phenomenon, skewed returns of distressed stocks, possible rent extraction by 

shareholders and valuation errors by irrational of imperfectly informed investors. 

 

Campbell et al. (2008) note that their results may be driven by unexpected results during the 

sample period between 1981 and 2003. They mention the strong shift of equity ownership 

from individuals to institutions during this period as a possible factor driving the results.4 

Kovtunenko and Sosner (2003) and Da and Gao (2008) document that institutions prefer to 

hold profitable stocks and tend to sell stocks that enter financial distress.  This increased 

selling pressure might be driving the low returns of distressed stocks during the period. An 

anecdotal evidence of this is provided by Campbell et al. (2008) who show that the 

outperformance of safe stocks over distressed ones is concentrated in periods such as late 

1980s, when aggregate institutional ownership was growing rapidly. Campbell et al. (2008) 

also suggest that debtholders may have become more adept at forcing bankruptcy or 

transferring resources from equity holders to debt holders after default, which relates closely 

to third possible explanation, extraction of private benefits.  

 

Second, Campbell et al. (2008)  note that positive skewness may be an explanation for low 

returns of distressed stocks as both individual distressed stocks and their portfolios of 

distressed stocks have returns with strong positive skewness. As explained in connection to 

idiosyncratic volatility, Barberis and Huang (2008) show that investors have a strong 

                                                 
4 U.S. institutional investors as a whole have increased their share of U.S. equity markets from holding 37.2% of 
total U.S. equities in 1980 to 51.4% of total in 2000 then to 61.2% in 2005 (The Conference Board, 2007). 
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preference for positively skewed portfolios, which can result overpricing and negative 

average excess returns.  

 

Third, von Kalckreuth (2005) argues that extraction of private benefits by majority owners 

may offer a significant return component not accounted in share price return. Extraction of 

private benefits for example by buying company’s assets at fire sale prices is more likely 

when a company is unlikely to survive and generate future profits for its shareholders. 

Furthermore, Garlappi et al. (2008) demonstrate that the possible concessions by debtholders 

in distressed renegotiations reduce the effective leverage of equity, leading to lower risk and 

hence lower expected returns for equity, as default risk increases. Garlappi et al. construct a 

bargaining model between equity holders and debt holders in default. In the model, the 

relationship between default probability and equity return is upward sloping for firms where 

shareholders can extract little benefit from renegotiation of debt claims but downward sloping 

for firms with high shareholder advantage. Garlappi et al. (2008) provide also empirical 

evidence based on several proxies for shareholder advantage and find results consistent with 

their model.  

 

Fourth, distress anomaly may stem from investors’ failure to fully evaluate the risk of failure 

(Campbell et al., 2008). Zhang (2007) conducts a joint study of distress risk premia in stock 

and bond returns and finds that higher default probabilities are associated with higher bond 

returns but not with higher stock returns. Furthermore, Zhang does not find evidence of rent 

extraction by shareholders ex ante financial distress in firms with bonds outstanding. Thus he 

concludes that distress anomaly is mainly driven by stock market mispricing from which 

arbitrageurs are unable to benefit due to high trading costs and idiosyncratic volatilities. 

 

To sum up, theories of a positive relation between financial distress and stock returns relate to 

long term hedging concerns of investors. Theories of a negative relation on the other hand 

deal with shorter term fluctuations due to irrational investors or bargaining between different 

stakeholders of the firm.  

 

2.3.1 Empirical evidence  

 

Studies focusing explicitly on distress risk have found contradictory results. Table 2 presents 

an overview of studies using both accounting and market based measures of financial distress.  
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Griffin and Lemmon (2002) find supporting evidence to Fama and French (1996) and show 

that the value premium is most significant among firms with high probability of financial 

distress. Vassalou and Xing (2004) use a default likelihood indicator based on Merton’s 

(1974) structural default model. They show that default risk commands a statistically 

significant, positive risk premium. They also demonstrate that distress effect is concentrated 

in small capitalization and high book to market firms.  

 

On the other hand, Dichev (1998) documents that distressed stock have anomalously low 

returns using Altman’s Z-score and Ohlsson’s O-score as measures for financial distress. The 

results show that financial distress cannot fully explain the book to market effect. Similarly, 

Campbell, Hilscher, and Szilagyi (2008) document that firms with high risk of financial 

distress have delivered anomalously low returns between 1981 and 2003, using a wide range 

of proxies for financial distress. The returns of distressed stocks are particularly low when the 

implied market volatility as measured by VIX index increases, showing that these stocks are 

particularly vulnerable to market wide risk aversion. Campbell et al (2008) find that the 

distress anomaly is stronger for small firms, and for stocks with low book to market, analyst 

coverage, institutional ownership, price per share and liquidity. 

 

Da and Gao (2008) explore the link between financial distress and liquidity. By using the 

default likelihood indicator proposed by Vassalou and Xing (2004), Da and Gao find that high 

returns of distressed stocks are mainly driven by compensation for liquidity shocks. 

Furthermore, they provide evidence that mutual funds tend to decrease their share of 

financially distressed companies.  
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Table 2. Empirical evidence on financial distress and return 
The table presents an overview of previous empirical literature on the relation between financial distress and 
expected stock returns.  

Study Sample period 
Financial distress 
estimation 

Result 

Dichev (1998)  1981-1995 
Altman Z- and Ohlson O-
score 

Negative relation 

Griffin & Lemmon (2002) 1965-1996 Ohlson O-score Negative relation 

Vassalou & Xing (2004) 1971-1999 
Default Likelihood 
indicator 

Positive relation 

Garlappi et al. (2008) 1969-2003 Moody’s KMV No relation 

Da & Gao (2008) 1983-1999 
Default Likelihood 
indicator 

Positive relation 

Campbell et al. (2008) 1981-2003 Econometric logit model Negative relation 

 

Overall, studies using market based measure of financial distress whose main input is the 

volatility of asset returns, tend to find a positive relation between financial distress and stock 

returns. On the other hand, studies using econometric prediction models with purely 

accounting or combined accounting and market data find a negative relation. In both cases the 

abnormal returns are found to be driven by small, illiquid stocks. For value effect, Vassalou 

and Xing (2004) find that value stocks earn higher returns only if their default risk is high 

whereas Campbell et al. (2008) find that low returns of financially distressed firms are 

significantly higher for growth stocks, although the effect is somewhat extreme for stocks at 

either end of the growth-value spectrum.  

 
2.4 Interaction of idiosyncratic risk and financial distress 

 
There is an intuitive reason for idiosyncratic risk and financial distress to be related to each 

other. According to the Merton (1974) model, corporate debt is a risk-free bond less a put 

option on the value of the firm’s assets, with strike price of the face value of the debt. Thus, a 

firm with more volatile equity is more likely to reach the boundary condition for default. 

Based on this argument, Campbell and Taksler (2003) show that idiosyncratic firm-level 

volatility can explain a significant part of cross-sectional variation in corporate bond yields. 

This suggests the possibility that the volatility-return relationship may be due to a distress-

return relationship or vice versa.  
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There is no clear theory about the interaction between idiosyncratic volatility and financial 

distress. If financial distress is priced on the stock returns, idiosyncratic volatility should at 

least partly proxy it as by definition it is a proxy for omitted variables. Furthermore, the two 

concepts are endogenously related according to Merton’s (1974) structural model as 

explained above. Thirdly, both idiosyncratic risk and financial distress may proxy a third 

factor such as skewness of the returns (Boyer, Mitton, and Vorkink, 2007; Campbell et al., 

2008), liquidity (Spiegel and Wang, 2005; Da & Gao, 2008), human specific capital (Eiling, 

2006 and Fama & French, 1996) or exposure to market volatility (Ang et al.,2006, Campbell 

et al. 2008). 

 

Two previous studies have followed Ang et al. (2006) and used lagged idiosyncratic 

volatilities as a proxy for realized idiosyncratic volatility. Interestingly Song (2008) and Chen 

and Chollete (2006) find that after controlling for distress risk, stocks with high idiosyncratic 

volatility earn significantly low returns only in the highest distress risk quintile. Song also 

finds a positive and significant relation at 0.61% per month for the least distressed ones. 

Furthermore, Song finds that financial distress takes away the explanatory power of 

idiosyncratic volatility on cross-sectional returns in Fama-MacBeth (1973) regression. 

 

Chen and Chollete (2006) find that after controlling for distress risk, stocks with high 

idiosyncratic volatility earn significantly lower returns only in the highest distress risk 

quintile. Furthermore Chen and Chollete (2006) follow Ferguson and Shockley (2003) 

framework and control missing assets in the equity only proxy for market portfolio by distress 

and leverage. After this they cannot reject the null hypothesis of zero abnormal returns across 

either idiosyncratic volatility or distress risk portfolios.  
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3. Hypotheses 

 

This section presents the hypotheses that will be tested in this study. The hypotheses are 

divided between the univariate and multivariate tests. I first test the effect of idiosyncratic 

volatility and financial distress on stock returns separately. As previous studies have found 

contradictory results, it is of interest to study the univariate relations within my sample period. 

The second set of hypotheses comprises of the interaction between idiosyncratic risk and 

financial distress. 

 
Based on under-diversification hypothesis of Levy (1978), Merton (1987) and Malkiel and Xu 

(2004) and majority of empirical evidence, I expect to find a positive relation between 

idiosyncratic volatility and excess returns. 

 

H1: There is a positive cross-sectional relation between idiosyncratic volatility and 

excess returns 

 

Based on results by Campbell et al (2008) whose measure of financial distress I use, I expect 

to find a negative relation between financial distress and excess returns.  

 

H2: There is a negative cross-sectional relation between distress risk and excess 

returns 

 

Due to the lack of theoretical background, hypotheses for the combined asset pricing impact 

of idiosyncratic volatility and financial distress are based on previous empirical results. Both 

Song (2008) and Chen and Chollete (2006) find that after controlling for distress risk, the 

relation between idiosyncratic risk and stock returns is positive (negative) given low (high) 

risk of financial distress. Furthermore, both studies find that financial distress seems to have 

more persistent effect on asset prices than idiosyncratic volatility. As my measure of 

idiosyncratic volatility differs from the daily lagged estimate used by Song and Chen and 

Chollete, it is not clear whether the same dynamics will hold. Nevertheless, as evidence and 

intuition suggest, financial distress should have a more fundamental impact on asset prices 

than idiosyncratic volatility. Thus, I expect that after controlling for financial distress, there is 

no relation between idiosyncratic volatility and stock returns.  
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H3a: After controlling for financial distress, there is no relation between idiosyncratic 

volatility and excess returns 

 

Based on the same reasoning, I expect that controlling for idiosyncratic risk does not remove 

the distress risk effect.   

 

H3b: After controlling for idiosyncratic volatility, there is a negative relation between 

financial distress and excess returns 
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4. Data and methodology 

 

This chapter introduces the data and measures used to estimate idiosyncratic volatility and 

financial distress. Both estimates are naturally model-specific and thus using sophisticated 

measures for both variables is important. I first describe the data used in the study.  In the 

second section I describe the models used to estimate expected and realized idiosyncratic 

volatility.  Third section introduces financial distress measure and finally in section five I 

analyze the descriptive statistics. 

 

4.1 Outline of the sample 

 

The sample consists of all U.S. companies listed in NYSE, AMEX or NASDAQ between 

January 1971 and December 2008. The beginning of the sample period is the same as in Song 

(2008) and helps to avoid having too few stocks in each portfolio (discussed in more detail 

later).  I obtain the stock return and market capitalization data from Center for Research in 

Security Prices (CRSP). All accounting data is collected from the COMPUSTAT database. 

The firms are matched between the databases using CUSIP identifiers. I use CRSP value 

weighted index with distributions including NYSE, AMEX and NASDAQ stocks. The Fama-

French 3-factor data and momentum factor for Carhart (1997) 4-factor model are downloaded 

from Kenneth R. French’s Web site.5 The full sample with required accounting data and 

matching CRSP market data consists of 18,795 unique firms. 

 

4.2 Measures of idiosyncratic volatility 

 

Earlier studies have employed different methods to estimate idiosyncratic risk. Studies 

focusing on intertemporal relationship have tended to use total variance as a proxy for 

idiosyncratic risk whereas cross-sectional studies have used CAPM residuals Fama French 

three factor model residuals or total variance (see Table 1). Recently, Fama French residuals 

have been the most frequently used measure.  

 

Attention needs to be also put on how to estimate expected idiosyncratic volatility. Ang et al. 

(2006) use the lagged one month volatility of excess returns relative to Fama French three 

                                                 
5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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factor model to estimate idiosyncratic risk. The volatility is calculated as standard deviation of 

daily returns not explained by the three factor model. On the other hand, Fu (2009), shows 

that since idiosyncratic volatilities are time varying, the one month lagged estimate may not 

be appropriate proxy for the expected idiosyncratic volatility next month. Fu shows that 

during the period from July 1963 to December 2006, the average first order autocorrelation of 

individual stock idiosyncratic volatilities is only 0.33 and Dickey-Fuller tests show that for 9 

out of 10 stocks, the idiosyncratic volatility does not follow a random walk process. Fu 

proposes the use of autoregressive conditional heteroskedasticity process (ARCH) to capture 

the time varying property of idiosyncratic risk. Furthermore, Bali and Cakici (2008) compare 

the conditional idiosyncratic volatility estimates GARCH (1, 1) and EGARCH (1, 1) models 

with different data frequencies. They show that the idiosyncratic volatility based on past 

monthly returns provides a more accurate prediction of conditional idiosyncratic volatility 

than measure based on daily return both in-sample and out-of-sample. 

 

4.2.1 Expected idiosyncratic volatility 

 

ARCH models introduced by Engle (1982) have proven to be useful to describe the temporal 

dependence of stock returns given the lack of any structural economic theory explaining the 

variation in higher order moments. An important contribution of ARCH models is the 

distinction between the conditional and unconditional second order moments. While the 

unconditional covariance matrix may be may be invariant in time, the conditional covariances 

and variances can depend on previous returns. A good overview of ARCH/GARCH models is 

provided by Bollerslev et al. (1994).  

 

ARCH models enable to capture empirical regularities in asset prices including leptokurtosis, 

i.e. thick tails of the distribution (Mandelbrot, 1963; Fama, 1965) and volatility clustering 

(Mandelbrot, 1963; French et al., 1987). Furthermore, asymmetric ARCH models such as 

Nelson's (1991) EGARCH and Glosten, Jagannathan and Runkle’s (1993) GJR GARCH 

enable to model the  so-called “leverage effect” first noted by Black (1976), which refers to 

the tendency for past stock returns to be negatively correlated with future changes in stock 

volatility. In other words, past positive and negative returns have an asymmetric impact on 

future stock volatility However, Black (1976) argues that the observed effect is too large to be 

explained by leverage alone and this conclusion is supported by the empirical work of 

Christie (1982) and Schwert (1989).  
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Several recent papers have used EGARCH to model conditional idiosyncratic volatility. The 

advantage of EGARCH models is that they do not need to impose restrictions on parameters 

to avoid negative variances, which may unduly restrict the dynamics of the conditional 

variance process. Pagan and Schwert (1990) test a number of different GARCH models on 

monthly U.S. stock returns and find that Nelson’s EGARCH is overall the best model. Engle 

and Ng (1993) test multiple models with Lagrange Multiplier tests and also find that Nelson’s 

model captures well the asymmetry of conditional volatilities.  

 

In this study, I follow previous literature and model conditional idiosyncratic volatility with 

Nelson’s EGARCH model. As a robustness check to test if the relation between conditional 

idiosyncratic volatility and stock returns depends on the choice of the volatility model, I 

employ GARCH model introduced by Bollerslev (1986) and GJR-GARCH introduced by 

Glosten et al. (1993). Idiosyncratic volatility is defined relative to Fama French three factor 

model, which previous papers have tended to prefer.  

 

The first step in the estimation is to calculate a measure for the realized idiosyncratic 

volatility. I follow recent literature and choose FF-3 model to describe the monthly return 

process:      

��� − ��� = �� + �� (��� − ���) + �� ���� + ℎ� ���� + ���  ���~ (0, #��$). 
(2) 

 

The idiosyncratic return is the residuals from the regression, which are then fitted to 

(E)GARCH models. The distribution of the residual ��,� is assumed to be normal with the 

mean of zero and the variance of #��$ .  

 

The specification for EGARCH(1, 1) is as follows: 

ln #�$ = ' + � ln #�,�(�$ + � )Θ +��(�#�(�, + � -.��(�#�(�. − /2/2 34 (3) 

where '� is long term return variance and �� and �� are the weights assigned to  the squared 

return ��,�(5$  and period t-1variance rate  #�,�(5$ , respectively. Θ is the weight of the sign effect 

and � is the weight for the magnitude effect. I take the square root of conditional variance rate 

to get a standard deviation of the expected volatility. Later in the discussion, I refer to the 

EGARCH(1,1) estimate of the expected idiosyncratic volatility as EGARCH_IV. 

The equation for GARCH(p,q) can be written as follows:    
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where '� is long term return variance and �� and �� are the weights assigned to  the squared 

return ��,�(5$  and period t-1variance rate  #�,�(5$ , respectively. The lag lengths, p and q mean 

that previous t-p observations the squared return and t-q observations of the conditional 

variance rate are used to estimate the conditional variance rate at t. For a stationary 

GARCH(1,1)  process, the weights α and β in equation (3) must sum up to less than 1 so that 

the long-term variance rate '�  is positive. Later in the discussion, I refer to the GARCH(1,1) 

estimate of the expected idiosyncratic volatility as GARCH_IV. 

 

I also estimate GARCH(p,q) in which p and q are between 1 and 3. This yields nine different 

GARCH models: GARCH (1,1), GARCH (1,2), GARCH (1,3), GARCH (2,1), GARCH (2,2), 

GARCH (2,3), GARCH (3,1), GARCH (3,2), and GARCH (3,3).  I follow similar procedure 

by Fu(2009) and select the model with the lowest Akaike Information Criterion (AIC)6.  Later 

in the discussion, I refer to the GARCH(p,q) estimate of the expected idiosyncratic volatility 

as GARCHpq_IV. 

 

The equation for GJR(1,1) can be written as follows:    #�$ = ' + ���(5$ + ��(�,�(���(5$ + �#�(5$ , (5) 

where �(�(� is a dummy that takes value 1 when ��(5 is negative and 0 when ��(5 is positive 

and � the coefficient for asymmetric impact of negative innovations. GJR model allows an 

easy way to test the leverage effect by testing the significance of �. Over the full sample, the 

leverage effect is statistically significant at 5% level in 32% of the firms. Later in the 

discussion, I refer to the GJR(1,1) estimate of the expected idiosyncratic volatility as GJR_IV. 

 

The results of the GARCH models are generated using Ox console version 6.00 (Doornik, 

2007) with G@RCH 4.0 package (Laurent & Peters, 2002).7  I use maximum likelihood 

estimation to estimate the parameters in the equations (3) and (4). The maximum of the log 

likelihood function is found by using the second derivates of the of the log likelihood 

function.  

 

                                                 
6 AIC is calculated as(−2; + 2<)/ , where l is the log-likelihood of the GARCH estimation, k is the number of 
parameters estimated and N is the number of observations. 
7 An edited R interface code to use Ox via R and Ox code for the GARCH estimation are provided by prof. Ruey 
S. Tsay. Downloadable at http://www.math.stevens.edu/~ifloresc/Teaching/2007-2008/index641.html. 
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The GARCH model parameters for each stock are estimated using available full period data 

from 1959 to 2009. This implies all available monthly return data for more than 99% of the 

firms in my sample. This method implicitly assumes that the parameters remain stable over 

time and also induces a possible look-ahead bias. However, the seriousness of look-ahead bias 

is likely minor by judging from previous empirical research. French, Schwert, and Stambaugh 

(1987) use the full period data to estimate their GARCH model parameters and show that 

assuming time-varying parameters does not change their results.  Furthermore, Fu (2009) 

finds the same results for the idiosyncratic volatility and stock returns relation by using the 

full period data and by using only prior return data.  

 

4.2.2 Realized idiosyncratic volatility 

 
I measure realized idiosyncratic volatility to test the accuracy of the expected idiosyncratic 

volatility measures against realized volatility. Furthermore, as robustness check I explore the 

interaction of financial distress and realized idiosyncratic volatility. This is of interest as 

recent studies have found a positive contemporaneous relation between realized idiosyncratic 

volatility and expected returns (Huang et al., 2008; Fu, 2009). 

 

Following Ang et al. (2006) and Fu (2009), I measure realized idiosyncratic volatility by 

regressing daily excess returns each month to daily Fama-French factors, and calculate 

volatility as standard deviation of residuals, multiplied by the square root of trading days to 

get a monthly figure. Hence the realized idiosyncratic volatility measure, R_IV is defined as: 

�(=>?;)�,� = /@�,� �AB(��), (6) 

where n is the number of trading days of firm i in month t and �� is the residual from Fama 

French three factor regression .  Similar to Fu (2009) I require a minimum of 15 trading days 

per month for which CRSP reports a return.  

 

To test the results of Ang et al. (2006) and Song (2008) within my sample, I also use a lagged 

measure in my robustness checks.  This lagged measured of idiosyncratic volatility, which is 

simply R_IV lagged by 1 month, is referred in the later discussion as L_IV. 



31 
 
4.3 Measures of financial distress 

Recent work on the distress premium has tended to use either traditional risk indices such as 

the Altman (1968) Z-score or Ohlson (1980) O-score, structural default model of Merton 

(1974) or the practitioner model Moody’s KMV (Crosbie & Bohn, 2001) (see Table 2). As 

using a reasonably sophisticated measure for financial distress is important for my analysis, I 

adopt the reduced form empirical model introduced by Campbell et al. (2008) to measure the 

distress risk for a given stock. Campbell et al. (2008) demonstrate that combining Moody’s 

KMV or Merton’s distance to default models to their model adds relatively little explanatory 

power. Furthermore, Campbell’s model is driven less by volatility whereas in other models 

volatility is the most important variable. Thus choosing Campbell’s econometric model 

reduces the possible endogeneity problem in the study of relation between idiosyncratic 

volatility and financial distress as idiosyncratic volatility is the major component of total 

volatility. Also Song (2008) uses Campbell’s econometric model to study the interaction 

between financial distress and idiosyncratic volatility.  

 

Campbell et al. (2008) construct an empirical measure of financial distress spanned by various 

accounting and market data. To construct the model, they use the monthly bankruptcy and 

failure indicators from Kamakura Risk Information Services that record the financial failures 

in the U.S. market between 1963 and 2003. By putting more emphasis on the market value 

based accounting, Campbell et al. (2008) manage to improve the Shumway (2001) bankruptcy 

model. 

 

For each stock each month, I calculate the following list of prediction variables which are 

combined into a measure of distress (D).  NIMTAAVG,  twelve month geometrical average 

of net income over market-valued total assets; TLMTA, total liability over market-valued 

total assets; EXRETAVG, twelve month geometrical average of log excess return over S&P 

500 index; SIGMA, past three months daily return volatility; RSIZE, log ratio of market cap 

with respect to S&P 500 total market cap; CASHMTA, ratio cash and short-term assets over 

the market-value total assets; MB, market-to-book ratio; and PRICE, truncated log price at 

$15.  The weights of the geometrical averages for NIMTAAVG and EXRETAVG are 

determined so that the weights are halved each quarter.  
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For accounting data, I align each company’s quarterly data appropriately with the calendar 

months, i.e. I use the last month of the calendar quarter for which the quarterly report is dated, 

and then lag accounting data forward by 2 months. This adjustment ensures that accounting 

data are available at the beginning of the month over which the portfolios are sorted based on 

distress measure. The book value of equity is adjusted to eliminate outliers by the procedure 

suggested by Cohen et al. (2003).  That is, I add 10% of the difference between market and 

book equity to the book value of total equity, thereby increasing book values that are 

extremely small and probably mismeasured. Furthermore, all variables are winsorized at the 

5th and 95th percentiles of their pooled distributions across all firm-months to limit the 

influence of outliers. The construction of the variables is described in detail in Appendix 1.  

 

The logit model used to obtain the estimated distress probability for each individual stock is: 

C�(�DE�,� = 1G = 11 + expD−B�,�(�G , 
@K 

B�,�(� = � + �L�,�(� 

(7) 

 

      

where Y represent the incident of financial failure, xi,t  the set of prediction variables 

described earlier and α and β are obtained directly from Table IV in Campbell et al. (2008)8. 

Following Campbell et al. (2008) and Song (2008) I choose the 12 months ahead default 

prediction regression. Variable Di,t-1 that is a linear combination of default prediction 

variables is itself a measure of distress risk, and positively correlated with the forecasted 

probability of failure Pt-1(Y i,t). To estimate the probability of bankruptcy in 12 months, I 

calculate Di,t-1  as: B�,�(� = −9.164 − 20.264 × NIMTAAVG + 1.416 × TLMTA − 7.129 × EXRETAVG +1.411 × SIGMA − 0.045 × RSIZE − 2.132 × CASHMTA + 0.075 × MB −0.058 × PRICE 

(8) 

 

(Table IV, Campbell et al., 2008) 

      

A point worth of mentioning here is the difference in time spans of the two studies. Campbell 

et al. (2008) measure the distress risk between 1963 and 2003, while my sample period from 

1971 to 2008.  This induces a look-ahead bias in my tests for 1971-2003, while on the other 

hand, the accuracy of the distress prediction model outside the original sample period may not 

                                                 
8 Campbell et al. (2008) use proprietary bankruptcy and failure indicators from Kamakura Risk Information 
Services. Thus re-estimation of their model is not feasible in my thesis.   
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be as good as in the sample. However, Song (2008) employs the same methods and finds that 

the negative relation between distress risk and stock returns is also robust in the subsample of 

1999 to 2006, with distress measure estimated using bankruptcy and failure data up to 1998. 
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5. Tests 

 

This chapter introduces the test used to evaluate the asset pricing impact of idiosyncratic 

volatility and financial distress. I employ two commonly used approaches: cross-sectional 

Fama-MacBeth (1973) regression and a sort of stocks into portfolios based on the variables of 

interest. Both approaches have some advantages and drawbacks. Combined, they provide an 

useful cross check. 

 

Sorts offer a simple non parametric and easily interpretable way to analyze stock returns 

across the spectrum of the variable in question while imposing no linear restrictions. A 

potential drawback with sorts is the choice of weighting scheme to calculate portfolio returns 

and the focus on hedge portfolio obtained from long-short position in extreme deciles. 

Equally weighted hedge portfolios may be dominated by extremely small stocks, thus giving 

an unrepresentative picture of the effect of the anomaly. On the other hand, using value 

weighted returns may lead the returns to be dominated by a few big firms. Sorts are also 

difficult for drawing conclusion about whether the variables contain unique information about 

average returns as opposed to multiple regression slopes which provide direct estimates of 

marginal effects. Finally, sorts are inadequate for examining the functional form of the 

relation between stock returns and possible pricing variable. (Fama & French, 2008) 

 

The main advantage of the regression approach is as mentioned the direct interference of 

marginal effects of the variable within the whole sample by imposing an functional form on 

the relation between explanatory variables and returns. The assumption of linear relationship 

may be however incorrect. Regression can be also dominated by small companies because of 

their large number as regression gives equal weight to all companies. As returns of individual 

stocks can be extreme, influential observations problem may be present in cross-sectional 

regressions. In addition, high correlation of explanatory variables, i.e. multicollinearity, can 

invalidate the estimates for the marginal effects of individual variables. To investigate if there 

are high correlations between explanatory variables, I compute cross-sectional Pearson 

correlation in connection to the regression analysis. Correlations also provide an univariate 

test between an explanatory variable and stock returns. 
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5.1 Cross-sectional correlations and regressions 

 

I investigate the univariate linear relationship between idiosyncratic volatility, financial 

distress and stock returns with cross-sectional Pearson correlations. I estimate the cross-

sectional correlations for the variables each month and then calculate the time series means of 

the correlation coefficients. Correlation matrix is also useful in detecting correlation between 

regression variables, which may induce a problem of multicollinearity in the regression 

results.  

 

To control for various factors known to affect the cross-sectional returns and to provide a 

direct comparison of the impact of financial distress and idiosyncratic volatility on stock 

returns, I employ the two-stage Fama-MacBeth (1973) regression analysis. For each month, I 

regress the excess return of all firms onto forecasted idiosyncratic volatility, distress risk in 

previous month and a battery of control variables know to affect the cross-sectional stock 

returns. These factors include market beta, size, book-to-market, momentum,  liquidity and 

short term reversal effects.  

 

For the financial distress, I choose the Di,t-1 measure here instead of the probability of 

financial distress as does Song (2008). This is because the probabilistic measure of failure is 

bounded between 0 and 1, which does not expand the real line; in addition, the forecasted 

failure probability heavily clusters close to 0. As a result, I turn to the more spread-out 

alternative distress measure Di,t-1 for the purpose of the Fama-MacBeth regression analysis. 

 

Market beta (BETA) is obtained from the full period regression of equation (2) for each firm 

and then assigned to each month. Firm size is measured by the market value of equity (MV) in 

the previous month. For book-to-market in the previous (BEME), book equity is calculated as 

defined earlier in connection to distress risk and lagged 2 months to ensure that the 

information is available prior the returns. Momentum effect is controlled by calculating the 

cumulative return from month t-7 to t-2 (RET(-2 ,-7)). Liquidity is measured by average share 

turnover (TURN) in the past 36 months from t-38 to t-2 as in Chordia et al. (2001).  I also 

calculate the coefficient of variation9 (CVTURN) of the past 36 months’ turnovers.  Fu (2009) 

uses the same measures of momentum and liquidity. Furthermore, to control for possible short 

                                                 
9 Coefficient of variation is defined as the ratio of the standard deviation to the mean. 
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term return reversal effect, a one month lagged return (RET(-1)) is added to the regression. To 

mitigate the impact of outliers, all explanatory variables in the regression, except Dt-1 are 

winsorized at 0.5% and 99.5%. Furthermore, extreme returns of over 300% are excluded.  

 

I use the Fama and MacBeth (1973) regression to control the cross-sectional correlation of the 

residuals. I run the following cross-sectional regression: 

��� = �g� + h �i�ji��
k

i9� + ��� ,   = = 1,2, … ,  � ,   m = 1,2, … , A, (9) 

 

where Rit is the realized return on stock i in month t. Xkit are the explanatory variables of 

cross-sectional expected returns described above. Nt denotes the total number of stocks in 

month t, which can vary from month to month. T is the length of the time period and equals 

456 in this study.  In other words, in each month, I regress the available monthly returns of all 

firms to the explanatory variables and hence obtain time series for these variables.  

 

To obtain the final estimate �ni, I use the time series means of �ni� as expected values, and 

divide the expected value by coefficients variance to test whether these are significantly 

different from zero, i.e. I perform standard t-tests. Formulas for expected value and variance 

are: 

�ni = 1A h �ni�o
�9�  (10) 

�
�(�ni) = ∑ (�ni� − �ni)$o�9�A(A − 1)  (11) 

 

The t-test is the average slope divided by its time-series standard error, which is the square 

root of the variance of �nidivided by T (/�
�(�ni)/A).  

 

To control for the potential dominance of small stocks in the regression, the main results of 

the regression are repeated separately for micro, small, large and all but micro stocks as in 

Fama and French (2008). The breakpoints to separate these groups are 20% and 50% 

percentiles of market capitalization for NYSE stocks.10 The separate regression for different 

size groups also enable difference of means tests on the average slopes to provide formal 

                                                 
10 Breakpoint data downloaded from Professor Kenneth Frenc’s homepage: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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inferences about whether the impact of idiosyncratic volatility and financial distress differ 

across size groups 

 

5.2 Returns analysis of portfolios 

 

I form portfolios to study the asset pricing impact of idiosyncratic and distress risk to stock 

returns. Portfolio strategy offers a simple non parametric and easily interpretable way to 

analyze stock returns, imposing no linear restrictions.  

 

I start my analysis by exploring the effect of idiosyncratic and distress risk separately on stock 

returns. For the univariate portfolio analysis, I sort all stocks based on the conditional 

expectation of idiosyncratic volatility in month t (distress risk in month t-1). I then form 5 

portfolios at the end of month t-1 and hold these portfolios for 1 month. I also report a long-

short portfolio, which goes long for the highest risk portfolio and shorts the lowest risk 

portfolio. Because the total number of listed companies is not constant through time, the 

number of firms included in each portfolio can vary from month to month. I also perform a 

finer sort with 10 portfolios.  

 

To study the interaction of the asset pricing impact between financial distress and 

idiosyncratic volatility on stock returns, I form 25 sequentially sorted portfolios. I first sort 

stocks into 5 quintiles based on their level of distress, and within these quintiles further sort 

stocks based on their idiosyncratic volatility.  I also perform the sorts the other way round. As 

a robustness check, I perform independent sort where I first sort five idiosyncratic volatility 

and distress portfolios separately and then match each firm month observation to 

corresponding distress / idiosyncratic volatility portfolio.  

 

To calculate abnormal returns of the formed portfolios, I regress the monthly excess returns 

over risk free rate of each portfolio to a simple market model, Fama-French (1993) three-

factor model and Carhart (1997) four factor model.11 The regression equations for each model 

are respectively: 

                                                 
11 The Fama-French and Carhart benchmark factors, SMB, HML and MOM are constructed from six size/book-
to-market benchmark portfolios that do not include hold ranges and do not incur transaction costs. Rm – Rf, the 
excess return on the market, is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks obtained 
from CRSP minus the one-month Treasury bill rate. 
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 �p� − ��� = �p + �p (��� − ���) + �p�  (12) 

�p� − ��� = �p + �p (��� − ���) + �p ���� + ℎp ���� + �p�  (13) 

�p� − ��� = �p + �p D��� − ���G + �p ���� + ℎp ���� + qp �r�� + �p� , (14) 

 

where Rjt is the monthly return on portfolio j, r ft is the risk-free rate, Rmt is market return, 

SMBt is the difference between the returns on small and large firm, HMLt is the difference 

between the returns on low and high market-to-book firms, and MOMt is the difference 

between the returns on high and low prior return firms in a period from t-12 to t-2. Finally, εjt 

is the average monthly abnormal return of portfolio j.  

 

In robustness checks, I additionally construct a 5 factor model including a short-term return 

reversal factor similar to Huang et al. (2008). Huang et al. (2008) shows that omission of 

previous month’s stock return can lead to a negatively biased estimate of relation between 

idiosyncratic risk and expected stock returns especially when using volatility estimate derived 

from daily returns. The additional return reversal factor, “winners minus loser” (WML) is 

formed by taking a long position in past month’s winners (the 10% best performing stocks) 

and short position in the past months’ losers ((the 10% worst performing stocks).12 Hence the 

5 factor model is:  

�p� − ��� = �p + �p D��� − ���G + �p ���� + ℎp ���� + qp �r�� + �s���
+ �p� , 

(15) 

 

As I investigate the returns of distressed stocks, the returns of stocks that are delisted need 

special attention. If available, I use delisting returns reported by CRSP for the final month of 

the firm before it disappears from the database. I assume that the proceeds of delisted stocks 

are reinvested to the remaining stocks in the portfolio. Assuming that the portfolio sells 

distressed stocks at the end of the month inflicts an upward bias to the portfolio return as 

documented by Shumway and Warther (1999). However, this is unlikely to be serious as 

Campbell et al. (2008) results remain the same when not using CRSP delisting returns.  

 

  

                                                 
12 The portfolios are downloadable from Professor Kenneth French’s homepage: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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6. Analysis and empirical results 

 

In this section I present the main empirical findings and results of this study. In the first part I 

analyze the time series averages on my idiosyncratic volatility and financial distress 

measures. The second part includes the results of cross-sectional Pearson correlations and 

Fama Macbeth regressions. In third section I present the results of portfolios sorted based on 

idiosyncratic volatility and financial distress, including both univariate and multivariate sorts. 

The second part includes also various robustness checks relating to the portfolio sorts.  

 

6.1 Time series development of idiosyncratic volatility and financial distress 

 

This section presents the time series development of aggregated measures of idiosyncratic 

volatility and financial distress during the sample period. Figure 1 shows the time series of 

value weighted average level of expected idiosyncratic volatility EGARCH_IV and realized 

idiosyncratic volatility R_IV. Over the whole sample period, average idiosyncratic volatility 

has almost doubled, though there is no clear upward trend as observed by Campbell et al. 

(2001) in their study covering years from 1962 to 1997. An upward trend can be observed 

from 1971 to 2000, but from 2001 to 2007 the level of idiosyncratic volatility is declining 

until rising again steeply from fourth quarter of 2007 onwards. Both EGARCH_IV and R_IV 

tend to be higher during or right before NBER dated recessions, illustrating the cyclical nature 

of idiosyncratic volatility and the stock market reaction leading the general economic 

development.  Equally weighted average idiosyncratic volatilities plotted in Figure 2 behave 

similarly. The strong spike in EGARCH_IV in both models in 1973 coincides with the stock 

market crash associated with devaluation of US dollar after the collapse of Bretton Woods 

system. The asymmetric effect of devaluation to solely domestic and international firms in 

NYSE, NASDAQ and AMEX combined with high overall volatility could be a likely cause 

for the spike in idiosyncratic volatility as measured from monthly returns.  

 

The value weighted time series average of EGARCH_IV is 9.1% and for R_IV 5.6 %. The 

equally weighted time series averages are 16.3% and 12.7%, correspondingly. I use monthly 

returns to estimate EGARCH_IV, while R_IV is based on daily returns, which explains a part 

of the difference between the measures. When stocks experience small but persistent positive 

or negative daily returns, R_IV is low whereas EGARCH_IV should go up. Indeed, the 



40 
 
difference between EGARCH_IV and R_IV is highest during relatively stable expansionary 

periods like 2003-2007 when the volatility of R_IV is low whereas during turbulent times 

such as 2008, R_IV is close or higher than EGARCH_IV. Due to the same reason, 

EGARCH_IV is more persistent than R_IV. 

 
Figure 1. Expected versus realized aggregated value weighted idiosyncratic volatility. The figure shows the 
time-series of level of expected, EGARCH_IV, and realized idiosyncratic volatility, R_IV, from January 1971 to 
December 2008. Shaded areas correspond to NBER recessions.  

 

 
Figure 2. Expected versus realized  aggregated equally weighted idiosyncratic volatility. The figure shows 
the time-series of level of expected, EGARCH_IV, and realized idiosyncratic volatility, R_IV, from January 1971 
to December 2008. Shaded areas correspond to NBER recessions.  
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Figure 3 plots the value weighted average level of distress risk (P_vw) and equally weighted 

average level of distress risk (P_ew) during the sample period from 1971 to 2008. 

 

The value weighted average of the predicted failure rates is 0.036% over the whole period, 

and the equally weighted average is 0.083%13. The difference reflects the predominance of 

small firms among the distressed stocks Both measures tend to rise during NBER recessions. 

Both measures are also at their highest point during at the end of the sample period in 

December 2008, reflecting the severity of the current recession.     

 
Figure 3. Value and equally weighted aggregated level of distress risk.  The figure shows value and equally 
weighted averages of the marginal probability of bankruptcy or failure (Pt-1) from January 1971 to December 
2008. Shaded areas correspond to NBER recessions. 

 

6.2 Cross-sectional correlations and regressions 

 

This section reports the results of simple Pearson correlations and cross-sectional regressions. 

Table 3 presents the descriptive statistics of the pooled sample.  The statistics are reported for 

all available observations per each variable. The mean monthly return in my sample period is 

1.04%. The mean expected idiosyncratic volatility (EGARCH_IV) is 14.72% and the mean 

                                                 
13 Note that these probabilities are conditional probabilities of firm defaulting at a particular date, 12 months 
forward, and not a cumulative probability of failure in 12 months.  
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realized idiosyncratic volatility (R_IV) is 12.25%. The mean BETA is 1.01 and median is 

0.97.  

 

Table 3. Descriptive Statistics of regression variables 
The table reports the descriptive statistics of regression variables. RET is the monthly raw return reported in 
percentage. BETA is the stock beta estimated from the full period regression for each firm. MV is the market 
value of equity in the previous month. Book-to-market equity (BEME) is the latest available quarterly book 
equity divided by market value of equity in the previous month.  R_IV is the realized idiosyncratic volatility. 
GARCH_IV (EGARCH_IV) is the conditional idiosyncratic volatility estimate by GARCH(1,1) 
(EGARCH(1,1)) model. The measure of financial distress (Dt-1) is measured as in Campbell et al. (2008). RET(-
2,-7) is the cumulative return from month t-7to t-2. TURN is the average turnover and CVTURN is the 
coefficient of variation of turnovers in the past 36 months. MV, BEME, TURN and CVTURN are as the natural 
logarithm due to their high skewness. All variables except RET and Dt-1 are winsorized at 0.5% and 99.5% 
levels. Observations with monthly returns greater than 300% are deleted. The sample period is from 1971 to 
2008. 

Variable Mean Median Std. Dev. Skew Min Max Observations 

RET 1.04 0.00 17.35 2.19 -100.00 300.00 2,337,190 

R_IV 12.25 6.52 15.43 1.28 2.08 30.01 2,338,065 

GARCH 14.60 11.58 14.69 1.16 2.97 28.70 2,160,969 

EGARCH_IV 14.72 11.18 15.32 1.23 5.04 30.54 2,071,079 

Dt-1 -7.47 -7.60 0.90 0.84 -10.24 -2.80 1,921,534 

BETA 1.01 0.97 0.75 0.59 -6.34 9.45 2,337,190 

ln(MV) 4.49 4.35 2.13 0.29 -0.24 10.50 2,340,100 

ln(BEME) -0.50 -0.45 1.02 0.09 -3.98 3.72 1,921,534 

RET(-2, -7) 4.93 2.66 31.29 0.41 -49.02 74.89 2,232,368 

ln(TURN) -2.97 -2.93 1.05 -0.13 -4.95 -1.18 2,623,217 

ln(CVTURN) -0.39 -0.38 0.41 -0.03 -1.14 0.36 2,592,383 

  

6.2.1 Simple correlations 

 

I start the cross-sectional regression test by investigating the correlations between the 

variables, which can be regarded as a univariate tests. Table 4 presents the correlation matrix. 

I compute cross-sectional Pearson correlations each month and report the time series means of 

the correlations with t-statistics. 

 

The simple correlation between monthly stock returns and distress is risk is negative and 

significant at 5% level, which is consistent with Campbell et al. (2008). Correlation of 

GARCH_IV with stock returns is not significant but EGARCH_IV does correlate positively 

with stock returns and the correlation is significant at 1% level. Furthermore, realized 

idiosyncratic volatility, R_IV exhibits a significant positive correlation with RET but L_IV has 

a significant negative correlation, which are consistent with the results of Fu (2009) and Ang 
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et al. (2006).  The results of the Pearson correlation thus imply a positive relation between 

idiosyncratic risk and return. EGARCH_IV seems to outperform GARCH_IV in predicting the 

expected value of idiosyncratic volatility in the next month.  

 

Consistent with the findings in the earlier literature, the returns are positively related to BEME 

and past 6 months returns but negatively correlated with previous month’s returns and 

liquidity as measured by average share turnover TURN. Size correlates negatively with 

returns but is not statistically significant as is the case with other liquidity measure, CVTURN.  

As shown by Fama and French (1992), the relation between stock returns and market BETA is 

close to zero and statistically insignificant. Conditional idiosyncratic volatilities as measured 

by EGARCH_IV are positively related BETA and two liquidity variables and negatively 

related to size and book-to-market, which is consistent with Fu (2009). The same applies also 

for R_IV. The correlation between EGARCH_IV or R_IV and lagged returns RET(-2, -7) and 

RET(-1) is surprisingly negative, implying that past low returns lead to lower idiosyncratic 

volatility. Based on finding by Black (1976) that total volatility is negatively correlated with 

past stock returns, one could have expected that the “leverage-effect” would also apply for 

idiosyncratic volatility.   

 

Correlation between distress measure Dt-1 and GARCH_IV is quite high at 0.45, which may 

pose multicollinearity problem for the regression results. The high correlation also indicates 

that the two measures are closely related as explained in the literature review. The correlation 

between lagged idiosyncratic volatility and realized idiosyncratic volatility is as high as 0.79, 

indicating persistence in idiosyncratic volatility. This differs somewhat from the results of Fu 

(2009) who find that idiosyncratic volatilities do not follow a random walk process. 
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Table 4. Correlation matrix of regression variables 
The table presents cross-sectional Pearson correlations for regression variables. RET is the monthly raw return reported in percentage. BETA is the stock beta estimated from 
the full period regression for each firm. MV is the market value of equity in the previous month. Book-to-market equity (BEME) is the latest available quarterly book equity 
divided by market value of equity in the previous month. R_IV is the realized idiosyncratic volatility and L_IV is the lagged idiosyncratic volatility by one month. 
GARCH_IV (EGARCH_IV) is the conditional idiosyncratic volatility estimate by GARCH(1,1) (EGARCH(1,1)) model. The measure of financial distress (Dt-1) is measured 
as in Campbell et al. (2008). RET(-2,-7) is the cumulative return from month t-7to t-2 and RET(-1) is return on the previous month. TURN is the average turnover and 
CVTURN is the coefficient of variation of turnovers in the past 36 months. MV, BEME, TURN and CVTURN are as the natural logarithm due to their high skewness. All 
variables except RET and Dt-1 are winsorized at 0.5% and 99.5% levels. Observations with monthly returns greater than 300% are deleted. The sample period is from 1971 
to 2008. For each variable of interest. ***, **, and * indicate that the estimate is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

 R_IV L_IV 
GARCH_I

V 
EGARCH_

IV 
Dt-1 BETA ln(MV) 

ln 
(BEME) 

RET 
(-2, -7) 

RET(-1) ln(TURN) 
ln(CVTUR

N) 

RET 
0.054*** -0.017*** -0.012 0.018** -0.017* -0.001 -0.006 0.032*** 0.026*** -0.041*** -0.024*** -0.003 

R_IV 
 0.794*** 0.407*** 0.358*** 0.333*** 0.084*** -0.300*** -0.003 -0.113*** -0.036*** 0.081*** 0.197*** 

L_IV 
  0.427*** 0.361*** 0.345*** 0.084*** -0.297*** -0.011* -0.117*** 0.054*** 0.082*** 0.198*** 

GARCH 
_IV 

   0.789*** 0.451*** 0.188*** -0.511*** -0.138*** - 0.083*** 0.018* 0.273*** 0.353*** 

EGARCH_IV 
    0.428*** 0.133*** -0.455*** -0.110*** -0.132***  -0.035*** 0.220*** 0.294*** 

Dt-1 
     0.033*** -0.512*** 0.172*** -0.368*** -0.199*** -0.001 0.255*** 

BETA 
      0.157*** -0.093*** 0.006 -0.001 0.288*** -0.068*** 

ln(MV) 
       -0.264*** 0.174*** 0.06*** 0.131*** -0.535*** 

ln(BEME) 
        -0.211*** -0.109*** -0.141*** 0.113*** 

RET(-2, -7) 
         0.007 -0.013* 0.010* 

RET(-1) 
          -0.023*** -0.004 

ln(TURN) 
           -0.044*** 
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6.2.2 Fama-MacBeth cross-sectional regressions 

 

The results of the cross-sectional Fama-MacBeth regressions are reported in Table 5. Model 1 

replicates the main results by Fama and French (1992), which is highly influential in the 

literature of cross-sectional return studies. Model 1 shows that size and book to market are 

significant determinants of cross-sectional returns whereas the relation between market beta 

and return is not statistically significant.  Smaller firms have on average higher returns than 

larger firms and value firms tend to have higher returns than growth firms. Model 2 regresses 

the other control variables to returns. Consistent with previous literature, momentum as 

measured by RET(-2, -7) is positively related to returns but RET(-1) shows short term return 

reversal. Both liquidity measured TURN and CVTURN enter the regression with significant 

negative coefficients as expected.  

 

Models 3 and 4 show that GARCH_IV is not significantly related to returns. However, model 

5 and 6 provide evidence that conditional idiosyncratic volatility as measured by 

EGARCH_IV is positively related to stock returns. The coefficient for EGARCH_IV is 

significant at 0.1% level in both models. The average slope of in Model 6 of 0.11 means that a 

as the standard deviation for idiosyncratic volatility is about 15%, a stock with one standard 

deviation higher idiosyncratic volatility than another stock, would earn about 1.5% higher 

average return in a month. This implies that the effect of idiosyncratic volatility is 

economically significant.  

 

The regression results of Models 3 and 4 for GJR_IV and GARCHpq_IV are reported in 

Appendix 2. These models for conditional idiosyncratic volatility provide evidence that the 

positive relation uncovered by EGARCH_IV does not depend only on specifications of the 

EGARCH volatility model. On univariate regressions, GJR_IV and GARCHpq_IV do not 

have significant slopes but after including the control variables, both have a positive relation 

with stock returns, which is significant at 0.1% level. In other words, the positive relation 

between idiosyncratic volatility and stock returns is somewhat weaker with GJR_IV and 

GARCHpq_IV, but they provide evidence that simple GARCH_IV model is not adequate for 

modeling expected idiosyncratic volatility. The results are consistent with previous literature, 

for example Pagan and Schwert (1990) find that EGARCH models are the most appropriate to 

model monthly stock returns.  
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In Model 7 I perform an univariate regression of return on distress risk Dt-1. Model 8 includes 

the set of control variables into regression.  By itself, the distress risk is not significant 

determinant of returns in Model 7, but inclusion of control variables discovers a negative 

relation significant at 5% level. The negative relation is consistent with hypothesis and 

Campbell et al. (2008) who employ the same measure of distress.  

 

Models 9 to 11 compare the relative pricing power of idiosyncratic volatility as measured by 

EGARCH_IV and financial distress by including both of them into regression with or without 

a set of control variables. In spite of high correlation between the two measures, inclusion of 

both variables actually increases their significance. In Model 5 I perform univariate regression 

of return on EGARCH_IV. The slope of EGARCH_IV is 0.07 that is significant at 0.1% 

level. The results is very similar although slightly weaker to Fu (2009) who uses 

EGARCH(p,q)  model for expected idiosyncratic volatility 14. In Model 11, which includes all 

control variables with idiosyncratic volatility and financial distress, a slope of EGARCH_IV 

is 0.14 (with t-statistic of 10.96) and Dt-1 has a slope of -0.64 (with a t-statistic of 5.40). A 

word of caution in interpreting the results needs to raised here about multicollinearity problem 

between the variables. Models 9 and 10 show that at least control variables are not causing 

incorrect interference of the results as both EGARCH_IV and Dt-1 have the same sign and are 

significant whether some control variables are included or not.  The adjusted R squared of 

Model 11 is however only 5.68% whereas in Models 6 and 8, which include all control 

variables and either EGARCH_IV or Dt-1, the adjusted R squared are 7.08% and 6.70%. 

Inclusion of both EGARCH_IV and Dt-1 into the regression brings thus so little new 

information about stock returns that penalty of including extra variables leads to a lower 

adjusted R squared. Nevertheless, the results are contradictory to the findings of Song (2008) 

and Chen and Chollete (2006) who find that the pricing power of idiosyncratic volatility is 

eliminated when accounting for distress risk. 

 

Models 12-14 regres returns on lagged idiosyncratic volatility L_IV, which has been used in 

the earlier studies by Song (2008) and Chen and Chollete (2006) as a proxy for realized 

idiosyncratic volatility. Model 12 replicates the regression by Fu (2009) who also finds a 

negative relation between lagged idiosyncratic volatility and stock returns. The slope of the 

regression for L_IV in model 12 of  -0.02 (with t statistic of 3.29) is the same as in Fu (2009) 

                                                 
14 Fu (2009) finds the slope of expected idiosyncratic volatility in univariate regression of 0.11 with a t-statistic 
of 9.05. 
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who uses a period of 1963-2006. Model 13 includes the full set of control variables including 

lagged one month return. Contrary to Fu (2009) and Huang et al. (2008) who claim that the 

negative relation between lagged idiosyncratic volatility and stock returns is due to short term 

return reversal, inclusion of RET(-1) does not remove the significant negative relation 

between L_IV and stock returns. However, as noted by Song (2008) and Chen and Chollete 

(2006), controlling for distress risk eliminated the pricing power of lagged idiosyncratic 

volatility. This is confirmed in Model 14, which includes Dt-1 into regression. After this, L_IV 

is no longer significant pricing factor. 

 

Models 15-17 provide additional proof of a positive relation between idiosyncratic volatility 

and stock return by regressing returns on realized idiosyncratic volatility, R_IV. In Model 17, 

inclusion of distress risk does not reduce the explanatory power of R_IV. This provides 

additional proof that idiosyncratic volatility and distress risk are two different asset pricing 

factors with opposite effect. The correlation between Dt-1 and R_IV is 0.33 meaning that 

multicollinearity as not as big problem in Model 17 as in Model 11 with EGARCH_IV. This 

can be also from adjusted R squared of 7.79% that is the highest of all the models.  
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Table 5. Fama-MacBeth regressions 
The table presents the results of cross-sectional Fama-MacBeth regression. RET is the monthly raw return reported in percentage. BETA is the stock beta estimated from the 
full period regression for each firm. MV is the market value of equity in the previous month. Book-to-market equity (BEME) is the latest available quarterly book equity 
divided by market value of equity in the previous month. R_IV is the realized idiosyncratic volatility and L_IV is the lagged idiosyncratic volatility by one month. 
GARCH_IV (EGARCH_IV) is the conditional idiosyncratic volatility estimate by GARCH(1,1) (EGARCH(1,1)) model. The measure of financial distress (Dt-1) is measured 
as in Campbell et al. (2008). RET(-2,-7) is the cumulative return from month t-7to t-2 and RET(-1) is return on the previous month. TURN is the average turnover and 
CVTURN is the coefficient of variation of turnovers in the past 36 months. MV, BEME, TURN and CVTURN are as the natural logarithm due to their high skewness. All 
variables except RET and Dt-1 are winsorized at 0.5% and 99.5% levels. Observations with monthly returns greater than 300% are deleted.The sample period is from 1971 to 
2008. For each variable of interest. ***, **, and * indicate that the estimate is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

Model BETA ln(ME) ln(BEME) RET(-2,-7) RET(-1) ln(TURN) 
ln(CVTUR

N) 
GARCH_I

V 
EGARCH

_IV 
Dt-1 L_IV R_IV 

Adj. 
R2 

1 0.38 -0.14 0.34          3.97 

 (1.87) (2.65)** (3.96)***           

2 0.42 -0.17 0.29 0.01 -0.06 -0.24 -0.38      6.31 

 (2.32)* (3.61)*** (3.41)*** (6.48)*** (10.75)*** ( 3.09)** (4.76)***       

3        0.01     2.20 

        (0.41)      

4 0.45 -0.14 0.27 0.01 -0.06 -0.32 -0.39 0.02     6.80 

 (2.41)* (4.1)*** (2.99)** (6.66)*** (10.51)*** (4.89)*** (4.79)*** (1.08)      

5         0.07    1.92 

         (4.09)***     

6 0.32 0.00 0.41 0.02 -0.06 -0.43 -0.48  0.11    7.08 

 (1.71) (0.10) (5.27)*** (7.46)*** (11.03)*** (5.95)*** (6.51)***  (7.74)***     

7          -0.06   1.86 

          (0.38)    

8 0.45 -0.23 0.34 0.01 -0.07 -0.21 -0.37   -0.33   6.70 

 (2.41)* (5.65)*** (4.03)*** (4.47)*** (13.19)*** ( 2.67)** (4.63)***   (2.31)*    
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Table 5 continued. Fama-MacBeth regressions 

Model BETA ln(ME) ln(BEME) RET(-2,-7) RET(-1) ln(TURN) 
ln(CVTUR

N) 
GARCH_I

V 
EGARCH

_IV 
Dt-1 L_IV R_IV 

Adj. 
R2 

9         0.10 -0.34   3.15 

         (6.19)*** (2.84)**    

10 0.23 -0.03 0.58      0.11 -0.50   3.15 

 (1.15) (0.78) (7.40)***      (8.68)*** (4.29)***    

11 0.33 -0.06 0.49 0.01 -0.07 -0.42 -0.48  0.14 -0.64   5.68 

 (1.74) (1.89) (6.49)*** (4.06)*** (13.47)*** (6.33)*** (6.56)***  (10.96)*** (5.40)***    

12  -0.18 0.40 0.02  -0.10 -0.38    -0.02  4.55 

  (4.02)*** (4.00)*** (7.07)***  (1.00) (3.8)***    (3.29)**   

13 0.41 -0.17 0.33 0.01 -0.06 -0.23 -0.40    -0.02  6.41 

 (2.19)* (3.93)*** (4.01)*** (6.29)*** (10.99)*** ( 3.07)** (4.84)***    (3.35)***   

14 0.43 -0.23 0.35 0.01 -0.07 -0.21 -0.38   -0.34 -0.01  6.71 

 (2.31)* (5.81)*** (4.54)*** (4.47)*** (14.03)*** ( 2.71)** (4.68)***   (2.46)* (1.40)   

15  -0.02 0.49 0.02  -0.23 -0.49     0.14 5.55 

  (0.35) (4.39)*** (8.17)***  (2.37)* (4.69)***     (11.93)***  

16 0.19 -0.02 0.37 0.02 -0.06 -0.33 -0.49     0.13 7.35 

 (1.03) (0.39) (4.19)*** (7.28)*** (11.69)*** (4.47)*** (5.78)***     (11.43)***  

17 0.25 -0.11 0.43 0.01 -0.07 -0.30 -0.49   -0.64  0.14 7.79 

 (1.36) (3.06)** (5.51)*** (4.29)*** (14.58)*** (3.94)*** (5.65)***   (4.35)***  (12.35)***  
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Table 6 reports the results of regressions of Model 11 separately for micro, small, large and 

all but micro stocks to control for the potential dominance of small stocks in the regression. 

The average slopes of the regression together with t-statistics for different size groups are 

reported in Panel A. The differences between the average slopes are reported in Panel B in 

order to draw formal interference if the pricing impact of regression variables is different in 

different size groups. 

 

Firstly, looking at the effect of control variables within different size groups reveals the same 

conclusions as in Fama and French (2008). The size effect is significant in micro and large 

stocks but not in small stocks. The value effect is strong within micro and small stocks but 

only just significant within large stocks. Momentum and liquidity effects are only significant 

in micro and small stocks whereas short term return reversal is significant in all size groups. 

The prevalence of anomalies or liquidity effects in micro and small stocks reflects the fact that 

smaller stocks are more difficult to arbitrage for professional investors (e.g. Campbell et al., 

2008). The results are in line with Fama and French (2008) except that they find value effect 

to be insignificant within large stocks and the momentum effect to be pervasive among all 

size groups. 

 

The regression between the size groups reveal that idiosyncratic volatility effect is 

concentrated in micro and small stocks whereas the pricing impact of distress risk is prevalent 

in all size groups. From Panel A we can see that idiosyncratic volatility effect is very strong 

within the smallest micro stocks. The slope of EGARCH_IV is 0.19 (t-statistic of 12.68). For 

small stocks, the slope is only 0.03 but still significant at 5% level. However, for large stocks 

or all but micro stocks, EGARCH_IV is not statistically significant. The distress risk on the 

other hand is also strongest within the micro stocks and weakest for large stocks. The slope of 

Dt-1 is -0.95 for micro stocks, -0.64 for small stocks, and -0.39 for large stocks. However, the 

distress risk is still statistically significant at 0.1% level within all size groups. 

 

Panel B confirms the conclusion drawn from inspection of regression slopes in Panel A. The 

differences between any size groups are significant for EGARCH_IV and Dt-1, so that in 

larger stocks the absolute effect of EGARCH_IV or Dt-1 is smaller. 

 



 
 

 

51 
 

Table 6. Fama-MacBeth regressions in different size groups 
The table presents the results of cross-sectional Fama-MacBeth regression within size groups. The size groups: micro, small, large and all but micro stocks are defined as in 
Fama and French (2008). The breakpoints to separate these groups are 20% and 50% percentiles of market capitalization for NYSE stocks. The t-statistics for the average 
regression slopes (or for the differences between the average slopes) use the time-series standard deviations of the monthly slopes (or the differences between the monthly 
slopes). The sample period is from September 1971 to December 2008. First 8 months of the original sample period are excluded as micro stocks have no firm months with 
all required data within that period, in September 1971 there are 56 micro stocks with all required data. For each variable of interest. ***, **, and * indicate that the estimate 
is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

Size percentile BETA ln(ME) ln(BEME) RET(-2,-7) RET(-1) ln(TURN) ln(CVTURN)  EGARCH_IV Dt-1 
Adj. 
R2 

Panel A: Model 11 within size groups 

All stocks 0.33 -0.06 0.49 0.01 -0.07 -0.42 -0.48  0.14 -0.64 5.68 

 (1.74) (1.89) (6.49)*** (4.06)*** (13.47)*** (6.33)*** (6.56)***  (10.96)*** (5.40)***  

Micro 0.50 -0.25 0.60 0.01 -0.08 -0.54 -0.54  0.19 -0.95 6.08 

 (2.54)* (4.31)*** (9.oo)*** (3.54)*** (17.41)*** ( 7.44)*** (5.81)***  (12.68)*** (14.06)***  

Small 0.28 -0.07 0.35 0.01 -0.04 -0.16 -0.41  0.03 -0.64 8.01 

 (1.45) (0.77) (4.82)*** (4.54)*** (6.93)*** (2.19)* (3.94)***  (2.02)* (6.47)***  

Large 0.03 -0.11 0.19 0.00 -0.04 -0.07 -0.16  -0.01 -0.39 11.39 

 (0.15) (2.62)** (2.49)* (1.13) (6.3)*** (1.07) (1.58)  (0.34) (3.69)***  

All but micro 0.21 -0.10 0.27 0.01 -0.03 -0.14 -0.26  0.02 -0.53 9.35 

 (1.12) (2.8)** (4.48)*** (3.52)*** (7.58)*** (2.3)* (3.14)**  (1.43) (6.48)***  

Panel B: Differences between the average slopes 

Micro-  Small 0.22 -0.18 0.26 0.00 -0.04 -0.38 -0.13  0.15 -0.32  

 (1.75) (1.68) (3.24)** (1.59) (8.06)*** (5.56)*** (0.98)  (9.1)*** (3.52)***  

Micro - Large 0.46 -0.14 0.42 0.00 -0.04 -0.47 -0.39  0.19 -0.56  

 (2.52)* (1.95) (4.71)*** (1.13) (8.08)*** (6.28)*** (2.91)**  (10.75)*** (4.72)***  

Micro - All but 
micro 

0.28 -0.14 0.33 0.00 -0.05 -0.40 -0.29  0.17 -0.43  

(2.21)* (2.07)* (4.48)*** (0.52) (10.15)*** (6.55)*** (2.39)*  (11.6)*** (5.07)***  

Small - Large 0.25 0.04 0.16 0.01 0.00 -0.09 -0.25  0.04 -0.24  

 (1.61) (0.42) (2.07)* (2.53)* (0.36) (1.32) (2.32)*  (2.24)* (2.00)*  
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6.3 Return analysis of portfolios 

 

This part presents the results of portfolios formed based on idiosyncratic volatility and 

financial distress.  Based on the evidence from Fama Macbeth regression, I employ 

EGARCH_IV as the measure of expected idiosyncratic volatility. The first section reports 

univariate sort results based on idiosyncratic volatility and the second section based on 

financial distress. In third section I analyze the results of the distressed controlled 

idiosyncratic volatility sort and in the fourth section of the idiosyncratic volatility controlled 

distress risk sort.  

 

6.3.1 Idiosyncratic volatility 

 

Table 7 reports the results of trading portfolios sorted based on EGARCH_IV. Panel A reports 

the monthly value weighted simple returns in excess of Treasury bill rate, with t-statistics 

below in parentheses, and then alphas with respect to the CAPM, the three-factor model of 

Fama and French (1993), and a four-factor model proposed by Carhart (1997). Panel B 

reports estimated factor loadings for excess returns on the three Fama–French factors with t-

statistics. Panel C reports some relevant characteristics for the portfolios: the skewness of 

each portfolio’s excess return, the mean market value, market-to-book, and estimated failure 

probability for each portfolio.  

 

The value weighted portfolio alphas reported in Panel A do not show a robust statistically 

significant difference in portfolios sorted based on EGARCH_IV. The monthly Fama-French 

alpha for the long-short portfolio holding the highest idiosyncratic volatility stocks and 

shorting the safest stocks is -0.48% but statistically insignificant.  
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Table 7. Returns on value weighted idiosyncratic volatility sorted portfolios 
The table presents value weighted monthly percentage returns of 5 portfolios sorted based level of expected 
idiosyncratic risk. Portfolio 1 (5) consists of stocks with the lowest (highest) volatility measure. The return 
spread of “5-1” refers to the difference in monthly returns between portfolio 5 and portfolio 1. In panel A, I 
report monthly alphas of value-weighted excess returns on a constant, market return (CAPM alpha), Fama-
French 3-factor model and Carhart (1997) 4-factor model with t-statistics in parentheses.  Panel B shows 
loadings on the three factor alphas and corresponding t-statistics. Panel C reports portfolio characteristics 
including skewness, mean size, market to book ratio (MB) and expected idiosyncratic volatility, EGARCH_IV, 
for each portfolio. The sample period is from 1971 to 2008. For each variable of interest. ***, **, and * indicate 
that the estimate is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

Portfolios 1 2 3 4 5 5-1 

Panel A: Portfolio alphas 

Mean excess return 0.45 0.42 0.49 0.22 0.24 -0.21 

 (2.34)* (1.80) (1.75) (0.64) (0.61) (0.71) 

CAPM alpha 0.12 0.01 0.01 -0.34 -0.36 -0.48 

 (1.75) (0.09) (0.07) (2.17)* (1.68) (1.83) 

3-factor alpha 0.06 -0.04 0.02 -0.26 -0.23 -0.29 

 (1.07) (0.58) (0.17) (2.05)* (1.39) (1.51) 

4-factor alpha 0.06 -0.01 0.08 -0.17 -0.22 -0.29 

 (1.06) (0.11) (0.80) (1.31) (1.31) (1.44) 

Panel B: Three-factor regression coefficients 

RM 0.93 1.07 1.14 1.23 1.25 0.32 

 (69.00)*** (68.91)*** (50.57)*** (40.25)*** (31.82)*** (7.06)*** 

SMB -0.20 0.03 0.25 0.54 0.85 1.05 

 (11.25)*** (1.32) (8.29)*** (13.07)*** (15.99)*** (17.02)*** 

HML 0.15 0.08 -0.07 -0.25 -0.43 -0.58 

 (7.36)*** (3.25)** (2.04)* (5.39)*** (7.28)*** (8.41)*** 

Panel C: Portfolio characteristics 

Skewness -0.240 -0.556 -0.353 -0.382 -0.362  

Size ($mil) 3895 1920 1003 434 206  

MB 2.114 2.252 2.484 3.044 4.224  

EGARCH_IV (%) 6.029 8.758 11.566 15.466 30.359  

Mean Ct (%) 0.046 0.050 0.067 0.100 0.182  

 

Factor loadings reported in Panel B show that stocks with low failure idiosyncratic risk have 

betas less than one and negative loadings on the size factor SMB and positive loadings on the 

value factor HML. The high distress risk stocks have betas more than one, positive loadings 

on SMB and negative HML factors.  High idiosyncratic volatility stocks have thus high 

proportion of small, growth firms as opposed to large, value firms among the safest stocks. 

This is consistent for example with the results of Fu (2009).  

 

The size of the companies is monotonically decreasing with higher level of idiosyncratic 

volatility as reported in Panel C. Furthermore, the market-to-book value increases 

monotonically with higher EGARCH_IV. The strong correlation between EGARCH_IV and 
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Dt-1 is apparent also in portfolios sorts. The mean failure of probability (Ct) increases also 

monotonically as idiosyncratic risk increases.  

 

Possible reasons to why sorts in Table 7 do not uncover a relation between idiosyncratic risk 

and return include that the relation is only visible in more extreme ends than lowest and 

highest quintile or that using value weighted returns leads large stocks to dominate the results. 

Given the evidence from regression within different size groups, which show that 

idiosyncratic volatility is only significant in micro and small stocks, the latter explanation is 

likely.   

 

Table 8 reports a finer sort of portfolios of idiosyncratic risk portfolios into 10 portfolios, 

where the first portfolio consists of the 10% of the stocks with lowest EGARCH_IV and last 

portfolio with the highest level of EGARCH_IV. The monthly alphas of a long short portfolio 

that goes long the 10% of stocks with high risk and shorts the safest 10% are not statistically 

significant in any pricing model as in the 5 portfolio sort. However, the finer sort reveals 

significant negative returns in 70 to 80 and 80 to 90 percentile portfolios and positive returns 

in the least risk portfolio. These results would indicate a negative relation between 

EGARCH_IV and stock returns, contrary to the results from Fama MacBeth regressions. 

These puzzling results may be however explained by high correlation of idiosyncratic 

volatility and distress risk in EGARCH_IV sorted portfolios. The average failure probability 

for the lowest EGARCH_IV portfolio is 0.045%, whereas for the 70 to 80 percentile the 

failure probability is 0.111% and for 90 to 100 percentile 0.214%. Comparison of these values 

with finer sort based on distress risk that is reported in Table 11 , the 70 to 80 percentile has a 

statistically significant negative three factor alpha with an average failure probability of 

0.093%, i.e. smaller than 70 to 80 percentile based on EGARCH_IV. Thus low returns of 70 

to 80 and 80 to 90 percentiles of EGARCH_IV sort may be due to high distress risk in those 

portfolios. The highest EGARCH_IV portfolio however has actually positive returns though 

they are not statistically significant. Factor loadings reported in Panel B and portfolio 

characteristics reported in Panel C confirm the conclusions from the earlier sort.  

 
Table 9 reports the equally weighted returns of finer EGARCH_IV sort. The equally weighted 

returns provide strong evidence of a positive relation between idiosyncratic volatility and 

returns. The monthly alphas of a long short portfolio reported in Panel A are statistically 

significant at 0.1% level for all pricing models.  The monthly three factor alpha of 1.72% of 
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the long short portfolio is also economically highly significant. The results provide further 

evidence that idiosyncratic risk is positively related to stock returns, but the effect is largely 

driven by smaller stocks. 
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Table 8. Finer sort of value weighted idiosyncratic volatility portfolios 
The table presents value weighted monthly percentage returns of 10 portfolios sorted based level of expected idiosyncratic risk, EGARCH_IV. Portfolio 1 (10) consists of 
stocks with the lowest (highest) volatility measure. The return spread of “10-1” refers to the difference in monthly returns between portfolio 10 and portfolio 1. In panel A, I 
report monthly alphas of value-weighted excess returns on a constant, market return (CAPM alpha), Fama-French 3-factor model and Carhart (1997) 4-factor model with t-
statistics in parentheses.  Panel B shows loadings on the three factor alphas and corresponding t-statistics. Panel C reports portfolio characteristics including skewness, mean 
size, market to book ratio (MB) and expected idiosyncratic volatility, GARCH_IV, for each portfolio. The sample period is from 1971 to 2008. For each variable of interest. 
***, **, and * indicate that the estimate is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

Portfolios 1 2 3 4 5 6 7 8 9 10 10-1 

Panel A: Portfolio alphas 

Mean excess 
return 

0.54 0.31 0.42 0.43 0.54 0.49 0.33 0.06 -0.11 0.71 0.17 

 (2.83)** (1.50) (1.79) (1.73) (1.98)* (1.58) (0.98) (0.16) (0.29) (1.70) (0.50) 

CAPM alpha 0.22 -0.04 0.01 0.00 0.08 -0.02 -0.22 -0.51 -0.73 0.10 -0.12 

 (2.74)** (0.54) (0.13) (0.01) (0.73) (0.16) (1.37) (2.75)** (3.36)*** (0.39) (0.39) 

3-factor alpha 0.15 -0.10 -0.06 -0.04 0.09 -0.02 -0.16 -0.43 -0.62 0.27 0.12 

 (2.24)* (1.26) (0.74) (0.47) (0.78) (0.13) (1.12) (2.85)** (3.69)*** (1.31) (0.50) 

4-factor alpha 0.14 -0.08 -0.03 0.01 0.15 0.06 -0.03 -0.37 -0.59 0.32 0.18 

 (1.99)* (1.00) (0.32) (0.09) (1.37) (0.50) (0.18) (2.39)* (3.38)*** (1.48) (0.73) 

Panel B: Three-factor regression coefficients 

RM 0.90 0.96 1.07 1.08 1.12 1.20 1.24 1.23 1.29 1.24 0.34 

 (56.31)*** (52.11)*** (59.83)*** (51.07)*** (43.14)*** (39.81)*** (36.78)*** (34.02)*** (32.06)*** (2 5.32)*** (6.07)*** 

SMB -0.24 -0.12 -0.03 0.13 0.19 0.38 0.47 0.67 0.84 0.89 1.13 

 (11.30)*** (4.95)*** (1.11) (4.5)*** (5.42)*** (9.51)*** (10.33)*** (13.81)*** (15.48)*** (13.45)*** (15.09)*** 

HML 0.18 0.13 0.13 0.05 -0.05 -0.09 -0.21 -0.29 -0.37 -0.51 -0.69 

 (7.45)*** (4.62)*** (4.70)*** (1.63) (1.25) (2.04)* (4.16)*** (5.26)*** (6.05)*** (6.84)*** (8.17)***  

Panel C: Portfolio characteristics 

Skewness -0.001 -0.546 -0.556 -0.496 -0.165 -0.284 -0.269 -0.389 -0.433 -0.139  

Size ($mil) 4561 3229 2263 1578 1183 824 523 345 232 181  

MB 2.000 2.228 2.246 2.258 2.402 2.565 2.820 3.269 3.843 4.614  

EGARCH_IV 5.036 6.881 8.115 9.358 10.739 12.336 14.216 16.622 20.475 37.728  

Mean Ct (%) 0.045 0.046 0.048 0.052 0.061 0.073 0.089 0.111 0.149 0.214  
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Table 9. Finer sort of equally weighted idiosyncratic volatility portfolios 
The table presents equally weighted monthly percentage returns of 10 portfolios sorted based level of expected idiosyncratic risk, EGARCH_IV. Portfolio 1 (10) consists of 
stocks with the lowest (highest) volatility measure. The return spread of “10-1” refers to the difference in monthly returns between portfolio 10 and portfolio 1. In panel A, I 
report monthly alphas of value-weighted excess returns on a constant, market return (CAPM alpha), Fama-French 3-factor model and Carhart (1997) 4-factor model with t-
statistics in parentheses.  Panel B shows loadings on the three factor alphas and corresponding t-statistics. Panel C reports portfolio characteristics including skewness, mean 
size, market to book ratio (MB) and expected idiosyncratic volatility, GARCH_IV, for each portfolio. The sample period is from 1971 to 2008. For each variable of interest. 
***, **, and * indicate that the estimate is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

Portfolios 1 2 3 4 5 6 7 8 9 10 10-1 

Panel A: Portfolio alphas 

Mean excess 
return 

0.51 0.46 0.55 0.58 0.56 0.39 0.41 0.32 0.39 2.45 1.94 

 (3.01)** (2.3)* (2.53)* (2.49)* (2.19)* (1.39) (1.32) (0.96) (1.02) (5.14)*** (4.8)*** 

CAPM alpha 0.24 0.14 0.20 0.20 0.15 -0.05 -0.07 -0.18 -0.15 1.85 1.6 

 (2.72)** (1.41) (1.91) (1.82) (1.18) (0.32) (0.38) (0.92) (0.61) (5.3)*** (4.43)*** 

3-factor alpha -0.02 -0.14 -0.10 -0.07 -0.10 -0.31 -0.32 -0.37 -0.37 1.70 1.72 

 (0.29) (1.86) (1.41) (0.93) (1.33) (3.5)*** (2.99)** (3.07)** (2.26)* (6.31)*** (5.9)*** 

4-factor alpha 0.01 -0.09 -0.02 0.02 0.02 -0.16 -0.14 -0.19 -0.13 2.04 2.03 

 (0.14) (1.17) (0.35) (0.30) (0.22) (1.83) (1.3) (1.56) (0.81) (7.53)*** (6.87)*** 

Panel B: Three-factor regression coefficients 

RM 0.76 0.89 0.95 0.96 1.00 1.04 1.09 1.10 1.14 1.22 0.46 

 (46.64)*** (51.03)*** (57.26)*** (54.75)*** (54.14)*** (48.94)*** (43.07)*** (37.7)*** (29.36)*** (18 .94)*** (6.59)*** 

SMB 0.17 0.28 0.42 0.53 0.66 0.84 0.98 1.07 1.29 1.55 1.38 

 (7.94)*** (11.94)*** (18.76)*** (22.5)*** (26.68)* ** (29.39)*** (28.62)*** (27.42)*** (24.54)*** (17. 98)*** (14.75)*** 

HML 0.46 0.45 0.47 0.40 0.33 0.31 0.26 0.14 0.14 -0.06 -0.52 

 (18.66)*** (17.08)*** (18.58)*** (14.86)*** (11.66)*** (9.81)*** (6.85)*** (3.1)** (2.34)* (0.62) (4. 94)*** 

Panel C: Portfolio characteristics 

Skewness -0.001 -0.546 -0.556 -0.496 -0.165 -0.284 -0.269 -0.389 -0.433 -0.139  

Size ($mil) 4561 3229 2263 1578 1183 824 523 345 232 181  

MB 2.000 2.228 2.246 2.258 2.402 2.565 2.820 3.269 3.843 4.614  

EGARCH_IV 5.036 6.881 8.115 9.358 10.739 12.336 14.216 16.622 20.475 37.728  

Mean Ct (%) 0.045 0.046 0.048 0.052 0.061 0.073 0.089 0.111 0.149 0.214  

  



58 
 
Figure 4 plots the cumulative excess return and Fama-French 3 factor alpha of the value and 

equally weighted long short idiosyncratic risk portfolio (10-1) over the sample period. For 

comparison, the cumulative market return is also included in the figure. The value weighted 

long short portfolio has a strong positive performance between 1975 and 1980 followed with 

negative performance of equal magnitude between 1980 and 1990 after which the 

performance levels off. The equally weighted long short has on the other hand experience 

consistently positive returns throughout the sample period. The strong performance is 

especially concentrated on expansionary periods in 1975-1980 and 1999-2000.  These two 

periods do not however count all of the returns of the equally weighted portfolio. Both value 

and equally weighted portfolios tend to experience positive returns during expansionary 

periods (except the strong negative performance of value weighted portfolio in 1980s) and 

negative returns in recessions. This likely illustrates the changes in investors risk aversion, 

with investors trying to earn abnormal returns via idiosyncratic risk when risk aversion is low 

and on the other hand flight to safer assets when risk aversion rises. Particularly strong 

evidence of this can be seen in 1999-2001 during the rise and fall of the IT bubble.  

 

 
Figure 4. Returns on long short idiosyncratic risk portfolio..  The figure plots the value and equally weighted 
cumulative excess returns from January 1971 to December 2008 for a long short portfolio that goes long for the 
10% stocks of highest idiosyncratic volatility and shorts the 10% safest stocks.. The figure plots also the 
cumulative market return (CRSP).  Shaded areas correspond to NBER recessions. 
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6.3.2 Financial distress 

 

Panel A of Table 10 shows the monthly excess returns and alphas of portfolios formed based 

on distress risk. Consistent with the results of Campbell et al. (2008), the results indicate a 

negative relation between distress risk and stock returns. A long-short portfolio holding the 

most distressed stocks and shorting the safest stocks has an average Fama-French 3-factor 

alpha of -1.49%, which is statistically significant at 0.1% level 

 

Table 10. Returns on value weighted distress risk sorted portfolios 
The table presents value weighted monthly percentage returns of 5 portfolios sorted based on the level of distress 
risk at the end of previous month. Portfolio 1 (5) consists of stocks with the lowest (highest) volatility measure. 
The return spread of “5-1” refers to the difference in monthly returns between portfolio 5 and portfolio 1. In 
panel A, I report monthly alphas of value-weighted excess returns on a constant, market return (CAPM alpha), 
Fama-French 3-factor model and Carhart (1997) 4-factor model with t-statistics in parentheses.  Panel B shows 
loadings on the three factor alphas and corresponding t-statistics. Panel C reports portfolio characteristics 

including skewness, mean size, market to book ratio (MB) and probability of failure (C)u  for each portfolio. The 
sample period is from 1971 to 2008. For each variable of interest. ***, **, and * indicate that the estimate is 
statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

Portfolios 1 2 3 4 5 5-1 

Panel A: Portfolio alphas 

Mean excess return 0.48 0.42 0.41 0.35 -0.45 -0.93 

 (2.29)* (1.88) (1.66) (1.17) (1.05) (2.85)** 

CAPM alpha 0.12 0.03 -0.02 -0.14 -1.06 -1.19 

 (1.58) (0.42) (0.20) (0.95) (4.13)*** (3.99)*** 

3-factor alpha 0.17 0.03 -0.13 -0.26 -1.33 -1.49 

 (2.13)* (0.40) (1.55) (1.83) (5.82)*** (5.50)*** 

4-factor alpha -0.03 0.01 0.06 0.16 -0.54 -0.51 

 (0.35) (0.12) (0.78) (1.26) (2.96)** (2.44)* 

Panel B: Three-factor regression coefficients 

RM 0.90 1.01 1.13 1.25 1.48 0.58 

 (48.33)*** (62.93)*** (56.85)*** (36.83)*** (27.21)*** (8.89)*** 

SMB -0.02 -0.04 0.07 0.24 0.90 0.91 

 (0.68) (1.98)* (2.47)* (5.24)*** (12.26)*** (10.49)*** 

HML -0.08 0.01 0.20 0.18 0.30 0.38 

 (2.88)** (0.44) (6.55)*** (3.51)*** (3.66)*** (3.91)*** 

Panel C: Portfolio characteristics 

Skewness -0.288 -0.328 -0.335 -0.481 0.096  

Size ($mil) 2720 2276 1400 666 120  

MB 2.682 2.859 2.788 2.894 3.332  

Mean Ct (%) 0.021 0.035 0.051 0.082 0.267  

EGARCH_IV 12.040 13.648 15.306 17.381 23.245  

 
Panel B reports the factor loadings on Fama–French 3 factors. Stocks with low failure risk 

have betas less than one and negative loadings on the size factor SMB and the value factor 
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HML. The high distress risk stocks have betas more than one and positive loadings on SMB 

and HML factors, indicating predominance of small, growth firms among distressed stocks as 

opposed to large, value firms among the safest stocks. Hence when using CAPM or 3-factor 

model to correct for risk, the anomalously low returns of high distress risk stocks are 

amplified, which can be seen in Panel A. Including momentum in Carhart 4-factor model 

reduces the anomaly, but it remains statistically significant. The results are consistent with 

Campbell et al. (2008). 

 

Panel C reports portfolio characteristics including skewness, size, MB, mean default risk and 

mean idiosyncratic volatility. As indicated by HML and SMB loadings, high distress risk firms 

are small and have high market to book values. Skewness of the excess returns is positive for 

the high risk portfolio, which may explain part of the anomalously low returns as noted by 

Campbell et al. (2008). The reported average default risk shows that default risk grows 

exponential when moving to high default risk companies. The mean default risk is gradually 

linearly increasing in portfolios from 1 to 4, on average at 0.04%, but in the highest risk 

quintile the value jumps to 0.27%.  The idiosyncratic volatility increases also monotonically 

with increases in distress risk, similar to increases of distress risk when sorted based on 

idiosyncratic volatility.  

 

I also perform a finer sort for value weighted distress risk portfolios from which the results 

are reported in Table 11. The results are consistent with the 5 portfolio sort. Low returns of 

distressed stocks are even more pronounced with the finer sort.  The 3-factor alpha decreases 

almost monotonically by increase in distress risk. The monthly 3-factor alpha of a long short 

portfolio is -1.91%. Given the evidence from Fama MacBeth regression in different size 

groups that distress effect is strongest in micro and small stocks, I do not perform equally 

weighted sorts for distress risk as value weighted returns already provide a strong evidence of 

negative relation between financial distress and stock returns.  

 

Figure 5 plots the value weighted cumulative excess return and Fama-French 3 factor alpha of 

the long short distress risk portfolio (10-1) that goes long the 10% of most distressed stocks 

and shorts the 10% safest stocks over the sample period.. From 1980 to 2000, both the excess 

return and three factor alpha of the portfolio are persistently negative, i.e. distressed stocks 

have unperformed safe stocks. A notable sharp rise in the portfolio’s excess return and alpha 

can be seen from third quarter of 2002 to the end of 2003. This rise coincides exactly with the 
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start of the stock market rebound after the long bear market since the burst of the IT bubble in 

2000.  In other words, distressed stocks have produced very high returns during this period. 

On the other hand, opposite returns of similar magnitude are observed during the financial 

crisis in 2003. The high returns of distressed stocks during the expansionary period and low 

returns during riskier periods are consistent with the view that investors “flee to quality” and 

sell distressed stocks when risk aversion increases and vice versa. Campbell et al. (2008) 

document similar finding by showing that the return of the long short portfolio of distressed 

stocks correlates with the implied volatility (VIX) of S&P 500 index. 

 
Figure 5. Returns on long short distressed risk portfolio.  The figure plots the value weighted cumulative 
excess return and Fama-French three factor alpha from January 1971 to December 2008 for a long short portfolio 
that goes long the 10% most distressed stocks and short for the 10% safest stocks. The figure plots also the 
cumulative market return (CRSP).  Shaded areas correspond to NBER recessions. 
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Table 11. Finer sort of value weighted distress risk portfolios 
The table presents monthly percentage returns of 10 portfolios sorted based on the level of distress risk at the end of previous month. Portfolio 1 (10) consists of stocks with 
the lowest (highest) volatility measure. The return spread of “10-1” refers to the difference in monthly returns between portfolio 10 and portfolio 1. In panel A, I report 
monthly alphas of value-weighted excess returns on a constant, market return (CAPM alpha), Fama-French 3-factor model and Carhart (1997) 4-factor model with t-statistics 
in parentheses.  Panel B shows loadings on the three factor alphas and corresponding t-statistics. Panel C reports portfolio characteristics including skewness, mean size, 

market to book ratio (MB) and probability of failure (C)u  for each portfolio. The sample period is from 1971 to 2008. For each variable of interest. ***, **, and * indicate that 
the estimate is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively.  

Portfolios 1 2 3 4 5 6 7 8 9 10 10-1 

Panel A: Portfolio alphas 

Mean excess 
return 

0.58 0.43 0.43 0.42 0.49 0.31 0.38 0.21 -0.42 -0.60 -1.19 

 (2.55)* (2.02)* (1.87) (1.80) (2.03)* (1.18) (1.32) (0.6) (1.03) (1.22) (2.84)** 

CAPM alpha 0.22 0.07 0.03 0.02 0.07 -0.13 -0.09 -0.33 -1.02 -1.26 -1.48 

 (1.90) (0.82) (0.42) (0.22) (0.86) (1.15) (0.64) (1.72) (4.12)*** (3.66)*** (3.8)*** 

3-factor alpha 0.31 0.08 0.05 -0.02 -0.03 -0.27 -0.22 -0.46 -1.26 -1.60 -1.91 

 (2.68)** (0.97) (0.63) (0.19) (0.31) (2.44)* (1.67) (2.42)* (5.59)*** (5.25)*** (5.34)*** 

4-factor alpha 0.03 -0.06 -0.01 0.01 0.09 0.00 0.12 0.07 -0.50 -0.76 -0.79 

 (0.30) (0.72) (0.06) (0.13) (1.09) (0.00) (0.98) (0.44) (2.75)** (2.78)** (2.61)** 

Panel B: Three-factor regression coefficients 

RM 0.87 0.93 0.99 1.04 1.10 1.17 1.21 1.33 1.45 1.54 0.67 

 (31.98)*** (46.27)*** (48.47)*** (52.74)*** (53.85)*** (44.13)*** (37.52)*** (29.75)*** (26.96)*** (2 1.19)*** (7.86)*** 

SMB 0.04 -0.03 -0.03 -0.04 0.06 0.11 0.20 0.36 0.80 1.18 1.15 

 (1.02) (1.06) (1.09) (1.37) (2.04)* (3.22)** (4.60)*** (6.03)*** (11.02)*** (12.07)*** (9.98)*** 

HML -0.18 -0.02 -0.03 0.07 0.18 0.24 0.22 0.16 0.27 0.39 0.57 

 (4.24)*** (0.67) (0.93) (2.39)* (5.79)*** (5.99)*** (4.42)*** (2.35)* (3.34)*** (3.57)*** (4.4)*** 

Panel C: Portfolio characteristics 

Skewness -0.147 -0.104 -0.240 -0.430 -0.297 -0.370 -0.458 -0.547 -0.100 0.517  

Size ($mil) 2330 3111 2591 1962 1513 1287 925 407 176 64  

MB 2.418 2.946 2.911 2.807 2.798 2.778 2.838 2.951 3.178 3.497  

Mean Ct (%) 0.017 0.025 0.031 0.038 0.046 0.056 0.070 0.093 0.142 0.392  

EGARCH_IV 11.701 12.371 13.221 14.061 14.979 15.626 16.503 18.218 20.746 25.498  
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6.3.3 Distress risk controlled idiosyncratic volatility 

 

Multivariate portfolios sorts enable a closer examination of how idiosyncratic risk and distress 

risk effects vary along the full spectrum of other variable. Table 12  reports the results of 

sequential sort of distress controlled idiosyncratic risk portfolios. Panel A shows value 

weighted excess returns and Panel B the Fama-French three factor alphas and corresponding 

t-statistics. Panels C to E report the average failure probability, idiosyncratic volatility and 

size of each portfolio. 

 

Panels A and B show that after controlling for distress risk, idiosyncratic risk spread seems to 

be negative for the least distressed stocks and insignificant for more distressed stocks. 

However, an inspection of average failure probabilities and idiosyncratic volatilities of 

portfolios shows that sequential sort fails to achieve considerable spread between low and 

high idiosyncratic volatility portfolios within distress quintiles. In fact, within the distress 

quintiles which are reported in rows, EGARCH_IV is on average only 17% higher in highest 

EGARCH_IV portfolio than in lowest EGARCH_IV portfolio. Distress risk on the other hand 

increases on average 126% along the low – high idiosyncratic volatility sort. Thus the 

negative spread of -0.37% (with t-statistic of 2.30) of long short idiosyncratic risk portfolio in 

lowest distress quintile tells more about the negative relation between distress risk and return 

than about the relation between idiosyncratic volatility and return. From Panel E, which 

reports the average sizes of the portfolios, we can see that within distress quintiles, stocks 

 

The results differ from Song (2008) who find a positive (negative) relation between 

idiosyncratic risk and stock returns given low (high) distress risk. As the sequential sort fails 

to give a sufficient spread for idiosyncratic volatility portfolios within distress quintiles due to 

high correlation of the two measures, an independent sort of idiosyncratic volatility and 

distress risk should be performed before drawing conclusions. I perform this robustness check 

in 6.3.5 after examining idiosyncratic volatility controlled distress risk portfolios.  
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Table 12. Distress controlled idiosyncratic volatility portfolios 
The table presents the Fama-French 3 Factor alphas of the 25 distress controlled, value weighted idiosyncratic 
volatility portfolios.. A sequential sort is performed to control for the level of distress: I first sort stocks into 5 
quintiles based on their level of distress, and then within each distress quintile, further sort stocks into 5 
portfolios based on their level of idiosyncratic volatility (EGARCH_IV). The return spread of  “5-1” refers to the 
difference in monthly returns between idiosyncratic risk portfolio 5 and portfolio 1 within each distress quintile. 
T-statistics are reported in brackets. The sample period is from September 1971 to December 2008. First 8 
months of the original sample period are excluded in order to have sufficient number of stocks in each portfolio. 
For each variable of interest. ***, **, and * indicate that the estimate is statistically different from zero at 0.1%, 
1% and 5% confidence levels respectively.  

 Ranking on Idiosyncratic Volatility 

 1 Low 2 3 4 5 High 5-1 

Panel A: Excess returns 

1 Low 0.74 0.64 0.46 0.48 0.36 -0.37 
Distress risk (2.98)** (2.64)** (2.03)* (2.15)* (1.60) (2.30)* 

2 0.52 0.52 0.45 0.48 0.35 -0.17 

 (2.18)* (2.16)* (1.85) (2.01)* (1.45) (1.23) 

3 0.55 0.49 0.37 0.33 0.40 -0.15 

 (2.22)* (1.84) (1.49) (1.16) (1.39) (0.99) 

4 0.33 0.34 0.54 0.12 0.25 -0.08 

 (1.13) (1.10) (1.70) (0.34) (0.64) (0.35) 

5 High -0.02 -0.62 -0.34 -0.45 -0.32 -0.30 

Distress risk (0.04) (1.37) (0.72) (0.86) (0.53) (0.75) 

Panel B: Three factor alphas 

1 Low 0.38 0.40 0.18 0.11 -0.02 -0.40 
Distress risk (2.75)** (2.90)** (1.44) (1.05) (0.19) (2.47)* 

2 0.12 0.17 0.01 0.04 -0.09 -0.22 

 (1.11) (1.59) (0.08) (0.37) (1.03) (1.55) 

3 0.04 -0.02 -0.18 -0.27 -0.22 -0.26 

 (0.37) (0.13) (1.63) (2.03)* (1.51) (1.7) 

4 -0.26 -0.30 -0.08 -0.52 -0.42 -0.16 

 (1.86) (1.88) (0.47) (2.44)* (1.87) (0.75) 

5 High -0.83 -1.50 -1.33 -1.41 -1.48 -0.64 

Distress risk (3.55)*** (5.37)*** (4.58)*** (4.08)*** (3.42)*** (1.64) 

Panel C: Average failure probability 

1 Low 0.014 0.019 0.022 0.024 0.027  
2 0.029 0.031 0.034 0.037 0.040  

3 0.043 0.046 0.050 0.054 0.059  

4 0.064 0.070 0.077 0.087 0.099  

5 High 0.116 0.142 0.183 0.262 0.591  

Panel D: Average idiosyncratic volatility 

1 Low 11.51 11.80 12.01 12.26 12.59  

2 12.85 13.39 13.59 13.97 14.38  

3 14.78 15.03 15.27 15.59 15.83  

4 16.02 16.67 17.21 17.99 18.87  

5 High 19.89 21.00 22.34 24.22 27.91  

Panel E: Average size (MUSD) 

1 Low 1473 2871 3262 3215 3068  
2 2911 2620 2297 2103 1912  

3 1705 1520 1411 1374 1327  

4 1132 930 729 478 320  

5 High 234 174 119 81 35  
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6.3.4 Idiosyncratic volatility controlled distress risk 

 
Table 13 shows the results of the multivariate effect between idiosyncratic volatility and 

financial distress when distress risk is controlled by idiosyncratic volatility. Panels A and B 

show that after controlling for idiosyncratic volatility, distress risk spread seems to be 

negative for low idiosyncratic volatility stocks and positive for high idiosyncratic volatility 

stocks. However, Panels C and D show that the idiosyncratic volatility controlled sort suffers 

from the same problem as distress controlled sort. In the lowest idiosyncratic volatility 

quintile, there is almost no spread in distress risk. On average, distress risk increases 33% 

within idiosyncratic volatility quintiles, whereas EGARCH_IV increases 63% within the 

quintiles. Hence no definitive conclusions can be drawn from idiosyncratic controlled 

sequential sort. 
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Table 13. Idiosyncratic volatility controlled distress risk portfolios 
The table presents the Fama-French 3 Factor alphas of the 25 idiosyncratic risk controlled, value weighted 
distress portfolios.. A sequential sort is performed to control for the level of idiosyncratic volatility: I first sort 
stocks into 5 quintiles based on their level of idiosyncratic volatility, and then within each quintile, further sort 
stocks into 5 portfolios based on their level of distress. The return spread of  “5-1” refers to the difference in 
monthly returns between distress risk portfolio 5 and portfolio 1 within each idiosyncratic risk quintile. T-
statistics are reported in brackets. The sample period is from September 1971 to December 2008. First 8 months 
of the original sample period are excluded in order to have sufficient number of stocks in each portfolio. For 
each variable of interest. ***, **, and * indicate that the estimate is statistically different from zero at 0.1%, 1% 
and 5% confidence levels respectively.  

 Ranking on Financial Distress 

 1 Low 2 3 4 5 High 5-1 

Panel A: Excess returns 

1 Low 0.63 0.54 0.49 0.33 0.35 -0.28 
Idiosyncratic risk (3.22)** (2.63)** (2.30)* (1.48) (1.60) (1.92) 

2 0.51 0.46 0.31 0.59 0.46 -0.05 

 (2.15)* (1.82) (1.20) (2.22)* (1.72) (0.28) 

3 0.32 0.65 0.73 0.44 0.29 -0.03 

 (1.21) (2.15)* (2.37)* (1.30) (0.85) (0.15) 

4 0.34 0.33 0.48 0.12 -0.13 -0.47 

 (0.97) (0.91) (1.32) (0.32) (0.33) (1.99)* 

5 High 0.06 -0.22 0.12 0.58 1.20 1.14 

Idiosyncratic risk (0.15) (0.54) (0.26) (1.23) (2.63)** (3.78)*** 

Panel B: Three factor alphas 

1 Low 0.26 0.15 0.04 -0.15 -0.04 -0.30 
Idiosyncratic risk (2.81)** (1.76) (0.44) (1.76) (0.39) (2.07)* 

2 0.00 -0.05 -0.13 0.08 0.02 0.02 

 (0.04) (0.40) (1.17) (0.70) (0.19) (0.13) 

3 -0.17 0.22 0.23 -0.08 -0.17 0.00 

 (1.37) (1.42) (1.62) (0.54) (0.99) (0.00) 

4 -0.15 -0.17 0.02 -0.36 -0.61 -0.46 

 (0.85) (1.02) (0.12) (1.87) (3.07)** (1.96) 

5 High -0.42 -0.75 -0.40 0.17 0.77 1.18 

Idiosyncratic risk (1.93) (3.67)*** (1.62) (0.60) (2.79)** (3.86)*** 

Panel C: Average default probability 

1 Low 0.045 0.045 0.045 0.045 0.046  
2 0.047 0.048 0.050 0.052 0.054  

3 0.057 0.061 0.066 0.071 0.077  

4 0.083 0.090 0.098 0.108 0.120  

5 High 0.134 0.153 0.178 0.211 0.233  

Panel D: Average idiosyncratic volatility 

1 Low 4.04 5.39 6.17 6.75 7.26  
2 7.74 8.23 8.72 9.22 9.74  

3 10.29 10.87 11.49 12.15 12.84  

4 13.59 14.40 15.28 16.28 17.47  

5 High 18.93 20.82 23.52 28.36 49.53  

Panel E: Average size (MUSD) 

1 Low 4938 4539 3741 3298 2962  
2 2527 2193 1822 1618 1443  

3 1304 1143 1010 859 700  

4 605 484 411 367 302  

5 High 256 225 195 166 190  
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6.3.5 Multivariate independent sort 

 
To control for the drawbacks of sequential sorts of not generating large enough spreads, I 

perform independent sort with idiosyncratic volatility and financial distress. Table 14 presents 

the results of the sort. Panel A reports the value weighted excess returns and Panel B the 

Fama-French three factor alphas and corresponding t-statistics. Panels C to F report the 

average failure probability, idiosyncratic volatility, size and number of companies of each 

portfolio. 

 

In Panels A and B, the long short idiosyncratic volatility spread reported in column “5-1” 

shows that high idiosyncratic volatility stocks exhibit significantly positive returns only in the 

least distressed quintiles. The three factor alpha of long short idiosyncratic volatility portfolio 

is 1.24% and is significant at 0.1% level. The inspection of average failure probabilities and 

idiosyncratic volatilities show that positive returns of the long short portfolio can be attributed 

to idiosyncratic volatility. The average failure probability of the least distressed quintile 

reported in Panel C is constant at 0.021% while the average idiosyncratic volatility increases 

from 6.20% to 27.82% within the least distressed quintile. Distress risk remains relatively 

constant across the idiosyncratic risk quintiles except in the highest idiosyncratic volatility 

quintile where distress risk increased from 0.131% to 0.314%. Idiosyncratic volatility 

increases quite uniformly in each distress quintile from around 6% to 30%.  The results of 

idiosyncratic volatility spread are qualitatively similar to Song (2008) who finds a negative 

spread of lagged idiosyncratic volatility portfolios only in high distress risk quintiles whereas 

in the lowest distress risk quintile the idiosyncratic volatility spread is positive albeit 

insignificant. My results do not show a negative relation between idiosyncratic volatility and 

returns even in the highest distress risk quintile, but the positive relation between 

idiosyncratic volatility and stock returns in only significant in the lowest distress risk quintile.  

 

The returns of the long short distress risk are reported in row “5-1” in Panels A and B. Three 

factor alphas are significantly negative for all idiosyncratic risk quintiles, except the second 

quintile. With the exception of second idiosyncratic volatility quintile, the return spread of 

long short distress portfolio decreases as idiosyncratic risk increases. This is mainly explained 

by simultaneous increase in distress risk in the highest distress risk quintile as idiosyncratic 

risk increased. In the fourth distress quintile where distress risk remains constant across 

idiosyncratic risk quintiles, the three factor alpha is significantly negative only in the highest 
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idiosyncratic risk portfolio. The results suggest that the asset pricing impact of distress risk is 

not depended on idiosyncratic volatility though it is somewhat amplified by idiosyncratic 

volatility.  

 

The size of the companies decreases almost monotonically across each distress (idiosyncratic 

volatility) quintile as idiosyncratic volatility (distress risk) increases. Due to high correlation 

of the measures, a drawback of independent sort is that number of companies in each portfolio 

can differ greatly. Panel F reports than in lowest (highest) Dt-1, highest (lowest) EGARCH_IV 

portfolio there is on average 48 (31) stocks. Campbell et al. (2001) suggest that the number of 

stocks needed to achieve complete portfolio diversification has been about 20 between 1963 

and 1985and about 50 during 1986-1997 as the level of idiosyncratic volatility has increased. 

Thus on average there is quite well enough stocks also in these extreme portfolios to achieve 

sufficient portfolio diversification even after taking into account that there fewer stocks in 

these portfolios than on average in the first years of the sample period.  
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Table 14. Multivariate independent sort of idiosyncratic risk and distress risk portfolios 
The table presents the  results of independent sort on idiosyncratic volatility and level of financial distress. I sort 
stocks into 5 quintiles based on their idiosyncratic volatility and level of financial distress independently and 
then form 25 portfolios by matching both criteria. Panel A and B report the value weighted excess return and 
Fama-French three factor alphas of the value weighted portfolios respectively. The spread of long-short volatility 
trading strategy is reported in column “5-1”. The spread of long-short distress trading strategy is reported in row 
“5-1”. T-statistics are reported in brackets. Panels C to  F report the average default probability, idiosyncratic 
volatility, size and number of companies in each portfolio respectively. The sample period is from September 
1971 to December 2008. First 8 months of the original sample period are excluded in order to have sufficient 
number of stocks in each portfolio. For each variable of interest. ***, **, and * indicate that the estimate is 
statistically different from zero at 0.1%, 1% and 5% confidence levels respectively.  

 Ranking on Idiosyncratic Volatility 

 1 Low 2 3 4 5 High 5-1 

Panel A: Excess returns 

1 Low 0.48 0.38 0.71 0.77 1.73 1.26 

Distress risk (2.44)* (1.60) (2.45)* (2.16)* (4.08)*** (3.54)*** 

2 0.48 0.47 0.52 0.31 1.17 0.68 

 (2.27)* (1.91) (1.80) (0.87) (2.68)** (1.93) 

3 0.45 0.54 0.27 0.04 0.10 -0.34 

 (1.95) (2.01)* (0.82) (0.11) (0.25) (1.04) 

4 0.52 0.58 0.33 0.19 -0.12 -0.64 

 (1.96) (1.82) (0.95) (0.50) (0.27) (1.76) 

5 High -0.24 0.39 -0.09 -0.75 -0.37 -0.13 

Distress risk (0.71) (0.96) (0.22) (1.59) (0.72) (0.32) 

5-1 -0.72 0.01 -0.80 -1.52 -2.11  

 (2.56)* (0.03) (2.26)* (4.19)*** (4.56)***  

Panel B: Three factor alphas 

1 Low 0.19 0.01 0.37 0.37 1.45 1.26 

Distress risk (2.33)* (0.08) (2.46)* (1.79) (4.93)*** (4.19)*** 

2 0.04 0.02 0.11 -0.05 0.79 0.75 

 (0.54) (0.17) (0.85) (0.27) (3.11)** (2.72)** 

3 -0.11 -0.05 -0.26 -0.54 -0.29 -0.19 

 (1.07) (0.41) (1.54) (3.08)** (1.31) (0.75) 

4 -0.12 -0.14 -0.40 -0.34 -0.61 -0.49 

 (0.79) (0.79) (2.13)* (1.71) (2.63)** (1.79) 

5 High -0.97 -0.51 -1.04 -1.69 -1.21 -0.25 

Distress risk (4.00)*** (1.84) (3.82)*** (6.52)*** (3.95)*** (0.71) 

5-1 -1.16 -0.52 -1.41 -2.06 -2.66  

 (4.31)*** (1.56) (4.15)*** (5.89)*** (5.91)***  

Panel C: Average failure probability 

1 Low 0.021 0.021 0.021 0.021 0.021  

2 0.034 0.034 0.034 0.034 0.035  

3 0.050 0.050 0.050 0.050 0.051  

4 0.073 0.078 0.081 0.082 0.083  

5 High 0.131 0.160 0.199 0.236 0.314  
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Table 14 continued. Independent sort 

 Ranking on Idiosyncratic Volatility 

 1 Low 2 3 4 5 High 5-1 

Panel D: Average idiosyncratic volatility 

1 Low 6.20 8.75 11.42 15.01 27.82  

2 6.03 8.74 11.47 15.23 30.32  

3 5.95 8.76 11.55 15.36 31.18  

4 5.91 8.76 11.67 15.62 30.52  

5 High 5.85 8.81 11.82 15.80 30.38  

Panel E: Average size 

1 Low 5409 2630 1714 844 479  

2 4937 2464 1334 705 481  

3 3262 1620 854 469 351  

4 1795 992 533 301 201  

5 High 239 309 201 123 77  

Panel F: Average number of companies in portfolio 

1 Low 205 215 173 110 48  

2 196 189 165 128 73  

3 185 161 157 143 105  

4 134 135 152 169 161  

5 High 31 51 104 201 365  

 
For an additional robustness check, I divide the entire sample into 4 subsamples, 1971-1980, 

1981-1990, 1991-2000 and 2001-2006 and perform independent sorts for each subsample. 

The results of these sorts are presented in Table 15. Panel A (Panel B) reports the value 

weighted three factor alpha of long short idiosyncratic (distress) risk portfolio across distress 

(idiosyncratic) risk quintiles.  

 

Panel A shows that the return spread of long short idiosyncratic volatility portfolio is higher 

in low distress risk quintile than in high distress risk quintile in all subsamples. The spread is 

however statistically significant only in 1971-1980 and 2001-2008 periods. The results are of 

similar direction as in Song (2008) who finds that the idiosyncratic volatility spread is most 

positive in 1971-1980 and 2001-2006.  

 

Panel B shows that the negative distress spread across idiosyncratic volatility quintiles comes 

mostly from 1981-1990, which is the only subsample where distress spread is significantly 

negative in all idiosyncratic volatility quintiles. In other subsamples, the return spread is 

significantly negative in some third, fourth or fifth idiosyncratic quintiles. As seen in Table 
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14, the difference in distress risk is higher in high idiosyncratic volatility quintiles, which may 

explain this pattern.  

 
Table 15. Multivariate independent sorts in different time periods 
The table presents the value weighted three factor alpha of a long short portfolio idiosyncratic (distress) risk 
portfolios“5-1”  across distress (idiosyncratic) risk quintiles from an independent sort. For each variable of 
interest. ***, **, and * indicate that the estimate is statistically different from zero at 0.1%, 1% and 5% 
confidence levels respectively.  

 5-1 idiosyncratic risk portfolio 

 
1 Low  distress / 
idiosyncratic risk 

2 3 4 
5 High distress / 
idiosyncratic risk 

Panel A: 5-1 idiosyncratic risk portfolio 

1971-1980 1.70 1.02 0.21 0.71 0.62 

 (2.77)** (2.02)* (0.41) (1.55) (1.07) 

1981-1990 0.47 0.52 -0.82 -1.16 -0.98 

 (0.95) (0.97) (1.85) (2.92)** (1.78) 

1991-2000 1.05 1.04 -0.52 -0.75 -1.08 

 (1.57) (2.16)* (1.08) (1.34) (1.63) 

2001-2008 1.49 0.18 0.48 -0.57 0.51 

 (2.89)** (0.29) (1.01) (0.85) (0.54) 

Panel B: 5-1 distress risk portfolio 

1971-1980 -0.89 0.20 -1.17 -0.53 -1.97 

 (1.88) (0.34) (1.87) (0.88) (2.60)* 

1981-1990 -1.44 -1.19 -0.98 -3.13 -2.88 

 (2.84)** (2.21)* (2.37)* (6.51)*** (4.86)*** 

1991-2000 -0.44 0.02 -2.13 -2.40 -2.57 

 (0.95) (0.03) (3.88)*** (3.4)*** (2.55)* 

2000-2008 -1.02 -0.56 -0.64 -1.84 -2.00 

 (1.80) (0.66) (0.68) (2.00)* (1.71) 
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7. Conclusion 

 

This study examines the asset pricing impact of idiosyncratic risk and financial distress on 

cross-sectional stock returns. Specifically, I investigate whether financial distress can explain 

the observed positive or negative correlation between idiosyncratic risk and return. 

Idiosyncratic volatility is defined as standard deviation of the firm return that cannot be 

explained by the Fama French (1993) three factor model. The conditional expected volatility 

is then measured by exponential generalized autoregressive conditional heteroskedasticity 

(EGARCH) model whereas financial distress is measured by employing both market and 

accounting data with Campbell et al. (2008) econometric model. This study is the first to 

study the interaction between idiosyncratic risk and financial distress by means of GARCH 

models and in addition to unpublished working paper by Song (2008), first to employ 

Campbell et al. (2008) measure of financial distress. I employ the cross-sectional Fama 

MacBeth regression and portfolio sorts in order to form a comprehensive picture of the asset 

pricing impacts of idiosyncratic volatility and financial distress.  

 
The summary of result is presented in Table 16. Consistent with the under-diversification 

hypothesis of Malkiel and Xu (2002) and narrow framing hypothesis of Barberis and Huang 

(2001), I find a positive relation between idiosyncratic volatility and expected stock returns. 

The results are also consistent with previous empirical literature employing EGARCH models 

for conditional idiosyncratic volatility (Eiling, 2006; Huang et al., 2007; Brockman & 

Schutte, 2007; Fu, 2009). The relation is robust after controlling for market beta, size, book-

to-market, momentum, short term return reversal and liquidity effects. The relation is 

however driven by micro and small stocks, defined by 20% and 50% percentile breakpoints of 

market capitalization for NYSE stocks. Due to this reason, the positive relation in portfolio 

sorts is found only with equally weighted portfolios. I contribute to the existing literature by 

providing evidence that the positive relation between idiosyncratic volatility and stock returns 

is not model specific to EGARCH models. The positive relation between idiosyncratic 

volatility and returns is also found by using GJR and GARCH(p,q) models.  

 

The relation between distress risk and expected stock returns is found robustly negative in 

both cross-sectional regressions and portfolio sorts. The results are consistent with the theory 

that the returns of distressed stocks are correlated in a way that is not captured by the market 

return due to deteriorating investment opportunities (Merton, 1973), decline in unmeasured 
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components of wealth such as human capital (Fama & French, 1996), or incomplete market 

proxy that excludes debt securities (Ferguson & Shockley, 2003).  The results are also 

consistent with previous empirical work by Campbell et al. (2008) who find a significant 

negative relation.  

 

The main contributions to the literature of this study are the results relating to the interaction 

of idiosyncratic volatility and financial distress. In cross-sectional Fama-MacBeth 

regressions, I find that both idiosyncratic volatility and financial distress maintain their 

explanatory power when both variables are included in the regression. This result is to the 

contrary of previous results of Song (2008) and Chen and Chollette (2006) who find that a 

negative effect of idiosyncratic risk exists conditional on high distress risk. Furthermore, I 

show that the negative relation between lagged idiosyncratic volatility and stock returns is not 

fully explained by short term return reversal as suggested by Huang et al. (2007) and Fu 

(2009), but an inclusion of distress risk does explain the negative relation as suggested by 

Song (2008) and Chen and Chollette (2006).  

 

Another main contribution of this study is the finding that the positive relation between 

idiosyncratic volatility and stock returns is conditional on low distress risk. This moderating 

effect of distress risk on the asset pricing impact of idiosyncratic volatility, meaning that 

lower distress risk is associated with more positive idiosyncratic volatility spread, is 

consistent with findings of Song (2008) and Chen and Chollette (2006). However, contrary to 

Song (2008), I do not find a negative relation between idiosyncratic volatility and distress risk 

even in the highest distress risk quintile. Furthermore, I provide additional evidence that the 

negative effect of distress risk persists across idiosyncratic volatility quintiles in multivariate 

independent sort. 
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Table 16. Summary of results 

 Expected relation Empirical evidence 

 Hypothesis Formulation of hypothesis Summary of key findings  

U
n

iv
ar

ia
te

 r
el

at
io

n 

H1 Positive cross-sectional relation 
between idiosyncratic volatility and 
excess returns 

Partial support. The positive relation exists only 
in micro and small stocks and in equally weighted 
portfolios.  The relation is not EGARCH model 
specific.  

H2 Negative cross-sectional relation 
between distress risk and excess 
returns 

Strong support. The negative relation exists in all 
size groups and in value weighted portfolios.  

M
u

lti
va

ria
te

 r
el

at
io

n 

H3a Controlling for financial distress, 
there is no relation between 
idiosyncratic volatility and excess 
returns 

Rejected. Positive relation between idiosyncratic 
volatility and stock returns remains after inclusion 
of distress risk in regression. In independent sorts, 
the relation exists only in the low distress risk 
stocks.  

H3b Controlling for idiosyncratic 
volatility, there is a negative 
relation between financial distress 
and excess returns 

Strong support. Distress risk effect remains after 
inclusion of idiosyncratic volatility in cross-
sectional regressions. The negative relation persists 
in all idiosyncratic risk quintiles in independent 
sort. 

 

In the interpretation and generalization of the results of this study, a few of important 

limitations need to be taken into account. Both idiosyncratic volatility and distress risk are 

estimated using full period data, imposing a look-ahead bias into the results. While the 

severity of the bias is likely to be minor (French et al., 1987; Song, 2008; Fu, 2009), the 

results do not suggest directly a useable trading strategy. Secondly, a strong correlation 

between idiosyncratic volatility and distress risk measures imposes a multicollinearity 

problem in uncovering the true relation between the two variables and stock returns. I have 

employed various robustness checks, most notably independent multivariate sort to alleviate 

this problem in the study. The results from the independent sort suggest that the conclusions 

draw from cross-sectional regressions and univariate sorts are robust.  

 

In future research, it would be interesting to see a decomposition of idiosyncratic volatility 

that includes a distress risk component. Idiosyncratic risk could be defined relative to an asset 

pricing model that includes distress risk and relative leverage as outlined by Ferguson and 

Shockley (2003) and then further modeled with GARCH models. Another interesting topic 

would be investigate the relation between change in idiosyncratic volatility and financial 

distress on stock returns. If the volatility of the firm’s asset value unexpectedly increases, the 

option value (equity price) will increase in Merton’s (1974) model. Hence the change in 

idiosyncratic volatility should also be positively related to stock returns. The option effect 
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also implies that the observed relationship be stronger for firms with higher financial 

leverage, since the equity of these firms are more option-like. Thus it would be interesting to 

see if financial distress moderates the effect of change in idiosyncratic volatility differently 

than the asset pricing impact of the level of idiosyncratic volatility. 
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Appendix 1 – Construction of the distress risk measure 

 

In this appendix, I describe in detail the construction of measure for financial distress as 

outlined in Campbell et al. (2008).All variables are constructed using COMPUSTAT and 

CRSP data. Relative size, excess return, and accounting ratios are defined as follows:  

 

��vw��,� = log + z=�q �
�<{m �|}=m~�,�A?m
; �&C 500 �
�<{m �
;}{ �,�, 

�j��A�,� = logD1 + ��,�G − logD1 + ��&� �gg,�G 
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The COMPUSTAT quarterly data items used are ATQ for total assets, NIQ for net income, 

LTQ for total liabilities, and CHEQ for cash and short term investments.  

 

To deal with outliers in the data that are very small and probably mismeasured, adjust I 

market to book ratio by adding 10% of the difference between market equity (ME) and book 

equity (BE) to book equity. After this adjustment, each of the six explanatory variables is 

winsorized using a 5/95 percentile interval in order to eliminate outliers. 

 

Book equity is as defined in Davis, Fama, and French (2000) and outlined in detail in Cohen, 

Polk, and Vuolteenaho (2003). Book equity is the stockholders’ equity (data item SEQQ, plus 

balance sheet deferred taxes and investment tax credit (data item TXDITCQ; if available), 

plus postretirement benefit liabilities adjustment (PRCAQ; if available), minus the book value 

of preferred stock (data item PSTKQ). If stockholder’s equity is not available I use common 

equity (data item CEQQ) plus book value of preferred stock instead.  
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To measure the volatility of a firm’s stock returns, I use an annualized 3-month rolling sample 

standard deviation: 

�v����,�(�,�(� = �252 ∗ 1 − 1 h ��,i$
i∈��(�,�($,�(�� �

�$
 

To eliminate cases in which few observations are available, SIGMA is coded as missing if 

there are fewer than five nonzero observations over the 3 months used in the rolling window 

computation. In calculating summary statistics and estimating regressions, I replace missing 

SIGMA observations with the cross- sectional mean of SIGMA; to avoid losing some failure 

observations for infrequently traded companies. I use a similar procedure for missing lags of 

NIMTA and EXRET in constructing the moving average variables NIMTAAVG and 

EXRETAVG. 

 

The twelve month moving average variables NIMTAAVG and EXRETAVG are constructed 

by imposing geometrically declining weights: 

 v�A�����,�(�,�(�$ = 1 − �1 − ��$ ( v�A��(� + ⋯ + ��� v�A��(�$) 
�j��A����,�(�,�(�$ = �(��(��� (�j��A�(� + ⋯ + ����j��A�(�$), 

where � = 2(��, implying that the weight is halved each quarter. Note that while the same 

quarterly data of Net Income and Total Liabilities is used for two preceding months, Firm 

Market Equity is measured monthly and thus adjusts each monthly NIMTA. 
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Appendix 2 – GJR and GARCH(p,q) Fama-Macbeth regressions 

The table presents the results of cross-sectional Fama-MacBeth regression. The sample period is from 1971 to 2008. For each variable of interest. ***, **, and * indicate that 
the estimate is statistically different from zero at 0.1%, 1% and 5% confidence levels respectively. 

Model BETA ln(ME) ln(BEME) RET(-2,-7) RET(-1) ln(TURN) ln(CVTURN) GJR_IV GARCHpq_IV 
Adj. 
R2 

1        0.04  2.31 

        (1.82)   

2 0.39 -0.07 0.31 0.01 -0.07 -0.40 -0.41 0.06  6.89 

 (2.09)* (1.95) (3.53)*** (7.02)*** (10.38)*** (6.1)*** (4.55)*** (3.78)***   

3         0.02 2.21 

         (1.21)  

4 0.38 -0.09 0.31 0.01 -0.06 -0.38 -0.44  0.05 6.87 

 (2.02)* (2.63)** (3.45)*** (6.82)*** (10.9)*** (5.85)*** (5.82)***  (3.31)***  

 

 
 


