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AGENT-BASED MODELING AS AN APPROACH TO EVALUATE PRICE DISCOV-

ERY PROCESS IN DOUBLE AUCTION MARKETS

PURPOSE OF THE STUDY

This study investigates how agent-based modeling can be used to evaluate the price dis-

covery process in double auction markets. The study is limited to single-unit continuous

double auctions, and especially to constrained zero-intelligence (ZI-C) trader markets

first introduced by Gode and Sunder (1993a).

STRUCTURE

First, I evaluate the earlier models and construct an agent-based model using the guide-

lines from the literature. In particular, the idea is to create an agent-based model as

simple as possible, because the earlier literature in agent-based modeling lacks synthesis

about the modeling principles used. After having created the model, I compare its re-

sults comprehensively against the earlier literature. In addition, I concentrate especially

to evaluating the methods of Cliff and Bruten (1997) to analyze ZI-C trader markets as

their ideas have influenced literature substantially, but have been recently questioned by

Othman (2008).

RESULTS

The results indicate that the methods of Cliff and Bruten (1997) can be improved. Espe-

cially, it appears that the probability density functions (PDF) of bids and asks proposed

by Cliff and Bruten (1997) have to be constructed in a slightly different manner than

what was originally proposed. However, the results also suggest that after refining the

ideas of Cliff and Bruten (1997), it is possible to describe the PDF of transaction prices

in ZI-C trader markets. Generally, the results suggest that the earlier literature has over-

looked the importance of the evolution in the trader population participating in the ZI-C

market. In addition, the results indicate that the trading in ZI-C trader markets closely

mimics a sequence of trades that would take place on the Marshallian path, which has

been previously suggested, but not comprehensively analyzed by Brewer et al. (2002).
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AGENTTIPOHJAINEN MALLINTAMINEN MENETELMÄNÄ HINNANLÖYTÄMIS-

PROSESSIN ARVIOINNISSA TUPLAHUUTOKAUPOISSA

TAVOITTEET

Tutkimuksen tavoitteena on perehtyä siihen kuinka agenttipohjaista mallintamista voidaan

käyttää hinnanlöytämisprosessin tarkastelussa tuplahuutokaupoissa. Tutkimuksessa ra-

joitutaan tarkastelemaan jatkuvia yhden hyödykkeen tuplahuutokauppoja, ja erityisesti

rajoitetun nollaälykkyyden (ZI-C) omaavia agentteja, jotka Gode ja Sunder (1993a) esit-

telivät ensimmäisen kerran uraauurtavassa työssään.

RAKENNE

Rakennan agenttipohjaisen mallin käyttämällä hyväkseni aiempaa kirjallisuutta ja sii-

nä esiteltyjä metodeja. Tavoitteenani on pyrkiä rakentamaan mahdollisimman yksinker-

tainen malli, koska aiempi agenttipohjaista mallintamista käsittelevä kirjallisuus käsit-

tää useita erilaisia heterogeenisiä malleja eikä yleistä mallinrakennuskehikkoa näyttäisi

olevan. Arvioin rakentamaani mallia vertaamalla mallin tuloksia aiemmin kirjallisuudessa

esitettyihin tuloksiin. Lisäksi tarkastelen Cliffin ja Brutenin (1997) käyttämiä metodeja

analysoida ZI-C markkinoita, koska ne ovat vaikuttaneet paljon aikaisempaan kirjallisuu-

teen mutta toisaalta ne on kyseenalaistettu muutama vuosi sitten Othmanin (2008)

toimesta.

TULOKSET

Tulokset osoittavat että Cliffin ja Brutenin (1997) käyttämiä metodeja voidaan parantaa.

Tulosten perusteella näyttää ensinnäkin siltä, että myynti- ja ostotarjousten tiheysfunk-

tiot ZI-C markkinoilla tulee muodostaa hiukan eri tavalla kuin mitä Cliff ja Bruten alun

perin ehdottivat. Toisaalta tulokset tukevat myös sitä, että pienillä muutoksilla Clif-

fin ja Brutenin ideoita voidaan käyttää hintojen tiheysfunktioiden karakterisointiin ZI-C

markkinoilla. Yleisesti ottaen tulokset osoittavat, että aiempi kirjallisuus on ylenkat-

sonut agenttipopulaation evoluution vaikutusta ZI-C markkinoihin. Tulosten perusteella

näyttää erityisesti siltä, että kaupankäynti ZI-C markkinoilla tapahtuu likimääräisesti

Marshallin polkua pitkin kuten Brewer et al. (2002) ovatkin ehdottaneet asiaa sen tarkem-

min kuitenkaan analysoimatta.

AVAINSANAT

agenttipohjainen mallintaminen, nollaälykkyys, hinnanlöytämisprosessi, jatkuva tupla-

huutokauppa
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1 Introduction

Market microstructure studies the microfoundations of economic theory, and is currently

also an area of intense research. As an area of finance, market microstructure can be

defined as the study of processes that transform investor demands into quantities and

prices (Madhavan, 2000; O’Hara, 1995). The earlier literature has examined, for exam-

ple, price discovery, market structure, market design and transparency of the markets

(Madhavan, 2000). These areas cover different parts of real markets and reflect the fact

that the general need for knowledge about markets must have been one of the main rea-

sons why market microstructure literature has been rapidly growing during the last few

decades.1 One would also expect this trend to continue as the increasing use of different

electronic marketplaces, suggested for example by Biais et al. (2005), should only increase

the demand for market microstructure research in near future.

1.1 Background

The fundamental problem in the earlier economic theory is that a large part of it abstracts

from the exact mechanisms of trading. This basically means that the researchers assume

the market to be a black box and more importantly in many cases assume it to work

efficiently (O’Hara, 1995, p. 1). However, as the downturn in end of 2000s again showed,

there is demand for a deeper understanding of the markets. By studying the microstruc-

ture of different markets, one can try to find answers to some of the questions concerning,

for example, investors’ incentives behind trading stocks. While market microstructure

research has already answered some very important questions (Biais et al., 2005), there

still remains many open questions concerning real markets to be answered. Such ques-

tions relevant for this thesis concern, for example, the exact trading mechanisms used

and the price discovery2 in one particular mechanism. In general, better understanding of

how markets function could constitute better regulatory frameworks and maybe even the

formulation of new trading mechanisms designed for example for new electronic markets.

Theoretical models introduced in the earlier market microstructure literature have re-

lied mostly on analytical tools. As Hommes (2006) claims, “In the traditional literature,

simple analytically tractable models have been the main cornerstones and mathemat-

ics has been the main tool of analysis”. Thus, mathematics has provided researchers a

way to describe the behavior of a trader. At the same time, many traditional models

have used assumptions, which have constrained the model designers heavily. In general,

1 See for example the reviews by Madhavan (2000) and Biais et al. (2005); both of these surveys review
an extensive amount of recent literature in market microstructure research. 2 For example Biais et al.
(1999) and Madhavan and Panchapagesan (2000) define price discovery process as the price formation
process where traders interact with each other and the result is the price of the asset.
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the assumptions used have contributed to models, which do not describe the real markets

accurately, but have instead constrained the model to answer a couple of interesting ques-

tions. An example of the assumptions used in traditional models are the assumptions for

the Walrasian equilibrium: individual optimality, correct expectations, market clearing

and the strong form of Walras’ law of which the last one in effect means that the total

value of excess supply in markets is zero (Tesfatsion, 2006). As Tesfatsion argues, one

way to create an agent-based model, is to remove, for example, the traditional expecta-

tion about market clearing and replace it with something else that is dependable on the

model. It is quite intuitive that such agent-based models are especially interesting from

a modeling point of view, if they are able to describe the real markets more accurately.

Agent-based modeling is a quickly developing part of finance and economics and even

its own definition may still change. One of the early pioneers, Tesfatsion (2006), de-

fines agent-based computational economics to be “the computational study of economic

processes modeled as dynamic systems of interacting agents”. This definition well high-

lights the fact that agent-based models are often best understood as computer simula-

tions of interacting agents. According to Tesfatsion, the agents can range from “active

data-gathering decision-makers with sophisticated learning capabilities to passive world

features with no cognitive functioning”. In general, this means that different agents may

be, for example, traders, consumers, workers, families, firms or governments.

Real markets can be modeled more accurately using computational methods. As an

approach, the agent-based modeling uses primarily numerical methods, and the earlier

literature in agent-based modeling has taken a step away from the analytic models by

adding features that cannot be evaluated using analytic methods. One example of this in

practice is to allow all different agents in the model to have heterogeneous expectations

about the future prices.3 As many real markets consist of a large number of heterogeneous

agents interacting with each other, such a model would seem more appropriate than a

traditional analytic model which assumes homogeneous agents.

However, even with the numerical methods one has to make compromises. In agent-

based models this usually means that the agents have to be assumed to be boundedly

rational instead of having exactly correct expectations. In effect, boundedly rational

means that the agent has limited time and resources when calculating, for example, the

expectations about the future (Hommes, 2006). However, in practice this may only mean

that the agents form their expectations about the future using statistical methods,4 which

would at least intuitively seem to be well in line with the capabilities of human traders.

In general, the analytic models are usually forced to assume one or two different groups

3 This is a simplified example of the one explained by Chiarella et al. (2009). 4 For example Arthur
et al. (1997) use inductive reasoning and statistical methods to create expectations for their agents about
the future prices.
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of agents, while a computer model might have hundreds of agents that all have small

differences in their expectations about the future. Thus, when compared to analytic

models, the agent-based models should be at least able to create such initial conditions

that the resulting agent-based model resembles the real market more closely.

However, the more complicated models have also had their drawbacks. By creating

more complex models, the researchers have created complex systems, which might in

many cases be hard to comprehensively understand. In addition to complex models,

numerous models have also used different frameworks. The number of different models

and frameworks presented in the earlier research is well shown in the surveys by LeBaron

(2006), Tesfatsion (2006), Duffy (2006) and Hommes (2006). All this suggests that it is

possible to draw the conclusion that the agent-based modeling as a discipline is still in

the middle of its development and lacks synthesis about the general principles used in

modeling.

1.2 Limitations

This study will be limited to continuous double auction, henceforth referred to as CDA,

markets. For example, Farmer et al. (2005) define the CDA as an auction where each

trader can submit both buy and sell orders as long as the market is open, and the market

is cleared after each trader has submitted a buy or a sell order. More specifically, I

limit to single-unit continuous double auctions, henceforth referred to as SCDA. In a

normal CDA, the traders can submit orders that correspond to any quantity of the asset,

while in a SCDA all the orders are restricted to quote only a single unit. Farmer et

al. also note that “continuous double auction is the most widely used method of price

formation in modern financial markets” as is also suggested by the surveys of Madhavan

(2000) and Biais et al. (2005). Thus, using a CDA framework should guarantee that

the models created will not abstract too much from the real markets as the CDA is

regarded generally a good approximation of how limit order-book trading takes place in

real markets. In addition, SCDA has been used in this context in the earlier literature;

see, for example, the model by Chiarella and Iori (2002). Keeping the models close to the

reality is important, as, for example, the findings of Gode and Sunder (1993a) suggest

that the limit order-book trading has a fundamental meaning to the efficiency5 of the

CDA markets.

However, the double auction framework also imposes challenges as it is clearly more

complex than some of the frameworks assumed in the earlier market microstructure lit-

erature. Although in the literature the CDA is regarded generally as a very efficient

5 Gode and Sunder (1993a) define the efficiency of the markets as the ratio of the surplus extracted by
all the traders and the possible surplus that could have been extracted by all the traders.
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allocation mechanism, characterizing the optimal behavior of the trader in such an auc-

tion seems to be very hard as noted, for example, by Huang et al. (2002). A good

example of this in practice is the fact that in the double auction literature the optimal

trader behavior in a double auction has only been characterized in simplified auction

settings6.

1.3 Research questions and results

This thesis will attempt to argue how a small step towards the synthesis in agent-based

modeling could be taken when the interest is in price discovery. It seems evident that the

agent-based models should be as tractable as possible, but at the same time they should

give answers to questions, where analytic tools cannot reach. One especially intuitive

way to proceed on this path is to start the modeling of the markets from a model that

is as simple as possible. This thesis will try to find out whether this modeling problem

could be answered by using the zero-intelligence traders, which will be henceforth referred

to as ZI-traders. Such agents were first introduced by Gode and Sunder (1993a) to the

agent-based modeling framework and have inspired a large amount of research afterwards.

Gode and Sunder (1993a) defined ZI-traders in SCDA markets as agents, who submit

randomly buy and sell orders from independent and identical uniform distributions over

an interval from 1 to 200. They named such traders as ZI-U traders, where U stands

for unconstrained and highlights the fact that ZI-U traders do not take into account

their valuation of the asset when trading. In contrast to ZI-U traders, Gode and Sunder

(1993a) also defined ZI-C traders, who take into account their individual valuations when

submitting buy and sell orders. Models in this line of research base their foundations on

a set of very simple assumptions, which can be modified by adding features one at a time.

Thus, using ZI-traders should be a way, which allows one to control the complexity of the

model as well as it is possible with the present knowledge about the agent-based models.

This could mean that the modeler would have the possibility to keep track of the model

behavior while developing the model systemically in a step-by-step manner.

It also appears that ZI-trader market has to be evaluated using simulations instead

constructing and analyzing an analytic model. An analytic Markov model of the ZI-

trader market could be constructed, because the only factor contributing to the evolution

of the trader population is the previous population of traders7. Thus, it seems that,

for example, the ZI-C model could be analyzed analytically, although to the best of my

knowledge such analysis has not been proposed yet. However, the reason for the lack of

6 See, for example, a recent study about a double auction mechanism by Chu (2009). 7 The population
of traders participating in the market at time t depends only about the population of traders that
participated in the market at time t− 1.
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analytic studies is probably the fact that building such a model is problematic8. With

already five buyers and sellers the amount of states in the Markov model equals 252, and

the amount of states in a model with 75 buyers and 75 sellers9 is approximately 1044.

Thus, when designing a Markov model of the ZI-C trader market, one would have to

take into account this problem somehow or to limit to even simpler models than the ones

presented in this thesis.

Essentially, I will add to the earlier literature by carefully examining the properties

of the ZI-trader markets and comparing the price discovery process in different types of

ZI-trader markets. In practice, this means that I will carefully review the earlier results

about the ZI-C10 trader markets, and then build on them when discussing the price

discovery process. After that I will carefully look at the different demand and supply

settings that were introduced into the ZI-C trader literature by Cliff and Bruten (1997).

The work of Cliff and Bruten (1997) has also been widely recognized as one of the

strongest critique for the ZI-C trader approach. However, in contrast to Cliff and Bruten

(1997), the results presented in this thesis show that the price discovery process in ZI-C

trader markets is closely related to how the traders are matched to trade and how the

population of traders participating in the market evolves over time. Although the ideas

presented in this thesis are straightforward and actually based on the ideas and results

presented already by Gode and Sunder (1993a), it seems that the earlier literature has

generally overlooked the evolution of the trader population when discussing the price

discovery process in ZI-C trader markets. For example, the seminal work by Cliff and

Bruten (1997) concentrated on the overall price determination process, i.e. on the dis-

tribution of transaction prices, and left the evolution in the trader population aside. In

this thesis I will argue how such reasoning led Cliff and Bruten (1997) to underestimate

the importance of the changes in the trader population for the price discovery process.

The results suggest that by using the ideas presented by Cliff and Bruten (1997) more

carefully, it appears to be possible to explain the price discovery process in the ZI-C

trader markets. Especially, it appears that the probability density functions (PDFs) of

bids and asks proposed by Cliff and Bruten (1997) have to be constructed in a slightly

8 A natural way to form a Markov chain model is to define the state of the chain as the population
of buyers and sellers interacting in the market at certain moment t. The idea is that when a trade
takes place the state of the chain also changes. When taking into account every possible trade that can
take place, such a model with n buyers and m sellers would have

(
n

n−1

)(
m

m−1

)
possible states after one

trade has taken place, because a single buyer can trade with any of the m sellers. Similarly, after two
trades have taken place, there are

(
n

n−2

)(
m

m−2

)
possible states. Thus, all in all the model would have∑min(n,m)

i=0

(
n
i

)(
m
i

)
possible states, and the amount of states in the model increases exponentially with

the number of agents in the model. 9 These amounts corresponds to the amounts of agents used in the
ZI-C trader models presented in this thesis. 10 ZI-U traders have been generally overshadowed in the
literature by ZI-C traders, because the behavior of ZI-U traders is completely random while the behavior
of ZI-C traders resembled in some ways the behavior of humans in the experiments of Gode and Sunder
(1993a).
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different manner than what was originally proposed. However, the results also suggest

that after refining the ideas of Cliff and Bruten (1997), it is possible to describe the

probability density function of transaction prices in ZI-C trader market. Generally, the

results suggest that the earlier literature has overlooked the importance of the evolution

in the trader population participating in the ZI-C market, which strengthens the ideas

of Brewer et al. (2002), who claimed that the convergence of transaction prices in ZI-

C markets is based on the fact that intramarginal11 traders leave the market. Thus,

it seems that the correct way to analyze the behavior of ZI-C markets is to look at

how the population of traders changes over time and how the changes contribute to the

characteristics of the market.

1.4 Structure of the thesis

This thesis is divided into six chapters. Chapter two will begin by explicitly defining the

concept of single-unit continuous double auction and showing a characterizing example of

the SCDA trading process taking place in real exchanges. After that the quest for a step

towards the synthesis will begin with an extensive review of the previous literature. The

relevant literature can be loosely divided into the following areas: market microstructure,

agent-based modeling and double auctions. The methodology used will be reviewed in

the fourth chapter by elaborating how the different models used in this thesis were imple-

mented using Python programming language and, in particular, its simulation package

SimPy. The fifth chapter presents the results for the ZI-trader model by beginning from

the seminal results presented by Gode and Sunder (1993a), continuing with the critique

for the methods of Cliff and Bruten (1997) and ending with the results for the different

demand and supply settings in the spirit of Cliff and Bruten (1997). The last chapter

concludes the thesis.

11 Intramarginal traders are either buyers, whose valuation is larger than the equilibrium price, or sellers,
whose valuations is smaller than the equilibrium price.
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2 Single-unit continuous double auction

A double auction has got two sides, i.e. buyers and sellers, and traders on both sides can

submit offers to express their intentions instead of only one side (Friedman, 1991). This

is the main difference between the double auction and the usual example of an auction,

i.e. the English auction that is better known as the open ascending price auction. In

an English auction only buyers are allowed to submit offers, i.e. bids, to express their

willingness to buy the auctioned asset. In contrast to the English auction, in a double

auction, traders submit offers, i.e. quotes, which are either bids or asks depending on the

intentions of the trader. Buyers submit bids, which specify both the amount of the asset

and the price that the buyer is ready to at most pay for a single asset. Similarly, sellers

submit asks, which specify both the amount of the asset and the price that the seller at

least demands for selling a single asset.

The two prefixes continuous and single-unit are used to limit the double auctions

and also this study significantly. First, the single-unit prefix in front of the word double

auction refers to the fact that in the double auctions described in this thesis bids and

asks are restricted to trade a single unit of the asset at a time if not explicitly defined

otherwise. This simplification helps in understanding the double auctions and makes the

examples easier to follow. Such a simplification also fits the scope of this thesis well,

because, in the models presented later, the traders are restricted to use only single-unit

quotes. The second prefix will be elaborated in the following subsection.

2.1 Continuous clearing

A double auction may be cleared using different mechanisms, and continuous clearing is

only one example of possible clearing mechanisms. In essence, the clearing mechanism is

used to define how the bids submitted by the buyers are matched with the asks submitted

by the sellers (Gode and Sunder, 1993b). The idea is that in a continuously cleared double

auction the market is cleared each time a quote arrives at the market place (Gode and

Sunder, 1993b). In practice, continuous clearing means that the traders can submit quotes

at any time the market is active. The definition “any time the market is active” means

in the real world that any time period market is active is comparable to an interval of

positive real numbers, R+. This means that there is an infinite number of possible time

moments in each interval for a quote to arrive at the market.

Although, for example, Gode and Sunder (1993b), Gode and Sunder (1993a) and

Gode and Sunder (2004) all use term continuous double auction, their definition of the

continuous double auction is different from the one given here. The essential difference

is that the models by Gode and Sunder are restricted to work only in discrete time,
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while the definition given above does not use a discrete definition of time. Thus, the

definition given here is only one possibility, but it is definitely more elaborate than, for

example, the one given by Gode and Sunder; the discretization is only an approximation

of the ”continuous” time in the real world. To the best of my knowledge, the agent-based

models presented in the literature have been based on discrete-time simulations and the

same ideas are also followed when constructing models in this thesis. Thus, although

there are approaches to also simulate without using the discrete definition for time, such

models are not constructed in this thesis to keep the presentation as close as possible to

the one in the literature.

The fact that traders may submit quotes whenever the market is active makes the

continuously cleared double auction a practical way to organize trading in exchanges with

a large amount of traders participating in the exchange. A good example is the change

from the call-auction used in the 19th century in New York Stock Exchange (NYSE)

to the continuously cleared double auction. The general difference between the two is

the fact that a continuous double auction allows the traders to arrive at any time at

the market place and trade, while in a call auction the traders have to be present in

the market exactly at the time the call auction takes place (Kregel, 1992). According

to the intuitive arguments of Kregel, the change in the mechanism was derived from the

vast increase in the demand to trade in the NYSE, which in essence means that the

continuous double auction fitted the exchange with increased demand better than the

call-auction. The success of the continuous double auction is also highlighted by the fact

that today the continuously cleared double auction is used in some of the most important

stock exchanges, which include Paris Bourse, NYSE, Toronto Stock Exchange and Nasdaq

(Madhavan, 2000). Thus, it appears to be essential to try to take the condition “at any

time market is active” at least somehow into account when modeling the price discovery

process in stock markets. One possibility is to use discrete time simulations, which are

presented in this thesis.

I will next characterize how the clearing mechanism works in a continuously cleared

single-unit double auction. In practice, continuous clearing means that when a quote

arrives, it is immediately compared against the quotes in the limit order book. In the

following presentation, I will only specify the price of each quote, because all the quotes

submitted are restricted to trade only a single unit of the asset. If the quote arriving at

the market is a bid, then it is matched against the asks in the limit order book. The

idea in matching the submitted bid to the asks in the limit order book, is to match the

submitted bid to the ask with the lowest price, i.e. the lowest ask or better known as

the best ask, in the limit order book. This means that in practice a trade takes place

immediately when the price in the submitted bid is larger or equal to the lowest ask price
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in the limit order book. If the price of the submitted bid is lower than the lowest ask,

then the submitted bid is appended to the limit order book. On the other hand, if the

quote arriving at the market is an ask, then it is matched against the bids in the limit

order book. The idea in matching the submitted ask to the bids in the limit order book

is to match the submitted ask to the bid with the highest price, i.e. the highest bid or

better known as the best bid, in the limit order book. In practice, a trade takes place

immediately, if the price of the submitted ask is lower or equal to the price of the highest

bid. If the price of the submitted ask is larger than the highest bid, then the submitted

ask is appended to the limit order book.

2.2 An example of a single-unit continuous double auction

In practice, the continuous clearing means that the limit order book has two queues: one

for the bids and one for the asks. When creating a model of the limit order book, the

solution is to keep the limit order books ordered by the prices and time priorities, which

means that the smallest ask and the highest bid can be easily found. The ordering with

time priorities in addition to the price priority is derived from the fact that usually the

limit order books also obey a time priority (Chiarella and Iori, 2002). This means that

the quotes that have been appended earlier to the limit order book have to leave the limit

order book by trade or by cancellation before a quote with a later time priority can be

cleared with a submitted quote.

Table 1: An example of a single-unit continuous double auction. It is assumed in the following
that all quotes, i.e. bids and asks, correspond to single units of asset, which allows one to
consider only the prices of bids and asks when defining them. At the beginning, time t = 0, the
limit order book has got three bids at prices {1,2,3} and three asks at prices {4,5,7}. At time
t = 1, an ask at price p = 6 arrives and is appended to the limit order book. At time t = 3, a
bid at price p = 4 arrives and it matches the lowest ask, which means that a trade takes place.

t = 0 t = 1 t = 2 t = 3 t = 4

bids asks ask=6 bids asks bid=4 bids asks
3 7 3 7 3 7
2 5 2 6 2 6
1 4 1 5 1 5

4

An example of the clearing of the limit order book is given in table 1. There the limit

order book at time t = 0 consists of bids at prices {3,2,1} and asks at prices {7,5,4}. At
time t = 2 an asks at price 6, which was submitted at time t = 1, is appended to the

limit order book, because there exists no matching bid in the limit order book. Such a
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quote is better known as a limit order in the literature, because the submitted quote does

not lead immediately to a trade. However, the bid at price 4 submitted at time t = 3

is matched at time t = 4 with the lowest ask in the limit order book, because both the

submitted bid and the lowest ask have the same price 4. This means that the submitted

bid leads to a trade, and a quote that leads immediately to a trade is better known as a

market order in the literature.

There is one important issue that is vital to understand about the limit order-book

trading in a CDA. All of the quotes that are in the limit order book also have to obey

the immediate clearing condition. Thus, if there existed one bid and one ask in the limit

order book so that the price of the ask would be lower or equal to the price of the bid,

then a trade would take place immediately and the bid and the ask would be cleared

away from the limit order book. This means that assuming that the immediate clearing

condition is satisfied, we know that for all bids and asks in the limit order book it has to

be that the price bi of the bid i ∈ N is always smaller than the price aj of any ask j ∈ N
in the limit order book: bi < aj∀i, j ∈ N.
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3 Literature review

To create the foundation for this thesis, this chapter will review the most important

parts of literature in agent-based modeling. The first section will briefly discuss real and

artificial stock markets in general and define some of their main elements. This discussion

is an important building block for the following analysis of the previous literature, because

it defines most of the important concepts appearing in real markets from the agent-based

modeling point of view. The discussion is also meant to give perspective for the reader on

how a real stock market could be artificially constructed in a plausible way. The section

following the first will continue by briefly discussing the general view about agent-based

models and give a few examples of models used in the earlier agent-based modeling

literature bearing in mind the concepts defined in the first section.

After the first two sections, the reader should have some idea about the agent-based

modeling literature. The sections following the first two will concentrate on reviewing

the ZI-trader models, which forms the backbone for the chapter concerning the ZI-trader

model and results. The third section begins by taking a look at the seminal work of Smith

(1962) in the field of experimental economics, which initially inspired the zero-intelligence

trader framework introduced by Gode and Sunder (1993a). The fourth section describes

ZI-trader models, which are the core of this thesis. The fifth section will conclude the

review by examining the critique of the zero-intelligence trader model combined with the

latest achievements.

3.1 About the real and artificial stock markets in general

There are certain characteristics that many real stock markets in general share, and

these characteristics are naturally relevant also for constructing artificial stock markets.

Boer-Sorban (2008, p. 9) identifies six main factors that appear in real markets. These

characteristics also seem to be in line with the ones reported in the seminal work concern-

ing the market microstructure of stock markets by O’Hara (1995, pp. 8-12). The factors

identified by Boer-Sorban (2008, p. 9) are traded instruments, orders and quotes, market

participants, trading sessions, execution systems and market rules. In the following, these

concepts excluding market rules will be elaborated with respect to agent-based modeling.

Market rules are left outside the contemplation, because they are considered as market

specific. Thus, market rules are irrelevant for the following analysis, which tries to isolate

some of the most important features common for most of the stock markets from the

agent-based modeling point of view.
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3.1.1 Market participants

The agents used in the artificial market models typically correspond to investors and

market makers. These groups of participants can be used to form a crude approximation

of the interaction between the real market participants. In general, according to Boer-

Sorban (2008, p. 13) the participants in the real stock markets, i.e. traders, can be

roughly divided into two distinct groups: investors and market organization. In real

markets, investor can be any market participant, for example, an individual or a fund,

who does not belong to the market organization (Boer-Sorban, 2008, p. 13). If one looks

at the agent-based models presented in the surveys about the field by LeBaron (2006),

Duffy (2006) and Hommes (2006), it seems that it has not yet been that important to

exactly determine whether the investors were individuals or funds, but instead the models

have only assumed some investors that interact with each other. The reason has probably

been to reduce the complexity of the model as much as possible.

Similarly as investors, also the market organization in real markets can be divided into

groups. Boer-Sorban (2008, p. 13) divides traders belonging to the market organization

into two groups: brokers and market makers. According to her, the difference between

the two groups is in their behavior: the brokers trade for their customers, while market

makers are responsible for creating the prerequisites that make the trading of brokers

possible. In practice, this usually means that market makers provide bid and ask quotes,

and guarantee liquidity to those quotes within certain limited amounts. This is, for

example, the case in NYSE, where the market makers, i.e. the specialists, quote bid and

ask prices that they guarantee to hold up to some particular number of assets bought or

sold (O’Hara, 1995, pp. 9-11).

In the agent-based modeling literature, one widely recognized example of a model

including the market organization has been presented by Das (2001). His model has a

single market maker and several investors, and the model itself appears to be a good

example of the models implemented in the literature. It seems that similarly as in the

model by Das, also more generally in the literature the brokers12, integral parts of the

quote-driven real exchanges, have been left outside the artificial market models. The

reason has probably again been the ambition to create as simple models as possible. It

also seems that leaving them out has not yet been a problem, because already such simple

and crude models have proven quite good in explaining for example the stylized facts of

the prices of financial assets in real markets (LeBaron, 2006; Hommes, 2006).

12 Refer for example to the agent-based models presented in the surveys about the field by LeBaron
(2006), Duffy (2006) and Hommes (2006).
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3.1.2 Traded instruments

The earlier artificial market literature seems to have used on many occasions a single

traded instrument, which agents have valued in different ways. In general, the traded

instrument has been defined as any asset, which can be sold in real stock exchanges

(Boer-Sorban, 2008, p. 11). A single representative asset seems to have been preferable

over multiple different assets when looking at the earlier literature from the modeling

perspective. The main reason for this preference has probably been that the researchers

have tried to keep the number of parameters in the model as small as possible13. This

cautious simplification seems to be quite appropriate, because the literature lacks even

today synthesis about the other general modeling principles that should be used. Another

point to make is that a single asset can also be considered a feasible assumption when

compared to real markets, because the single asset may be thought of for example as a

share of an exchange-traded index fund.

Another important point of view from the modeling perspective is that the assets

used in models have had a certain value for the agents. This property has been probably

derived from the fact that many models in the literature seem to have assumed that the

willingness to trade is based on the differential between the price of the asset in the market

and the value of the asset expected by the agent14. This assumption seems even intuitively

quite feasible as also argued by Boer-Sorban (2008, p. 12), because the real markets seem

to support the fact that the market price of a stock does not always correspond to the real

value, for example, measured by the liquidation value of the company. Thus, the agents

participating in the market may have different judgements about the correct valuation

of the asset in question. In general, one can conclude that the assumption of a single

representative asset used in the earlier literature seems quite appropriate, if the artificial

markets presented in the literature are compared to the real markets.

3.1.3 Orders and quotes

Trading in many real markets is based on orders and quotes, which the traders use to

express their intentions in the markets. These concepts have been used in some artificial

market models although many models have also diverged from them and instead assumed

in some cases a more simplified framework than the one specified by orders and quotes15.

In real markets, an order is used to specify an asset, a price and an amount of it to be sold

or bought, and orders can be either market or limit orders (Boer-Sorban, 2008, p. 12).

The difference between the two classes or orders is following. A market order is executed

13 See for example the model by Chiarella and Iori (2002) and their argumentation about the used
assumptions. 14 See for example the surveys by Hommes (2006), Duffy (2006) and LeBaron (2006).
15 See for example the reviews by LeBaron (2006), Hommes (2006) and Duffy (2006).
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immediately at the best available price, while a limit order specifies a certain limit price,

which has to satisfied for the order to be executed (Boer-Sorban, 2008, p. 12). To be

more specific, limit orders are always appended to the limit order book, which contains all

available limit orders, while market orders are matched against a corresponding limit order

that exist in the limit order book. For example, for a market buy order, a corresponding

limit order would be a limit sell order, which has a lower or equal exercise price and

smaller or equal amount of assets. However, even in this simplified case the market rules

would be ultimately used determine how the matching of orders would be exactly done.

A general implication from these definitions for market and limit orders is that a market

order can be executed only, if there exists a limit order that fulfills the market order. Also

in this case, the market rules are used to decide, how the market orders, which fulfill the

amount of assets for an limit order only partially, will be matched. It is good to also note

that limit and market order trading also mean that the limit order book has to contain

at least a single limit order for a trade to take place.

Quotes and orders are different from each other, but also share many characteristics.

Quotes are, for example, used in a similar fashion as orders, and market makers quote

both price and quantity at the same time (Boer-Sorban, 2008, p. 15). The important

difference between a quote and an order is the fact that a quote is placed by a market

maker, while an order is placed by a trader (Boer-Sorban, 2008, p. 15). A bid quote

implies that the market will buy a specified amount at a certain price. Similarly an ask

quote will imply that the market maker is ready to sell a specified amount at a certain

price. These principles are used in major world exchanges, which include for example

Paris Bourse, NYSE, Toronto Stock Exchange and Nasdaq (Madhavan, 2000).

There are a number of important concepts related to orders and quotes, which have

to be defined in detail. These concepts are extensively used in real markets, which

entails that it is natural to use them also when analyzing and constructing artificial stock

markets. The two most important ones are two interrelated concepts: bid-ask spread

and liquidity. First, the bid-ask spread for a pure limit order book can be defined as

the difference between the lowest ask price and the highest bid price Boer-Sorban (2008,

p. 12). Similarly, a market maker provides her customers with the bid-ask spread by

quoting both her bid and ask quotes. Second, both orders and quotes are closely related

to liquidity, which can be loosely defined as the ability to either buy or sell an asset at a

price close to the current market price (Boer-Sorban, 2008, p. 26). Traders can be seen

to offer liquidity by posting either orders or quotes and to take liquidity by accepting

already available orders or quotes (Boer-Sorban, 2008, p. 12).

Agent-based models have used both orders and quotes. The decisions to use either

one has depended on whether the model created has included market organization or

14



not. At the moment, it seems that although there are also models including the market

organization, it is probably wise to still try to produce models as simple as possible, which

essentially means that the market organization is left more or less unnoticed. Adding the

market organization to the model should at least in principal increase the complexity of

the model: a pure limit order book model has only buyers and sellers, while in a model

with market organization the market makers would have to be included in the model in

addition to the buyers and the sellers. Although there might be models, which do not

follow this argumentation, at least the present literature appears to suggest these kinds

of simple differences between the structures of the models16.

3.1.4 Execution systems, trading sessions and timing of the market

There are also a few concepts related to the structure of execution systems. According

to Boer-Sorban (2008, p. 14), the execution systems in real markets can be quote-driven,

order-driven or a hybrid of these two. In a quote-driven system, market makers participate

in every trade and are the only source of liquidity in the market, while in a order-driven

market buyers and sellers meet without intermediation. In a hybrid system, the traders

can choose between the limit order book and market makers. It seems that of those few

studies in agent-based modeling literature that have used a double auction setting, most

have implemented either the quote-driven or the order-driven system. This seems again

quite natural, because the hybrid system would again only increase the complexity of the

already complex models. A general difference in agent-based models arising from these

definitions is also very intuitive: the order-driven models have needed only investors,

while the quote-driven models have in addition to investors needed also at least a single

market maker.

The structure of the trading sessions may also be an important determinant of market

prices. Earlier agent-based models have assumed different trading sessions structures,

which seems understandable as the session structures differ also in real markets. The

basic division between trading sessions is based on the degree of continuity of time, which

refers to the fact whether trading takes place continuously or periodically. Madhavan

(2000) deals the trading sessions in real markets based on the degree of continuity to two:

call market sessions and continuous sessions. In a call market session, the traders trade

at well-specified times, while in a continuous sessions traders are allowed to trade any

time the market is open. As indicated by both Boer-Sorban (2008, p. 95) and Madhavan

(2000), continuous sessions are in practice very common and used, for example, in Nasdaq,

NYSE and Paris Bourse.

However, Boer-Sorban (2008, p. 64) also notes that the trading sessions used in

16 Compare for example the model by Gode and Sunder (1993a) to the model by Das (2001).
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artificial markets seem to be often call market sessions instead of continuous sessions. The

Best intuitive reason for this is again probably the complexity; in continuous sessions some

parts of the model, like agents decision problem, become easily very complex, because

there are more options to choose from than in call market sessions. In practice, there

are also markets that combine the call market and continuous sessions. For example,

in NYSE the trading begins with a call auction and then continues with a continuous

auction during the day (O’Hara, 1995, p. 10). Implementing such a market structure

in an artificial market would certainly be interesting, but currently it seems that the

first step is to develop models that use continuous trading sessions instead of call market

sessions, because that is one of the simplest ways to create models that mimic the real

markets more accurately.

Also the exact timing of the markets, i.e. the submission and execution of orders and

quotes, is important although it has been left more or less unnoticed in the agent-based

modeling literature as suggested by Boer-Sorban (2008, pp. 12,78-80). It seems that it

would be crucial to note that in real markets one can submit a market order, which is

not executed. This may occur in real markets, although at the time of submitting the

order the limit order book contained a corresponding limit order (Boer-Sorban, 2008, p.

12). Such an occasion is easy to construct theoretically, when the following conditions

are met: orders are handled in the arrival order, it takes a certain constant time, say 2

time units, for the orders to move to the market place and the traders can place orders

asynchronously in continuous or discrete time. These three facts together mean that when

agent A sends her order at time t = 0, when the limit order book contains a matching

limit order l, it might still be that another agent B has sent her order that matches the

same limit order l in the limit order book already at time t = −1. If agent A had no

knowledge about the order of agent B, then this would mean that agent A would think

that her order will be a market order although it will actually be a limit order. Such

happens, because the order of agent B would arrive at time t = 1 at the market place

and it would be cleared with limit order l. Thus, when the order of agent A would arrive

at time t = 2 at the market place, it would be appended to limit order book, if the order

did not match any other limit order in the limit order book than limit order l.

Thus, the timing of the markets has an impact on how the trading actually takes

place, because in principle every market order has a positive probability not to get exe-

cuted. However, in the earlier agent-based modeling literature such non-executed market

orders seem to have been mostly left outside the modeling frameworks. One important

reason has probably been that there exist also other open questions, like the price dis-

covery process discussed in this thesis, which have been seen as more important from the

modeling perspective. However, it is good to note that one of the first ones to notice this
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difference was Boer-Sorban (2008), and as her results suggest that the timing issue seems

to matter and should be considered in the future research.

3.1.5 Conclusions

The different concepts that have now been presented can be together used to form an

artificial model of the stock market. As has already become apparent, different models

have used some of the concepts of real stock markets and have left some untouched.

Generally, the reason has probably mostly been the ambition to keep the models as

simple as possible17. Having now tried to capture the most important elements of the

real markets, it is important to notice that even if all these concepts were used in a single

model, such a model would still not be a complete description of the reality. Thus, there

still exist something that has not been defined: the traders decision-making mechanism.

When modeling, one has to define both the market structure and the decision-making

mechanisms to create a model that could at least be thought as a crude approximation of

the real markets. These two aspects have been major issues in the earlier models, and so

also make the main differences between different models as will be shown in the following

section.

3.2 A general view on agent-based modeling

Agent-based models have begun gathering attention during the last two decades. I will in

the following categorize the different models, introduce a few different models and discuss

them to give a thorough view of the agent-based modeling in general.

3.2.1 Few- and many-type models

One way to categorize the different models into two subgroups is to divide them into few-

type and many-type models (LeBaron, 2006). The difference between these two types

lies the number of different trading strategies used by agents in the model. Trading

strategy can on the high level, sufficient for now, defined as a strategy that explicitly

tells the agent how to trade a risky asset. Intuitively increasing the number of strategies

also increases the complexity of the model, because the number of different strategies

interacting with each other increases the complexity of the model. Increased complexity

of the model also creates another difference between the simplest few-type models and the

many-type models: the few-type models are more analytic when compared to the many-

type models, which can be only assessed using simulations (LeBaron, 2006). Thus, a

17 This is the only argument that the previous authors, like Chiarella and Iori (2002), have used in
limiting their studies.
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large number of different model characteristics means that the model has to be evaluated

using computational experiments, because finding any analytical solutions is impossible.

The first models introduced in the literature were few-type models according to

LeBaron (2006). One of the first ones to introduce two types of different investors into

models was Zeeman (1974). He defines in his paper two different groups of investors,

i.e. chartists and fundamentalists, and a model for them using differential equations and

catastrophe theory. Although this model is not essentially an agent-based model18, it is a

good example of the ideas used also in creating the agent-based models. In the model of

Zeeman (1974), the chartists are assumed to be investors, who base their decisions on the

state of the market. In contrast to the chartist, the fundamentalist base their decisions

on fundamental value of the asset in question. Zeeman’s model relates the proportion of

chartist and the excess demand of fundamentalists at a certain moment to the rate of

change of the stock index. In short, the global dynamics that the model produces for a

stock exchange are following when an initial assumption used is that the fundamentalist

money is inserted into the market (Zeeman, 1974):

1. Rising price of the index attracts more chartists to the market, which creates a bull

market.

2. The increasing proportion of chartists will eventually make the fundamentalists

leave the market as the price of the index rises too high when compared to the

fundamental value.

3. When a large enough part of the fundamentalists has left the market, the chartist

are no more able to create profits with the rising markets. This turns the bull

markets to bear.

4. After the index has reached a sufficiently low value, a slow recovery begins as the

fundamentalist start reinvesting.

This simple model presents one idea about how the bear and bull markets could be created

in the markets. It also seems that Zeeman’s model has been able to characterize something

valuable from the point of view of researchers, because according to Hommes (2006) many

similar behavioral elements have been used also in the more recent heterogeneous agent-

based models.

Another carrying theme in the agent-based modeling literature has been to analyze the

outputs of the artificial markets against the outputs of real markets. In practice, such

18 This model is not an agent-based model in the sense defined for example by LeBaron (2006), because
the model is not a simulation of individual agents. Instead the model uses differential equations to
characterize the different behaviors today often described using agents.
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experiments are done by comparing, for example, the price behavior produced by the

model to the real market price behavior as presented in the reviews by LeBaron (2006),

Hommes (2006) and Duffy (2006). Some authors have tried to create such markets,

which would create a price behavior that mimics the real market price behavior as closely

as possible. One example of such a model was presented by Day and Huang (1990),

whose model was one of the first ones to create stochastically fluctuating prices and

randomly switching bear and bull markets. The model is created using two different

types of investors: α- and β-investors. The α-investors can be best thought of as the

fundamentalist defined by Zeeman, because the α-investors try to buy when prices are

below the fundamental value and sell when prices are above the fundamental value. On

the other hand, the β-investors can be thought of as the “market sheep”, who chase the

market prices similarly as the chartist presented by Zeeman (1974). In essence, the model

of Day and Huang (1990) seems to in many ways implement the ideas of Zeeman (1974)

in a simulation context, and is able to create some characteristics of real market price

behavior using such only a few assumptions.

The model of Day and Huang (1990) is important also from a theoretical point of

view. Using their simple model, the authors are able to show, that when the strength

of fundamentalist α-investors is high enough, the prices converge to a point where no

net trading occurs. According to the authors, this can be seen as a situation where

there is no trading on information. On the other hand, when the strength of the chartist

β-investors is large enough, the model creates a sequence of irregular bull and bear

markets. Unfortunately as also the authors note, the model is nowhere close to be seen

as a characterization of real markets as the model misses, for example, many important

endogenous feedback mechanisms.

3.2.2 Other differences between the earlier models

Few- and many-type models are only one way to categorize the different agent-based mod-

els presented in the literature. I will next give a few more categorizations to highlight

the differences between the earlier models in the literature. In general, one can proba-

bly say that the most important differences between the models are in what is defined

exogenously and what is left endogenously defined by the model. Market price seems to

have been naturally endogenous in the earlier models. Market price also seems generally

to be one of the most important issues that the earlier models have generated as many

authors claim that their model is able to generate the common stylized facts for market

prices (LeBaron, 2006; Hommes, 2006; Duffy, 2006).

Although in the earlier models the price is endogenously created, there are many

differences between the price generation mechanisms. The branch of models based on the
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traditional finance literature, i.e. starting from Grossman and Stiglitz (1980), assumes a

Walrasian auctioneer mechanism. With such a mechanism all the agents know that in

every period the aggregate demand has to equal aggregate supply. In practice, for agents

this means that they optimize their portfolio assuming that the prices have to be set so

that an equilibrium prevails.

In reality, the Walrasian auctioneer mechanism can be described as a two-step proce-

dure as suggested by O’Hara (1995, p. 7) and Tesfatsion (2006). During the first step, all

the traders inform sequentially the auctioneer about their demands at each price know-

ing that no trade will yet take place. During the second step, the auctioneer allows the

traders to trade at an equilibrium price determined during the first step. Thus, by using

the Walrasian auctioneer mechanism, the earlier models have inserted an assumption of a

sequential equilibrium into each agents optimization problem. This assumption has been

criticized as too unrealistic, for example, by Boer-Sorban (2008), because it assumes that

all the traders are present in the market at the same time. As suggested in this thesis ear-

lier, for example, the trading in NYSE evolved from a call-auction to continuous double

auction, because all the traders were not able to be present in the same place at the same

time (Kregel, 1992). However, complementary mechanisms have been also introduced in

the earlier literature.

LeBaron (2006) divides the different price formation mechanism into four categories:

slow adjustment, equilibrium clearing, order book simulation and random trading. Slow

adjustment refers to a mechanism, where the market price is changed proportionally

to the excess demand by a market maker. An example of equilibrium clearing is the

Walrasian auctioneer mechanism, where all agents optimize their holdings knowing that

the market must clear. Order book simulation is based on simulating a order book, which

includes both buy and sell orders. An example of random trading is a situation where

agents randomly meet and trade, if both find it profitable.

Another difference between the models lies in the fact what models assume about

trader types (LeBaron, 2006). Some models assume that fixed proportions of different

agents interact in the model during the simulation. In such cases, the proportions are

taken as exogenous parameters. On the other hand, some models assume that the pro-

portions of different agents interacting in the market are determined endogenously. Such

models might, for example, assume that the traders change their behavior depending on

which agent type would have created best profits in the past.

A general view on agent-based models been now been presented. Hopefully, the reader

has gotten a firm grip on the possible differences between the existing models. Next I will

present more elaborately the ZI-trader model and its primary applications. Essentially,

the reason to choose to start modeling using ZI-traders is based on the fact that the model
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with ZI-traders are the simplest agent-based models that the earlier literature exhibits.

3.3 Experimental economics and the seminal work of Smith

(1962)

ZI-traders that will be presented in the next section are in principal based on the experi-

mental framework presented by Smith (1962). Thus, to be able to understand ZI-markets

it is good to first have a look at the framework for experimental economics presented al-

ready in the 1960s. I will next first present carefully the framework, results and methods

from the article by Smith (1962). In his seminal work in experimental economics, Smith

(1962) presented a framework that can be used to design, implement and asses an exper-

iment with human subjects in a double auction market. The general idea characterizing

the spirit of experimental economics is well presented by Smith (1962) when expressing

caution about his experiments, which

“are intended as simulations of certain key features of the organized mar-

kets and of competitive market generally, rather than as direct, exhaustive

simulations of any particular organized exchange”.

This expression of caution applies well also to the simulations presented in this thesis,

because it is certainly hard to imagine a model that would capture all the relevant features

of real exchanges. In his article, Smith (1962) presents results from nine different market

types, which are different from each other in terms of demand and supply schedules. The

following discussion will reveal how the experiments were organized in practice.

3.3.1 Framework

The experimental procedure used by Smith (1962) is based on dividing the human sub-

jects into two subgroups: buyers and sellers. The selected buyers are informed of their

private valuations, and are explained that they are not allowed to buy the asset at a price

that exceeds their valuation. Similarly, the selected sellers are informed of their private

valuations, and are explained that they are not allowed to sell the asset at a price that

is lower than their valuation. In addition, both buyers and sellers are explained that by

engaging in a transaction, they make a pure profit that is determined by the excess of

their transaction price p and their valuation v. For sellers, the profit is the difference

between the transaction price p and the valuation v determined as p−v, while for buyers

the profit is the difference between the valuation v and the transaction price p determined

as v − p. All the traders, i.e. buyers and sellers, are allowed to trade a single asset once,

and after that they leave the market.
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The valuations given to buyers and sellers can also be used to determine the theoreti-

cal demand and supply curves, i.e. the demand and supply schedules, and the theoretical

equilibrium price and quantity. Smith (1962) emphasizes the use of the word “theoreti-

cal”, because in a real exchange none of the participants, i.e. neither traders or market

organization, know the exact valuations of other participants. Another good reason to

use the word theoretical is the fact that the demand and supply schedules change imme-

diately after the first trade has taken place, because one seller and one buyer leave the

market. Thus, after each transaction the demand and supply curves change. However,

in an experimental setting the knowledge about the valuations appears to be very note-

worthy, because, for example, the theoretical price appears to have a strong relation with

the transaction prices in the experiments of Smith (1962).

In practice, the theoretical demand and supply curves follow straight from the knowl-

edge about the valuations of individual traders. As the theoretical demand curve depicts

the amount demanded at each price, it is possible to count the number of agents willing

to buy at a particular price to form the demand curve. Similarly, the supply curve can

be created by counting the number of agents willing to sell at a particular price. On

the other hand, the theoretical equilibrium price and quantity can be determined by the

intersection of the constructed demand and supply curves. The interesting results is that

also the experiments reported by Smith (1962) also suggest that the transaction prices

tend towards the theoretical equilibrium price as time progresses in his experiments.

In addition, the demand and supply curves seem to have certain forms. It is worth

noting that as the buyers are ready to buy at any price lower than their valuation, the

number of buyers willing to buy an asset can only decrease with the price. This means

that the demand curve as a function of quantity is always decreasing, but not strictly.

Similarly, because the sellers are ready to sell at any price higher than their valuation,

the number of sellers ready to sell an asset can only increase with the price. Thus, the

supply curve as a function of quantity is always increasing, but not strictly. As noted by

Smith, it is worth recognizing that using these definitions for demand and supply curves,

the curves stipulate the maximum amounts of bought (demand) and sold (supply) at any

price in the market. This follows straight from fact that the human traders participating

in the market are instructed to act according to their valuations, and from the fact that

the demand and supply curves are created by using the valuations of the traders in the

manner as described above.

The idea of Smith (1962) was to deal the experiments in individual trading days. In

practice this meant that each of the experiments conducted by Smith (1962) lasted several

trading periods, or days, which all had a time limit from 5 to 10 minutes depending on the

number of participants. Smith (1962) explains that the period continued at most to the
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time limit, but the period also ended if the bids and asks did no longer lead to transactions.

In practice, this meant that one or two final calls were made before announcing that the

market was officially closed. After a period had ended, another was immediately started,

and the traders were reinitialized with their initial values, which meant that all of them

were again given the right to trade a single asset during the new period using the same

valuations that they were given in the beginning of the whole experiment. This process

continued until a certain number of completed periods, depending on the experiment,

was reached. However, as Smith (1962) notes, one issue that does not appear in real

markets and appears in the experimental markets is the fact that the demand and supply

conditions were in most cases held constant when a new period was started; real markets

in contrast are likely to experience fluctuating demand and supply. To control for this

issue, Smith also experienced with markets where demand and supply were changed at

some point of the experiment.

Smith (1962) also controlled the information available to the participants carefully.

The idea was to keep the traders’ information set as close as possible to the situation

appearing in real markets. In practice, this meant that traders had no knowledge of

other traders’ valuations other than the transaction prices, bids and offers they witnessed

appearing in the market.

3.3.2 Results

Smith (1962) measured the overall convergence of transaction prices towards the equi-

librium price by introducing the coefficient of convergence α of transaction prices from

the equilibrium price. To define the coefficient of convergence, I will first define the root

mean squared deviation of transaction prices from the equilibrium price p0, henceforth

referred to as RMSD. The RMSD for prices pi, i = 1, 2, .., n and equilibrium price p∗ can

be defined as

RMSD =

√√√√ n∑
i=1

(pi − p∗)2

n
. (1)

Smith (1962) counted RMSD using all of the transaction prices available from a single

period and the theoretical equilibrium price. Using the above presentation for the RMSD

in equation 1, the coefficient of convergence α can be calculated by dividing the product

of RMSD and 100 with the theoretical equilibrium price p∗ as follows

α = 100×

√∑n
i=1

(pi−p∗)2

n

p∗
. (2)
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In essence, the coefficient of convergence in equation 2 measures the distance of the

transaction prices pi from the equilibrium price p∗.

The results of Smith (1962) show a strong tendency of transaction prices to tend

towards the theoretical equilibrium. The results Smith (1962) presents show that the

coefficients of convergence decrease monotonically in all of the other tests except test 819.

The experiments performed by Smith (1962) were different from each other in terms of

the type of the demand and supply schedules used. In some of the tests demand and

supply were symmetric in terms of a vertical line drawn at the level of equilibrium price,

while in other tests the market exhibited excess demand or excess supply for the traded

asset. Smith (1962) found also some evidence of the fact that the prediction of the static

equilibrium requires knowledge about the shapes of the supply and demand curves and

about their intersection; strongest evidence found by Smith (1962) was about the fact

that a flat, i.e. perfectly elastic, supply curve leads to an empirical equilibrium price that

is higher than the theoretical equilibrium price. However, Smith (1962) suggested further

research on this issue.

3.4 Models with zero-intelligence traders

Gode and Sunder (1993a) were the first ones to propose the ZI-traders in their seminal

paper, which compared the efficiency of the CDA markets populated by different trader

types. Essentially Gode and Sunder (1993a) showed that by replacing the human traders

in a continuous double auction market by “zero-intelligence” programs, the efficiency

of the CDA market may still stay close to the same level. According to them, the ZI-

traders with a budget constraint are sufficient to raise the efficiency of the CDA market

to a level that is comparable to the level that human subjects reach in an experimental

setting. This made the authors claim that the efficiency of the continuous double auction

is mainly derived from its structure, which means that the efficiency is independent of

the trader’s capabilities like reasoning and cognition. In essence, this would mean that a

high efficiency of the markets could be achieved even with very simple trader behavior.

I will in the following first present carefully the original model of Gode and Sunder

(1993a). After that I will proceed to presenting the claims and the results introduced

in the article by Gode and Sunder (1993a) that were partly already visited above. This

section will end with a review of the critique that the ZI-trader model has aroused in the

literature.

19 In the test 8, the double auction was changed to an auction, where only sellers were allowed to quote
prices. This means that test 8 can be more or less ignored this time, because it was not about testing
double auctions.
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3.4.1 Framework by Gode and Sunder (1993a)

Initially Gode and Sunder (1993a) defined zero-intelligence traders as programs, which

generate “random bids and offers” in the following way. At the beginning of the experi-

ment, each agent was either chosen to be a buyer or a seller and was given an individual

valuation vi for each unit i = 1, 2, ...,m to be sold or bought. During the experiment,

buyers created bids and sellers offers, which were independent draws from identical uni-

form distributions on a range from minimum price 1 to maximum price 200. The fact

that such agents do not remember, observe or seek to maximize profits induced Gode

and Sunder (1993a) to name their traders as zero-intelligence traders. Gode and Sunder

(1993a) named such simplest form zero-intelligence traders as ZI-U traders. Such nam-

ing convention was supposed to highlight the difference of ZI-U traders as unconstrained

traders to the constrained traders introduced later.

Algorithm 1 summarizes the behavior of a simple ZI-U agent when the agent is selected

to participate in the market. The ZI-U agent has to have a field indicating its own

valuation v although the ZI-U agent does not use it when trading. The valuation is

needed, because it is used to measure the profits the agent is able to create by trading.

The buyer indicator b is used to define whether the agent is a buyer, b = 1, or a seller,

b = 0, and is initialized to either of the two possible integer values accordingly. Again,

although the buyer indicator is not used in algorithm 1, it still has to initialized and

present, because “the market” needs to know whether the quote submitted is a bid or an

ask.

Algorithm 1 ZI-U trader

Require: valuation v, buyer indicator b ∈ {0, 1}
1. Choose valuation q ∼ U(1, 200)
2. Submit q

Results of Gode and Sunder (1993a) suggest that the budget constraint is an important

ingredient for the high allocative efficiency of the CDA markets with ZI-traders. The

authors defined the ZI-traders with the budget constraint, henceforth referred to as ZI-C

traders, in a similar manner as the ZI-U traders were defined above. However, the ZI-C

traders do not submit entirely random bids and asks, but instead submit bids and asks

with respect to their individual valuation vi for the i’th unit. Thus, a ZI-C -buyer creates

bids uniformly on a range of integers from minimum price 1 to vi for the i’th unit, and

a ZI-C -seller creates asks uniformly on a range of integers from vi to maximum price

200 for the i’th unit. The behavior of a ZI-C trader is summarized in algorithm 2; it is

in essence similar to the one presented for a ZI-U trader and the main difference is in

the use of the budget constraint. The difference between the results from the markets
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with the constrained and unconstrained traders are the most important findings Gode

and Sunder (1993a) present in their article in terms of this thesis.

Algorithm 2 ZI-C trader

Require: valuation v, buyer indicator b ∈ {0, 1}
1. quote q = −1
2. if b then
3. Choose quote q ∼ U(1, v) {buyer}
4. else
5. Choose quote q ∼ U(v, 200) {seller}
6. end if
7. Submit quote q

The third type of traders Gode and Sunder (1993a) analyzed were humans. The

authors used 12 unique human traders, who were graduate students of business and were

motivated by the fact that their course grade was dependent on their success in the

markets. Thus, in practice the humans were also informed of the budget constraint,

because they were given individual valuations of the asset in question. Essentially the

idea of Gode and Sunder (1993a) was to compare the humans to the ZI-traders in a

similar environment as the one introduced by Smith (1962).

Gode and Sunder (1993a) also made several modeling choices, which are important to

note when analyzing their model. The first three decisions are such that Gode and Sunder

(1993a) chose them in their own words to simplify the implementation, while the rest of

the choices are reported here to introduce the characteristics of the model by Gode and

Sunder (1993a) properly. First, the authors assumed that each bid, ask and transaction

was valid only for a single unit. Thus, the traders were limited to trade a single unit at

a time. Second, the transaction price was selected to be the price at which a bid and

ask were matched. In effect, this means that the transaction price equals the price of

the earlier quote, whether it is a bid or an ask. Third, they assumed that a transaction

canceled all unaccepted bids and offers from the limit order book; an assumption better

known in the literature as the resampling assumption20.

When comparing the third assumption to the real markets like NYSE, it seems that

the assumption is unrealistic. Because of the third assumption, the market is started over

after each transaction although that does not happen in reality. Interestingly, recent lit-

erature also seems to suggest that by removing the resampling assumption, the allocative

efficiency of the CDA market with ZI-traders decreases as shown by LiCalzi and Pellizzari

(2008). Thus, it may well be that the resampling assumption has actually contributed

a lot to the allocative efficiency of CDA markets with ZI-traders. However, it is also

20 For more information one can see for example the discussion by LiCalzi and Pellizzari (2008)

26



good to keep in mind that Gode and Sunder (1993a) used a very small population of

traders. Thus, to compensate for the small amount of traders it might have been a good

idea to use resampling. However, LiCalzi and Pellizzari (2008) use substantially larger

populations than Gode and Sunder (1993a). Another point to make is also the fact that

in experiments with human subjects the resampling assumption might have contributed

to keeping the human subjects active in the market.

The rest of the modeling choices reported now are more practical and concern the

exact choices that have to be done when implementing the artificial market model of

Gode and Sunder (1993a). The fourth assumption used was that at the beginning of the

auction each trader was endowed with a right to buy one or more units of the asset being

auctioned. Fifth, at the beginning of the auction each trader was given an individual

valuation vi of the i’th asset bought, which makes it possible to define the profit of a

trader for selling at price p as p − vi and buying at price p as vi − p. Sixth assumption

was that all the traders participating in the markets were divided in each experiment

evenly in the beginning into two distinct groups: buyers and sellers. Thus, although

Gode and Sunder (1993a) varied the number of assets the agents were to trade and the

valuations, they kept the number of buyers and sellers interacting in the market close to

even amounts.

Seventh, in each experiment the authors used a population of only 12 homogeneous

traders. Eight, Gode and Sunder (1993a) specified five different markets with different

supply and demand schedules to support their findings in different market conditions.

Apparently, these different market conditions were supposed to thoroughly cover the set

of all possible market conditions. However, as noted by Cliff and Bruten (1997), there are

certain market types, for example a market with fixed supply and demand, that were not

considered by Gode and Sunder (1993a). All the results the authors reported from each

of the markets were for homogeneous populations of traders (humans, ZI-U and ZI-C).

Thus, all in all, the authors reported results for 15 different markets: for 3 populations

of traders in each of the five markets. Ninth, each market was run for six periods, and

each period lasted for a finite time of half a minute for machine traders and 4 minutes for

human traders. Tenth, when each of the periods started, all the market variables were

set to the starting values. This assumption was made to create an environment, which

would resemble the trading from day to another day.

One issue has to be still defined: the arrival of traders to the market. Gode and Sunder

(1993a) must have assumed something about this issue, although it is not explicitly

defined in their article. Without more knowledge about their article, an educated guess

would be that the authors assumed each trader to participate in the CDA market all

the time. This seems to be in line with their presentation and conclusions: the authors
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conclude that as the CDA progresses inside the period (day), the opportunity set of the

traders narrowed and caused the transaction price to tend towards the equilibrium price.

If the authors did not assume that each trader participates all the time in the auction,

then drawing such a conclusion would require reasoning about the probability of a trader

to participate in the auction during the finite life time of the auction. It also seems

that the later presentations about the same subject assumed that all the traders are all

the time actively participating in the market (Cliff and Bruten, 1997; Gode and Sunder,

2004).

In addition, the authors give more precise definitions about the trading mechanism

used in their two other articles concerning ZI-traders21. These models can be used to

deduce something about the trading mechanism used in the 1993 article. The former, i.e.

the 1993 article, is actually also cited in the main paper, which introduced ZI-traders for

the first time to the research community. The authors cite their 1993 article in their main

paper, because it is a model which yielded similar results as the 1993 model described

above, but was restricted to a case where a trader had only a single unit to sell or buy.

As both the 1992 paper and the 2004 paper describe a model that utilizes a continuous

double auction without replacement, I suppose that assuming that also the main paper

used a similar CDA without replacement is justifiable.

Thus, trading in ZI-trader markets is divided into rounds. During each round the

trader population, i.e. both sellers and buyers, is sampled without replacement and the

selected trader is given a chance to trade. This process is continued until there is no

trader left to sample or a transaction occurs Gode and Sunder (2004). If a transaction

occurs, then the limit order book is emptied and a new round begins from scratch. On

the other hand, if there is no trader left to sample and no transaction has occured, then a

new round is started. Such a mechanism ensures that each trader gets a chance to trade

before any other trader has had two chances to trade. Now that the model of Gode and

Sunder (1993a) has been thoroughly explained, it is time to have a look at its results.

3.4.2 Results concerning transaction prices by Gode and Sunder (1993a)

The results from the models presented by Gode and Sunder (1993a) seem to support

their claims about the efficiency of the markets with ZI-traders. However, the credibility

of their results is partly decreased by the fact that they do not support their findings by

using statistical significance tests or by reporting statistical figures of the market, but

instead merely report the simulation results in pictures and interpret them.

The authors report the transaction prices times series and demand-supply schedules

for all of the five markets, and the results suggest that the different traders make a

21 See Gode and Sunder (1993b) and Gode and Sunder (2004).
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difference. Gode and Sunder (1993a) found out that for the human traders the transaction

prices seem to tend toward the equilibrium price, while the ZI-U -traders seem to act

completely randomly. The ZI-C -traders seemed to be somewhere in between the humans

and ZI-U -traders with certain tend in transaction prices towards the equilibrium price.

The transaction prices of ZI-C -traders are not as volatile as with ZI-U -traders. Still,

the transaction prices of ZI-C traders exhibit more volatility than the transaction prices

of human traders. However, the difference between ZI-C and human traders is in the

periodicity of transaction prices. The results suggest that while human traders remember

the last closing price from the previous period in both the experiments of Gode and Sunder

(1993a) and Smith (1962), ZI-C traders do not.

Gode and Sunder (1993a) highlight three features of ZI-C transaction price time series,

which are supported by the findings from all of the five markets they consider. First,

neither ZI-C of ZI-U traders seem to learn anything from the earlier periods as expected.

In contrast, the humans seem to continue trading with a transaction price close to the

closing price of the latest period. Second, the variance of transaction prices in ZI-U

markets seems to highest, and the variance of transaction prices in the human markets

seems to be lowest. The ZI-C markets seem to be somewhere in the middle between

these two. Third, the transaction prices in the ZI-C markets seem to tend towards the

equilibrium price, while the ZI-U markets show no such development. This argument is

also backed up by a presentation root mean squared deviation (RMSD) of prices from the

equilibrium price for each of the five markets averaged over the six periods to strengthen

their argument.

RMSD of prices pt, t = 1, 2, .., n from the equilibrium price p∗ is defined as given

in equation 1 above. However, in contrast to Smith (1962), it appears that Gode and

Sunder (1993a) have counted RMSD for each transaction in a market using the data

from the six periods they ran each of the markets. Although Gode and Sunder (1993a)

have not documented their use of RMSD carefully, a later paper by Cliff (1997) presents

the calculation of such a RMSD measure thoroughly in the same manner as presented

above. The idea is that the transactions for each period, i.e. day, are matched by their

occurrence: the first transaction of each day are used to calculate the first RMSD measure,

and the second trades the second measure.

Results of Gode and Sunder (1993a) suggest that in ZI-C and human markets the

transaction prices converge towards the equilibrium price. The RMSD of prices from

equilibrium in each of the five markets seems to tend towards zero for ZI-C and human

traders, while this cannot be said about the ZI-U trader markets. According to authors,

this shows that the ZI-C -agents induce the market price to tend towards the equilibrium

price although again no statistical tests are presented. The argument is backed up by a
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regression, which shows that the coefficients of RMSD regressed against the transaction

sequence number seem to yield negative slopes in each of the markets. Unfortunately, no

statistical measures, like t- or p-values for the coefficients, are reported for the regressions,

which makes it quite impossible to really investigate the quality of their regression anal-

ysis. Thus, the regressions do not seem to really add much value to the more qualitative

results.

The interest in the results of Gode and Sunder (1993a) is especially in the difference

between the ZI-U and ZI-C traders as the transaction prices of ZI-C traders resemble

more closely the transaction prices of human traders. The authors argue that the tend-

ing towards the equilibrium price in ZI-C markets can be explained by the narrowing

opportunity set of ZI-C -traders. According to them, in the beginning of each period, i.e.

day, the probability of seeing a bid with a price higher than equilibrium price or an ask

with a price lower than the equilibrium price, is larger than in the end of the period. They

heuristically explain it is most probable that a buyer with a valuation higher than the

equilibrium price, i.e. an intramarginal buyer, or a seller with a valuation lower than the

equilibrium price, i.e. an intramarginal seller, trade during the beginning of the period.

In effect this means that the agents trading in the end of the period have valuations closer

to the equilibrium value, because the intramarginal traders have already left the market,

because they traded in the beginning of the period. Although such ideas are intuitively

plausible, the presentation of Gode and Sunder (1993a) lacks all the quantitative proofs.

3.4.3 Results concerning the efficiency of the markets by Gode and Sunder

(1993a)

After having presented the tendency of the transaction prices to converge towards the

equilibrium price, Gode and Sunder (1993a) move to presenting results about the effi-

ciency of the market. First they define the maximum total profit that can be earned by

all the traders as the sum of producer and consumer surpluses that can be both counted

using the knowledge about the trader’s valuations and the theoretical equilibrium price.

Consumer surplus can be counted iteratively by summing all the positive differences be-

tween the demand function and the equilibrium price. Similarly the producer surplus can

be counted by summing the positive differences between the equilibrium price and the

supply function. After that Gode and Sunder (1993a) define the allocative efficiency of a

market to be ”the total profit actually earned by all the traders divided by the maximum

total profit that could have been earned by all the traders“.

Gode and Sunder (1993a) continue by reporting the efficiencies of the different mar-

kets. First, they note that in ZI-U markets all the possible trades took place, while in

ZI-C and human markets some units were not traded. Gode and Sunder (1993a) explain
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this by claiming that without the budget constraint, given enough time, all the possible

trades will take place, while such does not necessarily happen in ZI-C markets. In ZI-U

markets the traders will eventually bid and ask such prices that trades will take place,

while in ZI-C markets it may well be that there are trades that can never take place, be-

cause the budget constraint restrains the traders from quoting sufficient prices for trades

to take place.

In general, the efficiencies of the five markets were highest for human trader markets,

who were able to reach almost 100 percent efficiency in all markets during all periods.

This finding has been suggested also in the earlier literature about human experiments,

so it seems credible and supports the fact that the experiment was conducted properly. In

addition, the efficiencies of ZI-C markets were close to the efficiencies of human markets.

However, the efficiencies for the ZI-U markets were clearly lower when compared to two

other. Using primarily these arguments Gode and Sunder (1993a) concluded that the

main reason for the high allocative efficiency of double auctions is in the market discipline

and not in the capabilities of individual traders.

3.4.4 Other results of Gode and Sunder (1993b, 1997)

Gode and Sunder (1993b) propose in their paper a lower limit for the efficiency of the

continuous double auction markets with ZI-C traders. The market structure is otherwise

exactly the same as in the paper discussed above22, but the difference between the models

is in the fact that Gode and Sunder (1993b) use a model where the traders can trade at

most a single asset during a single period. To derive the expected efficiency the authors

define the extramarginal traders as agents who have a valuation situated to the right

from the intersection of demand and supply curves, and intramarginal traders as agents

who have a valuation that situates them to the left from the intersection of demand and

supply curves. The approximation for the expected efficiency of the CDA market with

ZI-C traders presented by Gode and Sunder, is a function of the number of intramarginal

traders participating in the market.

Result of Gode and Sunder (1993b) highlight an important factor contributing to

the price discovery process. According to the results of Gode and Sunder (1993b), the

efficiency of continuous double auction is derived from the differences in the proportions of

intra- and extramarginal traders participating in the market. This virtue is also important

to the price discovery process in ZI-C markets, because as the intramarginal traders

have left the market the trading ceases; the extramarginal traders cannot trade between

themselves.

This simple result can be easily shown to be true by creating an example. Assume

22 See above the discussion about the paper by Gode and Sunder (1993a).
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a market full of extramarginal buyers and sellers with an equilibrium price p. Then the

valuations of all extramarginal buyers are lower than the equilibrium price, which means

that ZI-C buyers can bid only prices that are lower than p. Similarly, the valuations of all

extramarginal sellers are higher than the equilibrium price, which means that the ZI-C

sellers can ask only prices that are larger than p. This means that no trade takes place

in the market, because all the bids are by definition strictly lower than all asks. Thus,

the price discovery process can take place in ZI-trader markets only as long as there are

intramarginal traders left participating in the market.

In a later article, Gode and Sunder (1997) determine the allocative efficiency of differ-

ent market types, which include also the continuous double auction. The authors present

a number of exact formulas for the efficiency of the different market types. The impor-

tance of their results in light of this thesis is again in the fact that the results confirm

and define more exactly the more earlier results presented by Gode and Sunder (1993b)

mentioned above: the proportions of intra- and extramarginal traders contribute to the

price discovery process.

3.4.5 Critique by Cliff and Bruten (1997)

Probably one of the hardest critiques for the ZI-trader model has been presented by Cliff

and Bruten (1997)23. The results presented by Cliff and Bruten (1997) have been cited

in several publications ever since24, although the analysis of Cliff and Bruten itself has

not been widely questioned in the citing publications. In essence, the results of Cliff and

Bruten (1997) reject the convergence of ZI-C markets to the equilibrium price in certain

market types that will be defined below. The authors present both mathematical analysis

and simulation experiments, which both lead to the same conclusion. According to them

more than zero-intelligence is in general required from the trading agents to make the

markets behave as if the traders were humans. In addition, according to Cliff and Bruten

(1997), only the chosen parameters of the models in the ZI-C markets presented by Gode

and Sunder (1993a) guaranteed the convergence to the equilibrium.

The heart of the argument by Cliff and Bruten (1997) is the analysis of probability

density functions for bids and asks in ZI-C markets. Generally, the probability density

function (PDF) of a random variable describes the relative likelihood of that random

variable to have a certain value. More formally, define the probability space as (Ω,F , P ),

where Ω corresponds to the sample space, F to the sigma algebra and P to the probability

measure. Then, a continuous random variable X can be defined as a function X from

the sample space to real numbers, X : Ω → R, if for all x ∈ R we have that {ω ∈ Ω :

23 See also the more elaborated article about the same subject by Cliff (1997) 24 For example Google
Scholar gave 9th of March, 2011 216 citations for the paper by Cliff (1997).
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X(ω) = x} ∈ F . Now, a PDF of a random variable X is defined as a function fX ≥ 0

such that for any set B ⊂ R we have P (X ∈ B) =
∫
B
fX(x)dx and the integral over the

whole space
∫
fX(x)dx equals one.

Cliff and Bruten (1997) derive the market wide PDFs for bids and asks by first defining

the PDFs for both ZI-C sellers and buyers. To make the following presentation as simple

as possible, it will be assumed in the following that each agent can trade at most a single

asset as was done also in the previous section. Again, this should not be a problem,

because already the results by Gode and Sunder (1993a) were assured using agents, who

were allowed to trade at most a single good during the experiment. Generally, for ZI-

C agents the PDFs are uniform distributions, which essentially means that the PDF

is constant over its support. For ZI-C buyer the support is defined as an interval of

real numbers from minimum price 1 to valuation v, and for a ZI-C seller the support is

defined as an interval of real numbers from valuation v to maximum price 200. Qualitative

versions of such PDFs are given in figure 1.

Figure 1: Qualitative PDFs of quotes of a ZI-C buyer and seller as proposed by Cliff and Bruten
(1997). The range of possible prices in the market is determined by minimum price (min price)
and maximum price (max price), while the valuation vi, i ∈ N is an agent specific variable. The
distributions of ZI-C agents are uniform distributions, which essentially means that the PDF is
constant over its support. For a ZI-C buyer the support is defined as an interval of real numbers
from 1 to valuation vi, and for a ZI-C seller the support is defined as an interval of real numbers
from valuation vi to maximum price 200.
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Figure 2: Qualitative PDFs of quotes in a market with three ZI-C buyers and sellers with
unequal valuations. The range of possible prices in the market is determined by minimum price
(min price) and maximum price (max price), while the valuations v1 < v2 < v3, are agent
specific. The minimum bid price (min bid) corresponds to lowest valuation in the group of all
buyers in the market, and the maximum bid price (max bid) corresponds to the highest valuation
in the group of all buyers in the market. The minimum ask price (min ask) corresponds to the
lowest valuation in the group of all sellers in the market, and the maximum ask price (max ask)
corresponds to highest valuation in the group of all buyers in the market. The PDF of bids
decreases from valuation v1 to v3, because the number of buyers willing to bid at a higher price
decreases as the price increases. Similarly the PDF of asks increases from valuation v1 to v3,
because the number of sellers ready to sell at a higher price increases as the the price increases.
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Price

P
D

F

min price min bid = v_1 v_2 max bid = v_3 max price
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min price min ask = v_1 v_2 max ask = v_3 max price

Assuming that all the valuations of buyer agents are not the same, means in effect

that the PDF of bids market wide is a decreasing function in price. This is derived from

the fact that the number of buyer agents willing, i.e. having a positive probability, to bid

with at a certain price decreases as the the price increases. For example25, assume that

there exist three buyer agents in the market: agent 1, agent 2 and agent 3 and that they

have valuations v1, v2 and v3 correspondingly. If all the three agents demand a single

good and the valuations are not equal, then the agent with the higher valuation is always

also ready to buy at a price that is accepted by the agent with the lower valuation, but

this is not the case the other way around. Thus, if v1 < v2 < v3, then there exists a single

agent, i.e. agent 3, in the market who has got a positive probability to bid a price, which

25 See figure 2 for an illustration of this example.
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is in the range (v2, v3). Similarly, there exists two agents in the market who have got a

positive probability to bid a price, which is in the range (v1, v2). Thus, the market wide

PDF is decreasing with the price. Similarly, when the valuations of all seller agents are

not the same, then one can easily see that the PDF for market wide asks is an increasing

function in price using similar arguments. The qualitative versions of such PDFs for

market wide bids and asks are presented below in figure 2 for a market with three buyers

and three sellers with valuations {v1, v2, v3}.
By increasing the number of agents participating in the market, the step size in the

market wide PDF for bids and asks decreases. According to Cliff and Bruten (1997)

this should result in probability density functions for bids and asks that have constant

slopes. Examples of such qualitative probability density functions are given in figure 3.

At first sight such result might appear to be correct, but actually the argumentation is

not sufficient to really characterize the probability density functions for quotes in ZI-C

markets. I will address this issue further in the Models-section and for now it is enough

to know that the correct probability density functions for quotes defined later are similar

in their characteristics to the ones proposed by Cliff and Bruten (1997).

The essence of the argument of Cliff and Bruten (1997) is that the probability density

function for the all transaction prices during a SCDA is given by the intersection of

market wide probability density functions for bids and asks. This argument is based

on the heuristic that according to Cliff and Bruten (1997) for an ask and a bid to be

valid, it has to be that the transaction prices are determined by the intersection of

the probability density functions for the quotes. The intersection for the market wide

probability density functions for bids and asks is presented in figure 4. Cliff and Bruten

(1997) use the intersection argument also to derive analytic measures of the expected

value of the transaction price, and compare the derived expected values to the theoretical

equilibrium price and average transaction prices. Especially, Cliff and Bruten (1997)

claim that the expected transaction price is different from the equilibrium price when

the supply and demand schedules are changed radically from the ones presented by Gode

and Sunder (1993a). Thus, according to Cliff and Bruten (1997) the results of Gode and

Sunder (1993a) were based on appropriately chosen demand and supply schedules

Cliff and Bruten (1997) criticize Gode and Sunder (1993a) that all the markets Gode

and Sunder reviewed in their study were in terms of demand and supply schedules in

similar. Cliff and Bruten (1997) derive the expected value of the transaction prices for

four market types, which are according to them different in terms of supply and demand

schedules. The differences between the market types reviewed by Cliff and Bruten (1997)

are summarized in figure 5. Market A presented in the top left corner of figure 5 can be

characterized as symmetric in terms of demand and supply. Term symmetric is derived
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Figure 3: Qualitative PDFs of quotes in a market with ZI-C buyers and sellers as proposed by
Cliff and Bruten (1997). The range of possible prices in the market is determined by minimum
price (min price) and maximum price (max price), while the valuations are agent specific vari-
ables. The minimum bid price (min bid) corresponds to lowest valuation in the group of all
buyers in the market, and the maximum bid price (max bid) corresponds to the highest valua-
tion in the group of all buyers in the market. The minimum ask price (min ask) corresponds to
the lowest valuation in the group of all sellers in the market, and the maximum ask price (max
ask) corresponds to highest valuation in the group of all buyers in the market. The probability
to see a bid decreases from price min bid to max bid, because the number of buyers willing to
bid at a higher price decreases as the price increases. Similarly, the probability to see an asks
increases from price min ask to max ask, because the number of sellers ready to sell at a higher
price increases as the the price increases. See figure 2 for a market with three sellers and three
buyers.
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from the fact that demand and supply are geometrically symmetric in terms of a horizontal

line, if such would be drawn at price p0 for market A. I will use henceforth use the

term symmetric demand and supply schedules to refer to a market type as the one now

presented for market A. Market B, the top right corner in figure 5, corresponds to a

situation where all the sellers have the same valuation. This means that the supply curve

is flat. Market C, the bottom left corner in figure 5, corresponds to a situation where

both demand and supply curves are flat, but in addition there exists excess demand in

the market. In the bottom right market D in figure 5, both demand and supply curves

are also flat, but this time the market exhibits excess supply. It is good to notice that
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Figure 4: Intersection of qualitative PDFs of quotes in a market with ZI-C buyers and sellers as
proposed by Cliff and Bruten (1997). The range of possible prices in the market is determined
by minimum price (min price) and maximum price (max price), while the valuations are agent
specific variables. The minimum bid price (min bid) corresponds to lowest valuation in the
group of all buyers in the market, and the maximum bid price (max bid) corresponds to the
highest valuation in the group of all buyers in the market. The minimum ask price (min ask)
corresponds to the lowest valuation in the group of all sellers in the market, and the maximum
ask price (max ask) corresponds to highest valuation in the group of all buyers in the market.
Cliff and Bruten (1997) argue heuristically that the intersection corresponds to the probability
density function of the transaction prices, because according to their the intersection defines all
the valid bids and asks during the CDA.
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each of the markets have a unique theoretical equilibrium point characterized by the

intersection of demand and supply curves. In a market with multiple equilibrium prices

the characterization of an equilibrium price could be problematic, while in a market with

a single equilibrium there is no such problem.

Cliff and Bruten (1997) also present simulation results for all of the four markets,

and the results appear to support their arguments. Only the results from market A with

symmetric demand and supply schedules show that the equilibrium price is equal to the

expected transaction price. In all of the other markets, the equilibrium price differs from

the expected transaction price, and the empirical average transaction price seems to be

in all cases in line with the expected transaction price. For a careless reader, such results

would suggest that in the market other than A, the ZI-C traders do not converge to
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Figure 5: Different market types presented as by Cliff and Bruten (1997) in their figure 1. In
each of the four markets depicted, horizontal axis corresponds to quantity and the vertical axis
corresponds to price. DD and SS curves correspond to demand and supply curves, while P0 and
Q0 refer to equilibrium price and quantity. Equilibrium price and quantity are determined by
the intersection of DD and SS curves in each of the four markets.

equilibrium. However, it is questionable that Cliff and Bruten (1997) report only average

transaction prices and leave out from their contemplation, for example, the closing prices,

which could have shown how strong the tendency towards the equilibrium really is.

This is important as the results of Gode and Sunder (1993a) were in principal about

the tend of the transaction prices towards the equilibrium price during a trading day and

not about the average correctness of equilibrium price as an forecast of the transaction

prices. This problem is noted also by Cliff and Bruten (1997), but for some reason the

exact results have been left to the more elaborate version of the same study by Cliff

(1997). In the elaborated version, Cliff (1997) reports the RMSD of transaction prices

from the equilibrium price as suggested first by Smith (1962) and used by Gode and

Sunder (1993a) to measure the convergence towards the equilibrium. The results are in

other ways similar to the ones presented using averages, but when using RMSD also the

market B seems to show some tendency of transaction prices towards the equilibrium

price (Cliff, 1997).

The general plausibility of the arguments expressed above was first questioned by

Othman (2008). The argumentation presented by Cliff and Bruten (1997) has a blind

spot, because the authors do not have explicitly covered the reasons why the PDF of

transaction prices should be the intersection of PDF’s for bids and asks (Othman, 2008).
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Essentially, Othman (2008) presents a counter example that shows how at least in one

market type the intersection of the PDFs of bids and asks does not determine the PDF for

transaction prices in the market correctly. In addition, Othman (2008) also characterizes

the seemingly complex probability density function for the transaction prices, which is

clearly more complex than what Cliff and Bruten (1997) proposed. Thus, there are

certainly reasons to question at least parts of the presentation of Cliff and Bruten (1997).

Another important problem with the method by Cliff and Bruten (1997) is that their

analysis considers only the first round of SCDA. Thus, actually their analysis of the

intersection tries only to characterize the expected value of the transaction price of the

first trade after the market is started. The reason for this is that the demand and supply

schedules change after two traders, i.e. a seller and a buyer, are removed from the market,

because they have traded all they were allowed to trade. Cliff and Bruten (1997) also

self note vaguely this issue, but claim that as their empirical simulation results seem to

suggest their theory to be close to correct, there is no need to start revising the theory.

However, the results of Othman (2008) seem to suggest that actually the theoretical

results are not correct, but should be instead revised and properly reassessed.

It is also interesting that the analysis of Cliff and Bruten (1997) takes no view on

the claim of Gode and Sunder (1993a) about the narrowing range of feasible transaction

prices. This is especially interesting, because the buyers and sellers with the intramarginal

valuations in the SCDA market are the ones that are most likely to trade during the

beginning of the day, while the buyers and sellers with extra marginal valuations seem to

trade closer to the end of the day according to heuristic arguments of Gode and Sunder

(1993a). Thus, it would seem interesting to look quantitatively how the probability

density functions for the bids and asks change during the day when the amount of traders

in the market changes. As it is clear that this issue is important in understanding ZI-C

markets, it will be taken into consideration in the empirical part of this thesis. To the

best of my knowledge, no other author has previously taken a quantitatively look at it

although Brewer et al. (2002) have proposed similar ideas as will be discussed next.

3.4.6 Critique by Brewer et al. (2002)

The critique by Brewer et al. (2002) was pointed towards the convergence of transaction

prices in ZI-C traders markets. As the first authors in this line of literature, Brewer et al.

(2002) defined the properties of transaction price convergence towards the equilibrium

price explicitly as follows:

1. Initial transaction prices are further from the equilibrium than final prices.

2. Variance of transaction prices decreases over time.
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3. If a parameter change moves the equilibrium price, then the transaction prices move

towards the new equilibrium.

Although, for example, the study of Gode and Sunder (1993a) lacked similar definition,

Gode and Sunder used similar arguments to argue about the convergence of ZI-markets.

I will essentially use the first two bullet points of the above definition to measure the

convergence of transaction prices towards the equilibrium price in the following. The

third bullet point is left out of the contemplation, because changes in demand and supply

schedules are outside of the scope of this thesis.

The essential contribution by Brewer et al. (2002) was to define a setting, which

does not allow the transaction prices of ZI-C trader markets to converge towards the

equilibrium price. The essential ingredient was to create a market, where the amount of

intramarginal traders stays relatively constant. Brewer et al. (2002) named such a market

as the continuously refreshed supply and demand (CRSD) market. Intuitively, in such

a market with ZI-C traders, the transaction prices do not converge to the equilibrium

price, because every time an intramarginal trader leaves the market, a new one arrives

to fill in. Brewer et al. (2002) showed experimentally that in a CRSD market the ZI-C

traders are not able to show transaction price converge towards the equilibrium price.

Brewer et al. (2002) also introduced the idea of a Marshallian path in the context of

ZI-C traders. A Marshallian path is a sequence of trades such that traders are paired

from left to right along supply and demand curves (Brewer et al., 2002). According to

Brewer et al. (2002), trading in ZI-C markets as suggested by Gode and Sunder (1993a)

takes place in a manner that resembles the Marshallian path, and their idea in the first

place was to design the CRSD markets so that the Marshallian path does not lead to

transaction price convergence. In terms of experimental economics, the results of Brewer

et al. (2002) essentially show that the ZI-C traders are too simplistic to really describe

human behavior, because they showed that with human traders CRSD markets exhibit

transaction price convergence, while with ZI-C traders no such convergence is present.

The idea in this thesis is to explicitly and quantitatively show that the price conver-

gence in ZI-C markets can be explained using the idea of Marshallian path first introduced

to ZI-C traders context by Brewer et al. (2002). Essentially, I will experimentally show

the proposition by Brewer et al. (2002) that the probability that an intramarginal buyer

trades with an intramarginal seller is higher than any other combination of intra- and

extramarginal traders. In addition, it would be interesting to know the probabilities to

trade between the traders inside the groups of intramarginal buyers and sellers. This is

interesting, because it is reasonable to expect that, for example, a intramarginal buyer

with the highest valuation is the most probable intramarginal trader to trade during a

single round.
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3.4.7 Critique by Gjerstad and Shachat (2007)

Gjerstad and Shachat (2007) criticize the conclusions made by Gode and Sunder (1993a)

from two perspectives. First, according to Gjerstad and Shachat (2007), the transaction

prices do not converge to equilibrium values in the simulations of ZI-C trader markets

presented by Gode and Sunder. The main argument is that the ZI-C traders do not

remember anything from the previous periods, which makes them to start the converge

towards the equilibrium always from scratch when the market is restarted. However, the

arguments about the convergence made by Gode and Sunder (1993a) were mainly about

the convergence inside the periods. Thus, actually the first critique made by Gjerstad

and Shachat (2007) concerns mainly the definition of convergence, which is not explicitly

defined in either studies.

The second critique posed by Gjerstad and Shachat (2007) concerns the definition of

zero-intelligence. Gjerstad and Shachat show in their paper that the definition of budget

constraint by Gode and Sunder (1993a), is actually an individual rationality constraint.

The difference in the economic sense is that a budget constraint is only a constraint in the

maximization problem, while an individual rationality constraint means that an agents

takes part only in transactions, which increase or leave her utility constant. Thus, also

the other critique by Gjerstad and Shachat (2007) is mainly directed towards the loose

definitions of the concepts that Gode and Sunder (1993a) used in their presentation.

3.4.8 ZI-trader model today

Ladley and Schenk-Hoppé (2009) presented another model of ZI-C traders, where the

traders were allowed to enter and exit the market with certain probabilities. In addition,

compared to the original model by Gode and Sunder (1993a), the model by Ladley

and Schenk-Hoppé (2009) also incorporated an order book mechanism that allowed the

modified ZI-C traders to also trade more than a single unit at a time. Interestingly,

such an extended model was able to create many of the stylized facts of the order-book,

like the shape of the order book, size of spreads and conditional probabilities of order

submissions that are exhibited by the real markets (Ladley and Schenk-Hoppé, 2009).

As a conclusion, I view that the ZI-C trader model should be evaluated more quan-

titatively than has been done in the past. The present literature seems to suggest that

the ZI-C traders are a simple approach to create some of the stylized facts appearing in

real markets. Thus, it also seems to be important to explain why the markets with ZI-C

traders exhibit such characteristics. In the following, I will explain how an agent-based

model for ZI-traders can be created and what methods will be used to assess the model

more quantitatively than has been done in the previous literature.
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4 Methods

The following presentation will explain how the models used were created and take a

look at the learning process that was went through when implementing the agent-based

model in practice. There are a number of issues that had to be taken into account when

designing and implementing an agent-based model.

4.1 Building an agent-based model using SimPy and Python

One of the first decisions to make when implementing the model in practice was the selec-

tion of the programming language used. Initially I preferred Python over other possible

languages, because it offers a forceful and minimalistic way to present complex struc-

tures. For example, when comparing Python and its standard library implementation of

list to Java and its comparable standard library class ArrayList, the use of list in Python

requires less lines and definitions. Such abilities in general make the designing of com-

plex structures simpler in Python than, for example, in Java. As Python also offers a

general discrete time simulation package SimPy, it seemed wise to choose Python as the

programming language to be used.

SimPy also seemed to suit the agent-based context well, because it provided the

basics needed for a simulation of simultaneously interacting agents. This means that

the selection of SimPy as the framework for agent-based modeling did not constrict the

implementation of different models. This was an important issue when choosing the

framework, because I had no earlier experience from implementing agent-based models

in practice. There are a number of different programs used in different fields of science26,

and, without a doubt, all of them have their good and bad sides.

Simultaneously interacting agents are implemented in SimPy using Python generators.

This property allows, for example, the agent process to be interrupted at a certain point

in time. After that the generators offer the possibility for the agent to continue the

processing from exactly the same point where the processing was interrupted. In the

agent-based modeling context, this means that many agents may interact simultaneously

with each other. Such a possibility is especially interesting if the agents are supposed to

interact with each other without central coordination. In such a simulation, it may, for

example, happen that an agent, say agent A, tries to acquire a resource, for example, a

limit order book, but another agent, agent B, has already reserved it. This means that

agent A has to take another decision. A simulation environment that does not allow

simultaneous interaction of agents cannot simulate such collisions.

26 A good example of the large number of different environments used in agent-based modeling is the
list provided by the agentlink.org: http://eprints.agentlink.org/view/type/software.html, which
was visited 30 January, 2011.
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However, the downside of using SimPy is naturally efficiency. Essentially, it means

that the number of agents that can be used in simulations are smaller than with more

efficient approaches. This is derived from the fact that the simulation in an environment

allowing the simultaneous interaction agents, like SimPy, needs more steps than a sim-

ulation in an environment that does not allow the simultaneous interaction of agents.

This is quite an intuitive issue, because the simulation of interacting agents requires the

simulation environment at each time step to check the status of each agent somehow. An

environment not supporting simultaneous interaction can proceed without such checks,

which means that the latter needs less steps. At first place, this did not seem to be a

problem and the results provided in this thesis are certainly comparable to the results of

Gode and Sunder (1993a) in terms of the number of agents used. However, if one wanted

to increase the number of agents dramatically, then it would be necessary to change from

SimPy to a simpler model, if possible. In the heuristic tests done using SimPy and a

home desktop, it seemed that increasing the number of agents from 150 to 500 increased

the running time of the model dramatically. Thus, in case one wanted to simulate a larger

amount of agents, it would be necessary to optimize the interaction of agents.

It is also good to note that the use of SimPy caused the implementation of a simple

ZI-trader model to become more complex than would have been needed. The ZI-traders

presented by Gode and Sunder (1993a) are centrally coordinated, which means that there

is no need for the simultaneous interaction of agents. Thus, all the checks that SimPy

does for the agents implicitly could have been optimized away. However, in the case of

the models that are based on simultaneous interactions of agents, like the one presented

by Boer-Sorban (2008), one needs to use a package like SimPy or otherwise such models

cannot be implemented. As this thesis has in general been a learning process, it was

certainly a good decision to choose a simulation framework that did not restrict the

implementation of different models. However, in practice, it seems that the ZI-trader

models used in this thesis could have been implemented in a more straight forward and

computationally efficient manner than will be presented in the following.

From the point of view of the user, a SimPy simulation builds primarily on three

different types of classes: Process, Resource and Simulation. To create the first ZI-trader

model, agent, market maker and generator were implemented as subclasses of the Process

class, the limit order books were implemented as subclasses of the Resource class and the

simulation itself was implemented as a subclass of the Simulation class as is presented in

figure 6. The following subsection will present the most important decisions regarding the

design of the used classes, while the whole source code can be found from the Appendix

A. The following presentation is supposed to introduce the SimPy to the reader at the

same time with the simplest ZI-trader model.
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Figure 6: A unified modeling language class diagram for the implemented SimPy simulation.
Agent, market maker and generator were implemented as subclasses of the Process class, the
limit order books were implemented as subclasses of the Resource class and the simulation
itself was implemented as a subclass of the Simulation class.

Simulation

ResourceProcess

Agent GeneratorMarket maker Limit-order book

0...* 0...*

4.1.1 Agent and Market maker

Implemented Agent class has two most important methods: init () and work(), while

the rest of the methods implemented are used to simplify the implementation of the

work()-method. Agents are initalized using the init ()-methods, which is called by

the generator when initializing the agents. Generator initializes all of the agents in the

beginning of the simulation. After that, it does not have any meaning in the simulation,

which is also the reason why it is only briefly mentioned here. init ()-method initial-

izes the characteristics of agents by choosing their type to be a seller or a buyer, and

after that according to their type chooses their valuation. When initializing the agents,

init ()-method also counts the demand and supply curves for the market according to

the valuations of the agents that it initializes.

The work()-method is the main method of the Agent class, and implements the actions

of both seller and buyer agents. Principals that govern the actions of both buyers and

sellers are very similar as both of the agents try to trade a single asset once and after

that leave the market. The actions of an agent are restricted in time by the actions of
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both other agents and the market maker. The agents and the market maker use global

fields, selectedBuyer, selectedSeller, buyerQueue and sellerQueue, to communicate with

between themselves about the status of the market; communication is needed to somehow

coordinate the market.

When the simulation starts, all of the agents are initialized and after that all the agents

enqueue themselves either to buyerQueue or sellerQueue. The market maker waits for

all the agents to be in the two queues, and after that selects randomly one agent from

the queues to trade. The traders see the market maker’s selection by looking at the two

fields: selectedBuyer and selectedSeller. After one of the fields is changed, all the traders

check the field corresponding to their type and see if they were selected. The selected

trader then checks, if there exists a limit order that satisfies her bid/ask. If such a limit

order exists, then she submits a market order by trading at the limit price. If the trader

does not find a satisfiable limit order, she leaves an own limit order at her bid/ask price.

After she has traded or left a limit order, the trader sets the corresponding selectedSeller

or selectedBuyer to a value, which informs the other traders that the selected trader is

ready. After the selected trader is ready, the market starts a new round.

MarketMaker class is used to centrally coordinate the interaction of the traders and to

select the trader to trade at each round. The class has only a single method work(), which

is executed as long as the market is functioning. After the market maker is initialized,

she waits until all of the agents are initialized and appended into the buyer and seller

queues. Next, the market maker chooses the agent that is selected to trade. The agent is

selected randomly from the group of agents, who have not traded in the ongoing round;

when all agents have traded on the ongoing round, the market maker starts a new round.

After selecting the trader, the market maker waits until she has traded and after that

starts the while loop from the beginning.

4.2 Random number generation

Random number generation is naturally always an important part of a simulation ex-

periment. However, the earlier literature in agent-based modeling has not in all cases

documented the used pseudo random number generators extensively. For example, Gode

and Sunder (1993a) do not even mention the random number generation and its implica-

tions. On the other hand, for example, Cliff and Bruten (1997) use a cookbook algorithm

from the numerical recipes textbook27. Although that algorithm might have been state

of the art in the end of 1990s, today there are better solutions available.

Python offers a good random number generator from the standard library. According

27 For that algorithm refer to the numerical recipes textbook (Press et al., 1992).

45



to the documentation for Python’s version 2.6.528, those Python’s functions that are

used in this thesis and are implemented the module “random”, use an algorithm called

Mersenne Twister. It was initially developed by Matsumoto and Nishimura (1998), and

is today by far one of the best pseudo-random number generators available, which means

that the results should stand out in a comparison with any other well-known pseudo-

random number generators available today (L’Ecuyer, 2001).

28 See the webpage http://docs.python.org/release/2.6.5.
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5 Results

This chapter presents the results from of the models created. I will first present a model

of ZI-traders to benchmark my results to the previous literature29. After that, the second

section will critically review the methods of Cliff and Bruten (1997) and introduce a few

additional methods to analyze the ZI-C markets. After that using the created methods,

an analysis of the convergence of bids, asks and transaction prices in symmetric ZI-C

markets is presented. Finally, the third section uses the most essential methods presented

in the second section to briefly review the different market types introduced by Cliff and

Bruten (1997).

5.1 ZI-model with symmetric demand-supply schedule

The first model is a replication of the model and results presented first by Gode and

Sunder (1993a) and later by Cliff and Bruten (1997). However, to create a model as

simple as possible, the traders are restricted to trade only a single asset; after that they

leave the market. This assumption should not be a problem, as the study by Gode and

Sunder (1993b) suggests that this change should not affect the results. On the other

hand, when using this assumption, it is possible to argue how the population of traders

evolves throughout the continuous double auction, which appears to be a very important

factor contributing to the price discovery process. The analysis presented in the end of

this section is largely based on the fact that the traders leave the market after they have

traded once during a single period of trading.

The model created exhibits similar characteristics for different output measures as the

one presented by Gode and Sunder (1993a). These different characteristics are divided to

qualitative differences, efficiency of the markets and transaction price time series charac-

teristics in a similar way as was done by Gode and Sunder (1993a). In the following, the

characteristics are reviewed and compared at the same time to the results of Gode and

Sunder (1993a). The results presented in this section are based on the same assumptions

regarding the used market type as described by Cliff and Bruten (1997) with the symmet-

ric case. The selected valuations for both buyers and sellers were exactly the same in all

of the runs of the model and can be defined by using the following arithmetic sequence:

pj = p0 + jδ, (3)

where p0 = 26, δ = 2 and j = 0, 1, 2, ..., 74. Thus, the arithmetic sequence presented

in equation 3 defines the valuations as 26, 28, ..., 172, 174. This sequence has 75 distinct

29 As suggested by Davis et al. (2007), it is important to try to verify that the created simulation model
works correctly and one way to do this in practice is to compare the results to the earlier results.
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valuations, and each of the valuations was given to two agents, i.e. to one buyer and

to one seller. This means that the market consisted of 150 agents, which were equally

divided to buyers and sellers. As the market type was exactly the same for both ZI-U and

ZI-C traders, the differences in the results next presented can be argued to be derived

from the differences in the capabilities of the two trader types.

According to Cliff and Bruten (1997) the symmetric market type is the one that was

chosen by Gode and Sunder (1993a) to arrive at the expected results. It is still a good

starting point, because the results from a symmetric market can be easily compared to

the results of Gode and Sunder. After the basic results have been confirmed, it is possible

to evaluate also the more complex results.

5.1.1 Qualitative differences

A qualitative view to the results is best acquired by eye-balling the transaction price time

series and demand-supply schedules from single runs of the ZI-C and ZI-U models. The

transaction price time series and demand-supply schedules for a ZI-U market with 150

traders in markets that lasted for 150 rounds are presented in the top panel of figure 7.

A similar graph for a ZI-C market lasting for 150 rounds with 150 traders is presented in

the top panel of figure 8.

Certain qualitative issues seem to be clear already from the two figures presented.

First of all, the traders in the ZI-U markets seem to trade more than ZI-C traders. In the

ZI-U market presented in figure 7, a transaction seems to take place at regular intervals

of rounds as long as the market is active, while in the ZI-C markets presented in figure

8 transactions take place only during the first 50 rounds. In the particular ZI-U market

presented in figure 7, all the traders participating in the market traded, and the market

was closed after round 77 as all of the traders had left the market. In contrast to this,

in the ZI-C market presented in figure 8, the market was not closed until the maximum

number of rounds, 150, was reached. This happened, because there were still ZI-C buyers

and sellers left in the market trying to trade. However, although the market was active

as long as possible with ZI-C traders, no trades took place after the last transaction that

took place on round number 71.

Table 2 quantitatively shows these differences for the ZI-U and ZI-C markets. There

the first column reports some measures from the ZI-U market presented in figure 7, while

the second column reports the same measures for the ZI-C market presented in figure 8.

The table shows that the trading in ZI-U market did not stop before the 75th transaction.

This means that the maximum number of possible transactions with 150 traders were

undertaken, because a single transaction always need two counterparts, one buyer and

one seller. However, in ZI-C markets, the trading ceased after the 41st transaction had

48



Figure 7: Transaction price time series, symmetric demand-supply schedules, best quotes and
the amount of bids and ask in the limit order book for a single run of ZI-U market with 150
traders and 150 rounds. The traders were divided into buyers and sellers equally, and the
valuations are specified in equation 3. In all of the three panels, the transaction price times
series is presented by a dark gray solid line as a function of rounds, and the equilibrium price is
presented by black dashed line. In the top panel, demand as a function of quantity is presented
in light gray, and supply as a function of quantity is presented in black. Demand and supply
functions were counted using the valuations of individual traders, and the equilibrium price was
determined by the intersection point of demand and supply functions. In the middle panel, the
“best” quotes in each round are presented; the best quotes are defined as the highest bid and
the lowest ask in each round. Highest bids are reported by light gray triangles and the lowest
asks are reported by black triangles. In the bottom panel, the number of bids is depicted by
light gray line with triangles, while the number of asks is presented by black line with triangles.
The number of both bids and asks are reported for each transaction that took place during the
single run of the model.
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taken place.

The statistics from 100 runs of both ZI-U and ZI-C markets also seem to support

these findings from single markets. Table 2 also presents the overall results from 100

runs of both ZI-U and ZI-C markets. All of the runs reported in table 2 were executed

using unique seeds for the random number generator, which should guarantee that the

runs were not identical in the sense that the traders would have been participating in the
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Figure 8: Transaction price time series, symmetric demand-supply schedules, best quotes and
the amount of bids and ask in the limit order book for a single run of ZI-C market with 150
traders and 150 rounds. The traders were divided into buyers and sellers equally, and the
valuations are specified in equation 3. In all of the three panels, the transaction price times
series is presented by a dark gray solid line as a function of rounds, and the equilibrium price is
presented by black dashed line. In the top panel, demand as a function of quantity is presented
in light gray, and supply as a function of quantity is presented in black. Demand and supply
functions were counted using the valuations of individual traders, and the equilibrium price was
determined by the intersection point of demand and supply functions. In the middle panel, the
“best” quotes in each round are presented; the best quotes are defined as the highest bid and
the lowest ask in each round. Highest bids are reported by light gray triangles and the lowest
asks are reported by black triangles. In the bottom panel, the number of bids is depicted by
light gray line with triangles, while the number of asks is presented by black line with triangles.
The number of both bids and asks are reported for each transaction that took place during the
single run of the model.
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market in exactly the same manner in all of the runs. The results are reported in the same

way as in Cliff and Bruten (1997) by using averages and the standard deviations. The

results from the 100 runs of the ZI-U market show that the number of transaction in all

of the runs is constantly 75, because the mean is exactly 75 and the standard deviation is

equal to zero. In the ZI-C markets, the average number of transactions was 41.5, and the

standard deviation was 1.26. These results also suggest that the number of transactions
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taking place in the ZI-C markets, was in all of the runs just above 40 transactions.

Table 2: Descriptive statistics from 100 runs of the model for both ZI-U and ZI-C markets
with symmetric demand-supply schedules. The traders were divided into buyers and sellers
equally. All the runs were done using the same symmetric demand and supply schedule, which
are depicted in both of the figures 7 and 8. The first two columns summarize statistics for
two single runs of the models; the same runs are also depicted in the same figures 7 and 8.
The results for the 100 runs are presented in the following four columns by using averages and
standard deviations.

SINGLE RUN AVERAGES
ZI-U ZI-C

ZI-U ZI-C Average St.dev. Average St.dev.

Equilibrium price 100.0 100.0 100.0 0.00 100.0 0.0

Efficiency (%) 0.0 98.6 0.0 0.00 96.6 0.016

Number of transactions 75 41 75.0 0.00 41.43 1.29

Mean of prices 93.0 102.6 101.6 6.40 100.6 2.34

Median of prices 101.4 103.8 101.8 9.99 100.8 2.48

Maximum price 197.4 150.2 197.5 2.22 149.5 10.49

Minimum price 3.5 53.6 3.8 2.49 51.6 10.60

Standard deviation of prices 56.5 21.9 57.3 2.72 21.7 2.62

Kurtosis of prices 1.8 2.81 1.82 0.13 3.12 0.58

Skewness of prices 0.01 0.05 -0.02 0.15 -0.01 0.38

25 percentile 35.1 87.3 53.4 10.27 88.2 3.33

75 percentile 139.3 116.4 150.0 8.97 113.3 3.79

Coefficient of Convergence 56.6 21.8 57.3 2.64 21.6 2.56

The results presented until now suggests that in the experiments conducted the ZI-

U traders were given an environment, where it was very likely that all of the traders

would trade. Exactly the same results was reported by Gode and Sunder (1993a) as they

pointed out that in their ZI-U markets

“the maximum possible number of units (equal to the lower of the total units

sellers are allowed to sell and the total units the buyers are allowed to buy)

is always traded.”

The results for the ZI-C markets seem to also be similar to those reported by Gode and

Sunder (1993a): ZI-C traders trade only as long as their constrained behavior is possible

and a feasible counterpart is found. These results also suggest that the chosen maximum

number of rounds, i.e. 150, used is enough for both the ZI-U and the ZI-C traders to find

the feasible trades and trade, because the results appear to be similar to the ones given

by other authors.
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5.1.2 Efficiency

An important and widely recognized result presented by Gode and Sunder (1993a) is

the difference in the observed efficiencies of ZI-U and ZI-C market models especially

when compared to the efficiencies of human markets. Gode and Sunder reported that

ZI-C markets attained efficiencies close to the levels that the human traders achieved in

their experiments, while in the markets of ZI-U traders the efficiency levels were clearly

lower. Figure 9 shows that the efficiency of ZI-C markets was is in all of the 100 runs

of the model consistently close to nearly 100 percent, while the efficiency of ZI-U market

was constantly 0.0 percent. Table 2 shows quantitatively the same results: the average

efficiency of ZI-U markets was 0.0 with a standard deviation of 0.0 while the average

efficiency of ZI-C markets was 96.4 with a standard deviation of 0.016. These results

together confirm the results of Gode and Sunder: the ZI-C markets seem to be clearly

more efficient than ZI-U markets.

The fact that the efficiency of ZI-U markets is constant is consistent with the results

of Gode and Sunder (1993a). They found out that the efficiency of the ZI-U markets

depended only on the initial demand-supply schedules. The reason for the constant

behavior is the fact that all possible trades always take place in ZI-U markets. Thus,

both the trades that create surplus and the trades that do not create surplus take place,

which means that the efficiency does not depend on how the traders are matched to trade.

In addition, if the demand-supply schedules used are symmetric, then the efficiency of

the ZI-U markets is also close to zero as will be next shown quantitatively.

Table 3: A simple example about the efficiency of ZI-U markets with symmetric demand-supply
schedules. The table defines a ZI-trader market with six agents, who are equally dealt to
buyers and sellers. Each agent is allowed to trade a single asset. In addition, the valuations of
the traders are chosen so that the demand-supply schedule is symmetric. The valuations are
defined as positive real numbers so that there is one buyer and one seller for each valuation
vi ∈ R+, i = 1, 2, 3.

Buyers Sellers
Name Valuation Name Valuation

A v1 D v1
B v2 E v2
C v3 F v3

The efficiency of ZI-U markets with symmetric demand-supply schedules can be in-

spected more closely by using an example. First assume that the valuations of buyers

and sellers are as given in table 3. In the ZI-trader markets, the surplus of a buyer can be

defined as the difference between buyer b’s valuation vb and the transaction price p in the
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following way: vb − p. Similarly the surplus extracted by the seller can be defined as the

difference between the transaction price p and the seller s’s valuation vs in the following

way: p− vb. By using these two results, the surplus extracted from a single trade, where

one buyer and seller are matched to trade, can be defined as the sum of the surpluses of

the buyer and the seller participating in the trade

vb − p+ p− vs = vb − vs. (4)

As equation 4 shows, the surplus extracted from a single trade depends only on the

valuations of the buyer and the seller participating in the trade. This suggests that

actually the only important issues contributing to the efficiency of the ZI-trader market

are the way how the traders are matched to trade and the way how the valuations of

the traders are specified. The different ways to match the buyers and sellers given in

table 3 are defined in table 4, which shows why the overall efficiency of a market with

symmetric demand and supply schedules is zero when all the traders in the ZI-U market

trade. Table 4 shows that the only issue contributing to the overall efficiency of the ZI-U

market are the differences in the valuations of the traders participating in the market.

In a completely symmetric case, as presented in tables 3 and 4, each of the valuations

v1, v2, v3 is used once on both sides, i.e. buyer and seller sides, in each of the matchings of

traders, which means that the overall efficiency is in all cases equal to zero. Thus, all the

different ways to match the traders participating in the market lead to the same overall

efficiency result, which depends solely on the demand-supply schedules.

In addition, it also seems that, if there are n ∈ N buyers with valuations v1b , v
2
b , ..., v

n
b

and if there are n sellers with valuations v1s , v
2
s , ..., v

n
s , then the efficiency of the ZI-U

markets with all n trades taking place can be defined as the difference between the sum

of valuations for buyers and the sum of valuations for sellers as

n∑
i=1

vib −
n∑

i=1

vis (5)

The claim seems very intuitive, because when all the traders trade once, then also all of

the buyer and seller valuations “contribute” once to the overall surplus measure extracted

from the market. This simple example has shown that the way to match the traders does

not contribute in any way to the efficiency in ZI-U trader markets, if we assume that

all traders trade in ZI-U markets. Thus, the only factor contributing to the efficiency of

ZI-U markets is the initial market type defined by demand and supply schedules.

A statistical test was also made to measure the credibility of the results presented in

figure 9 and table 2. The directional version of the Wilcoxon signed-rank test30 was made

30 See for example the original paper by Wilcoxon (1945).
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Table 4: The different ways to match the traders participating in the ZI-trader market given in
table 3. The extracted surplus of each trade for all possible six ways to match the traders into
three pairs are reported. In addition, the overall surplus extracted from the market when all
of trades take place is also reported as the Total-measure for all of the six matchings. As each
of the valuations v1, v2, v3 is used twice the tree trades that take place, the overall efficiency is
in all cases equal to zero. The valuations vi ∈ R+, i = 1, 2, 3.

Pair Extracted surplus
Buyer Seller

A D v1 − v1
B E v2 − v2
C F v3 − v3

Total 0

A D v1 − v1
C E v3 − v2
B F v2 − v3

Total 0

A E v1 − v2
B D v2 − v1
C F v3 − v3

Total 0

A E v1 − v2
B F v2 − v3
C D v3 − v1

Total 0

A F v1 − v3
B D v2 − v1
C E v3 − v2

Total 0

A F v1 − v3
B E v2 − v2
C D v3 − v1

Total 0

with the null hypothesis that the location shift should be smaller or equal to zero when

efficiencies from ZI-C markets and ZI-U markets are compared in this order, because figure

9 suggests that the location shift should be positive. This test was not used in this context

by Gode and Sunder (1993a) as their work generally lacked statistical significance tests.

However, LiCalzi and Pellizzari (2008) use the Wilcoxon signed-rank test in a similar

context to strengthen the credibility of their results. To be able to make the test, the

observations for the efficiency had to be paired. The pairing was done by using unique
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Figure 9: Efficiency, coefficient of convergence and root mean squared deviation of transaction
prices from the equilibrium price for 100 runs of ZI-C and ZI-U markets with 150 traders and
150 rounds. The traders were divided into buyers and sellers equally. All the runs were done
using the same symmetric demand and supply schedule, which are depicted in both of figures
7 and 8, while the statistics for the runs are presented in table 2. In all of the three graphs,
the results for ZI-U markets are presented in light gray line and triangles, while the results for
the ZI-C markets are presented in black line and squares. The efficiency of the CDA markets is
presented in the top panel. It is determined as the ratio of the total profit the traders actually
earned in the market and the total profit the traders could have earned in the market. In the
bottom panel, the root mean square deviation of transaction prices from the equilibrium price
(RMSD) in ZI-U markets as a function of rounds is presented in light-gray, while the RMSD
in ZI-C markets as a function of rounds is presented in black. Both measures were counted
for each round using the data of transaction prices of either ZI-C markets of ZI-U markets. In
addition to RMSDs, the bottom panel also depicts the number of observations, i.e. the number
of transaction prices from 100 simulations, on each round. The plot does not show RMSDs
in rounds, which had fewer than 10 observations. The number of observations from the ZI-U
markets are depicted in light gray diamonds and the number of observations from ZI-C markets
are depicted in black squares. In the middle panel, the coefficient of convergence is presented for
each run of the model. The coefficient of convergence was initially presented by Smith (1962)
and is defined as the ratio of RMSD and equilibrium price.

0 20 40 60 80 100

0
20

40
60

80
10

0

Run

E
ffi

ci
en

cy

With budget constraint
Without budget constraint

0 20 40 60 80 100

0
20

40
60

80
10

0

Run

C
oe

ffi
ci

en
t o

f C
on

ve
rg

en
ce

With budget constraint
Without budget constraint

0 50 100 150

0
20

40
60

80
10

0

Round

R
M

S
D

 / 
N

um
be

r 
of

 o
bs

er
va

tio
ns

 

With budget constraint
Without budget constraint
N with budget constraint
N without budget constraint

seeds so that each unique seed was used always twice: once on a ZI-U market model and

once on a ZI-C market model. This way the only difference between the two efficiency

observations is in the abilities of the traders. The test yielded a p-value of 1.97e-18,
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which suggests that the null hypothesis is rejected with a very high probability and the

location shift from ZI-C markets to ZI-U markets is larger than zero. This means that

the test confirms the result that the difference between the efficiencies of ZI-C and ZI-U

markets is greater than zero with a large probability. Thus, the result that the efficiency

of ZI-C markets is greater than that of ZI-U markets when the demand-supply schedule

is symmetric is also confirmed using the Wilcoxon signed-rank test.

5.1.3 Transaction price time series characteristics

The two figures 7 and 8 also seem to comply with the two of the three features that Gode

and Sunder (1993a) reported from their experiments with the ZI-market and human mar-

ket for the transaction price time series. One feature, the lack of memory for ZI-traders, is

deliberately this time left unnoticed, because, by definition, the zero-intelligence traders

do not remember anything from the past periods. Thus, it is unimportant to run the

market for several periods instead of independent reruns to investigate this issue. In the

context of Gode and Sunder (1993a), the reruns were justified, because the reruns were

used to compare the results from the ZI-markets to the results from the human markets.

The first important transaction price time series characteristics is that the standard

deviation of the transaction prices seems to be greater in the ZI-C market when compared

to the ZI-U markets. This can be easily seen from the figures by eye-balling, but it can be

also confirmed by looking at table 2. The table clearly shows that the standard deviation

of the prices in ZI-U markets, 57.3, is significantly greater than the same measure for

ZI-C markets, 21.7. The results also suggest that the standard deviations of the two

markets seem to vary in similar proportions as measured by the standard deviation of

the standard deviations. Thus, these results seem to comply with the results of Gode and

Sunder (1993a), who found that the ZI-C market transaction price time series was more

volatile than its human market counterpart, while the ZI-U market transaction price time

series was clearly the most volatile of the three.

There is also a second important feature of the transaction price time series that seems

to be present in the top panels of figures 7 and 8. It seems that as time progresses in the

ZI-C market, the transaction prices tend to converge towards the theoretical equilibrium

price. However, the ZI-U market does not seem to show similar convergence towards the

theoretical equilibrium price, but instead the transaction prices oscillate wildly around

the equilibrium price inside the range of all possible transaction prices throughout the

rounds that the market is active. A glance to the same convergence seems to also be

present in the middle panel of figure 8 as the highest bids and the lowest asks presented

seem to converge close to the equilibrium value in the ZI-C trader market. Again, a

similar graph in the middle panel of the figure 7 shows that it is hard to see any such
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convergence in ZI-U markets.

The convergence can also be evaluated by using the root mean squared deviation

(RMSD) of transaction prices from the equilibrium as the previous authors have done.

Both Gode and Sunder (1993a) and Cliff and Bruten (1997) use the RMSD of transaction

prices from the equilibrium price to evaluate the convergence to equilibrium inside the

trading period. Essentially, the idea is to measure how the transaction prices evolve

around the equilibrium price as time progresses. The bottom panel of figure 9 shows the

RMSD of transaction prices from the equilibrium price in the ZI-C and the ZI-U markets

for 100 runs of both markets. These results clearly indicate that the RMSD of transaction

prices seems to be lower for the ZI-C markets than for the ZI-U markets throughout the

time the market is open. The bottom panel of figure 9 also appears to show that the

RMSD decreases in ZI-C markets as the rounds increase, while in ZI-U markets no such

development can be found before the few last rounds that the market is active. Such a

result would also be in line with the claims of Gode and Sunder (1993a), as by using the

convergence of RMSD as their principal argument, Gode and Sunder reported that the

ZI-C market converges towards the equilibrium within each trading period.

However, one should not draw hasty conclusions from the results now presented.

Actually, only the result about the ZI-U markets not converging towards the equilibrium

price seems certain, while the convergence in ZI-C markets can be partly questioned,

because of the decreasing number of observations as shown by the light gray diamonds

and black boxes for ZI-U and ZI-C markets correspondingly in the bottom panel of figure

9. As Gode and Sunder (1993a) do not report the number of observations for each round,

it is impossible to say whether their results would have endured similar challenge. From

the bottom panel of figure 9 it seems actually that the RMSD of ZI-C markets starts to

decrease towards the equilibrium exactly at the same time as the number of observations

starts to decrease. The decreasing number of observations could be partly explained by

the fact that the number of observations start to decrease at the same time as the number

of quotes needed for a trade start to increase. This seems a plausible explanation, because

it seems that in ZI-C markets most of the trades take place during the first 40 rounds,

and from then on it seems less likely to see a trade taking place.31 However, still the slight

decrease of RMSD is heavily questioned by the decreasing number of observations. In

general, it seems that the convergence issue is more or less unsolvable using the methods

presented until now by Gode and Sunder (1993a) and Cliff and Bruten (1997).

There is still one measure left that was utilized by Gode and Sunder (1993a) and Cliff

and Bruten (1997) to evaluate the convergence to the theoretical equilibrium. Smith

31 This is only a plausible explanation that is based on the fact that the results presented in figure 8 are
a characterizing example of the results for all of the 100 runs that are reported in table 2.
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(1962) defined the coefficient of convergence32 as a measure that shows how close to the

theoretical equilibrium price the transaction prices were on average during the experi-

ment. Especially, Smith used a single coefficient of convergence to measure all of the

transaction prices in a single experiment. Thus, originally coefficient of convergence was

used to compare different experiments with each other. The middle panel of figure 9

depicts the coefficients of convergence for all of the 100 runs of both ZI-U market and

ZI-C market. These results seem to clearly support the fact that the ZI-C markets trade

at prices closer to the theoretical equilibrium price than the ZI-U markets.

The difference in closeness of transaction prices to the equilibrium price in ZI-C and

ZI-U markets is also statistically significant. The significance was confirmed using a

directional version of the Wilcoxon signed-rank test. To be able to make the test, the ob-

servations of the coefficients of convergence were paired in a similar manner as mentioned

earlier with efficiencies. The pairing was done by using unique seeds in simulations so

that each seed was used always twice: once on a ZI-U model and once on a ZI-C model.

This way the only difference between the two markets that provided the efficiency obser-

vations shown in figure 9 was in the traders abilities. The null hypothesis used was that

the difference between coefficients of convergence when compared from ZI-C to ZI-U is

greater or equal to zero, because figure 9 suggests that the difference should be negative.

The test yielded a p-value of 1.98e-18, which suggest with a very high probability that

the null hypothesis is wrong and that the real difference in negative. This is also exactly

what figure 9 and table 2 also suggest qualitatively as the coefficients of convergence

seem to be clearly smaller in ZI-C markets when compared to the ZI-U markets. Thus,

the results presented now suggest that the ZI-C traders make transaction closer to the

equilibrium price than the ZI-U traders. However, it is quite hard to statistically say

anything proper about actual convergence towards the equilibrium.

5.1.4 A more detailed analysis of the convergence to equilibrium

It seems clear that the convergence of transaction prices towards the equilibrium price

should be analyzed further. The methods presented until now do not really look at the

convergence during the trading period, but instead compare the closeness of transaction

prices from the equilibrium price. The analysis now presented is based on the idea that

Gode and Sunder (1993a) explained the convergence to the equilibrium in ZI-C markets

by the progressive narrowing of the opportunity sets of ZI-C traders. However, Gode and

Sunder did not give evidence about the progressive narrowing in their article, but instead

were satisfied to describe it only. In the following, I will try to argue how the progressive

narrowing of the opportunity sets of ZI-C traders can be quantitatively shown to be

32 Refer to the literature review for the exact definition.
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main driving force of transaction prices in ZI-C markets. This presentation is supposed

to clarify and extend the ideas of Brewer et al. (2002), who heuristically explained the

idea of the progressively narrowing opportunity sets of ZI-C traders and compared the

evolution of the ZI-C market to the Marshallian path.

In essence, the idea is to explain why the intramarginal traders are the most probable

traders to trade during the beginning of the continuous double auction. The middle panel

of figure 8 seems to support the progressive narrowing argument: both the highest bids

and the lowest asks seem to tend towards the equilibrium price as time progresses. This

behavior was repeated in all of the 100 simulations of the ZI-C market, although only

the characterizing example is presented in figure 8. Another view at this same issue can

be taken by looking at the number of quotes in the limit order book before a transaction

takes place. A graphical presentation of the number of quotes in the limit order book is

given in the bottom panel of figure 7 for ZI-U markets and in the bottom panel of figure

8 for ZI-C markets. Figure 7 for ZI-U markets suggests that the number of bids and asks

stays relatively low during the whole time that the market is active, while figure 8 for

ZI-C markets shows that as time progresses also the number of bids and asks needed for

a transaction is increases. This example shows well the idea of the progressive narrowing

of the opportunity sets of ZI-C traders: as time progresses, the number of traders in the

market decreases, which means that also the number of different valuations in the trader

population decreases. Especially, the number of traders with intramarginal valuations

has to decrease, because bids and asks tend towards the equilibrium price. In effect, this

means that the range of different valuations for both buyers and sellers becomes narrower

as the rounds increase. In ZI-C market this affects the trading, because traders cannot

trade with a price that does not satisfy their valuation: a ZI-C seller cannot sell at a price

that is lower than her valuation and a ZI-C buyer cannot buy at a price that is higher

than her valuation.

There are two empirical arguments presented in figure 8 that support the idea that the

traders with intramarginal valuations trade with a high probability during the beginning

rounds of the ZI-C market. First, in the middle panel of figure 8, the best quotes are lined

so that after 50 rounds the highest bids are just below the equilibrium price and the lowest

asks are just above it. Now, because there are no transactions taking place after the 50

rounds with a price far from the equilibrium price and the best quotes are next to the

equilibrium price, it has to be that there are no traders left with intramarginal valuations.

This claim is based on the counter example: because we do not see any trades with

transaction prices far from the equilibrium value, there are no traders with intramarginal

valuations left to trade. If there was a trader left with an extreme valuation, then she

would trade with a large probability at a price that is far from the equilibrium value.
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Thus, it has to be that traders with extreme valuations have already left the market,

because in the beginning they were in the market by the design of the experiment and

each trader participating in the market is given on every round a possibility to trade if

no trade occurs during that particular round. However, this is only an empirical result

from the simulations now presented and corresponds only to the figure 8 presented.

Also the second argument is based on the characteristics of ZI-C traders. The bottom

panel of figure 8 shows that as the rounds increase, the number of quotes in the limit

order book also increases. This should be thought of with the ZI-C traders logic in mind:

the ZI-C buyers place bids uniformly on the range from minimum price pmin to trader

specific valuation v and the ZI-C sellers place asks uniformly on the range from the trader

specific valuation v to maximum price pmax. Thus, if the traders need a lot of bids and

asks to trade, it has to mean that there is a very low probability to see a bid that is higher

than the lowest ask in the limit order book and that there is a very low probability to see

an ask that is lower than the highest bid in the limit order book. If the probabilities just

mentioned are very low, it has to be that the maximum of all buyer’s valuations bmax has

to be very close to the minimum of seller valuations amin in the population of traders.

The closeness can be also defined more rigorously. Before a trade33, the closeness

can be defined for buyers by looking at the difference between the bmax − amin and by

determining how large a probability there is, for example, to see a bid that is situated

in the interval from amin to bmax when drawing uniformly a buyer from the population

of buyers participating in the market. A similar measure could be determined for sellers

by looking at the probability of seeing an ask in the same interval when drawing a seller

uniformly from the population of sellers participating in the market. Thus, because the

number of quotes needed to trade increase with every round and the transaction prices are

close to the equilibrium price, it seems that the traders with the intramarginal valuations

actually do trade in the beginning of the continuous double auction, while the traders

with the valuations close to the equilibrium value trade in the end of the continuous

double auction.

The first of the two claims presented above can also be looked at more extensively

by using the computational methods. By simulating a ZI-C market model for multiple

times, one can create a large number of observations about the best bids and asks at each

round of the CDA. The results from such an experiment are summarized in figure 10 by

plotting the estimated largest bid and lowest ask densities at different rounds in the two

33 If a trade takes place, then we know in a ZI-C market that before the trade took place it had to be
that the maximum of all buyer’s valuations was greater than then minimum of all sellers valuations or
otherwise no trade could have taken place.
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Figure 10: Estimated transaction price PDFs, best bid PDFs and best ask PFDs at eleven
different rounds for a ZI-C market with 150 traders and 150 rounds. The ZI-C market was run
100 times. The demand and supply schedules used are depicted in figure 8, while the statistics
are presented in table 2. For the transaction price densities, also the number of observations, i.e.
the number of transaction prices, accompanied with the their mean are also described for each
estimated density in the legend. For the best bid and ask densities, the number of observations
was 100 in each round, so it was omitted from the graphs, but the means are presented in the
legend. The light gray lines in the picture correspond to densities estimated from the beginning
rounds, while the darker lines corresponds to densities from ending rounds.
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bottom panels34.

34 The PDFs presented henceforth in this thesis were estimated using the standard library density-routine
of the statistical package R. The advantage of using density functions instead of histograms comes from
the number of needed parameters. For a histogram, one has to select the number of subintervals dealing
the data, the size of the intervals and the locations of the intervals (Tarter and Kronmal, 1976). As a
result, one obtains a discontinuous description of the data. In contrast, when using a non-parametric
kernel density estimate, one needs to only select the size of the intervals, while the endpoints are not
needed. The endpoints can be forgotten, because the kernel function is situated at each observation
instead of grouping observations (Tarter and Kronmal, 1976). As a result one obtains a continuous
density estimate of the data. In kernel density estimation, the size of the intervals corresponds to
the standard deviation of the kernel density and is referred as bandwidth. When estimating density
functions the essential parameters that have to be chosen are the bandwidth and the smoothing kernel.
To avoid making biased judgments, I used the default values of the R-function. This means that the
smoothing kernel was normal and the bandwidth was selected using the Silverman’s rule of thumb. Refer
to the documentation of R for more elaborate descriptions: http://cran.r-project.org/. The chosen
parameters should be sufficient for making comparisons on the level presented in this thesis although
especially the bandwidth could be selected using more advanced methods (Jones et al., 1996).
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As the figure shows, the lighter densities, i.e. the densities estimated from the quotes

from the beginning rounds, are clearly flatter and more spread out on the interval from

1 to 200, while the darker densities, i.e. the densities estimated from the quotes from

the ending rounds, are more peaked close to the value 100, which the equilibrium price

for the demand-supply schedules used in the experiments. Thus, as the rounds increase,

it seems that the bid and asks densities tend to become more peaked and their means

tend towards the equilibrium price. Thus, it appears that the number of intramarginal

bids and asks decreases as the rounds increase in all of the 100 runs of the ZI-C market

exactly the same way as was argued above for best bids and asks given in figure 8 for a

single ZI-C market.

This is a quantification of the argument of Gode and Sunder (1993a), who claimed

that the opportunity sets of ZI-C traders progressively narrows as the rounds increase.

This result also seems to suggest that the arguments presented above about the traders

with intramarginal valuations have been satisfied in the 100 simulations for which the

results are presented in figure 10. However, it is important to note that the results

presented now only cover the symmetric demand-supply schedule presented in figure 8.

A more extensive inquiry would have to be taken to really find out which market types

also support empirically these claims.

It is also worth noting that the transaction price densities presented in the top panel

of figure 10 seem to suggest a tend towards the equilibrium price: the transaction price

density becomes more peaked close to the equilibrium price as the rounds increase. This

essentially means that the two properties defined by Brewer et al. (2002) for the conver-

gence are satisfied: initial transaction prices are further from the equilibrium prices than

final prices, because the variance of transaction prices decreases as indicated by the more

peaked transaction price densities. However, the problem with drawing conclusions using

the densities for transaction prices is that their number in each round decreases as the

rounds increase beyond a certain limit. Best quotes do not have the problem with the

number of observations, because in each round the bids and asks are delivered at least

by a single seller or a single buyer.

As a conclusion for the first model, it appears that instead of looking at the trans-

action price density of all trades as suggested by Cliff and Bruten (1997), it seems to

be more interesting to look at how the transaction price density evolves round by round

during the continuous double auction experiment. It appears that as the group of traders

participating in the market changes, also the transaction price density evolves dramati-

cally. This result is intuitive and was also suggested already by Gode and Sunder (1993a)

when they described the progressive narrowing of traders opportunity sets. The following

section will evaluate and use the methods first proposed by Cliff and Bruten (1997) to

62



draw more precise conclusions about the convergence of transaction prices towards the

equilibrium price and especially about the reasons why the ZI-C markets seem to exhibit

such convergence.

5.2 The progress of the CDA affects bids, asks and transaction

prices

Cliff and Bruten (1997) claim that the PDF of transaction prices is given by the inter-

section of PDFs of bids and asks on the market level. The background of this issue was

analyzed in the literature review, and the critique of Othman (2008) was also presented.

However, there appears to be a simpler way to assess the plausibility of the results by Cliff

and Bruten than the one presented by Othman (2008). Now proposed method is based

on the idea that the theoretical PDFs of transaction prices, bids and asks as defined by

Cliff and Bruten (1997) can be compared to the empirical ones from the simulations by

plotting the different PDFs. Thus, this section will first look at how the theoretical PDFs

of bids and asks can be characterized properly. The results will then used to evaluate the

evolution of bids, asks and transaction prices in the SCDA as time progresses.

5.2.1 Theoretical PDFs of bids and asks

According to Cliff and Bruten (1997), the empirical PDFs of bids and asks should be the

same as the theoretical PDFs of bids and asks. An example comparing the theoretical

bids and ask to the empirical ones is presented in figure 11. It plots the theoretical PDFs

of bids and asks as suggested by Cliff and Bruten (1997) against the empirical PDFs of

bids and asks obtained in the first round from 100 runs of the ZI-C market. However,

as figure 11 suggests, it seems that the qualitative description of the method of creating

market wide densities for bids and asks by Cliff and Bruten (1997) does not create the

correct PDFs of bids and asks submitted by the traders in the simulations.

Although Cliff and Bruten (1997) do not provide an exact description of how they

create the theoretical PDFs, I assume that as their PDFs have constant slopes for a

market with symmetric demand and supply curves, the theoretical pdfs presented in

figure 11 correspond to their description. This assumption is strengthened by the fact

that Cliff and Bruten (1997) use an assumption that the intersection of the probability

density functions is shaped as a triangle in their analytic calculations. Using such an

assumption requires the market wide densities for bids and asks to have constant slopes

in the price range from minimum valuation (26) to maximum valuation (174)35, so it

35 Minimum valuation is 26 and maximum valuation is 174 for the market given in figure 11, because
the valuations are from the arithmetic sequence of integers 26, 28, ..., 172, 174.
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seems quite appropriate to claim that the PDFs depicted in figure 11 are exactly the ones

proposed by Cliff and Bruten (1997).

Figure 11: The theoretical PDFs of bids and asks as suggested by Cliff and Bruten (1997) and
the empirical PDFs of bids and asks submitted by the traders in the first round in 100 runs
of ZI-C market. The demand and supply schedules used are depicted in figure 8, while the
statistics for the simulations are presented in table 2. The theoretical PDFs of bids and asks
were created using the demand and supply functions, and depict the ideas presented by Cliff
and Bruten (1997) as the PDFs have constant slopes. The theoretical PDF of bids is depicted
in light gray and the theoretical PDF of asks is depicted in black. In addition, the black dashed
line depicts the empirical pdf for asks during the first rounds of the 100 runs, and the light gray
dashed line depicts the empirical pdf for all bids during first rounds of the 100 runs.
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The characterizing idea in creating the theoretical PDFs of Cliff and Bruten (1997) is

to count the number of traders ready to quote at a certain valuation, and weight all val-

uations equally36. The R code for creating the theoretical PDFs using these assumptions

is included in Appendix B. The difference with empirical results can be qualitatively seen

from figure 11, because the empirical density functions for bids and asks seem to have

an exponential nature in contrast to the theoretical ones presented by Cliff and Bruten

(1997). In general, figure 11 suggest that the theoretical PDFs of bids and asks by Cliff

36 According to Cliff and Bruten (1997), this idea is derived from the fact how the theoretical demand
and supply are derived in the double auction market.
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and Bruten (1997) suggest too much probability mass for bids and asks in the price range

from minimum valuation (26) to maximum valuation (174)37, and too little probability

mass for bids in the price range from minimum price (1) to minimum valuation (26) and

asks in the price range from maximum valuation (174) to maximum price (200). Thus,

the problem is that the theoretical PDFs by Cliff and Bruten (1997) are weighting the

different prices differently than what simulations seem to indicate.

It appears that a different method has to be used to characterize the real density

functions for bids and asks. Theoretically speaking, in the single-unit continuous double

auction, the market wide PDFs of bids and asks have to take into account precisely

the way how the traders are chosen to trade during each round. Thus, to create the

theoretical market wide PDFs of bids and asks, one has to take into account that each

single trader is selected with an equal probability to submit a quote from the group of

traders, who are still participating in the market and have not submitted a quote during

the ongoing round. This means that in the first round the probability to get a particular

buyer or seller is 1/75, and this probability is the one that is used when weighting the

probability density functions of individual traders to create the market wide probability

density functions for bids and asks. Thus, in a market with valuations described by

equation 3, the market wide density functions for asks have actually increasing slopes,

because each trader is selected with an equal probability, but the trader’s valuations are

restricted to the price range from 26 to 174.

The increase in slope is derived from the fact that each seller draws her ask from a

uniform distribution on interval her valuation v to maximum valuation (200). Thus, when

the valuation is increased, the probability mass of the uniform distribution is divided

equally on a shorter interval as the upper end is fixed. Take, for example, a seller,

with a valuation 100: her probability to get selected from a population of n sellers is

1/n = 1/75, while her probability to ask a particular value in the range from 100 to 200

is 1/100. Thus, this trader contributes to the probability to see an ask in the range from

100 to 200 1/75× 1/100. Similarly, a seller with a valuation v equal to 150, contributes

to the probability to see an ask in the range from 150 to 200 1/75× 1/50. The increase

in the slope is derived from the fact that the contribution of the seller with valuation 150

to the probability to see an ask in the range from 150 to 200, i.e. 1/75× 1/50, is larger

than the contribution of the seller with valuation 100, i.e. 1/75× 1/100.

I will now generally define the PDF fS(p) : R → [0, 1] ⊂ R for asks at each price

p ∈ [1, 200] ⊂ R. First, define the population of sellers to contain NS agents. Second,

define the set of valuations for sellers as set S ⊂ (1, 200), and assume that all valuations si

in S are indexed uniquely by i = 1, 2, ..., NS. Third, assume that a single seller is selected

37 These numbers are derived from the fact that the valuations in the symmetric market in figure 11 are
from the arithmetic sequence of integers 26, 28, ..., 172, 174.
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from the population of sellers with equal probability 1/NS, which is the case in the model

of Gode and Sunder (1993a). To calculate the PDF fS(p) for asks, the next step is to

sum over all the possibilities that a single seller is selected to trade at a certain price p.

Now, because all the sellers are ZI-C agents, the probability that they ask a certain price

equals the value of their PDF of uniform distribution in the range from si to 200. The

next step is to multiply the latter with the probability to select a single seller from the

group of sellers 1/NS, because all the sellers have equal probability to get chosen. Finally,

one has to sum the probabilities so that all the valuations that are smaller or equal to

price p are taken into account to the probability to see an asks at price p:

fS(p) =
∑

si∈S,p≥si

1

NS(200− si)
. (6)

With bids, the idea is otherwise similar to the case with asks, but this time one has to

sum the other way around. First, define the PDF fB(p) : R → [0, 1] ⊂ R for bids at

each price p ∈ [1, 200] ⊂ R. Second, define that the population of buyers contains NB

agents. Third, define the set of valuations for buyers as set B ⊂ (1, 200), and assume

that all valuations bi in B are indexed uniquely by i = 1, 2, ..., NB. Third, assume that a

single buyer is selected from the population of buyers with equal probability 1/NB. To

calculate the PDF fB(p) for bids, the next step is to sum over all the possibilities that a

single buyer is selected to trade at a certain price p. Now, because all the buyers are ZI-C

agents, the probability that they asks a certain price equals to the value of their PDF of

uniform distribution in the range from 1 to bi. The next step is to multiply the latter

with the probability to select a single buyer from the group of buyers 1/NB, because all

the buyers have equal probability to get chosen. Last, one has to sum the probabilities

so that all the valuations that are larger or equal to price p are taken into account to the

probability to see a bid at price p:

fB(p) =
∑

bi∈B,p≤bi

1

NB(bi − 1)
. (7)

The functions presented in equations 6 and 7 corresponds to PDFs, because their

integrals over the interval from 1 to 200 equal to one. The intuitive reason for this

property, for example, with sellers is that the PDF of each seller integrate to unity by

definition. Thus, by weighting all of them equally and summing will produce a function

that also integrates to unity. The calculations to create the PDF for bids, which are

similarly decreasing in price, are similar. The PDFs presented in figure 12 for the market

wide asks were created in this manner by summing the probabilities for each possible

valuation. The R code used to do these calculations and to draw the figures is included
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in the Appendix.

Figure 12: Suggestions as the theoretical PDFs of bids and asks and the empirical PDFs of bids
and asks submitted by the traders in the first round in 100 runs of ZI-C market. The demand
and supply schedules used are depicted in figure 8, while the statistics for the simulations are
presented in table 2. The theoretical PDFs of bids and asks were created using the demand
and supply functions, and the idea was to weight the PDFs of individual traders equally. The
theoretical PDF of bids is depicted in light gray and the theoretical PDF of asks is depicted
in black. In addition, the black dashed line depicts the empirical pdf for asks during the first
rounds of the 100 runs, and the light gray dashed line depicts the empirical pdf for all bids
during first rounds of the 100 runs.
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The suggested theoretical PDFs of bids and asks are depicted in the figure 12. It shows

that these theoretical PDFs for bids and asks seem to be in line with the empirical PDFs

estimated from the simulation results, because the modes and slopes of the PDFs seem

to be similar when eye-balling the picture. Thus, it appears that the proposed theoretical

PDFs fit the simulated data better than the theoretical PDFs of Cliff and Bruten (1997).

Next step is to look how the changes in the trader population participating in the market

change the theoretical and empirical PDFs of bids and asks.
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5.2.2 How the progress of the SCDA affects bids and asks

Cliff and Bruten (1997) claim that the shifting of the PDFs of bids and asks as a result

from trades taking place and traders leaving the market can be ignored. According to

them, because their empirical results support their theoretical arguments, the shifting

can be ignored. However, the empirical results of Cliff and Bruten (1997) consider only

the expected transaction price. Considering only expected transaction prices seems in-

adequate, because Othman (2008) showed that by choosing the valuations of the traders

in a certain way, the results of Cliff and Bruten (1997) can be shown to be false at least

in one situation. Thus, it seems that actually the assumptions of Cliff and Bruten (1997)

about the market types fit the predictions of their method. I will now first look at how

the PDFs of bids and asks evolve in symmetric ZI-C markets, and use the results from

this subsection when looking at the PDFs of transaction prices in the next subsection.

Figure 13: PDFs from 100 runs of the ZI-C market for bids and asks for all rounds from 0 to 60.
The demand and supply schedules used in the simulations are depicted in figure 8, while the
statistics are presented in table 2. The lines presented on the left side of the figure correspond
to the PDFs of bids, while the lines presented on the right side of the figure correspond to the
PDFs of asks. The light gray lines depict the PDFs for both bids and asks from the beginning
rounds of the simulations, while as the color of the line changes to darker, the number of round
increases.
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To investigate the importance of changes in the group of traders participating in

the market, the PDFs of bids and asks submitted in all of the 150 rounds in the 100

simulations were estimated using R. The PDFs are depicted in figure 13, which shows that

the PDFs of bids and asks change dramatically as time progresses. Figure 13 indicates

that the change is towards a certain direction: for the PDFs of asks, the probability

mass concentrates around the prices from 150 to 200, while for the PDFs of bids, the

probability mass concentrates around the prices from 1 to 50. This concentration also

seems to mean that in the end of the auction, the probability to see asks with a price

lower than 100 is close to zero, while the probability to see bids with a price higher

than 100 is also close to zero. In practice, this means that seeing a trade far from the

theoretical equilibrium price 100 seems to be impossible, i.e. it has a zero probability,

because neither buyers nor sellers can quote such prices. Thus, it seems that in all of

the 100 simulations now evaluated, the population of traders participating in the market

changed and this change caused the transaction prices to tend towards the equilibrium

price.

Figure 13 seems to support the fact that the intramarginal traders are the most prob-

able traders to trade at the beginning of the SCDA. In addition, comparison of figure 13

to figure 14 suggests that the trading mimics close the theoretical Marshallian path as

predicted by Brewer et al. (2002). Thus, the intramarginal traders with the most intra-

marginal valuations appear to trade before the traders with less intramarginal valuations,

which is exactly the case with the Marshallian path. In practice, this means that the

buyer with the highest valuation is the most probable trader in the group of buyers to

trade in the beginning of the SCDA. Similarly, the seller with the lowest valuation is the

most probable trader in the group of sellers to trade in the beginning of the SCDA. As

the SCDA progresses, the group of traders participating in the market decreases so that

the most probable traders to transact leave the market.

Thus, the probability for an intramarginal trader to trade before an extramarginal

trader in a SCDA seems to be a very important factor contributing to the converge of

transaction prices towards the equilibrium price. Especially, the interesting issue is how

the intramarginal traders are able to displace the extramarginal traders in the beginning

of the SCDA. The displacing is an issue that has already discussed by Gode and Sunder

(1993b, 1997), who were in both articles interested in the overall efficiency of the con-

tinuous double auction and did not take the price discovery process into account. The

results now presented show that the price discovery process in ZI-C markets appears to

be governed by the intramarginal traders ability to trade in the beginning of the SCDA.
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Figure 14: Theoretical PDFs for the ZI-C market for bids and asks when trading takes place
exactly according to the Marshallian path. The initial demand and supply used to produce the
theoretical probability density functions are depicted in figure 8. The lines presented on the
left side of the figure correspond to the probability density functions of bids, while the lines
presented on the right side of the figure correspond to the probability density functions of asks.
The light gray depicts the PDFs when only first trades on the Marshallian path have taken
place, while as the color of the line becomes darker, the number of trades already taken on the
Marshallian path increases. The theoretical densities are depicted after each transaction, i.e.
every time one seller and one buyer exit the market, on the Marshallian path takes place.
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5.2.3 How the progress of the SCDA affects transaction prices

Cliff and Bruten (1997) essentially claimed that the intersection of the PDFs of bids

and asks can be used to characterize the PDF of transaction prices in the SCDA. In

contrast to this, the results presented now show that even with symmetric demand and

supply schedules, the intersection as suggested by Cliff and Bruten (1997) can be only

used to describe the PDF of transaction prices for the first round, while the PDF of

transaction prices for all rounds should instead probably be a result of weighting equally

the intersection densities of bids and asks from all of the rounds. In essence, it appears

that the changes in the group of traders participating in the market, are the main reasons

for the results shown next.
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Figure 15: The PDF of the intersection of theoretical PDFs of bids and asks (IPDF), an
empirical PDF of the transaction prices in the first round and an empirical PDF of transaction
prices in all rounds in 100 runs of ZI-C market. The demand and supply schedules used are
depicted in figure 8, while the statistics for the 100 runs of the ZI-C market are presented in table
2. The IPDF is depicted in light gray line and was created by sampling the theoretical PDFs
of bids and asks using the accept-reject algorithm for which the code is included in appendix
B. First the theoretical PDFs of bids and asks were sampled for 10000 observations, and then
the points from the intersection were chosen as the theoretical transaction prices. The IPDF
was estimated using these sampled points. The dashed black line is the PDF estimated using
the empirical transaction prices only from the first round, while the solid black line is the PDF
estimated using the transaction prices from all of the rounds.
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The previous sections have shown that the proposed PDFs of bids and asks seem

to characterize the empirical PDFs of bids and asks more accurately than the PDFs of

bids and asks by Cliff and Bruten (1997). Thus, it is interesting to look at how the

theoretical transaction prices from the intersection of the PDFs of bids and asks compare

to the empirical transaction prices. Figure 15 shows the PDF of the intersection of

theoretical PDFs of bids and asks (IPDF), an empirical PDF for the transaction prices

in the first round and an empirical PDF for transaction prices in all rounds in 100 runs

of ZI-C market. The IPDF is depicted in light gray line and was created by sampling the
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theoretical PDFs of bids and asks using the accept-reject algorithm38 for which the code

is included in appendix B.

Figure 16: The PDF of the intersection of theoretical PDFs of bids and asks (IPDF) on the
Marshallian path and an empirical PDF of the transaction prices in all rounds in 100 runs
of ZI-C market. The demand and supply schedules used are depicted in figure 8, while the
statistics for the 100 runs of the ZI-C market are presented in table 2. The IPDF is depicted
in light gray line and was created by sampling the theoretical PDFs of bids and asks on the
Marshallian path using the accept-reject algorithm for which the code is included in appendix
B. Each of the theoretical PDFs of bids and asks on the Marshallian path were sampled for 800
observations, and then the points from the intersection of the two were chosen as the theoretical
transaction prices. The IPDF was estimated using these sampled points. The dashed black line
is the PDF estimated using the empirical transaction prices from all of the rounds.
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Figure 15 suggests that the claim of Cliff and Bruten (1997) about the PDF of trans-

action prices of all rounds being characterized by the intersection of the first round PDF

is false. Although both PDFs have single modes approximately at price 100, the PDF of

transaction prices in all rounds is more peaked around price 100 than the IPDF. However,

the IPDF seems to at least somehow characterize the PDF of empirical transaction prices

38 The purpose of accept-reject method is to simulate a certain known PDF f . The accept-reject method
can be used when one does not know how to simulate f , but there exists a majorizing PDF g such that
for a constant M > 0 we have f ≤ Mg in the support of f and one knows how to simulate PDF g. Refer
to the book of Robert and Casella (2005) for more a elaborate description.
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from the first round. This latter results also seems more intuitive, because IPDF is cre-

ated using the PDFs of bids and asks that were created from the initial demand-supply

schedules. All in all, with this amount of simulations one can only reject the results

of Cliff and Bruten (1997), while it is not possible to confirm the results that the IPDF

would be able to characterize the probability density function of transaction prices during

the first round.

One can also compare the transaction prices on the Marshallian path to the empirical

PDF for transaction prices in all rounds in 100 runs of ZI-C market. As figure 16 shows,

it appears that the theoretical transaction prices from the Marshallian path seem to

characterize the empirical transaction prices from the ZI-C market closely. Thus, it

appears that the heuristic ideas of Cliff and Bruten (1997) seem to work correctly when

they are refined in the way presented above. I will next use the methods presented in

this section to look at the different market types initially presented in this context by

Cliff and Bruten (1997).

5.3 Different market types

This section is devoted to the analysis of different market types. As the previous section

showed explicitly that the model created exhibits similar characteristics as the original

model of Gode and Sunder (1993a), the created model can be utilized also to analyze

different market types. The way to analyze the ZI-C markets with symmetric demand

and supply schedules, henceforth referred to as the symmetric case, can be also utilized

to analyze markets with asymmetric demand and supply schedules.

There are some earlier results from different market types that are worth noticing.

Most prominent results were presented by Cliff and Bruten (1997), who found that the

transaction prices from simulations deviated clearly from the theoretical equilibrium price

in markets where supply was fixed. According to their results the mean daily transaction

price in markets with fixed supply was clearly above the equilibrium price, which was

supposed to indicate that the tend towards the theoretical equilibrium did not take place.

I will in the following look at this particular example, but in addition I will also review the

other characterizing examples that are derived from the symmetric demand and supply

schedule by making either demand and/or supply fixed and by limiting the number of

traders participating in the market.

In general, it appears that the analysis presented in the previous subsection applies

well also in these different cases. Actually, when comparing the cases presented here

to the symmetric base case, it seems that the analysis is actually even simpler in these

cases, because either the population of buyers and/or sellers is permitted to only consist

of agents with same valuations. Thus, essentially this section shows that the analysis
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presented above applies also to all of the different market types presented by Cliff and

Bruten (1997).

Table 5: Descriptive statistics from 100 runs of the model for ZI-C markets with non-symmetric
demand-supply schedules. The results for the 100 runs are presented in the six columns
by using averages and standard deviations. In the markets with fixed supply, all the sellers
were given equal valuations at price 60, while the valuations of the buyers were defined as in
equation 3. In the markets with fixed demand, all the buyers were given equal valuations at
price 140, while the valuations of the sellers were defined as in equation 3. In the markets with
excess supply, there were 50 buyers with equal valuations at price 140 and 100 sellers with
equal valuations at price 60.

Fixed supply Fixed demand Excess supply
Average St.dev. Average St.dev. Average St.dev.

Equilibrium price 60.0 0.00 140.0 0.00 60.0 0.00

Efficiency (%) 99.9 0.0002 0.99 0.0002 1.0 0.00

Number of transactions 56.9 0.26 56.9 0.29 50.0 0.00

Mean of prices 80.9 2.24 119.7 2.19 99.5 3.28

Median of prices 74.5 2.56 126.2 2.27 99.1 5.44

Maximum price 146.2 12.80 139.8 0.17 138.4 1.55

Minimum price 60.2 0.14 54.5 13.41 61.2 1.25

Standard deviation of prices 20.3 2.33 20.2 2.58 23.4 1.50

Kurtosis of prices 4.4 1.43 4.5 1.25 1.83 0.16

Skewness of prices 1.3 0.33 -1.3 0.29 0.01 0.19

25 percentile 65.1 1.30 110.3 4.57 80.1 4.91

75 percentile 90.7 4.97 135.0 1.24 119.3 4.33

Coefficient of Convergence 48.39 5.01 20.4 2.28 76.4 4.71

Table 5 reports the different market types and the results for each type from 100 runs

of the model with ZI-C traders. It seems to support the results presented by Cliff and

Bruten (1997) as in all of the markets the theoretical equilibrium price does not equal

the mean of transaction prices reported from simulations. Although, at first sight, this

could be seen as a proof of the fact that the ZI-C markets do not converge in these

markets, the analysis presented next will carefully consider the different markets and

show that actually there are good reasons to expect exactly the behavior now witnessed

in the results even when transaction prices do exhibit convergence. Again, it seems that

actually it is not that interesting to speak about the convergence of transaction prices,

but instead look at the evolution of the trader population participating in the single-unit

continuous double auction market.
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Figure 17: Transaction price time series, demand-supply schedules, best quotes and the amount
of bids and ask in the limit order book for a single run of ZI-C market with 150 traders and 150
rounds when supply is fixed. The traders were divided into buyers and sellers equally, and the
valuations of the buyers are specified in equation 3, while for all sellers the valuations were set
at price 60. In all of the three panels, the transaction price times series is presented by a dark
gray solid line as a function of rounds, and the theoretical equilibrium price is presented by a
black dashed line. In the top panel, demand as a function of quantity is presented in light gray,
and supply as a function of quantity is presented in black. Demand and supply functions were
counted using the valuations of individual traders, and the equilibrium price was determined by
the intersection point of demand and supply functions. In the middle panel, the “best” quotes
in each round are presented; the best quotes are defined as the highest bid and the lowest ask in
each round. Highest bids are reported by light gray triangles and the lowest asks are reported
by black triangles. In the bottom panel, the number of bids is depicted by light gray line with
triangles, while the number of asks is presented by black line with triangles. The number of
both bids and asks are reported for each transaction that took place during the single run of
the model.
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5.3.1 Fixed supply

The results from a single run of the market with fixed supply are reported in figure 17. It

shows exactly the same results as found already by Smith (1962) with human subjects, as

the transaction prices seem to tend towards the equilibrium price from above the supply

schedule, i.e. the transaction price is in all transactions above the price 60. In practice,
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this is a very natural results, because there exists no ZI-C seller with a valuation lower

than price 60 in the population of traders during the simulations. Although the average

of the coefficients of convergence reported in table 5 is rather high when compared to the

symmetric case, at least qualitatively it seems that the transaction prices tend towards

the equilibrium price in this one simulation experiment. The quotes seem to cluster

around the equilibrium price and also the distance between the transaction prices and

the equilibrium price seems to decrease as time progresses.

Figure 18: Efficiency, coefficient of convergence and root mean squared deviation of transaction
prices from the equilibrium price for 100 runs of ZI-C and ZI-U markets with fixed supply,
150 traders and 150 rounds. The traders were divided into buyers and sellers equally, and
the valuations of the buyers are specified in equation 3, while for all sellers the valuations
were set at price 60. The efficiency of the SCDA markets is presented in the top panel. It is
determined as the ratio of the total profit the traders actually earned in the market and the
total profit the traders could have earned in the market. In the bottom panel, the root mean
square deviation (RMSD) of transaction prices from the equilibrium price in ZI-C markets as a
function of rounds is presented in black. In addition to RMSDs, the bottom panel also depicts
the number of observations, i.e. number of transaction prices from 100 simulations, on each
round. The plot shows RMSDs only in rounds, which had more than 10 observations. The
number of observations from ZI-C markets are depicted in black squares with crosses. In the
middle panel, the coefficient of convergence is presented for each run of the model.
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In essence, the results suggest that it is not possible to rule out the convergence argu-
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ment given by Gode and Sunder (1993a) by comparing only the average of the transaction

prices to the theoretical equilibrium price as suggested by Cliff and Bruten (1997). At

least in this particular case, it seems that the prices do converge towards the equilib-

rium price although the mean of the transaction prices is definitely above the equilibrium

price. Thus, it seems that the quantitative consideration by Cliff and Bruten (1997) does

not take into account the fact that the average transaction price does not need to equal

the equilibrium price to make the transaction prices to converge towards the equilibrium

price during the simulations. Actually, the behavior suggested by Cliff and Bruten (1997)

would only be expected if the transaction prices approached the equilibrium price from

both above and below the equilibrium price.

A first more quantitative look at the convergence can be made using the root mean

squared deviation (RMSD) of transaction prices from the equilibrium price. Although

Cliff (1997) claims that the ZI-C markets with fixed supply do not converge, he reports

that the RMSD of transaction prices from the equilibrium price seems to decay as the

time progresses. This results is also confirmed in the simulations presented now, as shown

by the RMSD of transaction prices from the equilibrium price depicted in figure 18 for all

of the 100 simulations. This suggests that the convergence is definitely present in the ZI-C

markets with fixed supply schedule. However, also in this case, it seems that the number

of observations clearly decreases as the RMSD starts to decay towards the equilibrium

price. This is natural, because there are less intramarginal traders participating in the

market, which makes the trading to demand more quotes for a single trade to take

place. However, to make the concrete judgement about this issue using the RMSD of

transaction prices from the equilibrium price, one would certainly have to increase the

number of simulations.

However, the convergence of transaction prices towards the equilibrium price in ZI-C

markets with fixed supply schedule can also be reviewed using the PDFs of bids and asks

estimated from the simulation data as was done with in the symmetric case. Figure 19

shows the PDFs of bids and asks in all of the 150 rounds in the 100 runs of the model.

It clearly shows that as the sellers form a homogeneous population, there seems to be

practically no change in the probability density function of asks during the 150 rounds.

This suggests that the seller population does not seem to change in any meaningful way

during the simulations. However, as the valuations of buyers are still exactly the same as

in the symmetric case, the population of buyers is heterogeneous. This heterogeneity is

also shown in figure 19, because when time progresses, the probability density function

for bids becomes more peaked. This is exactly the same result that was found in the

markets with symmetric demand and supply schedules. Thus, the convergence can be

explained by the fact that the intramarginal buyers leave the market in the beginning of
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Figure 19: PDFs from 100 runs of the ZI-C market with fixed supply for bids and asks for
all rounds from 0 to 150. The traders were divided into buyers and sellers equally, and the
valuations of the buyers are specified in equation 3, while for all sellers the valuations were
set at price 60. The lines presented on the left side of the figure correspond to the PDFs of
bids, while the lines presented on the right side of the figure correspond to the PDFs of asks.
The light gray lines depict the PDFs for both bids and asks from the beginning rounds of the
simulations, while as the color of the line becomes darker, the number of rounds increases.
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the simulation after they have traded, and the trading ceases as none of the intramarginal

traders participate in the market any more. The distinction between this case and the

symmetric case is that with fixed supply only the characteristics, i.e. the PDF of bids,

of the population of the buyers change as time progresses, while the population of sellers

does not change in any way that would affect the price discovery process.

To strengthen the ideas presented for the ZI-C markets in the symmetric case, it is also

interesting to look at how the theoretical framework presented for the symmetric case fits

this slightly altered situation. Figure 20 shows the theoretical PDF of the intersection of

the PDFs of bids and asks (IPDF) and empirical PDFs of transaction prices for the first

round and all rounds. In general, figure 20 supports the fact that the results from the

100 simulations are in line with the theoretical ideas presented for the symmetric demand

and supply schedules. It also appears that the transaction prices from the first round

are well in line with the intersection of the theoretical bid and asks densities, because
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Figure 20: The PDF of the intersection of theoretical PDFs of bids and asks (IPDF), an
empirical PDF of the transaction prices in the first round and an empirical PDF of transaction
prices in all rounds in 100 runs of ZI-C market when supply is fixed. The demand and supply
schedules used are depicted in the figure 17, while the statistics are presented in the table 5.
The IPDF is depicted in light gray line and was created by sampling the theoretical PDFs of
bids and asks using the accept-reject algorithm. First the theoretical PDFs of bids and asks
were sampled for 10000 observations, and then the points from the intersection were chosen as
the theoretical transaction prices. The IPDF was estimated using these sampled points. The
dashed black line is the PDF estimated using the empirical transaction prices only from the
first round, while the solid black line is the PDF estimated using the transaction prices from
all of the rounds.
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the transaction prices seem to have a very similar distribution as the intersection of the

theoretical bid and asks densities. The slight differences in the distributions could be

expected to decay as the number of simulations is increased. However, the claim of Cliff

and Bruten (1997) that the transaction prices from all rounds would be characterized by

the distribution of the intersection of the theoretical bid and ask densities, is rejected in

this case. The density of the transaction prices from all rounds is clearly more peaked

than the density of the intersection.
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Figure 21: Transaction price time series, demand-supply schedules, best quotes and the amount
of bids and ask in the limit order book for a single run of ZI-C market with 150 traders and 150
rounds when demand is fixed. The traders were divided into buyers and sellers equally, and the
valuations of the sellers are specified in equation 3, while for all buyers the valuations were set
at price 140. In all of the three panels, the transaction price times series is presented by a dark
gray solid line as a function of rounds, and the theoretical equilibrium price is presented by a
black dashed line. In the top panel, demand as a function of quantity is presented in light gray,
and supply as a function of quantity is presented in black. Demand and supply functions were
counted using the valuations of individual traders, and the equilibrium price was determined by
the intersection point of demand and supply functions. In the middle panel, the “best” quotes
in each round are presented; the best quotes are defined as the highest bid and the lowest ask in
each round. Highest bids are reported by light gray triangles and the lowest asks are reported
by black triangles. In the bottom panel, the number of bids is depicted by light gray line with
triangles, while the number of asks is presented by black line with triangles. The number of
both bids and asks are reported for each transaction that took place during the single run of
the model.
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5.3.2 Fixed demand

The results from a single run of the market with fixed demand are reported in figure 21.

It shows similar results as the previous subsection showed for the ZI-C markets with fixed

supply, but this time the interest is directed at the changes in the population of buyers

participating in the market. This time the transaction prices seem to tend towards the
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equilibrium price from below the demand schedule, i.e. the transaction price is in all

transactions below the price 140. In practice, this is a very natural result, because there

exists no ZI-C buyer with a valuation higher than 140 in the population of traders during

the simulations.

Figure 22: Efficiency, coefficient of convergence and root mean squared deviation of transaction
prices from the equilibrium price for 100 runs of ZI-C and ZI-U markets with fixed demand,
150 traders and 150 rounds. The traders were divided into buyers and sellers equally, and
the valuations of the sellers are specified in equation 3, while for all buyers the valuations
were set at price 140. The efficiency of the CDA markets is presented in the top panel. It is
determined as the ratio of the total profit the traders actually earned in the market and the
total profit the traders could have earned in the market. In the bottom panel, the root mean
square deviation of transaction prices from the equilibrium price (RMSD) in ZI-C markets as a
function of rounds is presented in black. In addition to RMSDs, the bottom panel also depicts
the number of observations, i.e. number of transaction prices from 100 simulations, on each
round. The plot shows RMSDs only in rounds, which had more than 10 observations. The
number of observations from ZI-C markets are depicted in black squares with crosses. In the
middle panel, the coefficient of convergence is presented for each run of the model.
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The average of the coefficients of convergence reported in table 5 is slightly, i.e. ap-

proximately 5 percent, lower than in the symmetric case. This indicates that the trans-

action prices in the ZI-C market with fixed demand are rather close to the equilibrium

price when compared to the other market types already considered in this thesis. It also
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seems that the transaction prices tend towards the equilibrium price in this one simula-

tion experiment: the quotes cluster around the equilibrium price and also the distance

between the transaction prices and the equilibrium price decreases as time progresses.

Figure 23: PDFs from 100 runs of the ZI-C market with fixed demand for bids and asks for
all rounds from 0 to 150. The traders were divided into buyers and sellers equally, and the
valuations of the sellers are specified in equation 3, while for all buyers the valuations were
set at price 140. The lines presented on the left side of the figure correspond to the PDFs of
bids, while the lines presented on the right side of the figure correspond to the PDFs of asks.
The light gray lines depict the PDFs for both bids and asks from the beginning rounds of the
simulations, while as the color of the line becomes darker, the number of rounds increases.
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Although Cliff and Bruten (1997) did not report the results from the ZI-C markets

with fixed demand, it seems in general that the results seem to be quite similar to those

reported in this thesis already for the ZI-C markets with fixed supply. It seems that the

transaction prices converge towards the equilibrium price as time progresses. Note also

that in this case the average of the transaction prices gives a false indication about the

convergence, because all of the transaction prices are below the equilibrium price. Thus,

the mean of the transaction prices is below the equilibrium price unless all the transaction

take place exactly with the equilibrium price.

Evaluating the convergence of ZI-C markets with fixed demand yields the same result

as in the ZI-C markets with fixed supply. The RMSD of transaction prices from the
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Figure 24: The PDF of the intersection of theoretical PDFs of bids and asks (IPDF), an
empirical PDF of the transaction prices in the first round and an empirical PDF of transaction
prices in all rounds in 100 runs of ZI-C market when demand is fixed. The traders were divided
into buyers and sellers equally, and the valuations of the sellers are specified in equation 3,
while for all buyers the valuations were set at price 140. The IPDF is depicted in light gray
line and was created by sampling the theoretical PDFs of bids and asks using the accept-reject
algorithm. First the theoretical PDFs of bids and asks were sampled for 10000 observations,
and then the points from the intersection were chosen as the theoretical transaction prices. The
IPDF was estimated using these sampled points. The dashed black line is the PDF estimated
using the empirical transaction prices only from the first round, while the solid black line is the
PDF estimated using the transaction prices from all of the rounds.
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equilibrium price seems to decay as time progresses. To make the result visually concrete,

the RMSD of transaction prices from the equilibrium price is plotted for each round in

the bottom panel of figure 23. Again the same result is repeated as the number of

observations starts to decrease at the same time as the RMSD of transaction prices from

the equilibrium price starts to decay. More concrete results about the convergence can be

obtained by looking at the probability density functions of bids and asks estimated from

the simulations and by examining how the densities change over time presented in figure

23. It appears again that the homogeneous population, i.e. the population of buyers,

stays this time exactly the same, while the heterogeneous population, i.e. the population
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of sellers, seems to change so that the intramarginal traders leave the market and after

there are none of them left the trading ceases.

The final look at the theoretical framework given in figure 24 shows that also in this

case the theoretical characterizations for the first round seem to be similar as the results

from the simulations. However, again, the probability density function of all transaction

prices is clearly different from the probability density function of the intersection of the

probability density functions of market wide bids and asks. Thus, the claim presented

by Cliff and Bruten (1997) is rejected also in this case.

5.3.3 Fixed demand and supply - excess supply

This last case is especially interesting, because Cliff and Bruten (1997) claim that with

fixed demand and supply transaction prices in the ZI-C markets do not converge towards

the equilibrium price. As the previous presentation has used different arguments than

Cliff and Bruten (1997), it is interesting to see how the methods presented in the earlier

section fits this particular problem. As the first note, one should understand that a

market with fixed demand and supply schedules is the simplest case to analyze using

the methods presented, because the populations of buyers and sellers are homogeneous.

Thus, one can expect that with fixed demand and supply, the changes in the population

of traders should not affect the transaction price in any way. In essence, the expected

transaction price should be random, which in this case means that it should have a

uniform distribution on a certain interval.

The market parameters were chosen so that the market exhibits excess supply. I chose

the parameters so that there were 50 buyers with a common valuation at price 140 and

100 sellers with a common valuation at price 60. This implies that the distribution of the

transaction prices should be a uniform distribution from price 60 to price 140, because

in that interval any seller will accept a bid and any buyer will accept an ask. From the

statistics presented in table 5, one should notice that in each of the runs presented here,

50 transactions took place in each one of the 100 runs of the model. The market was

closed after that, because there were no buyers left in the market, which meant that it was

impossible for the sellers to find counterparts to trade with. In addition, the efficiency of

the ZI-C market with excess supply was in all of the runs 1.0 with a standard deviation

0.00.

The top panel of figure 25 shows the transaction prices for a single run of the model,

and it seems that the hypothesis about the randomly fluctuating transaction prices in the

price interval from 60 to 140 seems to have been well satisfied in this single simulation.

Actually even a more concrete result about this issue can be presented, because table

5 shows that the mean of the maximum prices was 138.4. Although the fact that the
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Figure 25: Transaction price time series, fixed demand supply schedules, best quotes and the
amount of bids and ask in the limit order book for a single run of ZI-C markets with 150 traders
and 150 rounds. The traders were not divided into buyers and sellers equally: there were 50
buyers with a common valuation at price 140 and 100 sellers with a common valuation at price
60. In all of the three panels, the transaction price times series is presented by a dark gray solid
line as a function of rounds, and the theoretical equilibrium price is presented by a black dashed
line. In the top panel, demand as a function of quantity is presented in light gray, and supply
as a function of quantity is presented in black. Demand and supply functions were counted
using the valuations of individual traders, and the equilibrium price was determined by the
intersection point of demand and supply functions. In the middle panel, the “best” quotes in
each round are presented; the best quotes are defined as the highest bid and the lowest ask in
each round. Highest bids are reported by light gray triangles and the lowest asks are reported
by black triangles. In the bottom panel, the number of bids is depicted by light gray line with
triangles, while the number of asks is presented by black line with triangles. The number of
both bids and asks are reported for each transaction that took place during the single run of
the model.
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mean of the maximums is lower than 140 does not show that there could not have been a

transaction price higher than 140, in this case, it still shows that there were transaction

prices close to 140. Similarly, as the mean of the minimums of transaction prices is 61.9,

it is clear that there were transaction prices close to the lower bound at price 60. Thus,

it seems that in all of the 100 runs of the model, the transaction prices have varied in the

price range from 60 to 140 with a mean around a price of 100. As also the skewness has
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been very close to zero on average, it seems that the distribution of transaction prices

has been symmetric around its mean.

Figure 26: Efficiency, coefficient of convergence and root mean squared deviation of transaction
prices from the equilibrium price for 100 runs of ZI-C market with excess supply and fixed
demand-supply schedule, 150 traders and 150 rounds. The traders were not divided into buyers
and sellers equally: there were 50 buyers with a common valuation at price 140 and 100 sellers
with a common valuation at price 60. The efficiency of the CDA markets is presented in the
top panel. It is determined as the ratio of the total profit the traders actually earned in the
market and the total profit the traders could have earned in the market. In the bottom panel,
the root mean square deviation of transaction prices from the equilibrium price (RMSD) in
ZI-C markets as a function of rounds is presented in black. The measures were counted for each
round using the data of transaction prices of either ZI-C markets. In addition to RMSDs, the
bottom panel also depicts the number of observations, i.e. number of transaction prices from
100 simulations, on each round. The plot shows RMSDs only in rounds, which had more than
10 observations. The number of observations from ZI-C markets are depicted in black squares
with crosses. In the middle panel, the coefficient of convergence is presented for each run of the
model.
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The transaction prices shown in figure 25 seem to suggest that there would not be a

convergence towards the equilibrium price. The best bids and asks shown in the middle

panel of the figure 25 also support this story: neither the best bids nor asks seem to

concentrate around the equilibrium more tightly as time progresses. In addition, the
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bottom panel of figure 25 reports the number of bids and asks in the limit order book for

each transaction, and shows that the number of bids and asks needed for a trade seems to

stay on the same level all the time. Thus, it seems as already suggested by the qualitative

analysis that at least in the single simulation presented in figure 25 no convergence of

transaction prices towards the equilibrium price took place.

Figure 27: PDFs from 100 runs of the ZI-C market with fixed supply for bids and asks for all
rounds from 0 to 150. The demand and supply schedules used in the simulations are depicted
in the figure 7, while the statistics are presented in table 2. The lines presented on the left
side of the figure correspond to the PDFs of bids, while the lines presented on the right side of
the figure correspond to the PDFs of asks. The light gray lines depict the PDFs for both bids
and asks from the beginning rounds of the simulations, while as the color of the line becomes
darker, the number of rounds increases.

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Price

P
D

F

Round 0, n_bids = 385, n_asks = 312
Round 5, n_bids = 268, n_asks = 261
Round 10, n_bids = 308, n_asks = 295
Round 15, n_bids = 293, n_asks = 290
Round 20, n_bids = 254, n_asks = 342
Round 25, n_bids = 269, n_asks = 326
Round 30, n_bids = 328, n_asks = 314
Round 35, n_bids = 258, n_asks = 284
Round 40, n_bids = 288, n_asks = 339
Round 45, n_bids = 258, n_asks = 487
Round 50, n_bids = 41, n_asks = 1421

A more detailed analysis of the convergence towards the equilibrium price can be

done using the coefficients of convergence and the RMSD of transaction prices from the

equilibrium price. Figure 26 depicts in the middle panel the coefficients of convergence for

all of the 100 runs of the model. The first impression from the middle panel of figure 26

is that the coefficients of convergence are relatively high in all of the runs when compared

to, for example, the symmetric case. However, the more concrete proof for the lack of

convergence is the fact that the RMSD of transaction prices from the equilibrium price

does not seem to exhibit any convergence. In the round close to the round 50, the RMSD
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of transaction prices from the equilibrium price seems to decay, but it is only a result of

the fact that the number of observations decreases dramatically at the same time. Thus,

both the RMSD and the coefficient of convergence support the fact that there seems to

be no convergence of transaction prices towards the equilibrium price.

Figure 28: The PDF of the intersection of theoretical PDFs of bids and asks (IPDF), an
empirical PDF of the transaction prices in the first round and an empirical PDF of transaction
prices in all rounds in 100 runs of ZI-C market when there is excess supply and both demand
and supply are fixed. The demand and supply schedules used are depicted in the figure 25
while the statistics are presented in table 5. The IPDF is depicted in light gray line and was
created by sampling the theoretical PDFs of bids and asks using the accept-reject algorithm.
First the theoretical PDFs of bids and asks were sampled for 10000 observations, and then the
points from the intersection were chosen as the theoretical transaction prices. The IPDF was
estimated using these sampled points. The dashed black line is the PDF estimated using the
empirical transaction prices only from the first round, while the solid black line is the PDF
estimated using the transaction prices from all of the rounds of the model.
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In the beginning of this subsection, the claim was made that he characteristics of

the ZI-C trader populations, i.e. the buyer and seller populations, do not change during

the auction in any meaningful way from the price discovery perspective in ZI-C markets.

Figure 27 shows that this is indeed the case in the 100 simulations reported now. It

shows that the probability density functions of bids and asks do not essentially change
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in any way as time progresses. This can be seen as the main reason for the lack of

convergence exhibited in the model, because in the earlier markets considered in this

thesis the evolution of the PDFs of bids and asks has been the driving force of the price

discovery in the ZI-C markets. All in all, as the ZI-C traders trade in exactly the same

manner throughout the SCDA, the trading exhibits a similar pattern as the trading of

ZI-U traders, but this time only in the price range from 60 to 140. Thus, by changing the

demand and supply schedules to this extreme case, Cliff and Bruten (1997) have chosen

a particular situation, which is not even expected to exhibit convergence of transaction

prices towards the equilibrium price.

Final inspection of the model is done using the theoretical PDFs. Figure 28 shows

the theoretical PDF of the intersection of the PDFs of bids and asks (IPDF) for the

first round. The most interesting result is that the PDF estimated from the simulated

transaction prices from all rounds seems to be very close to the uniform distribution in the

price range from 60 to 140. This is also exactly what is suggested by the theoretical IPDF.

Thus, as the populations of both buyers and sellers are homogeneous, the transaction price

density stays constant as the time progresses, which makes it possible to use the IPDFs

from the first round to approximate the PDFs of all transaction prices. In essence, this

example shows that the method proposed by Cliff and Bruten (1997) works correctly

when the buyer and seller populations are homogeneous throughout the SCDA. However,

as the previous examples with different market types have shown, this method seems to

work correctly only in this particular example.
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6 Conclusions

Agent-based models have been motivated by the possibility to analyze real markets more

accurately when compared to the traditional analytic models. However, at the moment

agent-based modeling in general lacks synthesis about the modeling principles used. One

of the primary objectives of this thesis was to argue how a single step toward the synthesis

could be taken when the interest is in price discovery in double auction markets. The

extensive literature and heterogeneous models led me to choose a model that is as simple

as possible. By constraining to a simple model, it has been possible to account carefully

for the different issues that contribute in this model to the price discovery process.

This thesis analyzed single-unit continuous double auction markets and especially the

ZI-trader paradigm that was introduced by Gode and Sunder (1993a). The results of

Gode and Sunder have been widely recognized and also criticized. The most prominent

critique for the ZI-trader approach has been given by Cliff and Bruten (1997) and Brewer

et al. (2002). These two studies were used as the starting point of this thesis, and the

method proposed is a refinement of the ideas of Cliff and Bruten (1997). The new method

proposed to analyze the ZI-C trader markets seems to describe the PDFs of bids, asks

and transaction prices in the SCDA more accurately in different types of markets than

the method proposed by Cliff and Bruten (1997). In addition, it appears that the ideas by

Cliff and Bruten (1997) corresponds only to situations, where there exists no distinction

between intra- and extramarginal traders.

The results presented in this thesis support the results presented by Brewer et al.

(2002). Essentially, the results suggest that by using the ideas presented by Cliff and

Bruten (1997) more carefully, it appears to be possible to explain the price discovery

process in the ZI-C trader markets. In addition, when analyzing the behavior of ZI-C

markets, it is important to look at how the population of traders changes over time and

how the changes contribute to the characteristics of the market. Generally, it seems

that the earlier literature has overlooked the importance of the evolution in the trader

population participating in the ZI-C market. In addition, I find that the trading in ZI-C

markets seems to approximate the trading that takes place exactly on the Marshallian

path as was heuristically suggested also by Brewer et al. (2002).

The results are especially interesting in the light of recent research. Although the ZI-

trader framework abstract quite far from the real markets, it is interesting that a recent

study by Ladley and Schenk-Hoppé (2009) found that a modified ZI-C trader market was

able to produce many of the characteristics of real-life order book markets. Thus, it is

important to understand how the ZI-C trader markets actually function, and this thesis

has presented quantitative results that show how the trading in ZI-C markets seems to
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approximate the trading along the Marshallian path.

There appears to be two main areas of further research. First, the results presented in

this thesis should be confirmed using a larger amount of simulations to be able to compare

the results to the ones presented by Othman (2008). However, such an experiment would

require a new and more efficient implementation of the ZI-model than the one presented

in this thesis. Second, it could also be interesting to look at the bid and ask densities

from real markets and, for example, compare the evolution of the two to the different

market regimes appearing in the real markets at a certain moment. This could be done

for example by somehow estimating the demand and supply in the market at a certain

moment, and looking how the bid and ask densities develop after that.
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Ladley, D. and K. R. Schenk-Hoppé (2009). Do stylised facts of order book markets need
strategic behaviour? Journal of Economic Dynamics and Control 33 (4), 817–831.

LeBaron, B. (2006). Chapter 24 agent-based computational finance. Volume 2 of Hand-
book of Computational Economics, pp. 1187–1233. Elsevier.

L’Ecuyer, P. (2001). Software for uniform random number generation: distinguishing the
good and the bad. In Proceedings of the 33nd conference on Winter simulation, WSC
’01, Washington, DC, USA, pp. 95–105. IEEE Computer Society.

LiCalzi, M. and P. Pellizzari (2008). Zero-intelligence trading without resampling. In
M. Beckmann, H. P. Künzi, G. Fandel, W. Trockel, A. Basile, A. Drexl, W. Güth, K. In-
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A Source code for Python
"""

8.2.2011, Niklas Jahnsson

Zero-intelligence traders implemented for a master’s thesis in Finance.

This file has got a model of both zero-Intelligence traders with and

without budget constraint. The model is implemented using a simulation

framework SimPy for Python. Essentially the model was created to replicate

the results of both Gode and Sunder (1993) and Cliff and Bruten (1997).

Thus, the market implemented is a continuous double auction without

replacement.

Uses

-SimPy, Rpy

-r.library(’moments’), r.library(’coin’), r.library(’colorRamps’)

It is important to note that if the model is used to review the convergence

using root mean squared deviation of transaction prices from the equilibrium

price, then the market parameters implemented in function initializeDemandAndSupply

should be kept the same in all of the runs.

commandline arguments available are

"debug" to see debugging texts

"trades" to see how trading takes place

"conv" to force the using of same seed for random number generator in all

of the runs

"singleSeed" to force the using of single seed

Note that output parameters are set so that a run with 150 agents for 150 rounds

is outputted correctly. Set outPaths yourself to change the output directories.

"""

from SimPy.Simulation import *

from rpy import r

import random, time, math, sys

# Auxiliary variables

debug = False

trades = False

convergenceRun = False

singleSeed = False

if ’debug’ in sys.argv:

debug = True

if ’trades’ in sys.argv:

trades = True

if ’conv’ in sys.argv:

convergenceRun = True

if ’singleSeed’ in sys.argv:

singleSeed = True

OutPath = ""

outPathC = "/home/nikke/SimPyOut/ZI/C/080211/big/ZI_C_i_"

outPathU = "/home/nikke/SimPyOut/ZI/U/080211/big/ZI_U_i_"

outPathZI = "/home/nikke/SimPyOut/ZI/080211/big/ZI_n_"

# Experiment data -------------------------

numberOfRuns = 100

SEED = time.ctime()

equilibriumPrice = 100

numberOfRounds = 150

numberOfAgents= 150

simulationIndex = 1

maximumAssetValue = 200

budgetConstraint = True

# Model components ------------------------

# Variables

numberOfBuyers = 0
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numberOfSellers = 0

# Queues for buyers and sellers

selectedBuyer = -1

selectedSeller = -1

buyerQueue = []

sellerQueue = []

selectedBuyers = []

selectedSellers = []

# Logging for output data

prices = []

bestBids = []

bestAsks = []

buyerValuations = []

sellerValuations = []

demand = []

supply = []

extractedProfit = 0

statistics = []

allBids = []

allAsks = []

allBids0 = []

allAsks0 = []

# For output using Rpy

rheight = rwidth = 500

# Auxiliary functions

def initializeDemandAndSupply():

"""

Initialize buyer and seller valuations so that they are not stochastic, but

instead sequences from 25 to 175 using equal intervals. The valuations are

casted to integers, because integers are used later when determining demand,

supply and equilibrium price.

"""

global buyerValuations, sellerValuations, numberOfAgents, numberOfBuyers,\

numberOfSellers

numberOfBuyers = 0

numberOfSellers = 0

buyerValuations = []

sellerValuations = []

increment = round(1.0*(174-26)/(1.0*numberOfAgents/2))

i = 26

count = 0

while count < 1.0*numberOfAgents/2:

buyerValuations.append(int(i))

sellerValuations.append(int(i))

i += increment

count += 1

def RMSD(priceSeries,eqPrice):

"""

Parameters

priceSeries: a list of prices

eqPrice: equilibrium price

Calculates the standard deviation of the prices

in the priceSeries around the equilibrium price

rather than around the mean of priceSeries prices.

"""

if eqPrice < 0:

raise Exception("RMSD: eqPrice < 0")

if len(priceSeries) > 0:

ret = 0

for i in range(0,len(priceSeries)):

ret += 1.0*pow((priceSeries[i]-eqPrice),2)

return pow(1.0*ret/len(priceSeries),0.5)

else:
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raise Exception("RMSD: length of priceSeries < 0")

def returnAgentNames(agentList):

"""

Assumes that input is a list of agents, and returns all the names of the

agents concatenated. Used for debugging purposes.

"""

try:

output = ""

for agent in agentList:

output += agent.name+","

return output

except Exception as inst:

raise Exception("returnAgentNames: Exception: "+str(inst))

class Book(Resource):

"""

Implements a generic limit order book as a common resource using the

Resource class of SimPy. Both bids and asks need their own limit order

books, because of this implementation. The book consists of a list, which

can be allocated to a single trader at the time if they request it.

"""

def __init__(self,sim):

try:

Resource.__init__(self,capacity=1,sim=sim)

self.list = []

except Exception as inst:

raise Exception("Book: __init__(): Exception: "+str(inst))

class MarketMaker(Process):

"""

Responsible for gathering both all buyer and seller agents

and picking one of them uniformly to trade. Waits first for all

agents to gather to the market, then chooses one and waits until

the chosen one has acted. Stops market if the number of buyers AND

sellers equals zero. Only one method, i.e. work(), implemented as

it is the only thing market maker does.

"""

def work(self):

if debug:

print "Market maker waiting for market to initialize"

yield waituntil,self,self.sim.marketInitialized

while True:

global buyerQueue, sellerQueue, numberOfBuyers, numberOfSellers

if debug:

print "Market maker waiting for market to get ready. "+\

"len(buyerQueue) = "+str(len(buyerQueue))+" and "+\

"len(sellerQueue) = "+str(len(sellerQueue))+\

" while numberOfBuyers = "+str(numberOfBuyers)+\

" and numberOfSellers = "+str(numberOfSellers)

if numberOfBuyers == 0 or numberOfSellers == 0:

raise Exception("Buyers and sellers equal to zero: market done")

yield waituntil,self,self.sim.marketReady

try:

global selectedSellers, selectedBuyers, returnAgentNames

if debug:

print "selectedSellers = "+returnAgentNames(selectedSellers)

print "selectedBuyers = "+returnAgentNames(selectedBuyers)

# Check if a new round should begin

if (len(selectedSellers)+len(selectedBuyers)) == (numberOfBuyers+\

numberOfSellers):

if len(self.sim.bidB.list) > 0:

bestBids.append([self.sim.now(),self.sim.bidB.list[-1][0]])

if len(self.sim.askB.list) > 0:

bestAsks.append([self.sim.now(),self.sim.askB.list[0][0]])

selectedSellers = []

selectedBuyers = []

yield hold,self,1

if trades:
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print "At "+str(self.sim.now())+": no trades in"+\

" this round: beginning a new round"

# See if only buyers or sellers left, select the other group if

# other group is entirely consumed. If agents left in both groups,

# then select either a buyer or a seller from their queues randomly.

selectedGroup = -1

# First check for the agents left

allBuyers = set(buyerQueue)

usedBuyers = set(selectedBuyers)

buyersLeft = list(allBuyers-usedBuyers)

allSellers = set(sellerQueue)

usedSellers = set(selectedSellers)

sellersLeft = list(allSellers-usedSellers)

# Then see their amounts and decide about the group

if len(buyersLeft) == 0:

selectedGroup = 1

elif len(sellersLeft) == 0:

selectedGroup = 0

else:

selectedGroup = random.randint(0,1)

if selectedGroup == 0:

# Select buyer from unselected buyers left in this round

global selectedBuyer

if len(buyersLeft) == 1:

selectedBuyer = buyersLeft[0]

else:

selectedBuyer = buyersLeft[random.randint(0,\

len(buyersLeft)-1)]

selectedBuyers.append(selectedBuyer)

if debug:

print "Market maker ready, chose buyer "+\

selectedBuyer.name

else:

# Select seller from unselected sellers left in this round

global selectedSeller

if len(sellersLeft) == 1:

selectedSeller = sellersLeft[0]

else:

selectedSeller = sellersLeft[random.randint(0,\

len(sellersLeft)-1)]

selectedSellers.append(selectedSeller)

if debug:

print "Market maker ready, chose seller "+\

selectedSeller.name

yield waituntil,self,self.sim.marketDone

except ValueError as inst:

print "len(buyersLeft) == "+str(len(buyersLeft))+\

" and len(sellersLeft) == "+str(len(sellersLeft))

raise Exception("Market maker: ValueError: "+str(inst))

except Exception as inst:

raise Exception("Market maker: Exception: "+str(inst))

class Agent(Process):

"""

Responsible for agents work. The main method is work(), but also other

auxiliary methods are used by the agents.

Agents characteristics

- self.type: 0 = buyer, 1 = seller

- self.valuation: any integer in range (1,maximumAssetValue)

- self.hasTrader: 0 = has not, 1 = has

- selfname: agent + str(integer), identifies the each agents uniquely

"""

def __init__(self,name,sim):

"""

Initialize agents with their characteristics, name is initialized by the

Generator() defined below. Note that if the number of agents is uneven, then

this function initializes agents so that there is one buyer more than sellers.

"""

global numberOfBuyers, numberOfSellers, maximumAssetValue, demand, supply,\
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buyerValuations, sellerValuations, numberOfAgents

Process.__init__(self,name,sim)

self.hasTraded = 0

self.type = -1

self.valuation = -1

try:

if numberOfBuyers < 1.0*numberOfAgents/2:

self.type = 0

self.valuation = buyerValuations[numberOfBuyers]

numberOfBuyers += 1

for i in range(0,self.valuation):

demand[i][1] += 1

else:

self.type = 1

self.valuation = sellerValuations[numberOfSellers]

numberOfSellers += 1

for i in range(self.valuation-1,len(supply)):

supply[i][1] += 1

except ValueError as inst:

raise Exception("Agent: __init__: ValueError: "+str(inst))

except Exception as inst:

raise Exception("Agent: __init__: Exception: "+str(inst))

def appendBid(self,bid,amount):

"""

Inserts a bid and sorts bids from smallest to largest

"""

global allBids, allBids0

allBids.append([self.sim.now(),bid])

if (self.sim.now() == 0):

allBids0.append(bid)

self.sim.bidB.list.append([bid,amount,self])

self.sim.bidB.list = sorted(self.sim.bidB.list, key = lambda bid: bid[0])

def appendAsk(self,ask,amount):

"""

Inserts an ask and sorts asks from smallest to largest.

"""

global allAsks, allAsks0

allAsks.append([self.sim.now(),ask])

if (self.sim.now() == 0):

allAsks0.append(ask)

self.sim.askB.list.append([ask,amount,self])

self.sim.askB.list = sorted(self.sim.askB.list, key = lambda ask: ask[0])

def selectBid(self):

"""

Returns the largest bid and remove it from the list. Largest bid is

found from the last place in the list.

"""

if(len(self.sim.bidB.list) == 0):

return -1

return self.sim.bidB.list.pop()

def selectAsk(self):

"""

Return the smallest ask and remove it from the list. Smallest ask is

found from the first place in the list.

"""

if(len(self.sim.askB.list) == 0):

return -1

aux = self.sim.askB.list[0]

self.sim.askB.list.remove(aux)

return aux

def seeBid(self):

"""

Returns the value of the largest bid, which is found from the last place

in the list

"""
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if(len(self.sim.bidB.list) == 0):

return -1

return self.sim.bidB.list[-1][0] #bids[len(bids)-1]

def seeAsk(self):

"""

Returns the value of the smallest ask, which is found from the first

place in the list

"""

if(len(self.sim.askB.list) == 0):

return -1

return self.sim.askB.list[0][0]

def cancelOldLimitBids(self):

"""

Cancels all limit bids from the bid limit order book for the

agent, who is given as a parameter.

"""

try:

# First find orders to be cancelled

aux = []

for order in self.sim.bidB.list:

if order[2] == self:

aux.append(order)

# Then cancel them

for order in aux:

self.sim.bidB.list.remove(order)

except ValueError as inst:

print "cancelOldLimitBids(): ValueError: "+str(inst)

except Exception:

print "cancelOldLimitBids(): Exception: "+str(inst)

def cancelOldLimitAsks(self):

"""

Cancels all limit asks from the ask limit order book for the

agent, who is given as a parameter.

"""

try:

# First find orders to be cancelled

aux = []

for order in self.sim.askB.list:

if order[2] == self:

#print "cancelling ask for agent %s"%agent.name

aux.append(order)

# Then cancel them

for order in aux:

self.sim.askB.list.remove(order)

except ValueError as inst:

print "cancelOldLimitAsks(): ValueError: "+str(inst)

except Exception:

print "cancelOldLimitAsks(): Exception: "+str(inst)

def work(self):

"""

The main routine for agent: agents push themselves into buyer or seller

queues, and wait if they got selected. If a particular agent is selected,

then she looks at either limit asks or bids, depending whether the agent

is a buyer or a seller, and if any of them satisfy her, then she trades.

If the agent doesn’t wan’t to trade at the quotes available, then she

appends her bid or ask to the corresponding limit order book.

Because agent is implemented in SimPy and the limit order books are derived

from the resource class, the agents always request the particular limit

order book they need when they trade. This is heavy structure for a simple

ZI-market, but offers possibilities to create more complex market structures.

"""

global maximumAssetValue, numberOfBuyers, numberOfSellers, selectedSeller,\

selectedBuyer, buyerQueue, sellerQueue, extractedProfit,\

selectedSellers,selectedBuyers, bestAsks, bestBids,\

budgetConstraint
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if debug:

print self.name+" initialized"

while (not self.hasTraded):

if self.type == 0:

# Self a buyer

buyerQueue.append(self)

yield waituntil,self,self.sim.marketMakerDone

# First check if a buyer of a seller was chosen

if selectedBuyer != -1:

if(self == selectedBuyer):

if debug:

print self.name+" came to market"

# Trade

yield request,self,self.sim.bidB

if budgetConstraint:

u = random.uniform(1,self.valuation)

else:

u = random.uniform(1,maximumAssetValue)

askPrice = self.seeAsk()

if askPrice != -1 and u >= askPrice:

bestAsks.append([self.sim.now(),askPrice])

if self.seeBid() > 0:

bestBids.append([self.sim.now(),self.seeBid()])

sellingAsk = self.selectAsk()

prices.append([self.sim.now(),askPrice,\

len(self.sim.bidB.list),\

len(self.sim.askB.list)])

sellingAsk[2].hasTraded = 1

self.hasTraded = 1

numberOfSellers -= 1

numberOfBuyers -= 1

selectedSellers = []

selectedBuyers = []

increaseInProfit = self.valuation-\

sellingAsk[2].valuation

#if increaseInProfit > 0:

extractedProfit += increaseInProfit

if trades:

print self.name+" bought and "+sellingAsk[2].name+\

" has sold and profit was "+\

str(self.valuation-sellingAsk[2].valuation)

print "price = "+str(askPrice)+" "+\

str(self.valuation-sellingAsk[2].valuation)

else:

self.appendBid(u,1)

# Try to clear books if traded

if self.hasTraded:

if debug:

print self.name+" clearing the books"

yield request,self,self.sim.askB

self.sim.askB.list = []

yield release,self,self.sim.askB

self.sim.bidB.list = []

yield hold,self,1

if trades:

print "At "+str(self.sim.now())+\

": trade took place: beginning new round"

# Release resources

yield release,self,self.sim.bidB

buyerQueue = []

sellerQueue = []

selectedBuyer = -1

if debug:

print "Buyer "+self.name+" left market and"+\

" selectedBuyer == -1 now"

print "selectedSeller == "+str(selectedSeller)+\
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" and selectedBuyer == "+str(selectedBuyer)

else:

# Another buyer was chosen

if debug:

print "Buyer "+self.name+\

" waiting for market to be done"

yield waituntil,self,self.sim.marketDone

else:

# A seller was chosen

if debug:

print "Buyer "+self.name+\

" waiting for market to be done"

yield waituntil,self,self.sim.marketDone

else:

# Self a seller

sellerQueue.append(self)

yield waituntil,self,self.sim.marketMakerDone

# First check if a buyer of a seller was chosen

if selectedSeller != -1:

if(self == selectedSeller):

if debug:

print self.name+" came to market"

# Trade

yield request,self,self.sim.askB

if budgetConstraint:

u = random.uniform(self.valuation,maximumAssetValue)

else:

u = random.uniform(1,maximumAssetValue)

bidPrice = self.seeBid()

if bidPrice != -1 and u <= bidPrice:

bestBids.append([self.sim.now(),bidPrice])

if self.seeAsk() > 0:

bestAsks.append([self.sim.now(),self.seeAsk()])

buyingBid = self.selectBid()

prices.append([self.sim.now(),bidPrice,\

len(self.sim.bidB.list),\

len(self.sim.askB.list)])

buyingBid[2].hasTraded = 1

self.hasTraded = 1

numberOfSellers -= 1

numberOfBuyers -= 1

selectedSellers = []

selectedBuyers = []

increaseInProfit = buyingBid[2].valuation-\

self.valuation

#if increaseInProfit > 0:

extractedProfit += increaseInProfit

if trades:

print self.name+" has sold and "+\

buyingBid[2].name+" has bought and"+\

" profit was "+str(buyingBid[2].valuation-\

self.valuation)

print "price = "+str(bidPrice)+" "+\

str(buyingBid[2].valuation-self.valuation)

else:

self.appendAsk(u,1)

# Try to clear books if traded

if self.hasTraded:

if debug:

print self.name+" clearing the books"

yield request,self,self.sim.bidB

self.sim.bidB.list = []

yield release,self,self.sim.bidB

self.sim.askB.list = []

yield hold,self,1

if trades:

print "At "+str(self.sim.now())+": trade took"+\

" place: beginning new round"
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# Release resources

yield release,self,self.sim.askB

sellerQueue = []

buyerQueue = []

selectedSeller = -1

if debug:

print "Seller "+self.name+" left market and"+\

" selectedSeller == -1 now"

print "selectedSeller == "+str(selectedSeller)+\

" and selectedBuyer == "+str(selectedBuyer)

else:

# Another seller was chosen

if debug:

print "Buyer "+self.name+\

" waiting for market to be done"

yield waituntil,self,self.sim.marketDone

else:

# A buyer was chosen

if debug:

print "Buyer "+self.name+\

" waiting for market to be done"

yield waituntil,self,self.sim.marketDone

# Leave market

if self.type == 0:

self.cancelOldLimitBids()

else:

self.cancelOldLimitAsks()

class Generator(Process):

"""

Responsible for generating all agents at the

beginning of the simulation. Initializes the names

of the agents and puts them acting in the market.

"""

def execute(self,agentNumber):

for i in range(agentNumber):

a = Agent("Trader "+str(i), sim=self.sim)

self.sim.activate(a,a.work())

yield hold,self,0

### Model -----------------------------------

class NeedResourcesModel(Simulation):

"""

Implements the simulation itself. The first four functions are

used by the market maker and the agents to communicate between

themselves. The main method is run: it initializes all the model

variables, runs the model and outputs data.

"""

def marketReady(self):

"""

Market maker waits for this to return True before she starts

to choose which trader gets to trade.

"""

global numberOfSellers, numberOfBuyers, buyerQueue, sellerQueue

return (len(buyerQueue) == numberOfBuyers) and\

(len(sellerQueue) == numberOfSellers)

def marketDone(self):

"""

Both market maker and the agents who did not got chosen as the

trading agent wait for this to become True. After the agent, who

was selected to trade, is ready, she sets either the selectedBuyer

or selectedSeller again to -1, and releases all the

"""

global selectedBuyer, selectedSeller

return (selectedBuyer == -1) and (selectedSeller == -1)

def marketMakerDone(self):

"""
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Used by agents to check if the market maker has done his decision

about the fact that which agents was chosen to trade.

"""

global selectedBuyer, selectedSeller

return (selectedBuyer != -1) or (selectedSeller != -1)

def marketInitialized(self):

"""

Used by the market maker to check that the generator has initialized

all agents. Needed, because otherwise it could be that the market maker

would start to act, because the marketReady() may return True although all

agents were not initalized.

"""

global numberOfAgents, numberOfSellers, numberOfBuyers

return ((numberOfBuyers + numberOfSellers) == numberOfAgents)

def run(self):

"""

Runs the model. First initializes all needed variables for the model and

output. Then runs the model, and after that outputs data from the single

run.

"""

global numberOfAgents, numberOfRounds, prices, numberOfBuyers,\

numberOfSellers,selectedBuyer, selectedSeller, buyerQueue,\

sellerQueue, maximumAssetValue, supply, demand, extractedProfit,\

selectedBuyers, selectedSellers, buyerValuations,\

sellerValuations, statistics, rheight, rwidth, bestBids,\

bestAsks, RMSD, initializeDemandAndSupply, EquilibriumPrice

# Initializations of variables

initializeDemandAndSupply()

selectedBuyer = -1

selectedSeller = -1

buyerQueue = []

sellerQueue = []

selectedBuyers = []

selectedSellers = []

# Initializations of logs

# output data

prices = []

bestBids = []

bestAsks = []

demand = []

supply = []

statistics = []

for i in range(1,maximumAssetValue+1):

demand.append([i,0])

supply.append([i,0])

extractedProfit = 0

# Initialization of simulation components

self.initialize()

self.bidB = Book(sim=self)

self.askB = Book(sim=self)

g = Generator(name=’gen’,sim=self)

self.activate(g,g.execute(agentNumber=numberOfAgents))

marketMaker = MarketMaker(sim=self)

self.activate(marketMaker,marketMaker.work())

# Simulation

print "Simulation started at "+str(time.ctime())

try:

print self.simulate(until=numberOfRounds)

except Exception as inst:

print "\n*** Exception occured during Simulation ***\n"

print inst

print "Simulation ended at "+str(time.ctime())

if debug:

print "Bids in the end:"

for i in self.bidB.list:
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print "price = %f, amount = %f" %(i[0],i[1])

print "Asks in the end:"

for i in self.askB.list:

print "price = %f, amount = %f" %(i[0],i[1])

print "Prices:"

for i in prices:

print "price = "+str(i)

# Plotting

if(len(prices) > 1):

global outPath

# Separate data

rets = []

pricesOnly = []

pricesTimes = []

pricesBids = []

pricesAsks = []

outstr = outPath+str(simulationIndex)+"_n_"+\

str(numberOfAgents)+"_r_"+str(numberOfRounds)

f = open(outstr+".txt", ’w’)

fret = open(outstr+"_ret.txt", ’w’)

for i in range(0,len(prices)):

if i != 0:

ret = math.log(prices[i][1]/prices[i-1][1])

rets.append(ret)

fret.write(str(ret)+"\n")

f.write(str(prices[i])+"\n")

pricesAsks.append(prices[i][3])

pricesBids.append(prices[i][2])

pricesOnly.append(prices[i][1])

pricesTimes.append(prices[i][0])

f.close()

fret.close()

# Plots using Rpy

# Draw density estimate for returns using R

if len(rets) > 1:

densityData = r.density(rets,kernel="gaussian")

densityData = [densityData[’x’],densityData[’y’]]

r.postscript(outstr+"_density_rets.ps",width=rwidth,height=rheight)

r.plot(densityData[0],densityData[1],xlab=’Logreturn’,

ylab=’Probability’,type=’l’,col="blue4",lty=1,lwd=1)

r.dev_off()

# Draw histogram of returns using R

r.postscript(outstr+"_hist_rets.ps",width=rwidth,height=rheight)

r.hist(rets,breaks=10,xlab="Logreturn",ylab="Number of observations",\

main="",col="blue4")

r.dev_off()

if len(pricesOnly) > 1:

# Draw density estimate for prices using R

densityData = r.density(pricesOnly,kernel="gaussian")

densityData = [densityData[’x’],densityData[’y’]]

r.postscript(outstr+"_density_prices.ps",width=rwidth,\

height=rheight)

r.plot(densityData[0],densityData[1],xlab=’Price’,\

ylab=’Probability’,type=’l’,col="blue4",lty=1,lwd=1)

r.dev_off()

# Draw histogram for prices using R

r.postscript(outstr+"_hist_prices.ps",width=rwidth,height=rheight)

r.hist(pricesOnly,breaks=10,xlab="Price",\

ylab="Number of observations",main="",col="blue4")

r.dev_off()

# Index for printing statistics

statIndex = 0
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# Equilibrium price

statistics.append(equilibriumPrice)

print "Equilibrium price was "+str(statistics[statIndex])

statIndex += 1

# Draw pricesprocess + demand and sypply schedule using R

supplyQ = []

supplyP = []

demandQ = []

demandP = []

maxSupply = 0

for i,item in enumerate(supply):

supplyQ.append(supply[i][1])

supplyP.append(supply[i][0])

demandQ.append(demand[i][1])

demandP.append(demand[i][0])

if supply[i][1] > demand[i][1] and supply[i][1] > maxSupply:

maxSupply = supply[i][1]

else:

if demand[i][1] > maxSupply:

maxSupply = demand[i][1]

r.postscript(outstr+"_price_demand_supply.ps",width=rwidth,\

height=rheight)

r.par(mfrow=r.c(3,1))

r.plot([0,numberOfRounds],[0,maximumAssetValue],type="n",\

xlab="Round/Quantity",ylab="Price",main="")

r.lines(pricesTimes,pricesOnly,col="blue4",lty=1,lwd=1)

r.lines(demandQ,demandP,col="darkorange",lty=1,lwd=1)

r.lines(supplyQ,supplyP,col="darkgreen",lty=1,lwd=1)

r.abline(equilibriumPrice,0,col="darkred",lwd=1,lty=2)

# legend

colors = r.c("blue4","darkorange","darkgreen","darkred")

linetype = r.c(1,1,1,2)

names = r.c("Priceprocess","Demand","Supply","Equilibrium price = "+\

str(equilibriumPrice))

r.legend(numberOfRounds-15,maximumAssetValue,names, cex=0.8, col=colors,\

lty=linetype, lwd=1)

# Draw priceprocess + best bids + best asks

bidsOnly = []

asksOnly = []

bidsTimes = []

asksTimes = []

for item in bestBids:

bidsTimes.append(item[0])

bidsOnly.append(item[1])

for item in bestAsks:

asksTimes.append(item[0])

asksOnly.append(item[1])

r.plot([0,numberOfRounds],[0,maximumAssetValue],type="n",\

xlab="Round",ylab="Price",main="")

r.lines(pricesTimes,pricesOnly,col="blue4",lty=1,lwd=1)

r.points(bidsTimes,bidsOnly,col="darkorange",pch=2)

r.points(asksTimes,asksOnly,col="darkgreen",pch=6)

r.abline(equilibriumPrice,0,col="darkred",lwd=1,lty=2)

# legend

colors = r.c("blue4","darkorange","darkgreen","darkred")

names = r.c("Transaction price","Highest bid","Lowest ask",\

"Equilibrium price = "+str(equilibriumPrice))

r.legend(numberOfRounds-14,maximumAssetValue,names, cex=0.8,\

col=colors,lty=r.c(1,0,0,2),lwd=1,pch=r.c(-1,2,6,-1))

# Draw priceprocess + number of quotes, bids and asks, eq. price

r.plot([0,numberOfRounds],[0,max(maximumAssetValue,max(pricesBids),\

max(pricesAsks))],type="n",xlab="Round",ylab="Price, Amount",\

main="")

r.lines(pricesTimes,pricesOnly,col="blue4",lty=1,lwd=1)

r.lines(pricesTimes,pricesBids,col="darkorange",type="o",lty=1,\

lwd=1,pch=2)

r.lines(pricesTimes,pricesAsks,col="darkgreen",type="o",lty=1,\
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lwd=1,pch=6)

r.abline(equilibriumPrice,0,col="darkred",lwd=1,lty=2)

# legend

colors = r.c("blue4","darkorange","darkgreen","darkred")

names = r.c("Transaction price","Number of bids","Number of asks",\

"Equilibrium price = "+str(equilibriumPrice))

r.legend(numberOfRounds-14,max(maximumAssetValue,max(pricesBids),\

max(pricesAsks)),names,cex=0.8, col=colors,lty=r.c(1,1,1,2),\

lwd=1,pch=r.c(-1,2,6,-1))

r.par(mfrow=r.c(1,1)) # need to be here to prevent a pop-up window

r.dev_off()

# Efficiency

possibleProfit = 0

for item in buyerValuations:

if equilibriumPrice < item:

possibleProfit += item-equilibriumPrice

for item in sellerValuations:

if equilibriumPrice > item:

possibleProfit += equilibriumPrice-item

statistics.append(1.0*extractedProfit/possibleProfit)

print "Efficiency was "+str(statistics[statIndex])+" composed of "+\

str(extractedProfit)+" and "+str(possibleProfit)

# number of transactions

statistics.append(len(prices))

statIndex += 1

print "Number of transactions was "+str(statistics[statIndex])

# Mean of prices

statistics.append(r.mean(pricesOnly))

statIndex += 1

print "Mean was of prices "+str(statistics[statIndex])

# Median of prices

statistics.append(r.median(pricesOnly))

statIndex += 1

print "Median was of prices "+str(statistics[statIndex])

# Maximum of prices

statistics.append(max(pricesOnly))

statIndex += 1

print "Maximum of prices was "+str(statistics[statIndex])

# Minimum of prices

statistics.append(min(pricesOnly))

statIndex += 1

print "Minimum of prices was "+str(statistics[statIndex])

# stdev of prices

statistics.append(r.sd(pricesOnly))

statIndex += 1

print "Stdev of prices was "+str(statistics[statIndex])

# moments-package

r.library(’moments’)

# Kurtosis of prices

statistics.append(r.kurtosis(pricesOnly))

statIndex += 1

print "Kurtosis of prices was "+str(statistics[statIndex])

# Skewness prices

statistics.append(r.skewness(pricesOnly))

statIndex += 1

print "Skewness prices was "+str(statistics[statIndex])

aux = r.quantile(pricesOnly)

statistics.append(aux[’25%’])

statIndex += 1
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print "25% quantile of prices was "+str(statistics[statIndex])

statistics.append(aux[’75%’])

statIndex += 1

print "75% quantile of prices was "+str(statistics[statIndex])

# Mean of rets

statistics.append(r.mean(rets))

statIndex += 1

print "Mean was of rets "+str(statistics[statIndex])

# Median of rets

statistics.append(r.median(rets))

statIndex += 1

print "Median was of rets "+str(statistics[statIndex])

# Maximum of rets

statistics.append(max(rets))

statIndex += 1

print "Maximum of rets was "+str(statistics[statIndex])

# Minimum of rets

statistics.append(min(rets))

statIndex += 1

print "Minimum of rets was "+str(statistics[statIndex])

# stdev of rets

statistics.append(r.sd(rets))

statIndex += 1

print "Stdev of rets was "+str(statistics[statIndex])

# Kurtosis of returns

statistics.append(r.kurtosis(rets))

statIndex += 1

print "Kurtosis of returns was "+str(statistics[statIndex])

# Skewness returns

statistics.append(r.skewness(rets))

statIndex += 1

print "Skewness returns was "+str(statistics[statIndex])

# Coefficient of convergence

# Taa pitaa laskea sd:na eq-hinnan ymparilla!

statistics.append(100.0*RMSD(pricesOnly,\

equilibriumPrice)/equilibriumPrice)

statIndex += 1

print "Coeff. of convergence (Smith) was "+str(statistics[statIndex])

# Jarque-Bera test for normality of returns

jarqueBera = r.jarque_test(rets)

statistics.append(jarqueBera[’p.value’])

statIndex += 1

print "p-value for jarque-bera test for the normality of"+\

" returns was "+str(statistics[statIndex])

statistics.append(jarqueBera[’statistic’][’JB’])

statIndex += 1

else:

print "No trading occured"

# Experiment ------------------------------

seeds = range(1,numberOfRuns+1)

seedInd = 0

random.seed(SEED)

statsAll = []

statisticsC = []

statisticsU = []

pricesAll = []

pricesC = []
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pricesU = []

bestBidsAll = []

bestAsksAll = []

bestBidsAllC = []

bestAsksAllC = []

bestBidsAllU = []

bestAsksAllU = []

outPath = outPathC

for ind in range(1,numberOfRuns*2+1):

print "** Run number "+str(ind)+" **"

if ind == numberOfRuns+1:

budgetConstraint = False

statisticsC = statsAll

pricesC = pricesAll

bestBidsAllC = bestBidsAll

bestAsksAllC = bestAsksAll

statsAll = []

pricesAll = []

bestAsksAll = []

bestBidsAll = []

fstats = open(outPathZI+"allBidsC.txt", ’w’)

for item in allBids:

fstats.write(str(item)+";")

fstats = open(outPathZI+"allAsksC.txt", ’w’)

for item in allAsks:

fstats.write(str(item)+";")

fstats = open(outPathZI+"allBids0C.txt", ’w’)

for item in allBids0:

fstats.write(str(item)+",")

fstats = open(outPathZI+"allAsks0C.txt", ’w’)

for item in allAsks0:

fstats.write(str(item)+",")

allBids = []

allAsks = []

allBids0 = []

allAsks0 = []

simulationIndex = 1

fstats = open(outPath+str(simulationIndex)+"_n_"+\

str(numberOfAgents)+"_r_"+\

str(numberOfRounds)+"_stats.txt", ’w’)

for row in statisticsC:

fstats.write(str(row)+"\n")

fstats.close()

seedInd = 0

outPath = outPathU

print "\n **Beginning runs with ZI-U agents** \n"

if convergenceRun:

print "Seed set back to 1"

random.seed(1)

elif singleSeed:

# Do nothing

print "No change in seed"

else:

random.seed(seeds[seedInd])

print "Seed set to next from the seeds-array: "+str(seeds[seedInd])

seedInd += 1

NeedResourcesModel().run()

simulationIndex += 1

statsAll.append(statistics)

pricesAll.append(prices)

bestBidsAll.append(bestBids)

bestAsksAll.append(bestAsks)

# for output

statisticsU = statsAll

pricesU = pricesAll

bestBidsAllU = bestBidsAll

bestAsksAllU = bestAsksAll

# statisticsU
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fstats = open(outPath+str(simulationIndex)+"_n_"+str(numberOfAgents)+"_r_"+\

str(numberOfRounds)+"_stats.txt", ’w’)

for row in statisticsU:

fstats.write(str(row)+"\n")

fstats.close()

# Statistics for the whole experiment

indexList = [1,2,3,4,5,6,7,8,9,10,11,19]

auxStats = []

fstats = open(outPathZI+str(simulationIndex)+"_n_"+str(numberOfAgents)+"_r_"+\

str(numberOfRounds)+"_stats.txt", ’w’)

for index in indexList:

aux = []

for row in statisticsC:

aux.append(row[index])

auxStats.append(r.mean(aux))

auxStats.append(r.sd(aux))

auxStats.append(len(aux))

fstats.write(str(auxStats)+"\n")

auxStats = []

for index in indexList:

aux = []

for row in statisticsU:

aux.append(row[index])

auxStats.append(r.mean(aux))

auxStats.append(r.sd(aux))

auxStats.append(len(aux))

fstats.write(str(auxStats)+"\n")

fstats.close()

# Tests for differences between constrained and unconstrained agents

efficienciesC = []

coefsConvergC = []

efficienciesU = []

coefsConvergU = []

for row in statisticsC:

efficienciesC.append(100.0*row[1])

coefsConvergC.append(row[19])

for row in statisticsU:

efficienciesU.append(100.0*row[1])

coefsConvergU.append(row[19])

r.library(’coin’)

wilcoxTestEff = r.wilcox_test(efficienciesC,efficienciesU,paired=1,\

alternative="greater")

print "p-value for efficiencies using Wilcoxon test "+\

str(wilcoxTestEff[’p.value’])

wilcoxTestCoef = r.wilcox_test(coefsConvergC,coefsConvergU,paired=1,\

alternative="less")

print "p-value of coefficients of convergence using Wilcoxon test "+\

str(wilcoxTestCoef[’p.value’])

fstats = open(outPathZI+str(numberOfRuns)+".txt", ’w’)

fstats.write(str(wilcoxTestCoef)+"\n")

fstats.write(str(wilcoxTestEff)+"\n")

fstats.close()

# Print efficiencies and coefs of convergence and RMSD together

r.postscript(outPathZI+str(numberOfRuns)+"_eff_conv_RMSD.ps",\

width=rwidth,height=rheight)

r.par(mfrow=r.c(3,1))

# Efficiencies

r.plot([0,numberOfRuns],[0,100],type="n",xlab="Run",\

ylab="Efficiency",main="")

r.lines(efficienciesC,col="blue4",type="o",lty=1,lwd=1,pch=15)

r.lines(efficienciesU,col="darkorange",type="o",lty=1,lwd=1,pch=17)

colors = r.c("blue4","darkorange")

names = r.c("With budget constraint","Without budget constraint")
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r.legend(numberOfRuns-10,30,names,cex=0.8,col=colors,lty=r.c(1,1),\

lwd=1,pch=r.c(15,17))

# Coefs of convergence

r.plot([0,numberOfRuns],[0,100],type="n",xlab="Run",\

ylab="Coefficient of Convergence",main="")

r.lines(coefsConvergC,col="blue4",type="o",lty=1,lwd=1,pch=15)

r.lines(coefsConvergU,col="darkorange",type="o",lty=1,lwd=1,pch=17)

colors = r.c("blue4","darkorange")

names = r.c("With budget constraint","Without budget constraint")

r.legend(numberOfRuns-10,100,names,cex=0.8,col=colors,lty=r.c(1,1),\

lwd=1,pch=r.c(15,17))

# Convergence using RMSD, results applicable only if same seed in all runs!

# Match prices buy their transaction rounds

# Only rounds with more than 10 observations accepted

pricesOnlyC = []

pricesOnlyU = []

for i in range(0,numberOfRounds+1):

pricesOnlyC.append([])

pricesOnlyU.append([])

for pricesItem in pricesC:

for item in pricesItem:

pricesOnlyC[item[0]].append(item[1])

for pricesItem in pricesU:

for item in pricesItem:

pricesOnlyU[item[0]].append(item[1])

convsC = []

convsCT = []

convsCN = []

convsU = []

convsUT = []

convsUN = []

for i,item in enumerate(pricesOnlyC):

if len(item)>10:

convsC.append(RMSD(item,statistics[0]))

convsCT.append(i)

convsCN.append(len(item))

for i,item in enumerate(pricesOnlyU):

if len(item)>10:

convsU.append(RMSD(item,statistics[0]))

convsUT.append(i)

convsUN.append(len(item))

r.plot([0,numberOfRounds],[0,100],type="n",xlab="Round",\

ylab="RMSD / Number of observations ",main="")

r.lines(convsCT,convsC,col="blue4",type="o",lty=1,lwd=1,pch=15)

r.lines(convsUT,convsU,col="darkorange",type="o",lty=1,lwd=1,pch=17)

r.points(convsCT,convsCN,col="blue4",pch=12)

r.points(convsUT,convsUN,col="darkorange",pch=9)

colors = r.c("blue4","darkorange","blue4","darkorange")

names = r.c("With budget constraint","Without budget constraint",\

"N with budget constraint","N without budget constraint")

r.legend(numberOfRounds-16,100,names,cex=0.8,col=colors,lty=r.c(1,1,0,0),\

lwd=1,pch=r.c(15,17,12,9))

r.par(mfrow=r.c(1,1))

r.dev_off()

# Output to files

fstats = open(outPathZI+str(numberOfRuns)+"_pricesC_0.txt", ’w’)

fstats.write(str(pricesOnlyC[0])+"\n")

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_pricesC.txt", ’w’)

for item in pricesOnlyC:

for price in item:

fstats.write(str(price)+",")

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_convergence.txt", ’w’)
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fstats.write(str(coefsConvergC)+"\n")

fstats.write(str(coefsConvergU)+"\n")

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_efficiencies.txt", ’w’)

fstats.write(str(efficienciesC)+"\n")

fstats.write(str(efficienciesU)+"\n")

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_RMSD.txt", ’w’)

fstats.write(str(convsC)+"\n")

fstats.write(str(convsCT)+"\n")

fstats.write(str(pricesOnlyC)+"\n")

fstats.write(str(convsU)+"\n")

fstats.write(str(convsUT)+"\n")

fstats.write(str(pricesOnlyU)+"\n")

fstats.close()

# Draw estimates for the ask, bid and price densities

# first separate prices, bids and asks from time data

bidsOnlyAllC = []

asksOnlyAllC = []

pricesOnlyAllC = []

bidsOnlyAllU = []

asksOnlyAllU = []

pricesOnlyAllU = []

for i in range(0,numberOfRounds+1):

bidsOnlyAllC.append([])

asksOnlyAllC.append([])

pricesOnlyAllC.append([])

bidsOnlyAllU.append([])

asksOnlyAllU.append([])

pricesOnlyAllU.append([])

for pricesItem in pricesC:

for item in pricesItem:

pricesOnlyAllC[item[0]].append(item[1])

for bidsItem in bestBidsAllC:

for item in bidsItem:

bidsOnlyAllC[item[0]].append(item[1])

for asksItem in bestAsksAllC:

for item in asksItem:

asksOnlyAllC[item[0]].append(item[1])

for pricesItem in pricesU:

for item in pricesItem:

pricesOnlyAllU[item[0]].append(item[1])

for bidsItem in bestBidsAllU:

for item in bidsItem:

bidsOnlyAllU[item[0]].append(item[1])

for asksItem in bestAsksAllU:

for item in asksItem:

asksOnlyAllU[item[0]].append(item[1])

fstats = open(outPathZI+str(numberOfRuns)+"_bidsOnlyAllC.txt", ’w’)

fstats.write(str(bidsOnlyAllC))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_asksOnlyAllC.txt", ’w’)

fstats.write(str(asksOnlyAllC))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_pricesOnlyAllC.txt", ’w’)

fstats.write(str(pricesOnlyAllC))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_bidsOnlyAllU.txt", ’w’)

fstats.write(str(bidsOnlyAllU))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_asksOnlyAllU.txt", ’w’)

fstats.write(str(asksOnlyAllU))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_pricesOnlyAllU.txt", ’w’)

fstats.write(str(pricesOnlyAllU))
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fstats.close()

# Then take only those prices and quotes, which are from

# Rounds 0,10,20,...,150

asksGroupedC = []

bidsGroupedC = []

pricesGroupedC = []

asksGroupedU = []

bidsGroupedU = []

pricesGroupedU = []

densityStepSize = 15

for i in range(0,numberOfRounds+1,densityStepSize):

asksGroupedC.append([i,asksOnlyAllC[i]])

bidsGroupedC.append([i,bidsOnlyAllC[i]])

asksGroupedU.append([i,asksOnlyAllU[i]])

bidsGroupedU.append([i,bidsOnlyAllU[i]])

densityStepSize = 5

for i in range(0,numberOfRounds+1,densityStepSize):

pricesGroupedC.append([i,pricesOnlyAllC[i]])

pricesGroupedU.append([i,pricesOnlyAllU[i]])

fstats = open(outPathZI+str(numberOfRuns)+"_bidsGroupedC.txt", ’w’)

fstats.write(str(bidsGroupedC))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_asksGroupedC.txt", ’w’)

fstats.write(str(asksGroupedC))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_pricesGroupedC.txt", ’w’)

fstats.write(str(pricesGroupedC))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_bidsGroupedU.txt", ’w’)

fstats.write(str(bidsGroupedU))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_asksGroupedU.txt", ’w’)

fstats.write(str(asksGroupedU))

fstats.close()

fstats = open(outPathZI+str(numberOfRuns)+"_pricesGroupedU.txt", ’w’)

fstats.write(str(pricesGroupedU))

fstats.close()

# Draw density estimate for prices, asks and bids at different times using R

# with budget constraint

r.postscript(outPathZI+str(numberOfRuns)+"C_densities.ps",width=rwidth,\

height=rheight)

r.par(mfrow=r.c(3,1))

r.library(’colorRamps’)

numberOfColors = int(1.0*numberOfRounds/densityStepSize)+2

colorsA = r.matlab_like(numberOfColors*2)[numberOfColors:numberOfColors*2]

# Price

try:

r.plot([0,200],[0,0.2],type="n", xlab="Price",ylab="PDF",main="Prices")

namesA = []

ltyA = []

for i,item in enumerate(pricesGroupedC):

if len(item[1]) > 10:

densityData = r.density(item[1],kernel="gaussian")

r.lines(densityData[’x’],densityData[’y’],type="l",\

col=colorsA[i],lty=1,lwd=1)

namesA.append("Round "+str(item[0])+", mean = "+\

str(round(r.mean(item[1]),1))+", n = "+str(len(item[1])))

ltyA.append(1)

r.lines([equilibriumPrice,equilibriumPrice],[-1,10],col="darkred",lwd=1,lty=2)

r.legend(173,0.1,namesA,cex=0.8,col=colorsA,lty=ltyA,lwd=1)

except Exception as inst:

print inst
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# bids

try:

r.plot([0,200],[0,1.4],type="n", xlab="Price",ylab="PDF",main="Bids")

namesA = []

ltyA = []

for i,item in enumerate(bidsGroupedC):

if len(item[1]) > 10:

densityData = r.density(item[1],kernel="gaussian")

r.lines(densityData[’x’],densityData[’y’],type="l",\

col=colorsA[i],lty=1,lwd=1)

namesA.append("Round "+str(item[0])+", mean = "+\

str(round(r.mean(item[1]),1)))

ltyA.append(1)

r.lines([equilibriumPrice,equilibriumPrice],[-1,10],col="darkred",lwd=1,lty=2)

r.legend(180,1.4,namesA,cex=0.8,col=colorsA,lty=ltyA,lwd=2)

except Exception as inst:

print inst

# Asks

try:

r.plot([0,200],[0,1.4],type="n", xlab="Price",ylab="PDF",main="Asks")

namesA = []

ltyA = []

for i,item in enumerate(asksGroupedC):

if len(item[1]) > 10:

densityData = r.density(item[1],kernel="gaussian")

r.lines(densityData[’x’],densityData[’y’],type="l",\

col=colorsA[i],lty=1,lwd=1)

namesA.append("Round "+str(item[0])+", mean = "+\

str(round(r.mean(item[1]),1)))

ltyA.append(1)

r.lines([equilibriumPrice,equilibriumPrice],[-1,10],col="darkred",lwd=1,lty=2)

r.legend(180,1.4,namesA,cex=0.8,col=colorsA,lty=ltyA,lwd=2)

r.par(mfrow=r.c(1,1))

r.dev_off()

except Exception as inst:

print inst

# Without budget constraint

r.postscript(outPathZI+str(numberOfRuns)+"U_densities.ps",\

width=rwidth,height=rheight)

r.par(mfrow=r.c(3,1))

# Price

try:

r.plot([0,200],[0,0.1],type="n", xlab="Price",ylab="PDF",main="")

namesA = []

ltyA = []

for i,item in enumerate(pricesGroupedU):

if len(item[1]) > 10:

densityData = r.density(item[1],kernel="gaussian")

r.lines(densityData[’x’],densityData[’y’],type="l",\

col=colorsA[i],lty=1,lwd=1)

namesA.append("Round "+str(item[0])+", mean = "+\

str(round(r.mean(item[1]),1))+\

", n = "+str(len(item[1])))

ltyA.append(1)

r.legend(173,0.1,namesA,cex=0.8,col=colorsA,lty=ltyA,lwd=2)

except Exception as inst:

print inst

# bids

try:

r.plot([0,200],[0,0.1],type="n", xlab="Price",ylab="PDF",main="")

namesA = []

ltyA = []

for i,item in enumerate(bidsGroupedU):

if len(item[1]) > 10:

densityData = r.density(item[1],kernel="gaussian")
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r.lines(densityData[’x’],densityData[’y’],type="l",\

col=colorsA[i],lty=1,lwd=1)

namesA.append("Round "+str(item[0])+", mean = "+\

str(round(r.mean(item[1]),1)))

ltyA.append(1)

r.legend(180,0.1,namesA,cex=0.8,col=colorsA,lty=ltyA,lwd=2)

except Exception as inst:

print inst

# Asks

try:

r.plot([0,200],[0,0.1],type="n", xlab="Price",ylab="PDF",main="")

namesA = []

ltyA = []

for i,item in enumerate(asksGroupedU):

if len(item[1]) > 10:

densityData = r.density(item[1],kernel="gaussian")

r.lines(densityData[’x’],densityData[’y’],type="l",\

col=colorsA[i],lty=1,lwd=1)

namesA.append("Round "+str(item[0])+", mean = "+\

str(round(r.mean(item[1]),1)))

ltyA.append(1)

r.legend(180,0.1,namesA,cex=0.8,col=colorsA,lty=ltyA,lwd=2)

r.par(mfrow=r.c(1,1))

r.dev_off()

except Exception as inst:

print inst

# End of file

115



B Source code for R
## 9.3.2011, Niklas Jahnsson

##

## .r-file

## to show how the generalized market wide bid and ask densities are created

##

## to generate pictures that show transaction price densities

## -for theoretical bids and asks on the Marshallian path

## -for theoretical bids, asks and transaction prices

## -for theoretical transaction prices according to Cliff and Bruten 1997

## -for transaction prices on first round

## -for transaction prices on all rounds

##

## Three different demand-supply types are investigated: symmetric, fixed supply

## and fixed demand.

##

## Uses accept-reject method to generate a sample from the theoretical

## market bid and ask densities, and then selects those values that are

## in the intersection of the two densities.

##

## As a input needs

## sellerValuations, buyerValuations

## transactionPrices0

## transactionPricesAll

## bids

## asks

##

## An example of the general approach to calculate market wide

## bids and asks presented in equations 8 and 9.

sellerValuations = seq(26,174,2)

buyerValuations = seq(174,26,-2)

supplyPDF = function(p){

ret = 0

if(p<=200){

for(i in 1:length(sellerValuations)){

if(p>=sellerValuations[i]){

ret = ret + 1/(length(sellerValuations)*(200-sellerValuations[i]))

}

}

}

ret

}

integrandS = function(x){

y = numeric(length(x))

for(i in 1:length(x)){

y[i] = supplyPDF(x[i])

}

y

}

integrate(integrandS,0,200)

# 0.999957 with absolute error < 9.2e-05

demandPDF = function(p){

ret = 0

if(p>=1){

for(i in 1:length(buyerValuations)){

if(p<=buyerValuations[i]){

ret = ret + 1/(length(buyerValuations)*(buyerValuations[i]-1))

}

}

}

ret

}

integrandD = function(x){
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y = numeric(length(x))

for(i in 1:length(x)){

y[i] = demandPDF(x[i])

}

y

}

integrate(integrandD,0,200,subdivisions=2000)

# 0.9999982 with absolute error < 1.1e-05

## Figures (14,16) for pdfs in the theoretical Marshallian path

# With colors

#library(’colorRamps’)

#colors = matlab.like(148)

#colors = colors[70:144]

#library(’TeachingDemos’)

#colors = col2gray(colors)

# With greyscale colors

library(’grDevices’)

colors = grey.colors(38,start=0.95,end=0.0)

# Output

postscript("/home/nikke/Kuvat/kehittyminen_intra_extra_symmetric.ps",\

width=100,height=100)

plot(c(0,200),c(0,0.04),type="n",xlab="Price",ylab="PDF")

namesA = character(11)

colA = character(11)

ltyA = numeric(11)

nAR = 600

sampledPrices = 100

for(i in 1:38){

sellerValuations = seq(24+2*i,174,2)

buyerValuations = seq(26,176-2*i,2)#seq(174,26,-2)

xsPDF = seq(0,200,1)

ysPDF = numeric(201)

for(j in 1:200){

ysPDF[j] = supplyPDF(xsPDF[j])

}

if((i-1)%%1 == 0){

lines(xsPDF,ysPDF,lwd=1,col=colors[i])

}

xdPDF = seq(0,200,1)

ydPDF = numeric(201)

for(j in 1:200){

ydPDF[j] = demandPDF(xdPDF[j])

}

if((i-1)%%1 == 0){

lines(xdPDF,ydPDF,lwd=1,col=colors[i])

}

if(((i-1)%%4) == 0){

print(i)

namesA[((i-1)/4)+1] = paste("Round ",(i-1),sep="")

colA[((i-1)/4)+1] = colors[i]

ltyA[((i-1)/4)+1] = 1

}

if(i == 38){

print(i)

namesA[11] = paste("Round ",(i),sep="")

colA[11] = colors[i]

ltyA[11] = 1

}

# ACCEPT-REJECT

# Demand

xd=numeric(nAR)

yd=numeric(nAR)

for(j in 1:nAR){
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while(1){

z=runif(1,1,176-2*i)

u=runif(1,0,1)

if(u<(demandPDF(z)/(4/174))){

print(j)

xd[j]=z

yd[j]=u*4/174

break

}

}

}

#points(xd,yd,pch=".",col="gray40")

# Supply

xs=numeric(nAR)

ys=numeric(nAR)

for(j in 1:nAR){

while(1){

z=runif(1,24+2*i,200)

u=runif(1,0,1)

if(u<(supplyPDF(z)/(4/174))){

print(j)

xs[j]=z

ys[j]=4/174*u

break

}

}

}

#points(xs,ys,pch=".",col="black")

accepted2 = -1

accepted2y = -1

index = 1

for(j in 1:nAR){

if(ys[j]<=demandPDF(xs[j])){

accepted2[index] = xs[j]

accepted2y[index] = ys[j]

index = index + 1

}

if(yd[j]<=supplyPDF(xd[j])){

accepted2[index] = xd[j]

accepted2y[index] = yd[j]

index = index + 1

}

}

#points(accepted2,accepted2y,col="darkred",pch=".")

sampledPrices = c(sampledPrices,accepted2)

}

legend(174,0.04,namesA,cex=0.8,col=colA,lty=ltyA,lwd=2)

dev.off()

dev.off()

# Compare prices on Marshallian path to all transaction prices

aux = read.csv("/home/nikke/SimPyOut/ZI/050211/big3/ZI_n_100_pricesC.txt",\

sep=",",header=FALSE)

aux = data.matrix(aux)

transactionPricesAll = numeric(length(aux))

for(i in 1:length(aux)){

transactionPricesAll[i] = aux[i][1]

}

postscript("/home/nikke/Kuvat/vertailu_prices_Marshall.ps",width=100,height=100)

sampledPrices = sampledPrices[sampledPrices>0]

plot(c(0,200),c(0,0.03),type="n",xlab="Price",ylab="PDF")

lines(density(sampledPrices),col="gray40",lty=1,lwd=2)

lines(density(transactionPricesAll),col="black",lty=2,lwd=2)

colors = c("grey40","black")

names = c(paste("Intersection, n=",length(sampledPrices),sep=""),\

paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""))

legend(150,0.03,names,cex=0.8,col=colors,lty=c(1,2),pch=c(-1,-1),lwd=2)

dev.off()
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## fixed demand and supply: excess demand correct analysis

sellerValuations = array(60,dim=50)

buyerValuations = array(140,dim=100)

xsPDF = seq(0,200,0.1)

ysPDF = numeric(2001)

for(i in 1:2000){

ysPDF[i] = supplyPDF(xsPDF[i])

}

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF)

area = 0

for(i in 1:200){

area = area + supplyPDF(i)

}

area

xdPDF = seq(0,200,0.1)

ydPDF = numeric(2001)

for(i in 1:2000){

ydPDF[i] = demandPDF(xdPDF[i])

}

lines(xdPDF,ydPDF,col="gray40")

area = 0

for(i in 1:200){

area = area + demandPDF(i)

}

area

## Accept-reject sampling

n=10000

# Demand

xd=numeric(n)

yd=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,1,174)

u=runif(1,0,1)

if(u<(demandPDF(z)/(2/174))){

print(i)

xd[i]=z

yd[i]=u*2/174

break

}

}

}

points(xd,yd,pch=".",col="gray40")

# Supply

xs=numeric(n)

ys=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,26,200)

u=runif(1,0,1)

if(u<(supplyPDF(z)/(2/174))){

print(i)

xs[i]=z

ys[i]=2/174*u

break

}

}

}

points(xs,ys,pch=".",col="black")

accepted2 = -1

accepted2y = -1

index = 1
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for(i in 1:n){

if(ys[i]<=demandPDF(xs[i])){

accepted2[index] = xs[i]

accepted2y[index] = ys[i]

index = index + 1

}

if(yd[i]<=supplyPDF(xd[i])){

accepted2[index] = xd[i]

accepted2y[index] = yd[i]

index = index + 1

}

}

## Output

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

transactionPrices0 = c(...)

bids0 = c(...)

asks0 = c(...)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\

"Demand, n=10000","Supply, n=10000")

legend(152,0.02,names,cex=0.8,col=colors,lty=c(1,1,1,1),pch=c(-1,-1,-1,-1),lwd=2)

postscript("/home/nikke/Kuvat/vertailu_intersection_fixedDS2_140211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lwd=2)

lines(xdPDF,ydPDF,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(2,3,1,1,4,4),pch=c(-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# mukana kaikki transaction pricet

aux = read.csv("/home/nikke/SimPyOut/ZI/130211/big2/ZI_n_100_pricesC.txt",sep=",",header=FALSE)

aux = data.matrix(aux)

transactionPricesAll = numeric(length(aux))

for(i in 1:length(aux)){

transactionPricesAll[i] = aux[i][1]

}

postscript("/home/nikke/Kuvat/vertailu_intersection_fixedDS22_140211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lwd=2)

lines(xdPDF,ydPDF,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

lines(density(transactionPricesAll),col="black",lty=2,lwd=2)

colors = c("grey35","black","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",\

length(transactionPricesAll),sep=""),"Demand, n=10000","Supply, n=10000",\
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paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(2,3,2,1,1,4,4),pch=c(-1,-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

## fixed demand and supply: excess supply correct analysis

sellerValuations = array(60,dim=100)

buyerValuations = array(140,dim=50)

xsPDF = seq(0,200,0.1)

ysPDF = numeric(2001)

for(i in 1:2000){

ysPDF[i] = supplyPDF(xsPDF[i])

}

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF)

area = 0

for(i in 1:200){

area = area + supplyPDF(i)

}

area

xdPDF = seq(0,200,0.1)

ydPDF = numeric(2001)

for(i in 1:2000){

ydPDF[i] = demandPDF(xdPDF[i])

}

lines(xdPDF,ydPDF,col="gray40")

area = 0

for(i in 1:200){

area = area + demandPDF(i)

}

area

# Accept-reject sampling

n=10000

# Demand

xd=numeric(n)

yd=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,1,174)

u=runif(1,0,1)

if(u<(demandPDF(z)/(2/174))){

print(i)

xd[i]=z

yd[i]=u*2/174

break

}

}

}

points(xd,yd,pch=".",col="gray40")

# Supply

xs=numeric(n)

ys=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,26,200)

u=runif(1,0,1)

if(u<(supplyPDF(z)/(2/174))){

print(i)

xs[i]=z

ys[i]=2/174*u

break

}

}

}
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points(xs,ys,pch=".",col="black")

accepted2 = -1

accepted2y = -1

index = 1

for(i in 1:n){

if(ys[i]<=demandPDF(xs[i])){

accepted2[index] = xs[i]

accepted2y[index] = ys[i]

index = index + 1

}

if(yd[i]<=supplyPDF(xd[i])){

accepted2[index] = xd[i]

accepted2y[index] = yd[i]

index = index + 1

}

}

# Output

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

transactionPrices0 = c(...)

bids0 = c(...)

asks0 = c(...)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep="")\

,"Demand, n=10000","Supply, n=10000")

legend(152,0.02,names,cex=0.8,col=colors,lty=c(1,1,1,1),pch=c(-1,-1,-1,-1),lwd=2)

postscript("/home/nikke/Kuvat/vertailu_intersection_fixedDS_140211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lwd=2)

lines(xdPDF,ydPDF,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(2,3,1,1,4,4),pch=c(-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# including all transaction prices

aux = read.csv("/home/nikke/SimPyOut/ZI/130211/big/ZI_n_100_pricesC.txt",sep=",",header=FALSE)

aux = data.matrix(aux)

transactionPricesAll = numeric(length(aux))

for(i in 1:length(aux)){

transactionPricesAll[i] = aux[i][1]

}

postscript("/home/nikke/Kuvat/vertailu_intersection_fixedDS2_140211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=3,lwd=2)

lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)
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lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\

paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""),\

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(1,4,1,3,3,2,2),pch=c(-1,-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# Only bids and asks

postscript("/home/nikke/Kuvat/vertailu_intersection_fixedDS2_quotes_090311.ps",width=100,height=100)

plot(c(0,200),c(0,0.015),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=1,lwd=2)

lines(xdPDF,ydPDF,lty=1,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

#lines(density(accepted2),col="grey35",lty=1,lwd=2)

#lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

#lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("gray40","black","gray40","black")

names = c("Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.015,names,cex=0.8,col=colors,lty=c(1,1,2,2),pch=c(-1,-1,-1,-1),lwd=2)

dev.off()

postscript("/home/nikke/Kuvat/vertailu_intersection_fixedDS2_prices_090311.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

#lines(xsPDF,ysPDF,lty=3,lwd=2)

#lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

#lines(density(asks0),col="black",lty=2,lwd=2)

#lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(1,4,1),pch=c(-1,-1,-1),lwd=2)

dev.off()

## Symmetric demand and supply: correct analysis

sellerValuations = seq(26,174,2)

buyerValuations = seq(26,174,2)

xsPDF = seq(0,200,0.1)

ysPDF = numeric(2001)

for(i in 1:2000){

ysPDF[i] = supplyPDF(xsPDF[i])

}

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF)

area = 0

for(i in 1:200){

area = area + supplyPDF(i)

}

area

xdPDF = seq(0,200,1)

ydPDF = numeric(201)

for(i in 1:200){

ydPDF[i] = demandPDF(xdPDF[i])

}

lines(xdPDF,ydPDF,col="gray40")

area = 0
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for(i in 1:200){

area = area + demandPDF(i)

}

area

## Accept-reject sampling

n=10000

# Demand

xd=numeric(n)

yd=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,1,174)

u=runif(1,0,1)

if(u<(demandPDF(z)/(3/174))){

print(i)

xd[i]=z

yd[i]=u*3/174

break

}

}

}

points(xd,yd,pch=".",col="gray40")

# Supply

xs=numeric(n)

ys=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,26,200)

u=runif(1,0,1)

if(u<(supplyPDF(z)/(3/174))){

print(i)

xs[i]=z

ys[i]=3/174*u

break

}

}

}

points(xs,ys,pch=".",col="black")

accepted2 = -1

accepted2y = -1

index = 1

for(i in 1:n){

if(ys[i]<=demandPDF(xs[i])){

accepted2[index] = xs[i]

accepted2y[index] = ys[i]

index = index + 1

}

if(yd[i]<=supplyPDF(xd[i])){

accepted2[index] = xd[i]

accepted2y[index] = yd[i]

index = index + 1

}

}

# Output

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

transactionPrices0 = c(...)

bids0 = c(...)

asks0 = c(...)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\
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"Demand, n=10000","Supply, n=10000")

legend(152,0.02,names,cex=0.8,col=colors,lty=c(1,1,1,1),pch=c(-1,-1,-1,-1),lwd=2)

postscript("/home/nikke/Kuvat/vertailu_intersection_symmetric_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lwd=2)

lines(xdPDF,ydPDF,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(2,3,1,1,4,4),pch=c(-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# including all transaction prices

aux = read.csv("/home/nikke/SimPyOut/ZI/090311/big/ZI_n_100_pricesC.txt",sep=",",header=FALSE)

aux = data.matrix(aux)

transactionPricesAll = numeric(length(aux))

for(i in 1:length(aux)){

transactionPricesAll[i] = aux[i][1]

}

postscript("/home/nikke/Kuvat/vertailu_intersection_symmetric2_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.025),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=3,lwd=2)

lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""),\

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.025,names,cex=0.8,col=colors,lty=c(1,4,1,3,3,2,2),pch=c(-1,-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# Only bids and asks

postscript("/home/nikke/Kuvat/vertailu_intersection_symmetric2_quotes_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=1,lwd=2)

lines(xdPDF,ydPDF,lty=1,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

#lines(density(accepted2),col="grey35",lty=1,lwd=2)

#lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

#lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("gray40","black","gray40","black")

names = c("Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(1,1,2,2),pch=c(-1,-1,-1,-1),lwd=2)

dev.off()

postscript("/home/nikke/Kuvat/vertailu_intersection_symmetric2_prices_080211.ps",width=100,height=100)
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plot(c(0,200),c(0,0.025),type="n",xlab="Price",ylab="PDF")

#lines(xsPDF,ysPDF,lty=3,lwd=2)

#lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

#lines(density(asks0),col="black",lty=2,lwd=2)

#lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",\

length(transactionPricesAll),sep=""))

legend(150,0.025,names,cex=0.8,col=colors,lty=c(1,4,1),pch=c(-1,-1,-1),lwd=2)

dev.off()

## Symmetric demand and supply: Cliff & Bruten 1997

sellerValuations = seq(26,174,2)

buyerValuations = seq(26,174,2)

supplyF = function(p){

ret = 0

index = 1

while (sellerValuations[index]<=p){

index = index + 1

ret = ret + 1

if (index==76){break;}

}

if (p>200){ret = 0;}

ret

}

supplyArea = 0

for(i in 1:200){

supplyArea = supplyArea + supplyF(i)

}

supplyArea

supply = function(p){

ret = 0

index = 1

while (sellerValuations[index]<=p){

index = index + 1

ret = ret + 1

if (index==76){break;}

}

if (p>200){ret = 0;}

ret/supplyArea

}

demandF = function(p){

ret = 0

index = 75

while (buyerValuations[index]>=p){

index = index - 1

ret = ret + 1

if (index ==0){break;}

}

if (p<1){ret = 0;}

ret

}

demandArea = 0

for(i in 1:200){

demandArea = demandArea + demandF(i)

}

demandArea

demand = function(p){

ret = 0

index = 75

while (buyerValuations[index]>=p){
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index = index - 1

ret = ret + 1

if (index ==0){break;}

}

if (p<1){ret = 0;}

ret/demandArea

}

s = -1

d = -1

x = seq(1,200,1)

for(i in 1:200){

s[i] = supply(i)

d[i] = demand(i)

}

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(x,s,col="black",lwd=2)

lines(x,d,col="gray40",lwd=2)

## Accept-reject sampling

n=10000

# Demand

xd=numeric(n)

yd=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,1,174)

u=runif(1,0,1)

if(u<(demand(z)/(2/173))){

print(i)

xd[i]=z

yd[i]=u*2/173

break

}

}

}

points(xd,yd,pch=".",col="gray40")

# Supply

xs=numeric(n)

ys=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,26,200)

u=runif(1,0,1)

if(u<(supply(z)/(2/173))){

print(i)

xs[i]=z

ys[i]=2/173*u

break

}

}

}

points(xs,ys,pch=".",col="black")

accepted2 = -1

accepted2y = -1

index = 1

for(i in 1:n){

if(ys[i]<=demand(xs[i])){

accepted2[index] = xs[i]

accepted2y[index] = ys[i]

index = index + 1

}

if(yd[i]<=supply(xd[i])){

accepted2[index] = xd[i]

accepted2y[index] = yd[i]

index = index + 1

}

}
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# Output

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

transactionPrices0 = c(...)

bids0 = c(...)

asks0 = c(...)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),"Demand, n=10000","Supply, n=10000")

legend(152,0.02,names,cex=0.8,col=colors,lty=c(1,1,1,1),pch=c(-1,-1,-1,-1),lwd=2)

postscript("/home/nikke/Kuvat/vertailu_Cliff_intersection_symmetric_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.025),type="n",xlab="Price",ylab="PDF")

lines(x,s,lwd=2)

lines(x,d,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.025,names,cex=0.8,col=colors,lty=c(2,3,1,1,4,4),pch=c(-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# including all transaction prices

aux = read.csv("/home/nikke/SimPyOut/ZI/050211/big3/ZI_n_100_pricesC.txt",sep=",",header=FALSE)

aux = data.matrix(aux)

transactionPricesAll = numeric(length(aux))

for(i in 1:length(aux)){

transactionPricesAll[i] = aux[i][1]

}

postscript("/home/nikke/Kuvat/vertailu_Cliff_intersection_symmetric2_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.025),type="n",xlab="Price",ylab="PDF")

lines(x,s,lty=3,lwd=2)

lines(x,d,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""),\

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.025,names,cex=0.8,col=colors,lty=c(1,4,1,3,3,2,2),pch=c(-1,-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# Only bids and asks

postscript("/home/nikke/Kuvat/vertailu_Cliff_intersection_symmetric2_quotes_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(x,s,lty=1,lwd=2)

lines(x,d,lty=1,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

#lines(density(accepted2),col="grey35",lty=1,lwd=2)
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#lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

#lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("gray40","black","gray40","black")

names = c("Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(1,1,2,2),pch=c(-1,-1,-1,-1),lwd=2)

dev.off()

postscript("/home/nikke/Kuvat/vertailu_Cliff_intersection_symmetric2_prices_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.025),type="n",xlab="Price",ylab="PDF")

#lines(xsPDF,ysPDF,lty=3,lwd=2)

#lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

#lines(density(asks0),col="black",lty=2,lwd=2)

#lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""))

legend(142,0.025,names,cex=0.8,col=colors,lty=c(1,4,1),pch=c(-1,-1,-1),lwd=2)

dev.off()

## Non symmetric demand and supply: fixed demand

## Correct analysis

buyerValuations = array(data=140,dim=75)

sellerValuations = seq(26,174,2)

xsPDF = seq(0,200,0.1)

ysPDF = numeric(2001)

for(i in 1:2000){

ysPDF[i] = supplyPDF(xsPDF[i])

}

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF)

area = 0

for(i in 1:200){

area = area + supplyPDF(i)

}

area

xdPDF = seq(0,200,0.1)

ydPDF = numeric(2001)

for(i in 1:2000){

ydPDF[i] = demandPDF(xdPDF[i])

}

lines(xdPDF,ydPDF,col="gray40")

area = 0

for(i in 1:200){

area = area + demandPDF(i)

}

area

## Accept-reject sampling

n=10000

# Demand

xd=numeric(n)

yd=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,1,174)

u=runif(1,0,1)

if(u<(demandPDF(z)/(1/139))){
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print(i)

xd[i]=z

yd[i]=u*1/139

break

}

}

}

points(xd,yd,pch=".",col="gray40")

# Supply

xs=numeric(n)

ys=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,26,200)

u=runif(1,0,1)

if(u<(supplyPDF(z)/(3/174))){

print(i)

xs[i]=z

ys[i]=3/174*u

break

}

}

}

points(xs,ys,pch=".",col="black")

accepted2 = -1

accepted2y = -1

index = 1

for(i in 1:n){

if(ys[i]<=demandPDF(xs[i])){

accepted2[index] = xs[i]

accepted2y[index] = ys[i]

index = index + 1

}

if(yd[i]<=supplyPDF(xd[i])){

accepted2[index] = xd[i]

accepted2y[index] = yd[i]

index = index + 1

}

}

# Output

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

transactionPrices0 = c(...)

bids0 = c(...)

asks0 = c(...)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),"Demand, n=10000","Supply, n=10000")

legend(152,0.02,names,cex=0.8,col=colors,lty=c(1,1,1,1),pch=c(-1,-1,-1,-1),lwd=2)

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_demand_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.025),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lwd=2)

lines(xdPDF,ydPDF,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),"Demand, n=10000","Supply, n=10000",\
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paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.025,names,cex=0.8,col=colors,lty=c(2,3,1,1,4,4),pch=c(-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# including all transaction prices

aux = read.csv("/home/nikke/SimPyOut/ZI/050211/big/ZI_n_100_pricesC.txt",sep=",",header=FALSE)

aux = data.matrix(aux)

transactionPricesAll = numeric(length(aux))

for(i in 1:length(aux)){

transactionPricesAll[i] = aux[i][1]

}

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_demand2_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.04),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=3,lwd=2)

lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),\

paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""),

"Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.04,names,cex=0.8,col=colors,lty=c(1,4,1,3,3,2,2),pch=c(-1,-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# Only bids and asks

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_demand_quotes_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=1,lwd=2)

lines(xdPDF,ydPDF,lty=1,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

#lines(density(accepted2),col="grey35",lty=1,lwd=2)

#lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

#lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("gray40","black","gray40","black")

names = c("Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(1,1,2,2),pch=c(-1,-1,-1,-1),lwd=2)

dev.off()

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_demand_prices_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.04),type="n",xlab="Price",ylab="PDF")

#lines(xsPDF,ysPDF,lty=3,lwd=2)

#lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

#lines(density(asks0),col="black",lty=2,lwd=2)

#lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""))

legend(150,0.04,names,cex=0.8,col=colors,lty=c(1,4,1),pch=c(-1,-1,-1),lwd=2)

dev.off()
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## Non symmetric demand and supply: fixed supply

## Correct analysis

buyerValuations = seq(26,174,2)

sellerValuations = array(data=60,dim=75)

xsPDF = seq(0,200,0.1)

ysPDF = numeric(2001)

for(i in 1:2000){

ysPDF[i] = supplyPDF(xsPDF[i])

}

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF)

area = 0

for(i in 1:200){

area = area + supplyPDF(i)

}

area

xdPDF = seq(0,200,0.1)

ydPDF = numeric(2001)

for(i in 1:2000){

ydPDF[i] = demandPDF(xdPDF[i])

}

lines(xdPDF,ydPDF,col="gray40")

area = 0

for(i in 1:200){

area = area + demandPDF(i)

}

area

## Accept-reject sampling

n=10000

# Demand

xd=numeric(n)

yd=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,1,174)

u=runif(1,0,1)

if(u<(demandPDF(z)/(2/139))){

print(i)

xd[i]=z

yd[i]=u*2/139

break

}

}

}

points(xd,yd,pch=".",col="gray40")

# Supply

xs=numeric(n)

ys=numeric(n)

for(i in 1:n){

while(1){

z=runif(1,60,200)

u=runif(1,0,1)

if(u<(supplyPDF(z)/(1/140))){

print(i)

xs[i]=z

ys[i]=1/140*u

break

}

}

}

points(xs,ys,pch=".",col="black")

accepted2 = -1

accepted2y = -1
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index = 1

for(i in 1:n){

if(ys[i]<=demandPDF(xs[i])){

accepted2[index] = xs[i]

accepted2y[index] = ys[i]

index = index + 1

}

if(yd[i]<=supplyPDF(xd[i])){

accepted2[index] = xd[i]

accepted2y[index] = yd[i]

index = index + 1

}

}

# Output

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

transactionPrices0 = c(...)

asks0 = c(...)

bids0 = c(...)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),\

paste("Empirical first round, n=",length(transactionPrices0),sep=""),"Demand, n=10000","Supply, n=10000")

legend(152,0.02,names,cex=0.8,col=colors,lty=c(1,1,1,1),pch=c(-1,-1,-1,-1),lwd=2)

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_supply_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.025),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lwd=2)

lines(xdPDF,ydPDF,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=2,lwd=2)

lines(density(transactionPrices0),col="black",lty=3,lwd=2)

lines(density(asks0),col="black",lty=4,lwd=2)

lines(density(bids0),col="gray40",lty=4,lwd=2)

colors = c("grey35","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),"Demand, n=10000","Supply, n=10000",\

paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.025,names,cex=0.8,col=colors,lty=c(2,3,1,1,4,4),pch=c(-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# including all transaction prices

aux = read.csv("/home/nikke/SimPyOut/ZI/050211/big2/ZI_n_100_pricesC.txt",sep=",",header=FALSE)

aux = data.matrix(aux)

transactionPricesAll = numeric(length(aux))

for(i in 1:length(aux)){

transactionPricesAll[i] = aux[i][1]

}

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_supply2_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.04),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=3,lwd=2)

lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black","gray40","black","gray40","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",\

length(transactionPricesAll),sep=""),"Demand, n=10000","Supply, n=10000",\
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paste("Empirical first round bids, n=",length(bids0),sep=""),\

paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.04,names,cex=0.8,col=colors,lty=c(1,4,1,3,3,2,2),pch=c(-1,-1,-1,-1,-1,-1,-1),lwd=2)

dev.off()

# Only bids and asks

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_supply_quotes_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.02),type="n",xlab="Price",ylab="PDF")

lines(xsPDF,ysPDF,lty=1,lwd=2)

lines(xdPDF,ydPDF,lty=1,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

#lines(density(accepted2),col="grey35",lty=1,lwd=2)

#lines(density(transactionPrices0),col="black",lty=4,lwd=2)

lines(density(asks0),col="black",lty=2,lwd=2)

lines(density(bids0),col="gray40",lty=2,lwd=2)

#lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("gray40","black","gray40","black")

names = c("Demand, n=10000","Supply, n=10000",paste("Empirical first round bids, n=",\

length(bids0),sep=""),paste("Empirical first round asks, n=",length(asks0),sep=""))

legend(142,0.02,names,cex=0.8,col=colors,lty=c(1,1,2,2),pch=c(-1,-1,-1,-1),lwd=2)

dev.off()

postscript("/home/nikke/Kuvat/vertailu_intersection_fixed_supply_prices_080211.ps",width=100,height=100)

plot(c(0,200),c(0,0.04),type="n",xlab="Price",ylab="PDF")

#lines(xsPDF,ysPDF,lty=3,lwd=2)

#lines(xdPDF,ydPDF,lty=3,col="gray40",lwd=2)

#points(xd,yd,pch=".",col="gray40")

#points(xs,ys,pch=".",col="black")

#points(accepted2,accepted2y,col="grey35",pch=".")

lines(density(accepted2),col="grey35",lty=1,lwd=2)

lines(density(transactionPrices0),col="black",lty=4,lwd=2)

#lines(density(asks0),col="black",lty=2,lwd=2)

#lines(density(bids0),col="gray40",lty=2,lwd=2)

lines(density(transactionPricesAll),col="black",lty=1,lwd=2)

colors = c("grey35","black","black")

names = c(paste("Intersection, n=",length(accepted2),sep=""),paste("Empirical first round, n=",\

length(transactionPrices0),sep=""),paste("Empirical all rounds, n=",length(transactionPricesAll),sep=""))

legend(150,0.04,names,cex=0.8,col=colors,lty=c(1,4,1),pch=c(-1,-1,-1),lwd=2)

dev.off()
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