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Consumer valuations of fuel economy - A study of the Finnish automobile market 
 
 
The diffusion of energy-efficient technologies can play an integral role in mitigating the 
detrimental effects of energy use to the environment. However, a host of studies have 
concluded that the market for conservation technology investments does not operate 
efficiently and thus does not guarantee an optimal level of investment in energy-efficient 
technologies. The aim of this study is to discuss whether suboptimal consumer choices 
contribute to the seemingly slow diffusion of conservation technologies such as automobile 
fuel economy. Indeed, we aim to find out whether consumers are giving an appropriate 
amount of weight on future fuel costs when purchasing vehicles - an underweight on 
operating costs would effectively slow down the diffusion of fuel-efficient vehicles. 
Furthermore, if consumers do not fully account for the future gasoline costs when purchasing 
a vehicle, gasoline taxes will fail to secure an optimal level of fleet fuel economy and more 
paternalistic policies are warranted. 
 
This study consists of a review of the earlier literature on consumer fuel economy choices and 
discrete choice models of the vehicle market as well as an empirical study of the Finnish 
vehicle market. In the empirical part of this study we will employ discrete choice methods 
initially developed by Berry (1994) and Berry et al. (1995) and follow quite closely a nested 
logit specification presented by Allcott et al. (2011) to disentangle consumer preferences for 
fuel economy. Our dataset contains new vehicle registrations as well as vehicle characteristics 
and prices for 2005-2011 in Finland. The existing literature does not offer any clear consensus 
as to whether consumers are making optimal price-fuel cost trade-offs. Similar to Allcott et al. 
(2011), our study suggests that consumers are underweighting future gasoline costs compared 
to the upfront vehicle price.  
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1 Introduction 

Traditionally the discussion in energy and environmental economics focuses on correcting 

market failures, such as externalities in the energy market by e.g. Pigouvian taxes. An 

alternative point of view to the discussion has been the diffusion of conservation technology -  

green technology development and diffusion can play an integral role in the mitigation of the 

detrimental effects of energy use on the environment especially in the long run. As Jaffe et al. 

(1994a) put it, new, efficient technologies can help alleviate the trade-off that seems to exist 

between economic welfare and the conservation of the environment.  

However, a host of studies have concluded that the market for conservation technology 

investments does not operate efficiently and thus does not guarantee an optimal level of 

investment in energy-efficient technologies. This problem is sometimes referred to as the 

‘energy paradox’. This study focuses on one potential reason for the inefficient level of 

conservation technology investments, namely that consumers might suffer from myopia when 

purchasing energy-using durables. Conservation technology investments are typically 

characterized by a trade-off between higher upfront costs and reduced operation future costs. 

Indeed, the aim of this study is to discuss whether consumers are ‘capable’ of making optimal 

cost trade-offs by giving an appropriate weight on the savings in operation costs occurring at 

some point of time in the future and thus maintaining an optimal degree of investment in 

conservation technologies. We will apply this question particularly on automobile fuel 

economy. Our research question indeed is whether consumers undervalue the impact of fuel 

savings when purchasing vehicles. Our empirical study also aims at giving a measure to the 

possible undervaluation.  

One obvious reason for investigating whether such sub-optimization exists is its 

implications on the effectiveness of the environmental policy tools related to the automobile 

market. Indeed, most economists argue that gasoline taxes are the optimal instrument for 

correcting for the environmental externalities caused by gasoline combustion by vehicles. In 

addition to directing consumers towards purchasing vehicles with higher fuel economy, taxes 

also make consumers adjust their behavior in terms of vehicle miles (or kilometers) travelled 

and thus reduce gasoline use also on that margin. However, if consumers are short-sighted 

and thus do not fully account for the future gasoline costs when purchasing a vehicle, gasoline 

taxes will fail to secure an optimal level of fleet fuel economy. In this case fuel economy 
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standards, such as the CAFE standards on the US, or alternatively vehicle purchase taxes 

progressive with respect to fuel economy (such as in Finland) would be warranted. 

Furthermore, gasoline costs account for an important part of the consumption of Finnish 

households, and thus any sub optimization in the area might result in important welfare losses. 

The methods used in this study include a literature review as well as an empirical study of 

the Finnish automobile market. The aim of the first, theoretical part of the literature review is 

to shed light on how to incorporate consumer myopia into economic models of consumer 

choices over time and answer the question of whether sub-optimal consumer choices are a 

plausible explanation for the so-called ‘energy paradox’. The latter part of our literature 

review attempts to shed light on the existing literature on consumer choices of automobiles 

and fuel economy. The literature contains a host of studies either investigating the effect of 

gasoline price changes on fleet fuel economy, the willingness of consumers to pay for fuel 

economy or the optimality of fuel economy choices. Our main focus will be on discrete 

choice models, since they are able to parameterize consumer preferences when it comes to 

different vehicle characteristics. Some ‘reduced form’, market-level studies will be also 

discussed however to obtain a more complete picture of the existing research on the subject. 

The existing literature does not offer clear conclusions as to whether consumers are making 

optimal price-fuel cost trade-offs. A majority of the studies find that consumers do react to 

some extent to changes in gasoline prices, but might not fully respond to them in terms of 

automobile fuel economy choices. 

In the empirical part of this study we will employ discrete choice methods initially 

developed by Berry (1994) and Berry et al. (1995) for the automobile market and later 

employed by e.g. Allcott et al. (2011) and Sawhill (2008). We follow quite closely a 

specification presented by the Allcott et al. (2011) paper, but employ a dataset on the Finnish 

automobile market. Our results indicate, similarly to the latter study, that consumers do not 

seem to take fully into account the lifetime fuel costs when purchasing a vehicle. The results 

are also in line with a survey conducted by the Finnish Transport Safety Agency Trafi (2012b) 

which found that 24% of the respondents do not take fuel consumption into account at all 

when purchasing a vehicle. However, the ‘reduced form’ methods employed e.g. by Busse et 

al. (2012) tend to come to the opposite conclusion of consumers being perfectly capable of 

making optimal cost trade-offs. Furthermore, our model does suffer from some robustness 

issues due to the small amount of observations in our dataset as well as problems in the 
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identification of consumer preferences for fuel economy and other vehicle characteristics. 

More research will be needed to obtain a clearer picture of consumer valuations of fuel 

economy and to make correct policy recommendations. Nevertheless, our study does 

contribute to an area of economic research where no clear consensus yet exists and also 

extends the discussion to the Finnish automobile market. 

We will begin with a brief discussion of the models and explanations the economic 

literature has thus far given for the potentially suboptimal consumer behavior. In Section 3 we 

will turn to the existing literature on consumer vehicle choices. We will go through in length 

the methods used and the results obtained thus far by studies on consumer valuations of fuel 

economy and the optimality of their fuel economy choices. Section 4 will discuss our own 

discrete choice model of the Finnish vehicle market.  

2 Behavioral barriers to conservation technology diffusion 

For decades there have been doubts about the efficiency of the market for consumer 

conservation technology investments, which is characterized by consumers trading off the 

upfront capital costs to future operating costs (Greene, 2010). This apparent market 

inefficiency is what Jaffe et al. (1994) refer to as the energy paradox: conservation 

technologies aren’t adopted by consumers as fast as would seem rational and cost-efficient. 

Howarth et al. (1993) call this the ‘efficiency gap’ and define it as the differential between the 

actual level of energy efficiency and the level that could be obtained ideally at prevailing 

prices were conservation technologies more widely adopted. The authors cite a study by the 

US National Academy of Sciences, which found that energy use –related carbon emissions 

could be reduced by 37% if energy-efficient technologies were adopted to the point that 

would seem optimal under current economic conditions. Another way to express the apparent 

existence of the energy paradox is through the implicit discount rates that would be consistent 

with the actual conservation technology investment decisions made by consumers. In a 

seminal work Hausman (1979) estimated average discount rate consistent with consumer 

purchases of air conditioners to be 25%. He also found that the discount rate used correlated 

heavily with the consumer income; according to his findings, the discount rate falls from 39% 

for households with income under $10.000 to 8.9% for household with income between 

$25.000-$35.000.  Ruderman et al. (1987) on the other hand estimated a discount rate 
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between 20 and 800% per year. Thus it would seem than consumers are passing up 

investment opportunities that would yield much more that standard financial instruments. 

(Howarth et al., 1995) 

The choice of technology naturally affects the level of demand for energy – the existence 

of an energy paradox would make the demand for energy sub-optimally high. Then the 

environmental and energy policy issues would be two-fold: first, the energy prices should be 

corrected to reflect the full social cost of energy use due to the externalities of energy use and 

the fact that the environment is a public good. Second, market and behavioral barriers to 

technology adoption should be removed to decrease the demand to the socially optimal level. 

(Howarth et al. 1993). However, at least the theoretical literature is quite inconclusive as to 

whether such an energy paradox exists and whether it is a result of a market failure and thus 

requires policy intervention. Several markets failure and non-market failure explanations exist 

for the seemingly slow rates of investment in the literature, of which Thollander et al. (2010) 

and Jaffe et al. (1994) among others provide a classification. Market failure explanations 

include e.g. imperfect information, if the market fails to provide enough information for 

consumers to make sophisticated decisions due to its public good nature, and thus consumers 

either do not know about the existence of the technology or do not have sufficient knowledge 

of its attributes to assess its efficiency (Jaffe et al., 1994). Non-market failure explanations on 

the other hand usually assume some costs faced by the consumer when adopting a certain 

technology that are not taken into account in simple calculations. For example, the adoption 

of a new technology can be costly to a consumer because of e.g. having to learn how to use it 

or who are the reliable suppliers. 

Our main area of interest, however, will be to see whether some ‘market barriers’ related 

to consumer decision-making, or ‘behavioral barriers’, exist to make conservation technology 

investment decisions suboptimal. Conservation technology investments are typically 

characterized by trading-off higher upfront costs for reduced operation costs is the future. 

Indeed, the question is whether consumers are ‘capable’ of making optimal cost trade-offs and 

thus maintaining an optimal degree of investment in conservation technologies. The 

discussion in the literature regarding the rationality of consumers when making energy 

efficiency investments has gone on for decades. Most of the economic literature discussing 

consumer irrationality and energy efficiency investments do not forgo the concept of utility 

maximizing behavior altogether, but rather concentrates on finding characteristics of actual 
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decision-making that can be integrated in formal models of investments in conservation 

technology. The purpose of this chapter is to look more closely into some of the possible 

caveats.  

2.1 Time inconsistency in decision-making 

As noted, an important aspect of decision-making over conservation technology 

investments is how consumers assess upfront capital costs to be paid now versus operating 

costs to be paid in the future. The question is whether consumers give too much weight to the 

present at the cost of future. This tendency would naturally undermine investments in 

conservation technologies, which are characterized by high upfront and lower user costs. As 

noted above, various studies have found consumers using higher discount rates to assess 

future vs. present costs than can be justified by the opportunity cost of funds acquired from 

the market. Indeed, what seem to be irrationally high discount rates used could actually result 

from individuals emphasizing current savings at the cost of future ones more than would 

seems rational by economic theory.  

O’Donoghue et al. (2001) define time inconsistency as a person’s preference for well-

being at a certain point in time relative to a later point in time increasing when the earlier 

point in time gets closer. The relative preference between the two points does not stay 

constant over time, but changes as time passes. Thus people seek immediate gratification and 

procrastinate. The model of “hyperbolic discounting” (e.g. Mahajan et al., 2010 and Shui at al. 

2005) is an often-used formal characterization of present-biased behavior. Instead of the 

discount factor δt+s used in time consistent discounting when comparing utility acquired in 

two separate points in time, in the hyperbolic discounting model all future utilities are 

discounted with the factor βδt+s. This means that when comparing two points of time in the 

future, only the standard discount factor δ matters, but when comparing the present time and 

any point in the future, an extra weight is given to the present time that cannot be explained 

by time-consistent discounting. Then a person’s intertemporal preferences Ut can be 

expressed as: 

�����, ����, … , �	
 ≝ 	
��� + 	�	 � 
���
	

�����
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where for β < 1 the person has a preference for the present over any future point in time. 

(O’Donoghue et al., 2001). 

As Mahajan (2010) notes, the hyperbolic discounting model can be utilized to explain 

phenomena such as addiction, as well as under-investment in apparent high-return choices, 

such as fuel economy. Indeed, giving too much weight to the present when comparing future 

costs of use against current upfront costs, i.e. not being willing to spend 1 euro more upfront 

to save exactly 1 discounted future euro, would certainly result in a consumer not investing 

enough in fuel economy. Shui et al. (2005) study the time consistency of consumer behavior 

when it comes to the credit card market, and determine an estimation of β = 0.80 for the 

present-bias factor. The authors also identify two types of present-biasedness, namely 

sophisticated and naïve. The sophisticated type is characterized by the knowledge of own 

present-biasedness and ability to predict own future behavior. The naïve type simply has 

irrational expectations of e.g. the future usage of the good, i.e. believes that will have no self-

control problems related to behaving as would seem rational at present. 

2.2 Imperfect expectations and bounded rationality 

As Allcott (2010) puts it, consumer choices depend not only on preferences, but also on 

beliefs or expectations about the way the final outcome of a decision depends on the choices 

made. In the context of conservation technologies such as fuel economy, this would mean that 

consumer’s beliefs of future user costs of different automobiles affect their final vehicle 

choice. Allcott (2010) questions the ability of a consumer to understand how each product 

attribute affects final utility and states that these “imperfect beliefs” can be caused by 

imperfect information about product attributes, biased expectations over future usage or 

bounded computational capacity.  

The concept of bounded rationality often comes up in the literature discussing consumer 

conservation technology investment decisions. Sandstad et al. (1993) note that the problem 

with economic models that consider consumers as rational decision-makers used to 

investigate conservation technology investments usually assume that consumers are able to 

solve highly complex optimization problems to find out the lowest cost or highest return 

investment options. Simon (1986) would rather describe consumer behavior in terms 

of ’bounded rationality”; consumers make decisions subject to attention, resource and 

information processing ability constraints. In addition to bounded computational capacity, 
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bounded rationality can present itself also in the context of fast technological development, 

where decision-makers have to rely on partial information when making energy efficiency- 

related investments. The assumption of bounded rationality then increases the appeal of e.g. 

appliance standards as a policy tool, since even with accurate labeling consumers would still 

be unable to make the necessary calculations to make energy efficient investment decisions  

(Sanstad et al. 1993). 

When it comes to consumer valuation of fuel economy, the notion of less than rational 

decision-making and the difficulty for consumer to evaluate own future behavior has been 

documented by interview studies. Turrentine et al. (2007) conducted structured interviews of 

dozens of households only to find out that none of them “analyzed in a systematic way” their 

vehicle choices or gasoline expenditures. Furthermore, Larrick et al. (2008) realized that 

speaking of fuel economy in terms of miles per gallon, as is customary in the United States 

causes a systematic error in consumer’s comparisons of fuel economy between vehicles.  

Howarth et al. (1993) on the other hand illustrate the effects of imperfect beliefs about 

energy efficiency on the level of energy efficiency achieved by the market equilibrium. In 

their model the imperfections in expectation formation can result in a market outcome where 

appliances with ‘too high’ energy intensity are produced and purchased. The model assumes 

that a consumer can choose from a variety of energy-using appliances, each using an amount 

� of energy. Then if the price of energy is � and the price of the appliance is �, the total cost 

of buying and using the appliance is �� + �. However, consumers might not have exact 

knowledge of the energy efficiency �  of each appliance, in which case they form an 

expectation �∗ of it based on publicly available information and personal experience. Then 

consumers choose the device that minimizes ex ante ownership cost � + ��∗. In addition, a 

large number of producers are assumed to exist with cost function ���
, where �’��
 < 	0 and 

�’’��
 > 	0. In the market equilibrium, it must be that � = ���
, but since � is an endogenous 

variable, we must have some additional equilibrium condition to define it. Indeed, an 

equilibrium in the case of perfect information must minimize �� + �, i.e. �’��
 = −�. The 

case of imperfect information, however, gives a quite different market equilibrium. If we 

assume that the expectation �∗	depends on the actual energy intensity �, i.e. �∗ = ���
, then 

the consumer minimizes ���
 + ����
, which gives us �’��
 = −��’��
.  
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Howarth et al. (1993) illustrate the implications of such a model with an example. If we 

assume that ���
 = �� + 1
/2 , ���
 = 1/�  and � = 2 , then the perfect information 

equilibrium gives us an energy intensity of � = �1/2
�/". In the imperfect information case 

on the other hand the energy intensity equals � = 1, which is higher than in the perfect 

information equilibrium, even though �∗ = ��1
 = 1 as well. The example illustrates that 

even though the expected energy intensity might actually coincide with the expected intensity 

in the imperfect information case, the outcome may not be optimal (higher energy intensity 

compared to the perfect information case) due to the manner of expectation formation of 

consumers. The point is thus that consumer expectation formation affects the outcome of the 

market for energy-using appliances even though imperfect information wouldn’t be a problem 

per se, if information is not provided for free in the first place. Naturally, a consumer would 

be better off (pay lower user costs) with an energy intensity equaling � = �1/2
�/", and thus 

would be willing to pay for the accurate information not provided freely in the market place, 

so that the manner of expectation formation wouldn’t be an issue. But if the cost of the 

information at the market exceeds the gain in utility, the information goes unpurchased and 

the market outcome remains suboptimal in energy efficiency terms. 

Other caveats to rational decision-making in energy efficiency investments that have been 

mentioned in the literature are inertia and loss aversion. Inertia refers to the tendency of 

individuals to keep to established routines and try to reduce uncertainty and change in their 

living environments. They thus tend to ignore problems, such as energy inefficiency, if it 

requires from them a change in routines. One result of inertia is the fact that environmental 

decisions often begin from small changes in behavior that lead to bigger ones. (Thollander et 

al. 2010). Delucchi (2007) describes loss aversion as the tendency of consumers to rather 

avoid a loss of a certain amount of money that gain the same amount of money. Thus if the 

returns of an energy efficiency investment are highly uncertain, this tendency will result in a 

lower level of investment since consumers will be “conservative” in estimating the costs and 

benefits of the investment.  

Above we discussed some theoretical explanations for the empirically observed 

paradoxically high implicit discount rates when it comes to conservation technology 

investment related to consumer behavior. Of course, one could argue that the high implicit 

discount rates do actually reflect optimal behavior by consumers, meaning that the discount 

rates that consumers apply to conservation technology investments should indeed be higher 
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compared to other investments due to higher uncertainty related to the returns of the 

investment– then no market failure would be taking place. Sutherland (1991), for instance, 

explain the high implicit discount rates with the Capital Asset Pricing model. However, 

Howarth et al. (1993) state that it still seems that while the returns on energy efficiency 

investments are uncertain for consumers, a rational person would not pass up an investment 

yielding an expected return of 20-800% when alternative investments are expected to yield 

considerably less. 

Thus although higher than expected discount rates for energy efficiency investments seem 

like a convenient explanation for why seemingly cost efficient investments aren’t carried 

through by consumers, it is doubtful whether it would be rational to apply such high rates to 

conservation technology investments. Indeed, behind the empirically observed high discount 

rates there may be behavioral factors at play biasing consumer decision-making over time. In 

the next section we will turn to discussing the empirical question of which relative weight do 

consumers actually give to the future gasoline costs of a vehicle purchased at present time. 

Answering this empirical question would shed light on the question of whether an energy 

paradox really exists and whether it could be caused by consumers not trading-off ‘optimally’ 

the upfront and user costs, as discussed in this section.  

3 Modeling vehicle choices and fuel economy – A literature review 

After having shed light on the theoretical discussion surrounding the role of consumer 

behavior in conservation technology diffusion, we turn to discussing one area of 

implementation of the theory, namely automobile fuel economy. Our main question of interest 

is whether consumers are optimizing their vehicle choices when it comes to fuel economy, 

and in this section we will study the literature on consumer choice models of the automobile 

market with the aim of answering this question. Discrete choice models especially offer a 

good framework for studying the automobile market and the automobile choices, since they 

can offer us specific estimates of consumer demand parameters and describe well the 

automobile market, which is characterized by consumers choosing between highly 

differentiated products.  

Some studies can offer us direct insight on the question of how consumers weigh upfront 

capital costs (vehicle price) and future discounted operating costs (mainly gasoline costs). In 
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addition, we will be interested in discussing studies that answer questions such as whether and 

how consumers respond to changes in gasoline prices, since even though they do not offer 

direct answers on its optimality, they still shed light on consumer behavior when it comes to 

choosing vehicles with different fuel economy ratings depending on the lifetime operating 

costs. For instance, many studies are inspired by the question of how demand for fuel 

economy changes when gasoline prices change. 

In addition to demand models, some reduced-form, aggregate level studies are shortly 

discussed in comparison to discrete choice models. An example of an alternative approach to 

estimating the effect of gasoline prices to vehicle fuel economy is simply regressing average 

fuel economy with respect to gasoline prices and other variables over time (e.g. Li et al., 

2009). While these studies allow us to form a more complete picture of the current knowledge 

of the effect of gas prices on the vehicle market, they do not separate the influence of 

consumer and producer behavior on the market outcome and thus do not allow us to 

determine the required consumer preference parameters. Indeed, producer responses to 

gasoline prices can distort the observed market response to e.g. changes in gasoline prices. 

McManus (2005), for instance seeks to shed light on the role of consumer direct incentives in 

why apparently so little change in low fuel economy vehicle market shares has taken place 

despite the large changes in fuel prices. 

The section will serve two purposes. The first one is to draw conclusions from past 

literature of the way consumers behave when purchasing vehicles as well as how the vehicle 

market reacts to changes in gasoline prices. Secondly and in addition to a literature review, 

this section will equally serve as a preparation for our own model introduced in Section 4, as 

the methods discussed here will be applied in that section. Thus this section serves to justify 

the choices made later on in our own model. In the following section we will introduce 

discrete choice models. Introducing the basic characteristics of the discrete choice models 

enables us to critically study the literature on the subject and to understand the model 

specification choices in past literature. Then we will move on to discussing the concrete 

applications to consumer choices of fuel economy. 

3.1 Introduction to discrete choice models of automobile demand 

Discrete choice models are applied when studying demand and market outcomes in cases 

where the market to be studied is characterized by differentiated goods instead of a 



14 

 

continuous set of goods (Berry, 1994; Helfand et al., 2009). As Silberhorn et al. (2010) put it, 

a “utility-based choice on the relative attractiveness of competing alternatives from a set of 

mutually exclusive alternatives is called a discrete choice situation”. Whereas ‘traditional’ 

consumer choice analysis, where consumers make their choice from a continuum of 

alternatives goods, allows one to plausibly assume all the consumers to be using the same 

behavioral rule, qualitative, or discrete, alternatives require one to assume a distribution 

behavioral rules being used by consumers (McFadden, 1974). This is exactly what the 

discrete choice models do by incorporating the random utility hypothesis. The purpose of this 

chapter is to act as a short introduction to the characteristics of discrete choice models, which 

then allows us to later discuss their implementation to automobile fuel economy. 

3.1.1 Discrete choice and random utility 

As stated in the definition of discrete choice situations given by Silberhorn et al. (2010), 

utility-maximization is the foundation of all discrete choice models. To be exact, embedded in 

the model is a behavioral assumption referred to as the random utility maximization (RUM) 

model. The fundamental principle of random utility maximization is the assumption that a 

stochastic component enters the consumer utility function directly, and not merely to the 

aggregate demand function. This component is usually interpreted as representing the 

characteristics of either the good or the consumer affecting utility but unobserved by the 

econometrist (Brown et al., 1989).  

The problem in the initial empirical work on demand modeling was the fact that it was 

based on the assumption of a market consisting of only one type of consumer or a 

‘representative’ agent. When empirical observations didn’t fit these models of a utility-

maximizing agent, as was often the case, the model offered few explanations besides 

problems in data gathering (McFadden, 2001). The attractiveness of random utility discrete 

choice models when applied to the estimation of consumer choice comes from the fact that 

while still relying on the assumption of utility-maximizing behavior, they allow for a random 

component across individuals that is often witnessed in choice data (Brown et al., 1989). They 

thus not only offer a theory of the structure of mean behavior, but also give insight to the 

distribution of individual behavior around this mean (McFadden, 2001). The point of the 

random utility specification is thus to take into account the variances across individuals in 

preferences and choices to allow for less restrictive demand models. 
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The derivation of the discrete choice setup from the random utility assumption has been 

described by McFadden (1974) in his seminal work and repeated more recently by Train 

(2003) and Phaneuf et al. (2009), for instance. The utility is described as: 

� = #�$, %
 + 	&�$, %
, 

where the component &  captures the part which the individual knows with certainty and 

affects his/her choice, but which the econometrist cannot observe. # on the other hand refers 

to the ‘representative’, or deterministic part of the utility function. The term % represents an 

alternative belonging to a universe of objects of choice ' , and the term $  represents the 

characteristics of the consumer affecting his/her utility.  

Now the random component ε)s, x,- for an alternative j = 1,…,J  has some distribution 

across consumers, and we denote the joint cumulative distribution function of the random 

component over all the alternatives by F)ε�	, … , ε1- . Thus 2)&�	, … , &3-  defines the joint 

probability that the stochastic utility components & for each alternative %, are below & some 

value &, . Now we can use this distributional assumption to derive the probability P5  of a 

random consumer choosing an alternative x5. A consumer chooses x5 if it maximizes his/her 

utility, i.e. if V5 + ε5	is	greater	than		V? + ε?	for	any	j  =  1 ,…, J , given that ε�	, … , ε1  are 

distributed according to F. We thus want to derive the probability that 

&)$, %,- ≤ ε�s, x5
 + #D�$, %
 − #, 	�$, %
	�EF	GHH	I = 1,… , J 

Given that the utility maximization condition holds for any given value of ε5 (denoted by ε 
below), one obtains  

KD = Pr)�D > �,- = L 2D)ε + #D − #�, … , ε + #D − #3-M&	�EF	GHH	I = 1,… , J
N

O�PN
 

where 2D is the derivative of the joint cumulative distribution function with respect to its Qth 

argument. See Appendix A for a more specific presentation of the derivation of the choice 

probabilities from the random utility specification. We thus have an expression for KD which 

depends among other things on the shape of the joint cumulative distribution. (The choice 

probability multiplied by market size naturally gives us the market share of a given 

alternative.) Indeed, the next step in finding out the probability of some alternative x5 being 
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chosen is defining the joint cumulative distribution function 2. As we will soon find out, 

significant restrictions have to be placed on the characteristics of the distribution if one wants 

to be able to solve analytically the probabilities KD. 

3.1.2 The distribution of the error component 

The most typical distributional assumptions are multinomial logit, nested logit as well as 

mixed logit or random coefficients. Below we will discuss the advantages and limitations of 

each of them. Our discussion of multinomial logit will mostly serve to illustrate the problems 

of too simplistic assumptions on the distribution of the error component, while nested logit 

and random coefficients are more relevant to empirical work applied to automobile fuel 

economy. 

The foundation of the simple (multinomial) logit model is the Independence of Irrelevant 

Alternatives assumption (IIA) first introduced by Luce (1959). McFadden (1974) states the 

assumption in terms of the probabilities K  that a consumer drawn randomly chooses a 

particular alternative (%, R) from a set of alternatives (S) as 

K�R|$, U%, RV

K�%|$, U%, RV
 =

K�R|$, S

K�%|$, S
. 

Thus the IIA assumption stipulates that the probability of % being chosen relative to R is 

the same regardless of whether there are other options in the choice set or not. Indeed, the 

binary choice between % and R is independent of other ‘irrelevant’ alternatives. While the IIA 

assumption is thus quite restrictive, its advantage is the fact that it allows the econometrist to 

derive the choice probabilities mentioned in the previous section in the analytical from. See 

Appendix B for an illustration on how to obtain the choice probabilities of a given alternative 

given the IIA assumption. Allcott et al. (2010) illustrate the assumption with an example from 

the automobile market: if the price of one SUV model increases, assuming IIA would mean 

that the substitution to e.g. a used compact car would be the same regardless of whether a 

used SUV is also available as an alternative. The example shows that a model that relies on 

the IIA assumption cannot take into account the fact that some alternatives in the alternative 

set may be close substitutes to one another (e.g. a new and a used SUV), while others are not 

(an SUV and a compact car, for instance). 
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Train (2003) notes that while the IIA assumption is too restrictive for many choice 

situations, it does have its advantages in others.  The stochastic part of the utility function 

depends on the model specification as it represents the part of a consumer’s utility not 

observed or accounted for by the econometrist. Thus if the choice model is well specified and 

the stochastic component only contains white noise, the IIA assumption is quite realistic. 

Train’s argument however loses its appeal in many empirical applications, since taking into 

account all the characteristics of the alternatives affecting consumer utility is usually 

impossible, especially when it comes to the automobile market where factors affecting vehicle 

choice are numerous and sometimes complicated to quantify.  

The multinomial logit specification is quite rare in applied work especially when it comes 

to the automobile market due to the restrictiveness of the IIA assumption. Nested logit is often 

employed in the literature, since it relaxes the IIA assumption but maintains most of the 

computational simplicity of the simple logit. Indeed, the nested logit choice probabilities can 

also be given a closed form (as we will illustrate in Section 4). While multinomial logit 

assumes the error terms to be distributed i.i.d. extreme value type I, which implies that they 

cannot be correlated between alternatives, the nested logit model allows for correlation 

between the error terms of alternatives inside predefined groups of alternatives. Indeed, the 

alternatives are divided into nests consisting of similar alternatives, and the IIA assumption 

holds between nests but not inside them. (Heiss, 2002). Nested logit thus allows the error 

terms to have an alternative specific, but unobserved, information content that is relevant to 

the final choice. For close substitutes, this information content may be similar and thus the 

error terms can be correlated (Silberhorn et al., 2010). In essence, when using nested logit the 

econometrist defines the distributional characteristics (and thus substitution patterns) by 

choosing the nesting structure. 

When it comes to nested logit one challenge is thus determining a nesting structure that 

captures the as closely as possible the true substitution patterns between vehicles. In the 

automobile market literature, a typical nesting structure divides vehicles into classes such that 

the lowest level choice then concerns the vehicle (typically mark and model combination). 

Allcott (2009, 2010), for instance, divide vehicles into two-seaters, sedans and trucks, with 

size-related subcategories for the first two and intended use-related categories for the last one. 

Gramlich (2009) employs tree-level nests, each level being a more specific vehicle class. 

Mohammadian et al. (2003) define six high level classes, whereas the second choice stage 
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contains four vintage classes. Goldberg (1998) on the other hand uses a quite simplistic 

nesting structure where the choices at each level from highest to lowest are ‘Buy a car”, “Buy 

a new car”, “Vehicle class” and “Domestic or Foreign”. This choice is justified by the author 

first of all with the fact that it reduces the computational burden of the model, and secondly 

with the fact that the vehicles belonging to each class on the third level appeared to be very 

similar in characteristics, and particularly, in fuel economy. Indeed, survey data allows West 

(2004) and Goldberg (1995, 1998) to set to first level choice to concern the amount of 

vehicles purchased and the choice of whether or not to purchase a vehicle, respectively. 

Allcott et al. (2009) test alternative nesting structures, including age, continent where the 

manufacturer is based as well as whether or not a vehicle can be classified as luxury. They 

find that in their model, the alternative nesting structures have very little impact on the 

estimated coefficient for lifetime fuel costs, and thus conclude that while their baseline 

nesting structure may fail to capture some possible substitution patterns, the uncaptured 

patterns are not likely to crucially change the estimate of the response to gas prices.  

As an alternative to nested logit, the random coefficients method (or mixed logit) is also 

often used in the literature, since it makes even less restrictive assumptions on the distribution 

of consumer preferences. It assumes, as the name implies, that the coefficients entering the 

consumer utility function are not deterministic, but stochastic in nature. It thus allows for 

random variation in tastes with respect to the characteristics of the alternative as well as in 

how changes in consumer characteristics affect choices (Helfand et al., 2009). The problem 

with the random coefficients approach is that it requires computing the integral that maps the 

utility specification into choice probabilities (and thus market shares) from the previous 

section via simulation (Berry et al., 1995). The clear advantage of the random coefficients 

specification however is that the substitution patterns between vehicles become more realistic 

when the valuation of vehicle characteristics is allowed to vary across consumers. For 

instance, the random coefficients approach takes into account the fact that a consumer that is 

currently buying a given vehicle is likely to have greater-than-average preferences for the 

characteristics of that vehicle, and thus would also substitute to alternatives that have these 

same characteristics (Berry, 1994). 

The main difference between the three approaches is thus how the model captures the 

differences in preferences across consumers. While the variation in consumer tastes only 

enters multinomial logit models through the additive error term ε and nested logit allows for 
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random taste shocks only through the dummy variables that indicate membership to a nest 

predefined by the econometrist, the random coefficients approach allows for random taste 

shocks over all the measures of product characteristics (Berry, 1994; Allcott et al., 2009). 

Thus when estimating the role of fuel economy in consumer vehicle choices, one argument 

that supports the use of random coefficients is the fact that preferences for fuel economy are 

likely to vary quite a lot inside the population: while some green-minded consumers might 

give quite a lot of weight on fuel economy, many consumers are likely to give more weight to 

e.g. safety (and thus size). This is exactly what Sawhill (2008) finds in his random 

coefficients model. Furthermore, Berry et al. (2004) compare survey data containing second 

choices of vehicles (an indication of substitution patterns) to estimated models of vehicle 

demand and find that the random coefficients specification best reproduces the substitution 

patterns indicated by the real life choice data.  

Even though random coefficients better captures the substitution effects between vehicles, 

the use of nested logit may in some cases be reasonable, as it avoids to some extent the 

pitfalls of simple logit, but still keeps the estimation of the model reasonably simple. 

Furthermore, it is possible to give the estimated equation an analytical form for the purposes 

of instrumental variables estimation, and since the analytical form can be solved without 

simulation, one avoids the impact of the choice of start values and the solution algorithm in 

the results which plague random coefficient models. As Knittel et al. (2008) note, the problem 

is that depending on the choice of start values and the optimization algorithm, the model may 

converge to a number of local extrema, which then has an impact on the final parameter 

estimates.  

3.1.3 Utility specification 

In addition to the distribution of the error component of utility and thus consumer 

preferences, the choice probabilities naturally depend on the actual functional specification of 

utility. Since Berry (1994) is the seminal model that acts as the groundwork for most recent 

models in the literature, we will begin by briefly introducing his model as the baseline 

specification. In a later section on modeling assumptions, the modifications to this baseline 

specification are discussed. Berry (1994) specifies the utility of consumer Q from product I as 

�D, = %,� − X�, + Y, + &D, 
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where %, and �, refer to the observed characteristics and price of the good, respectively. Y, on 

the other hand refers to the unobserved but product specific part of utility whereas ZD, refers to 

the consumer specific error component. As Berry (1994) puts it, Y, can be thought of as the 

mean valuation of the unobserved product characteristics among consumers, whereas ZD, is 

the variation across consumers around that mean. X and � are parameters to be estimated. Due 

to the existence of an alternative (or vehicle) specific error component, the price becomes 

endogenous – a problem we will discuss more in detail in the next section. 

As stated previously, when it comes to simple logit, &D, is assumed to be i.i.d. extreme 

value type I. In nested logit the econometrist divides the goods into nests so that corr(&D, , &D[) 

equals zero for goods in separate nests and is nonnegative for those inside the same nest (e.g. 

Allcott et al., 2010; Goldberg, 1998; West, 2004). If random coefficients is used, as do Berry 

(1994), Berry et al (1995), Bento et al. (2009) and Sawhill (2008) among others, the 

parameter � is defined as being consumer specific, such that for characteristic F: 

�̅D[ = �[ + ][ D̂_ 

In this case the utility specification can be rewritten as 

�D, = %,� − X�, + Y, + `D, , 

where 

`D, = �%,_
_

][ D̂_ + &D,. 

Remember that in the RUM model the expression for utility contained, as the utility 

expression stated above, a mean utility component specific to each alternative as well as an 

individual and alternative specific random component. We can thus use this utility 

specification, as described in the previous section and given a distributional assumption for 

the error term, to formulate an expression for the market share of a particular vehicle given its 

utility. Let’s denote the mean utility from the alternative	I as: 

#, = %,� − X�, + Y, 
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Now the probability of a random consumer choosing I	is then a function of this mean 

utility and all other mean utilities (vector a): 

b,�a
 = L 2D)ε + #D − #�, … , ε + #D − #3-M&,
N

O�PN
 

This expression for the market shares illustrates a problem of the simple logit assumption 

as stated by Berry (1994): if only the mean utility levels #, differentiate the alternatives, since 

the &’s are identically distributed for all alternatives and thus the mean utility levels then 

determine market shares, the assumption implies that two alternatives with equal market 

shares will have the same substitution patterns (and e.g. cross-price elasticities) with any 

given third product.  

3.2 Applying discrete choice models to vehicle choice and fuel economy 

Now that we understand the logic behind discrete choice models of vehicle demand, we 

are able to look more closely into the applications when it comes to the automobile market 

and especially consumer choices of vehicle fuel economy. The purpose of this chapter is to 

introduce the existing literature on the subject in terms of the problems faced when estimating 

demand in with discrete choice models and the solutions found in the literature, as well as 

discuss the different modeling assumptions employed. Afterwards, we will go through the 

main results concerning consumer choices of fuel economy. 

3.2.1 The endogeneity of price 

An essential problem when modeling demand especially in markets such as the 

automobile market is the one of omitted variables. Omitted variables are variables affecting 

choices and thus demand that are unaccounted for by the econometrist because they may be 

unobservable or difficult to quantify. Vehicle characteristics such as style, for instance, may 

have an effect on demand, but are hard to quantify for the purposes of econometrical models. 

Also, the amount of factors affecting vehicle choice may be so large as to make it impossible 

to account separately for each one of them. The problem that results from the presence of 

unobserved product characteristics is the endogeneity of price, meaning that the unobserved 

characteristics entering the error term and the price of a good are likely to be correlated. In 

discrete choice models such as the one described above, price endogeneity results from the 
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inclusion of a vehicle specific error component – the component is likely to include vehicle 

characteristics that are correlated with the price of the vehicle. Failing to account for this fact 

in a model can give highly misleading estimation results. (Berry, 1994; Berry et al., 1995 etc.) 

This problem is not particular to discrete choice models of demand – actually, it is present 

also in homogenous goods demand models. The standard solution to this problem is the 

instrumental variables method. However, the IV method cannot be directly applied to discrete 

choice models due to the fact that the unobservables enter the market share equation in a 

nonlinear fashion (see the definition of choice probabilities in the previous section). In his 

seminal work Berry (1994) solved this problem by inverting the market share equation such 

that the unobservables would actually be linear in the dependent variable. The specification 

first defined by Berry has become a standard practice in discrete choice models applied to 

automobile demand. To illustrate it, let’s return to the market share equation defined in the 

previous section and denote the observed market share of product j by $, and the vector of 

market shares by c. Now for the true values of the market shares c and the vector of mean 

utility levels a, it holds exactly that:  

$, = b,�a
	�EF	GHH	I = 1, … , d 

Now the error term belonging to # is clearly nonlinear in $,. Berry’s (1994) insight is that 

the above function can be inverted such that the aggregate error term Y, included in product 

mean utility 
, will enter in a linear fashion in the equation to be estimated: 

a = bP��c
 

The author establishes the existence of a unique a�c
 that satisfies c = b�a�c

 under weak 

regularity conditions. The implication is that the observed market shares $, together with a 

distributional assumption of &D, uniquely determine the mean utility levels for each good. We 

can thus express the mean utility for good I as 

#,�c
 = %,� − X�, + Y, . 

The above equation can now be employed as estimation equation. As we can see, Y, now 

enters in a linear manner the equation to be estimated. The dependent variable #,�c
 is a 

transformation of the observed market share. As Berry (1994) notes, this poses no problem for 
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the use of instrumental variables method as in that sense it is no different from using e.g. a 

logarithmic transformation of the market shares as the dependent variable. The functional 

form of #,�c
 depends through b,�a
 on the distribution of the consumer specific error term. 

Thus the computational issues related to solving the exact formulation of the dependent 

variable depend equally on the choice of distribution of the consumer specific error term. If 

one assumes an i.d.d. extreme value type I distribution, for instance, the computational burden 

is quite light. To be able to illustrate in a simple manner Berry’s (1994) point, we assumed 

above that the distribution is known exactly and thus contains no extra parameters to be 

estimated. This means that we assume that the distribution of consumer characteristics 

affecting consumer choices is known, but this assumption can be relaxed. 

Even though the inversion method described above has become somewhat of a staple for 

the discrete choice models of the automobile market, the actual instruments used in applied 

work vary. As Sawhill (2008) states, considering supply side price formation gives rise to two 

approaches to instrumenting price. Namely, as a vehicle price consist of the marginal cost of 

production as well as a mark-up, one can use shifters of either component as instruments. 

Berry et al. (1995) as well as Sawhill (2008) use the latter. They employ the fact that in the 

case of oligopoly markets, the availability of close substitutes lowers the mark-up and thus 

reduces prices. 

Allcott et al. (2010, 2009) on the other hand use the expected lifetime fuel cost when the 

vehicle was new as an instrument. They actually rearrange the equation such that the vehicle 

market share becomes an explanatory variable and price becomes the dependent variable, and 

thus instrument market share instead of price. The rationale behind using vehicle expected 

lifetime fuel cost when the vehicle was new acts as an instrument for market shares is the 

stylized fact that the market shares of vehicles with different fuel economy ratings vary with 

the prices of gasoline. Thus the expected lifetime fuel costs at the time the vehicle was 

produced acts as an instrument for market shares. The use of this instrument naturally 

assumes that a panel data set is used. However, as noted by Allcott et al. (2009), this 

instrument cannot be used for new vehicles, and thus they employ an instrument similar to the 

one used by Berry et al. (1995). Klier et al (2008) on the other hand do away with the problem 

of endogenous prices by assuming a model-year-specific intercept, which includes all 

characteristics of the vehicle and their coefficients, including vehicle price and its coefficient. 

The authors employ a data set comprising monthly vehicle sales, which allows them to 
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capture variation in sales in response to monthly changes in gasoline prices, but where vehicle 

characteristics remain constant for each model year. An aggregate level error term equally 

captures the effects of macroeconomic shocks. Using controls for these shocks can thus 

alleviate the simultaneity bias. For instance, household specific factor such as income are 

likely to be affected by the same macroeconomic shocks and thus can be used to control for 

this part of the aggregate component of the error term. (Goldberg, 1995). 

As noted previously, price is endogenous only if the error term contains an aggregate level 

component and is not household specific. Studies using sets of micro-level, consumer specific 

data, such as Goldberg (1995, 1998) and West (2004) assume away the vehicle-specific, 

aggregate error component, and thus includes only a vehicle and household-specific error 

term. It is thus typical for studies using micro-level data to assume away the price 

endogeneity issue.  

Berry et al. (1995) and Sawhill (2008) illustrate the effects of the simultaneity bias by 

estimating their vehicle choice models with both OLS and the instrumental variables method. 

Their papers essentially present two similar random coefficient models with the availability of 

substitutes acting as an instrument to account for the endogeneity of price. They both find that 

if the model were estimated without the assumption of endogenous prices by simply 

employing OLS, the price elasticity would be largely underestimated compared to what 

theory suggests for differentiated products markets. Allcott et al. (2009, 2010) show as well 

that failing to account for the simultaneity bias can give misleading estimates for the impact 

of fuel economy on vehicle choices. Namely, they find that if the correlation between market 

shares and fuel economy was not accounted for, their model would give highly downwards-

biased estimates of the coefficient for lifetime fuel costs. Furthermore, when not using the 

instrumental variables method, Allcott et al. (2010) obtain price elasticities having the wrong 

sign, which they state to be a typical symptom of the simultaneity bias. 

3.2.2 The endogeneity of fuel economy 

Another endogeneity issue plagues the discrete choice models of the automobile market 

trying to assess consumer valuation of fuel economy. This is the fact that due to the nature of 

the car design and manufacturing process, the fuel economy is likely to be correlated with 

some unobservable vehicle characteristics. For example, the fuel economy rating of a 

particular vehicle is very closely related to the size of the engine of the vehicle. Some of these 
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characteristics can be separately accounted for which eliminates the endogeneity issue, 

whereas some of them are hard to quantify and thus remain in the error term. More generally, 

product characteristics as well as price are choice variables for the producers, and are chosen 

given some observed and some unobserved qualities (Gramlich, 2009). For example, the 

brand value of a hybrid vehicle such as a Toyota Prius for green-minded consumers is 

correlated with the fuel economy rating of that vehicle, but the brand value is hard to quantify 

for the purposes of a discrete choice model.  

In seminal work on discrete choice models of the automobile market the orthogonality 

assumption (observed and unobserved vehicle characteristics uncorrelated) was quite 

common. Berry (1994) and Berry et al (1995), for instance, admit that their assumption of 

uncorrelated observed and unobserved product characteristics is quite strong and should be 

relaxed in future work. Gramlich (2009) argues that the parameter estimates obtained in 

studies not accounting for the endogeneity of fuel economy are biased downwards and thus 

falsely imply that consumers do not care about fuel economy. A typical approach to 

eliminating the endogeneity issue is to employ fixed effects if access to panel data is available, 

since controlling for all the possible vehicle characteristics correlated with fuel economy in a 

cross-section data set is challenging. Allcott et al. (2009, 2010), for instance, exploit model-

by-age fixed effects. They specify the model-specific error term from Berry (1994) as specific 

for model I, age G as well as point in time e such that Y,f� =	Y,f + g,f� , where Y,f captures 

the model-age fixed effects. As mentioned in the previous section, Klier et al. (2008) use a 

similar method, but instead of model-age fixed effects they employ model-year fixed effects.  

Gramlich (2009) employs a quite original method for controlling for the unobserved 

characteristics that could potentially be correlated with fuel economy. The author uses the 

natural logarithm of fuel economy Hh�i�j
 as a proxy to all variables affecting utility that 

might possibly be correlated with fuel economy. He employs the fact that fuel economy 

(MEHHGF$	��F	iQH�	 = 	jG$	�FQ��	/	i�j ) is likely to be negatively correlated with other 

vehicle characteristics contributing to vehicle utility. The negative correlation, according to 

the author, results from the fact that car manufacturers face a technology frontier that 

represents the trade-off between fuel economy and other quality. Manufacturers are then 

forced to place themselves in some point of the technology frontier, and thus the choice of 

fuel economy and other quality boils down to the simple choice of mpg. He specifies that this 

regularity between fuel economy and other characteristics takes place inside a vehicle sub 
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segment. This method saves the econometrist the effort of trying to control for all the possible 

characteristics of a vehicle that might be correlated with fuel economy, since due to the 

technology frontier assumption, all the observed and unobserved characteristics are included 

in the Hh�i�j
 explanatory variable. Thus the only vehicle characteristics explaining demand 

are price, dollars per mile, Hh�i�j
  inside a particular vehicle sub segment. One might 

however question the rationale of the use of ln(mpg) by the author to control for unobserved 

quality, since one could argue that not all unobserved quality is negatively correlated with 

fuel economy. Furthermore, the terms of the trade-off between fuel economy and other 

characteristics are likely to become better over time due to the advances in technology. 

Bento et al. (2010) and Bento et al. (2009) state that in addition to better modeling 

substitution patterns between vehicles, the random coefficients approach attenuates the 

problem of endogenous fuel economy. Indeed, the authors claim that if all consumers are 

assumed to have similar preferences for fuel economy and they actually do not, this portion of 

utility will be left in the error term. This would in turn make the error term correlated with 

fuel economy. Thus using the random coefficients approach, which allows for different fuel 

economy preferences between consumers, would help reduce the correlation between fuel 

economy and the error term. 

3.2.3 Modeling assumptions 

Previously discussed some of the most important pitfalls in estimating discrete choice 

models of the automobile market, namely the substitution patterns between vehicles, 

consumer heterogeneity and the endogeneity of price and fuel economy. In this section we 

will turn to discussing the modeling assumptions made in these studies and their usefulness. 

Some of them are specifically related to fuel economy while some are more general in nature.  

Some models incorporate the fact that vehicle miles travelled might also be adjusted when 

e.g. gasoline prices change. The models jointly estimate the continuous choice of vehicle-

miles-traveled and the discrete choice of vehicle. As noted by West (2002), the choices are 

highly interrelated, as same factors are likely to lie behind both choices. Furthermore, a 

gasoline tax, for instance, should impact consumer behavior on both margins, since 

consumers would start reconsidering their miles driven if gasoline prices rise substantially. 

Indeed, taking into account the changes in miles driven usually concerns papers in which the 

authors aim at clear conclusions on policy effects (e.g. Goldberg, 1998; West, 2002; Bento et 
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al., 2009). The typical framework to be used to model the choices of durable goods and 

demand for energy in the one introduced by Dubin and McFadden (1984) (e.g. West, 2002). 

West (2002) and Goldberg (1998) employ a two-step method for jointly estimating the 

discrete choice of vehicle and continuous choice of vehicle miles travelled which takes into 

account the fact that the two choices are correlated. Bento et al. (2009) on the other hand 

assume that, in addition to vehicle characteristics, vehicle miles travelled affects the utility 

from the vehicle. In their utility specification, user cost enters as price per mile times miles 

driven, where the miles driven variable is optimized as well. 

The models that only include a demand size discrete choice model are referred to as 

partial equilibrium models (e.g. West, 2004). As stated by West (2004), a partial equilibrium 

model assumes producer behavior to be constant such that they don’t alter their behavior e.g. 

in response to gasoline price changes. Often the assumptions on supply side are quite similar 

from study to study, the typical approach being an oligopoly differentiated products model 

where producers compete by setting prices. The producers are assumed to set prices to 

maximize profits given the prices set by other producers as well as the current policy, e.g. fuel 

economy constraints. (e.g. Bento et al., 2009; Goldberg, 1995 and 1998; Berry 1995). More 

sophisticated models of supply side behavior can often be found in studies with a special 

focus on the effects of policies on general welfare and supply side profits, e.g. Austin et al. 

2004. However, these studies tend to employ simplified demand side assumptions and often 

assume away the potential problem of consumers underweighting future fuel costs. 

As Berry (1994) notes, an outside good has to be incorporated in a model since otherwise 

the consumers would be forced to choose one good regardless of the overall level of prices 

and thus only the relative prices would matter (for the good chosen). The outside good 

basically captures the option of not choosing any of the vehicles included in the model. When 

using the inversion method by Berry (1994) described above, the outside good enters the 

equation to be estimated as the log of the market share of the outside good, as the author 

illustrates for the cases of simple and nested logit. One can of course attempt to estimate the 

size of the outside good from data, but a more common method used by e.g. Allcott et al. 

(2009, 2010) and Klier et al. (2008) is to add time dummies to the estimated equation, in 

which case one can dispose of the term altogether. What the outside good actually represents 

depends quite a lot on the model specification, e.g. whether new and old car markets are both 

included.  In the models that only include the new car market, the outside good often 
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comprises all used vehicles in addition to the option of e.g. using public transport. Goldberg 

(1995, 1998) takes into account the existence of the outside good (the option of not 

purchasing a vehicle at all) by incorporating as the first level of the nesting structure the 

choice of whether to purchase a vehicle. This allows the author to reach conclusions such that 

the vehicle characteristics included in her model do not affect the buy or not buy decision, but 

only the composition of the fleet of new vehicles.  

As stated above, some models, such as e.g. Klier et al. (2008) and Berry et al. (1995), 

include only the new vehicles market. One can argue that such an approach incorrectly 

models the substitution and scrappage effects taking place at the vehicle market as a result of 

changes in gasoline prices and policies. Taking into account the new vehicle, used vehicle and 

scrap markets is particularly important in studies discussing the effects of changes in gasoline 

prices to the vehicle fleet fuel economy. Otherwise one wouldn’t be able to capture the 

dynamic effects at play affecting the average fuel economy of new and used vehicles in the 

economy. Busse et al. (2010) do argue that when studying the effects of gasoline prices on the 

vehicle fleet, concentrating on new car sales is more justified, since the additions from the 

newly purchased vehicles to the vehicle fleet are the ones that make an environmental impact, 

not the used vehicle that simply switch owner. While this is true, one must remember that the 

scrappage of used vehicles has at least as substantial an environmental impact, since used 

vehicles are more likely to be gas-guzzlers. Thus being able to model how fast new, fuel 

efficient vehicles are replacing old ones in the vehicle fleet in important for drawing 

conclusions on the effects of gasoline prices on the vehicle fleet.  

Bento et al. (2009), for instance, model the used car market with a dynamic model where 

the total stock of used vehicles is that of the previous period bar those that are scrapped plus 

the new vehicles of the previous period. Furthermore, in their model a consumer decides to 

scrap a vehicle when its scrap value is greater than the resale value. Goldberg (1998, 1995) on 

the other hand model the dynamic nature of vehicle choices by, first of all, using a survey data 

set that includes information on past vehicle purchases and secondly, employing a nesting 

structure where the highest stage choice is whether or not to purchase a vehicle. However, as 

noted by Goldberg (1995), this specification still does not perfectly model the dynamic nature 

of vehicle choices: a consumer might e.g. sell a relatively new car if he could acquire a good 

enough price or choose to repair an old one rather than to buy a new one. The author states 

that a more realistic model of the dynamics of vehicle purchases would require a 
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comprehensive micro-level data set that would include several periods. Indeed, most models 

in the literature consider vehicle purchase in one period and then assume that the vehicle will 

be held for the rest of its useful price. Allcott et al. (2010) note that when it comes to taking 

into account the lifetime fuel costs this assumption is valid in the sense that if a consumer 

chose to resell a vehicle at any point in time, the future vehicle costs affecting the resale price 

will simply be the fuel costs over the remaining life. Allcott et al. (2009, 2010) mention 

another market mechanism that might seemingly attenuate the consumer response to higher 

gasoline prices, namely higher rates of low fuel economy vehicle scrappage when gasoline 

prices are high. Allcott et al. (2009) speculate that this supply shift then increases the prices of 

low fuel economy vehicles.    

Vehicle scrappage and substitution between new and used vehicles are not the only 

dynamic aspects of the vehicle market. Despite the use of panel data, the models of vehicle 

choice that can be found in the literature usually abstract quite a lot from the true dynamics of 

the market. For instance, consumer preferences are often assumed to be constant (e.g. Allcott 

et al., 2009 and 2010), meaning that e.g. the weight given to future fuel costs and the fuel 

economy have stayed constant across time even though there has been significant variation in 

gas prices. Furthermore, environmental awareness probably has increased during the last 

decade, and it is reasonable to assume that this would also have had an impact on preferences 

over vehicle fuel economy. Train et al. (2007) on the other hand consider the dynamic effects 

of brand loyalty on vehicle choice. 

Moreover, while many models incorporate some assumptions of supply side behavior in 

their models, typically producer behavior is modeled in a quite simplified manner, and may 

not capture the true supply side dynamics. In the longer run, car manufacturers are able to 

adjust the characteristics of their fleet as well as develop more fuel-efficient technologies. 

Gramlich (2009) does incorporate a model of product characteristic determination by 

employing the method of moments, with moments defined such that the amount of ex-post 

regret by producers on the product characteristics chosen cannot be known in advance, and 

thus choices of characteristics are optimal given the information available at that point in time. 

(Characteristics are chosen in advance for a future period and cannot be changed later.) Thus 

the author is able to allow the endogenous characteristics to be correlated with the error term 

of the model by assuming that the error terms are cost and price shocks that are known to the 

producer at the time when the characteristics are chosen. On the other hand McManus (2005) 
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calibrates a nested logit model using price elasticities from previous studies and then 

simulates the model on counterfactuals to disentangle the effects of gasoline prices and 

consumer direct incentives on demand for vehicle with different fuel economies. He finds that 

the seemingly high demand for low fuel economy vehicle in the US despite the rise of 

gasoline prices in the early 2000’s was due to the fact that at the same time direct incentives 

related to low fuel economy vehicles increased considerably. However, their study does not 

take into account the fact that consumers might be suffering from myopia. 

3.2.4 Data 

The availability of data has been a major concern when it comes to modeling the 

automobile markets as well as the choice of fuel economy. As more detailed data sets have 

become available, more precise and sophisticated models have been used. The two types of 

data typically used in the papers of interest are aggregate level market share data (e.g. 

registration data) or aggregate level sales data and survey data. Each type of data has its 

advantages and shortcomings. 

Survey data is used by Goldberg (1995, 1998), Mohammadian et al. (2003) and West 

(2002), for instance. The main reason to use micro-level (usually survey) data when modeling 

the automobile market is the fact that it allows the econometrist to model more realistically 

the substitution patterns between vehicles that are subject to consumer heterogeneity. Indeed, 

when it comes to models using micro level data, data on vehicle characteristics can be 

interacted with household specific data. As Goldberg (1995) notes, even when using as 

restrictive a utility formulation as the multinomial logit, the substitution patterns in a model 

using micro-level data can be quite realistic. This results from the fact that the substitution 

patterns are not determined only by the functional form of utility, but also by the distribution 

of household characteristics in the data set. One practical implication is that the econometrist 

can use a more simple nesting structure. If aggregate levels data is used however, the 

econometrist has to employ more complicated nesting structures or a random coefficients 

model to realistically model substitution patterns between vehicles. Berry et al. (1995) and 

Sawhill (2008) among other use aggregate level data, and thus employ the random 

coefficients approach. Sawhill (2008) does note still that the assumption made in his random 

coefficients model of the distribution of taste parameters across consumers might be 
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unrealistic, and thus micro-level data on consumer characteristics could be utilized to enhance 

the aggregate-level data in his study.  

West (2004) notes one practical limitation of the use of survey data: it does not usually 

include very detailed data on vehicle characteristics affecting vehicle choice, and thus it 

would have to be combined with data from other sources to get a more realistic representation 

of vehicle choice. Another clear downside of survey data is that is it rarely publicly available. 

Furthermore, survey data rarely extends over long periods of time. When it comes to data 

length, one can observe a general trend that the more aggregate level data, the longer the span 

of the data used. E.g. Berry et al. (1995) and Sawhill (2008) use data expanding to the 1970’s. 

Papers using combined or transaction data, such as Allcott et al. (2010), may employ data sets 

expanding only over less than ten years. As the purpose is usually to make longer run 

predictions of the workings of the automobile market in terms of fuel economy, one could 

argue that aggregate data expanding over a longer time period would be preferable to survey 

data. However, in micro-level data the lack of long time trends are partly made up for by the 

fact that it often contains data on the past purchases or planned future purchases of vehicles 

that allow for the modeling of dynamic effects, even though the data in itself was cross-

sectional. As mentioned above, another aspect of studies using micro-level data in their 

specification is the error term, namely that the error component is assumed to be specific to a 

household and not to the vehicle. (e.g. Goldberg, 1995 and 1998; West, 2002). 

Both cross-sectional and panel data have been used in the literature.  The most important 

reason for opting for panel data, as in most econometric applications, is the fact that it allows 

one to model fixed effects and thus reduces the burden of correct model specification, which 

is often a major issue in applications to the automobile market (e.g. Klier et al., 2008; Allcott, 

2010). As Allcott et al. (2010) note, using cross section data requires an extremely accurate 

model specification - all relevant vehicle characteristics have to be well parameterized in 

order for the fuel economy to be uncorrelated with the error term. Indeed, in the literature 

cross-section data is mostly used in studies that have access to survey data, since including 

consumer-specific data to enhance the choice model eases the burden of having to model all 

relevant vehicle characteristics affecting vehicle choice. However, this tradeoff is not only 

caused by the advantages of micro-level data, but also the fact that long time series of survey 

data are quite difficult to come by.  
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A few alternative ways have been used in the literature to account for vehicle prices. 

Mohammadian et al. (2003) use average prices instead of transaction prices from survey data, 

and justify this choice with the fact that when it comes to survey data the reported sales prices 

would be subject to reporting errors and self-selection bias. On the other hand, the use of list 

price poses similar problems with measurement errors, since most transactions actually take 

place with negotiated prices. Thus data on actual transactions would seem optimal, but large 

enough data sets are hard to come by. Allcott et al. (2010), for instance, use an extensive data 

set of millions of transactions on used and new vehicles from an auction house and a centrally 

managed network of dealerships, respectively, of which they calculate monthly average prices. 

On the downside, prices from transaction data do suffer from selection bias, meaning that they 

usually do not contain all possible vehicle transactions, but merely a sample of the 

transactions taking place each year. Busse et al. (2010) note that this selection bias can be 

attenuated by controlling for the characteristics of the transaction, such as geographical 

location.  

3.3 Conclusions from the literature and policy implications 

In this section we will discuss the results obtained by the literature in two separate 

sections. First of all, we look into whether consumers take into account or are sensitive to fuel 

costs when purchasing vehicles. Time series variation on gasoline prices plays an important 

role in determining consumer valuations for fuel economy. Indeed, studies attempting to 

discover the effects of changes in gasoline prices to the fuel economy of vehicles purchased 

will offer insight on consumer take on fuel economy, since the results allow us to draw 

conclusions on consumer tendencies in responding to changes in the fuel costs of a vehicle. In 

these results the consumer behavior relating to assessing upfront costs and costs of use is 

implied. We will look into the results obtained by both discrete choice demand models as well 

as reduced form models on the subject. Secondly, we will be interested in studies that can 

offer direct insight on the optimality of consumer choices of fuel economy. 

3.3.1 Do consumers value fuel economy? 

The purpose of this section is to discuss consumer sensitivity to vehicle fuel costs and 

automobile fuel economy. Most of the studies covered in this section attempt to estimate fuel 

economy related consumer preference parameters without actually explicitly measuring the 

trade-off between capital and operating costs when purchasing vehicles. Estimates of the 
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elasticity of vehicle demand to the user costs of a vehicle can then be drawn from these 

coefficient estimates. Some studies interpret the results in terms of the effects of gasoline 

price changes to demand for fuel economy. The preference parameters are estimated for 

variables such as miles per gallon, dollars per mile or price per mile driven. As Helfand et al. 

(2009) notes, these models assume that consumers respond in a similar manner to an increase 

in fuel economy and a decrease in gasoline prices and thus are indifferent to the source of the 

savings.  

Berry et al. (1995), for instance, include fuel economy as miles per dollar in a random 

coefficients model of vehicle choice as a vehicle characteristic, and they find a statistically 

insignificant mean coefficient for miles per dollar. However, they find that the standard 

deviation of the coefficient (i.e. marginal utility) is substantial and significant. In fact, the 

authors find that the elasticity of demand with respect to miles per dollar declines with the 

vehicle’s miles per dollar rating. They interpret the result such that consumers who buy high 

MP$ vehicles are sensitive to changes in MP$, whereas the MP$ rating does not affect the 

purchasing decisions of those purchasing low MP$ vehicles. Goldberg (1998) estimates a 

nested logit model with an integrated vehicle utilization model using survey data. The author 

includes price per vehicle mile as an explanatory variable and obtains an average fuel cost 

elasticity of -0.5, which implies that consumers do respond to changes in the user costs of a 

vehicle. However, their simulations indicate that large changes in gasoline prices would be 

required to induce substantial changes in the average fuel economy. 

Gramlich (2009) on the other hand argues that the parameter estimates for fuel economy 

from studies such as Berry et al. (1995) are biased downwards, since these studies do not take 

into account the correlation between fuel economy and unobserved quality. The author 

himself estimates a nested logit demand model with endogenous characteristics and finds that 

consumers ‘care strongly’ about fuel economy – he finds coefficients for dollars per mile in 

all vehicle segments that are negative and significant. Furthermore, he calculates the 

willingness to pay for fuel economy from the coefficient of dollars per mile, and finds that 

within a vehicle segment, higher gas prices always mean higher willingness to pay for fuel 

economy. However, his findings indicate also that when gas prices are low, willingness to pay 

for higher fuel economy can be negative, which the author explains with the assumed trade-

off between fuel economy and other quality. Furthermore, as Gramlich (2009) estimates 

coefficients for dollars per mile by vehicle sub-segment, he finds that the most fuel economy 
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sensitive consumers are those buying utility vehicles. The result might seem quite 

counterintuitive, since one might assume that those buying vehicles belonging to such an 

overall fuel inefficient sub-segment would not be sensitive to fuel economy. However, the 

author interprets the results such that they are sensitive to fuel efficiency given the choice of 

sub-segment. In any case, these results contradict those obtained by Berry et al. (1995), who 

found that those buying fuel-efficient vehicles are the most sensitive to variation in fuel 

economy.  

Bento et al. (2009) estimate a vehicle choice model with an embedded choice of miles 

driven with survey data, but employ the random coefficients method. They obtain a measure 

for the elasticity of gasoline use with respect to the price of gasoline, where the responses of 

vehicle miles travelled as well as vehicle (and thus fuel economy) choice are both taken into 

account. Their estimate of the overall elasticity is -0.35. The elasticity is only slightly reduced 

when vehicle choice is assumed to be given. Indeed, Bento et al. (2009) find that the effect of 

shifting from low fuel economy vehicles to high fuel economy vehicles to the equilibrium 

gasoline consumption when gasoline prices rise is quite small, and that adjustments in vehicle 

miles driven account for a more important part of the overall change. However, their model 

takes into account new and used vehicle ownership and vehicle scrappage, and their 

simulations imply that over time the increased gasoline prices induce a greater fuel economy 

of new vehicles relative to used vehicles, which in turn results in increased new car ownership. 

The advantage of their model is the fact that they include the dynamics effects of substitution 

to used vehicles and scrappage that are likely to have an effect on fleet fuel economy. 

However, due to the high computational burden they have to study vehicles only at age, class 

and manufacturer level. 

Klier et al. (2008) estimate a model with monthly data and vehicle fixed effects inside a 

model-year, to find out the effects of gasoline prices on the demand for fuel-efficient vehicles. 

They find that the changes in gasoline prices do significantly affect the new vehicles market 

especially in terms of reducing the share of vehicles manufactured in the US. However, their 

estimate of the elasticity of average new vehicle fuel efficiency is 0.12, which, in line with the 

results obtained by Bento et al. (2009), indicates a quite small effect in size. Interestingly, 

Klier et al. (2008) also find that the response to gasoline prices is greater when the price of 

gasoline is high. The authors criticize earlier studies for the fact that they do not take into 

account the possible correlation between unobserved vehicle and consumer characteristics and 
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gasoline prices, although they admit that the economic theory does not give clear indication 

as to which way this would bias the coefficient estimates. Their study controls for the possible 

correlation by employing a dataset of monthly sales data and assuming that while gasoline 

prices vary month-to-month, vehicle characteristic and consumer preferences do not change 

as often. 

The above-mentioned studies are all consumer level (discrete choice) demand models of 

the automobile markets. Some reduced form studies offer insight on the same question, 

although they do not tell us demand parameters but instead market reactions. Li et al. (2009) 

estimate the effects of gasoline prices on fleet fuel economy by regressing the market share of 

vehicles in a certain mpg group with respect to dollars per mile and some controls. Based on 

simulations, the authors find that a 10 percent increase in gasoline prices increases the fleet 

fuel economy by 0.22 percent in the short-run and 2.04 percent in the long-run, both of which 

indicate a quite modest impact. Li et al. (2009) criticize consumer level studies existing in the 

literature of the fact that they rarely succeed in modeling realistically the dynamics of new 

and used vehicle holdings – the claim that even Bento et al. (2009), which is probably the 

most prominent demand model in this particular area, has to make quite simplifying 

assumptions on e.g. vintage choices. Furthermore, unlike demand models, they do not attempt 

to estimate consumer preference parameters and thus claim to avoid the simplifying 

assumptions required to estimate them. At the same time, this is exactly the problem with 

their approach – their model cannot say anything about the actual consumer choices, since the 

market responses they study may be affected by producer behavior as well. Indeed, this might 

be the reason why their estimates indicate a modest adjustment in fuel economy to gasoline 

prices – they results may be hiding some adjustment in the adverse direction by producers. 

Furthermore, they are forced to estimate separate models for new vehicle purchase and used 

vehicle scrappage decisions. All in all, their model, like other reduced form models, is more 

susceptible to the ‘Lucas critique’ when attempting form policy recommendations (Lucas, 

1976).  

Li et al. (2012) regress a similar model and obtain estimates for the elasticity of average 

fuel economy with respect to changes in gasoline prices. Their model separately takes into 

account the changes in gasoline prices induced by taxes and non-tax changes in gasoline 

prices. The authors find that while a one-dollar increase in tax-exclusive gasoline prices 

increases average fuel economy (in miles per gallon) by 3.6%, the same increase induced by 



36 

 

gasoline taxes would increase average fuel economy by 47.7%. The rationale behind these 

results is the fact that tax changes may be viewed by consumers as more permanent, and thus 

the results indicate a much greater sensitivity to gasoline prices than those of Li et al. (2009). 

Busse et al. (2010) estimate the effect of gasoline prices on new vehicle sales with a series of 

linear probability models. They find that higher gasoline prices indeed are connected with the 

purchases of higher fuel vehicles in the new vehicle market; according to their estimate, a one 

dollar increase in gas prices results in a 20.5% increase in the market share of the most fuel 

efficient quartile of vehicles. However, the authors remind that since they employ year fixed 

effects, the results concern within year variation in gas prices and sales. No trend effects can 

thus be deduced from the data. 

As stated above, accounting for the fact that gas price changes may give incentives for 

manufacturers to alter the relative prices of vehicles with differing fuel economy levels affects 

the results of such studies. As Langer et al. (2009) state, the fact that manufacturers might 

assume consumers to rationally take into account relative changes in vehicle fuel costs and 

thus adjust their vehicle prices accordingly would actually attenuate the effect of higher fuel 

prices on the market shares. Thus it might seem that the market does not fully adjust to 

changes in gasoline prices, whereas in fact the loss in attractiveness of low fuel economy 

vehicles is made up by lower prices from manufacturers. By regressing the manufacturer 

prices of gasoline on own fuel costs and competitor fuel costs among others, they find that 

that the coefficient of own fuel costs is consistent with strong and significant consumer 

response to price of gasoline. The result indicates then that manufacturers adjust the prices 

they set as though consumers would rationally adjust their demand to gasoline prices. 

Furthermore, the authors speculate that in the long run the market shares adjust as the profit 

implications of this manufacturer behavior makes the manufacturers shift production to higher 

fuel economy vehicles. 

3.3.2 Do consumers underweight operating costs?  

In the previous section we discussed over consumer sensitivity to fuel economy. While the 

results offered insight on whether consumers take into account user costs when purchasing 

vehicles, it did not offer direct answer on the optimality of the cost trade-off, which will be 

the main interest in this section. The most straightforward approach to estimate the cost trade-

off is to add lifetime discounted vehicle fuel costs as an explanatory variable to a demand 
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model. Constructing an explicit measure of the vehicle lifetime fuel costs allows the 

econometrist to directly employ the coefficient of this explanatory variable as a measure of 

consumer myopia.  

Allcott et al. (2009) construct a nested logit model to decipher the effect of changing 

gasoline cost expectations on the market shares and prices of vehicles. They rationalize that in 

their model where vehicle price is the dependent variable, the coefficient of discounted 

lifetime fuel costs should be equal to one – a one dollar increase in the discounted operating 

costs should result into a one dollar decrease in the price of a vehicle. The logic is similar to 

that used by e.g. Sawhill (2008). They find that a one-dollar increase in the discounted 

lifetime fuel costs results into only a 0.25 dollar increase in price, suggesting that consumers 

indeed are ‘myopic’. Allcott et al. (2010) estimate a similar model, and equally find that 

consumers are myopic, even though the coefficient estimate they obtained for the lifetime fuel 

costs of a vehicle is considerably higher, indicating that consumers would trade one saved 

dollar in operating costs to 0.61 dollars in upfront costs.  

Sawhill (2008) estimates a random coefficients model similar to that of Berry et al. (1995) 

and includes the assumption of forward-looking consumers when it comes to driving patterns 

and gasoline purchasing. The author finds no systematic undervaluation of the operating costs 

on the average. However, similar to Berry et al., his results indicate quite high variation in the 

coefficients of operating costs inside the population, which shows that a significant part of the 

population is actually making inefficient trade-offs even though on average there is no 

myopia to be detected. Indeed, he finds that 37% of the population weight prices more heavily 

than operating costs. The author also estimates a simplified model which doesn’t take into 

account consumer heterogeneity (multinomial logit instead of random coefficients) and 

measures operating costs with the current cost of driving the car for 100 miles. The results 

from the estimation of the simplified model indicate that consumers clearly underweight 

operating costs relative to the upfront capital cost when purchasing vehicles. The increase in 

elasticity with respect to operating cost in Sawhill’s (2008) complete model compared to that 

in the simplified model could explain the differences in the results obtained by Allcott et al. 

(2009, 2010) and Sawhill. Especially, Allcott et al. (2009, 2010) use nested logit, which does 

not take consumer heterogeneity into account as efficiently as random coefficients. On the 

other hand, Sawhill (2008) doesn’t find his operating cost elasticities to be particularly 
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sensitive to the fact that consumers have the option of alternating their driving patterns with 

respect to changes in gasoline prices.  

The problem with the approach adopted by Allcott (2009, 2010) and Sawhill (2008) is that 

the results may be dependent on the specification of the lifetime fuel cost estimate. While a 

measure of the fuel economy of a vehicle is usually readily available in a dataset, vehicle 

miles driven per year, the discount rate used and expected future gasoline costs are more 

complicated to measure. The assumptions made on these variables then affect the parameters 

estimate and thus conclusions drawn. Allcott et al. (2010) do test the sensitivity of their 

parameter estimate to the assumptions made, and no significant changes are observed in the 

parameter estimates. Furthermore, they claim to employ conservative assumptions such that 

the bias should rather be away from finding consumer myopia. Sawhill (2008) equally finds 

that his results are not sensitive to vehicle lifetime mileage and discount rate estimates.  

Busse et al. (2010, 2012) adopt quite a different approach to estimating the interactions 

between gasoline prices and vehicle prices. They estimate a reduced form model that captures 

the total effect of gasoline prices on vehicle prices while controlling for some vehicle and 

buyer characteristics. However, from such a parameter estimate one cannot directly 

disentangle the effect of consumer cost trade-offs and producer responses, for instance. With 

assumptions for the elasticity of demand for vehicles from previous literature, they estimate 

whether the recorded price changes comply with rational cost trade-offs. They find no signs 

of consumer myopia for either the used or new car market.  

Li et al. (2012) present similar critique. They note that there is a fundamental 

identification problem in environmental economics, namely that to assess consumer behavior 

when it comes to trading off capital and operating costs requires assumptions on consumer 

expectations of future fuel costs. These assumptions then affect the conclusions on either 

implicit discount rates or the optimality of the trade-off, depending on the paper in question. 

They address this question, as mentioned in the previous paragraph, by separating the effects 

of gasoline tax changes (which are likely to be viewed as more permanent by consumers) and 

non-tax price changes. However, the authors do not draw direct conclusions on the optimality 

of consumer responses to gasoline price changes nor do they calculate any implicit discount 

rates. 
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3.3.3 Conclusions from the literature 

The unfortunate result of the above discussion is that clear conclusions of consumer 

preferences on fuel economy are difficult to draw. One can safely say that no compelling 

evidence of consumers totally disregarding future operating costs of their vehicles can be 

found in the literature. A majority of studies do draw the conclusion that consumers care to 

some extent about fuel economy. However, some stickiness in market responses to e.g. 

gasoline prices in terms of average fuel economy does exist, based on the literature discussed 

above. Indeed, many studies find that the adjustment in vehicle purchasing patterns when 

gasoline prices rise is quite modest, which would indicate that operating costs are not taken 

into account in full when purchasing vehicles. Unfortunately, many studies do not tell us 

whether the valuations are optimal. Studies such as Allcott et al. (2009, 2010) on the other 

hand do give a direct measure of consumer myopia, but are unfortunately subject to some 

quite heavy assumptions. Thus while we can safely say that consumers, or at least some share 

of them, do care for fuel economy, the question of whether their behavior (on average) is 

optimal remains, alas, on open question. More studies would be needed to address this 

particular question.  

Overall, the difficulty in drawing clear conclusions from the literature arises from the fact 

that a particular paper usually concentrates on one or a couple of aspects of the problem. In 

reality, changes in gasoline prices can be expected to cause changes in demand behavior, 

driving behavior and manufacturer behavior (such as pricing and design), for instance. Thus 

often the results found by a paper that studies one aspect of the market effects fails to capture 

others, which then partly undermines the results obtained.  

While the literature has succeeded in developing quite tractable models for estimating 

consumer preference parameters and thus valuations of fuel economy, some development 

areas remain. First of all, a bulk of the studies in the literature model demand with nested logit. 

The clear limitation is that in a market such as the automobile one is that it offers a quite 

simplified presentation of the existing substitution patterns which are dependent on the 

econometrist’s choices. Thus, while various nesting structures have been attempted and found 

relatively useful, nested logit is still quite rigid in modeling the variety of potential consumer 

responses to fuel economy. As the automobile market is one where tastes and needs can vary 

quite a lot, there is a need to allow for more variation in studies. Indeed, the random 
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coefficient models in the literature seem to point to the substantial variation in tastes for fuel 

economy. Bento et al. (2009) do make a good attempt to employ the random coefficients 

approach in a dynamic framework. Of course, with more sophisticated modeling assumptions 

the computational burden increases. 

Another potential improvement to the current literature is a more extensive use of micro-

level data, possibly in combination with aggregate level data. The methods were developed 

already by Berry et al. (1995), and have been implemented by Bento et al. (2009). Replacing 

nested logit with a random coefficients model with micro-levels data used to enhance the 

distributions of tastes in the population. While many random coefficient models, such as 

Sawhill (2008), assume a normal distribution of tastes inside the population, enhancing a 

study with micro level data would allow for more truthful distributions of consumer 

characteristics and thus preferences. Consumer preferences could be discontinuous, for 

instance such that some consumers do not place at all weight on fuel economy. 

Another potential area for development is the modeling of supply side behavior. Many 

studies (especially discrete choice models) simply settle with assuming a price setting 

oligopoly on the supply side. The standard still remains that vehicle characteristics are taken 

as given, and not a result of optimizing behavior by producers. Often, the most effort in 

modeling the supply side dynamics is put in when it comes to papers comparing the welfare 

gains and losses of different policies to reduce gasoline use. (e.g. Jacobsen, 2012 and Austin 

et al., 2005). However, the focus of these studies is rarely on the demand side, which results 

into the authors making the assumption of consumers being perfectly capable of correctly 

estimating the value of fuel economy, and thus cannot offer insight on our question of 

particular interest. Thus, one potential issue confounding the results is the fact that smart 

producers ‘soften’ the effect of demand behavior by e.g. pricing. Some efforts to model 

supply side behavior have been made in the literature. E.g. Gramlich (2009) does take a step 

towards combining the literature relating to product characteristic choice and that of discrete 

choice demand models. 

Furthermore, while dynamics between the new and used vehicle markets as well as 

adjustments in vehicle miles driven have been taken into account in some studies, longer run 

effects, such as consumers changing completely their form of transportation, are often 

disregarded. In addition, most of the studies thus far do not take into account the option of 
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adopting technologies such as hybrid and electric vehicles into the choice models when 

studying consumers’ appetite for fuel economy. Naturally, incorporating the longer run 

dynamic effects concerns mostly the studies that attempt to simulate future market directions 

with given gasoline prices. However, many studies in the current literature tend to only give 

short-term insight into the vehicle market and gasoline price dynamics. 

3.3.4 A short discussion of policy implications 

As we have now reviewed the results obtained by current the literature, it will be 

interesting to relate the results to the discussion around alternative policies that can be 

employed in an attempt to optimize gasoline use. There is a vast literature on comparing the 

different policy approaches, but discussing that literature in length is beyond the scope of this 

paper. Instead, we will settle with simply relating some of the results of the earlier discussion 

to the common policy questions. Two specific policies have been widely discussed in the 

related literature mainly due to the fact that they are the ones under heated debate in the US, 

namely gasoline taxes and fuel economy standards.  

A given policy can affect the vehicle market on two fronts, namely the by reducing the use 

of gasoline as well as by modifying the composition of the vehicle fleet (e.g. Goldberg, 1998; 

Allcott et al. 2009). Gasoline taxes are often claimed by economists to be more efficient than 

vehicle standards, since they not only affect the composition of the vehicle fleet, but also the 

amount of gasoline consumed (i.e. driving patterns). Gasoline taxes are thus said to affect 

behavior not only on the extensive margin, but on the intensive margin as well. However, 

consumer behavior related to assessing upfront and user costs plays a role in assessing the 

effects of different policies – it partly determines market responses to each policy. Indeed, if 

consumers undervalue the future user costs of their vehicles, their extensive margin response 

to gasoline taxes is not likely to be optimal. This is the main argument for the use of 

paternalistic policies such as fuel economy standards, or alternatively higher taxes on the 

purchasing price of lower fuel economy vehicle. The issue indeed is that if higher gasoline 

prices do not induce a substantial enough reaction in the vehicle market, then ‘assistance’ 

from policies addressing directly the composition of the vehicle fleet could be warranted. (E.g. 

West , 2004; Allcott, 2009). 

While many of the studies discussed above simply estimate automobile demand 

parameters, some do conduct simulations or use counterfactuals to determine the impact of 
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chosen policies. Some simply sketch some calculations on the sizes of the possible effects, 

given the parameters estimated. A typical approach is to estimate an equilibrium model 

containing a discrete choice demand model, and then simulating on counterfactuals (non-

existing policy or different policy) to determine the impact of a given policy. (E.g. Goldberg, 

1998) 

What does the literature say on the effectiveness of different policies? As stated by Klier 

et al. (2008) and Austin et al. (2005), the welfare comparisons between command-and-control 

policies such as the CAFE standards and gasoline taxes depend on the effect of changes in 

gasoline prices in the demand for fuel economy. Our general conclusion that consumers 

respond only to some extent to changes in gasoline prices in terms of fuel economy would 

suggest that the policy effects of gasoline taxes would be limited. Klier et al. (2008) find that 

a one-dollar increase in the price of gasoline would only increase fuel efficiency of new 

vehicles by only 0.5-1 miles per gallon. Similarly, Goldberg (1998) finds that while 

consumers do adjust their purchases to changes in gasoline prices, taxes would have to double 

the price of gasoline in order to achieve the same fuel savings as the US CAFE standards do. 

Allcott et al. (2009, 2010) find that consumers underweight future costs of use and thus 

conclude that this result indeed supports the use of paternalistic policies, such as the US 

CAFE standards to increase average fuel economy. 

When it comes to the intensive margin responses to gasoline price changes, Goldberg 

(1998) estimates a nested logit model and integrates the choice of miles driven into the model. 

Her results suggest that elasticity of ‘demand’ for miles driven with respect to the gas prices is 

small or even zero. West (2002) estimates a similar joint model, but her findings indicate the 

opposite - that the elasticity of demand for vehicle miles driven with respect to vehicle 

operating costs is between -1.03 and -0.87. Bento et al. (2009) obtain a VMT elasticity of 

gasoline prices of -0.34. However, the authors note that disaggregate level studies such as 

theirs tend to find higher VMT elasticities than aggregate time series studies, and thus imply 

that the elasticity could actually be biased upwards in absolute value. 

4 Application to the Finnish vehicle market 

After having discussed the existing literature on consumer fuel economy choices and 

responses to gasoline price changes, we will now implement the methods discussed to the 
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Finnish vehicle market with the aim of extracting a measure for consumer valuation of fuel 

economy. Our model has its roots in the methods developed by Berry (1994) and we will 

follow quite closely the specification implemented especially by Allcott et al. (2010, 2011). 

As discussed previously, the literature thus far has been quite inconclusive as to whether 

consumers are actually underweighting their fuel costs. While we aim to shed some additional 

light on the issue when it comes to the Finnish vehicle market, we conclude that the lack of 

comprehensive and high quality data is a major issue in our study. More research will thus be 

needed to obtain conclusive results on the issue. 

4.1 Modeling choices 

This section describes the model to be estimated in the empirical study. The groundwork 

for the estimation of a discrete vehicle choice model was laid in Section 3.1., which described 

in detail the methods and estimation issues faced when estimating automobile demand 

parameters. We will thus now concentrate on presenting our own application of the methods 

described there, referring to the literature review when necessary. 

Our utility specification is similar to that of Berry (1994) and Berry et al. (1995) presented 

in Section 3.1.3. The utility for a consumer Q from a vehicle I at year e is defined by the set of 

vehicle characteristics %,� and vehicle costs, which are the sum of vehicle price �,� and user 

costs �,�, which we assume to consist of future fuel costs discounted to the present moment.  

�D,� = %,�� − X��,� + �,�
 + Y,� + &D, 

The term Y,  captures the utility that is acquired by consumers from vehicle I  but is 

unobserved by the econometrist. The addition of Y, is crucial. As noted by Berry et al. (1995), 

when using aggregate level data, if ‘”structural” disturbance’, captured by the vehicle-specific 

mean unobserved component, is assumed away, then any discrepancies between the model 

predictions and the data can be explained only as sampling error. Indeed, in our model, there 

are likely to be vehicle characteristics known to both the consumer and the producer but that 

are unobservable or unquantifiable (e.g. brand value), and without the vehicle-specific error 

term these would be assumed away. 

We thus model consumer utility with a random utility model where %,�� − X��,� + �,�
 +
Y, is the mean, deterministic part of utility and &D, captures a random, consumer-specific part 
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of utility. In the next section we will define the characteristics of the distribution of &D,. The 

fact that we have to rely on a simplified distribution of the random term &D, is caused by the 

lack of consumer level data. If we had micro-level data on vehicle purchases including vehicle 

specific as well as consumer specific data, we would be able use that data to account for 

consumer heterogeneity, and thus wouldn’t have to make subjective assumptions on the 

distribution. 

In addition to defining the distributional characteristics of &D,, in the following sections we 

will tackle some of the issues related to estimating a discrete choice model of automobile 

demand. Most of the issues were already discussed in the literature review, and thus the 

following sections will mostly concentrate on the solution adopted in this study. 

4.1.1 Substitution patterns and consumer heterogeneity 

Due to the limitations related to the simple multinomial logit described in section 3.1.2, 

we employ the nested logit when estimating our model of the Finnish vehicle market. The 

main reason for opting nested logit instead of multinomial logit is the fact that the error terms 

&D, between certain alternatives in our model are likely to be correlated, which violates the IIA 

assumption made by multinomial logit. We thus divide the vehicles into k + 1 mutually 

exclusive and exhaustive nests, j = 0, 1, … , k , each containing vehicles belonging to the 

same vehicle size class, inside which the error terms of alternative vehicles are allowed to be 

correlated. The vehicles belonging to the same nest can be considered substitutes. The 

composition of nests will be more closely discussed in section 4.2. Naturally, one must bear in 

mind that while nested logit is more flexible than multinomial logit, the way in which the 

error terms are allow to be correlated is still quite restricted in the nested logit framework. In 

particular, it assumes that preferences for fuel economy are constant across the population of 

consumers, which is a quite restrictive assumption considering the actual vehicle market. 

We will now follow Berry’s (1994) presentation for obtaining the mean utility levels as 

functions of observed market shares in a nested logit framework. An integral part of the 

method described by Berry (1994) is the inversion of the market share function described in 

section 3.2.1, which allows us to apply linear instrumental variables methods when estimating 

our model. (The endogeneity issues are more closely discussed in the next section.) As Berry 

(1994) notes, when nested logit is employed, the error term &D, is replaced with the nested 
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logit error term &D̅,, which consists of ̂Dl, a shock common to all vehicles inside a nest j, as 

well as &D, unique for each vehicle. Thus the utility becomes (the time subscript has been left 

out for simplicity of presentation): 

�D, = %,� − X��, + �,
 + Y, + D̂l + �1 − ]
&D, 

where  ]  is a parameter to be estimated taking values 0 ≤ 	] < 1 and determines the 

distribution function of ̂Dl , i.e. how the error terms between vehicles inside a nest are 

correlated. In Appendix B we derived the expression for the choice probability for 

multinominal logit. Using the same logic a corresponding expression for nested logit can be 

derived, is as follows (e.g. Train, 2003; Berry, 1994): 

K, = b,�a, ]
 = �mn/��Po


ploq∑ �pl��Po

l s 

where #, = %,� − X��, + �,
 + Y, is the mean utility from vehicle I and  

pl = ��mn/��Po

,tl

 

Now by assuming #u = 0 and the outside good to be the only member of ku , taking 

logarithms on both sides and some manipulation, as well as inverting b,�a, ]
 as described in 

Section 3.2.1. (see Berry, 1994), the expression becomes: 

ln)$,- −	 ln�$u
 = 	 %,� − X��, + �,
 + ] ln)$̅,/w- + Y, 

Now the term ]  is referred to as the inclusive value term. As already mentioned, it 

measures the correlation between the error terms of different vehicles inside the same nest. 

For our model to be consistent with utility maximization, the inclusive value term must be 

between 0 and 1. The closer the value is to 1, the more the error terms of the vehicles inside 

the nests are correlated. On the other hand, if ] = 0, there is no correlation and simple 

multinominal logit can be employed.  In our model, the term ]  is assumed to be fixed 

between consumers, meaning that the correlations taking place between vehicles inside a 

particular nest are similar between consumers. Were micro level data available on the 
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characteristics of each consumer, we could construct ] such that it could, for instance, be an 

exponential transformation of a vector of vehicle characteristics (Train, 2003, 85). 

4.1.2 Price endogeneity  

As explained at length in Section 3.2.1, the inclusion of Y,  introduces the simultaneity 

problem familiar in demand models even for homogenous goods, i.e. that the price variable is 

correlated with the error term. As noted by Sawhill (2008), the intuition behind this 

assumption is the fact that producers consider all the observed and unobserved attributes of 

the vehicle when setting prices. If unaccounted for, the estimated model might give 

counterintuitive results, such as a positive coefficient for price. (Allcott et al., 2010). 

Furthermore, since our estimation technique involves comparing the coefficients for price and 

the lifetime fuel costs, it is important that the coefficient of price is not distorted by 

endogeneity. Fortunately our model allows us to directly apply instrumental variables 

methods to account for the endogeneity of price since price enters the equation to be 

estimated in a linear fashion. We adopt the strategy used by Berry et al. (1995) where vehicle 

characteristics, their sums over the same firm and their sums over all vehicles available at a 

particular year are used as potential instruments. For the x th characteristic %[,  of vehicle I 
produced by firm �, the potential instruments included are  

%[, , � %_[
_y,,_∈ℑ|

, � %_[
_y,,_∉ℑ|

 

where ℑ~ is the set of vehicles belonging to firm �. As noted by Berry et al. (1995), since 

one of the vehicle characteristics is a constant term, the numbers of own-firm and rival firm 

products also become potential instruments. 

The intuition behind these instruments for price is explained by Berry et al. (1995) and 

Sawhill (2008). Vehicle prices can be thought of as the sum of the marginal cost of 

production and a mark-up. Thus an instrument correlated with either of the two but 

uncorrelated with the mean utility term Y,  could solve the endogeneity problem. The 

instruments developed by Berry et al. (1995) and described above indeed are designed to 

correlate with the mark-up. If we assume oligopoly pricing (which is a plausible description 

of the vehicle market), the products that have more close substitutes have lower mark-ups. 

Furthermore, automobile manufacturers may produce vehicles that are substitutes to each 
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other, and these substitutes are likely to have different effects on the mark-up compared to 

rival-firm products. The above-mentioned instruments are thus designed to capture the 

amount own-firm and rival firm competition. Variation in the instruments between vehicles 

results from the fact that the instruments exclude own-vehicle characteristics or include 

different own-firm products. The instruments have to be mean independent of ξ? and thus we 

need to assume that they are not correlated with unobservable product quality. 

We make one addition to the instruments used by Berry et al. (1995) and Sawhill (2008). 

We also include the sum of a characteristic x over vehicles belonging to the same nest as a 

vehicle (excluding own-vehicle characteristics): 

� %_[
_y,,_∈ℵ�

 

where ℵ� is the set of vehicles belonging to the nest h. We considered that as the nests are 

designed to contain the closest substitutes for each vehicle, the sum of characteristics over a 

nest should correlate with the amount of close competition with a particular vehicle and thus 

the mark-up included in the price of a vehicle. 

The final set of instruments included in our model are the sums over own-nest vehicles of 

fuel consumption, mass, power, number of seats and length as well as the sums over own-firm 

of fuel consumption, power and length. The set of instruments was chosen due to their 

significance in determining real price movements. The results from regressing price over 

these instruments can be found in Table 2. We found that additional instruments did not 

improve the explanatory power and were thus left out. Indeed, some of the potential were 

highly correlated. The same conclusion was made by Berry at al. (1995), and the authors 

finally included only 15 demand side instruments in their model. 

4.1.3 The final model 

Our final model thus estimates the effects of price and fuel economy on the markets shares 

of specific vehicles while taking into account the endogeneity of price and the fact that there 

may be some correlation between the error terms of similar vehicles. Yearly dummies are 

included to the model to be estimated, since they account for the market share of the outside 

good ln�$u
, which can thus be left out. The fact that we estimate the model with panel data 



48 

 

allows us separate the vehicle-specific mean utility Y,� into g, , a vehicle-specific but time 

constant term as well as Y,̅� . The mark-model fixed effect g,  captures all the other 

characteristics and quality of a vehicle besides price and life-time fuel costs (which are our 

characteristics of interest) and thus saves us the trouble of adding any other vehicle 

characteristics %,�to the model. The final model to be estimated is thus: 

ln)$,�- = −X�,� − ��,� + ] ln)$̅?�w�- + �� +	g, + Y,̅� 

where � is instrumented by vehicle characteristics, their sums over own-firm vehicles and 

rival firm vehicles. As mentioned, the key characteristic of our model are the coefficients X  

and �. We give separate coefficient names for price and lifetime fuel economy to clarify the 

upcoming discussion on the possible differences in them, even though in our model there 

actually ‘should’ be only one cost coefficient. If consumers behave in a time-consistent 

manner, the coefficients should be equal (or their ratio should be equal to 1). Indeed, our null 

hypothesis is that  X = �.  X > � on the other hand would indicate that consumers do not fully 

take into account the future fuel costs at the time purchase. 

An integral part of our estimation method is the fact that we use panel data to estimate the 

model and are thus able to exploit make-model fixed effects. As noted by Allcott et al. (2011), 

with cross-sectional data one has to correctly model all relevant vehicle characteristics 

affecting consumer utility. However, entering many vehicle characteristics into the equation 

to be estimated does cause some problems due to the fact that many characteristics are highly 

correlated, and thus any model comprising different vehicle characteristics is likely to suffer 

from multicollinearity. For instance, vehicle weight and fuel consumption are mechanically 

correlated. (This is a conclusion we draw also in section 4.2.2. discussing our data set). Thus, 

as noted by Allcott et al. (2011), the correlation between characteristics such as weight, horse 

power and fuel consumption make it difficult to separately estimate preferences for each. 

Atkinson et al. (1984) found that cross-sectional estimation of vehicle demand can result into 

a counterintuitive sign on fuel economy (i.e. that a higher fuel consumption would actually be 

preferable for consumers). Thus, panel data allows us to control for all other vehicle 

characteristics with fixed effects and enter estimated lifetime fuel costs as the only vehicle 

characteristic, in addition to price, to the equation to be estimated. 
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 As stated by Sawhill (2008), most of the heterogeneous product demand literature 

considers price to be the only endogenous variable. However, other vehicle characteristics, 

such as fuel economy, are likely to be correlated with the unobserved characteristics as well 

(e.g. Allcott et al. 2011). Another upside of exploiting mark-model fixed effects is the fact 

they mitigate this problem, again since it controls for the vehicle-specific, time-constant part 

of utility. We thus we employ a similar method with Allcott et al. (2011) in taking into 

account the endogeneity of fuel economy. However, whereas the authors are able to use 

model-year fixed effects, we have to content with mark-model fixed effects due to data 

restrictions. The problem with this approach is the fact that over our data period of seven 

years alterations have often been made to models (e.g. Toyota Corolla has changed 

considerably over the years), and thus the part of the utility that is fixed over time is smaller 

and g, does not necessarily capture all relevant vehicle characteristics. 

4.2 Data and industry 

4.2.1 Overall data description 

The data used in the estimation of our model consists of all new vehicle purchases made 

in Finland between the years 2005 and 2011 and vehicle characteristics and prices for each 

year. The data used in the estimation was acquired from two main sources. The new vehicle 

market shares are derived from vehicle registration data acquired from Trafi (2012). The 

registrations are reported at model level (e.g. Honda Accord or Fiat Punto), and there are 401 

make-model combinations in the data. The registration data is summarized by make and year 

of registration in Table 1. The characteristic and price data on the other hand was acquired 

from Netwheels (2012), a consultancy that maintains a database where vehicle importers 

update bi-annually the price and characteristic data of the new vehicles offered in Finland at 

that particular time. The Netwheels data reports the characteristics and prices for various trim 

levels for each model, and is thus more detailed than the registration data. 

The two data sets had to be combined to produce the final data set used in the estimation. 

In the final data set, one vehicle refers to a make-model combination due to the fact that the 

registrations are reported only at that level. Since the characteristics and prices are reported at 

the trim level, they had to be averaged over each make-model combination. Furthermore, 

there was some mismatch in the data since the Netwheels (2012) data set contains only new 

vehicles offered in Finland and the registration data contains some individually imported 
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models including vehicles that are clearly not new at the time of registration. The mismatch 

was dealt with by deleting registrations of vehicles that were clearly not new at the time of the 

registration (e.g. Ford Mustang), since the data is meant to concern only new vehicle 

registrations in the first place. 

The registration data was yearly data whereas the Netwheels data was bi-annual. The 

registrations for a particular year were combined with the Netwheels characteristic and price 

data dated at January 1st that same year. For some vehicles the characteristics data of July 1st 

was used due to the fact that they had become available for sale later in the year and thus 

appeared only in the ‘mid-year’ data. For some vehicles that had become available late in the 

year that characteristics data dated 1st of January the next year was used. The problem with 

this practice is the fact that the after-tax prices of most vehicles changed in 2008 due to the 

change in vehicle taxation, and thus using the same data for the prices does not account for 

this change. There were about 20 make-models that have the same price between 2007 and 

2008 in our final data. The prices in the data are list prices quoted by the importers and 

transformed into 2005 prices by using the consumer price index offered by Statistics Agency 

in Finland (SVT 2012b). The use of market shares instead of units sold in the equation helps 

control for the total sales during that year. Descriptive statistics on the data can be found in 

Table 4. The average price (transformed to 2005 prices) of a vehicle over the period is 49 093 

euros and the average fuel consumption is 8.29 liters per 100 kilometers. The average amount 

of vehicles registered of a particular model per year is 439. 

As described in Section 4.1.1., the vehicles were divided into nests each containing 

vehicles that can be assumed to be close substitutes. The nests used in our study are the 

British vehicle size classes. The reason for using the British vehicle size classes instead of the 

European ones is their easier availability on the Internet (e.g. Wikipedia). This choice of 

classification is unlikely to affect the estimation results since the size classes are quite similar 

in content and differ mostly by name. A listing of the nests can be found in Table 5. The use 

of vehicle size classes to depict substitution patterns between vehicles seems quite intuitive, 

since a consumer pondering the purchase of a vehicle is likely to see e.g. 2 mid-size cross-

over SUV’s as close substitutes for each other, whereas e.g. a super mini might not answer to 

the needs of the same consumer and not be seen as an close substitute. 
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Data quality was somewhat of a problem especially when it comes to the first years in the 

sample, but the quality of the data improved towards the latter part of the period. For instance, 

the characteristics data lacked some characteristics (e.g. torque) completely for 2005 and was 

incomplete for some other characteristics. Furthermore, the vehicle registrations data for 2005 

and 2006 contained some registrations with ambiguous models, such as ‘Ferrari, unspecified’. 

Fortunately these concerned vehicles with very small markets shares (e.g. 1 vehicle registered 

per year). Furthermore, some mark-model combinations in the registrations data were 

unrecognizable as such, but could be associated with some existing model (e.g. Kia Ed 

probably referred to Kia Cee’d). The fact that registrations were reported only at make-model 

level also meant that some aspects of the more specific, trim-level characteristics data were 

lost. For instance, a particular make-model combination can contain trims with either manual 

or automatic transmission. However, since characteristics had to be averaged over make-

model combinations, transmission type couldn’t be taken into account as a variable. The same 

problem applies to also whether a vehicle uses diesel or gasoline. Furthermore, many mark-

model combinations can contain different body types, such as sedans or station wagons. 

One drawback related to the time series dimension of the data is the fact that since the 

registered quantities are reported only at the yearly level and no model-years are reported, we 

are able to use fixed-effects only at the make-model levels over the period of 2005-2011. The 

problem with make-model fixed effects over such a long period is that models with the same 

nameplate can undergo quite significant changes over time. A good example of this is Toyota 

Corolla. Thus model-year fixed effects could be more adept in capturing the unobserved 

quality of a vehicle as it is more likely to stay constant inside a model-year than for a 

particular model name over the years. The section discussing our estimation results illustrates 

well the problems with make-model level yearly fixed effects. Furthermore, due the yearly 

frequency of our registration data the effects of intra-year gasoline price variations cannot be 

taken into account, and gasoline price variations are reduced to yearly averages. Indeed, our 

observation period of seven years does not produce very significant changes in gasoline prices. 

Figure 2 illustrates how gasoline prices have developed over the observation period. 

4.2.2 The estimated lifetime fuel cost 

To obtain an estimate of the lifetime fuel cost of a vehicle, we need data and/or 

assumptions on vehicle fuel consumption, vehicle miles driven during each year of use, 
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vehicle life, future fuel costs as well as the discount rate used by consumers to estimate future 

costs. How we define the expected lifetime fuel cost matters quite a lot for the conclusions we 

are able to draw from the comparisons of the coefficients X and �. Lifetime fuel costs are 

calculated as: 

�,� = � 
�P� × j� × ��,� ×
��f

�����
xi�� 

where	e is the year of purchase and G is the average scrappage year, j� is the average gasoline 

price for year $, ��,� is the fuel consumption of model	I in year s and xi�� is the amount of 

kilometers driven by a model I belonging to the nest h on the $th year of its life.	
 is the 

discount factor. 

We use data from A-Katsastus (2012), a Finnish company specialized in conducting MOT 

tests, to estimate the kilometers driven per year. A-Katsastus publishes data on average 

odometer readings of the vehicles inspected by make-model and the year of purchase of the 

vehicle. Thus we obtained a sample of data on the average vehicle kilometers driven per year, 

given the vehicles age. The sample contained vehicles inspected in 2011 and purchased in 

2008 and 2006-1998. Only models for which at least 100 vehicles were inspected during 2011 

were included in the data. We hypothesized that the type of the vehicle (vehicle size class) 

and its age would be the main determinants of the vehicle miles driven of a given vehicle 

during one year, which was confirmed by the data. We thus calculated an ‘initial’ kilometers 

driven per year specific to each vehicle size class, and assumed the kilometers driven to 

decline as the vehicle got older from that ‘initial’ figure. Since the average age of vehicles in a 

certain vehicle size class was likely to affect the average vehicle kilometers driven for that 

class, we calculated the average rate of decline for each of the years in the life of a vehicle 

and used that rate to normalize the yearly vehicle kilometers into representing the first year 

after the purchase of the vehicle. It was assumed that the declining trend in vehicle miles 

driven started only in the fourth year of the life of the vehicle. Furthermore, even though data 

was available only for 13 year-old vehicles and under, the same rate of decline was assumed 

to continue until the rest of the life of the vehicle.  

Data on average vehicle life was acquired from Autoalan tiedotuskeskus (2012a) and was 

19.1 years for the period of interest. To calculate the cost of driving 100 kilometers with each 
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model in the data, the fuel consumption given by the Netwheels (2012) dataset was multiplied 

by the average real price of gasoline for a given year. Thus, the cost varied year to year due to 

the changes in fuel consumption as well as in gasoline prices. Of course, gasoline prices are 

not likely to stay constant during the rest of the useful life of a vehicle and thus we had to 

make an assumption about the expectations made by consumers of future gasoline price 

movements. A common assumption made in related literature when estimating the future 

discounted fuel cost of a vehicle is that fuel prices follow a random walk (Allcott et al., 2010; 

Klier et al., 2008). This assumption allows the econometrist to use the current price of 

gasoline at the particular point in time to estimate consumers’ expected price for all future 

points in time, since all variation in the price can be regarded as white noise. One could argue 

that oil price and thus fuel price expectation would with move with the economic cycle, but it 

also seems plausible that the average consumer isn’t able to make these predictions and thus 

the fuel price follows a random walk from his point of view. In our study, we assumed the 

expected gasoline prices to follow a random walk from the point of view of the consumer. Oil 

price futures could be a potential way to model gas price expectations, but they tend to 

actually be quite close to the spot price of oil at a given time. 

The choice of the discount rate used by consumers when estimating lifetime fuel costs of a 

vehicle is quite arbitrary. However, one can make assumptions on plausible discount rates 

based on information on the risk-free rate of return and market interests rates for e.g. car loans. 

We adopt from previous studies (Allcott et al. 2011; Sawhill, 2008) the use of 5% as an 

appropriate discount rate. The rate is above the long term average of the risk-free rate of 

return and somewhat below the average interest rate on consumer loans in Finland (Suomen 

Pankki, 2012). We will test the sensitivity if our final results on the interest rate. Indeed, if 

reformulated our research question effectively asks which is the appropriate discount rate 

consistent with observed purchases of vehicles. 

Of course, our model of the lifetime fuel cost of a vehicle is a simplified one and relies on 

a very limited set of data. More sophisticated assumptions could have been made especially 

about the driving pattern of consumers. Sawhill (2008), for instance, allows consumers to 

adjust their driving patterns to changes in gasoline prices. He fits a model of gas price 

evolution, ∆��l = �∆��P�l + ��, where �� is a white noise process, to the historical US gas 

prices and defines the miles driven to respond to the changes depicted by the model. When 

estimating our model we noticed that small adjustments in the assumptions did not 
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considerably affect our final results. Indeed, in section 4.3.2 we will discuss the sensitivity of 

our model to the assumptions made above. One must keep in mind however that, as stated by 

Allcott et al. (2011), measurement error in our lifetime fuel cost variable would bias its 

coefficient towards zero and thus make it seem like consumers would be underweighting fuel 

costs compared to price more than they actually do. 

4.2.3 Reduced form data and industry analysis 

Looking at the general trends in the Finnish vehicle market, the 2008 policy change 

favoring the purchases of high fuel economy vehicles has been a quite significant determinant 

of market developments. In 2008 vehicle purchase taxation changed such that the tax rate is 

determined by the amount of CO2 emitted by the vehicle per kilometer. Indeed, as a result of 

the change the after-tax prices of low-emission vehicles decreased and those of the high-

emission vehicles increased. Another change in the taxation took place in 2012, when 

additional reductions in the vehicle purchase tax rate was made for vehicles emitting less than 

100 grams of CO2 per kilometer and increased for all other vehicles. (Autoalan 

tiedotuskeskus, 2012b).  

Figure 3 shows that the average CO2 emissions (which go hand in hand with fuel 

economy) in Finland have been on a clearly decreasing trend since 2008 when the new policy 

took effect. Slight increases in the average emissions of newly purchased vehicle were 

however witnessed in the beginning of 2012 due to the fact that the taxation was tightened in 

April 2012. Figure 4 on also shows how average fuel efficiency dropped dramatically in 2008. 

Of course, gasoline prices also happened to peak in 2008 – indeed, the policy change makes it 

harder to observe and extract the impact of higher gasoline prices on vehicle purchases from 

time series data on vehicle characteristics from recent years. Figure 5 on the other hand shows 

that as fuel efficiency has improved considerably beginning in 2008, the trade-off between 

fuel efficiency and other characteristics has improved as well. E.g. average vehicle mass and 

power haven’t deteriorated considerably after 2008, even though they are usually associated 

with higher fuel consumption. Thus the improvements in vehicle fuel efficiency haven’t taken 

place at the cost of other characteristics, although the upward trend in vehicle mass and power 

has actually halted. 

Trends in vehicle registrations and prices seem to follow economic cycles. During 

economic downturns vehicles purchase decisions seem to be put off until less turbulent times 
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for the economy. Indeed, Figure 7 shows that even though the number of households has 

increased in Finland over the last 20 years, the number of registered vehicles has fluctuated 

considerably. The effect of the economic downturns of the beginning of the 1990’s, 2000’s 

and the end of 2000’s can be witnessed in the registrations data. When it comes to the types of 

vehicles registered, family cars (small and large) are by far the most registered vehicle size 

class, as shown by Figure 9. On the other hand among the other size classes SUV’s have had a 

steady upward trend in registrations. Figure 8 on the other hand shows that Toyota and 

Volkswagen have dominated the Finnish vehicle market in terms of market shares. 

When it comes to vehicle characteristics in our data set, the immediate observation is that 

vehicle characteristics, as one would assume, are highly correlated. Table 3 shows that 

especially the fuel efficiency of a vehicle is highly correlated with price and other 

characteristics related to engine performance and vehicle size. The positive correlation 

between price and fuel consumption can seem counterintuitive considering the starting point 

of our study – of consumers were perfectly rational fuel consumption is associated with 

higher user costs of a vehicle and thus should be associated with lower prices. However, fuel 

consumption is highly correlated with other desirable characteristics. This fact supports the 

choice of panel data estimation methods, as discussed in Section 4.1.3.  

4.3 Estimation and results 

4.3.1 Baseline nested logit and multinomial logit specifications 

The baseline model is estimated as an instrumental variables fixed effects regression, 

where fixed effects are taken over 401 make-model combinations. Price is instrumented as 

explained in detail in section 4.1.2 and the second stage is a fixed effects regression of the 

logarithm of market share. Independent variables include price (instrumented), the logarithm 

of nest share, lifetime fuel costs and yearly dummies. The variables and summary statistics 

are listed in Table 4. The baseline estimation thus takes into account price endogeneity and 

models substitution patterns with nested logit. 

The results obtained from the baseline estimation can be found in Table 6. Table 7 on the 

other hand contains a summary of the coefficients obtained from the baseline as well as some 

alternative estimations. In the baseline model the coefficients of (real) vehicle price, lifetime 

fuel cost are significant. The coefficient of the logarithm of nest share, which is the inclusive 
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value term of our nested logit specification, falls between 0 and 1 as expected. The fact that 

the inclusive value term is close to one in all the specifications listed in Table 7 would seem 

to indicate that our choice of nested logit instead of multinomial logit to model substitution is 

correct. This means that the error terms of vehicles inside the same nest seem to be correlated 

and thus (quite intuitively) indicates that some vehicles are indeed closer substitutes than 

others. 

The most striking result from our baseline model is the fact that the coefficient of lifetime 

fuel cost is positive, and thus indicates counter intuitively that a higher lifetime fuel cost 

would actually increase the utility obtained from the purchase of a vehicle. Estimating the 

model with the cost of driving 100 kilometers (i.e. the price of gasoline on the year of the 

purchase of the vehicle times its fuel consumption per 100 km) instead of our measure of 

lifetime fuel costs also gives a positive sign for the coefficient of fuel costs, and thus the 

seemingly positive impact on consumer utility of higher fuel costs seems to result from 

differences in fuel consumption and not on the assumptions made when transforming it into 

lifetime fuel costs.  

However, the result alone hardly allows us to draw the conclusion that consumers do not 

care at all about fuel costs when purchasing vehicles. Indeed, the counterintuitive sign for fuel 

consumption and costs is likely to be a result of the fact that vehicle characteristics are highly 

correlated, and that our panel data approach of using yearly fixed effects for make-model 

combinations is probably not strong enough to control for all the other characteristics and the 

unobserved quality of the vehicle besides lifetime fuel costs and price. Indeed, higher fuel 

consumption is closely and positively correlated with other desirable vehicle characteristics. 

Due to the correlation between vehicle characteristics, fuel economy is likely to be 

endogenous, since a part of the unobserved vehicle quality is be left in the error term despite 

the use of make-model yearly fixed effects, which makes the error term correlated with fuel 

economy. As discussed in Section 3.2.2., Gramlich (2009) argues that the parameter estimates 

obtained when not accounting for the endogeneity of fuel economy are biased downwards, 

which could thus weight on the ratio of interest γ / α in our model. Furthermore, as stated by 

Allcott et al. (2010), one symptom of endogeneity are counterintuitive signs on (e.g. price) 

coefficients. 
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Furthermore, estimating the model as a multinomial logit model and thus leaving out the 

logarithm of nest share actually does give the ‘expected’ sign for the lifetime fuel cost 

variable, as can be seen in the column 2 of Table 7. The problem with the nested logit 

approach is the fact that the logarithm of nest share is highly correlated with the logarithm of 

market share and thus dominates the estimated model. One can thus draw the conclusion that 

the positive coefficient of the lifetime fuel cost variable does not seem to be a robust result 

across specifications. However, the ratio of interest γ / α seems to be well under 1 for both the 

nested logit and multinomial logit models, which would indicate an underweight for the 

discounted lifetime fuel costs compared to the upfront price paid from a vehicle. The ratio is 

higher in the case of multinomial logit, which is counterintuitive since multinomial logit 

should overstate the substitutability between vehicles. This same result has been found by 

Allcott et al. (2010). The multinomial logit specification naturally suffers from lower R-

squared since one highly significant explanatory variable is left out of the model. Furthermore, 

the coefficients for price and lifetime fuel cost are significant at the 90% level only of mass 

and power are added to the model as explanatory variables, which indicates the weaknesses of 

the make-model yearly fixed effects in controlling for all other vehicle characteristics and 

quality besides fuel costs and price. 

Our baseline model assumed price endogeneity and thus employs instrumental variables. 

In column 5 of Table 4 we have estimated the model without the assumption of price 

endogeneity. The coefficients of both price and lifetime fuel costs are lower than in our 

baseline model, but the ratio γ / α however is slightly higher. The fact that the coefficient of 

real price does not seem to differ much from the baseline, instrumented price specification 

seems to indicate that price endogeneity is not the most severe problem in our model. Instead, 

the limited amount of observations and the difficulty of our model to capture all the relevant 

quality of a vehicle seem to distort the results much more. 

Indeed, it is clear that especially the robustness issues relating to the coefficient of lifetime 

fuel costs reveal problems in data quality, the limited amount of data available as well as the 

inability of make-model level fixed effects to control for unobserved vehicle quality. 

However, none of the alternative specifications compared above give support to the null 

hypothesis of consumers being indifferent between the upfront price and the present value of 

lifetime fuel costs. Of course, in addition to the assumptions mentioned above, the results 
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depend also on other modeling choices and assumptions. The next section will discuss in 

more the effects of these assumptions. 

4.3.2 Alternative assumptions and sensitivity analysis 

Naturally, the results obtained in our baseline specification depend heavily on the 

assumptions made especially when constructing the lifetime fuel cost variable. The choice of 

discount rate use especially affects the results obtained. Indeed, our research question can 

actually be reformulated to asking which discount rate in consistent with consumer behavior 

in our model. The sensitivity of the estimation results was thus tested by estimating the model 

with different values for the discount rate. The discount rate that equated the coefficients for 

lifetime fuel costs and price was 15% for the multinomial logit model. There isn’t much point 

in calculating the corresponding discount rate for the nested logit model due to the positive 

sign of the lifetime fuel cost variable in the model. The implicit discount rate for the 

multinomial logit model is considerably above the riskless rate of return and somewhat above 

the rate on a typical car loan, which is 5-10% in Finland. Indeed, as Figure 10 shows the 

average interest rate on consumption loans was below 7% during the period between 2005 

and 2011. Thus one can question whether such high interest rates are consistent with rational 

decision making across time. 

When constructing the lifetime fuel cost variable we also made the assumption that 

vehicle size class, and thus loosely the type of the vehicle, determined the amount of 

kilometers typically driven with a particular vehicle. (All other assumption made to construct 

the variable, namely those concerning the average age of scrappage and the rate of decline in 

the kilometers driven we considered to be constant between models.) To test the validity of 

this assumption, we also estimated the model with a lifetime fuel cost variable that made the 

same assumptions for all models about kilometers driven during the same year. This actually 

almost doubled the γ / α ratio to -0.36. One must note that the sign of the coefficient of the 

lifetime fuel cost variable remains positive and isn’t straightforward to interpret due to the 

problems remaining in our specification and data.  

We also made an arbitrary decision about how the vehicles are divided into nests and thus 

about which vehicles are substitutes in the eyes of consumers. We thus estimated the model 

also with less detailed nests. If our baseline model included Compact crossover SUV’s, Mid-

size crossover SUV’s and Full-size crossover SUV’s as separate nests for instance, the less 
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detailed nesting specification had all crossover SUV’s grouped in the same nest. The results 

from the specification with less detailed nests can be found in the column 6 of Table 7. 

Although the coefficients for real price and lifetime fuel costs are slightly higher in this 

specification, their ratio remains largely the same and thus gives no support for the null 

hypothesis either. The coefficients remain significant for this specification, but the coefficient 

for lifetime fuel costs has a positive sign. 

In our baseline model price and lifetime fuel costs are the only vehicle characteristics used 

as explanatory variables. Indeed, our ability to include any other vehicle characteristics in the 

model is limited by the problem of multicollinearity. As observed in Section 4.2.2 discussing 

our data, vehicle characteristics seem to be highly correlated with each other, and thus adding 

vehicle characteristics to the equation might bias upwards the standard error of the fuel cost 

term making the coefficient not seem significant. Thus we originally use make-model fixed-

effects to capture all other vehicle quality besides price and vehicle costs. If vehicle mass and 

power are added as explanatory variables to the nested logit and multinomial logit models 

(columns 3 and 4 in Table 7), the coefficient for lifetime fuel costs falls in both models. 

Therefore, also the ratio γ / α falls. In the case of the multinomial logit model the coefficients 

of price and lifetime fuel cost actually become more significant when vehicle mass and power 

are included, contrary to what we might expect to happen when multicollinearity is an issue. 

The overall explanatory power of the logit model still isn’t very high, however, with an 

overall R-squared of only 0.18. In the baseline nested logit model adding the variables does 

not improve the overall explanatory power of the model. 

One issue that we didn’t take into account in our model is the fact that vehicle taxation 

was altered in Finland during our period of study. The prices we use are after-tax prices and 

the yearly fixed effects of course account for any year-specific characteristics of the market. 

We could expect, for instance, that SUV’s or other ‘gas guzzlers’ would have been more 

attractive to consumers in 2007 just before the change in policy. On the other hand incentives 

to purchase high fuel economy vehicles would have been low in the end of 2007 due to the 

fact that the after-tax prices decreased at the turn of the year. We did estimate the model 

separately for 2005-2007 and 2008-2011. The amount of observations for these shorter 

periods is quite low and thus the results again aren’t very robust. Especially the coefficients of 

price and lifetime fuel costs are not significant, but the latter takes a negative sign in the 

model for 2005-2007. One could speculate that for the 2005-2007 period the measure of 
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lifetime fuel costs would actually capture the negative impact of higher costs on the utility 

derived from a vehicle, whereas for the latter period the measure is correlated with the after-

tax price (due to the higher tax rate for lower fuel economy vehicles), and that real price 

would actually capture the negative effects of higher costs as well. 

4.3.3 Discussion of the results 

Overall one has to be quite careful in deriving definitive conclusions relating to the 

research questions from our model. The fact that the baseline model gives a counterintuitive 

sign for lifetime fuel costs is quite troubling. The result most certainly does not allow us to 

draw the conclusion that consumers would actually prefer higher fuel costs. First of all, the 

sign is not very robust in the sense that the multinomial logit specification actually does give 

the ‘right’ sign for the coefficient of the variable. Furthermore, higher fuel costs are tightly 

correlated with other desirable vehicle characteristics, and it seems that our model is unable to 

control for these characteristics enough to capture separately the effects of the fuel costs. For 

instance, the relatively high fuel consumption of a Ferrari 458 Italia is closely associated with 

its desirable characteristics, such as power. But if a consumer was asked to choose between 

two Ferrari 458 Italia’s which would be otherwise similar but have different fuel 

consumptions, he/she would probably choose the one with lower fuel consumption. Thus if 

one is successful in controlling for the ‘other’ quality of a vehicle, lower fuel consumption 

should be preferable. If the ‘other’ quality on the other hand isn’t controlled for well enough, 

the measure of fuel consumption will capture the unobserved quality as well and will seem 

like a desirable characteristic. A consumer would probably rather choose the Ferrari 458 Italia 

than a Fiat Punto, for instance, even with the higher fuel consumption. As mentioned in 

Section 4.1.3., Atkinson et al. (1984) discovered a similar problem, namely that the 

correlation between fuel economy and mass make it difficult to separately measure 

preferences for fuel economy in cross-sectional data and thus gives the wrong sign for fuel 

economy. Indeed, it seems that our panel data approach controlling for ‘other’ quality is not 

strong enough to eliminate the correlation problem. 

Even though the robustness of our results can be questioned, none of the different 

specifications estimated offer particular support to our null hypothesis of consumers making 

optimal trade-offs between upfront costs and future costs of use. Actually, in some of our 

alternative specifications the coefficient of lifetime fuel costs (or simply fuel consumption) 
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becomes insignificant even at the 90% confidence level. Of course, this result might also be 

affected by the limited amount of observations in our dataset and should thus be taken with a 

grain of salt. Furthermore, the discount rate consistent with the modeled choices of vehicles 

seem quite high, and actually corresponds to those found in earlier literature studying durable 

good choices. Of course, as described in Section 2.3., some studies in the past literature 

suggest that due to the characteristics of energy efficiency investments such as automobile 

fuel economy, the discount rates used by rational consumer might actually be quite high (e.g. 

Metcalf et al., 1995). Furthermore, it is important to keep in mind that a failure in accounting 

for the endogeneity of fuel consumption can bias the lifetime fuel cost coefficient downwards 

and thus make it seem as if consumers were putting less weight on fuel costs than they 

actually do (Gramlich, 2009). Anyway, what we can say based on our results is that at least 

they do not as such give support to a ’laissez-faire’ approach to vehicle fuel economy. Even 

though the results do not permit us to definitely conclude that consumers are myopic, the 

results do not rule out the possibility that paternalistic approaches to policy would be 

warranted.  

More research is thus needed to draw any definitive conclusions on the subject. Especially 

a more comprehensive dataset would be warranted to increase the robustness of any results 

obtained on the Finnish vehicle market. As noted in Section 3.3.3., existing literature on the 

subject thus far has been quite inconclusive as well in the sense that different modeling 

assumptions have resulted in all but opposite results and conclusion about consumer 

valuations of fuel economy. One could say that there are two prominent approaches in the 

literature for obtaining a measure for the optimality of consumers’ fuel economy choices. The 

one used by e.g. Allcott et al. (2009, 2010, 2011) as well as Sawhill (2008) employ discrete 

choice modeling and thus attempts to specifically measure parameters relating to consumer 

preferences whereas studies such as Li et al. (2009, 2012) and Busse et al. (2010, 2012) 

estimate ‘reduced form’, market-level models.  

Even though the robustness of our results leaves room for improvement, they are in line 

with those obtained by similar studies by e.g. Alcott et al. (2011) in the sense that they don’t 

give much support for the null hypothesis of consumers being perfectly rational in their 

purchases of vehicles when considering the fuel economy of a vehicle. (Actually, our model 

reveals an even stronger bias towards present costs than the one estimated by Allcott et al. 

(2011), suggesting possible identification issues in our model.) It is important to bear in mind 
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however that the alternative market-level approach mostly reaches the opposite conclusion, 

namely that gasoline prices do affect the composition of the vehicle fleet. Busse et al. (2012), 

for instance, find that changes in gasoline prices have a significant impact on the market 

shares of new vehicles with different fuel economies and are able to deduce implicit discount 

rates that correspond to the interest costs paid by consumers when funding their vehicle 

purchases. The advantage of the approach we adopted is the fact that it has potential to give a 

direct measure of the consumer valuation of fuel economy. Indeed, Busse et al. (2012) are 

forced to use demand elasticities from previous studies to obtain their estimate of the implicit 

discount rate. Furthermore, our approach is based on a model of discrete consumer choices 

and thus has more tractable micro-foundations.  

On the downside, many assumption have to be made to estimate the model which are 

likely to affect the final results, and thus a careful sensitivity analysis is warranted to ensure 

the robustness of any results. Our model is likely to suffer from attenuation bias - if the there 

is measurement error in the lifetime fuel cost variable, its coefficient would be biased towards 

zero. Attenuation bias thus probably contributes to the low lifetime fuel cost coefficients 

obtained by our model. Furthermore, as the results are highly dependent on the coefficient of 

price (as it is the one used to interpret that of lifetime fuel costs), correctly accounting for the 

endogeneity of price has a crucial role in determining the conclusions made from the results 

obtained. Moreover, our model does concentrate only on one aspect of gasoline price changes, 

namely their effect on vehicle fuel economy choices. It does not take into account the fact that 

gasoline price changes are likely to affect driving patterns as well. Indeed, consumers hold the 

real option of driving less if gasoline prices turn out high, and thus need not ‘care’ as much 

about fuel economy (e.g. Sawhill, 2008). Furthermore, our model concentrates only on the 

new vehicle market, and thus the effects of changes in the substitution patterns between new 

and used vehicles as well as vehicle scrappage are disregarded. Also the fact that producers 

might adjust their behavior in response to gasoline price changes can potentially affect the 

market outcome. 

5 Conclusion 

The question of whether consumers are capable of making optimal trade-offs between 

current and future costs when purchasing vehicles has recently been discussed quite vastly in 
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the economic literature especially in relation the question of whether gasoline taxes or 

paternalistic policies such as fuel economy standards would be optimal in reducing 

greenhouse gas emissions from gasoline combustion by passenger cars. The background of 

the question is more generally in the apparently slow diffusion of seemingly cost efficient 

conservation technologies. Hausman (1979) was one of the first to find that consumers’ 

purchases of durable, energy consuming goods are consistent with them being ‘myopic’. In 

terms of economic theory this phenomenon has been explained by e.g. hyperbolic discounting, 

the public good nature of information on new technologies as well as flawed expectation 

formation in the absence of perfect information.  

Looking at the previous literature on consumer valuations of fuel economy, no clear 

conclusions can be drawn as to whether consumers give an optimal amount of weight to 

gasoline prices when purchasing vehicles. Most studies seem to indicate that consumers do to 

some extent take into account the changes in gasoline prices, but that some stickiness in the 

market responses exists. However, the results obtained by the literature vary quite a lot in 

accordance with the different assumptions made. Indeed, there are various margins over 

which the behavior of consumers and producers alike is adjusted in response to gasoline 

prices, and different studies shed light on different potential responses. Those studies that are 

able to offer insight on the optimality of the weight given to vehicle lifetime fuel costs in 

comparison to the upfront price have obtained quite different results. The reduced form 

approach adopted by e.g. Busse et al. (2012) does not find signs of myopia, whereas the 

discrete choice approach used by e.g. Allcott et al. (2011) as well as the present study would 

suggest underweight on future gasoline costs. 

Indeed, our empirical study does not give support to the null hypothesis of consumers 

weighing equally the price and the present value of lifetime fuel costs. On the contrary, our 

results indicate that the weight given to the present value of lifetime fuel costs would account 

for only a fifth of that given to price. Thus, based on our model it would seem that e.g. a 

hyperbolic discounting model would better describe actual consumer behavior when it comes 

to fuel economy investments. Another way to express the result is the that the implicit 

discount rates that consumers would seem to use when making fuel economy investment 

decision are higher than actual markets interest rates would warrant. Of course, one can 

question the appropriateness of these comparisons. Some studies discussed in our literature 

review suggest that returns on energy efficiency investments are highly uncertain and thus the 
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discount rates warranted to evaluate future returns could be high. Furthermore, one must keep 

in mind that there are several problems in our specification that might affect our results and 

bias them towards indicating consumer myopia and high implicit discount rates. Indeed, 

especially the difficulties in identifying the consumer preferences for fuel economy separate 

of any other correlated vehicle characteristic, the potential endogeneity of the lifetime fuel 

cost variable as well as attenuation bias potentially bias our results. 

Our study alone does not permit us to give conclusive policy recommendations besides the 

fact that they do not rule out the efficiency of the current vehicle taxation policy adopted in 

Finland or the even more paternalistic CAFE standards in the US. More research is thus 

needed. In particular, many studies discussed in this paper employ aggregate level data and 

are forced to use simplifying assumptions to model the fact that there is quite a lot of variation 

in consumers’ preferences regarding vehicle characteristics and fuel economy. Our nested 

logit approach, while relaxing some of the strict assumptions made by multinomial logit, is 

still quite rigid when it comes to modeling consumer heterogeneity. Using random 

coefficients instead of nested logit would relax the quite restrictive assumption that all 

consumers have the same valuation on vehicle fuel economy. However, even the random 

coefficients approach is forced to make assumptions on the distribution of consumer 

preferences over vehicles characteristics over some mean value. Thus studies using micro-

level data including consumer characteristics would be warranted at least to complement the 

aggregate level data. Furthermore, studies taking into account a wider range of margins over 

which consumer and producer behavior is adjusted in response to changes in gasoline prices 

are warranted. 

A particularly interesting aspect of fleet fuel economy policy that has been slighted in this 

study is the fact that older vehicles are more likely to be gas guzzlers as new. The relatively 

high vehicle taxes in Finland discourage consumers from purchasing new vehicles and thus 

shifting to models that take advantage of recent the technology development in the field. Thus 

in addition to using policy to encourage consumers to opt for less-consuming vehicles, 

another aspect of policy design is giving incentives for consumers to shift to newer and less-

consuming models. 

  



65 

 

References 

A-Katsastus. 2012. http://www.a-katsastus.fi/Autolija-info/vikatilasto-2011/Sivut/default.aspx. 
22.10.2012 

Allcott. 2010. “Beliefs and Consumer Choice”. MIT, NYU, and ideas42. November 29, 2010 

Alcott, Wozny. 2009. “Gasoline Prices and the Fuel Economy Discount Puzzle”. Working 
paper, Princeton University 

Allcott, Wozny. 2010, 2011. “Gasoline prices, Fuel Economy, and the Energy Paradox”. 
Working paper, New York University 

Atkinson, Halvorsen. 1984. “A new hedonic technique for estimating attribute demand: An 
application to the demand for automobile fuel efficiency”. Review of Economics and 
Statistics 66(3): 417-426 

Austin, Dinan. 2005. “Clearing the Air: The costs and consequences of higher CAFE 
standards and increased gasoline taxes”. Journal of environmental Economics and 
Management 50(2005) 562-582 

Autoalan tiedotuskeskus. 2012a. Autonkannan ”kehitys”. http://www.autoalantiedotus 
keskus.fi/tilastot/suomen_autokanta/autokannan_kehitys/autokannan_keskimaaraisen_ro
mutusian_kehitys. 2.11.2012. 

Autoalan tiedotuskeskus. 2012b. “Autoilun verotus”. http://www.autoalantiedotuskeskus.fi/ 
tieliikenne/autoilun_verotus/. 11.11.2012. 

Autoalan tiedotuskeskus. 2012c. “Bensiinin ja dieselin hintakehitys 2005-10/2012”. 
http://www.autoalantiedotuskeskus.fi/tilastot/verotus_ja_hintakehitys/bensiinin_ja_dieseli
n_hintekehitys. 21.11.2012 

Bento,  Li, Goulder, Jacobsen, von Haefen. 2009. “Distributional and efficiency impacts of 
increased US gasoline taxes”. American Economic Review 99(3): 1-33 

Bento, Li, Roth. 2010. “Is there an energy paradox in fuel economy? A note on the role of 
consumer heterogeneity and sorting bias”. Resources for the future RF DP 10-56 

Berry. 1994. “Estimating discrete choice models of product differentiation”. RAND Journal 
of Economics. 25(2) 

Berry, Levinson, Pakes. 1995. “Automobile prices in market equilibrium”. Econometrica 63(4)  

Berry, Levinson, Pakes. 2004. “Differentiated products demand systems from a combination 
of micro and macro data: The new car market”. Journal of Political Economy. 112(1) 68-
105 

Brown, Walker. 1989. “The Random Utility Hypothesis and inference in Demand systems”. 
Econometrica 57(4)  



66 

 

Busse, Knittel, Zettelmeyer. 2010. “Pain et the pump: The effect of gasoline prices on new 
and used automobile markets”. Working paper, NBER July 2010 

Busse, Knittel, Zettelmeyer. 2012. “Are consumers myopic? Evidence from new and used car 
purchases”. 03/2012. 

Delucchi. 2007. “Cost-benefit analysis on fuel economy improvement”. Discussion paper, 
Institute for transportation studies, University of California at Davis, August 

Dubin, McFadden. 1984. “An econometric analysis of residential electric appliance holdings 
and consumption”. Econometrica 52(2): 345-362 

Goldberg. 1995. “Product differentiation and oligopoly in international markets: The case of 
the U.S. automobile industry”. Econometrica 63(4): 891-951 

Goldberg. 1998. “The effects of the corporate average fuel efficiency standards in the US”. 
The Journal of industrial economics 46(1) March 1998 

Gramlich. 2009. “Gas prices, fuel efficiency, and endogenous product choice in the U.S. 
automobile industry”. Working paper, Georgetown University 

Greene. 2010. “How consumers value fuel economy: A literature review”, Office of 
Transportation and Air Quality, U.S. Environmental Protection Agency, Report EPA-420-
R-10-008, 2010 

Hausman. 1979. “Individual discount rates and the purchase and utilization of energy-using 
durables”. The Bell Journal of Economics, 10(1): 33-54 

Heiss. 2002. “Structural choice analysis with nested logit models”. The Stata Journal 2(3): 
227-252 

Helfand, Wolverton. 2009. “Evaluating the consumer response to fuel economy: A review of 
the literature”. U.S. Environmental Protection Agency 

Howarth, Andersen. 1993. “Market barriers to energy efficiency”. Energy Economics October 
1993 

ICCT. 2011. “European Vehicle Market Statistics 2011 Edition”. Washington, DC. 
International Council on Clean Transportation  

Jaffe, Stavins. 1994. “The energy paradox and the diffusion of conservation technology”. 
Resource and Energy Economics 16: 91-122 

Klier, Linn. 2008. “The price of gasoline and demand for fuel economy: Evidence from 
monthly new vehicle sales data”. Federal Reserve Bank of Chicago. Working Paper 2008-
13 

Knittel, Metaxoglou. 2008. “Estimation of random coefficients Deamnd models: Challenges, 
Difficulties and Warnings”. Working paper 14080, National Bureau of Economic 
Research, Cambridge, Massachusetts, June 



67 

 

Langer, Miller. 2009. “Automakers' Short-Run Responses to Changing Gasoline Prices and 
the Implications for Energy Policy". Working paper, University of California at Berkeley, 
September 

Larrick, Soll. 2008. ”The MPG Illusion”. Science. 320(5883): 1593-1594 

Li, Timmins, von Haefen. 2009. “How do gasoline prices affect fleet fuel economy”. 
American economic journal: Economic policy 1(2) 113-137 

Li , Linn, Muehlegger. 2012. “Gasoline Taxes and Consumer Behavior". Manuscript: Harvard 
University February 2012 

Lucas. 1976. ”Econometric Policy Evaluation: a Critique”. Carnegie-Rochester Conference 
Series on Public Policy. (1)1976. 

Luce. 1959. “Individual choice behavior”: a theoretical analysis”. New York; Wiley 1959 

Mahajan, Tarozzi. 2011. "Time Inconsistency, Expectations, and Technology Adoption: The 
Case of Insecticide Treated Nets." Working Paper, Stanford University (March). 

McFadden. 1974. “Conditional logit analysis of qualitative choice behavior”. Frontiers in 
Econometrics. Zarembka P 1974 

McFadden. 2001. “Economic choices”. The American economic review 91(3) 351-378 

Metcalf, Rosenthal. 1995. “The ‘New’ View of Investment Decisions and Public Policy 
Analysis: An Application to Green Lights and Cold Refrigerators.” Journal of Policy 
Analysis and Management 14(4): 517–531. 

Mohammadian, Miller. 2003. “An empirical investigation of household vehicle type choice 
decisions”. Transportation Research Record 1854 

Netwheels. 2012. Vehicle database 2005-2011. May 2012 

O'Donoghue, Rabin. 2001. “Choice and procrastination”. The Quarterly Journal of Economics, 
116: 121-160. 

Ruderman, Levine, McMahon. 1987. “The Behavior of the Market for Energy Efficiency in 
Residential Appliances Including Heating and Cooling Equipment.” The Energy Journal 
8(1): 101–124. 

Sanstad, Howarth. 1993. “Consumer rationality and energy efficiency”. Proceedings of the 
ACEE 1994 Summer Study on Energy Efficiency in Buildings. 

Sawhill. 2008. “Are capital and operating costs weighted equally in durable goods purchases? 
Evidence from the US automobile market”. Working Paper, University of California 
Berkeley 

Silberhorn. 2010. “Estimation with the nested logit model: specifications and software 
particularities”. Four essays on modeling brand choice and brand loyalty. 



68 

 

Wirtschaftswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin February 
2010 

Shui, Ausubel. 2005. "Time Inconsistency in the Credit Card Market." Working Paper, 
University of Maryland (January). 

Simon. 1986. ”Rationality in psychology and economics”. Journal of Business 59: 209-224 

Suomen Pankki. 2012. http://www.suomenpankki.fi/fi/tilastot/tase_ja_korko/Pages/tilastot_ 
rahalaitosten_lainat_talletukset_ja_korot_lainat_kotitalouslainat_korot_chrt_fi.aspx. 
6.11.2012 

Sutherland. 1991. ”Market barriers to energy-efficiency investments”. Energy Journal 12: 15-
34 

SVT. 2012a. Kasvihuonekaasut. ISSN=1797-6049. 2010, Liitetaulukko 3. Hiilidioksidipäästöt 
Suomessa 1990–2010 . Helsinki: Tilastokeskus. http://www.stat.fi/til/khki/2010/khki_ 
2010_2012-04-26_tau_003_fi.html. 18.11.2012 

SVT. 2012b. Kuluttajahintaindeksi. ISSN=1796-3524. Helsinki: Tilastokeskus. http://www. 
stat.fi/til/khi/index.html. 4.11.2012 

SVT. 2012c. Tulonjakotilasto. ISSN=1795-8121. 2010, Liitetaulukko 11. Kotitalouksien 
määrä, keskikoko, kotitalousväestön koko ja keskimääräiset kulutusyksiköt Suomessa 
vuosina 1990–2010. Helsinki: Tilastokeskus. http://www.stat.fi/til/tjt/2010/tjt_2010_2012 
-05-23_tau_015_fi.html. 11.11.2012. 

Thollander, Palm and Rohdin. 2010. “Categorizing Barriers to Energy Efficiency –  an 
Interdisciplinary Perspective”. Energy Efficiency. Jenny Palm (Ed.) ISBN: 978-953-307-
137-4. InTech. Available from: http://www.intechopen.com/books/energy-efficiency/ 
categorizing-barriers-to-energy-efficiency-aninterdisciplinary 

Trafi. 2012.  “Ensirekisteröinnit”. http://www.trafi.fi/palvelut/tilastot/tieliikenne/ensirekiste 
roinnit/henkiloautot_merkin _ja_mallin_mukaan 1.3.2012 

Trafi. 2012b. ”Tutkimus ympäristöystävällisestä autoilusta 2012”. The Finnish Finnish 
Transport Safety Agency Trafi, Liikenteen turvallisuusviraston tutkimuksia 27/2012 

Trafi. 2012c. ”Ensirekisteröityjen henkilöautojen keskimääräiset CO2-päästöt”. http://www. 
trafi.fi/palvelut/tilastot/tieliikenne/ensirekisteroinnit/co2-paastot. 21.11.2012 

Train. 2003. “Discrete choice methods with simulation”. Cambrigde, UK. Cambrigde 
University Press 

Turrentine, Kurani. 2007. "Car Buyers and Fuel Economy?". Energy Policy 35: 1213-1223. 

West. 2004. “Distributional effects of alternative vehicle pollution control policies”. Journal 
of public economics 88(2004) 735-757 

  



69 

 

Figures 

Figure 1 Shares of CO2 emissions in Finland by industry, 2010 (SVT 2012a) 

 

Figure 2 Gasoline prices in Finland in 2002–2010 (Autoalan tiedotuskeskus 2012c) 

 

Figure 3 Average Co2 emissions of new vehicles in Finland 2008–2012 (Trafi 2012c) 

 

29%

9% 13%
4% 1% 0% 4% 0%

61%

-21%
-40%

-20%

0%

20%

40%

60%

80%

1

Energy industry Manufacturing and construction
Traffic Heating of buildings & agriculture
Other Emissions related to the evaporation of fuels
Process-related emissions from industry The use of lubricants and other products
Non-classified Land use, change in land use

80

90

100

110

120

130

140

150

2002 2003 2004 2005 2006 2007 2008 2009 2010

In
de

x

Gasoline, real price Gasoline 95E, 1 L

140

145

150

155

160

165

170

01/08 07/08 01/09 07/09 01/10 07/10 01/11 07/11 01/12

Gasoline Diesel Total



70 

 

Figure 4 Average fuel efficiency after 2002 in Finland (ICCT 2011) 

 

Figure 5 Average vehicle characteristics in Finland 2001-2010 (ICCT 2011) 

      

Figure 6 Average vehicle prices and new vehicle registrations in Finland 2001-2010 (ICCT 2011) 
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Figure 7 Vehicle regisrations (’000) and the amount of households in Finland (’000) (SVT, 2012c and 

Trafi, 2012) 

 

Figure 8 The evolution in the market share of the most popular makes 2005-2011 

 

Figure 9 The evolution in the market share of different vehicle types 2005-2011 
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Figure 10 The average interest rates on consumption loans in Finland (Suomen Pankki, 2012) 
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Tables 

Table 1 The amount of vehicles registered by make and year 

Make 2005 2006 2007 2008 2009 2010 2011 Grand 
Total 

TOYOTA 21,202 21,136 16,929 18,535 14,360 15,101 13,325 120,588 
VOLKSWAGEN 14,901 15,022 12,413 16,485 11,378 14,398 17,155 101,752 
FORD 10,936 9,459 7,906 9,714 7,918 9,108 10,688 65,729 
VOLVO 9,930 9,280 8,788 9,291 5,811 6,959 8,691 58,750 
NISSAN 11,727 9,755 6,889 6,325 3,808 1,952 7,477 47,933 
SKODA 5,475 5,216 4,723 6,641 5,619 8,369 9,013 45,056 
PEUGEOT 8,739 7,905 6,073 5,829 3,370 4,135 4,154 40,205 
OPEL 6,671 7,132 5,451 4,387 2,870 4,578 5,246 36,335 
AUDI 4,562 4,815 4,153 5,832 4,215 5,076 6,219 34,872 
KIA 3,614 5,803 5,347 6,720 2,545 4,218 6,129 34,376 
HONDA 4,669 5,641 6,571 6,255 4,039 3,297 3,292 33,764 
CITROEN 6,685 5,440 5,678 5,426 2,219 3,484 3,567 32,499 
MERCEDES-
BENZ 

4,162 4,069 3,652 4,714 3,719 4,459 4,973 29,748 

MAZDA 4,423 4,917 4,391 4,909 2,618 2,720 2,119 26,097 
BMW 2,656 2,395 2,320 4,355 2,794 3,158 4,001 21,679 
HYUNDAI 2,637 2,915 2,833 3,070 2,058 2,900 4,466 20,879 
RENAULT 6,972 4,408 1,913 2,076 1,281 1,749 1,872 20,271 
FIAT 4,982 4,318 3,045 3,808 1,278 1,674 1,085 20,190 
SEAT 1,311 2,247 2,503 3,192 1,425 2,269 2,945 15,892 
CHEVROLET 2,194 1,618 1,751 849 726 1,119 1,425 9,682 
MITSUBISHI 1,161 1,407 1,264 1,599 819 922 1,498 8,670 
SAAB 1,322 1,801 1,588 1,286 400 203 452 7,052 
CHRYSLER 1,691 1,783 1,450 695 252 173 14 6,058 
SUZUKI 662 1,010 1,051 1,069 664 593 772 5,821 
SUBARU 1,226 521 537 682 329 1,065 741 5,101 
SMART 355 935 369 542 553 664 831 4,249 
DODGE  521 1,096 1,184 861 423 34 4,119 
ALFA ROMEO 369 417 292 269 97 265 491 2,200 
JEEP 204 372 556 437 171 106 89 1,935 
LAND ROVER 407 361 419 309 81 130 165 1,872 
LADA 455 513 229 216 116 4 1 1,534 
MINI 163 129 147 335 227 212 258 1,471 
JAGUAR 271 150 264 311 135 113 113 1,357 
DACIA     31 379 836 1,246 
LEXUS 116 221 162 210 118 129 217 1,173 
PORCHE 57 32 58 33 38 55 94 367 
CADILLAC 43 30 20 7 6 2  108 
LANCIA   11 33 33 15  92 
FERRARI   2 7  1 2 12 
BENTLEY 3 5 2 1 1   12 
MASERATI 1 3 4 2  2  12 
LAMBORGHINI 2 1  1    4 
HUMMER       2       2 
Grand Total 146,956 143,703 122,850 137,643 88,983 106,179 124,450 870,764 
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Table 2 The results from regressing real price on price instruments 

 Coef. SE t P>|t| 
ins_fuel3 -279.922 49.834 -5.62 0.000 
ins_mass3 -2.429 0.268 -9.07 0.000 
ins_power3 18.231 1.987 9.18 0.000 
ins_seat3 215.517 73.741 2.92 0.004 
ins_lenght3 0.477 0.109 4.38 0.000 
ins_fuel1 -14,230 323 -44.03 0.000 
ins_power1 11.217 1.506 7.45 0.000 
ins_lenght1 -0.175 0.060 -2.91 0.004 
_cons 229,000,000 5,190,530 44.04 0.000 
     
F(  8,  1825) = 538.39   
Prob > F = 0.0000   
R-squared = 0.7024   
Adj R-squared = 0.7011   

 

Table 3 Correlation matrix for vehicle characteristics in the dataset 

 Price Fuel cons. Length Seats Power Doors Mass 
Price 1,0000       
Fuel cons. 0,7988 1,0000      
Length 0,4138 0,5509 1,0000     
Seats -0,2078 -0,0431 0,3510 1,0000    
Power 0,8991 0,8656 0,5028 -0,1967 1,0000   
Doors -0,3033 -0,2164 0,1346 0,5482 -0,2994 1,0000  
Mass 0,5030 0,6752 0,8151 0,3306 0,5806 0,1051 1,0000 

 

Table 4 Summary of variables 

Variable Obs Mean Std. Dev. Min Max 

year 2807 2008 2 2005 2011 

amount 1982 439 881 0 9328 

marketshare 1982 0.353% 0.698% 0.000% 6.347% 

nestshare 1879 8.834% 15.787% 0.003% 100.000% 

realprice 1968 49,093 48,432 8,873 452,668 

literper100m 1937 8.29 2.53 0.00 21.10 

eurper100km 1937 11.24 3.40 0.00 30.56 

lifetimetotal 1937 60,586 28,121 0 185,605 

power 1924 129 72 0 458 

mass 1925 1585 366 730 2689 
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Table 5 Nests and amounts of make-model combinations belonging to a nest 

Vehicle class Amount %-share 
Small Family Car 51 12.72% 
Supermini   41 10.22% 
Sports Car  30 7.48% 
Large Family Car 29 7.23% 
Compact Crossover SUV 27 6.73% 
Executive Car  25 6.23% 
Van   25 6.23% 
City Car  21 5.24% 
Compact MPV  21 5.24% 
Large MPV  19 4.74% 
Compact Executive car 18 4.49% 
Large 4X4  17 4.24% 
Mid-size Crossover SUV 15 3.74% 
Mini MPV  14 3.49% 
Compact 4x4  9 2.24% 
Leisure Activity Vehicle 8 2.00% 
Luxury Car  8 2.00% 
Grand Tourer  6 1.50% 
Mini 4x4  6 1.50% 
Convertible   5 1.25% 
Pick-up   3 0.75% 
Full-size Crossover SUV 2 0.50% 
Minibus   1 0.25% 
Total   401 100.00% 
 

Table 6 Results from our baseline IV regression 

 

Dependent variable: lnms, Instrumented variable: realprice 
 Coef. Std. Err. z P>|z| 
realprice -0.0000383 0.0000107 -3.56 0.000 
lifetimetotal 0.0000082 0.0000029 2.88 0.004 
lnns 0.9450705 0.0106449 88.78 0.000 
y6 0.0467168 0.0365105 1.28 0.201 
y7 0.0258058 0.0421100 0.61 0.540 
y8 -0.1212139 0.0546103 -2.22 0.026 
y9 -0.1456088 0.0476007 -3.06 0.002 
y10 -0.1873895 0.0663895 -2.82 0.005 
y11 -0.2132358 0.0902950 -2.36 0.018 
_cons -2.3344010 0.4101530 -5.69 0.000 
     
Number of obs 1749    
Number of groups 376    
R-sq within 0.8613    
R-sq between 0.465    
R-sq overall 0.5033    
sigma_u 1.835    
sigma_e 0.357    
rho 0.964    
F  test that all u_i=0: 72.74    
Prob > F 0.000    
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Table 7 Estimation results from different specifications 

   1 2 3 4 5 6 7 
Real price  -0.0000383 -0.0000459 -0.0000577 -0.0000786 -0.00000495 -0.0000484 -0.0000365 
 s.e.  (0.0000107) (0.0000282) (0.000014) (0.0000348) (0.00000154) (0.0000106) (0.00000952) 

Lifetime fuel costs 0.0000082 -0.00000996 0.00000555 -0.0000146 0.00000123 0.0000114 0.000013 
 s.e.  (0.00000285) (0.00000746) (0.00000238) (0.00000595) (0.00000155) (0.00000277) (0.00000416) 

Log of nest share  0.9450705   0.9347322   0.9463502 0.9596029 0.9470003 
 s.e.  (0.0106449)   0.0117   0.0088823 0.0107249 (0.0105251) 

Power      0.0133357 0.0238291       
 s.e.      (0.0033941) (0.008388)       
Mass      0.0012082 0.0013163       
 s.e.      (0.0002729) (0.0006789)       
γ / α   -0.2141 0.2170 -0.0962 0.1858 -0.2485 -0.2355 -0.3562 
                       * All specifications include time dummies for 2006-2011.  

          

1 Baseline model: nested logit, endogenous price 5 Price not instrumented   
2 Multinomial logit  6 Less detailed nests   
3 Baseline, power and mass included 7 Same assumptions for all vehicles in lifetime fuel cost 
4 Multinomial logit, power and mass included      



 

 

Appendix A 

Constructing a random utility discrete choice model begins with adding a random 

component & to a ‘conventional’ deterministic component # of a utility function: 

� = #�$, %
 + 	&�$, %
 

The component & thus captures the part which the individual knows with certainty and 

affects his/her choice, but which the econometrist cannot observe. # on the other hand refers 

to the ‘representative’, or deterministic part of the utility function. The term x represents an 

alternative belonging to a universe of objects of choice X, and the term $ represents the 

characteristics of the consumer affecting his/her utility.  

How do we then use this utility specification to construct a model of consumer choices? 

McFadden (1974) considers a consumer facing an alternative set S with J alternatives indexed 

I = 1,…,J choosing a particular alternative, given his/her characteristics $. He then assumes 

the consumer to have a so-called behavioral rule function ℎ which, given a set of attributes $ 

and an alternative set S maps into the member % of S that is chosen.  

ℎ�$, S
 = % 

The econometrist cannot observe the behavioral rule of each consumer, but knows the 

distribution of ℎ’s belonging to the behavioral rule set �. There exists a probability � for each 

outcome given the distribution. Thus a consumer’s choice is not deterministic due to a 

stochastic behavioral rule. Now we can model this multinomial choice situation (i.e. the 

consumer faces more than 2 alternatives) in terms of the probability K that some consumer 

randomly drawn from the population, given the distribution of behavioral rule functions, 

chooses the alternative %: 

K�%|$, S
 = 	��UℎZ�|ℎ�$, S
 = %V� 

Now a consumer chooses the alternative that maximizes his/her utility. Thus the 

probability P5 that a randomly drawn consumer chooses the alternative x5 is equal to 

P5 = 	π�UhϵH|h�s, B
 = xV� = PqU5 > U?s = Pqε)s, x?- − ε�s, x5
 < V�s, x5
 − V)s, x?-s	 
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for	all	j ≠ i 

Now since &)$, %,- is a stochastic component, let’s assume a joint cumulative distribution 

function 2)&�	, … , &3- , where &,	 = 	&�$, %,
 , which induces the probability �  given in the 

above expression: 

2)&�	, … , &3- = �q�ℎZ��&)$, %,- ≤ &, 	�EF	GHH	I = 1,… , J�s		 

Thus 2)&�	, … , &3- defines the joint probability that the stochastic utility components &  for 

each alternative %,  are below &  some value &, . To define KD , we need to define the joint 

probability that the stochastic component & of each of the alternatives I complies with the 

condition that the alternative %D is utility-maximizing. Now the condition for %D  being utility-

maximizing can be rewritten as 

ε)s, x?- < ε�s, x5
 + V�s, x5
 − V)s, x?-	�EF	GHH	I ≠ Q. 

To simplify the notation, let’s denote V�s, x5
 = #D and V)s, x?- = #, etc. We then have 

2)ε�s, x5
 + #D − #�, … , ε�s, x5
 + #D − #3-
= �q�ℎZ��&)$, %,- ≤ ε�s, x5
 + #D − #,	�EF	GHH	I = 1,… , J�s, 

which is the joint cumulative distribution of the &,	’s evaluated at ε�s, x5
 + #D − #,. Of course 

ε�s, x5
 can take many values, and this fact has to be taken into account when constructing the 

expression for the choice probability of x5 . Let 2D  denote the partial derivative of F with 

respect to its Qth argument. It is thus the density function describing how ε�s, x5
 is distributed 

across consumers depending on the distribution of the behavioral rule ℎ . 2D)& + #D −
#�, … , & + #D − #3- tells us then the probability of the occurrence of some value & of ε�s, x5
 
given that x5 maximizes utility. Since the ε�s, x5
 is not given, we now write the probability KD 
of a random consumer choosing x5 by summing the above mentioned probabilities over all the 

values of  : 

KD = L 2D)ε + #D − #�, … , ε + #D − #3-M&.
N

O�PN
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We thus have an expression for P5 which depends among other things on the shape of the joint 
cumulative distribution. 

Appendix B 

 
Luce (1959) and McFadden (1974) derive the logit probabilities based on the IIA 

assumption. An alternative approach, adopted by Train (2003), is to derive the logit 

probabilities from the assumption that the stochastic components &  are independently and 

identically distributed type I extreme value. In fact, McFadden (1974) shows that if the choice 

probabilities are assumed to follow the logit formula, it necessarily implies that &  is 

distributed extreme value. The main implication of this distribution is that the individual 

terms & belonging to each alternative are independent of each other, and thus similarly to the 

IIA assumption, does not take into account the possible existence of substitutes among 

alternatives. Train (2003) expresses the cumulative distribution function for each of the 

stochastic utility component as 

2)&,- = �P���n
 

and the density function as 

�)&,- = �POn�P���n
 

 

and uses them to derive the probability KD. The fact that the &’s are distributed independent 

allows us to rewrite the expression for the joint cumulative distribution as  

2)&�	, … , &3- = ��P���� ,¡¢£

,yD
��P���) ,¡¤-
, 

since the joint cumulative distribution is simply the product of the individual cumulative 

distributions over all I. Since ε�s, x5
 in unknown, we have to sum the product over all the 

possible values of  ε�s, x5
. We do this by taking the derivative of 2�∙
 with respect to ε�s, x5
: 



80 

 

2D)&�	, … , &3- = ��P���� ,¡¢£

,yD
��PO¦�P���) ,¡¤-
 

and sum it over all the values of  ε�s, x5
  at point 

&�	, … , &3 = ε�s, x5
 + #D − #�, … , ε�s, x5
 + #D − #3  such that the utility maximization 

condition holds: 

L ��P����§¨¦�¨n£

,yD
��PO�P���


N

PN
M& = 	KD 

We can then rewrite this function for the choice probability as: 

KD = �m¦

∑ �mn,
 

The manipulation of the expression for P to the latter form can be found in Train (2003). 

We thus acquire a quite simple logit formula for the choice probabilities. 

  


