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AALTO UNIVERSITY SCHOOL OF BUSINESS     ABSTRACT 

Department of Information and Service Economy     13.03.2014 

Master’s Thesis 

Tommi Riihimäki 

ABSTRACT 

Objectives of the Study 

The unique measurability of websites allows the collection of detailed information about the 

behavior and characteristics of website visitors. This thesis examines the value of different web 

metrics based on the behavior of website visitors. The objective is to develop and test a method 

for identifying key metrics that are the most valuable for site developers to follow. The key web 

metrics are expected to contain the most useful and relevant information about the website 

visitors. The value of the web metrics is evaluated by examining the relationships of the metrics 

towards website conversions. This thesis also suggests how different web metrics can be 

analyzed to reveal important characteristics of site visitors and how web metrics can be used to 

evaluate the effectiveness of the different aspects of a website. 

Academic background and methodology 

This thesis draws from the field of web analytics. Based on the previous work on the field, a new 

framework for the role of web metrics analysis in website development is presented. The 

framework forms the basis for the case study conducted in this thesis. The case study examines 

one corporate website by following fourteen different web metrics during a period of six months. 

The relationship analysis between the web metrics and conversions is conducted using 

correlation and regression analyses. The objective of the case study is to test if meaningful key 

metrics can be identified using the method proposed in this thesis. 

Findings and conclusions 

The case study conducted in this thesis identifies two key web metrics for the site under 

examination: search engine traffic and the rate of return visits. Search engine traffic was selected 

as a key metric based on the relationship analysis and the rate of return visits was chosen based 

on the examination of the visitor characteristics. The successful identification of relevant key 

metrics suggests that the framework proposed in this study can be used as the basis for web 

metrics analysis. Based on the results of the case study, this thesis proposes that in addition to 

aggregated metrics, segmented web metrics are needed in order to achieve a more diverse view 

of the web users. 

Keywords 
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Tommi Riihimäki 

ABSTRAKTI 

Tutkimuksen tavoitteet 

Verkkosivujen ainutlaatuinen mitattavuus mahdollistaa yksityiskohtaisen tiedon keräämisen 

verkkosivujen vierailijoiden käyttäytymisestä ja ominaisuuksista. Tämä tutkielma tarkastelee eri 

vierailijoiden käyttäytymiseen perustuvien web-mittareiden arvoa. Tarkoituksena on kehittää ja 

testata mallia verkkosivujen kehittäjien kannalta arvokkaimpien avainmittarien löytämiseen. 

Avainmittarien odotetaan sisältävän kaikista hyödyllisintä ja merkityksellisintä tietoa sivujen 

käyttäjistä. Web-mittarien arvoa arvioidaan tarkastelemalla mittarien yhteyttä verkkosivujen 

konversioihin. Tämä tutkielma ehdottaa myös keinoja, miten web-mittareita voidaan analysoida 

tärkeiden ominaisuuksien paljastamiseksi vierailijoista ja miten web-mittareita voidaan 

hyödyntää verkkosivujen eri osa-alueiden tehokkuuden arvioimisessa. 

Kirjallisuuskatsaus ja metodologia 

Tämä tutkielma pohjautuu web-analytiikkaan. Tutkielma esittää uuden aikaisempaan alan 

tutkimukseen perustuvan mallin web-mittarien analyysin roolista verkkosivujen kehityksessä. 

Malli muodostaa pohjan tutkielmassa toteutetulle tapaustutkimukselle. Tapaustutkimus 

tarkastelee yhden yrityksen verkkosivuja seuraamalla neljäätoista eri web-mittaria kuuden 

kuukauden ajan. Web-mittareiden ja konversioiden yhteyttä tarkastellaan korrelaatio- ja 

regressioanalyysillä. Tutkielman tarkoituksena on testata, onko tutkielmassa esitettyä mallia 

käyttämällä mahdollista löytää merkitseviä avainmittareita. 

Tulokset ja päätelmät 

Tutkielmassa toteutettu tapaustutkimus identifioi kaksi avainmittaria tutkitulle verkkosivulle: 

hakukoneiden tuottama liikenteen määrä ja palaavien vierailujen suhde uusiin vierailuihin. 

Hakukoneiden tuottaman liikenteen määrän valinta avain-mittariksi perustuu suhdeanalyysin ja 

palaavien vierailujen suhteen valinta perustuu vierailijoiden ominaisuuksien tarkasteluun. 

Olennaisten avainmittarien löytäminen viittaa siihen, että tutkielmassa esitettyä mallia voidaan 

käyttää web-mittarien analyysin pohjana. Tutkielma esittää tapaustutkimuksen tulosten 

perusteella, että laajemman käyttäjäkuvan saamiseksi kokonaismittarien lisäksi tulee seurata 

myös segmentoituja mittareita. 

Avainsanat 

Web-analytiikka, web-mittarit, käyttäjäseuranta  
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1. INTRODUCTION 

The Internet presence of companies has become a crucial instrument of corporate communication 

and electronic business (Fasel and Zumstein, 2009). Web has become the leading influence in 

consumer purchasing choices and the most used source of information (Fleishman-Hillard, 2012). 

With the growing importance of the Internet, the monitoring and optimization of websites and 

online marketing have become vital tasks for corporations (Fasel and Zumstein, 2009). A 

company website is an important branding tool and provides direct benefits in terms of e-

commerce sales and indirect benefits in terms of offering information and services to various 

stakeholders (Welling and White, 2006). The potential benefits of e-commerce websites are 

widely accepted but companies lack systematic and comprehensive methods for measuring and 

quantifying these benefits (Merwe and Bekker, 2003). 

From a supplement media for other channels, corporate websites have risen as an important 

business channel in their own term and for many companies websites have become the most 

important channel to reach out for their customers (Phippen et al., 2004). In many ways, 

corporate websites are unique in comparison to other channels. Unlike other media, like 

television or newspapers, web is highly measurable (Tonkien et al., 2010). Every click, every 

visit, and every page view can be counted and companies have access to massive amounts of 

visitor data. Multiple tools, both free and commercial, have made the recording of website users’ 

behavior fast and easy. Web analytics, the monitoring and evaluation of website usage, has 

emerged as an active field of research within business intelligence (Chen et al., 2012). 

The large amounts of raw user data have introduced another problem: it has become difficult to 

identify and separate important information from less meaningful data (Phippen et al., 2004). 

The diverse nature of different websites has further complicated the problem. A website of a 

public library may have very different objectives compared with an online retailer. It is 

challenging to say what kind of visitor behavior is the most beneficial: should a visitor view as 

many different pages as possible and see a lot of site content or would it be better that a site visit 

is fast and efficient? Despise all the available tools and data, the evaluation of website success is 

still often based on subjective views and opinions (Kaushik, 2010). Many organizations lack the 
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tools to objective evaluate the performance of their websites. Especially with business-to-

business websites that are not generating any direct sales, demonstrating success and return-on-

investment has been cited as the top challenge in website management (Weitz and Rosenthal, 

2010). 

This thesis is proposing a new framework for the role of web metrics analysis in website 

development. The thesis is conducting a case study to test if the framework can be used to 

discover meaningful information about website visitors that can be utilized in website 

development and evaluation. The case study evaluates the value of different web metrics by 

examining their relationships towards website conversions. The web metrics are also analyzed to 

see what kind of visitor characteristics the metrics can reveal. The objective of the web metrics 

analysis is to identify a set of key web metrics. The key metrics are expected to contain the most 

useful information about the site visitors and about the website itself. 

1.1 Web analytics 

Web Analytics Association (2008) defines web analytics as the “measurement, collection, 

analysis and reporting of Internet data for the purposes of understanding and optimizing Web 

usage”. Web analytics takes advantage of the unique measurability of web sites. Web analytics 

attempts to gain understanding about website visitors and use this knowledge to improve the 

effectiveness of websites.  

The field of web analytics got started in the early 1990s when public web began to expand 

(Cooper, 2012). During the past twenty years, web analytics has become a vital part of website 

development. From the top 500 retail websites, 91% are implementing web analytics to gather 

information about site users (Hamel, 2012). In spite of being used by practitioners already for 

two decades, Buckin and Sismeiro (2009) are stating that web analytics is still in the early 

growth phase of its life cycle. The field keeps evolving and more advanced methods are 

continuously introduced. 

When an Internet user enters a certain website, her actions and behavior on the site can be 

monitored and recorded by the site owners. Web browsing is based on the exchange of 

information between a visitor’s web browser and a host web server. Different tools and 
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techniques exist to gather and compile this information exchange. Web analytics tools like 

Google Analytics have offered ways to all kinds of organization to implement web analytics, no 

matter their size or resources. 

According to Nakatani and Chuang (2011), web analytics is used to “understand online 

customers and their behaviors, design actions influential to them, and ultimately foster behaviors 

beneficial to the business and achieve the organization’s goal.” Nakatani and Chuang emphasize 

that the goal of web analytics is not just to optimize web pages; the ultimate goal is to support 

the achievement of overall objectives of an organization. As Internet presence of corporations is 

automatically expected, many companies have set up their websites without clear goals or 

strategy, just to fulfill the need to establish online presence (Welling and White, 2006). Web 

analytics can help companies to fully define the purpose and objectives of their websites. 

1.2 Benefits of web analytics 

The use of web analytics has many potential benefits. Having access to information about the site 

users helps site developers to make appropriate decisions about the website. The more 

knowledge available about the visitors, the easier it is to satisfy their needs. Phippen et al. (2004) 

are stating that web analytics is crucial to the success of websites. Based on their study, 

companies that are adopting web analytics are reaping multiple benefits and finding invaluable 

information about their customers. 

Web analytics has a powerful capability of providing extensive and comprehensive statistics 

about users’ behavior on websites (Wang et al., 2011). Web analytics can offer increased website 

visibility and greater user satisfaction (Plaza, 2010). Measurement of website usage provides a 

valuable source of customer-centric information about the popularity of a site (Budd, 2012). Web 

analytics is important for e-commerce websites aimed for consumers but also important for 

business-to-business websites. Wilson (2010) is stating that a visit to a website is an important 

component of the buyer-seller relationship. The behavior of visitors needs attention so that a 

website can become a more productive source of customer leads, customer satisfaction, 

purchase-related activities, and brand equity. Web analytics can be used to understand visitors’ 

website usage and navigation patterns and to provide B2B marketing managers with an insightful 
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mechanism for improving website performance (Wilson, 2010). Web analytics plays a vital part 

of website performance evaluation by offering objective information about the visitor behavior. 

(Kaushik, 2010) 

Web analytics tools provide site owners a number of web metrics that depict users’ activities on 

websites. The tool can tell how many users visited a site during a certain time period, what pages 

did they view, what kind of media they consumed, what kind of material they downloaded, et 

cetera (Wang et al., 2011). Ghandour et al. (2010) examined the relationship between web 

metrics and financial performance. The study found many significant positive correlations 

between website usage and financial performance. Companies with perceived  success  in  their  

website  usage were also successful when evaluated with financial metrics. 

1.3 Challenges of web analytics 

Web analytics tools enable the collection of very detailed information about the visitors, 

including the exact amount of time spend on a certain page, the physical location of a visitor, and 

the full navigation path of a user. However, is has proven to be difficult to make broadly 

accepted conclusions about the raw visitor data offered by the tools. Phippen et al. (2004) are 

saying that “Over time, businesses have begun to find the use of basic metrics such as hits and 

pages views to be woefully inadequate for assessing the success of Websites, due to the fact that 

their simplistic and ambiguous nature can induce misleading conclusions.”  

Kaushik (2010) gives the following example: any web analytics tool will show you what pages 

on your site are most frequently visited. But based on pure clickstream data, it is difficult to say 

if these pages really have the content that the visitors are the most interested in. The reason for 

frequent views might just be a misleading navigation system or unbalanced search engine 

optimization for different pages. What is further complicating the problem is the diversity of 

website visitors. Websites are serving multiple stakeholder groups at the same time, different 

groups having different reasons for visiting a site. Wang et al. (2011) are stating that the average 

behavior of all site visitors can sometimes be misleading. 

Welling and White (2006) conducted 25 interviews with companies of different sizes. Only one 

of the companies present in the study was attempting to connect website usage with sales or 
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other business goals. The authors state that most companies are doing a poor job of measuring 

the performance of their websites. Also Cooper (2012) states that there is significant under-

exploitation with the possibilities that web analytics can provide. 

Plaza (2010) is saying that web analytics efforts often offer too broad and non-strategic 

information. Colleting and identifying relevant information can be very cumbersome and time 

consuming. But Plaza is stating that “However, the adoption of key metrics can contribute to 

reducing time and costs of finding relevant information about a website’s performance.” Wang et 

al. (2011) are saying that fewer studies have been conducted to examine the relationship among 

various metrics. The authors state that the interpretation of web metrics may be oversimplified 

when the effect of intervening variables is not considered. Web metrics should not be examined 

separately but together with other metrics. 

1.4 Definitions 

This chapter defines the most important terms used in this thesis. At first, the most basic 

components and aspects of websites are defined. The definitions in this chapter are taken from 

Web Analytics Association (2008). After the basic terms, web metrics are shortly discussed. At 

the end of this chapter, the concept website conversion is defined. 

1.4.1 Basic terms 

A website consists of multiple pages. A page is a definable unit of content in web that can be 

separated from other pages. Based on the definition, content like flash animations and media files 

may also be defined as pages even though they differ from traditional pages. A visit is an 

interaction, by an individual, with a website consisting of viewing one or more pages. A single 

visitor can open multiple visits that occur during different times. If a visitor has not visited the 

site before, the visit he will conduct is called a new visit. If a visitor has been on the site before, 

his visit is called a return visit. In this thesis, the word user is used as a synonym for a visitor. 

(Web Analytics Association, 2008) 

Clickstream data is the primary data source for web analytics. Clickstream data refers to the data 

collected from users’ activities and behavior on the site (Web Analytics Association, 2008). 

Every click and interaction on the site become clickstream data that can be recorded with 
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different tools. Clickstream data includes for example the total number of the visitors, the 

number of page views of all separate pages, the popularity of different traffic sources, and all the 

product purchasing information from online shops. It is important to remember that clickstream 

data does not have to be the only data source for web analytics. Other data sources can include 

for example visitor surveys and questionnaires (Kaushik, 2007).  

A traffic source is the origin or the source for a visit (Web Analytics Association, 2008). Every 

visit has an origin. Traffic sources are usually divided into three groups: search engines, referrals 

or links from another sites, and direct visits of typing the site URL directly to a browser or 

opening a bookmark. Following traffic sources is important because it tells about a site’s 

visibility with search engines and can reveal important partner organizations or affiliate websites 

(Wang et al., 2011). 

Search engine optimization (SEO) means influencing a website’s ranking with search engines. 

The objective is to make a site’s ranking as high as possible when a search engine user is making 

a search with certain key words related to the site. SEO is crucial for any website that wishes to 

attract large numbers of visitors. Web metrics can be used the measure the efficiency of SEO 

efforts. (Evans, 2007) 

1.4.2 Web metrics 

The metrics that are generated from clickstream data are called web metrics. Some typical web 

metrics include the amount of new visitors during a certain period and the average number of 

page views by visitors. Different web metrics reveal different aspects of visitors’ behavior in a 

website. 

Web Analytics Association (2008) defines three different types of web metrics: counts, ratios, 

and KPIs. A count is the basic unit of measure, a single number. For example, the total number 

of visits is a count. A ratio is typically a count divided by another count. For example, the 

average number of page views per visit is a ratio. KPI (key performance indicator) is a count or a 

ratio that is infused with business strategy and provides meaningful information.  

A web metric can be aggregated, segmented, or individual. An aggregated metric relates to the 

total site traffic for a certain period of time. A segmented metric is a subset of the site traffic for 
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a defined period of time that is filtered in some way, for example based on the visitor type like 

new visits or return visits. An individual metric relates to the activity of a single visitor for a 

defined period of time. (Web Analytics Association, 2008) 

1.4.3 Conversions 

Welling and White (2006) defines website performance as the extent to which a website supports 

a company to achieve its business objectives, whether they be financial, behavioral, or strategic. 

Potts (2007) is saying that websites have been traditionally built to facilitate sales but their role 

has evolved to include functions like customer support, value-adding services, and information 

sharing to stakeholders such as government agencies and investors. In order to objectively 

evaluate the achieving of the overall objectives, the objectives should be broken down into more 

specific goals a company wants its visitors to complete while visiting a website. 

A conversion happens when a visitor is completing a specific target action of a website (Web 

Analytics Association, 2008). A conversion can be for example the ordering a product from an 

online shop, viewing a specific page, or downloading promotional material. The target actions 

are called conversion goals. A website can have many different conversion goals. When a visitor 

completes at least one conversion goal, the visitor is said to be converted. 

Tonkin et al. (2010) divides conversion goals into two categories: transaction goals and 

engagement goals. Transactional goals have direct monetary value, like purchasing a product or 

becoming a lead by registering an account. Engagement goals relate to a threshold or interaction 

without direct monetary value, like viewing certain content or spending a desired amount of time 

on a site. The conversion goals must fully align with business objectives. Tonkin et al. (2010) 

present three properties for a good conversion goal: the goals need to be measurable, they need 

to correspond to bottom-line business objectives, and they can be connected to marketing efforts. 

In addition to the total number of conversions, a conversion rate can be calculated for a website. 

A conversion rate is calculated by dividing the number of converted visitors by the total number 

of site visitors. The rate of 100% means that every visitor is completing one or more conversion 

goals and 0% means that none of the visitors is converting. The total number of conversion can 
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be used as an indicator for the overall performance of a site while the conversion rate tells about 

the quality of a single visit. 

1.5 Research question 

A major challenge with web analytics has been the discovering of meaningful information 

among large amounts of data. This thesis proposes a framework for identifying relevant 

information by analyzing web metrics together with website conversions. The main research 

question for this thesis draws closely from the proposed importance of adopting key metrics by 

Plaza (2010) and the suggested need to analyze the connections between different metrics by 

Wang et al. (2011). The main research question for the thesis is: 

Which web metrics are most closely connected with website conversions? 

To test the proposed model, a case study that examines multiple web metrics collected from a 

corporate website is conducted. The case study evaluates which web metrics have the closest 

relationship with website conversions. By assessing the relationships with conversions, the 

objective is to identify a smaller set of key web metrics that are most valuable for the website 

developers to follow. The relationships are examined using correlation analysis and regression 

analysis.  

The supporting research question for the thesis is: 

What information different web metrics reveal about the characteristics of website visitors? 

In addition to the relationship analysis, this thesis proposes how web metrics can be analyzed to 

gain insights about the characteristics and behavior of website visitors. The case study conducted 

in this thesis will observe what kind of information different web metrics reveal about the 

visitors and about the website itself. The main and supporting research questions are closely 

related with each other. The web metrics with the closest connections to website conversions are 

expected to contain the most important and relevant information about the website visitors.  

1.6 Structure of the thesis 

This thesis is structured in the following way: after an introduction for the thesis, the field of web 

analytics is introduced. The potential benefits of web analytics and the current challenges of the 
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field are briefly discussed. After this, the most important terms used in the thesis are defined. 

Based on the current challenges of web analytics, the research question for this thesis is 

presented at the end of the first chapter. 

The second chapter is a literature review of the field of web analytics. At first, the most common 

general approaches towards website development and evaluation are discussed. After this, a set 

of previous studies dealing with web analytics and clickstream data are summarized. Previous 

frameworks for web analytics are discussed at the end of the second chapter. 

The third chapter introduces the new framework for the role of web metric analysis in website 

development and evaluation. Correlation and regression analyses, the methods used to evaluate 

the relationships between the web metrics and conversion, are shortly discussed. The chapter 

also introduces Google Analytics, the web analytics tool used to calculate the web metrics.  

The fourth chapter presents the case study conducted in this thesis. At first, the website examined 

in the study is introduced. After this, the web metrics examined in the study and the conversion 

goals of the website are discussed. At the end of the chapter, hypotheses for the relationships 

between different web metrics and conversions are presented. 

The fifth chapter presents the results of the case study. After a brief overview of the site usage, 

the web metrics are analyzed by groups. Based on the web metrics analysis, the key metrics for 

the website are identified. The fifth and last chapter presents the conclusion for the thesis. 

2. LITERATURE REVIEW 

This chapter gives a brief literature review on the field of web analytics. At the beginning of the 

chapter, the most common general approaches towards website development and evaluation are 

summarized. After this, a set of previous studies dealing with web analytics and clickstream data 

are discussed. The last part of the chapter introduces earlier frameworks for web analytics and 

some connections between the different models are identified. 
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2.1 Website development and evaluation 

The development and evaluation of websites has been a popular subject of academic studies. Tan 

et al. (2009) are stating that websites can be examined from many different viewpoints and site 

effectiveness assessment always depends on the perspective of the evaluator. The authors 

propose that website effectiveness can be evaluated from user-related, function-related, or 

investor-related view. User-related models concentrates on user-focused factors like website 

usability and customer satisfaction. Function-related models examine the architectural design 

and technical quality of websites. Investor–related models concentrate on the operational 

performance of websites and evaluate how well a website is supporting the overall business 

objectives of a company. 

Based on the examination of previous research, Chiou et al., (2010) proposes that there are three 

common approaches to website evaluation and development: IS-approach, marketing-approach, 

and combined-approach. Studies using IS-approach concentrates on technical factors, such as 

ease of use, visual design, information quality, and site navigation structure. Many studies with 

IS-approach present heuristics for good site design and user-friendly interface. IS-approach is 

closely linked with user-related and function-related models proposed by Tan et al. (2009). 

Marketing-approach focuses on the commercial aspect of websites and examines web users as 

potential customers. Marketing-approach is connected with investor-related view presented by 

Tan et al. (2009). Combined-approach studies combine both IS and marketing elements on their 

models. 

User-related view and IS-approach towards websites have been used for example in the study of 

website design elements by Palmer (2002). The study proposes five website design elements that 

are related to website usability. The elements include navigation structure, site content, 

interactivity, responsiveness, and loading time of a site. Website developers need to pay attention 

to all these design elements and find appropriate metrics to measure the performance of the 

elements. Investor-related view and marketing-approach are applied for example in the study of 

the decision-making process of online customers by Soonsawad (2013). The study examines the 

relationship between website components and the customer decision processes. The objective is 

to gain understanding how to turn site visitors into purchasers. 
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Tan et al. (2009) states that the IS success model of DeLone and McLean (1992) has been often 

used as a theoretical background for website evaluation studies. For example, Schaupp et al. 

(2009) presents a model of website success that is an extension of the original IS success model. 

The model presents three elements (subjective norms, information quality, and system quality) 

that are related to two different website success measures (individual impacts and website 

satisfaction). Other common theoretical frameworks include the Technology Acceptance Model 

(TAM) by Davis (1989) and the field of human-computer interaction (HCI). These theoretical 

backgrounds are connected more closely with the IS-approach of website development. The 

studies with marketing-approach draws more from the field of marketing than information 

system science. For example, the 4S web-marketing mix model by Constantinides (2002) is 

based on the 4Ps (product, price, place, and promotion) marketing mix by Borden (1964). The 

four dimensions of the web-marketing mix by Constantinides are scope (includes strategy and 

objectives), site (contains website browsing experience), synergy (includes integration with other 

marketing channels), and system (contains the technological aspects of a website). 

No matter which approach or viewpoint is applied towards website development and evaluation, 

site developers need to objectively measure the effectiveness of chosen site elements. Web 

analytics can be used to measure both user-related, function-related, and investor-related factors. 

Web analytics can offer metrics that have a clear usability focus, such as the average time on 

page and the number of page views. It is also possible to produce metrics with technical focus 

like the average page loading time. Conversions play an essential part of web analytics. 

Conversions have a strong commercial focus and can be used to measure the success of 

marketing efforts and operational performance. 

2.2 Previous studies of web analytics 

Web analytics and clickstream data have been the focus of multiple studies. Bucklin and 

Sismeiro (2009) divides the studies of website usage behavior examined with clickstream data 

into three different research themes. The first research theme includes studies of how users 

browse and navigate within websites, how their behavior change when they visit a site multiple 

times, and how they respond to site design and structure. The second theme is about how 

clickstream data is used to evaluate online advertising methods, including banner advertising and 
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paid search results. The third research theme includes studies that examine how clickstream data 

can be used to analyze the behavior of online shoppers and how online purchases can be 

predicted. The literature review in this chapter will concentrate on the first theme, browsing 

behavior. 

Wang et al. (2011) used Google Analytics to examine an educational website. The objective of 

the study was to identify important behavior characteristics of different visitors. Based on the 

traffic sources, three visitor segments were created: search engine traffic, direct traffic, and 

referral traffic. The study also examined whether the users of the website behaved differently 

during weekdays and weekends. The study followed three web metrics: the number of visits, 

pages viewed per visit, and the average time on site. The study used the multivariate analysis of 

variance to examine the relationship between the web metrics, different traffic sources, and the 

day of the week. Significant differences with page views and time on site were discovered 

between visitors from different traffic sources. Visitors from direct traffic stayed a significantly 

longer time on the site and viewed more pages than visitors from other sources, especially during 

weekdays. Visitors acquired through search engines viewed the least amount of pages and spent 

the shortest amount of time on the site. In general, visitors viewed more pages and spent more 

time on the site during weekdays than during weekends. From the total site traffic, 60 percent 

was direct traffic. Based on the high portion of direct traffic and results from the relationship 

analysis, the study suggests that the site has a largely purposeful and loyal user-base. (Wang et 

al., 2011) 

Plaza (2009) used Google Analytics to examine different traffic sources for an academic website. 

When Wang et al. (2011) were using traffic sources only as a segmentation method, Plaza made 

use of web metrics to assess the effectiveness of the traffic sources. Plaza evaluated the 

effectiveness based on return visit behavior and the length of a visit. Based on the time series 

analysis of the study, return visitors navigate deeper into the website than new visitors. The study 

is stating that the more pages viewed and the more time spent on a site, the more valuable a visit 

is. Return visitors are hereby more desired than new visitors. The traffic source that nurtures the 

most return visits is the most effective source. For this particular website, most return visitors 

entered the site by typing the site’s URL directly to their browser or opening a bookmark, 
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making direct visits the most effective traffic source. The study recommends promoting direct 

site visits over the other traffic sources for the site. The study also noticed a relationship between 

bounce rate and return visits rate: the lower the bounce rate, the higher the rate of return visits. 

(Plaza, 2009) 

Pakkala et al. (2012) used Google Analytics to examine three food composition websites based 

on different European countries. The study period was five months. The study followed multiple 

web metrics, including, for example, the bounce rate, the depth of visit, the rate of return visits, 

and visitor loyalty. By analyzing the search engine keywords used to enter the sites and user 

amounts, the study discovered that the audience of the sites evolved from food composition 

oriented professionals towards more general audience. Based on the content, the study divided 

the pages of the sites into different groups and examined the number of page views and time 

spend on pages by groups. Even though the visitors viewed many navigation and search pages, 

the study proposes that navigation was not a problem on the sites because the time spent on these 

pages was low. Dividing pages into groups differs from the approach of Plaza (2009) who 

proposed that page stickiness is always a desired quality, no matter the page. The study states 

that access through search engines can be considered a good success indicator for the websites. 

Search engine traffic is clearly linked with site popularity. The study talks about the snowball 

effect with websites: the more traffic you have, the more traffic you will gain. (Pakkala et al., 

2012) 

Singh et al. (2011) used a set of fifteen web metrics to analyze a university website over a period 

of five months. The study focused on how to utilize web metrics to acquire as many visitors to 

the site as possible. Metrics like the number of page views, the number of files accessed, and 

number of entry pages were examined. The study identified the periods with the least amount of 

traffic and pointed out the need to find ways to acquire more visitors during the slow periods. 

The study also examined what are the most common exit pages (the page last visited by a visitor 

before leaving the site). It was proposed that these pages are driving away the visitors and efforts 

to improve the pages are needed. (Singh et al., 2011) 

Arendt and Wagner (2010) used Google Analytics to examine the usage of a university library 

website. The purpose was to study if and how clickstream data can be used in site redesign. 
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Based on the analysis of the most popular pages, the visibility of these pages within the site and 

especially on the front page was increased to make sure it is easy for the visitors to navigate to 

these popular pages. By analyzing user navigation paths, some of the links on the front page 

were discovered to be confusing. During the redesign, these links were made more distinct from 

each other. The study states that clickstream data “provided facts to assist in the decision-making 

process rather than relying on staff members’ opinions and conjecture alone”. The study also 

states that the collected data sometimes showed conflicting patterns between different metrics 

and utilizing these metrics with site redesign was challenging. Not all of the metrics used in the 

study were meaningful. The use of the site decreased sharply during academic break times but 

this information did not help to improve the site. (Arendt and Wagner, 2010) 

Chiang et al. (2010) examined how different web metrics are related to each other and to the 

amount of Web 2.0 features used on the sites under evaluation. The results of the study indicate 

that the increasing number of visitors will result in even more new and return visits. When a 

website becomes more popular, a single visitor is more likely to visit the site more frequently. 

This result is similar to the snowball effect proposed by Pakkala et al. (2012). The total number 

of visits was positively associated with the average number of page views: the more visits, the 

more page views by a single user. The average number of page views was in turn negatively 

related to the average time on page: the more page views, the shorter the time spent on pages. 

The study states that shorter time on pages implicates more efficient navigation structure and 

clear site content. Websites that provide an easy and fast browsing experience attract site visitors 

to navigate deeper. This is a contradiction towards the approach of Plaza (2009) who proposed 

that longer time on site is always more desired than short visits. The more Web 2.0 features, the 

higher the average page views and lower the average time spent on pages. Web 2.0 includes 

features like user reviews, blogs, video sharing, and social networking. The study underlines that 

it is crucial for especially smaller companies with less knows brands to continuously increase the 

visibility and popularity of their websites. (Chiang et al., 2010) 

Budd (2012) used Google Analytics to evaluate the effectiveness of a website by investigating 

different traffic sources. Unlike Plaza (2009) who evaluated the value of traffic sources based on 

the amount of return visits they generate, Budd linked traffic sources to website conversions and 
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investigated what is the most effective traffic source to achieve conversions. For the site 

examined in the study, Google search engine was the traffic source that produced the biggest 

number of total conversions but did not have the highest comparative conversion rate. Another 

search engine had much lower total amount of conversions but had significantly higher 

conversion rate. The author recommends concentrating on promoting the traffic sources with 

highest conversion rates. (Budd, 2012) 

Weitz and Rosenthal (2010) examined the value of a business-to-business website by analyzing 

the relationship of web metrics, like the number of visits and time per page, and financial 

measures, like sales, profits, and amount of goods sold. Data was examined over a period of 15-

months that included an email promotion campaign. The campaign drastically increased the 

number of visits but the study did not find a relationship between increasing visits and sales 

revenues. As the number of visits increased, the average page views and average time on site 

decreased. The average number of inquiries via website stayed the same. Based on the web 

metrics, the study states that the new visitors acquired through the campaign only took a quick 

look of the site, viewed a small number of pages, and did not complete any conversion goals of 

the site. (Weitz and Rosenthal, 2010) 

Wilson (2010) analyzed the user amounts and navigation paths of a B2B website by examining 

clickstream data. The purpose of the study was to examine if conversion rates can be improved 

by making certain changes to the site. The study conducted three field experiments by changing 

some aspects of the site and keeping other aspects the same. The changes included adding 

additional information, announcing free shipping in different parts of the site, improving in-site 

navigation, and reducing the steps in the checkout process. The study then examined how the 

changes affect the navigation paths towards conversions. By making these changes, the site 

owners were able to increase the conversion rate and to see which changes were the most 

effective. The study proposes that this demonstrates that clickstream data and a web analytics 

software provide a useful combination of tools that can be used to improve a site’s conversion 

rate and enhance the performance of B2B websites. (Wilson, 2010) 
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2.3 Frameworks for web analytics 

Figure 1 introduces the general framework of the major components of an online marketing 

system by Tonkin et al. (2012). The model emphasizes that a website does not exist in isolation 

but is part of an interconnecting system that is used to advance a company’s business goals. The 

purpose of web analytics is to measure and analyze all the key components of e-commerce in 

order to facilitate the achieving of the overall business objectives. 

 

Figure 1. The major components of an online marketing system (Tonkin et al., 2012) 

On the left side of the framework, there are eight inbound marketing channels. These channels 

represent ways for engaging with potential customers and attracting new visitors to the site. 

Websites are directly linked to these acquisition channels. Web analytics can be used to analyze 

the relationship between the channels and a website. With web analytics, it is possible to 

quantify the value of different channels and calculate measurements like return on investment. 

On the right side of the framework, there is the customer ecosystem, the virtuous cycle of 

acquiring new customers and converting them to repeat buyers. This ecosystem includes the two 

most important processes for analytical marketing: the conversion process and the post-sales 

process. The conversion process is about achieving the conversion goals of the site that are 
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directly linked with business objectives. The post-sales process includes the activities for 

maximizing repeat business. Strengthening the customer ecosystem by increasing the amount of 

repeat buyers and increasing the conversion rate of the visitors is a key value proposition of web 

analytics. (Tonkin et al., 2012) 

Figure 2 presents the Trinity approach by Kaushik (2007). The objective of the approach is to 

use web analytics to achieve actionable insights and metrics. Instead of mere reporting, the goal 

is to achieve genuine understanding about visitors that can drive strategic differentiation and 

sustainable competitive advantage. 

 

Figure 2. Trinity approach (Kaushik, 2007) 

The Trinity framework has three components, first component being behavior analysis. The 

main data source for behavior analysis is clickstream data but raw clickstream data of visitor 

behavior does not offer much information. However, when clickstream data is used for click 

density analysis, visitor segmentation, and identifying key metrics, it is possible to gain valuable 

understanding about visitor behavior. Second component, outcome analysis, is about how well 

the website is achieving its goals. Every website needs to have clearly defined objectives. For 

pure online retailers, outcomes can be measured with sales revenues or purchases per visit. For 

websites that are not generating any direct sales, outcomes can be the number of lead generated, 

customer problems solved, or the amount of product information shared. The achieving of these 
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objectives can be measured by conversions. Third component of the Trinity framework is 

experience analysis. The objective of experience analysis is to get into the heads of visitors and 

gain insight about the reasons for their actions and behavior. Behavior analysis is about what the 

visitors do while experience analysis is about why the visitors do the things they do. Experience 

analysis tools include for example visitor surveys, A/B testing methodology, and lab usability 

testing. (Kaushik, 2007) 

Both Tonkin et al. (2012) and Kaushik (2007) are connecting website usage with website 

conversions. In order to increase the number of conversions, understanding about the visitor 

behavior is needed. Both models are stating that conversions do not need to be transactional 

goals that are measured with financial measures. The conversion goals can also include 

engagement goals that are related to driving interest and awareness, for example the sharing of 

promotional material through a site. 

Zheng et al. (2012) approach web analytics and website performance using the concept of web 

attention. During the time of information overflow, a successful website needs to efficiently 

catch the attention of the site visitors. The authors present a framework in which website 

performance can be directly evaluated by examining different web metrics. 

.  

 

Figure 3. Levels of analysis & Five-dimensional model of web attention (Zheng et al., 2012) 
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The framework is based on five different levels of analysis: per market, per website, per visitor, 

per visit, and per page (Figure 3). Per visit is on the higher level than the per page because one 

visit can consists of multiple page views, per visitor is on the higher level on the hierarchy than 

per visit because one visitor can pay multiple visits to the site, et cetera. Based on the different 

levels of analysis, a framework of five-dimensional model of web attention is presented. The 

purpose of the framework is to present a comprehensive model that integrates the multiple 

dimensions of web usage. The model aims to serve as an effective tool for capturing the multiple 

dimensions of web attention and to distinguish and benchmark different websites by their 

performance across these dimensions. The model proposes five distinct dimensions of web 

attention: visibility, popularity, loyalty, depth, and stickiness. Each dimension tries to capture one 

level of analysis and each dimension can be measured with a certain web metric. Because of the 

complexity of online attention, none of the measures, when used independently, can provide a 

comprehensive view of a website usage website but a multidimensional model is needed. (Zheng 

et al., 2012) 

To evaluate the effectiveness of a website, Peacock (2002) presents a hierarchy of web user 

needs (Figure 4). Just like with the framework of Zheng et al. (2012), the hierarchy of web user 

needs proposes that website effectiveness can be evaluated by examining clickstream data. Many 

connections between these two models can be seen. The hierarchy of web user needs has four 

tiers that map a visitor’s navigation through a website. At each level, there are a set of log 

diagnostics (web metrics) which can be used to measure visitor satisfaction. 
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Figure 4. Hierarchy of web user needs (Peacock, 2002) 

Level 1 of the hierarchy is concerned with the traffic sources of a website. For this level, direct 

traffic, links to the site, and search engine traffic are analyzed together with the popularity of 

entry pages. The goal is to maximize the number of desired visitors. This level is closely 

connected with the dimensions of popularity and visibility by Zheng et al. (2012). Level 2 deals 

with the technical aspects of a site, including site loading speed and reliability when visited using 

different browsers. The objective is to make sure a site is working properly during every visit. 

Level 3 examines the efficiency of the internal navigation of a site. The goal is to make sure that 

the visitors will find the information they need fast and easy. The web metrics used for this level 

match with the dimensions of stickiness and depth by Zheng et al. (2012). Level 4 analyses the 

overall effectiveness of a website. When a visitor enters a site, he has some kind of need. The 

objective of a website is to satisfy that need. The model suggests that the correlation of the exit 

pages with the original referrer or search terms can be used to assess if the needs of a visitor have 

been achieved. For example, if a visitor entered the page using a search term “jobs” or through a 

link from a job listing website, it can be examined how fast the visitor found the careers section 

of the site and if the visitor was satisfied with the section. The visitor satisfaction and the 

dimension of loyalty by Zheng et al. (2012) share many similarities. (Peacock, 2002) 
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Figure 5 presents the framework of the relations between web and e-business metrics by Fasel 

and Zumstein (2009). The model is targeted especially for online retailers but can also be applied 

to other types of websites. This framework has many similarities with the previous models 

introduced in this chapter. 

 

Figure 5. The relations between web and e-business metrics (Fasel and Zumstein, 2009) 

The framework begins from the different traffic sources that lead to an entry page of a site. The 

traffic sources are associated with the inbound marketing channels of Tonkin et al. (2012) and 

with the first level of the hierarchy of web user needs by Peacock (2002). The traffic sources can 

be analyzed to see which of the channels are working the most efficiently. After an entry page, a 

visitor then navigates through a site and leaves from an exit page. If the entry page and the exit 

page are the same, this is measured by the bounce rate. Based on visitor behavior, different web 

metrics can be generated. Metrics include for example the number of visitors, the depth of a visit, 

the length of a visit, and visit frequency. The framework is utilizing the same web metrics that 

Zheng et al. (2012) is using to measure stickiness, depth, loyalty, and popularity. Based on the 

metrics, different ratios or rates can be calculated, the most important being the conversion rate. 

The framework proposes different KPIs that are more important than standard metrics, some 

being metrics and some being ratios. Web metrics and e-business metrics can be combined into 

KPIs. The mixing of these metrics can help to connect website objectives into overall business 

objectives. This focus on objectives is closely associated with the outcome analysis by Kaushik 
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(2007). These combined KPIs include, for example, online revenue per visit and online revenue 

per unique visitor. The framework also presents the navigation funnel for a product purchase, 

starting from a product page, then advancing to a shopping basket, and finally arriving at an 

order confirmation page. The steps of this navigation funnel can be analyzed with different ratios 

to see in which phase the visitors are dropping out of the funnel. (Fasel and Zumstein, 2009) 

Singh et al. (2011) presents a practical model for web analytics that concentrates on how 

organizations can implement web analytics in practice. Figure 6 presents the framework for web 

analytics process. The authors say that “web analytics is not a technology to produce reports; it 

is a process of virtuous cycle for website optimization.”  

 

Figure 6. Web analytics process (Singh et al., 2011) 

This framework proposes that three different teams are needed for efficient web analytics. The 

first team, web analytics tool administrator team, controls and uses the selected web analytics 

tools to collect and report the data collected of the website users’ behavior. The development 

team use the data provided by administrator team to analyze and understand website visitors. 

This analysis is the basis for the continuous development and improvement of a website. The 

server administrator team deploys new web pages and applications produced by the 

development team. The team makes sure that a website works fast and without any technical 

problems. (Singh et al., 2011) 
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3. RESEARCH FRAMEWORK AND METHODS 

This chapter presents the research framework, quantitative research methods, and research tools 

used in the thesis. At first, the new framework based on previous research is introduced. After 

this, correlation analysis and regressions analyses are briefly discussed. At the end of the chapter, 

web analytics tools are discussed in general and the web analytic tool used in this thesis, Google 

Analytics, is introduced. 

3.1 Framework for the study 

Figure 7 presents the research framework for the role of web metrics analysis in website 

development. The framework is used in the case study conducted in this thesis. The objective of 

the case study is to examine if this framework can be utilized to discover useful information 

about the website visitors and about the website itself. 

 

Figure 7. Research framework: The role of web metrics analysis in website development 
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Websites are subject to continuous development and evaluation. The objectives of a company’s 

website should be aligned with the overall business objectives of the company. When visitors 

enter a website, their actions on the site can be closely monitored. Based on the browsing 

behavior of visitors, different web metrics can be calculated. A common approach to analyze 

web metrics is to examine their connection with website conversions. For example, the 

frameworks by Tonkin et al. (2012), Fasel and Zumstein (2009), and Kaushik (2007) are linking 

visitor behavior to website conversions. Another approach to analyze web metrics is to examine 

what kind of characteristics the web metrics reveal about the visitors. For example, Plaza (2009), 

Pakkala et al. (2012), and Wang et al. (2011) used web metrics to examine various visitor types, 

to analyze their behavior, and to make conclusions what different visitor characteristics tell about 

the effectiveness of websites. The objective of both these approaches is to achieve relevant and 

useful information about the visitors that can be used for site development and site evaluation. 

The objective is also to gain insights about the visitors that can be used for sales and marketing 

purposes. The web metrics that reveal the most important information about site visitors and 

about a website itself can be considered the most valuable metrics. This thesis is concentrating 

on the central part of the framework, the web metrics analysis.  

3.2 Research methods 

The framework is evaluating the relationship between web metrics and website conversions. In 

statistics, two common methods of examining the relationship between two variables are 

correlation analysis and regression analysis. Correlation analysis can be mainly used to assess the 

strength of the relationship between different variables. Regression analysis can be used to assess 

if the values of some variable or variables can be used to predict the values of some other 

variable. 

3.2.1 Correlation analysis 

Correlation analysis can be used to assess the strength of the association between different 

variables. Correlation analysis also indicates the direction of the relationship, which can be 

positive or negative. Correlation analysis does not offer any indication if the values of one 

variable can be used to estimate the values of another variable. With correlation, there is no clear 
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independent or dependent variable. Being the most widely used index of correlation, Pearson 

product-moment correlation coefficient is chosen to be used in this thesis. The coefficient r can 

have a value between -1 and 1. 1 indicates perfect positive correlation and -1 indicates perfect 

negative correlation. A coefficient of zero indicates no linear relationship between the variables. 

(Kirk, 2008) 

3.2.2 Regression analysis 

The regression analysis examines if one or more independent variables (also called predicators) 

can be used to estimate the values of a dependent variable. If the values of only one predicator 

are used, the analysis is called simple regression, and if two or more predicators are used, the 

analysis is called multiple regression. Linear regression models assume that the relationship 

between each independent variable and dependent variable is linear. The objective of linear 

regression is to find the regression line of best fit. The line of best fit means the regression line 

that has the lowest discrepancy between the values given by the line and the actual values of the 

dependent variable. (Field, 2009) 

In this thesis, multiple linear regression is used. SPSS Statistics is used to calculate the 

regressions. In the study, the following information gained with regression analyses is presented: 

regression coefficient B-values, the standard error for coefficient B-values (SE B), the 

standardized beta (β) values, p-values of predicators, and the square of the multiple correlation 

coefficient (R2). The B-value tells how much the dependent variable changes if the independent 

variable increases by one unit. The standard error for the B-value (SE B) indicates to what extent 

the B-values will vary across different samples. The standardized β-value tells the number of 

standard deviations that the outcome will change as a result of one standard deviation change in 

the predictor. The values can be used to evaluate the importance of a predicator. Another 

variable to evaluate the importance of a variable is the p-value of a predicator. If the p-value is 

less than 0,05, the predicator has a genuine effect on the outcome. The value of R2 indicates how 

much of the variance in the outcome can be predicted from the independent variables. The value 

is between zero and one, one indication that 100% of the variance can be explained from the 

variables. (Field, 2009) 
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Multicollinearity means high intercorrelation between the independent variables themselves. 

High intercorrelation means that the variables contain the same information and using these 

variables together as predictors with multiple regression analysis is problematic. Strong 

correlation between the variables can have a large effect on the results of regression analysis so 

the possible multicollinearity must be taken account when using regression analysis. (Morgan et 

al., 2004) 

3.3 Research tools 

3.3.1 Web analytics tools 

Web analytics tools collect, process, and store clickstream data and present the data as 

meaningful information. Many different web analytics tools are available in the market, covering 

different price ranges and levels of sophistication. The market includes multiple free software 

which makes the threshold to start web analytics efforts low. Web analytics has become a 

standard practice for the retail industry and the popularity of web analytics tools keeps increasing 

(Hamel, 2012b). The four most popular solutions are Google Analytics, Adobe Analytics, IBM 

Digital Analytics, and WebTrends (Farina, 2013). Tonkin et al. (2010) are stating that web 

analytics tools can form the backbone of a company’s online measurement strategy and serve as 

the most important tool for understanding the performance of a website. 

There are multiple ways to collect clickstream data of visitor behavior. One way to classify web 

analytics tools is on the basis of data collection methods. Most common data collection methods 

are web server transaction log analysis and web page tagging. Web log analysis was one of the 

first ways to collect clickstream data. When a visitor’s browser requests a web page from a web 

server, the request-related data (requestor’s IP-address, time of visits, etc.) is recorded in a 

transaction log file. Web log analysis software can then be used to analyze the log file. Web page 

tagging collects data with invisible JavaScript code inserted in web pages. The code collects 

information about the visit and submits the data to a web data collection center or in-house 

database. The data is then integrated and reported through a web analytics tool. Page tagging is 

currently the most popular method for data collection. (Nakatani and Chuang, 2011) 
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3.3.2 Google Analytics 

Google Analytics (GA) is Google’s web analytics tool that became free for everyone to use in 

2006. Since its launch, GA has become very popular with both companies and non-profit 

organizations. From Fortune 500 companies, 63% are using Google Analytics (Farina, 2013). 

Google also offers a tool with additional features called Google Analytics Premium, which is 

available for an annual fee. GA is a web-based system that does not require any software 

installation. All the data is stored on Google’s own servers.  

Google Analytics can be used to calculate tens of different web metrics of site visitors. The tool 

can also be used to further analyze web metrics and to discover site visitor characteristics. GA 

can also record the website conversions. The tool does not record individual information about 

the visitors. The visitor data is aggregated and it is not possible to single out the behavior and 

characteristics of one user. The IP addresses of the visitors are not available, mainly due to 

potential issues with visitor privacy. 

 

Figure 8. Data collection method of Google Analytics (Tonkin et al., 2010) 

Figure 8 summarizes the data collection method of GA that is based on web tagging with Google 

Analytics Tracking Code (GATC). GATC consists of a string of JavaScript code that is placed 

on each page of the site. As a visitor’s browser loads a page, GATC is automatically executed 

and the tracking code request a file named ga.js from the nearest server of Google. This ga.js file 
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is a set of instructions that GA uses to track the visitors. After the ga.js file has been delivered to 

the browser, the second section of the tracking code begins to collect data about the visitor 

behavior and characteristics. Once all this information has been collected, the tracking code sets 

(or updates if the user has visited the site before) a number of cookies on the visitor’s browser. 

After the cookies have been set, GATC sends all the collected data back to the Google Analytics 

servers by requesting an invisible image file named __utm.gif. After receiving this request, GA 

servers stores the visitor data into data logs. (Tonkin et al., 2010) 

The results given by Google Analytics are not fully accurate. GA does not track visitors who 

have set their web browsers to block first-party cookies or disabled JavaScript. If a visitor 

removes the cookies from her web browser, she will appear as a new visitor next time when she 

visits the site. If a visitor uses a different browser or a different computer, he will appear as a 

different visitor. Not all the visitors of a website are human. Non-human visitors include 

different robots and crawlers that scan websites for various purposes. GA has ways to separate 

robots from human visitors but some visitors that GA identifies as human are actually robots. 

These challenges are not affecting only Google Analytics but other web analytics tools are facing 

the same difficulties. This thesis does not assess the potential inaccuracies with the collected 

clickstream data. The collected clickstream data is treated as it would be fully accurate and all 

the visitors are human visitors. (Tonkin et al., 2010) 

4. THE CASE STUDY 

This chapter introduces the case study conducted for this thesis. The objective of the case study 

is to test if the proposed framework for the role of web metrics analysis in website development 

can be used to identify relevant key web metrics. At the beginning of this chapter, the website 

examined in the study is introduced. After this, the methods for web metrics analysis used in the 

study are discussed. After the research methods, the web metrics and conversions goals chosen 

for the study are defined. Hypotheses for the connections between web metrics and conversions 

are presented at the end of this chapter. 



29 

 

4.1 Website examined in the study 

This study examines a website that offers second-hand telecommunications equipment used in 

wireless mobile phone networks. The equipment offered through the site can be used as spare 

parts or as expansion components for GSM and 3G networks. The target audience for the website 

is mobile phone operators of all sizes around the world. The main focus group is operators who 

are looking for an inexpensive way to expand their old networks while making large investments 

to new LTE networks. The site is also serving various resellers, brokers, and other companies 

who are offering used equipment to mobile operators. The site was launched during the latter 

half of 2012. 

The objective of the website is to promote the products offered and generate leads of potential 

customers. The site does not have an online shop and the objective of the website is not to make 

direct sales. The objective is to raise awareness of the company as a new supplier of used 

telecom equipment. The owner of the website is a mid-sized telecom asset management and 

consultancy company that is operating mainly in Southeast Asia but equipment sales are targeted 

to worldwide audience. 

The study examines the clickstream data about the visitors’ behavior during a period of six 

months, from the 1st of June 2013 until the end of November 2013. When the data collection 

period is only six months, possible seasonal and cyclical factors that can influence the behavior 

cannot be evaluated and thus not discussed in this thesis. During the study period, the website 

was under continuous development and new content was published rapidly especially during 

June, July, and August. 

4.2 Methods for web metrics analysis 

The case study follows the framework of the role of web metrics analysis in website 

development. The study concentrates on the central part of the framework, the web metrics 

analysis. The web metrics are analyzed from two different viewpoints. The first approach is to 

analyze the relationships between the chosen web metrics and website conversions. The closer 

the relationship, the more valuable the web metric is proposed to be. The web metric values and 

the amount of conversions are calculated on daily basis. It is possible to pair the daily values of 
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web metrics and the daily amount of conversions. This enables the use of correlation and 

regression analyses to evaluate the levels of relationships. The relationships of web metrics are 

examined towards the total number of conversions and towards the conversion rate. SPSS 

Statistics is used to conduct the analyses. The second approach is to use the web metrics to 

analyze the characteristics of visitors based on their browsing behavior. The metrics that contain 

the most meaningful characteristics are considered the most valuable. The analysis features of 

Google Analytics are used to examine the web metrics in greater detail. 

Based on the web metrics analysis, the goal is to identify a smaller set of key web metrics that 

are the most important for the site owners to follow. The key metrics are expected to contain the 

most valuable information about the site visitors and about the website itself. If relevant key web 

metrics can be identified for the site under examination in the case study, the proposed 

framework can be considered useful for organization trying to improve their websites. 

4.3 Web metrics and conversion goals 

A set of fourteen simple web metrics are chosen to be examined in the study. The metrics are 

calculated with Google Analytics. When selecting the web metrics, the criterion for the selection 

was to choose the most common metrics that are frequently used in web analytics study books 

and in academic research. The metrics include both counts and ratios. Table 1 lists and defines 

the web metrics examined in the study. The selected web metrics are compared towards the total 

number of conversions and towards the conversion rate. The website has three different 

conversion goals that are calculated together as the total number of conversions. Table 2 presents 

the conversion goals used for the site. 
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Table 1. The web metrics used in the study 

 

Table 2. The conversion goals of the website 

 

# Web Metric Definition Type

1 New Visits The number of visits conducted by visitors who visited the site the first time. Count

2 Return Visits
The number of visits conducted by visitors who have visited the site before.

New Visits + Return Visits = Total Number of Visits
Count

3
Rate of 

Return Visits

The rate of how many of the visits are return visits. 

Rate of Return Visits = Return Visits / Total Visits
Ratio

4
Average 

Page Views

The average number of pages viewed during a visit. 

The repeated views of a page by the same user are counted.
Ratio

5
Total 

Page Views

The total number of pages viewed. 

The repeated views of a page by the same user are counted.
Count

6
Unique 

Page Views
The number of visits during which the specified page was viewed at least once. Count

7
Average 

Time on Page
The average amount of time visitors spent viewing a single page. Ratio

8 Bounce Rate The percentage of single-page visits. Ratio

9
Search Engine 

Traffic
The number of visit generated by search engines. Count

10 Referral Traffic The number of visit generated by referrals or links from other web sites. Count

11 Direct Traffic
The number of visit occured when the site's URL is directly typed into 

a browser or a bookmark of the site is clicked.
Count

12
Impressions 

on Google

The number of times the site appeared on Google search results pages 

viewed by a user of Google search engine.
Count

13 Clicks on Google The number of clicks to the site on Google search results pages. Count

14
Average Position 

on Google
The average ranking of the site on Google search results pages. Ratio

# Conversion Goal Definition Type

1
Catalogues 

Downloaded

The number of visitors who downloaded at least one

 product catalogue during one day.
Count

2 RFQs Sent The number of Request For Quotations sent through the website. Count

3 Contact Forms Sent The number of contact forms sent through the website. Count
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Based on their resemblance, the web metrics are divided into five different groups (Figure 9). 

The groups are new and return visits, page views, time and bounce rate, traffic sources, and 

search engine optimization (SEO) metrics. All the groups contain three web metrics except the 

third group, time and bounce rate, which contains only two metrics. The case study will analyze 

the web metrics by groups. 

 

Figure 9. Web metrics by groups 

4.4 Hypothesis 

The relationships of the web metrics are examined towards the number of total conversions and 

the conversion rate. Some web metrics are expected to be correlated more closely with the total 

number of conversions and some more closely with the conversion rate. Clear differences with 

the correlations are expected between different web metrics. Only some of the metrics are 

expected to have a significant relationship with both the total number of conversions and the 

conversion rate. Multicollinearity is expected between the different web metrics used in this 

study so the potential intercorrelations between metrics need to be considered when conducting 

multiple regressions analyses. 

It is expected that the amounts of new visits and return visits are closely correlated with the total 

number of conversions: the more traffic on the site, the more conversions. It is not expected that 

there will be a strong relationship between traffic levels and the conversion rate. As the results 

by Budd (2012) are indicating, increasing amount of visits does not automatically mean that an 

average visitor will also complete conversion goals more often. However, a different scenario is 

also possible. Returning visitors have been said to be more valuable than new visitors (Plaza, 
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2009). It is possible that if the rate of return visits is increasing, the conversion rate will also 

increase. Based on the results of Chiang et al. (2010), if the number of total visits will increases, 

the rate of return visits is expected to increase. This would mean a positive relationship between 

total traffic levels and the conversion rate. 

The total number of page views and the unique page views are expected to be correlated with the 

total number of conversions. With the unique page views, the relationship is expected to be 

slightly stronger because unique content could be more valuable than content that is already seen 

by a visitor before. The average number of page views is expected to be correlated with the 

conversion rate. The framework of Zheng et al. (2012) proposes that average page views can be 

used to measure the depth of visits. The deeper an average visitor navigates to the site, the more 

likely he is expected to be converted. The average number of page views has also been criticized 

for having high potential of being misleading because of the different nature of websites 

(Kaushik, 2010). For some websites, relevant content is distributed on many different pages and 

many page views are preferred. But for some sites, an efficient visit that consists only of a few 

pages is desired. The study by Park and Chung (2009) proposed that the lower the number of 

page views, the more likely a user of a travel service website is to make a purchase. A visitor’s 

interest towards specific content means fewer page views and increased change for a visitor to be 

converted. 

The average time on page is expected to have a minor relationship with the total number of 

conversion and the conversion rate. Zheng et al. (2012) proposes that average time per page can 

be used to measure the stickiness of a site. The longer a visitor is viewing site content, the more 

likely he is expected to be converted. It is also possible that the opposite turns out to be true. 

Chiang et al. (2010) connected a shorter time on site with efficient site content and structure. The 

faster a visitor can find the information she needs, the more likely she is to be converted. This 

would mean that a small negative correlation would exist between the conversion rate and the 

average time on page. The bounce rate is expected to be strongly correlated with the conversion 

rate. According to Kaushik (2010), the bounce rate is a simple and instant measure of success. A 

high bounce rate is expected to be connected with a low conversion rate. 
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It is expected that search engine traffic is the most common traffic source and thus most closely 

correlated with the total number of conversions. It is expected that the number of visitors who 

are coming to the site directly is closely correlated with the conversion rate. Plaza (2009) and 

Wang et al. (2011) have stated that direct visits are more desired than visits through links or 

search engines. The visitors who come to the site directly have some previous knowledge of the 

site and they have a specific reason to visit the site.  

Impressions and clicks on Google search engine are expected to have strong positive correlation 

with the total number of conversion. These metrics are closely associated with search engine 

optimization. The framework of Tonkin et al. (2012) is stating SEO as one of the inbound 

marketing channels of driving site awareness. Better site visibility with search engines is 

expected to result in increased traffic. Jansen and Spink (2006) say that 73 percent of search 

engine users never look beyond the first page of search engine results so the average position on 

Google is expected to have a strong negative correlation with the total number of conversions. 

5. RESULTS OF THE CASE STUDY 

This chapter presents the results of the case study. At the beginning of the chapter, an overview 

of the site usage is given. After this, the fourteen web metrics are examined and their 

relationships towards the total number of conversions and towards the conversion rate are 

evaluated. The five groups of web metrics are examined one group at a time. Based on the web 

metrics analysis, the study identifies the key metrics that are the most valuable to follow. 

5.1 Overview of the site usage 

The data collection period was six months, from June 1st to November 30th, 2013. Figure 10 

presents an overview of the site visitors. The graph in the figure shows the daily number of total 

visits during the study period. The figure is taken from Google Analytics. The average number of 

monthly visits was increasing until October, which was the busiest month during the study 

period. The busiest day was November 14th with 120 visits. Compared with the potential world-

wide customer base, the amount of visits has remained modest. 
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Figure 10. Audience overview, June 1st to November 30th (Google Analytics) 

Figure 11 presents the daily amount of conversions during the study period. Just like with the 

daily visits, the average number of monthly conversions was growing until October. The day 

with the most conversions was November 12th with 80 conversions. Figure 12 presents the daily 

conversion rate during the study period. There was an increasing trend with the conversion rate 

until October, the average conversion rate of October being 67%.  

 

Figure 11. Daily amount of conversions, June 1st to November 30th 
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Figure 12. Daily conversion rate, June 1st to November 30th 

Table 3. Monthly visits and conversions 

 

The rising amount of conversions means that the site has been fulfilling its objectives more 

effectively, i.e., the performance of the site has been increasing. The site has successfully 

increased both the total number of conversions and the conversion rate. Based on the conversions, 

it can be said that the site owners have been developing the site in a right direction. However, 

only following the amount of conversions does not offer insights why has the amount decreased 

or increased. It is necessary to examine how the visitor behavior has changed and what kind of 

behavior is most closely associated with conversions. 

It is worrying to see that during the last month of the study period, both the total number of 

conversions and the conversion rate were lower than during the previous month. This breaks the 

promising trend of increasing conversions. The lower numbers might be just normal monthly 

fluctuation and the increasing trend will continue during the next month. However, if the 

conversions keep decreasing also during the following months, it is a cause for serious concern. 

There is a large difference with the daily number of visits depending on the weekday of the visit 

(Table 4). The number of visits during Saturdays and Sundays is clearly lower than during other 

MONTH # OF TOTAL VISITS # OF CONVERSIONS CONVERSION RATE

JUNE 722 318 46 %

JULY 1113 510 50 %

AUGUST 1246 639 53 %

SEPTEMBER 1990 1252 66 %

OCTOBER 2285 1490 67 %

NOVEMBER 2162 1339 65 %
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days. During the busiest day (Wednesday) the average number of visits is three times higher as 

during the slowest day (Sunday). Also the average number of conversions is lower during 

weekends. The fluctuations with the conversion rate are much more random than with the total 

amount of conversions. Sundays have the largest average conversion rate and Wednesdays have 

the lowest. The fluctuation remains high during the whole study period. The differences with the 

user amounts raise the question if different kinds of users visit the site between weekends and 

weekdays. The site is targeted to corporate buyers who might be visiting the page mainly on 

workdays. The study will also examine the data with Saturdays and Sundays excluded to see 

whether any differences with the full data could be found. 

Table 4. Site traffic during different weekdays 

 

5.2 The results for web metrics analysis 

Table 5 presents the Pearson correlations between the web metrics and conversions. The 

significant correlations between the web metrics and conversions are highlighted. Most of the 

web metrics are significantly correlated with the total number of conversions. But only one of the 

metrics, impressions on Google, is significantly correlated with the conversion rate. Because of 

the large differences with the amounts of visits during weekdays and weekends, correlations are 

also calculated with data that excludes Saturdays and Sundays. Correlations for working days 

only are presented in Table 6. There are clear differences with the correlations whether weekends 

are included or excluded, especially with the conversion rate. When weekends are excluded, 

seven of the web metrics are significantly correlated with the conversion rate. Differences with 

correlations mean that the behavior of visitors varies between weekdays and weekends. 

WEEKDAY
AVERAGE # OF 

DAILY VISITS

AVERAGE # OF 

DAILY CONVERSIONS

AVERAGE DAILY 

CONVERSION RATE

MONDAY 54 35 62 %

TUESDAY 67 40 56 %

WEDNESDAY 68 37 52 %

THURSDAY 65 36 54 %

FRIDAY 62 33 52 %

SATURDAY 27 16 61 %

SUNDAY 23 16 67 %
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Table 5. Pearson correlations: web metrics and conversions (incl. weekends) 
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Table 6. Pearson correlations: web metrics and conversions (excl. weekends) 
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5.2.1 New and return visits 

A large majority, 77% of the visits to the site are new visits (Figure 13). Figure 14 presents the 

daily number of new and return visits. Traffic levels for both visit types have been increasing 

during the data collection period. The amount of new visits and return visits have a strong 

positive correlation with each other.  The percentage of return visits (the rate of return visits) has 

stayed low. The rate has fluctuated between 15-35%, without any clear increasing or decreasing 

trend.  

 

Figure 13. Total amount of new and return visits 

 

Figure 14. Daily number of new and return visits 

As expected, the amounts of both new visits and return visits are strongly positively correlated 

with the total number of conversions (Table 7). The more traffic there has been, the higher the 

total number of conversions. However, the relationship with the conversion rate is unclear. When 

Saturdays and Sundays are included, there is no correlation between new and return visits and 

the conversion rate. When weekends are excluded, there exists small positive correlations 

between traffic levels and the conversion rate, the correlation being stronger with new visits. The 
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rate of return visits is not correlated with the total number of conversions. When weekends are 

excluded, a small but significant negative correlation between the rate of return visits and the 

conversion rate is visible. 

Table 7. Pearson correlations: visits and conversions 

 

The relationship between new and return visits and the total number of conversions seems clear. 

The rate of return visits is not connected with the total amount of conversions. The relationship 

of these metrics with the conversion rate is much more uncertain. Regression analysis is used to 

see if any additional information can be achieved. Table 8 shows the results of multiple 

regression analysis when new visits and the rate of return visits are analyzed towards the 

conversion rate. The amount of return visits is excluded from the analysis because the metric is 

strongly correlated with both new visits and the rate of return visits. 

Table 8. Regression analysis: new visits, rate of return visits, & conversion rate (excl. weekends) 

 

 

TOTAL 

CONVERSIONS

CONVERSION 

RATE

TOTAL 

CONVERSIONS

CONVERSION 

RATE

NEW VISITS ,896
** ,068 ,878

**
,335

**

RETURN VISITS ,807
** ,017 ,750

**
,209

*

RATE OF 

RETURN VISITS
,068 -,100 -,026 -,226**

PEARSON 

CORRELATIONS

SATURDAYS AND SUNDAYS 

INCLUDED

SATURDAYS AND SUNDAYS 

EXCLUDED

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed). 

INDEPEND. VARIABLE B SE B β

CONSTANT ,536 ,066

NEW VISITS ,003 ,001 ,310**

RATE OF 

RETURN VISITS
-,476 ,216 -,183*

DEPENDENT VARIABLE: CONVERSION RATE

Note: R
2 
= ,145   *p < ,05  **p < ,001



42 

 

The results suggest that it is important to follow both new visits and return visits because of their 

strong correlation with the total number of conversions. Based on the regression analysis, the 

amount of new visits can also be used as a predicator towards the conversion rate. Both 

correlation and regression analyses suggest that the rate of return visits has a negative 

relationship with the conversion rate. This contradicts with the hypothesis that expected a 

positive relationship with the conversion rate. New visitors seem to be more likely to convert 

than returning visitors, making new visitors a more valuable visitor type. Table 9 shows the 

bounce rate, the average page views, and the average time on page for new and return visits. 

Plaza (2009) stated that returning visitors are more valuable because they spend a longer time on 

the site and view more pages. Just like Plaza proposed, the return visitors did spend a longer time 

on the site and viewed more pages but this has not facilitated return visitors to convert more 

often than new visitors. 

Table 9. Behavior characteristics of new and returning users (Google Analytics) 

 

The reason for contrary results between this study and previous research might be that the site 

examined in this study has not been able to attract a large enough group of loyal visitors who 

frequently visit the site. Figure 15 shows the count of visits based on how many times a visitor 

has visited the site before. The majority of the users visited the site only once and most of the 

return visits are from users who have visited the site just one time before. Only 14% of the 

visitors have visited the site three times or more. It seems that a larger group of loyal visitors is 

needed in order to see the differences between new and returning users more clearly. 
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Figure 15. Count of visits by all visitors (Google Analytics) 

5.2.2 Page views 

The number of page views has increased closely together with the increased site traffic. The total 

number of page views and the unique number of page views are closely correlated with new the 

amount of new visits and return visits. The total page views and the unique page views are also 

almost perfectly positively correlated with each other. Unlike the total amounts of page views, 

the average number of page views has not increased during the study period. The daily average 

page views per visit has been around three pages and no trend in any direction is visible (Figure 

16). 

 

Figure 16. Daily average number of page views during a visit (Google Analytics) 
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The total and unique page views are both closely positive correlated with the amount of total 

conversions (Table 10). When weekends are excluded, there exists small but still significant 

positive correlations also with the conversion rate. The average number of page views does not 

have any correlation with conversions, no matter if weekends are included or excluded. 

Table 10. Pearson correlations: page views and conversions 

 

Even though total page views and unique page views are closely correlated with the total number 

of conversions, it seems that following these metrics might not be very useful. Following the 

page view metrics in addition to new and return visits does not offer much additional information. 

Based on the hypothesis, unique page views would be more closely correlated with conversions 

but the results suggest that there are no differences between the total number of page views and 

the unique page views. The views of unique pages do not seem to be more valuable than the 

views of content that has already been seen by a user. 

The average number of page views per visit does not have any correlation with conversions. It 

seems that the daily average value does not offer much information but it cannot be said that this 

metric would be fully meaningless. Using the average number of page views as a method for 

visitor segmentation could reveal relevant information about the site. Figure 17 shows the 

number of page views for all the visits. Most of the visits consists of only one or two page views. 

Following the behavior and navigation paths of visitors who navigate more deeply into the site 

might offer information about why most of the visitors leave the site just after one or two pages 

but some visitors keep browsing on the site. 

TOTAL 

CONVERSIONS

CONVERSION 

RATE

TOTAL 

CONVERSIONS

CONVERSION 

RATE

TOTAL PAGE VIEWS ,824
** ,066 ,789

**
,274

**

UNIQUE PAGE VIEWS ,849
** ,058 ,815

**
,272

**

AVERAGE PAGE VIEWS 

/ VISIT
-,021 ,010 ,032 -,056

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed). 

PEARSON 

CORRELATIONS

SATURDAYS AND SUNDAYS 

INCLUDED

SATURDAYS AND SUNDAYS 

EXCLUDED
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Figure 17. Depth of visits (Google Analytics) 

Table 11 shows the ten most popular landing pages of the site. There are differences with the 

average pages per visit based on what was the first page that a visitor viewed. The average 

number of page views per visit can be used to compare the different pages of the site and 

examine their differences. The most popular landing page is the main page for the site (number 1 

on the table). Despite being the most popular landing page, it is interesting to see that only 10% 

of the visitors enter the site through the main page. It is vital to make sure that visitors can easily 

begin to navigate through the site also from other pages than from the main page. 
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Table 11. Ten most popular landing pages of the site (Google Analytics) 

 

It could be useful to examine the page views of single pages to see if any large fluctuations can 

be found. Figure 18 shows the daily number of page views for one sample page. The daily page 

views for this page have been constantly changing and a few spikes of daily views are clearly 

visible. Examining if large increases or decreases with the page views of a single page will have 

a connection with conversions might reveal information about the value of a page. If a 

connection towards conversions can be found, this indicates that a page has valuable content. 

 

Figure 18. Daily page views for a sample page (Google Analytics) 
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5.2.3 Time and bounce rate 

Figure 19 shows the daily average time on page and the daily average bounce rate. No clear 

trends with these metrics are visible. During the study period, the average bounce rate was 54%. 

The average time on page fluctuated notably during the first months but got more stable during 

the latter half of the study period, daily average for the last three months being three minutes on 

page. 

 

Figure 19. Daily average time on page and bounce rate (Google Analytics) 

The average time on page and the bounce rate are negatively correlated with each other. Both 

metrics are correlated with the average number of page views, the average time on page 

positively and the bounce rate negatively. The average time on page and the bounce rate are not 

correlated with the total number of conversions nor the conversion rate (Table 12). As expected, 

regression analysis proposes that neither of these metrics can be used as predictors for the total 

number of conversions (Table 13). The p-values are under 0,05 but the value of R2 is only 0,045 

which means the amount of variance that these metrics can explain is minimal. 



48 

 

Table 12. Pearson correlations: average time on page, bounce rate, & conversions 

 

Table 13. Regression analysis: average time on page, bounce rate, & conversions (excl. weekends) 

 

It seems that following the average values of these web metrics does not offer valuable insights 

about the visitor behavior. The results contradict with the hypothesis that expected both the 

average time on page and the bounce rate to be correlated with the conversion rate. Even though 

no relationships with conversions are visible with the average values, one cannot make a 

conclusion that these metrics would be meaningless. Table 14 shows the ten most visited pages 

on the site. Examining the average time on page and the bounce rate at page level reveals 

differences with these metrics between different pages. Comparing pages with low bounce rates 

or low average time on page to pages with high bounce rates or high average time on page might 

reveal insights how to improve the pages. 

TOTAL 

CONVERSIONS

CONVERSION 

RATE

TOTAL 

CONVERSIONS

CONVERSION 

RATE

AVERAGE TIME 

ON PAGE
,012 ,105 ,124 ,083

BOUNCE RATE -,008 -,097 ,088 ,081

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed). 

PEARSON 

CORRELATIONS

SATURDAYS AND SUNDAYS 

INCLUDED

SATURDAYS AND SUNDAYS 

EXCLUDED

INDEPEND. VARIABLE B SE B β

CONSTANT -,491 16,142

AVERAGE TIME

 ON PAGE
,061 ,028 ,224*

BOUNCE RATE 49,762 24,963 ,200*

DEPENDENT VARIABLE: TOTAL AMOUNT OF CONVERSIONS

Note: R
2 
= ,045    *p < ,05



49 

 

Table 14. Ten most visited pages on site (Google Analytics) 

 

When comparing the pages, it is important to remember that not all the pages are similar. For the 

main page of a site, the average time on page might not be so relevant but following the bounce 

rate could be crucial. It is important that the visitors will not see only the front page but also 

navigate deeper to the site to see the actual site content. However, the visitors do not need to 

spend a long time on the front page. For pages with detailed product information, the bounce rate 

can be high if the average time on page is longer. If a visitor arrives at the exact page he was 

looking for and spends a long time examining the product details, a page is efficiently designed 

even if the visitor will only see this one page. Pages can be grouped to different segments based 

on their content and different key metrics can be defined for different segments. 

Figure 20 shows the number of visits grouped by the visit duration. The majority of the visits 

lasted only ten seconds or less. Examining monthly data reveals a positive correlation with the 

visits that lasted 60 seconds or more and the total number of monthly conversion. Segmenting 

the visits by duration and examining the browsing patterns of different segments might reveal 

usable information about the site visitors. 



50 

 

 

Figure 20. Visits grouped by visit duration (Google Analytics) 

5.2.4 Traffic sources 

Figure 21 shows the number of visits from different traffic sources during the data collection 

period. Search engines were the most common source for visits, generating 7 406 visits or 78% 

of the visits. Referral traffic generated 9% of the visits and 13% of the visitors arrived to the site 

directly. All the traffic sources are positively correlated with each other. As traffic has increased 

from one source, so has the number of visits from other sources. 

 

Figure 21. Number of visits by traffic sources 

Table 15 shows the acquisition channels that have generated the most visits. Google search 

engine was the dominant source for visits, generating 73% of the visits to the site. The amount of 

visits from other search engines is marginal, only five percent of the visits. Google.com is 

generating the most referral traffic. Referrals from Google.com mean traffic generated by the 
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services of Google other than the search engine, for example Google Groups, Google Base, or 

Google Maps. 

Table 15. Most common acquisition channels (Google Analytics) 

 

As expected, the rising number of visits from all the traffic sources is closely positively 

correlated with the total number of conversions (Table 16). The correlation between search 

engine traffic and total conversions is especially strong. When Saturdays and Sundays are 

included, there is no positive correlation between any of the traffic sources and the conversion 

rate. It is surprising to see that there exists a small negative correlation between direct traffic and 

the conversion rate. This means that the more direct visits to the site, the less likely an average 

visitor has been to convert. When weekends are excluded, search engine traffic and referral 

traffic are positively correlated also with the conversion rate. Direct traffic does not have a 

significant positive nor negative correlation towards the conversion rate. 
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Table 16. Pearson correlations: traffic sources and conversions 

 

Table 17 shows the regression analysis results when the traffic sources are analyzed at the same 

time towards the conversion rate. The results suggest that search engine is a good predicator, 

direct traffic is a minor predicator, and referral traffic cannot be used as a predicator for the 

conversion rate. The β-value of direct traffic is negative, which suggest a negative relationship 

between direct traffic and the conversion rate.  Because of the intercorrelation between the traffic 

sources, these results should be observed with caution. 

Table 17. Regression analysis: traffic sources and conversion rate (excl. weekends) 

 

Regression analysis for the traffic sources is also done towards the total number of conversions 

(Table 18). The results suggest that search engine traffic is the dominant predictor. Referral 

traffic is a minor predictor and direct traffic cannot be used to predict the total amount of 

TOTAL 

CONVERSIONS

CONVERSION 

RATE

TOTAL 

CONVERSIONS

CONVERSION 

RATE

SEARCH ENGINE 

TRAFFIC
,912** ,098 ,902** ,368**

REFERRAL TRAFFIC ,613** ,045 ,590** ,194*

DIRECT TRAFFIC ,472** -,166* ,353** -,054

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed). 

SATURDAYS AND SUNDAYS 

INCLUDED

SATURDAYS AND SUNDAYS 

EXCLUDEDPEARSON 

CORRELATIONS

INDEPEND. VARIABLE B SE B β

CONSTANT ,433 ,036

SEARCH ENGINE 

TRAFFIC
,004 ,001 ,459***

REFERRAL TRAFFIC ,0002 ,004 ,005*

DIRECT TRAFFIC -,008 ,003 -,237**

DEPENDENT VARIABLE: CONVERSION RATE

Note: R
2 
=0,183   *p > ,1  **p < ,01  ***p < ,001
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conversions. Because of the intercorrelation, too wide-ranging conclusions can’t be made from 

this analysis. 

Table 18. Regression analysis: traffic sources and total amount of conversions (incl. weekends) 

 

The hypothesis predicted that direct visits would be the most valuable visit type. The results 

gained from the analysis contradict with the hypothesis. The results suggest that search engine 

traffic is the most valuable source for visits, direct traffic being the least valuable traffic source. 

Table 19 presents visitor behavior characteristics grouped by traffic sources. Small differences 

exist between the groups. Referral traffic has the lowest bounce rate and the longest average visit 

duration. 

Table 19. Visitor behavior grouped by traffic sources (Google Analytics) 

 

The amount of referral traffic to the site is very low. Referral traffic has potential to be an 

important source of visits but currently the website owners have not been able to establish 

INDEPEND. VARIABLE B SE B β

CONSTANT -1,255 1,208

SEARCH ENGINE 

TRAFFIC
,723 ,034 ,854***

REFERRAL TRAFFIC ,612 ,184 ,123**

DIRECT TRAFFIC -,098 ,137 -,025*

DEPENDENT VARIABLE: TOTAL AMOUNT OF CONVERSIONS

Note: R
2 
= ,842   *p > ,1  **p < ,01  ***p < ,001
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effective links to the site. Examining the referral sources does not reveal any trading websites or 

partner sites that would be generating steady referral traffic to the site. Realizing the unused 

potential of referral traffic could have a major impact on the total number of conversions. 

Establishing links on the correct partner sites could also increase the conversion rate 

considerably. 

5.2.5 Search engine optimization metrics 

The search engine optimization (SEO) web metrics include impressions, clicks, and the average 

position on Google search engine. Impressions and clicks are closely correlated with the amounts 

of new and return visits. Figure 22 shows the amount of daily clicks from Google search engine 

starting from the 5th of July. As expected, all the SEO metrics are strongly correlated with search 

engine traffic. The SEO metrics are also closely correlated with each other. 

 

Figure 22. Daily clicks from Google search engine, July 5th to November 30th 

Impressions, clicks, and the average position are strongly correlated with the total number of 

conversions (Table 20). When weekends are included, only impressions are significantly 

correlated with the conversion rate. When weekends are excluded, all the SEO metrics are 

significantly correlated with the conversion rate. As expected, the correlation with average 

position is negative. 
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Table 20. Pearson correlations: SEO metrics and conversions 

 

Table 21 shows the regression analysis results when impressions and the average position are 

analyzed together towards the conversion rate. The results suggest that the amount of 

impressions can be used to predict the conversion rate. The average position does not seem to be 

a significant predictor. Table 22 shows the results when clicks and the average position are 

analyzed together towards the conversion rate. Based on the results, clicks can be used as a 

predicator. The results for the average position are similar with the previous analysis: the average 

position does not predict the conversion rate. Impressions and clicks are not analyzed at the same 

time because of the high intercorrelation between the metrics.  

Table 21. Regression analysis: impressions, average position, & conversion rate (excl. weekends) 

 

TOTAL 

CONVERSIONS

CONVERSION 

RATE

TOTAL 

CONVERSIONS

CONVERSION 

RATE

IMPRESSIONS ,879
**

,212
**

,839
**

,474
**

CLICKS ,879
** ,146 ,822

**
,463

**

AVERAGE POSITION -,292
** -,069 -,503

**
-,285

**

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed). 

PEARSON 

CORRELATIONS

SATURDAYS AND SUNDAYS 

INCLUDED

SATURDAYS AND SUNDAYS 

EXCLUDED

INDEPEND. VARIABLE B SE B β

CONSTANT ,553 ,109

IMPRESSIONS ,00005 ,00001 ,414**

AVERAGE POSITION -,002 ,001 -,142*

Note: R
2 
= ,241   *p > ,1  **p < ,001

DEPENDENT VARIABLE: CONVERSION RATE
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Table 22. Regression analysis: clicks, average position, & conversion rate (excl. weekends) 

 

The results suggest that following the SEO metrics is valuable. As discussed in the previous 

chapter, search engines (consisting almost solely of Google search engine) were the most 

common traffic source for the site. It is safe to say that the improved search engine visibility has 

been one of the main reasons for the increased number of total conversions. The SEO efforts of 

the website owners have been effective during the first half of the data collection period. But 

since August, the amount of impressions or clicks have not been increasing any longer. It seems 

that the previous SEO efforts do not work any longer and there is a need for new kinds of 

methods. 

Search engine optimization can be said to contain two elements: optimizing the site for search 

engines’ algorithms and optimizing the site for human visitors. The increasing amount of 

impressions and better site ranking means that the site is better optimized for search engines. The 

increasing amount of clicks indicates that the page is better optimized for human visitors. Figure 

23 shows the daily average click through rate (CTR) for the site. CTR is calculated by dividing 

clicks with impressions. The ratio indicates how effectively the page previews on search engines 

are attracting visitors. CTR can also be used to compare how well different pages are optimized. 

Table 23 presents the impressions, clicks, and CTR for the ten most popular landing pages 

during November. The previews of pages with low CTR needs to be improved. It can also be 

useful to examine pages with the highest click through rates and check the amount of 

impressions for these pages. If a page has high CTR and low number of impressions, it means 

that the page has attractive content but the page is poorly optimized for the algorithms of search 

engines. 

INDEPEND. VARIABLE B SE B β

CONSTANT ,521 ,120

CLICKS ,001 ,0004 ,407**

AVERAGE POSITION -,001 ,001 -,108*

DEPENDENT VARIABLE: CONVERSION RATE

Note: R
2 
= ,223   *p > ,1  **p < ,001
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Figure 23. Daily click through rate, July 5th to November 30th 

Table 23. Ten most popular landing pages during November (Google Analytics) 

 

Increased search engine visibility does not automatically lead to a higher conversion rate. The 

relationship between impressions and the conversion rate also indicates if the site is optimized 

for the correct key words. A website should not just try to maximize the amount of visitors but 

maximize the amount of desired visitors who are interested in the content of the site and more 

likely to convert. A close relationship between the SEO metrics and the conversion rate can 

indicate that SEO efforts for a website are implemented for the correct key words. 
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5.3 The key web metrics 

The case study aims to identify a set of key web metrics that are the most valuable for the site 

developers to follow. Table 24 divides the fourteen web metrics followed in the study into four 

different groups based on their relationship with the total number of conversion and the 

conversion rate. The relationship with the total number of conversion indicates how closely a 

metric is connected with the overall performance of the site. The relationship with the conversion 

rate indicates if a metric is associated with the quality of a single visit.  

Table 24. The relationships between web metrics and conversions 

 

The web metrics in Group 1 (search engine traffic, impressions on Google, and clicks on Google) 

have a strong connection with both the total number of conversions and the conversion rate. 

Group 2 includes web metrics (new visits, total page views, and unique page views) that have a 

strong connection with the total number of conversions and a minor connection with the 

conversion rate. Group 3 includes metrics (return visits, referral traffic, direct traffic, the average 

Group Web Metric Total Number of Conversions Conversion Rate

1 Search Engine Traffic Strong connection Strong connection

1 Impressions on Google Strong connection Strong connection

1 Clicks on Google Strong connection Strong connection

2 New Visits Strong connection Minor connection

2 Total Page Views Strong connection Minor connection

2 Unique Page Views Strong connection Minor connection

3 Return Visits Strong connection No connection

3 Referral Traffic Strong connection No connection

3 Direct Traffic Minor connection Minor connection

3 Average Position on Google Minor connection Minor connection

3 Rate of Return Visits No connection Minor connection

4 Average Page Views No connection No connection

4 Average Time on Page No connection No connection

4 Bounce Rate No connection No connection
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position on Google, and the rate of return visits) that have either a strong connection with the 

total number of conversions and no connection with the conversion rate or a minor connection 

with both the total amount of conversions and the conversion rate. The web metrics in Group 4 

(average page views, average time on page, and bounce rate), do not have any noticeable 

connection with the conversions. 

Based on the level of the relationship towards the conversions, the web metrics in Group 1 and 

Group 2 seem to be the most valuable to follow. However, all of the web metrics in these groups 

are strongly correlated with each other. There is a risk that the metrics do not contain enough 

unique information from each other for a detailed daily monitoring and analysis of the values of 

all these metrics to be constructive. Intercorrelated metrics are likely to reveal information only 

about some characteristics of the visitors and do not give a comprehensive representation of 

visitor behavior. It is not desired to identify key metrics that have a close connection with each 

other. 

Based on the relationship analysis and characteristics of the website visitors, two key web 

metrics for the site are proposed: search engine traffic and the rate of return visits. 

Based on the results of the relationship analysis, search engine traffic is selected as the first key 

metric. Search engines have been the dominant traffic source for the site. Any large changes with 

this metric will surely have a vast effect on the total number of conversions and smaller but still 

significant effect on the conversion rate. Just by looking at this metric, the site developers can 

check if everything is as usual with the site. Following the trends of this metric tells in what 

direction the usage of the site is going. Search engine traffic is also closely connected with 

search engine optimization and a good indicator how well the SEO efforts are working, even 

though the actual SEO metrics reveal more details about the different aspects of the optimization. 

Because of the intercorrelation between the metrics with the closest connections to conversions, 

only one key metric is selected based on the relationship analysis. 

The second key metric, the rate of return visits, is not strongly correlated with conversions. The 

selection of this key metric is not based on the relationship analysis but the metric is chosen 

based on the examination of visitor characteristics. The rate of return visits is representing a 

major weakness with the website. The site needs to start attracting loyal visitors who frequently 
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visit the site. The objective of the site is to become a valuable marketing channel that shares 

information about the new product offerings with both new and old customers. This objective is 

not achieved if only a few visitors will visit the site multiple times. The site owners need to pay 

close attention to this metric. Changes to the site are necessary and the site developers need to 

follow how the changes will affect the rate of return visits. 

6. CONCLUSION 

6.1 Summary of the thesis 

The main research question for the thesis was to examine which web metrics are most closely 

connected with website conversions. The supporting research question was to analyze what 

information different web metrics reveal about the characteristics of website visitors. The 

research questions formed the basis for the new research framework presented in this thesis. The 

research framework for the role of web metrics in website development is used in the case study 

conducted in this thesis. The objective of the case study was to test if the new model can be 

utilized to identify meaningful information about website visitors that can be used for website 

development and marketing purposes. The case study aims to identify a set of key web metrics 

that contain the most valuable information about the site visitors and about the website itself. 

The case study of this thesis examined fourteen different web metrics collected from one 

corporate website during a period of six months. The study evaluated the relationships of the web 

metrics towards website conversions using correlation and regression analyses. The relationships 

were evaluated towards both the total number of conversions and the conversion rate. The study 

also examined what kind of characteristics the web metrics reveal about the site visitors and used 

the web metrics to evaluate the effectiveness of different aspects of the website. 

The case study proposed two key web metrics for the site under examination, search engine 

traffic and the rate of return visits. Search engine traffic was selected based on the relationship 

analysis of the study. The study identified many strongly intercorrelated web metrics with strong 

relationships to conversions. Search engine traffic was selected among these metrics for its 

capability to cover many aspects about the site, like the amount of site traffic and search engine 
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optimization. The rate of return visits was selected based on the examination of user 

characteristics. This metric represent one of the major weaknesses of the site, the low amount of 

return visits. The site developers need to start following this metric closely. 

In addition to poor visitor loyalty, the web metric analysis revealed many other important visitor 

characteristics. The behavior of the users who visited the site during weekdays was different 

from the users who visited the site during weekends (Saturdays and Sundays). It is likely that 

different kind of visitors visit the site between weekdays and weekends. The site stickiness and 

the depth of the visits were low. Most of the visitors viewed only one or two pages and spent less 

than 60 seconds on the site. Google search engine was the dominant source of visits. The fact 

that one channel is generating almost all of the visits can be risky. Any changes with Google’s 

search algorithm may have a large effect towards the site’s traffic levels and the number of 

conversions. The use of referrals or links to attract visitors is severely underutilized. It is 

important for the site developers to diversify the site’s inbound channels. 

6.2 Practical implications 

The successful identification of relevant key web metrics suggests that the framework presented 

in this thesis can be used by organizations to reveal useful information about website visitors. 

The web metrics analysis that includes evaluating the relationships between web metrics and 

conversions and discovering important characteristics from detailed metric examination seems to 

be a useful method for companies trying to improve their websites. It is not necessary to select 

the same web metrics and conversion goals that are examined in this thesis to utilize the 

proposed framework. Organizations can choose any metrics and conversions and still use the 

same methods for web metrics analysis that are used in this thesis. 

Google Analytics proved to be an efficient tool for calculating and following web metrics. The 

time it took to configure Google Analytics to run with the website was minimal and exporting 

the data from the tool into SPSS Statistics went without problems. The features of Google 

Analytics made it possible to examine the web metrics in more detail and reveal valuable visitor 

characteristics. 
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The web metrics used in the case study are all aggregated metrics that are calculated for the 

whole visitor base. It seems that the aggregated values of many metrics, like the average time on 

page, offer too general information about the visitors. Aggregated web metrics also seem to be 

often correlated with each other which indicates that the metrics are containing the same kind of 

information. In order to find useful insights with these metrics, the metrics need to be calculated 

for visitor segments. Segmented metrics have potential to offer a more diverse view of the web 

users. Visitor segmentation can be done by combining different web metrics. For example, site 

developers can calculate the amount of return visitors acquired through referrals who spend more 

than five minutes on the site and then calculate the conversion rate for this segment. The 

objective is to identify segments with meaningful differences and examine if the conversion rates 

differ between the segments. It can also be helpful to try to identify segments with the highest 

and lowest conversion rates. By examining the connections towards conversions, it is possible to 

make statements about the value of different customers. When segments are identified, the next 

step is to try to transform the behavior characteristics revealed by web metrics into real-life 

customer features. 

6.3 Limitations and further research 

A major limitation to this thesis is that the clickstream data for the case study is collected only 

from one website. For other sites, the most valuable web metrics are likely to be different. Every 

website needs to define their own key metrics. The method used in this thesis to find the key web 

metrics can be applied to any website. 

Another limitation is that this thesis does not examine the relationship between the selected 

conversion goals and the overall business objectives of the company that runs the website. To 

confirm if relevant conversion goals are selected, the relationship between the amount of 

conversions could be compared with financial measures, like sales volumes or profits. But for 

websites that are not generating any direct sales, this comparison can be problematic. It can be 

difficult to isolate the effect of a website from other marketing channels and from other factors 

on the overall profitability of a company. Despite the challenges with choosing the correct 

conversions, it is still necessary to have conversion goals for a website. Conversions are the only 

objective way to measure website success and performance. 
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In this thesis, all the data of website usage was collected from clickstream data. Also the 

previous research in web analytics is concentrated on clickstream data and web metrics. It is 

important to remember that there are also other ways to collect data about websites and their 

visitors. It is possible to combine web metrics with customer surveys and experiments. One 

interesting research subject might to examine the clickstream data collected from a group of 

volunteer visitors and then ask their reasons and motives for their browsing behavior. Connecting 

web metrics with other data sources can give more information about the value of the web 

metrics. 
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