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Abstract 
 

National accounting data is subject to revisions which can severely hamper the macroeconomic forecasting 

based on this data. Two forecast models which are both based on the same sample data but employ data that 

is revised to different degree (i.e. data is fetched in two distinct points in time) could produce considerably 

different forecasts. Revisions also impede forecast accuracy evaluation and might lead to spurious 

judgements regarding the predictive power of a particular forecasting model.  

In this paper, I investigate the effect of data revisions on forecasting models, forecasting results, and 

forecasting accuracy when the forecasts are based on linear univariate models. In the theoretical analysis, I 

demonstrate the mechanisms through which the data revisions influence forecasting with these models. The 

empirical analysis is based on the Finnish real-time quarterly real GDP. 

The empirical analysis is comprised of three parts. First, I investigate the randomness of the data revisions 

(known as news vs. noise characterization). Next, I analyze how the moment in time in which the forecasts 

are generated, i.e. a data vintages, influences GDP forecasting outcomes, models, and accuracy. Lastly, I 

devise a Monte Carlo experiment in order to study the interconnection between the randomness of the 

revisions, forecasting model data sample, and realizations. The comparison of the forecasting models is done 

by contrasting real-time data based models with the latest available data models. As realizations I use the 

initial publications, the first anniversary publications and latest available values. 

The revision process of the Finnish real-time quarterly GDP is characterized by almost pure news. Inter alia, 

the variance of revisions increases in time, the revisions are correlated with later publications, and the 

relative proportion of the systematic dependencies between the first and latter publication is negligible. 

Moreover, the revisions do not exhibit statistically significant biases. The revisions exhibit significant 

influence on forecasting simulations as a whole. However, statistically significant deviations between 

forecasting models were observed only using sub-sample data with early observations. Monte Carlo analysis 

suggested that by measuring the characterization of the revision process it could be possible to select the 

model vintage depending on the realization to be forecasted. The simulations produced consistent and 

exclusive dependencies between the revision process, forecasting models, and realizations for individual 

forecasting horizons as well as for horizon averages with all the parameter scenarios. 
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Tiivistelmä 
 

Kansantaloudellisen tilinpidon data tarkentuu ajan kuluessa, mikä voi huomattavasti vaikeuttaa 

makrotaloudellisten ennusteiden laadintaa. Kaksi ennustusmallia, jotka perustuvat samaan otosdataan, mutta 

joissa otokset ovat eriasteisesti tarkentuneita (ts. otosdatat ovat kerätty eri ajankohtina), voivat tuottaa 

merkittävästi erilaisia ennusteita. Datan tarkentuminen (datarevisiot) hankaloittaa myös ennustus-

tarkkuuksien arviointia ja saattaa johtaa harhaanjohtaviin tulkintoihin ennustusmallien tehokkuudesta.  

Tässä tutkimuksessa tutkin datarevisioiden vaikutusta ennustusmalleihin, -tuloksiin ja -tarkkuuksiin 

lineaaristen yhden muuttujan mallien avulla. Esitän teoreettisessa analyysissä, kuinka datarevisiot vaikuttavat 

ennustamiseen ko. mallien kautta. Empiiriset analyysit perustuvat suomalaiseen reaaliaikaiseen, 

reaaliarvoiseen bruttokansantuotteen kvartaalidataan.  

Empiirinen analyysi koostuu kolmesta kokonaisuudesta. Tarkastelen ensin datarevisioiden satunnaisuutta 

(tunnetaan kirjallisuudessa news- ja noise-erotteluna). Seuraavaksi analysoin ennusteajankohdan eli 

datavuosikertojen vaikutusta BKT:n ennustustuloksiin, -malleihin ja -tarkkuuksiin. Viimeiseksi laadin Monte 

Carlo -simulaation, jossa tarkastelen revisioiden satunnaisuuden, ennustusmallin dataotosten ja 

realisaatioiden vuorovaikutuksia. Ennustusmalleja vertaillessa verrataan keskenään reaaliaikaiseen 

dataotokseen ja viimeisimpään dataan perustuvia malleja. Realisaatioina käytetään ensimmäisiä julkaisuja, 

vuosi ensimmäisen julkaisun jälkeen julkaistuja arvoja sekä viimeisimmän datavuosikerran arvoja.  

Suomalaisen reaaliaikaisen kvartaali-BKT:n tarkentuminen on lähes puhdas news-prosessi. Mm. revisioiden 

varianssi kasvaa suhteessa aikaan, revisiot korreloivat myöhempien julkaisuiden kanssa ja aiempien ja 

myöhempien julkaisuiden välinen systemaattisten poikkeavuuksien suhteellinen osuus on lähes olematon. 

Revisioissa ei myöskään ole havaittavissa tilastollisesti merkitseviä vinoumia. Ennustussimulaatioissa 

revisioilla havaittiin olevan kokonaisuudessaan merkittävä vaikutus ennustuksiin. Ennustustarkkuus-

vertailuissa tilastollisesti merkitseviä poikkeavuuksia mallien välille syntyi kuitenkin vain käyttämällä 

viimeisimpään datavuosikertaan nähden selvästi aiempaa osaotosta. Monte Carlo -analyysi antoi viitteitä 

siitä, että revisioiden satunnaisuutta arvioimalla voidaan valita ennustusmallin otosdata riippuen 

ennustettavasta arvosta. Simulaatiot tuottivat johdonmukaisia ja poissulkevia riippuvuussuhteita 

revisioprosessien, ennustusmallien ja realisaatioiden välille sekä yksittäisille ennustushorisonteille ja 

keskiarvoisesti kaikille kokeessa käytetyille parametreille.    
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1. Introduction 
 

“A basic requirement for successful economic forecasting is accurate data” (Cole, 1969, p. 1). 

However, the economic datasets at hand for the forecasters are hardly ever complete or definitely 

accurate. The data from national accounting is subject to indefinite years of refinements and the 

finalized data could be unavailable even for decades. Even though the vista of future developments 

in key national accounting variables such as growth of real GDP, interest rates, inflation, or 

unemployment can be perceived to be of interest to all economic agents varying from a central 

banker deciding on the conduct of monetary policy to a house buyer contemplating on withdrawing 

a mortgage, the economists have had difficulties forecasting these variables with eminent precision. 

Real-time forecasts are, especially, easily impaired by the data revisions which can be relatively 

large and completely random. 

In presence of data revisions when selecting the most appropriate data for construction of a 

forecasting model and forecast accuracy evaluation, the forecasters are faced with several 

dilemmas. Is the new forecasting model more optimal compared to the preceding models or is the 

predictive performance solely a merit of better data? Is a particular forecast an attempt to predict the 

ultimate value of a given variable (which may or may not be available after years to come) or are 

we interested in what the real-time perception of the economic activity is? The forecasts which are 

based on today’s best available data, i.e. the current vintage data, are inclined to have an edge on the 

forecasts based on real-time data due to the series of refinements which inherently reduce the 

measurement errors and contain information on the definitional and benchmark changes. But, in 

real life the decision makers in many cases need a model that performs best in real-time and the 

handicap arising from the unknown future refinements should be accounted for in order to avoid 

judging forecasts based on spurious predictive power. Diebold and Rudebusch (1991) provide a 

tailor-made example: the US index of leading economic indicators had been perceived to be an 

exquisite predictor for recessions. However, it turns out the index had only ex ante predictive power 

and, after the elimination of the data revisions, which would not have been available to the 

forecaster in real-time, the index had no forecasting value. 
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Figure 1.1: Visualization how the development of the year-on-year Finnish real GDP growth rates during 1997Q1-2009Q1 would 

have looked to an observer in 2010Q1 and 2015Q2. 

 

The GDP forecasts are also impaired by the ambiguity of the data generating process. The economic 

theory does not define the functional form of data generating process for the key macroeconomic 

variables, and hence the choice for the forecasting model is somewhat discretionary. In this thesis, I 

will examine macroeconomic forecasting in the presence of data revision within linear univariate 

model, i.e. 𝐴𝑅𝐼𝑀𝐴-model, context. Linear univariate forecasting models have in multiple studies 

exhibited relatively unsurpassable predictive power and have been used as a benchmark in many of 

the forecasting evaluations.  

The choice of the forecasting model data sample should also be evaluated from the statistical 

perspective. Theoretically, knowledge of the revision process could facilitate the model and data 

selection. If the revisions process is mainly comprised of unpredictable, variance increasing “news” 

the forecaster makes a mistake by constructing their real-time model with best available data. This 

data imposes an implicit contradictory assumption that unpredictable events would be predictable. 

On the contrary, revisions characterized by “noise” can be modelled a priori and should be 

accounted for in the data which the forecasting model is based on.  

The purpose of this thesis is to examine, both theoretically and empirically, how the forecasting 

outcomes are affected by the selections of different data vintages for the forecasting model 
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construction. Moreover, I will study the performance of these models with respect to different 

actuals of varying real-time degree. Additionally, I will analyze whether news and noise separation 

can assist in selecting the most appropriate data vintage for the forecasting model construction. The 

central research question for this thesis reads: 

What is the impact of data revisions on forecasting outcomes when forecasting the Finnish GDP 

with linear univariate models? What are the implications of using different data vintages when 

revisions are characterized by news or noise for forecast model construction? 

The central question is analyzed with a series of sub-research questions to facilitate the 

understanding of the conclusions of this thesis: 

1. What are the data revisions and vintages? What type of characteristic are observed in the 

revision process and between the data vintages? 

2. What are the theoretical and empirical effects of data revisions and their properties on 

forecasting? 

3. How do different data vintages affect the forecasts within 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) framework? 

4. What type of statistical properties do the Finnish real GDP growth data revisions exhibit? 

 

I will first introduce the key concepts, discuss the relevant literature, and study 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) 

forecasting in the presence of data revisions theoretically in Chapters 2 and 3. The theoretical 

analysis is universal and in many aspects applicable for different macroeconomic time series 

variables such as inflation and interest rates which are also typical real-time forecasting objectives. 

In order to gain empirical relevance, I will study the Finnish data revision process and construct a 

series of forecasting simulations for the Finnish real GDP growth in Chapters 4 and 5. These results 

cannot necessarily be generalized as such due to varying properties of different time series and the 

differences in revision processes between the statistical institutions collecting the data.  

2. Theoretical framework 
 

Data revisions are typically unavoidable adjustments to the data that aim to improve the quality of 

the figures compared to the previous publication. A trade-off between timeliness and the quality of 

the high frequency data entails initial figures at the time of the publication often to be incomplete in 

many ways. For instance, in the absence of available data the numbers could be interpolated or 

estimated from another non-complete data series. Then, the subsequent publications, or vintages, of 

the same observed variable incorporate more information than the previous ones until the particular 
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national account item is complete. (DiFonzo, 2005, pp. 6-7). Hence, a data revision can be 

measured as a difference between any earlier and subsequent publication. In economics, depending 

on the variable of concern and publication or measurement frequency, it is not unlikely, for 

example, that the size of the revision is larger than earlier figure itself or that the revision alters the 

sign of the previous estimate. 

Data revisions can have major impacts on both empirical economics and economic forecasting. For 

an economist, the key question regarding the data revisions is whether the data revisions have the 

potency to influence the empirical macroeconomic research and the quantitative inferences the 

economists make. Corollary to the economist’s problem, forecasters are ultimately interested 

whether two forecasts, where the model is based on different editions of the same data set, lead to 

significantly different predictions of the future. Therefore, the data revision research on empirical 

macroeconomics and economic forecasting have many theoretical overlaps and also real-time 

economic theory can be utilized when analyzing the effects on forecasting.  

Before the recent emergence of real-time databases, economic researchers and forecasters have 

conventionally based their models on the latest available data, i.e. the current vintage, which is 

easily accessible in any typical national accounting database. However, resorting solely to the 

current vintage data might considerably impair the theoretical and quantitative accuracy of a 

particular economic research or forecast. Data revisions can significantly affect conclusions drawn 

from quantitative research, and conversely, a better understanding of data revisions can 

consequentially improve the robustness of the empirical research and accuracy of the forecasts. 

Perhaps, therefore, the data revision research has predominantly committed on analyzing data 

revisions themselves. The data revisions occur at least in seven different ways (McKenzie, 2006, p. 

8): 

1. Incorporation of source data with more complete or otherwise better reporting (e.g. 

including late respondents) in subsequent estimates 

2. Correction of errors in source data (e.g. from editing) and computations (e.g. revised 

imputation) 

3. Replacement of first estimates derived from incomplete samples (e.g. sub-samples) 

judgmental or statistical techniques when data become available 

4.  Incorporation of source data that more closely match the concepts and / or benchmarking to 

conceptually more correct but less frequent statistics 

5. Incorporation of updated seasonal factors 

6. Updating of the base period 
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7. Changes in statistical methodology, concepts, definitions, and classifications 

Sourcing from the above factors, there are several important aspects of the data revisions pertaining 

to empirical macroeconomic research and forecasting. Statistical properties that have been 

extensively researched and are merit noting due to their significance on economic forecasting are: 

serial correlation of the particular releases and revisions by their size and direction, predictability of 

the revisions, or separation to news or noise process.  

On a later note, it is critical to annotate that revised data does not necessarily imply anything about 

the accuracy of the data. Instead, the dimension of quality related to revisions is reliability. 

Therefore, non-revised data can be less accurate than data which has gone through revisions. It is 

also possible that the data is either accurate or reliable – or both simultaneously. By following the 

Data Quality Assessment Framework of IMF it is crucial to distinguish between reliable and 

accurate data. Throughout this paper the definitions are (Carson and Laliberté, 2002, pp. 5-6): 

 “Accuracy refers to closeness between the estimated value and the (unknown) true value 

that the statistics were intended to measure. Assessing the accuracy of an estimate involves 

evaluating the error associated with an estimate.” (Carson and Laliberté, 2002, p. 6) 

 “Reliability referes to the closeness of the initial estimated value(s) to the subsequent 

estimated values. Assessing reliability involves comparing estimates over time. In other 

words assessing reliability refers to revisions. This feature is identified separately for two 

reasons. First, it is usually the initial estimate that captures attention, whence the importance 

of its accuracy. Second, the separation helps bring out the fact that data that are not revised 

are not necessarily the most accurate.” (Carson and Laliberté, 2002, p. 6) 

In forecasting, the revisions indeed affect the forecasting accuracy because the revisions contain 

information which reduces the measurement errors. 

Despite several studies of the statistical properties of data revisions and the debate of the potential 

effect on the empirical research dating back almost seven decades to a descriptive analysis by 

Friedman (1947, pp. 11-12), there is no clear-cut methodology how to treat the problems arising 

from data revisions. Seminal analysis on the properties of data revision was conducted by Zellner 

(1958) who asserts that a provisional releases in various national accounting items in the US, 

measured either infrequently or derived with a residual estimation, are subject to significant 

revision. Morgenstern (1963) and Cole (1969) discover similar patterns with their studies on the US 

GNP. Stekler (1967), on the other hand, argues that the revisions to the US GNP are typically small, 
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and the direction of change is measured with significant precision. Thus, the provisional data serve 

as a good approximation of the economic movements. 

The separation between news and noise and the predictability of data revisions is critical for 

quantitative analyses, as improved knowledge on the revision process facilitates selecting the 

forecasting model and the proper data vintage. If the revisions are fully comprised of unpredictable 

news, revisions are orthogonal with the earlier data vintages, and the initial values are efficient 

estimates of the final data. The variance of the data is, hence, expected to increase in later vintages. 

On the other hand, if data revisions reduce the noise contained in the early releases, the revisions 

are uncorrelated with the later releases but correlated with earlier vintages as the early release 

comprises of the final value and a measurement error (Croushore & Stark, 2003). In their seminal 

paper, Mankiw and Shapiro (1986) assert that the GDP revisions are unbiased, zero mean news and, 

thus the early releases are efficient estimates of the final value. Rudebusch (2001), Faust & al 

(2005), and Aruoba (2008), among several others, conclude that revisions reduce noise1. The 

application of news and noise separation to forecasting, however, has been scarce. Most notably, 

Clements and Galvao (2013), find that forecast accuracy statistics are worse for the news process 

than for noisy revisions.     

Due to ambiguous, time-series specific, and statistical agency depended characteristics of data 

revisions and their serial correlations and contingent forecastability, the economist and forecasters 

need to carefully assess the underlying implications these properties have. Resorting solely to the 

refined data relies on the assumption that the agents are capable of anticipating the revisions 

completely. Put differently, estimating a forecasting model with the current vintage data 

incorporates an assumption that out-of-sample forecasts account for not only the non-occurred 

regular revisions but also all the future definitional and benchmark changes (which may in reality 

continue indefinitely into the future). On the contrary, relying on the preliminary data implicitly 

assumes that every revision or change is unpredictable. Additionally, the latest available data 

potentially ranges from reliable early observations in the sample to non-revised erroneous data as 

noted by Howrey (1978) which effectively asserts that the early observations contributing to the 

resulting forecast account for all the future revisions and the later estimates assume that revisions 

are unpredictable. 

                                                 
1 All the above papers investigate the US output growth (real and/or nominal GDP or GNP). Faust & al. (2005) also 

study the real GDP growth of G7 countries concluding predictability in data revisions for all the other countries besides 

the US. 
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To carter the fact, the initial release is potentially a biased estimate of the final value several 

researchers have incorporated the use of real-time data vintages in their empirical studies and 

forecasts. Whereas, the latest available data and initial data are static periodic observations of the 

variables 𝑌𝑡−𝑣−1
𝑡−𝑣

 
 made either at present date 𝑡 or at the first publication date, of each variable, the 

real-time vintage is the (𝑡 − 𝑣)th release of the data associated with observation 𝑡 − 𝑣 − 1. A real-

time database or a revision triangle, a collection of real-time vintages, is therefore comprised of 

vectors of observations such as: 

 

[
 
 
 
 
𝑌0

1 ⋯ 𝑌0
𝑡−𝑣−1 ⋯ 𝑌0−𝑣−1

𝑡

 ⋱ ⋮               ⋮

𝑌0
1

 
 

 
 
 

𝑌𝑡−𝑣−1
𝑡−𝑣 ⋯ 𝑌𝑡−𝑣−1

𝑡

 𝑎𝑎 ⋱       ⋮
                𝑌𝑡−1−𝑣

𝑡 ]
 
 
 
 

 

 

The revision triangle depicts the observed values as if today was a date of a particular vintage. Real-

time vintage thus incorporates the best available data at the given point in time.  

The seminal and the standard strand of forecasting studies the relationship between the data 

vintages and the forecasting outcomes. Customary methodology is based on the idea of comparing 

the forecasts utilizing the same structure where the other forecast is based on a particular data 

vintage and the other one on a different vintage. Before the wider accessibility to the real-time data 

bases, the forecasters have predominantly committed on studying the effects of using the 

preliminary data. Denton and Kuiper (1965) and Cole (1969) find converging results for the 

Canadian and the US GNP, respectively, that the initial data impairs forecasting accuracy 

substantially. On the contrary, Trivellato and Rettore (1986) show that for the Italian economy the 

impairment is much more minor.  

Only recently, the researchers have started extensively studying the effect of real-time vintages on 

forecasting. Swanson (1996), Koening & al., and Croushore and Stark (2001) have been the 

advocates of the recent emergence in real-time analysis and forecasting. Croushore and Stark (1999, 

2001, and 2003) have been the front-line researchers of the data revision analysis, real-time 

empirics and forecasting since the introduction of their real-time data set in 1999. They have starkly 

advocated the verification of the empirical results against real-time data. Moreover, they have 

extensively illustrated the applicability of real-time data in various forecasting exercises. Work of 



- 9 - 

 

Stark and Croushore and Clements and Galvao (2013) is the main inspiration to the findings in this 

thesis. 

3. Theoretical analysis 

In this section I will provide an a priori analysis of the effects of data revisions on the 

macroeconomic forecasting within linear univariate time-series framework. I will commence by 

providing the general properties of 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) by imposing the conceptual and notational 

framework for linear time-series models to facilitate the further analysis. Subsequently, I will 

introduce the potential mechanisms through which the data revisions might influence forecasting 

with linear stochastic time-series models.  

Popularized by Box and Jenkins (1970), linear time-series models for stationary processes are a 

benchmark model set-up for stochastic processes and their forecasts. The linear univariate models 

are relatively simple theoretically and perform well forecasting key macroeconomic variables 

compared to more elaborate models. Therefore, the 𝐴𝑅𝐼𝑀𝐴-models provide a convenient platform 

for studying the effect of data revisions on GDP. Moreover, concentrating solely on the univariate 

models allows, for instance, disregarding a critical and tedious problem of cross-correlations 

between the early and final releases of different variables occurring in the multivariate models 

(Aruoba, 2008, p. 22). The economic hypothesis behind the stationary time-series model is that the 

majority of current behavior of a particular variable is explained by the persistence in its past 

observations. Autoregressive, 𝐴𝑅, models relate the weighted average of its past observations and a 

disturbance term with the current observation and the moving average, 𝑀𝐴, models describe the 

stationary process as a weighted sum of the current and lagged disturbances. The mixed 

autoregressive-moving average models, 𝐴𝑅𝑀𝐴(𝑝, 𝑞) models, describe the stationary stochastic 

processes as 𝑝th and 𝑞th order autoregressive and moving average process as they display properties 

from both types. 

The research on economic forecasting solely with the univariate models has been extensive since 

the introduction of 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) framework. The linear stationary models prove to be in many 

experiments well suited to forecast the dynamic economic dependencies and offer a relatively well 

performing benchmark when compared against the alternative, more complex univariate or 

multivariate methods2. Even in pure 𝐴𝑅(𝑝) form, the linear stationary models have a relatively 

good forecasting performance for national accounting time series as shown by Meese and Geweke 

                                                 
2 For a thorough discussion on a linear benchmark method selection for GDP and inflation modeling, see Marcellino 

(2008). 
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(1984). Similarly, Clements (2014) with the US GDP data appraise the predicting power of 𝐴𝑅(𝑝) 

models concluding that multivariate models prevail only during occasional points of the business 

cycle. Moreover, for instance, Macellino & al (2003) and Marcellino (2008) conclude that linear 

univariate model based forecasts for Euro-area and the U.S. GDP, also when estimated with real-

time vintages, perform better than the alternative linear models.  

3.1 General properties of 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) processes 
Prior to proceeding with the a priori analysis of data revisions in linear univariate model 

forecasting, I will introduce a selection of general properties of linear univariate models which have 

a vital role when forecasting in the presence of data revisions3. The classical 𝐴𝑅𝑀𝐴(𝑝, 𝑞) is given 

as 

𝑌𝑡 =  𝛿 + ∑ 𝜙𝑖
𝑝
𝑖=1 𝑌𝑡−𝑖 + 𝜀𝑡 + ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞
𝑖=1   𝜀 ∼ 𝑖. 𝑖. 𝑑 (0, 𝜎𝜀

2). (3.1) 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) can be transformed to the pure 𝐴𝑅(𝑝) or 𝑀𝐴(𝑞) process by setting the order of the 

redundant process to 0.  

For convenience, an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process in 3.1 can be reformulated with the lag operator notation 

as  

(1 − 𝜙1𝐿 − ⋯− 𝐿𝑝)�̃�𝑡 = (1 − 𝜃1𝐿 − ⋯− 𝜃𝑞𝐿
𝑞)𝜀𝑡    

or 

𝜙(𝐿)�̃�𝑡 = 𝜃(𝐿)𝜀𝑡     

and equivalently 

�̃�𝑡 = 𝜙−1(𝐿)𝜃(𝐿)𝜀𝑡  ⇔  𝜃−1(𝐿)𝜙(𝐿)�̃�𝑡 = 𝜀𝑡.  (3.2) 

where 𝐿 is the lag operator and �̃�𝑡 = 𝑌𝑡 − 𝜇 is a deviation of the process from its fixed reference or 

from its mean in case the process is stationary. (Box & Jenkins, 1970).  

From equation 3.2 we can study the two critical properties of the mixed time series processes, 

stationarity and invertibility, which are also focal points studying the effects of data revisions. A 

time-series process is stationary if its joint probability distribution remains constant over time. 

Hence, the mean and the variance are time independent and the process does not drift away from its 

fixed reference point. The stationarity of an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process is obviously dependent only on 

                                                 
3 Theoretical analysis in section 3. concerns mixed linear univariate models in order to discuss all the potential sources 

through which the data revisions could potentially influence the forecasts. In the empirical experiments in Chapters 4 & 

5 only pure autoregressive models are considered. 
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the stationarity of an 𝐴𝑅(𝑝) process (as 𝑀𝐴(𝑞) component formed of weighed sum of 𝑖. 𝑖. 𝑑 

disturbances is always stationary). The time-series 𝑌𝑡 is a stationary process and the autoregressive 

operator 𝜙−1(𝐿) in equation 3.2 converges if the roots of the characteristic equation 𝜙(𝐿) = 0 are 

all outside of the unit circle. Therefore, we must have that the modulus of the roots |𝐿𝑖| > 1 ∀ 𝑖 =

1,2, … , 𝑝. Moreover, as the fixed reference point for an 𝐴𝑅(𝑝) process can be written as  

𝜇 =
𝛿

∑ 𝜙𝑖
𝑝
𝑖=1

     (3.3) 

and we can derive the necessary condition for stationarity that  

|∑ 𝜙𝑖
𝑝
𝑖=1 | < 1.    (3.4) 

Invertibility is a necessary property to relate the present variables with past observations (Box & 

Jenkins, 1970 p. 52). Invertibility property allows for an unambiguous determination of lag order 

via the autocorrelation functions. Whereas stationarity is determined by the 𝐴𝑅(𝑝) component of an 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) process, invertibility is solely determined by 𝑀𝐴(𝑞). If 𝑀𝐴(𝑞) is invertible it has an 

𝐴𝑅(∞) presentation. Corollary to the stationarity condition derived above, the moving average 

operator 𝜃−1(𝐿) in equation 3.2 converges if all the roots of the characteristic equation 𝜃(𝐿) = 0 lie 

outside the unit circle. Put differently, if |𝐿𝑖| > 1 ∀ 𝑖 = 1,2, … , 𝑝, the process can be inverted to 

𝐴𝑅(∞). 

In economics, many of the empirical time series (e.g. national accounts and security prices) do not 

have a fixed mean or variance and are, hence, non-stationary. In case the necessary stationarity 

condition in equation 3.4 is violated (i.e. the roots of the characteristic equation, 𝜙(𝐿) = 0, of the 

𝐴𝑅(𝑝) have modulus less than unity) the process exhibits non-stationary behavior with 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) modeling. However, in some cases it is possible to transform non-stationary time 

series into stationary series by differencing the data in particular order 𝑑.  

Suppose we have a 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model such that in equation 3.2. �̃� is a non-stationary 𝐴𝑅(𝑝) 

process such that 𝑑 moduli of the roots of the characteristic equation 𝜑(𝐿) = 0 are exactly unity 

and the remainder are outside of the unit circle. Then we can write the equation as  

𝜑(𝐿)�̃�𝑡 = 𝜙(𝐿)(1 − 𝐿)𝑑�̃�𝑡 = 𝜃(𝐿)𝜀𝑡   (3.5) 

where 𝜑(𝐿)  represents a stationary autoregressive operator of order 𝑝 − 𝑞. Utilizing differencing 

operator notation ∆= 1 − 𝐿 we can reformulate the equation 3.5 as 
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𝜑(𝐿)�̃�𝑡 = 𝜙(𝐿)∆𝑑𝑌𝑡 = 𝜃(𝐿)𝜀𝑡  ⇔  𝜙(𝐿)𝑤𝑡 = 𝜃(𝐿)𝜀𝑡        

where, 𝑤𝑡 = ∆𝑑𝑌𝑡 = ∆𝑑�̃�𝑡, since ∆𝑑𝑌𝑡 = ∆𝑑�̃�𝑡 for 𝑑 ≥ 1. Hence, the time series is homogenous 

non-stationary with order 𝑑 and which can be represented by a stationary, invertible 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

process where the moduli of the roots of 𝜑(𝐿) are all greater than unity. (Box & Jenkins, 1970). 

The above homogenous non-stationary processes are referred to as integrated autoregressive-

moving average models of order 𝑝, 𝑑, and 𝑞, or 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) models. Many of the economic 

time series, especially in context of national accounting, exhibit non-stationary properties by 

growing with a deterministic trend – either with a linear or exponential trend. Noting that, the mean 

of stationary process ∆𝑑𝑌𝑡 is  

𝜇𝑤 = 
𝛿

∑ 𝜙𝑖
𝑝
𝑖=1

     

hence instead of a stochastic trend when 𝛿 = 0, the series includes a deterministic polynomial trend 

of degree 𝑑. If 𝑑 > 1, that is the time series displays an exponential trend, or the interest is in the 

relative changes of the time series rather than the absolute levels, we need to apply non-linear 

transformation. Converting the time series into logarithmic form will linearize the exponential trend 

and standardize the variance. Data is transformed into logarithmic form by (Box & al., 1970, pp. 

100-103) 

𝑌𝑡 = (1 +
𝑌𝑡−𝑌𝑡−1

𝑌𝑡−1
)𝑌𝑡−1 = (1 + 𝑔𝑡)𝑌𝑡−1    

ln 𝑌𝑡 = ln((1 + 𝑔𝑡)𝑌𝑡−1)     

𝑔𝑡 ≅ ln
𝑌𝑡

𝑌𝑡−1
.    (3.6) 

3.2 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) and forecasting 

The performance of a certain forecast is most often evaluated based on the accuracy of the 

aggregated forecasted values relative to the observed values. Hence, forecasters most commonly 

wish to minimize the mean square error, 𝑀𝑆𝐸 (or alternatively the root mean square error or 

𝑅𝑀𝑆𝐸) of the forecasted value and actual observation. These two are most typical forecast 

assessment measures utilized in forecasting literature. As the forecast deviation is a random variable 

the forecaster’s problem is to choose the lead time 𝑙 forecast at origin-𝑡, or �̂�𝑡+𝑙|𝑡, such that 

𝐸(𝑒𝑡+𝑙|𝑡
2 ) = 𝐸[(𝑌𝑡+𝑙 − �̂�𝑡+𝑙|𝑡)

2] is minimized (Box & al., 1970, p. 138).  
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In 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) forecasting model specification the optimal 𝑀𝑆𝐸 minimizing forecast is given 

by the conditional expectation of 𝑌𝑡+𝑙 that is by �̂�𝑡+𝑙|𝑡 = 𝐸(𝑌𝑡+𝑙|𝑌𝑡, 𝑌𝑡−1, … , 𝑌1). Lead time 𝑙 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) generated observation may be expressed as an infinite weighted sum of current and 

previous shocks as: 

𝑌𝑡+𝑙 = ∑ 𝜓𝑗𝜀𝑡+𝑙−𝑗
∞
𝑗=0 .    

Naturally, an out-of-sample forecast can only be based in the data available until time 𝑡 so we may 

define the forecastable value as 𝑡 + 𝑙. Our best forecast is then a linear function of error terms 

�̂�𝑡+𝑙|𝑡 = ∑ 𝜓𝑗
∗𝜀𝑡−𝑗

∞
𝑗=0     

where weights 𝜓𝑗
∗ are to be determined to minimize 𝑀𝑆𝐸. As by assumption 𝐸(𝜀𝑖𝜀𝑗) = 0 for 𝑖 ≠ 𝑗, 

we have that 

𝐸(𝑒𝑡+𝑙|𝑡
2 ) = 𝐸[(𝑌𝑡+𝑙 − �̂�𝑡+𝑙|𝑡)

2] = (1 + 𝜓1
2 + ⋯+ 𝜓𝑙−1

2 )𝜎𝜀
2 + ∑(𝜓𝑙+𝑗

 − 𝜓𝑙+𝑗
∗ )2

∞

𝑗=0

𝜎𝜀
2. 

Expression is minimized by setting 𝜓𝑙+𝑗
∗ = 𝜓𝑙+𝑗

  for 𝑗 = 0,1… and we have 

 𝑌𝑡+𝑙 = (𝜀𝑡+𝑙 + 𝜓1
 𝜀𝑡+𝑙−1 + ⋯+ 𝜓𝑙−1

 𝜀𝑡+1) + (𝜓𝑙
 𝜀𝑡 + 𝜓𝑙+1

 𝜀𝑡−1 + ⋯) = 𝜀�̂�+𝑙|𝑡 +

�̂�𝑡+𝑙|𝑡 

where 𝜀�̂�+𝑙|𝑡 is  the forecast error. The optimum forecast �̂�𝑡+𝑙|𝑡 is merely a conditional expectation of 

𝑌𝑡+𝑙 

�̂�𝑡+𝑙|𝑡 = 𝜓𝑙
 𝜀𝑡 + 𝜓𝑙+1

 𝜀𝑡−1 + ⋯ = 𝐸(𝑌𝑡+𝑙|𝑌𝑡, 𝑌𝑡−1, … , 𝑌1)   

since the expected values of 𝜀�̂�+𝑙|𝑡  for an unbiased forecast are equal to 0. 

Moreover, important to note is that one step ahead forecast error, i.e. lead time 𝑙 = 1 forecast for 

any 𝐴𝑅𝐼𝑀𝐴 model specification, is  

𝜀�̂�+1|𝑡 = 𝑌𝑡+1 − �̂�𝑡+1|𝑡 = 𝜀𝑡+1 .    

Therefore, the residuals 𝜀𝑡 which in the above specification generate the process as a set of 

independent random variables also are one step ahead forecast errors and the forecast error variance 

is the variance of the error term. Moreover, in a typical forecasting exercise the true parameters of 

the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) process are unknown and estimated from the data. Therefore, the actual 
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forecast error will be larger than 𝑣𝑎𝑟(𝜀�̂�+1|𝑡) =  (1 + 𝜓1
2 + ⋯+ 𝜓𝑙−1

2 )𝜎𝜀
2 which assumes that the 

model parameters are known.  

In addition to 𝑀𝑆𝐸 or 𝑅𝑀𝑆𝐸 there are a variety of other forecasting error statistics. In order to 

validate the results derived from 𝑅𝑀𝑆𝐸, I will also calculate the mean absolute error and mean error 

statistics: 

𝑀𝐴𝐸 = 𝑛−1 ∑ |𝜀𝑡|
𝑛
𝑡=1     

𝑀𝐸 = 𝑛−1 ∑ 𝜀𝑡
𝑛
𝑡=1  .    

Both 𝑀𝐴𝐸 and 𝑀𝐸 also reveal the characteristics of the forecast errors. 𝑀𝐸 offsets negative and 

positive forecasts errors and hence could possibly disclose information on disproportional biases in 

either direction. Relatively large 𝑅𝑀𝑆𝐸 error statistics compared to 𝑀𝐴𝐸 indicate higher variance 

in the forecast errors. The smaller the difference between 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 the lower the variance of 

individual forecast errors.  

Real-time forecasting brings an additional dimension to forecast evaluation. Due to variation arising 

from the revision process in the predictand and dependent variables, out-of-sample forecasts 

become susceptible to the changes in the correlation structure of the data. Calculating the 

forecasting error statistics is also more cumbersome when we acknowledge the existence of data 

revisions. The key question regarding the evaluation of the real-time data based forecasts is which 

data we should use as “actual” for computing the forecasting error, as the data is liable for indefinite 

revisions. This is especially the case if we want to forecast the true value of the GDP, and there is 

no consensus in the forecasting literature which realization should be used as the actual value. For 

example, Croushore (2006) argues that latest available data should be used as the approximation for 

the truth. However, defining latest available as “actual” effectively hampers the forecasting 

accuracy of the real-time data based models compared to the latest available data based models due 

to the forecasting error reducing effect of regular and benchmark revisions contained in the 

available data. Hence, the forecasts using real-time data might be significantly sensitive to the 

selection of the realization as shown by Stark and Croushore (2002). 

Because the aim of this thesis is to evaluate whether the forecasts based on different vintages really 

are different from the each other it is vital to test the differences in forecasting accuracy. I will 

evaluate forecasts based on Harvey & al. (1997) modification of the Diebold and Mariano (1995) 

predictive accuracy test which allows more precise testing of longer forecast horizons 𝑙 and smaller 

sized samples.  
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Harvey & al. (1997) employ the squared errors as loss differential so that 𝑑𝑡 = 𝜀1𝑡
2 − 𝜀2𝑡

2 . Forecasts 

are equal under the null hypothesis 𝐻0 ∶ 𝐸(𝑑𝑡) = 0 ∀𝑡. The test is based on the observed sample 

mean  

�̅� =  𝑛−1 ∑ 𝑑𝑡
𝑛
𝑡=1     

where the variance of �̅� is consistently estimated by 

𝑣𝑎𝑟(�̅�) ≈ 𝑛−1[𝛾0 + 2∑ 𝛾𝑘
𝑙−1
𝑘=1 ]   

and 𝛾𝑘 is the 𝑘th autocovariance of the 𝑑𝑡. The autocovariance in turn can be estimated by   

𝛾𝑘 = 𝑛−1 ∑ (𝑑𝑡 −𝑛
𝑡=𝑘+1 �̅�)(𝑑𝑡−𝑘 − �̅�).     

By substitution to the variance can be reformulated as: 

𝑆1 = 
�̅�

√[𝑣𝑎�̂�(�̅�)]
    

which is the Diebold and Mariano test statistic. The modified, bias corrected test statistic4 is 

𝑆1
∗ = √

𝑛+1−2𝑙+𝑛−1𝑙(𝑙−1)

𝑛
 𝑆1 .   

After the bias correction, the test statistic is compared with critical values of Student’s 𝑡-distribution 

with 𝑛 − 1 degrees of freedom. 

3.2.1 Channel effects 

Forecasts in 𝐴𝑅𝐼𝑀𝐴-framework are influenced by the data revisions through three different 

channels. Data revisions change the data input used to make the forecast (direct channel), data 

revisions alter the estimated coefficients (indirect channel), and the revisions could impact the 

elementary construction of the model or the forecast results are effected through deliberated ex-ante 

model specifications (specification channel).  

 

In fashion of Croushore & Stark (2003), to analyze how data revisions could have a significant 

influence on the forecast through the direct and indirect channels, I consider a pure autoregressive 

𝑝th order, 𝐴𝑅(𝑝), data generating process for modeling the gross domestic product measured in 

levels. Despite the simplicity of the example, the conclusions drawn from this set-up are evidently 

present in the real-time forecasting. Moreover, we can see from the below illustration that despite 

                                                 
4 For the thorough modification, see Harvey & al. (1997, p. 3). 
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the stochasticity of the data revisions, the revisions will have a considerable effect if certain 

circumstances are fulfilled. Setting 𝑞 = 0 in equation 3.1 yields a pure 𝐴𝑅(𝑝) process  

 

𝑌𝑡 =  𝛿 + ∑ 𝜙𝑖
𝑝
𝑖=1 𝑌𝑡−𝑖 + 𝜀𝑡    𝜀 ∼ 𝑖. 𝑖. 𝑑 (0, 𝜎𝜀

2)  (3.7) 

where gross domestic product 𝑌 at time 𝑡 is generated by its previous realizations weighted by 

coefficient 𝜙 up to period 𝑝. Subsequently, I consider a forecast utilizing the above data generating 

process in (3.7). The data could be subject to revisions. Let 𝑌𝑡,𝑣 represent the realized 𝑣 vintage 

value for 𝑌 in the period 𝑡. Hence, we can express the revision to the data by 𝑌𝑡,𝑣 − 𝑌𝑡,𝑣−1.  

To turn to forecasting, I let 𝑌𝑡|𝑡−1,𝑣 stand for a forecast for period 𝑡 made based on the information 

in 𝑡 − 1 as reported in the vintage 𝑣. This set-up allows for examining the forecast made on the 

basis of any data vintage. For instance, forecasting current economic activity with real-time model, 

the data vintage 𝑣 would be given so that it contains the data observations from the 𝑡 − 1 vintage. 

The general one step ahead forecast with 𝐴𝑅(𝑝) model is then given by 

𝑌𝑡|𝑡−1,𝑣 = 𝛿𝑣 + ∑ �̂�𝑖,𝑣𝑌𝑡−𝑖,𝑣
𝑝
𝑖=1    (3.8) 

where the estimated autoregressive parameters depend on the utilized data vintage and are thus 

indexed by 𝑣. 

To examine how the forecasts are impacted by data revisions, suppose we have made a forecast 

based on another data vintage 𝑤 ≠ 𝑣 subject to the same 𝐴𝑅(𝑝) data generating process as in (3.7) 

so that we would utilize the same forecast rule as in 3.8: 𝑌𝑡|𝑡−1,𝑤 = �̂�𝑤 + ∑ �̂�1,𝑤𝑌𝑡−1,𝑤
𝑝
𝑖=1 . We can 

express the changes in our 𝑡-period forecast caused by the data revisions by subtracting the forecast 

estimated based on the data vintage 𝑣 from the forecast based on vintage 𝑤: 

𝑌𝑡|𝑡−1,𝑤 − 𝑌𝑡|𝑡−1,𝑣 = 𝛿𝑤 − 𝛿𝑣 + ∑ (�̂�𝑖,𝑤𝑌𝑡−𝑖,𝑤 − �̂�𝑖,𝑣𝑌𝑡−𝑖,𝑣)
𝑝

𝑖=1
. (3.9) 

From equation 3.9 we can quite easily study the impacts of the data revisions through the direct and 

indirect channels, ceteris paribus. However, deriving the joint effects of these channels algebraically 

is inconceivable and, de facto, an empirical matter which I explore more in chapter 4. The model 

specification channel cannot be directly examined with the equation 3.8 but will be investigated 

below. 
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3.2.1.1 Direct channel 

Suppose the data revisions affect only the data input for the forecasting model and the revisions do 

not affect the estimated coefficients. Thus, we have that (𝑌𝑡−𝑖,𝑤 − 𝑌𝑡−𝑖,𝑣) 𝑖∈{1,𝑝} ≠ 0 and  𝛿𝑣 = 𝛿𝑤 

and �̂�𝑖,𝑣 = �̂�𝑖,𝑤 = �̂�𝑖 , 𝑖 𝜖 {1, 𝑝} our forecast change in 𝐴𝑅(𝑝) specification, expressed in equation 

3.8, becomes 

𝑌𝑡|𝑡−1,𝑤 − 𝑌𝑡|𝑡−1,𝑣 = ∑ �̂�𝑖(𝑌𝑡−𝑖,𝑤 − 𝑌𝑡−𝑖,𝑣)
𝑝

𝑖=1
.  (3.10) 

The above equation 3.10 immediately reveals how the forecast revision depends on the size of the 

revisions to the data (𝑌𝑡−𝑖,𝑤 − 𝑌𝑡−𝑖,𝑣) 𝑖∈{1,𝑝} and its sensitivity to the magnitude of the estimation 

coefficients. However, the sensitivity to the data revisions depends largely on characteristics of the 

data series. It is easy to see directly from the equation 3.10 that the data revisions do not have an 

impact on the forecast, for instance in case of a stationary white noise process for which ∀�̂�𝑖  ≈ 0, 

𝑖 ∈ {1, 𝑝}. However, they have a significant impact in case the process exhibits tendency for 

persistence and ∃ �̂�𝑖  ≠ 0, 𝑖 ∈ {1, 𝑝}. The larger the coefficient the larger the deviation is between 

the forecasts using different data vintages.  

It is possible to derive a more general result for the direct channel effect of the data revisions on the 

forecast change in case of the stationary process. For stationary processes 𝐸(𝑌𝑡) = 𝐸(𝑌𝑡−1) =

𝐸(𝑌𝑡−2) = ⋯ =  𝜇 yields the formula for the mean in equation 3.3 (𝜇 =
𝛿

1−∑ 𝜙𝑖
𝑝
𝑖=1

) 

Applying this to the forecast change in equation 3.10 and remembering the conditions for data 

vintages and estimated coefficients that we defined above for the direct channel we get 

𝐸(𝑌𝑡|𝑡−1,𝑤 − 𝑌𝑡|𝑡−1,𝑣) =
�̂�𝑤

1−∑ �̂�𝑖,𝑤
𝑝
𝑖=1

− 
�̂�𝑣

1−∑ �̂�𝑖,𝑣
𝑝
𝑖=1

= 0.   

This allows us to conclude that the expected forecast deviation for pure stationary processes through 

the direct channel is zero.  

3.2.1.2 Indirect channel 

Now we make a contrary assumption and suppose that the data revisions do not have an impact on 

the variables used in the forecast estimation but affect the estimated coefficients. An exemplary set-

up in which this type of model behavior is possible is that the data is not revised for the early lags 

but revisions occur for the succeeding lags. For a concrete instance, suppose that the revisions occur 

due to both noise and news. During the Q1’s only noise affects the revisions and the national 

accounts preliminary data for the preceding fiscal year is only made more reliable by recalculations. 
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During Q2 the true economic developments are observable for the first time, and the news caused 

larger revisions to the data. Hence, we could have ∀ 𝑌𝑡−𝑖, 𝑌𝑡−𝑖,𝑣 ≈ 𝑌𝑡−𝑖,𝑤 ≡ 𝑌𝑡−𝑖, and, but for 

𝑌𝑡−(𝑝+𝑘), 𝑌𝑡−(𝑝+𝑘),𝑣 ≠ 𝑌𝑡−(𝑝+𝑘),𝑤, where 𝑖 ∈ {1, 𝑝} and 𝑘 > 𝑝, meaning that the data is potentially 

revised only for the lags occurring after the 𝑝th lag. In this case we then set 𝑌𝑡−𝑖,𝑤  ∩  𝑌𝑡−𝑖,𝑣 ≡

𝑌𝑡−𝑖,𝑣 𝑖∈{1,𝑝} but keep the assumption that 𝛿𝑤 ≠ 𝛿 and ∀ �̂�𝑖,𝑤 − �̂�𝑖,𝑣  ≠ 0 all the estimated 

coefficients differ depending on the data vintage. Hence, our 𝐴𝑅(𝑝) process in the equation 3.9 

becomes 

𝑌𝑡|𝑡−1,𝑤 − 𝑌𝑡|𝑡−1,𝑣 ≈ 𝛿𝑤 − 𝛿𝑣 + ∑ (�̂�𝑖,𝑤 − �̂�𝑖,𝑣)𝑌𝑡−𝑖
𝑝

𝑖=1
 (3.11) 

We see directly from 3.11 that our forecast revision is now influenced merely by the magnitude of 

the effect the data revisions have on the estimated coefficients.  

3.2.1.3 Specification channel 

The data revisions do not only shift the forecasting results through the changes in data input and the 

coefficient estimation but they can also alter the functional form of the forecasting model. The 

specification channel is not directly visible in our above example but the changes in model 

specification caused by revisions to the data can shift the forecasting results. The two most essential 

causes for the deviations in the forecasting results when utilizing different data vintages are order 

selection in 𝐴𝑅𝐼𝑀𝐴-models and stationarizing operations for non-stationary data. The order 

selection problem occurs when the differing data vintages affect the optimal order of the time series 

model that we utilize for forecasting. For instance, in our above autoregressive forecasting example 

it could be possible that for data vintage 𝑣 the optimal order for the 𝐴𝑅 process would be 2 and for 

𝑤 the optimal would be the 3rd order. Hence, with vintage 𝑣 we would forecast with 𝐴𝑅(2) process 

whereas using revised vintage 𝑤 we would utilize 𝐴𝑅(3) process. Moreover, in order to get 

meaningful forecasts with the time series models we first need to stationarize the data if the time 

series is non-stationary, and it is possible that the data revisions alter the results in case 

stationarizing operations are applied.   

The changes of the lag specification due to data revisions can be analyzed through the duality of 

autoregressive and moving average models. To start the analysis, assume that the revised data 

follows a 𝐴𝑅(1) data generating process 

𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝜖𝑡   (3.12) 
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in which 𝑌𝑡 is revised data for GDP growth rate and 𝜖𝑡~ 𝑊𝑁 (0, 𝜎𝜖
2). Then assume that the real-

time data for GDP growth, 𝑋𝑡, is merely a stochastic description of the revised data measured with 

error, 𝑢𝑡, so that 

𝑋𝑡 = 𝑌𝑡 + 𝑢𝑡     

where 𝑢𝑡~ (0, 𝜎𝑢
2) and 𝜌(𝑋𝑡, 𝑢𝑡) = 0 implying that the revisions are adding news5. Applying 

Wold’s decomposition theorem, the linear representation for the real-time data is 𝐴𝑅𝑀𝐴(1,1) 

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1   (3.13) 

where 

𝜃 =  −
𝜙 𝜎𝑢

2

 𝜎𝜀
2      

with    

𝜎𝜀
2(1 + 𝜃2) = 𝜎𝜖

2 + 𝜎𝑢
2(1 + 𝜙2).   

From the above set-up we can make two crucial conclusions concerning the changes in model 

specifications. First, the lag structure for models using revised data are likely to differ from the 

models using real-time data input. This is due to the dynamic structures of the models. The linear 

representation for the real-time variable 𝑋𝑡 in the equation 3.13 can be expressed with lag operator 

notation as  

𝜙(𝐿)𝑋𝑡 = 𝜃(𝐿)𝜀𝑡    

where 𝜙(𝐿) = 1 − 𝜙𝐿 and 𝜃(𝐿) = 1 + 𝜃𝐿. With the help of this notation, the 𝐴𝑅𝑀𝐴(1,1) process 

can easily be expressed as an 𝐴𝑅(∞) process 𝑖𝑓𝑓 |𝜃| ∩ |𝜙| < 1 as follows 

𝜀𝑡 =
𝜙(𝐿)𝑋𝑡

𝜃(𝐿)
= (1 + 𝜃𝐿)−1(1 − 𝜙𝐿)𝑋𝑡   

𝑋𝑡 = (𝜙 − 𝜃)∑ 𝜃𝑖𝑋𝑡−𝑖−1 +∞
𝑖=0 𝜀𝑡   

Hence, whereas revised data followed strictly an 𝐴𝑅(1) data generating process in equation 3.12, 

the model structure for the real-time data is potentially subject to infinite 𝐴𝑅(∞) process. 

Therefore, the impact to the lag specification depends on the magnitude of the coefficient 𝜙 

estimated with the revised data and the size of the revision, or measurement error, 𝑢𝑡. (Elliot, 2002, 

pp. 2-3). 

                                                 
5 It is possible to study the effects under noise assumption also which leads to similar results with more complicated 

computations. See Elliot (2002, p. 2) 



- 20 - 

 

Second, the persistence of the revised time series, in addition to the direct channel, also attributes to 

the model specification. The larger the 𝜙 coefficient of our 𝐴𝑅(1) process for the revised data set 

the more likely is that lag structures will differ between the models utilizing different data sets. The 

explanation is this: the past observations are included in the model until their explanatory power 

becomes insignificant for explaining the current observation. With 𝐴𝑅(𝑝) model specification the 

explanatory power sources directly from the size of the coefficients and thus the absolute value of 

the parameter 𝜙 directly contributes to the selected lag structure. Consider again the above infinite 

lag operator specification for the real-time data 𝑋𝑡. For the same sized measurement error 𝑢𝑡 in the 

real-time data, the larger the absolute value of the 𝐴𝑅(1) estimation coefficient 𝜙 the more likely is 

that the additional past observations are included in the model and differences in the lag 

specifications will occur. (Elliot, 2002, p. 3). 

Additional aspect to model specification is the effect of data revisions on order selection criterion. 

Typically, the economists and forecasters are aided by different selection criteria such as Akaike 

information criterion (AIC) or Schwarz-Bayesian information criterion (SIC or SBIC) to construct 

the univariate model. Stark and Croushore (2002) show that forecasts where lag selection is 

governed by SIC are much less sensitive to the data revisions than forecasts where specification is 

selected by AIC. This is because SIC penalizes for additional lags and hence creates insulation to 

the forecasts against the data revisions compared to AIC. AIC, on the contrary, displays greater 

variability and longer lag lengths that enhances the sensitivity of the forecasts to data revisions. 

3.2.1.4 Stationarizing operations 

As discussed above, non-stationary data series need to be transformed to stationary to produce 

meaningfully fitted models with 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞). Logarithmizing is applicable if the data series has 

an exponential trend, its variance increases or decreases in time, or in the particular experiment the 

interest is in growth rates rather than in levels. The data revisions typically will not have an ex-ante 

effect for the necessity to stationarize the data as it should be extremely unlikely that the data 

revisions would alter the necessary conditions for stationarity. However, data revisions could 

potentially have ex-post effect on the forecasting model.  

Consider logarithmic transformation as described in 3.6 for same observations 𝑡 of the gross 

domestic product utilizing different data vintages 𝑣 and 𝑤. Logarithmic transformation for 𝑌𝑡 given 

the vintage is thus 

𝑔𝑡,𝑣 ≅ ln
𝑌𝑡,𝑣

𝑌𝑡−1,𝑣
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and similarly the growth rate for using the vintage 𝑤 is 𝑔𝑡,𝑤 = ln
𝑌𝑡,𝑤

𝑌𝑡,𝑤−1
. Naturally, a nonrecurring 

revision to level data will also shift the growth rate. But, consider a recurring and systematic 

revision which occurs so that 𝑌𝑡,𝑤 = (1 + 𝛼)𝑌𝑡,𝑣 and 𝑌𝑡−1,𝑤 = (1 + 𝛼)𝑌𝑡−1,𝑣. Now the level 

variables are affected once again but 𝑔𝑡,𝑤 = ln
𝑌𝑡,𝑤

𝑌𝑡,𝑤−1
= ln

(1+𝛼)𝑌𝑡,𝑣

(1+𝛼)𝑌𝑡,𝑣−1
= 𝑔𝑡,𝑣 and growth rate remains 

unaffected between the data vintages. 

This finding is consistent with the empirical research which unequivocally supports that the national 

accounting variables measured in levels are far more sensitive to the data revisions than growth 

rates. For instance, Howrey (1996) shows that data revisions affect US real GNP forecasts much 

more when data is measured in levels instead of percentage growth rates. 

  

4. Empirical analysis 

 

This section is comprised of three main components. The first part describes the data employed 

throughout the chapter. In the second part I evaluate the statistical properties of the revision process 

in order to uncover potential patterns between the data vintages. Guided by the second part, I 

construct multiple forecasting experiments in the third section in order to evaluate the optimal 

vintage employment in forecasting the Finnish quarterly growth rates in different scenarios. These 

empirical forecasting applications are followed by Monte Carlo forecasting experiment simulating 

both news and noise revision processes.  

4.1 Data 
 

The input data sample used throughout this chapter is seasonally adjusted quarterly Finnish real 

GDP real time-series data from the Main Economic Indicators Original Release Data and Revisions 

Database (MEIORDRD) available at http://stats.oecd.org/mei/default.asp?rev=1. MEIORDRD is 

updated by OECD. The database contains real-time time series data for key macroeconomic 

variables for OECD and Euro countries in addition to a few major economies in the world. The data 

is available based on the publishing frequency of the national statistical institutes. The Statistics 

Finland publishes national accounts on a quarterly basis such that a new observation and an edition 

is published during Q+1 (see table 4.1; the Statistics Finland publishes the accounts in 65 days after 

the end of the previous quarter, and the data is available at MEIORDRD typically in a month from 

the publication).  

http://stats.oecd.org/mei/default.asp?rev=1
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The sample of observations used for statistical analysis and model construction cover a period of 

1996Q1-2014Q4 and the editions 2000Q2-2015Q1. The GDP data is transformed to quarter-on-

quarter (q-o-q) growth rates, 
𝑄𝑡,𝑣

𝑄𝑡−1,𝑣
− 1 which are percentage rates expressed with respect to 

previous quarter within a particular vintage, 𝑣. Hence, for the latest data vintage 2015Q1, there are 

a total of 76 q-o-q observations, and for the first observation, 1996Q1, there are 60 vintages. All in 

all there are total 2790 observations pertaining to different vintages.  
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Table 4.1. Data release schedule and release notation 

Quarter of year Y YQ1 YQ2 YQ3 YQ4 

1st release July Y October Y January Y+1 April Y+1 

2nd release October Y January Y+1 April Y+1 July Y+1 

3rd release January Y+1 April Y+1 July Y+1 October Y+1 

4th release April Y+1 July Y+1 October Y+1 January Y+2 

Y1 (Q+4 release) July Y+1 October Y+1 January Y+2 April Y+2 

Y2 (Q+8 release) July Y+2 October Y+2 January Y+3 April Y+3 

Y3 (Q+12 release) July Y+3 October Y+3 January Y+4 April Y+4 

Y5 (Q+20 release) July Y+5 October Y+5 January Y+5 April Y+5 

L (Final value) 2015Q1 2015Q1 2015Q1 2015Q1 

 

The above table describes the data release schedule including notation used to refer to the data 

throughout sections 4.1 and 4.2.  

4.2 Descriptive statistics 
 

In order to obtain a hint on the optimal vintage treatment in forecasting, I will first perform a series 

of evaluations on the characteristics of the data. As provided in the precedent sections, if data 

revisions can be characterized as reducing noise the forecaster ought not necessarily to rely on the 

real-time data due to predictability of the revisions. Vice versa, if the revisions add news to data, the 

revisions themselves are unforecastable, and in order to avoid effectively making a spurious implicit 

assumption that unpredictable is predicable, revised data should not necessarily be used. 

In forecasting, one has to pay particular attention on bias and dispersion in the revision data. 

Uncovering potential systematic tendencies for the revised estimates to increase or decrease as we 

move forward in vintages could indicate predictability in the revisions. In the below summary 

statistics table6 the bias can be studied by analyzing the 12 measures starting from mean absolute 

revision. Bias can be also detected by studying the normality of the data (by concluding biasedness 

in case normality applies) but I will directly evaluate biasedness of the revisions through the values 

calculated in the summary statistics table 4.2. 

                                                 
6 Pre-programmed revision analysis spreadsheets created by OECD task-force and amended by the author are used in 

this thesis and are freely available at: http://www.oecd.org/std/automatedprogramstoperformrevisionsanalysis.htm.  
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Table 4.2. Revision summary statistics 
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The other important factor impairing the usefulness of the initial data is significant dispersion that 

translates into uncertainty (Öller & Hansson, 2005, p. 8). Dispersion can be concluded by studying 

multiple measures jointly and, for instance, by detecting abnormally large ranges for the revisions. 

4.2.1 Unbiasedness and efficiency 

By analyzing Mean revision (�̅�) and Mean absolute revision (𝑀𝐴𝑅) first in table 4.2 we can obtain 

a general idea whether the revisions are zero mean news or variance reducing noise correction. 

Quick glance at the �̅� measure in the summary statistics table reveals that there are no systematic 

over- or under-estimation in initial estimations7, and that the revisions are centered around zero for 

all the period ranges under comparison. Moreover, directly from the summary we can observe that 

for all the comparison periods, excluding two, the variance increases for the later estimates 

suggesting that revisions occur due to news. 

To obtain more robust results, we can study the statistical significance of the mean revisions. 

Revisions are biased if the mean revision is statistically different from zero (either negative or 

positive). Instead of the standard t-test, I will use a modified t-test in order to account for the 

potential association between the revisions made in different periods, i.e. the serial correlation in the 

data. 𝑇-𝑠𝑡𝑎𝑡 values are calculated as: 

𝑡 =
�̅�

𝑠𝑡.𝑑𝑒𝑣(�̅�)−𝐻𝐴𝐶
    

where heteroscedasticity and autocorrelation consistent standard deviation of mean revision or 𝐻𝐴𝐶 

is given as square root of: 

𝑣𝑎𝑟(�̅�)̂ = 
1

𝑛(𝑛−1)
(∑ 𝜀�̂�

2𝑛
𝑡=1 +

4

3
∑ 𝜀�̂�

 𝜀�̂�−1
 𝑛

𝑡=2 +
2

3
∑ 𝜀�̂�

 𝜀�̂�−2
 𝑛

𝑡=3 ) , 𝜀�̂� = 𝑅𝑡 − �̅�  8 . (4.1) 

𝑇-𝑠𝑡𝑎𝑡 values are then compared to the critical values corresponding 1%, 5%, and 10% significance 

levels. For none of the values are we capable of finding statistical significance for any of these 

levels implying that we cannot refute the hypothesis that the mean revisions are zero.  

Mean squared revision (𝑀𝑆𝑅) and root mean squared revision 𝑅𝑀𝑆𝑅 measure the variance of a 

revision based on a symmetric and quadratic loss function for an unbiased initial estimate. 𝑀𝑆𝑅 is 

defined as 

𝑀𝑆𝑅 =  
1

𝑛
∑ (𝑅𝑡)

2𝑛
𝑡=1     

                                                 
7 Moreover “% Later > Earlier” also indicates no over- or under-estimation suggesting that revision is, on n-weighted 

average, positive in 47,89 % of the cases. 
8 Appendix 1. discloses the derivation of the HAC formula. 
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and the 𝑅𝑀𝑆𝑅 is merely a square root of the statistic. We can further decompose the 𝑀𝑆𝑅 to 

smaller proportions to gain insight on which effects are driving forces behind the revisions. I use the 

standard Theil (1961) composition following Granger & Newbold (1973): 

𝑀𝑆𝑅 =  �̅�2 + (𝜎𝑃 − 𝜌𝜎𝐿)
2 + (1 − 𝜌2)𝜎𝐿

2  

where 𝜎𝐿 and 𝜎𝑃 are standard deviations of the latter and the previous estimates in the comparison 

periods, and 𝜌 is the correlation of these two estimates (𝐿 and 𝑃 denote latter and previous 

estimates, respectively. For other notation, see table 4.1 and key in the table 4.2). Dividing by 𝑀𝑆𝑅 

yields 

1 = 𝑈𝑀 + 𝑈𝑅 + 𝑈𝐷    

with 𝑈𝑀 =
�̅�2

𝑀𝑆𝑅
, 𝑈𝑅 =

(𝜎𝑃−𝜌𝜎𝐿)2

𝑀𝑆𝑅
, and 𝑈𝐷 =

(1−𝜌2)𝜎𝐿
2

𝑀𝑆𝑅
. (DiFonzo, 2005). 

𝑈𝑀, or the mean error, measures the proportion of 𝑀𝑆𝑅 which is not equal to zero. 𝑈𝑅 can be 

interpreted as a slope error by considering a regression model for later estimate which is explained 

by the earlier estimate: 𝐿𝑡 = 𝛼 + 𝛽𝑃𝑡 + 𝜀𝑡. If the earlier estimates are unbiased we have 𝛼 = 0 and 

𝛽 = 19. Hence, the statistic measures the degree that 𝛽 is different from 0. On the contrary, if the 

regression would fit the data perfectly, 𝛽 = 1, and 𝑈𝐷 = 0. Therefore, 𝑈𝐷 can be interpreted as a 

disturbance term which is not caused by systematic deviations of the later estimations from the 

earlier estimations. (DiFonzo, 2005, pp. 18-19) 

Given the above, if the first estimates are characterized with high proportions of 𝑈𝐷, the 

interpretation is that the estimates are not systematically dependent, or that the revisions are due to 

news. In all of the comparison periods the proportion of 𝑈𝐷 is extremely high. Investigating the 

periods with initial estimates as data origin the disturbance proportions are ranging from 91,08% to 

99,30%. This gives us a solid indication that the revision process is characterized by news instead of 

noise. 

To reinforce the above assessment that the revisions to the Finnish q-o-q growth rates is mainly 

comprised of unpredictable news we can estimate the significance of the correlation first between 

the earlier estimate and the revision and second between the later estimate and the revision. As 

discussed in Chapter 2, if the revisions are correlated with the later estimates the information that is 

made available between the estimation points (i.e. unpredictable news) is incorporated in the 

estimation process of the later estimate. This implies that the early estimates are efficient estimates 

                                                 
9 Note that least squares estimators for this regression are �̂� =  �̅� − �̂��̅� and �̂� =  

𝜎𝐿𝑃

𝜎𝑃
2 , and that 𝜎𝑃 − 𝜌𝜎𝐿 = 𝜎𝐿(1 − �̂�). 
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for the later estimates. On the contrary, if the revision process is characterized by noise, the revision 

and the early estimates exhibit significant correlation implying the early estimates do not efficiently 

incorporate all the available information. 

Indeed, we discover corroborating results that the revisions are significantly correlated with the later 

estimates, i.e. the revision process is characterized by news, when compared against the alternative 

of zero correlation. For all the comparison periods which utilize the initial release as the origin, the 

correlation is significant on 1% level, whereas of these periods, only ‘Y5-1st’ exhibits correlation 

between early estimate and revision on a 5% significance level. Hence, it becomes quite safe to 

conclude that the early estimates seem to be non-biased estimates for the later estimates.  

4.2.2 Dispersion 

Dispersion can hamper the use of the initial data as it describes the volatility of the data revisions 

(Öller & Hansson, 2005, p. 8). Especially during verges of economic downturns and when business 

cycles reverse upward from troughs one might expect to discover dispersion in revision data. 

Hence, as the sample in this study contains the financial crisis of 2008 the results indeed indicate 

moderate to significant dispersion. Moreover, as we widen the sample range, definitional changes 

account toward the spread of dispersion10. Unavoidably, the degree of dispersion stems from the 

quality of data and the forecaster has only limited possibilities account for this quantitatively. 

For instance, revision ranges are up to 6,49 percentage points (p.p.) and overall relatively high when 

comparison period includes the initial data. For a comparison, ‘Y2-Y1’ range, in which the Y1 data 

has been already revised four times, has a range of 1,91 p.p. 𝑀𝐴𝑅 itself is a good indicator of the 

dispersion, avoiding offsetting effect of negative and positive revisions. Also, by comparing �̅� with 

𝑀𝐴𝑅 it can be concluded that there is an evident spread between the revisions from first estimate to 

the last one within the comparison period. Similarly to 𝑀𝐴𝑅, 𝑅𝑀𝑆𝑅 is an excellent measure for 

dispersion by joining the degree of bias and the variance of a revision. Correlation between 𝑅𝑀𝑆𝑅 

and range is 0,92, 𝑀𝐴𝑅 and range is 0,85, and 𝑅𝑀𝑆𝑅 and 𝑀𝐴𝑅 is 0,98 corroborating the implicit 

proposition that large ranges and higher non-offsetting revision measures indeed indicate for large 

revision spread. 

  

                                                 
10 Definitional changes can be deduced to have a negligible effect on the data as we observed no biasedness in section 

4.2.1, see McKenzie (2007, p. 10)  
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4.3 Forecasting 
 

4.3.1 Repeated forecasting analysis 

To start the empirical forecasting analysis, I will evaluate the overall influence data revisions can 

induce on forecasting. I construct a series of forecasts starting from the first non-observed value in 

the first vintage of the data sample, 2000Q2, to the last vintage 2015Q1 for which the forecastable 

observation is the ongoing quarter. With a similar “repeated forecasting” approach to Stark and 

Croushore (2002), I estimate the q-o-q growth rates with an 𝐴𝑅𝐼𝑀𝐴(𝑝, 1,0) model using each 

available edition to construct a separate one-step out-of-sample forecast for a particular date 𝑡. For 

the first quarter to be forecasted, 2000Q2, there are 60 vintages, and for 2007Q4 there are 30 

vintages. Hence, for all the 60 quarters for which forecasts are generated with all the available 

vintages, there are 1830 forecasts in total. Effectively, we mimic a scenario in which we would 

have, for example, during 2000Q2 built our first forecasting model for the ongoing quarter. Then, 

during each subsequent quarter our forecasting model for 2000Q2 would have been updated based 

on new available data edition. 

I limit the 𝐴𝑅(𝑝) model specification to allow for individual 𝑝th order selection for each of the time 

series and vintage used to generate the forecasting model. The autoregressive order is selected with 

Akaike Information Criterion (AIC). The maximum 𝑝th order is 6. 
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Figure 4.1. Repeated forecasts, mean forecast, and 2015Q1 vintage realization 

 

The figure 4.1 summarizes all the generated forecasts for 2000Q2-2015Q1. The vertical pillars of 

dots in the figure are different forecasts made for the same quarter, and each dot represents a 

forecast that would have been made based on the information available in a given vintage. The two 

lines plot the mean for the forecasted values between the vintages and observed values of the latest 

available data (2015Q1) time series. The pillar of dots for the first forecasted quarter 2000Q2 thus 

contains 60 dots, and the number of dots reduces as we move along the vertical axis.  

We can directly observe that the forecasts based on the different vintages exhibit a great disparity. 

The largest spread between the generated forecasts for a single period is 3,631 p.p. (2009Q4) and 

even the average spread is 0,976 p.p. The forecast ranges are most condensed when the economy is 

in a state of steady growth such that q-o-q growth rates are positive but relatively low. These 

periods also exhibit the smallest average absolute revisions. However, the forecast ranges become 

much more volatile once the quarterly growth rates deviate from the typical low positive growth 

rates. Especially during the downward turning points the forecasts exhibit greatest disparity. These 

periods are also associated with the highest absolute average revisions.   
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Figure 4.2. Repeated forecasts, 2001Q1-2002Q4 

 

Because the number of generated forecasts is tediously large and the number of generated forecasts 

is reduced as we move forward in time, it is convenient to look at a smaller slice of the graph 

pertaining to earlier quarters in the sample for which higher number of forecasts are generated. In 

figure 4.2. the graph shows eight sets of different forecasts made for 2001Q1-20002Q4. In the first 

pillar there are 57 dots and for the last quarter there are 50 dots (the number of the dots may seem 

smaller as they are overlapping).  

Despite the fact that many of the dots are overlapping, it is immediately evident that there is 

substantial variance between the forecasts made for the same period but in different time. As noted 

above, the disparity between the forecasts is modest for the periods with relatively steady growth 

(for instance, 2002Q2 and 2002Q4). However, once the economy hits a point of downturn the 

forecasts immediately get dispersed. In 2001Q3, most pessimistic forecasts are based on earlier 

publications of the data which drastically overestimated the severity of the economic downturn in 

the aftermath of the dot-com bubble. Because almost 70% of the forecasting models for 2001Q3 are 

based on autoregressive order 1, much of the variation in the forecasts between different vintages 

can be credited on the revisions of the precedent quarter. The early estimates for 2001Q2 q-o-q 

contraction ranged from -1,73% to -2,43% whereas the later vintages suggested zero growth thus 

producing much more optimistic forecasts. Therefore, the forecasts ranging from optimistic to 

pessimistic changes sign and range from 1,266% to -1,854%. As a contrast, for 2002Q2 (neglecting 
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the outlier forecasts), and Q42002 the forecasts are most condensed due to a more undispersed 

estimates between the editions for the previous quarters. 

The above figures 4.1 and 4.2 illustrate the effect of all the channels through which the forecasts are 

affected by using different vintages. I will eliminate the specification channel effect by selecting the 

most appropriate 𝐴𝑅𝐼𝑀𝐴(𝑝, 1,0) model based on the data in the first vintage. The model is selected 

again by using Akaike Information Criterion. Investigating again only a slice of the possible periods 

of which the forecasts can be made, I can evaluate the effect that different model selection has on 

the collection of forecasts made for 2001Q1-20002Q4.  

Figure 4.3. Repeated forecast comparison, free AR(p) forecasts contrasted with AR(p) selected based on the first vintage 

  

Figure 4.3 depicts the elimination of the specification channel. The pillars are in pairs such that the 

left set of pillars in each pair repeats the results in figure 4.2. The right pillars include the 

elimination of the specification channel by fixing the functional form of the forecasting model 

based on the first vintage. In all but one of the models the autoregressive order 𝑝 was 2 (for 2001Q3 

it was 1). We can see that the ranges become slightly more condensed but all in all the forecasts 

seem to be very unanimous to each other when the model specification channel effect is eliminated 

against the model based on the first vintage. However, despite arguably a negligible influence on 

the forecasting outcomes, the specification channel effect seems to have an underlying impact on 

the above results. Table 4.3 summarizes the functional forms of the forecasting models for each 
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quarter after the elimination of specification channel. N depicts the number of generated forecasts – 

or dots in the pillar graph. N(different) specifies the number of cases in which free autoregressive 

order selection resulted in different forecasting model (percentage value in brackets is the 

proportional amount to N). As we see in table 4.3, for 2001Q4-2002Q2, the specification channel 

could change the functional form of the forecasting model up to almost 60 % of the forecasts made 

for a particular vintage. In total of 186 forecasts, representing 43,46 % generated data points in the 

right pillars for each quarter, the vintage-dependent forecasting model specification was different 

from the functional form based on the first available vintage data.  

Table 4.3. Summary of specification and direct channel elimination 

 Functional 
form 

AR-
parameters N N(different) 

Average  
differential 

2001Q1 𝐴𝑅𝐼𝑀𝐴(2,1,0) (-0,9936; -0,6139) 57 19 (33,33 %) 0,08  

2001Q2 𝐴𝑅𝐼𝑀𝐴(2,1,0) (-0,9443; -0,6719) 56 13 (23,21 %) -0,24 

2001Q3 𝐴𝑅𝐼𝑀𝐴(1,1,0) (-0,5104) 55 17 (31,91 %) 0,09 

2001Q4 𝐴𝑅𝐼𝑀𝐴(2,1,0) (-0,8609; -0,4160) 54 31 (57,41%) 0,14 

2002Q1 𝐴𝑅𝐼𝑀𝐴(2,1,0) (-0,8376; -0,4649) 53 31 (58,49%) 0,01 

2002Q2 𝐴𝑅𝐼𝑀𝐴(2,1,0) (-0,9019; -0,4712) 52 31 (59,62%) 0,00 

2002Q3 𝐴𝑅𝐼𝑀𝐴(2,1,0) (-0,8876; -0,5389) 51 26 (50,98 %) 0,18 

2002Q4 𝐴𝑅𝐼𝑀𝐴(2,1,0) (-0,8175; -0,5601) 50 18 (36,0%) 0,149 

TOTAL   428 186 (43,46%)  

 

To investigate the direct channel effect, I fix the coefficient with respect to the model suggested by 

the first vintage. Forecasting model parameters are summarized in table 4.3. In only two of the 420 

forecasts (forecasts based on first vintage data will obviously be identical in the comparison and 

hence are excluded from the analysis) two individual one-step ahead forecasts for the same period 

forecasts deviated by more than 1 p.p. from each other and in 31 forecasts the deviations exceeded 

the average q-o-q growth percentage of 0,5071 %. Furthermore, the (geometric) average 

differentials between the one-step-ahead forecasts for the same period generated with fixed and 

non-fixed coefficient  models are relatively small ranging from 0,00 to 0,24 percentage p.p. in 

absolute terms.  

We can deduce that the indirect channel has the greatest impact on the forecast deviation. The 

differences in coefficient estimations then magnify the direct channel effect. Interestingly, the mean 

one-step-ahead forecast performs relatively well both in real-time and predicting the latest available 

values. The 𝑅𝑀𝑆𝐸 of the mean forecast is 1,097 for real-time forecast and 1,479 for the latest 
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available data. The mean is different on 5 percent significance level compared to the rolling 

forecasts made with latest available data (see next section and table 4.4 for corresponding forecast 

error statistics for the rolling latest available data based forecasts). This is in harmony with Elliot 

(2002) who argues that in practice the whole real-time dataset should be employed in order to 

minimize the forecast error.   

4.3.2 Forecast simulation 

To further analyze how the revision process influences forecasting, I run a series of empirical 

exercises comparing forecasts based on real-time vintages to those based on latest available data. I 

forecast the Finnish q-o-q real output growth with 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model in order to compare the 

forecasts generated with models based on real-time data to forecasts generated with latest available 

data.  

I follow the methodology of Stark and Croushore (2002) with deliberate modifications by 

proceeding in the following way. Firstly, I use the data from 1996Q1 to 2000Q1 which would have 

been available to the forecaster in beginning of 2000Q2 to estimate a model for real GDP growth 

rate. Secondly, I forecast q-o-q GDP growth rates for the subsequent four quarters starting from 

2000Q2, the first quarter for which data would not have been available, to 2000Q3, 2000Q4, and 

2001Q1. Thirdly, I continue by moving forward quarter by quarter in the sample repeating steps 1 

and 2 always adding one more observation from the diagonal of the revision triangle. However, I 

deviate from Stark and Croushore’s experiment by allowing a free 𝐴𝑅𝐼𝑀𝐴(𝑝, 1,0) specification 

(with maximum lag length of 6) and coefficient selection at each vintage in order to fully capture 

the real-time effect (therefore, effectively I have as many forecasting models as there are computed 

forecasts). I then repeat the exact same forecasting procedure using the latest available vintage as 

forecasting model data. The forecasts made with real-time data are referred to as RT and forecasts 

based on latest available data are denoted by LA. Fourthly, I compute the forecast errors by using 

three alternative “actuals”: latest available data, first anniversary edition after the fourth-step-ahead 

forecast (for 2000Q2 the actual is 2002Q1 edition for 2000Q2), and the first available publication 

for a particular forecast (for 2000Q2 the actual is 2000Q3 edition for 2000Q2).  

There is no definite answer in the forecasting literature to which values should be regarded as 

actuals and the definition of the actuals is driven by the purpose of a particular forecast as discussed 

in section 3.1. Central bankers conducting monetary policy decisions would definitely have more 

use on the knowledge over near future GDP publications and would define first publications as 

actuals. However, if the future ‘true’ value is of the interest to a forecaster, the selection for actual is 

not clear cut. Croushore (2006, p. 17) suggests using latest available figures as a proxy for actuals. 
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Working with real-time databases enables researchers to estimate variety of actuals. My selection of 

actuals is targeted to discover potential links in forecasting results and revision process studied in 

section 4.2.      

The below tables each display three different sets of results pertaining to different values I use as 

actuals. I compare the root mean squared error (𝑅𝑀𝑆𝐸), mean absolute error (𝑀𝐴𝐸) and mean error 

(𝑀𝐸) for all four forecast horizons. Number of generated forecasts is represented by 𝑁. The amount 

of generated forecasts for which error statistics can be calculated decrease while moving further in 

the sample as the availability to actuals decrease. Furthermore, I test the statistical significance of 

the forecasting differentials between vintages by constructing Diebold and Mariano test statistic 

based on a quadratic loss function and scaling it according to modifications suggested by Harvey & 

al (1997). P-value column reports the p-values of the Harvey forecast difference test. 

Table 4.4 Forecast error statistics, model: RGPD ~ ARIMA(p,1,0), full sample 

Forecast step   N RMSE   MAE   ME   p- 

    RT LA RT LA RT LA value 

Actual value: Latest available data 
      1-step forecast 60 1,450 1,633 0,975 1,060 -0,044 -0,026 0,196 

2-step forecast 59 1,511 1,720 1,015 1,079 -0,037 0,003 0,401 

3-step forecast 58 1,605 1,617 1,035 1,048 -0,071 -0,096 0,927 

4-step forecast 57 1,686 1,864 1,114 1,151 -0,095 -0,104 0,386 

                  

Actual value: First publication 
      1-step forecast 60 1,192 1,231 0,839 0,883 -0,039 -0,021 0,747 

2-step forecast 59 1,233 1,435 0,883 0,945 -0,041 -0,001 0,446 

3-step forecast 58 1,295 1,383 0,938 0,955 -0,078 -0,103 0,569 

4-step forecast 57 1,483 1,602 1,073 1,092 -0,097 -0,107 0,547 

        

  

Actual value: Four quarters later           
 1-step forecast 58 1,502 1,611 1,042 1,102 -0,126 -0,108 0,416 

2-step forecast 57 1,446 1,578 1,007 1,032 -0,104 -0,037 0,237 

3-step forecast 56 1,425 1,425 0,991 0,989 -0,135 -0,134 0,152 

4-step forecast 55 1,503 1,514 1,049 1,025 -0,123 -0,089 0,413 

          

In table 4.4 the autoregressive order 𝑝 in 𝐴𝑅𝐼𝑀𝐴(𝑝, 1,0) is selected by AIC for each vintage. 

Similarly, the model employing last available data is reconstructed as more observations are 

utilized. Hence, for each forecast, the forecasting model is uniquely constructed based on the data 

available during that period. Somewhat strikingly, the forecast error measures are quite similar 

across the evaluated error statistic, actuals, and forecast horizons. The 𝑅𝑀𝑆𝐸s are actually lower for 
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the real-time data models for all the actuals and forecast horizons evaluated. Also, interestingly, the 

𝐿𝐴 models perform better in real-time relative to their performance for forecasting revised values. 

This is in contrast with the presumption that the latest available data would have an advantage 

(especially if more revised data is used as actual data) over the real-time data based forecasts. 

However, we cannot reject the null hypothesis that the forecast differentials are different from zero 

for any of the generated forecasts. The results are identical if I fix the functional form of the latest 

available data forecasts and estimate the 𝐿𝐴 models with 𝐴𝑅𝐼𝑀𝐴(2,1,0) specification with fixed 

coefficients which is the most appropriate model for the full observation range in the last vintage. 

Recalling Howrey’s (1978) remark, however, as I am employing full sample data which has 

observations revised to very different degrees, the models based on the latest available data contain 

the forecast error reducing information only partly.  

The above results are in harmony with Stark and Croushore (2002). Corollary to their experiment, I 

will split my sample to sub-samples to investigate the effects of the real-time forecasting and the 

trade-off between the sample observations used for model building and forecast evaluation. Taking 

only earlier vintages of the sample as the basis of the model also enables the investigation to the 

complete real-time forecasting impact as the observations in current vintage model have already 

gone through a sequence of revisions. 

  Table 4.5 Forecast error statistics, model: RGPD ~ ARIMA(p,1,0), 2001Q1-2005Q4 

Forecast step   N RMSE   MAE   ME   p- 

    RT LA RT LA RT LA value 

Actual value: Latest available data 
      1-step forecast 20 0,999 0,786 0,778 0,651 0,271 -0,077 0,104 

2-step forecast 20 1,102 0,890 0,909 0,730 0,338 0,003 0,057 * 

3-step forecast 20 1,169 0,876 0,888 0,694 0,338 0,043 0,123 

4-step forecast 20 1,075 0,819 0,900 0,684 0,385 0,048 0,064 * 

                  

Actual value: First publication 
      1-step forecast 20 1,522 1,245 1,083 0,918 0,044 -0,304 0,197 

2-step forecast 20 1,468 1,237 1,092 0,889 0,098 -0,237 0,168 

3-step forecast 20 1,177 1,038 0,902 0,773 0,256 -0,039 0,346 

4-step forecast 20 1,410 1,075 1,083 0,824 0,268 -0,069 0,262 

        

  

Actual value: Four quarters later           
 1-step forecast 20 1,235 0,938 0,880 0,684 0,106 -0,242 0,091 * 

2-step forecast 20 1,217 0,976 0,924 0,710 0,195 -0,140 0,100 

3-step forecast 20 0,946 0,706 0,732 0,585 0,325 0,030 0,286 

4-step forecast 20 1,132 0,720 0,875 0,603 0,323 -0,014 0,183 
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The results of the subsample 2001Q1-2005Q4 in table 4.5 exhibit widening spread in the 

forecasting error statistics. When the latest data is used as actuals, even the last observations in the 

forecasting model sample has been republished 38 times. All the forecast error statistics are smaller 

for the models utilizing the latest available data. Using latest available data as actuals 2- and 4-step 

forecasts differences are statistically significant on a 10% level (***, **, and * denote 1%, 5%, and 

10% statistical significance, respectively). Now, in accordance with our presumptions, the 

performance of the 𝐿𝐴 models increase as the forecastable value gets more revised. However, the 

same is true for the 𝑅𝑇 models indicating a poor real-time forecasting ability. 

Interestingly, the real-time data based forecasts tend to generate positively biased forecasts for ‘true 

values’ with 𝑀𝐸s up to 0,385 %. In section 4.2 we concluded that the direction of revisions were 

quite evenly distributed with 48% of the revisions increasing the previous estimate. However, we 

indeed observed that previous estimates for some revision ranges were exceptionally larger 

proportionally than latter estimates (for instance Y2-Y1 60,29% of the revisions corrected the 

estimates downwards). Also 11/15 of the estimated revision periods in table 4.2 had an aggregate 

proportional downward correction. Hence, the models based on real-time data could for this reason 

suffer from a positive bias even using real-time data as actuals with prolonged forecast horizon 𝑙.   

A peculiar fact is that the forecast models based on latest available data also perform better in real-

time given 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 compared to the real-time models. However, we observe a negative 

bias with similar conclusions as described above for the real-time forecasts.   
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Table 4.6 Forecast error statistics, model: RGPD ~ ARIMA(p,1,0), 2006Q1-2010Q4 

Forecast step   N RMSE   MAE   ME   p- 

    RT LA RT LA RT LA value 

Actual value: Latest available data 
      1-step forecast 20 2,175 2,524 1,587 1,883 -0,060 0,376 0,174 

2-step forecast 20 2,233 2,714 1,551 1,867 -0,142 0,256 0,332 

3-step forecast 20 2,320 2,451 1,505 1,707 -0,181 -0,025 0,622 

4-step forecast 20 2,479 2,868 1,633 1,841 -0,230 0,075 0,314 

                  

Actual value: First publication 
      1-step forecast 20 1,262 1,495 0,956 1,122 0,441 -0,004 0,217 

2-step forecast 20 1,383 2,009 1,007 1,360 0,420 -0,004 0,313 

3-step forecast 20 1,565 1,813 1,158 1,276 0,099 -0,001 0,504 

4-step forecast 20 1,769 2,131 1,288 1,507 0,225 -0,002 0,369 

        

  

Actual value: Four quarters later           
 1-step forecast 20 2,115 2,415 1,614 1,883 -0,196 0,240 0,236 

2-step forecast 20 2,202 2,707 1,566 1,945 -0,259 0,139 0,336 

3-step forecast 20 2,306 2,531 1,701 1,811 -0,335 -0,179 0,459 

4-step forecast 20 2,453 2,841 1,771 1,980 -0,347 -0,042 0,294 

          

The differences between real-time and latest available models again diminish as the sample data 

approaches more recent periods in the subsample 2006Q1-2010Q4 (table 4.6). Again the real-time 

data based models exhibit smaller error statistics compared to those based on the latest available 

vintage. In this setup, the degree of the revisions between the vintages is presumably not very 

different as I find no statistically significant differences between models utilizing real-time data and 

the models based on the current vintage. 

With this subsample, the 𝑅𝑇 models forecast the early realizations better relative to the more recent 

vintages of actuals. Interestingly, we observe quite large directional biases for both model types and 

for all the realizations (excluding first publication forecasts with 𝐿𝐴 models). Peculiarly, the 

forecast bias is now negative for 𝑅𝑇 models forecasting the revised realizations which is exactly 

opposite to the conclusions drawn from table 4.5. Hence, the results seem to be mixed and sub-

sample dependent. 
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Table 4.7 Forecast error statistics, model: RGPD ~ ARIMA(2,1,0), full sample 

Forecast step   N RMSE   MAE   ME   p- 

    RT LA RT LA RT LA value 

Actual value: Latest available data 
      1-step forecast 60 1,441 1,491 0,962 0,978 -0,060 -0,056 0,576 

2-step forecast 59 1,494 1,526 0,996 0,973 -0,056 -0,039 0,844 

3-step forecast 58 1,592 1,530 1,025 1,007 -0,080 -0,093 0,561 

4-step forecast 57 1,669 1,757 1,098 1,106 -0,111 -0,100 0,538 

                  

Actual value: First publication 
      1-step forecast 60 1,177 1,147 0,835 0,824 -0,055 -0,050 0,745 

2-step forecast 59 1,223 1,264 0,873 0,859 -0,060 -0,043 0,810 

3-step forecast 58 1,284 1,284 0,928 0,912 -0,088 -0,101 0,999 

4-step forecast 57 1,455 1,498 1,057 1,048 -0,114 -0,102 0,764 

        

  

Actual value: Four quarters later           
 1-step forecast 58 1,487 1,496 1,029 1,029 -0,142 -0,138 0,924 

2-step forecast 57 1,434 1,436 0,997 0,951 -0,123 -0,098 0,391 

3-step forecast 56 1,425 1,369 0,987 0,955 -0,145 -0,145 0,146 

4-step forecast 55 1,485 1,465 1,035 1,012 -0,140 -0,102 0,764 

          

To mimic a more realistic real life forecasting exercise I do not allow for a free autoregressive order 

selection for each vintage. Instead, I estimate the model based on the data which would have been 

available for a forecaster at each particular quarter. The most optimal model specification is 

𝐴𝑅𝐼𝑀𝐴(2,1,0) which I use again to first construct forecasts with the full sample range data and 

then with the first sub-sample. 

For the full sample forecasts we again have very similar error statistic results to the free selection 

setup (table 4.7). The statistics are not significantly different from each other when the model is 

based on real-time data and current vintage. Moreover, the comparison between the error statistic 

results between the free autoregressive order selection and fixed model specification suggest that 

the model specification does not contribute significantly to the forecasting errors. All the error 

statistics are strikingly identical for all the actuals and both vintages. Hence, it seems that the 

specification channel does not necessarily have a major impact on forecasting accuracy. 
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Table 4.8 Forecast error statistics, model: RGPD ~ ARIMA(2,1,0), 2001Q1-2005Q4 

Forecast step   N RMSE   MAE   ME   p- 

    RT LA RT LA RT LA value 

Actual value: Latest available data 
      1-step forecast 20 0,962 0,783 0,750 0,641 0,243 -0,044 0,117 

2-step forecast 20 1,070 0,866 0,873 0,698 0,302 0,011 0,085 * 

3-step forecast 20 1,149 0,862 0,878 0,682 0,328 0,050 0,149 

4-step forecast 20 1,025 0,788 0,868 0,665 0,352 0,063 0,009 *** 

                  

Actual value: First publication 
      1-step forecast 20 1,477 1,250 1,055 0,939 0,016 -0,270 0,205 

2-step forecast 20 1,442 1,248 1,055 0,921 0,062 -0,228 0,223 

3-step forecast 20 1,169 1,017 0,892 0,769 0,246 -0,032 0,352 

4-step forecast 20 1,341 1,052 1,051 0,806 0,236 -0,054 0,206 

        

  

Actual value: Four quarters later           
 1-step forecast 20 1,187 0,948 0,852 0,705 0,078 -0,208 0,091 * 

2-step forecast 20 1,183 0,986 0,887 0,742 0,159 -0,131 0,161 

3-step forecast 20 0,931 0,695 0,722 0,578 0,315 0,037 0,295 

4-step forecast 20 1,061 0,693 0,843 0,585 0,290 0,001 0,132 

          

In table 4.8, turning back to the same subsample as in table 4.5 with fixed forecasting model order, I 

find almost identical result to the free autoregressive selection set-up. The magnitudes of the 

forecast error statistics are extremely close to the errors in table 4.5 again suggesting that the 

specification channel contributes relatively little to the forecast deviations. The models based on the 

latest available data perform better relative to the real-time data models for all the actuals and 

horizons. Again, we observe the directional biases when attempting to forecast revised values with 

real-time models as well as forecasting real-time values with latest available models.  

4.3.3 Monte Carlo simulation 

The previous chapters and the sections in this chapter demonstrated, both empirically and 

theoretically, that forecasting accuracy of the linear univariate models is significantly affected by 

the data vintage selection for the forecasting model. In the above section it was found that the 

selection of actuals contributes to the forecast error statistics obtained using different vintages as a 

basis of the forecasting model. However, in section 4 it was shown that the Finnish quarterly real 

GDP revision process was almost purely characterized by news and hence the above forecasting 

experiments were based on a news process. Therefore, since the focus of this study is to find 
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potential effects of news and noise revision processes on the forecasting accuracy, I will evaluate 

forecasting performance of models based on different data vintages with Monte Carlo simulations. 

I have calibrated the parameters based on the findings in section 4. Following Clements and Galvao 

(2013) I simulate 𝐴𝑅(1) process for a quarterly GDP percentage change data. By altering the 

intercept term 𝛿 and the 𝐴𝑅(1) coefficient 𝜙, I investigate three different time invariant scenarios 

(Scenario 1-3). The parameters are set such that the true process has a mean of 0,5 corresponding 

approximately to 0,51 average change q-o-q GDP in Finland. The standard deviation of the data 

generating process is set to unity (the average standard deviation across the vintages is 1,0123). 

I set 𝑤 = 20 such that the data goes through 20 revisions (or there are 20 different vintages 𝑤) 

before reaching its ‘true’ value �̃�. The data is constructed such that the series in each 𝑤 vintage is 

comprised of news and noise components 𝑣𝑡,𝑡+𝑠 and 𝑒𝑡,𝑡+𝑠, such that 𝑌𝑡,𝑡+𝑠 = �̃�𝑡 + 𝑣𝑡,𝑡+𝑠 + 𝑒𝑡,𝑡+𝑠. I 

consider only pure news and noise processes by setting 𝜎𝑒𝑙
 = 0 and 𝜎𝑣𝑙

 ≠ 0 for news process and 

𝜎𝑒𝑙
 ≠ 0 and 𝜎𝑣𝑙

= 0 for noise process. Following Clements and Galvao (2013) I assume first and 

fourth revisions to be non-zero mean and the means are set to eight percent of the first release data. 

Also, the standard deviations of the revisions are set to diminish so that revisions 2-19 have a 

standard deviations of 50 % and the final revision 25 % of that of the first revision. Table. 4.9 

summarizes the parameters for each of the scenarios for both noise and news processes. The 

methodology for the calibration of the parameters is disclosed in Appendix 2. 

Table 4.9 Summary of the calibrated parameters for the Monte Carlo simulation 

Noise δ ϕ σ μe1
 μe2

= μe3
= μe4

 σe1
 σe2,4,…,20

 σe3,5,…,19
 

Scenario 1 0,25 0,5 1 0,0741 0,0345 0,5590 0,1443 0,2500 

Scenario 2 0,175 0,65 1 0,0741 0,0345 0,6370 0,1645 0,2849 

Scenario 3 0,325 0,35 1 0,0741 0,0345 0,5168 0,1334 0,2311 

News δ ϕ σ μv1
= μv4

 σv1
 σv2,…,10

 σv20
 

 Scenario 1 0,25 0,5 1 0,0426 0,6575 0,3288 0,1644 
 Scenario 2 0,175 0,65 1 0,0450 1,4118 0,7059 0,3530 
 Scenario 3 0,325 0,35 1 0,0413 0,5233 0,2616 0,1308 
  

I use a similar approach with forecasting as in sections 4.3.1 and 4.3.2. The sample size of the first 

vintage forecasting model is 50 and due to expanding window method the sample size increases by 

one as 𝑡 + 𝑠 increases by one. 𝑙 = 4 again such that the forecasts are calculated recursively for four 

periods ahead. The 𝑅𝑇 forecasts are again created for each vintage and collectively compared to the 

𝐿𝐴 forecasts made based on true value data �̃�𝑡. The forecast error evaluation to the actual values is 

made using the �̃�𝑡 data as latest available data and considering the vector comprised of 𝑌𝑡+50,𝑡, 𝑡 =
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1…21 as the first publication data. Therefore, all the forecast comparisons made against the latest 

available data as actual comprise of 20 forecasts accuracy evaluations for each forecast step. When 

the first available data is used as actuals, the number of forecasts is reduced by one as the forecast 

horizon increases by one due to limited amount of actuals towards the end of the sample. The data 

generating process simulation and the above forecasting procedure is repeated 500 times. 

Table 4.10 Monte Carlo forecast error statistics, average figures for all the forecast horizons 

Scenario/ 
Revision 
process 
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 RMSE   MAE   ME   

RT LA RT LA RT LA RT LA RT LA RT LA 

Scenario 1                         

Noise 1,140 1,119 0,928 0,911 -0,019 -0,006 1,375 1,342 1,102 1,077 -0,011 -0,002 

News 2,258 2,271 1,828 1,839 -0,009 -0,026 2,018 2,037 1,621 1,640 -0,024 -0,035 

Scenario 2                         

Noise 1,258 1,208 1,026 0,986 0,012 0,014 1,450 1,368 1,166 1,102 0,022 0,020 

News 5,001 5,054 4,038 4,081 -0,017 -0,027 4,384 4,471 3,531 3,612 -0,028 -0,034 

Scenario 3                         

Noise 1,052 1,039 0,854 0,844 -0,028 -0,019 1,288 1,273 1,037 1,024 -0,015 -0,008 

News 1,745 1,751 1,412 1,417 0,018 0,012 1,556 1,564 1,259 1,267 0,009 0,006 

 

Table 4.10 summarizes the forecast error statistics as averages for all 𝑙 = 1,… ,4 forecasts. The 

results reveal that the error statistics, when the revisions are reducing noise, are much smaller 

compared to the news process regardless of which data is used as actuals and for model 

construction. For instance, the 𝑅𝑀𝑆𝐸 statistic for the model using latest available data as the basis 

of the model and actuals is 5,054 when the revision process adds news but only 1,208 when 

revisions reduce noise. The result is in harmony with the presumptions as the expected standard 

deviations for the news process are larger than for the noise reducing revision process. 𝑀𝐸 statistics 

are not extensively different from zero, and thus we can interpret that the relatively large standard 

deviation produces high volatility for the forecasts when revision process is characterized by news.  

Furthermore, we see that the forecast errors increase with the 𝐴𝑅 parameter 𝜙. Firstly, a larger 

autoregressive coefficient implies higher standard deviations for the revisions and consequently for 

the data series in the observed vintages. Hence, again we see higher volatility of the generated 

forecasts contributing to larger non-offsetting error statistics (also the magnitude of the differences 

between 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 indicate a higher variance between individual forecast errors). Secondly, 

in section 3.2.1 we concluded that the persistence in the data generating process contributes directly 

to the forecast deviations through the direct channel. This is indeed the case: the absolute 
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differences in both 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 statistics between the models based on different data diminish 

as the autoregressive coefficient is reduced. These findings also match with Clements and Galvao 

(2013) who conclude that forecast accuracy spread is larger for news revisions and increases with 

higher persistence in autoregressive coefficients.  

The differences between the forecasting models based on different vintages are much more subtle. 

However, there seems to be a systematic pattern in the relative size of the error statistics based on 

the model data. The average 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 statistics as well as the individual ℎ-step averages 

(see Appendix 3.) are always lower for the models based on the latest available data when the 

revision process is characterized by reducing noise. The exact opposite is true for when the 

revisions are adding news. For the news process, the real-time models always (for both averages 

and individual horizons) perform better forecasting the real-time values relative to forecasting the 

true values. Similarly, the 𝐿𝐴 models performed better forecasting for the true values compared to 

real-time values when revision process is characterized by noise. Interestingly the pattern is 

opposite in a reverse scenario and, for instance, the real-time models perform relatively better 

forecasting the true value as opposed to the real-time values when revision process is characterized 

by noise. In table 4.5 we found that the 𝐿𝐴 models performed better at predicting the final value 

relative to real-time value but, for instance, 4.4 and 4.6 we found the opposite. This could again, 

with the directional biases observed in table 4.5 and 4.6, hint that our sub-samples were to some 

extent characterized differently, and hence, produce mixed results. The results in tables 4.4 and 4.6 

are aligned with findings in Monte Carlo simulation.    

5. Conclusions 
 

Macroeconomic forecasting based on the national accounts data has proved to be cumbersome. The 

data is published with lag and it is subject for series of revisions therefore hampering the forecasting 

model construction and evaluation. Just recently, with emergence of real-time databases and 

expanding research, the forecasters have begun to understand more thoroughly the potential pitfalls 

when forecasting in the presence of data revisions. I have chosen to study the utilization of real-time 

vintages relative to latest available data. Real-time data is defined as the best available data at hand 

for forecaster during a particular period and latest available data is “today’s” data which contains all 

the past revisions and can be found in any conventional macroeconomic database. Additionally, I 

investigate whether the separation of the revision process to news (and variance) adding and noise 

(variance) reducing revisions influences the selection of the data vintage for the forecasting model. I 

carry out a data analysis to uncover the characteristics of the revision process in Finland, perform an 
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empirical forecasting study, and construct a Monte Carlo experiment with parameters calibrated 

based on the Finnish data.  

I discover that the revisions to the Finnish real GDP have a significant influence on forecasting 

when forecasts are compiled with linear univariate models, i.e. 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) models. All three 

potential channels (directly through the data input, indirectly through the coefficients, and through 

the functional form specification) through which the forecasts are affected were present with 

indirect channel being the most influential for the highlighted sub-sample. Generating one-step-

ahead forecasts produced forecast spreads of up to 3,631 p.p. for a single forecast period with an 

average spread of almost 1% for the whole sample. Forecasting deviations are most condensed 

during the periods of low positive growth which also exhibited smallest mean absolute revisions.   

Despite the extensive research over the separation to news and noise, the application of this 

separation to forecasting is meager. However, uncovering the patterns in revisions could possibly 

facilitate the selection of the forecasting model data. If revisions are adding news, the real-time 

observations contain all the data available at time. Hence, the observations in the real-time vintage 

are efficient estimates for the true value. I find that the data revision process for Finnish q-o-q real 

GDP data is dominated by adding news characterization. Specifically for the early revisions, 

indicators such as significant correlations between the revision and the latter release, and high 

relative proportions of disturbance terms, 𝑈𝐷’s, in mean squared revision decomposition point to 

news revisions dominance.  

I find significant deviations between the real-time and current vintage forecasts only when forecasts 

are based on early sample subsets and are contrasted on the latest available data and first 

anniversary revision data. Only a handful of significant forecast differentials between the models 

are found by deploying sub-samples. In the full sample evaluations, the forecast error statistics from 

forecasts based on real-time vintages tend to be smaller compared to the forecasts based on latest 

available data even when compared to latest available data as actuals. This is corroborated with the 

findings in the Monte Carlo experiment where the real-time based models produce smaller forecast 

error statistic when the revision process simulates adding news. On the contrary, when the revision 

process is characterized by noise, the latest available data models generate smaller forecast errors 

than the real-time data based models. Moreover, the Monte Carlo simulation suggests that the real-

time models have the best real-time forecasting performance when the revision process is 

characterized by news and the latest available data models perform best forecasting the actual 

values when revisions are characterized by noise.  
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Appendix 1. Derivation of heteroscedasticity and autocorrelation 

consistent (HAC) variance formula 
 

The HAC variance formula in equation 4.1 is utilized to accommodate potential serial correlations 

in revisions. To start the derivation, consider a simple regression model 𝑅𝑡 = 𝜇𝑡 + 𝜀𝑡
11, where 𝑡 =

1, … , 𝑛. The error term may be serially correlated and (or) heteroscedastic. In that case, the ordinary 

least squares (OLS) coefficient estimators are consistent but the usual OLS standard errors 

generally are not. Instead, the standard errors should be computed by using a heteroscedasticity and 

autocorrelation consistent (𝐻𝐴𝐶) estimator for the variance. 

To derive the Newey & West (1987) 𝐻𝐴𝐶 estimator consider a multiple regression model 

𝐲 = 𝐗𝛃 + 𝛆     

where 𝐲 is a 𝑛 × 1 dimensional vector of observations on the dependent variable, 𝐗 is a 𝑛 × (𝑘 +

1) dimensional matrix of regressors, 𝛃 is a (𝑘 + 1) × 1 dimensional vector of unknown regression 

coefficients, and 𝛆 is 𝑛 × 1 dimensional random vector with zero mean and unknown covariance 

matrix 𝛀. The OLS estimator is �̂� =  (𝐗′𝐗)−1𝐗′𝐲 and the Newey-West estimator of the covariance 

matrix for �̂� is  

𝑉𝑎𝑟(𝛃)̂ = (𝐗′𝐗)−1�̂�(𝐗′𝐗)−1   

where   

�̂� =
𝑛

𝑛−𝑘
{∑ 𝜀�̂�𝑿𝑡𝑿𝑡

′ + ∑ ((1 −
𝑣

𝑞+1
)∑ 𝑿𝑡  𝜀�̂�𝜀�̂�−𝑣𝑿𝑡−𝑣

′ +𝑛
𝑡=𝑣+1 𝑿𝑡−𝑣𝜀�̂�−𝑣 𝜀�̂�  

𝑿𝑡
′)

𝑞
𝑣=1

𝒏
𝒕=𝟏 }.  

 

The parameter 𝑞 is the truncation parameter of the 𝐻𝐴𝐶 estimator which represents the number of 

autocorrelations that is used to estimate the dynamic causal effects of the OLS residuals 𝜀�̂� = �̂�𝑡 −

𝐱𝑡
′ �̂�, 𝑡 = 1,… , 𝑛. As we are interested in the mean, i.e. the intercept of the regression model 𝑅𝑡 =

𝜇𝑡 + 𝜀𝑡 the formula gets simplified. The OLS estimate of the mean is �̅� =
1

𝑛
∑ 𝑅𝑡

𝑛
𝑡=1 , matrix 𝐗 is a 

𝑛 × 1 dimensional vector of one, and 𝐗′𝐗 = 𝑛. Therefore we have that  

                                                 
11 The reasoning follows OECD revision analysis interpretation guide (DiFonzo, 2005, pp. 25-26) influenced by 

Jenkinson & Stuttard (2004). 
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𝑣𝑎𝑟(�̅�)̂ = 
1

𝑛(𝑛−𝑘)
{∑ 𝜀�̂�

2𝑛
𝑡=1 + 2∑ ((1 −

𝑣

𝑞+1
)∑ 𝜀�̂�

 𝜀�̂�−𝑣
 𝑛

𝑡=𝑣+1 )𝑞
𝑣=1 }.   

By adjusting the parameters to 𝑘 = 1 and 𝑞 = 2 (which is a suitable common selection for the 

sample size for all the comparison periods12) we arrive to 𝑣𝑎𝑟(�̅�)̂  in equation 4.1. 

  

                                                 
12 For the discussion regarding the selection of the truncation parameter, see for example Stock & Watson (2003, p. 

641) 
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Appendix 2. Calibration and derivation of Monte Carlo parameters 
 

In this appendix I derive the formulas used to calibrate the Monte Carlo parameters in section 4.3.3. 

The derivations are based on the statistical framework provided by Jacobs and Van Norden (2011), 

Clements and Galvao (2013) and Hännikäinen (2015). Both Clements and Galvao and Hännikäinen 

calibrate the variables to represent conditions in the US, hence the derivations shown here are 

essentially the same but the results differ at times due to differences in statistical characteristics. 

The 𝑡 + 𝑠 vintage estimate of 𝑌 for period 𝑡, denoted 𝑌𝑡,𝑡+𝑠, 𝑠 = 1,… ,𝑤, is considered to consist of 

true value �̃�𝑡 and news and noise components, 𝑣𝑡,𝑡+𝑠 and 𝑒𝑡,𝑡+𝑠 such that 𝑌𝑡,𝑡+𝑠 = �̃�𝑡 + 𝑣𝑡,𝑡+𝑠 +

 𝑒𝑡,𝑡+𝑠. Recalling the earlier discussion we have that for pure news process 𝐶𝑜𝑣(𝑌𝑡,𝑡+𝑠, 𝑣𝑡,𝑡+𝑠) =  0 

and for pure noise 𝐶𝑜𝑣(𝑌𝑡,𝑡+𝑠, 𝑒𝑡,𝑡+𝑠) =  0. Following Jacobs and Van Norden (2011) and Clements 

and Galvao (2013), I combine all 𝑤 different vintages of 𝑌𝑡, 𝑣𝑡, and 𝑒𝑡 into a vector such that  

𝐘𝑡 = 𝐢�̃�𝑡 + 𝐯𝑡 + 𝐞t    

where 𝐢 is a 𝑤-vector of ones. The true process is assumed to follow 𝐴𝑅(1) data generating process 

such that  

�̃�𝑡 =  𝛿 +  𝜙�̃�𝑡−1 + ∑ 𝜇𝑣𝑖

𝑤
𝑖=1 + 𝜎𝜂1,𝑡 + ∑ 𝜎𝑣𝑖

𝑤
𝑖=1 𝜂2𝑡,𝑖 (A1.1) 

where 𝜂1,𝑡 and 𝜂2𝑡,𝑖 are 𝑛𝑖𝑖𝑑 (0,1) (𝑖 = 1,… ,𝑤). 

  

I set 𝑤 = 20 so that my dataset consists of initial vintage and twenty revised estimations with the 

last vintage corresponding to the final value. Both first vintage data, 𝑌𝑡,𝑡+1, and final data, �̃�𝑡, are 

covariance stationary processes, i.e. invariant in time. Hence, the expected value for �̃�𝑡 is simply the 

fixed reference point for a stationary process (see equation 3.3): 

𝜇�̃� = 
𝛿+∑ 𝜇𝑣𝑖

𝑙
𝑖=1

1−𝜙
.    

The expected value for 𝑌𝑡,𝑡+1 is then 𝐸(𝑌𝑡,𝑡+1) = 𝜇�̃� − ∑ 𝜇𝑣𝑖

𝑤
𝑖=1 − 𝜇𝑒1

 or 

𝜇𝑌𝑡,𝑡+1
= 

𝛿+𝜙 ∑ 𝜇𝑣𝑖
𝑤
𝑖=1

1−𝜙
− 𝜇𝑒1

.   

Therefore, for the pure noise process we have 
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𝜇�̃� = 
𝛿

1−𝜙
     

and 

𝜇𝑌𝑡,𝑡+1
= 

𝛿

1−𝜙
− 𝜇𝑒1

.    

For the pure news process we have 

𝜇�̃� = 
𝛿+∑ 𝜇𝑣𝑖

𝑤
𝑖=1

1−𝜙
    

and 

𝜇𝑌𝑡,𝑡+1
= 

𝛿+𝜙 ∑ 𝜇𝑣𝑖
𝑤
𝑖=1

1−𝜙
.    

I follow the methodology of Clements and Galvao (2013) and assume that the first and fourth 

revision have non-zero mean. This assumption is supported by statistical analysis in section 4.2 (the 

authors actually consider the first and fifth revisions as non-zero). I assume that these revisions are 

both 𝜆 times the mean of the first release data. 𝜆 is set to 0,08 which is an approximate multiplier 

for the mean real GDP q-o-q growth in Finland, 0,5071 , resulting to the mean revision of 0,04. 

An 𝑖th  revision 𝑟 for observation 𝑡 is defined as 𝑟𝑡,𝑖 = 𝑌𝑡,𝑡+1+𝑖 − 𝑌𝑡,𝑡+𝑖 = 𝜇𝑣𝑖
+ 𝜎𝑣𝑖

𝜂2𝑡,𝑖 − 𝜇𝑒𝑖
 , for 

𝑖 = 1, … ,𝑤.    

When revisions are comprised of noise we have that 

𝐸(𝑟𝑡,1) = −𝜇𝑒2
+ 𝜇𝑒1

=  𝜆𝐸(𝑌𝑡,𝑡+1)   

𝐸(𝑟𝑡,2) = −𝜇𝑒3
+ 𝜇𝑒2

= 0    

𝐸(𝑟𝑡,3) = −𝜇𝑒4
+ 𝜇𝑒3

= 0    

𝐸(𝑟𝑡,4) = −𝜇𝑒5
+ 𝜇𝑒4

= 𝜆𝐸(𝑌𝑡,𝑡+1)   

𝐸(𝑟𝑡,5) = −𝜇𝑒6
+ 𝜇𝑒5

= 0    

⋮   

𝐸(𝑟𝑡,19) = −𝜇𝑒20
+ 𝜇𝑒19

    

𝐸(𝑟𝑡,20) =  𝜇𝑒20
= 0    
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𝐸(𝑟𝑡,20) =  𝜇𝑒20
= 0 also implies that 𝜇𝑒19

= 𝜇𝑒18
… = 𝜇𝑒5

= 0. Therefore 𝜇𝑒4
= 𝜇𝑒3

= 𝜇𝑒2
=

𝜆𝐸(𝑌𝑡,𝑡+1) and 𝜇𝑒1
= 2𝜆𝐸(𝑌𝑡,𝑡+1). Plugging in the result for 𝐸(𝑌𝑡,𝑡+1) =  𝜇𝑌𝑡,𝑡+1

 yields: 

𝜇𝑒1
=

𝛿

1−𝜙

2𝜆

1+2𝜆
    

𝜇𝑒2
= 𝜇𝑒3

= 𝜇𝑒4
=

𝛿

1−𝜙

𝜆

1+2𝜆
.   

The expected revisions for pure news process are 

𝐸(𝑟1,𝑡)  =  𝜇𝑣1
    

⋮    

𝐸(𝑟20,𝑡) =  𝜇𝑣20
    

such that 𝜇𝑣2
= 𝜇𝑣3

= 𝜇𝑣5
= ⋯ = 𝜇𝑣20

= 0 and 𝐸(𝑟1,𝑡)  =  𝜇𝑣1
= 𝐸(𝑟4,𝑡)  =  𝜇𝑣4

. Noting 𝐸(𝑟1,𝑡) =

 𝜆𝐸(𝑌𝑡,𝑡+1) results in 

𝜇𝑣1
= 𝜆

𝛿+𝜙 ∑ 𝜇𝑣𝑖
𝑤
𝑖=1

1−𝜙
=

𝜆𝛿

1−(1+2𝜆)𝜙
= 𝜇𝑣4

.   

Next, I derive the standard deviations for the data revisions and for the first and final data vintages. 

First, to find the variance for final value �̃�𝑡 I modify the equation A1.1 yielding: 

�̃�𝑡 − 𝜇�̃� = 𝜙(�̃�𝑡−1 − 𝜇�̃�) +  𝜎𝜂1,𝑡 + ∑ 𝜎𝑣𝑖

𝑤
𝑖=1 𝜂2,𝑡,𝑖. (A1.2) 

Variance is then found by multiplying A1.2 by �̃�𝑡 − 𝜇�̃� and taking expectations of a modified 

equation for �̃�𝑡 gives 

𝐸(�̃�𝑡 − 𝜇�̃�)2 =  𝜙𝐸[(�̃�𝑡 − 𝜇�̃�)(�̃�𝑡−1 − 𝜇�̃�)] + 𝐸[(�̃�𝑡 − 𝜇�̃�)𝜎𝜂1𝑡] + 𝐸 [(�̃�𝑡 − 𝜇�̃�)∑𝜎𝑣𝑖

𝑤

𝑖=1

𝜂2𝑡,𝑖]. 

Since, 𝐸[(�̃�𝑡 − 𝜇�̃�)𝜎𝜂1𝑡] = 𝜎2𝐸(𝜂1𝑡
2 ) = 𝜎2 and 𝐸[(�̃�𝑡 − 𝜇�̃�)∑ 𝜎𝑣𝑖

𝑤
𝑖=1 𝜂2𝑡,𝑖] = ∑ 𝜎𝑣𝑖

2 𝐸(𝑤
𝑖=1 𝜂2𝑡,𝑖) =

∑ 𝜎𝑣𝑖

2𝑤
𝑖=1  we can reformulate the variance for �̃�𝑡 as 

𝑉𝑎𝑟(�̃�𝑡) = 𝜙𝜌1𝑉𝑎𝑟(�̃�𝑡) + 𝜎2 + ∑ 𝜎𝑣𝑖

2𝑤
𝑖=1   

where 𝜌1 is the first autocorrelation coefficient. Because for 𝐴𝑅(1) 𝜌1 = 𝜙 (Box & Jenkins, 1970, 

p. 57) we have that for noise process 

𝜎�̃�𝑡
= √

𝜎2

1−𝜙2     
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and for news process 

 

𝜎�̃�𝑡
= √

𝜎2+∑ 𝜎𝑣𝑖
2𝑤

𝑖=1

1−𝜙2  .    

The variance for 𝑌𝑡,𝑡+1 is hence 

𝑉𝑎𝑟(𝑌𝑡,𝑡+1) = 𝑉𝑎𝑟(�̃�𝑡 − ∑𝜇𝑣𝑖
− ∑𝜎𝑣𝑖

𝑤

𝑖=1

𝑤

𝑖=1

𝜂2𝑡,𝑖 − 𝜇𝑒1
+ 𝜎𝑒1

𝜂3𝑡,𝑖)

=  𝑉𝑎𝑟(�̃�𝑡) + ∑𝜎𝑣𝑖

2 𝑉𝑎𝑟(

𝑤

𝑖=1

𝜂2𝑡,𝑖) + 𝜎𝑒1
2 𝑉𝑎𝑟(𝜂3𝑡,𝑖) − 2∑𝜎𝑣𝑖

𝑤

𝑖=1

𝐶𝑜𝑣(�̃�𝑡, 𝜂2𝑡,𝑖)

+ 2𝜎𝑒1
𝐶𝑜𝑣(�̃�𝑡, 𝜂3𝑡,𝑖) − 2∑ 𝜎𝑣𝑖

𝜎𝑒1

𝑤

𝑖=1

𝐶𝑜𝑣(𝜂2𝑡,𝑖, 𝜂3𝑡,𝑖). 

Since, 𝐶𝑜𝑣(�̃�𝑡, 𝜂3𝑡,𝑖) =  𝐶𝑜𝑣(𝜂2𝑡,𝑖, 𝜂3𝑡,𝑖) = 0 and 𝐶𝑜𝑣(�̃�𝑡, 𝜂2𝑡,𝑖) =  ∑ 𝜎𝑣𝑖

𝑙
𝑖=1  we have that 

𝑉𝑎𝑟(𝑌𝑡,𝑡+1) =  𝑉𝑎𝑟(�̃�𝑡) − ∑ 𝜎𝑣𝑖

2𝑙
𝑖=1 + 𝜎𝑒1

2 .  

By combining this result with 𝜎�̃�𝑡
 we have that for noise process 

𝜎𝑌𝑡,𝑡+1
= √

𝜎2

1−𝜙2 + 𝜎𝑒1
2     

and for news process 

𝜎𝑌𝑡,𝑡+1
= √

𝜎2+∑ 𝜎𝑣𝑖
2𝑙

𝑖=1

1−𝜙2
− ∑ 𝜎𝑣𝑖

2𝑙
𝑖=1 = √

𝜎2+𝜙2 ∑ 𝜎𝑣𝑖
2𝑙

𝑖=1

1−𝜙2
.  

Finally, I derive the standard deviations for the revisions. Again following Clements and Galvao 

(2013) and the notation of Hännikäinen (2015) I set 𝜎𝑟 =  𝛼𝜎𝑌𝑡,𝑡+1
, where 𝛼 denotes the ratio of the 

standard deviation of the first revision to the standard deviation of first real. Based on the Finnish 

data sample in section 4.2 𝛼 is set to 0.45. For simplicity, like Clements and Galvao, I assume that 

standard deviations for the revisions 2-19 are 50 of the 𝜎𝑟1so that we have 𝛼/2, and for revision 20 

standard deviations are 25  so that we have 𝛼/4.  

To derive the standard deviations for the revisions consider the variance for the first revision 

𝜎𝑟1
2 = 𝑉𝑎𝑟(𝜇𝑣1

+ 𝜎𝑣1
 𝜂2𝑡,1 − 𝜇𝑒2

+ 𝜎𝑒2
𝜂3𝑡,2 + 𝜇𝑒1

− 𝜎𝑒1
𝜂3𝑡,1).  
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We see directly that if the revisions are characterized by noise, 𝜎𝑟1
2 =  𝜎𝑒2

2 + 𝜎𝑒1
2 and for news we 

have 𝜎𝑟1 = 𝜎𝑣1
. Iterating forward the standard deviations for noise process we have 

𝜎𝑟1
2 = 𝜎𝑒2

2 + 𝜎𝑒1
2     

𝜎𝑟2
2 = 𝜎𝑒3

2 + 𝜎𝑒2
2     

⋮    

𝜎𝑟19
2 = 𝜎𝑒20

2 + 𝜎𝑒19
2     

𝜎𝑟20
2 = 𝜎𝑒20

2 .     

Since we assumed equal standard deviations for revision 2-19 we can deduce that 𝜎𝑒2
2 = 𝜎𝑒4

2 = ⋯ =

𝜎𝑒18
2 = 𝜎𝑒20

2  and 𝜎𝑒3
2 = 𝜎𝑒5

2 = ⋯ = 𝜎𝑒17
2 = 𝜎𝑒19

2 . Because we also imposed that 𝜎𝑟20
=

𝛼

4
𝜎𝑌𝑡,𝑡+1 and 𝜎𝑟2,..19

=
𝛼

2
𝜎𝑌𝑡,𝑡+1 which implies 

𝜎𝑟20
2

𝜎𝑟19
2 =

1

4
. By inserting these findings to the identity 

𝛼𝜎𝑌𝑡,𝑡+1
= 𝜎𝑒2

+ 𝜎𝑒1
 we find that  

𝜎𝑒1
= √

15𝛼2

16−15𝛼2

𝜎2

1−𝜙2    

𝜎𝑒2
= 𝜎𝑒4

= ⋯ = 𝜎𝑒18
= 𝜎𝑒20

= √
𝛼2

16

16

16−15𝛼2

𝜎2

1−𝜙2  

𝜎𝑒3
= 𝜎𝑒5

= ⋯ = 𝜎𝑒17
= 𝜎𝑒19

= √
3𝛼2

16

16

16−15𝛼2

𝜎2

1−𝜙2  

For the news process we utilize the fact that ∑ 𝜎𝑣𝑖

2𝑙
𝑖=1 = 5.5625𝜎𝑣1

2 . Plugging this to 𝜎𝑟1 = 𝜎𝑣1
=

𝛼𝜎𝑌𝑡,𝑡+1
 yields 

𝜎𝑣1
= √

𝛼2𝜎2

1−(1+5.5625𝛼2)𝜙2    

and 𝜎𝑣2,..,19
=

𝜎𝑣1

2
 and 𝜎𝑣20

=
𝜎𝑣1

4
. 
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Appendix 3. Full Monte Carlo simulation results 
 

Table A2.1 Forecasting error statistics from Monte Carlo simulation, noise revisions 

Forecast step   RMSD   MAE   ME     RMSD   MAE   ME   

    RT LA RT LA RT LA   RT LA RT LA RT LA 

Scenario 1 

A
c
tu

a
l 
v
a
lu

e
: 

L
a
te

s
t 

a
v
a
il
a
b
le

 

            

A
c
tu

a
l 
v
a
lu

e
: 

F
ir

s
t 

p
u
b
li
c
a
ti
o
n
 

            

1-step forecast 1,081 1,017 0,874 0,823 -0,017 -0,004 1,379 1,330 1,102 1,064 -0,011 0,002 

2-step forecast 1,149 1,136 0,934 0,924 -0,017 -0,004 1,372 1,335 1,099 1,070 -0,010 0,000 

3-step forecast 1,166 1,160 0,951 0,946 -0,020 -0,006 1,375 1,349 1,104 1,083 -0,011 -0,003 

4-step forecast 1,166 1,164 0,952 0,950 -0,022 -0,008 1,374 1,356 1,105 1,090 -0,012 -0,006 

  
           

  

Scenario 2                         

1-step forecast 1,124 1,011 0,908 0,817 0,001 0,006 1,417 1,328 1,131 1,062 0,015 0,021 

2-step forecast 1,262 1,215 1,031 0,990 0,009 0,011 1,442 1,351 1,158 1,085 0,022 0,020 

3-step forecast 1,311 1,286 1,073 1,053 0,017 0,017 1,466 1,384 1,183 1,118 0,028 0,021 

4-step forecast 1,333 1,318 1,093 1,081 0,022 0,022 1,476 1,410 1,193 1,141 0,024 0,016 

  
           

  

Scenario 3                         

1-step forecast 1,028 0,993 0,834 0,806 -0,028 -0,017 1,301 1,275 1,045 1,023 -0,016 -0,004 

2-step forecast 1,056 1,049 0,858 0,851 -0,033 -0,023 1,290 1,274 1,039 1,025 -0,016 -0,009 

3-step forecast 1,059 1,056 0,861 0,857 -0,028 -0,019 1,285 1,275 1,036 1,027 -0,016 -0,012 

4-step forecast 1,063 1,059 0,864 0,860 -0,025 -0,017 1,275 1,268 1,029 1,022 -0,010 -0,008 
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Table A2.2 Forecasting error statistics from Monte Carlo simulation, news revisions 

Forecast step   RMSD   MAE   ME     RMSD   MAE   ME   

    RT LA RT LA RT LA   RT LA RT LA RT LA 

Scenario 1 
A
c
tu

a
l 
v
a
lu

e
: 

L
a
te

s
t 

a
v
a
il
a
b
le

 
            

A
c
tu

a
l 
v
a
lu

e
: 

F
ir

s
t 

p
u
b
li
c
a
ti
o
n
 

            

1-step forecast 2,190 2,224 1,772 1,800 -0,007 -0,026 1,950 1,986 1,562 1,597 -0,023 -0,042 

2-step forecast 2,264 2,275 1,832 1,843 -0,017 -0,035 2,000 2,021 1,606 1,626 -0,026 -0,039 

3-step forecast 2,285 2,290 1,851 1,856 -0,006 -0,021 2,045 2,058 1,644 1,656 -0,024 -0,032 

4-step forecast 2,291 2,294 1,855 1,858 -0,006 -0,020 2,078 2,085 1,672 1,680 -0,025 -0,030 

  
           

  

Scenario 2                         

1-step forecast 4,710 4,820 3,782 3,878 -0,017 -0,023 4,146 4,271 3,315 3,432 -0,019 -0,024 

2-step forecast 5,001 5,059 4,043 4,083 -0,011 -0,022 4,328 4,427 3,481 3,574 -0,030 -0,036 

3-step forecast 5,118 5,146 4,140 4,164 -0,017 -0,030 4,479 4,552 3,617 3,686 -0,035 -0,041 

4-step forecast 5,177 5,192 4,188 4,200 -0,021 -0,034 4,583 4,634 3,710 3,757 -0,030 -0,034 

  
           

  

Scenario 3                         

1-step forecast 1,730 1,742 1,403 1,415 0,013 0,006 1,534 1,549 1,238 1,252 0,009 0,001 

2-step forecast 1,747 1,752 1,413 1,417 0,016 0,010 1,550 1,558 1,253 1,261 0,009 0,006 

3-step forecast 1,750 1,754 1,415 1,418 0,019 0,013 1,563 1,569 1,266 1,272 0,005 0,004 

4-step forecast 1,754 1,758 1,417 1,420 0,024 0,018 1,577 1,582 1,279 1,284 0,010 0,011 

 

 

 

 

 

 

 

 

   

 

  



- 53 - 

 

Bibliography 
 

Aruoba, S. Borağan. "Data revisions are not well behaved." Journal of money, credit and banking 

40.2‐ 3 (2008): 319-340. 

Box, George EP, and Gwilym Jenkins. "M. (1970)." Time Series Analysis: Forecasting and 

Control." Holden-D. iv, San Francisco. 

Carson, Carol S., and Lucie Laliberté. "Assessing accuracy and reliability: a note based on 

approaches used in national accounts and balance of payments statistics." (2002): 1-21. 

Clements, Michael P. "Real-time factor model forecasting and the effects of instability." 

Computational Statistics & Data Analysis (2015). 

Clements, Michael P., and Ana Beatriz Galvão. "Real‐Time Forecasting Of Inflation And Output 

Growth With Autoregressive Models In The Presence Of Data Revisions." Journal of Applied 

Econometrics 28.3 (2013): 458-477. 

 

Cole, Rosanne. "Data errors and forecasting accuracy." Economic forecasts and expectations: 

analysis of forecasting behavior and performance. NBER, 1969. 47-82. 

Croushore, Dean. "Forecasting with real-time macroeconomic data." Handbook of economic 

forecasting 1 (2006): 961-982. 

Croushore, Dean, and Tom Stark. "A real-time data set for macroeconomists: Does the data vintage 

matter?." Review of Economics and Statistics 85.3 (2003): 605-617. 

Denton, Frank T., and John Kuiper. "The effect of measurement errors on parameter estimates and 

forecasts: A case study based on the Canadian preliminary national accounts." The Review of 

Economics and Statistics (1965): 198-206. 

Diebold, Francis X., and Glenn D. Rudebusch. "Forecasting output with the composite leading 

index: A real-time analysis." Journal of the American Statistical Association 86.415 (1991): 603-

610. 

Diebold, Francis X., and Roberto S. Mariano. "Comparing Predictive Accuracy." Journal of 

Business & Economic Statistics 13.3 (1995): 253-63. 

DiFonzo, T. "The OECD project on revisions analysis: First elements for discussion." Ponencia 

presentada en la OECD steseg Meeting. 2005. 

Elliott, Graham. "Comments on ‘Forecasting with a real-time data set for macroeconomists’." 

Journal of Macroeconomics 24.4 (2002): 533-539. 

Faust, Jon, John H. Rogers, and Jonathan H. Wright. "News and noise in G-7 GDP 

announcements." Journal of Money, Credit and Banking (2005): 403-419. 

Friedman, Milton. "Lerner on the Economics of Control." The Journal of Political Economy (1947): 

405-416. 

Granger, Clive WJ, and Paul Newbold. "Some comments on the evaluation of economic forecasts." 

Applied Economics 5.1 (1973): 35-47. 



- 54 - 

 

Howrey, E. Philip. "The use of preliminary data in econometric forecasting." The Review of 

Economics and Statistics (1978): 193-200. 

Hännikäinen, Jari. "Essays on Real-Time Macroeconomic Forecasting." (2015). 

 

Jenkinson, G., and N. Stuttard. "Revisions information in ONS first releases." Economic Trends 

604 (2004): 70-72. 

Koenig, Evan F., Sheila Dolmas, and Jeremy Piger. "The use and abuse of real-time data in 

economic forecasting." Review of Economics and Statistics 85.3 (2003): 618-628. 

Mankiw, N. Gregory, and Matthew D. Shapiro. News or noise? An analysis of GNP revisions. No. 

w1939. National Bureau of Economic Research, 1986. 

Marcellino, Massimiliano. "A linear benchmark for forecasting GDP growth and inflation?." 

Journal of Forecasting 27.4 (2008): 305-340. 

Marcellino, Massimiliano, James H. Stock, and Mark W. Watson. "Macroeconomic forecasting in 

the euro area: Country specific versus area-wide information." European Economic Review 47.1 

(2003): 1-18. 

McKenzie, Richard. "Undertaking revisions and real-time data analysis using the OECD main 

economic indicators original release data and revisions database." (2006). 

McKenzie, R., and Z. Adam. "Revisions in Quarterly GDP of OECD countries: an Update." 

Working Party of National Accounts (2007). 

 

Meese, Richard, and John Geweke. "A comparison of autoregressive univariate forecasting 

procedures for macroeconomic time series." Journal of Business & Economic Statistics 2.3 (1984): 

191-200. 

Morgenstern, Oskar, and Princeton University Press. On the accuracy of economic observations. 

Vol. 2. Princeton: Princeton University Press, 1963. 

Newey, Whitney K., and Kenneth D. West. "Hypothesis testing with efficient method of moments 

estimation." International Economic Review (1987): 777-787. 

Rudebusch, Glenn D. "Is the Fed too timid? Monetary policy in an uncertain world." Review of 

Economics and Statistics 83.2 (2001): 203-217. 

Stark, Tom, and Dean Croushore. "Forecasting with a real-time data set for macroeconomists." 

Journal of Macroeconomics 24.4 (2002): 507-531. 

Stekler, H. O. "Data revisions and economic forecasting." Journal of the American Statistical 

Association 62.318 (1967): 470-483. 

Stock, James H. "Forecasting economic time series." A Companion to Theoretical Econometrics, 

Blackwell Publishers (2001): 562-84. 

Stock, James H., and Mark W. Watson. Introduction to econometrics. Vol. 104. Boston: Addison 

Wesley, 2003. 

 

Swanson, Norman. "Forecasting using first-available versus fully revised economic time-series 

data." Studies in Nonlinear Dynamics & Econometrics 1.1 (1996). 



- 55 - 

 

 

Trivellato, Ugo, and Enrico Rettore. "Preliminary data errors and their impact on the forecast error 

of simultaneous-equations models." Journal of Business & Economic Statistics 4.4 (1986): 445-453. 

Zellner, Arnold. "A statistical analysis of provisional estimates of gross national product and its 

components, of selected national income components, and of personal saving." Journal of the 

American Statistical Association 53.281 (1958): 54-65. 

Öller, Lars-Erik, and Karl-Gustav Hansson. "Revision of national accounts." Journal of Business 

Cycle Measurement and Analysis 2004.3 (2005): 363-385. 


