Muutos Aalto-yliopiston kauppakorkeakoulun Aalto-sarjojen julkaisujen tallennuksessa vuoden 2014 alusta
Kauppakorkeakoulun Aalto-sarjojen julkaisujen tiedot ja
pdf-tiedostot löytyvät nyt
Aaltodoc-julkaisuarkistosta
eDiss - Kauppakorkeakoulun väitöskirjat
Tekijä: | Sinha, Ankur. | ||
Otsikko: | Progressively interactive evolutionary multiobjective optimization | ||
Julkaistu: | [Espoo] : Aalto University, 2011 | ||
Ulkoasu: | vi, 129 s. : kuv. ; 25 cm. | ||
Sarja: | Aalto University publication series. DOCTORAL DISSERTATIONS, 1799-4934 ; 17/2011 | ||
Sarjan numero: | 17/2011 | ||
Vuosi: | 2011 Väitöspäivä: 2011-03-16 | ||
Aine: | Taloustieteiden kvantitatiiviset menetelmät | ||
Laitos: | Liiketoiminnan teknologian laitos | ||
Elektroninen väitöskirja: | » väitöskirja pdf-muodossa [2973 KB] | ||
Asiasanat: | control systems; decision making; ohjausjärjestelmät; optimization; optimointi; päätöksenteko; quantitative methods | ||
Kieli: | eng | ||
Bibid: | 574301 | ||
ISBN: | 978-952-60-4052-3 | ||
Tiivistelmä (eng): | A complete optimization procedure for a multi-objective problem essentially comprises of search and decision making. Depending upon how the search and decision making task is integrated, algorithms can be classified into various categories. Following `a decision making after search' approach, which is common with evolutionary multi-objective optimization algorithms, requires to produce all the possible alternatives before a decision can be taken. This, with the intricacies involved in producing the entire Pareto-front, is not a wise approach for high objective problems. Rather, for such kind of problems, the most preferred point on the front should be the target. In this study we propose and evaluate algorithms where search and decision making tasks work in tandem and the most preferred solution is the outcome. For the two tasks to work simultaneously, an interaction of the decision maker with the algorithm is necessary, therefore, preference information from the decision maker is accepted periodically by the algorithm and progress towards the most preferred point is made. Two different progressively interactive procedures have been suggested in the dissertation which can be integrated with any existing evolutionary multi-objective optimization algorithm to improve its effectiveness in handling high objective problems by making it capable to accept preference information at the intermediate steps of the algorithm. A number of high objective un-constrained as well as constrained problems have been successfully solved using the procedures. One of the less explored and difficult domains, i.e., bilevel multiobjective optimization has also been targeted and a solution methodology has been proposed. Initially, the bilevel multi-objective optimization problem has been solved by developing a hybrid bilevel evolutionary multi-objective optimization algorithm. Thereafter, the progressively interactive procedure has been incorporated in the algorithm leading to an increased accuracy and savings in computational cost. The efficacy of using a progressively interactive approach for solving difficult multi-objective problems has, therefore, further been justified | ||
Väitöstiedote: |
| ||
Vastaväittäjät: | Branke, Juergen professori Warwick Business School, University of Warwick, Iso-Britannia
| ||
Kustos: | Korhonen, Pekka professori | ||
Aaltodoc: | https://aaltodoc.aalto.fi/handle/123456789/11079 |
» Listaa kaikki Kauppakorkeakoulun väitöskirjat | Hae väitöskirjoja